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Abstract 

With the rise of concern about newly-designed or retrofitted buildings to have 

robust performance under different realistic scenarios, it is of vital importance to 

providing reliable energy predictions for building design and planning. Occupant 

behavior (OB), as one source of the significant uncertainties, is generally 

oversimplified as static schedules or predetermined inputs, which could cause a 

significant gap between the simulated and measured one. To bridge such gap, growing 
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interests have been raised to understand the role of OB on building energy 

performance and develop OB models which can be integrated into building simulation 

tools. This paper aims to provide a systematic review with the focus on three 

important issues: a) the impact uncertainty caused by OB in building performance 

simulation and their differences in various spatial scales and temporal granularities; b) 

main criteria for the comparison and selection of modeling methods; c) requisite 

considerations to improve the performance of OB models. Based on this review, a 

framework was proposed towards improving the predictive performance of future OB 

models. Existing research gaps and key challenges for OB modeling are identified and 

future directions in this area are highlighted. 

Keywords: Occupant behavior; Model; Building energy demand; Simulation; 

Uncertainty 

1. Introduction 

1.1 Background 

The building sector possesses huge potentials for efficiency gains and 

greenhouse gas emission reduction, so as to positively contribute to global climate 

change. To ensure the high energy-efficiency and decarbonization of buildings, 

various innovative solutions have been recently proposed such as nearly zero-energy 

buildings (nZEBs) [1, 2], deep renovation of existing buildings [3] and smart 

buildings[4, 5]. For example, in EU, all new buildings are required to be nZEBs by 

2020, under the Energy Performance of Buildings Directive (EPBD) [6]. According to 

previous studies, the building sector is still far from the expectation to be high 

energy-performance though the use of energy-conservation and low-carbon 

technologies [7]. For instance, the energy consumption of 196 apartments in two 

similar high-performance buildings varies greatly and some of them is higher than the 

desired performance due to occupants’ behavior [8]. To foster building’s energy 

efficiency, it is critical for buildings being designed or retrofitted to have robust 

performance under real and variable scenarios, particularly considering the large 

variability of occupant behavior.  
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Building performance simulation (BPS) tools are powerful techniques to predict 

building energy performance. An unsolved performance gap issue (i.e. discrepancy 

between predicted and actual performance), however, creates significant barriers in 

the effectiveness and reliability of BPS in producing accurate prediction results. One 

possible reason is the deterministic predictions of energy performance by using BPS 

tools in current practices. To be more specific, many input parameters inherent in BPS 

are assumed imprecisely or oversimplified and the variety of uncertainties is often 

ignored. Occupant behavior (OB), therefore, is represented by standardized schedules 

or predefined inputs which are oversimplified versions of complex reality. Such a 

deterministic simulation results in considerable difficulties for practitioners and 

stakeholders to make more rational decisions on selecting energy saving technologies 

especially in cost-optimal analysis and life cycle analysis [9, 10]. Accordingly, a 

paradigm shift in current deterministic simulation practices to a probabilistic form 

which can address the impact of various uncertainties (especially OB) in BPS are 

attracting much attention in recent years [11, 12].  

Due to the increasing importance of OB, research community has placed 

substantial efforts to model the process of energy-related occupant behavior which 

can be viewed as solutions to address the uncertainty caused by the simplification of 

OB in BPS. For instance, the International Energy Agency (IEA) proposed a project 

Annex 66-‘Definition and Simulation of Occupant Behavior in Buildings’, aiming at 

accurately quantifying occupant behavior in a standard way [13, 14]. During the last 

two decades, various OB models have been developed to mimic the random nature of 

OB and generate stochastic and high-resolution OB profiles. In spite of significant 

improvements, the wide implementation of such OB models in BPS is limited as the 

robustness of these models is still under investigation. 

As the most emerging expectations are to predict building energy performance in 

a reliable manner, understanding the role of OB and creating more robust OB models 
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might remain a major issue for the following years. Therefore, more comprehensive 

and critical research and review works are required in order to address the existing 

challenges in modeling OB and to consider their dynamic nature during the 

building/district energy prediction and simulation. 

1.2 Existing reviews and research gaps 

Several reviews relevant to OB and its modeling have been conducted in recent 

years. For example, Yan et al. [15] conducted an inclusive review on occupant 

monitoring and data collection, model development, model evaluation and 

implementation. Gunay et al. [16] critically reviewed observational studies, modeling 

and simulation methods for adaptive behaviors. These studies mainly focus on 

statistical and stochastic methods while data mining and agent-based models were 

rarely included. Wei et al. [17] identified key drivers for space heating behavior in 

residential buildings and discussed methods of modeling space heating behavior in 

building simulation tools. Jia et al. [18] reviewed the studies from a unified view of 

‘sensing, modeling and coupling’ and discussed the advantages and limitations of 

modeling methods from the view of building scale. Hong et al. [19] specifically 

focused on the approaches to represent OB in major building performance simulation 

tools. Stazi et al. [20] focused on the identification of important environmental factors 

and time-related events for six categories of behavior, and reviewed the commonly 

used variables in existing OB models. Gilani and O’Brien [21] critically reviewed the 

existing monitoring approaches and their future possibilities to facilitate OB modeling. 

Zhang et al. [22] conducted a review with particular focus on the understanding of OB, 

data collection methods, quantitative modeling methods and respective energy-saving 

potentials. Happle et al. [23] presented an overview of the existing modeling 

strategies of OB in urban building energy models and suggested a multi-agent 

approach for urban OB modeling. 
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Despite the importance of these efforts, there still remains several research gaps 

that are needed to be addressed. First, with the substantial interests in district and 

urban energy modeling, understanding the extent to which OB can affect building 

energy performance at different spatial scales is imperative for the development of 

OB models. Existing reviews were primarily carried out from the perspective in a 

single zone or building, while their impacts in large-scale simulation (e.g. building 

stocks, districts and cities) have not been well-understood. Second, different types of 

OB models have been established and each has its own strengths and limitations. A 

major problem faced by modelers and practitioners is to select suitable modeling 

methods with the highest potential for meeting their own requirements in practice. 

However, there is not yet a set of uniform and common criteria available for 

supporting such selection. In response, identifying model selection criteria that are of 

a rational and systematic basis is urgently needed based on a thorough understanding 

of existing modeling methods. Third, some technical details in OB model construction 

profoundly affect the model performance while they have seldom been fully 

addressed in previous reviews yet. An effort is necessary to understand and discuss 

the considerations in terms of these technical details that are directly/indirectly 

involved in the process of OB model development.  

1.3 Scope of this review 

Occupants generally influence their built environment through their impacts of 

presence (e.g. heat release and carbon dioxide emissions) and their interactions with 

buildings (e.g. building envelopes, systems and appliances) [24]. In this view, 

Schweiker et al. [24] sorted all energy-related behavior into four categories: 1) 

physiological adjustments regarding occupants’ unconscious controls such as 

sweating and shivering, 2) individual adjustments such as clothing changes, 3) 

environmental adjustments broadly including all possible behavior influencing indoor 

environment conditions and use of systems and appliances, and 4) occupancy involves 
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occupants’ presence and spatial movement in buildings. Note that occupancy, 

particularly occupants’ presence, can be viewed as a prerequisite of any behavior. 

Hence, the scope of this paper is environmental and individual adjustments for OB 

modeling purposes, while studies on psychological adjustments and occupancy 

models are not included. 

1.4 Objective 

To address the abovementioned gaps, this paper critically reviewed current 

research efforts in OB modeling with an emphasis on the following topics: a) impact 

quantification of OB on building energy performance in terms of different spatial and 

temporal scales and difficulties of addressing OB-related uncertainties for large-scale 

simulation (Section 2); b) establishment of a set of criteria for the rational selection 

from existing OB models (Section 3 and Section 5); c) technical issues and key 

challenges of model input and output selection, consideration of occupant diversity 

and comprehensive model evaluation, so as to the improvements of OB models 

(Section 4). Moreover, an integrated framework is proposed to help understand the 

whole process of OB model development so as to improve model performance. Such 

a review aims to assist modelers to develop more robust OB models with proper 

selection of modeling methods and requisite considerations in terms of the technical 

details. It can also help the building research community and building engineers to 

rethink the role of sophisticated OB models in building energy simulation. 

2. Review methodology  

In order to comprehensively review up-to-date research efforts to address the 

above said research gaps, a three-step procedure was taken in this review. At first, an 

extensive keyword-based search of relevant studies with regard to occupant behavior 

modeling in buildings was carried out using the following academic databases: Web 

of Science, ScienceDirect, Springer, Scopus and Google Scholar. In this step, 
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examples of keywords used in this study are: occupant behavior, user behavior, 

modeling, uncertainty, impact, building performance simulation. Secondly, journals 

with an impact factor above 1.5 or highly endorsed by experts were selected. Through 

these two steps, more than 200 journals and conference papers were found. Since this 

research is not intended to review all the topics related with occupant behavior in 

buildings, as some of them have been addressed in prior reviews. Instead, we 

primarily focus on the abovementioned research gaps to critically review the impact 

of occupant behavior, existing models and approaches to improve model performance. 

Hence, at the third step, irrelevant articles were eliminated after going through the 

abstract using domain knowledge. 

3. Impact of occupant behavior on building energy performance 

Previously, many in-situ monitoring studies investigated the energy use in similar 

buildings with (nearly) identical structure and environment. For example, a 

monitoring case in high-performance social housing buildings observed that energy 

use between different dwellings varies between 54 and 273 kWh/m2 [25]. Gill et al. 

[26] stated that OB contributes 51%, 37% and 11% of variance in heating, electricity 

and water consumption. These results confirmed the large deviation of building 

energy performance caused by OB in real buildings which implies the importance of 

considering the uncertainty of OB and quantify such uncertainty on BPS. With the 

rapid advancement of computation capability, conducting a large number of 

parametric simulations becomes feasible within an acceptable computational burden. 

Hence, uncertainty analysis (UA) and sensitivity analysis (SA) have been widely used 

in BPS to address different sources of uncertain input parameters (e.g. weather 

conditions, thermal properties of building envelope and OB). In this section, the 

impact quantification of OB in building energy performance as well as the differences 

of such impacts on different spatial and temporal scales are reviewed and some 

suggestions are provided. 
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3.1 Approaches for impact quantification 

UA is a method of analyzing the response of simulation outputs along with the 

possible variation of input parameters. SA, however, primarily focuses on identifying 

the order of most influential input parameters in terms of their contribution to the 

variation of simulation results. Though these two methods originate from different 

disciplines, SA is normally performed in combination UA where the output of UA can 

be directly used as the input for SA. In building performance analysis, UA and SA 

have been deployed to find potentially economic solutions for energy efficiency and 

thermal environment improvement. For instance, Belleri et al [27] addressed the key 

design parameters of natural ventilation systems in the early-design stage for avoiding 

overheating risk. Winkler and Munk [28] examined the sensitivity of indoor humidity 

to changes in OB and air-conditioning control and found that a reduction of cooling 

supply airflow rates and a cooling blower-off delay would be a good solution rather 

than a simply lowering of cooling set points. To facilitate the usage of UA and SA in 

building energy assessment, Mavromatidis et al. [29] proposed a general procedure 

incorporated with UA and SA, as shown in Fig.1. 

Step 1 Step 2 Step 3 Step 4 

Uncertain input 

parameters 

selection

Uncertainty 

propagation
Sampling Model 

simulation

Step 5 

Uncertainty 

analysis/ Sensitivity 

analysis
 

Fig. 1. A general procedure incorporated with UA and SA in building energy 

assessment [29] 

In prior studies, weather, building and occupancy-related parameters (e.g. 

internal gains and presence) were the main focus, while OB- related parameters (e.g. 

blind, window and light control) were either ignored or assumed to be fixed scenarios 

[30]. Until now, few research works accounted for OB when applying UA and SA in 

BPS. In particular, their solutions for the investigation of OB impacts are to analyze 

the changes in performance metrics (e.g. annual total and peak heating load) along 
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with the alteration of OB-related parameters (e.g. met value [31] and schedules [32, 

33]) by: 1) assuming a number of given conditions with different value settings or a 

probability distribution to each parameter; 2) using generated profiles from OB 

models [34]. These studies indicated that OB resulted in significant variations in 

energy demand and indoor environment, indoor environment and thermal comfort (e.g. 

positive and negative thermal sensation [31]), ranging from 23.6% to 65% [31, 35].. 

Table 1 summarizes some studies that investigated the impact of OB on BPS. It 

should be noted that, though there are many studies that use UA and SA in building 

energy analysis, the studies that primarily consider the impact of OB were 

summarized in Table 1. 

Table 1 Reviewed studies focusing on the impact quantification of OB on building 

energy performance 

Ref. Type of OB 
Use of 

OB model 
UA * SA ** 

Performance metrics 

Energy IAQ/TC *** Others 

[36] 

Use of blinds and 

lighting 

Occupancy 

Internal gain 

Y UA1 S2.1 

Annual heating and 

cooling energy 

demand; 

Primary energy use; 

PMV; 

Max. and 

min. room 

temperature 

- 

[37] 
Window use 

Shade use 
Y - - 

Heating and cooling 

demand 
PMV - 

[27] 
Window use, 

Internal gains 
- UA1.1 SA2.1 - 

Air change 

rate per hour 

window 

opening 

factor 

 

[31] 

Blinds 

Lights 

Window, 

Temperature set point 

Fan and clothing 

- 

 
- SA1 

Heating and total 

energy demand 

Thermal 

sensation 
- 

[38] 
HVAC use 

Occupancy 
Y - - Total energy use - - 

[39] 

Occupancy 

Window shade use 

Lighting use 

Y - - Lighting use - - 
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[40] 
Occupancy, 

Internal gains  
 UA1.1 - 

Heating and cooling 

load 
- - 

[32] 

Window; 

Light; 

equipment 

- UA1.1 SA2.1 
Energy consumption 

for air conditioning 
- 

Degree-hours 

for heating 

and cooling 

[41] 

Thermostat level, 

Ventilation behavior 

Metabolic rate 

Clothing 

Presence 

- UA1.1 SA2.3 
Annual heating energy 

consumption  
PMV  - 

[33] 

Thermostat set points 

Occupancy, 

Light use 

- UA1.1 
SA2.1& 

SA2.2 

Annual and peak 

facility electricity 

consumption, 

annual and peak 

HVAC electricity 

consumption 

- - 

[28] 

Cooling set point 

Air-conditioner 

configuration, controls 

- - SA1  
Indoor 

humidity 
 

[42] 

Occupancy 

Window behavior, 

DHW 

Electrical appliances 

use 

Light use 

Y - - 
Heating and cooling 

demand 

Temperature 

and CO2 

Power 

mismatch 

factor 

[43] 

Occupancy 

Cooling temperature set 

point 

Lighting control 

Window use 

HVAC control 

Y UA1.1 - 

Total and peak cooling 

load 

Load distribution 

- - 

[44] DHW use schedule  UA1.1 
SA2.1& 

SA2.2 

Peak/annual whole 

building water 

consumptions, DHW 

system water 

consumption, DHW 

system gas 

consumptions, and 

DHW system 

electricity 

consumptions 

- - ACCEPTED M
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[45] 
Cooling set point; 

Internal gain 
- - SA1 

Peak total cooling and 

dehumidification loads 
- - 

[46] 

Occupancy, use of 

lights, window shades, 

operable windows, 

plug-in equipment, and 

thermostats 

Y - - 

Total natural gas, peak 

heating load, total 

electricity use, and 

peak cooling load 

- - 

Note: * There are two categories of UA methods, i.e. probabilistic (UA1) and non-probabilistic s (UA2). The 

probabilistic methods can further divided into sampling-based (UA1.1) and non-sampling based (UA1.2).  

** Local sensitivity analysis (SA1) and global sensitivity analysis are two main types of SA methods. The global 

sensitivity analysis includes regression-based (SA2.1), screening-based method (SA2.2), variance-based method 

(SA2.3); meta-model based method (SA2.4). Details with respect to categories of UA and SA can be found in [29, 

47, 48]. 

*** IAQ and TC are the abbreviations of indoor air quality and thermal comfort respectively. 

**** ‘Y’ is the abbreviation of yes which indicates if the OB models is used in uncertainty and sensitivity analysis. 

 

In Table 1, UA employed in most studies are probabilistic and sampling-based 

approaches in which the uncertainty was represented by a single probability 

distribution, consequently combining both natural variability (i.e. aleatory uncertainty) 

and the uncertainty deriving from the lack of knowledge (i.e. epistemic uncertainty). 

However, some uncertainties are due to the inappropriate assumptions for OB 

parameters which is epistemic instead of aleatory. For instance, O’Neill and Niu [33], 

Pang and O'Neill [44] argued that OB-related parameters employed in these studies 

are time-independent and thus the temporal variation of OB cannot be reflected. To 

address this issue, some research efforts [33, 44]  attempted to apply a 

Karhunen-Loève expansion sampling method to consider the temporal variation of 

OB on residential building energy usage and domestic hot water usage respectively. 

These two studies indicated that the uncertainties in terms of annual and peak energy 

consumption associated with temporal variations of OB are required to be carefully 

addressed. In addition, it can be seen from Table 1 that annual and peak energy 

performance metrics were analyzed in most existing studies. However, the extent to 

which OB influences load distribution remains unclear. Such an influence needs to be 
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further examined as it is critical to evaluate the adoption of energy-efficient 

technologies and control strategies [43]. 

3.2 Impact on different spatial and temporal scales 

Accurate prediction of building energy demand at different scales (building, 

district and city) is essential for sizing and managing different-scale energy systems 

and for decision-makers to plan energy-saving strategies. Considering the importance 

of OB in predicting energy demand, the diversity among different occupants at district 

or larger scale would result in distinct results with respect to their impact on building 

energy performance. Accordingly, it is of high importance to identify the impact of 

OB on different spatial scales. Table 2 summarizes research studies found in the 

literature related to investigate the impacts of OB on either one particular scale (e.g. 

small and large) or compared the differences of such impact on different spatial scales. 

It can be seen from Table 2 that most of existing studies were conducted in a single 

zone or building [31-33, 35, 49]. So far, very few studies have been conducted to 

examine the uncertainty of OB on different spatial scales or in large-scale simulation 

[50]. For instance, the effects of OB on different number of rooms within a building 

were investigated. Based on the comparison of aggregated total lighting energy use, it 

is found that the impacts of OB (window shade use, light use and occupancy) on 

lighting consumption might be reduced as the number of offices increases, for 

instance, from 1 to 100 [34]. When moving from small scales to large scales (building 

stocks, districts, and cities), aggregating and smoothing effects could possibly exist 

and uncertainties caused by OB would be overlapped [51, 52]. For two buildings with 

diverse load profiles (i.e. peak load occurs at different periods), the total peak load 

would be smoothed. On the contrary, for two buildings with similar load profiles (i.e. 

peak load occurs at the same time), the total peak load will be maximized. Baetens 

and Saelens [50] reported that the variation in annual total electricity load and hot 

water consumption caused by OB (plug-in appliance use and hot water use) varies 
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between 0.81 and 1.6 times the standard value (i.e. the mean consumption) for more 

than 10 houses, while the variation is between 0.88 and 1.3 times for more than 20 

houses. Such results imply that the uncertainty effect of OB on annual total energy 

consumption tends to be reduced as the number of buildings increases. However, An 

et al. [43] recently investigated the effects of OB on district cooling systems. Results 

showed that the oversimplification of OB could result in significant overestimation of 

total and peak cooling loads, as well as load distribution. Hence, more research works 

are needed to identify the degree of uncertainty introduced by OB on large-scale 

simulation and understand the aggregating and smoothing effects caused by OB as 

well.  

Table 2. Research studies on analyzing the impacts of OB at different spatial scales  

Ref. 
Spatial scales 

Building type 
Room/Zone Building District City 

[36] √    Residential building (single family house) 

[53]  √   Office building (private offices) 

[35]  √   Office building 

[32]  √   Residential building (low-income house) 

[31] √    Not mentioned 

[54]  √   Residential building (single house) 

[50]   √  Residential buildings 

[39] √    Office building 

[33]  √   Residential building 

[43]   √  Residential buildings 

[34] √ √   Office building  

 

The impact of temporal granularities on BPS is also of interests as many OB 

models were developed with different time intervals. Temporal granularities involve 

both temporal resolution (also called time intervals) and time length of the simulation. 

With regard to temporal resolution, it directly determine how long the behavior needs 

to be modelled (e.g. 10min, half-hour, hourly) and therefore has a great impact on 

capturing the dynamic variation of OB [15, 55] and also reducing computational costs 
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for simulation [56]. Generally,  low-resolution models tend to have a relatively poor 

performance in capturing the temporal variation of OB, on the other hand a fine 

resolution would significantly increase the size of the required database (i.e. data 

needed for constructing OB models) [17, 23, 25, 26]. These studies mainly involved 

in qualitative analyses of the impact while a quantitative analysis is necessary to 

choose suitable time intervals. Recently a simulation-based analysis was conducted by 

Feng et al. [56] to compare the predicted cooling energy demand based on different 

time intervals of stochastic OB models. The authors reported that the simulated 

energy consumption distribution by using time intervals 5, 10 and 15 min were similar 

and shows a relatively small deviation. While the simulation with time intervals at 30 

and 60 min presents a relatively large deviation. Based on their findings, 15 min was 

suggested for situations where computational time is restricted. However, this study 

was limited to cooling and window behavior. In this view, more studies on the test of 

other behavior are still needed in the future. With respect to the time length of 

simulation, existing simulation studies were usually performed on a yearly basis. In 

such a short period, possible changes in OB may be rather small and thus can be 

negligible for short-term prediction. Nevertheless, occupant’s preferences and 

behavior might change over a long period since there could exist evolution to more 

energy-efficient appliances and possibility to modify behavior by energy policies and 

education [50]. Such change is important for assessing medium-to-long term energy 

performance and energy saving potentials in building sectors. Hence, future studies 

need to be carried out to consider OB and varied demographic compositions for 

long-term prediction [50].  

3.3 Summary 

In summary, UA and SA have been applied in addressing the impact of OB in 

BPS in recent years. The results obtained from these studies hints the important role 

of OB and on the BPS. However, existing UA and SA studies that consider the 
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OB-related parameters are limited in current building energy analysis. The 

representation of OB in these studies are simple and static while the temporal 

variation of OB has not been well addressed. Ongoing research works should take 

such variation into consideration when quantifying the impact of OB in BPS. 

Moreover, few studies investigated the use of advanced OB models (stochastic and 

data-driven behavioral models) in UA and SA studies [36]. Despite the importance for 

supporting effective building design and decision-making, consistency has not been 

reached about how sophisticated model would be beneficial to BPS. The uncertainty 

of an OB model itself which is ignored in current studies needs to be addressed in the 

future.  

In addition, the impact of OB on different spatial scales and temporal 

granularities has not been fully investigated in the previous research works and further 

studies are still needed. In particular, procedures and guidelines for the selection of 

temporal granularities on different scales are necessary. In addition, some factors in 

large-scale simulation, such as the interaction between buildings and urban heat island 

effects, are rather complex. The influence of these factors still remains unclear and 

therefore their combined effects on OB also need to be identified. Filling such 

research gaps will provide a deep understanding of the role of OB models in building 

energy simulation, and facilitate research community to make a rational decision on 

how to choose suitable modeling methods for different simulation purposes.. 

4. Approaches to model occupant behavior 

A lack of knowledge in terms of how occupants interact with buildings (e.g. use 

of windows and lights) in real buildings (i.e. epistemic uncertainty) possesses 

significant challenges in improving BPS. It is urgently needed to understand the 

process of occupants’ energy-related behavior in reality and to develop effective 

methods to model such process. To date, various mathematical models have been 
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proposed and Jia et al. [18], Zhang et al. [22] classify them into four broad categories: 

statistical models, stochastic/probabilistic models, data mining models and 

agent-based models (ABM). Note that, there exists some overlaps in these four 

categories which are not mutually exclusive. For instance, an agent-based model is a 

computational model with bottom-up structure that enables to model the behavior of 

each occupant independently and produce respective behavior patterns. In line with 

this definition, some statistical models can be considered as agent-based style as they 

simulated individuals’ behavior independently through developing separate models 

developed for each occupant. However, other statistical models consider the average 

behavior of multiple occupants or simulate the behavior from the whole-building level 

and consequently, these models should be distinguished from agent-based models. To 

get a clear view of current OB models, up-to-date modeling methods are reviewed and 

their strengths and weaknesses are discussed based on to the abovementioned 

categories. Such a comprehensive review is also a crucial step towards the 

establishment of a set of criteria for supporting rational selection of OB models, 

which will be further discussed in Section 5. Additionally, important technical details 

and information (e.g. data source, data resolution and possible application for 

large-scale simulation) of all reviewed models are summarized in Table 3-7, 

respectively. 

4.1 Statistical models  

Statistical models generally use traditional regression methods (e.g. linear 

regression) or generalized linear methods (e.g. logistic regression) to quantitatively 

describe the relationship between influencing factors to the behavioral metrics.. 

Logistic regression methods have gained the greatest popularity due to their capability 

to deal with binary variables (such as behavior states) [57] and to allow for 

non-normal distribution [58]. Based on one or several environmental factors, it has 

been successfully applied for predicting the various adaptive behavior [57]. For 
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example, most regression models for window opening and closing behavior were 

correlated with indoor/outdoor temperature or both. The early studies were conducted 

in office buildings while recently several field studies have been extended to 

residential buildings [57, 59-62] and school buildings [63]. In these later studies, the 

effects of other environmental stimuli such as indoor CO2 concentration [57, 59, 61] 

and outdoor PM2.5 concentration [61, 62] were also explored. It is inferred from the 

above studies that indoor CO2 concentration is an important predictor of window 

opening behavior. However, inconsistency was found in [63] that the correlation of 

indoor CO2 concentration to window status in classrooms was relatively small. In 

addition, it is noticed that a few studies considered time-related contextual factors (e.g. 

time of day, season) by developing sub-models under different contexts [64].  

Table 3. Summary of statistical models of OB 

Methods Behavior type  
Building 

Type 

Input data 

needed 
ABM 

Resolution(duration 

of measurement 

and measure 

intervals) 

Sample size Ref. 

Quadratic 

equation 
Window use Office  

Occupancy, 

outdoor 

temperature 

N 
13 months, 

1 min 
21 offices [65] 

Logistic 

regression 
Window use Office  

Outdoor/indoor 

temperature 
N 

Up to 3 months, 

four times per day 
15 buildings [66] 

Logistic 

regression 
Window use Office 

Indoor 

temperature, time 

of day 

Y 
3 months, 

1 h 

6 offices (5 

single-occupant 

offices, 1 

two-occupant 

office) 

[64] 

Logistic 

regression  
Window use Office 

Outdoor/indoor 

temperature, or 

both 

N 
7 years, 

5 min 
14 offices [67] 

Logistic 

regression 
Window use Office 

Outdoor 

temperature 
N 

8 weeks (only 

weekdays) 
Office room [68] 

Logistic 

regression 
Window use Residential 

Indoor CO2 

concentration; 

outdoor 

N 
8 months; 

10 min 

10 rented 

apartments, 5 

privately 

[59] 
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temperature owned houses 

Logistic 

regression 
Window use Residential 

Time of day, CO2 

concentration, 

daily average 

outdoor 

temperature  

N 
1 year; 

1 min 
60 apartments [57] 

Logistic 

regression 
Window use Residential 

indoor and 

outdoor air 

temperature and 

RH, wind speed, 

solar radiation, 

and rainfall, time 

of day and season 

N 
370 days 

10 min 

7 flats, 3 

houses 
[60] 

Linear 

and 

logistic 

regression 

Window use School 
Outdoor /indoor 

temperature 
N 

25 days 

1-15min 

a single 

classroom 

 

[63] 

Logistic 

regression 
Blinds use Office 

Average 

illuminance of 

window, vertical 

solar radiation at 

the window  

N Not specified 25 [69] 

Logistic 

regression 

Shading devices 

use 
Office 

Local stimuli on 

the work plane 
N 

5 years and 3 

months 

14 celluar 

offices 
[70] 

Logistic 

regression 

Air-conditioning 

use 
Dormitory 

Mean outdoor air 

temperature 
N 

10 weeks; 

2 min 

39 dormitory 

rooms 
[71] 

 

Statistical models allow understanding the influence of many independent 

variables on OB, particularly adaptive behavior that is predominantly driven by 

physical environmental stimuli. However, the success of statistical model 

development heavily relies on the identification of important influencing factors that 

are complex and sometimes inter-correlated. In addition, some statistical models only 

simulate various states of a building component (e.g. windows and blinds) [63, 65-68, 

72, 73] rather than occupant’s actions (opening a window) [57, 60, 64, 70]. Thus, they 

are quasi-static and not able to reveal the dynamic variation of OB (i.e. time-varying 

probability of a behavior to be performed). A possible solution is to directly relate the 
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state transition (e.g. from closed to opened) with its influencing factors. Furthermore, 

OB is sometimes completely habitual or psychologically driven, and it is difficult for 

statistical models to interpret such randomness. For example, statistical models using 

the combination of outdoor and indoor operative temperature can only predict 22% of 

the total variance of clothing levels [74]. 

4.2 Stochastic/probabilistic models 

4.2.1 Markov chain models 

Markov chain models are essentially one type of stochastic models adopted to 

predict OB. The basic assumption behind this approach is that the future states only 

depend on the current state while being independent of all previous states (i.e. Markov 

property). The Markov property is described by the state transition probabilities, i.e. 

the conditional probability of being state ‘i’given that the current state is ‘j’ [75]. Thus, 

Markov chain can be used to directly predict the behavioral state sequence since the 

model output has a one-to-one correspondence to a state of behavior [76]. 

Existing Markov chain models were mainly developed based on two categories 

of datasets: Time-use Survey (TUS) data and sensor-measured data. In the TUS data, 

household demographics and occupants’ daily activities were collected nationwide 

through self-report diaries. Correspondingly, the synthetic domestic activities of a 

group of occupants rather than a single occupant could be modeled [77-79]. In 

particular, the transition probabilities are directly estimated [77] from a population by 

dividing the number of state transitions with the total amount of transitions. On-site 

sensors (e.g. cameras and contact sensors) are used to collect data in selected 

buildings. Thus, it can provide more information on the environmental factors and 

energy use. Markov chain models based on sensor-measured datasets have been 

applied in predicting adaptive behavior (mainly window operation and 

air-conditioning usage) [80, 81]. As behavioral information and possible influencing 
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factors are both available in sensor-measured data, the transition probabilities can be 

estimated by direct calculation or using logistic regression analysis [82].  

Table 4. Summary of Markov chain models of OB 

Data 

source 
Behavior Type 

Building 

Type 
Input data needed Resolution Application* Ref. 

TUS 
Domestic 

activities 
Residential  

Nine activities (e.g. sleeping, and 

cooking) 
1 min 

Small-scale 

distributed 

power 

generation; 

building 

simulations; 

demand side 

management 

[77] 

TUS 
Domestic 

activities** 
Residential 

Nine activities (e.g. sleeping, and 

cooking) 
5 min 

Indoor climate 

simulations; 

load 

management; 

load matching 

[78] 

TUS 
Air-conditioning 

use 
Office 

17 domestic activities (e.g. cooking, and 

cleaning) 

Day of week (weekdays, Saturday, and 

Sunday); Type of person (e.g. working 

male/female) 

15 min NA [79] 

Sensor 

-measured 
Window use  Residential 

Window angle (classified into six classes) 

Outdoor air temperature 
30 min NA [80] 

Sensor 

-measured 

Air-conditioning 

use  
Office 

Window state (open and closed) 

Outdoor air temperature 
1 h NA [81] 

Sensor 

-measured 

Adaptive behavior 

(e.g. blind and fan 

use) 

Office  

Adaptive action (on and off) 

PMV; illuminance level; noise level; CO2 

concentration; wind speed; day of week; 

floor number; window operability; 

permission of night cooling strategy 

1 h NA [83] 

* Application in the table presents whether particular application purposes are highlighted in the reviewed papers 

such as small- and large-scale simulation. ** Note that, domestic activities refer to residents’ daily activities such 

as doing laundry and preparing food which are generally obtained by time-use survey. Domestic activities correlate 

with appliance use (e.g. when preparing food kitchen appliances are used) and consequently, they can be 
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considered as indicators for infer residential appliance use. However, it require clear relationship between activities 

with possible used appliances.  

 

An advantage of Markov chain models lies in its ability to simulate the transition 

between different states rather than predicting the probability of one state and 

therefore it can realistically represent the behavior of occupants and predict the 

evolvement of OB. With regard to model accuracy, McKenna et al. [84] reported that 

over a large number of runs (e.g. 50 runs), the synthetic OB profiles generated by 

Markov chain models have aggregated statistical properties has good agreement with 

original data. It should be noted that, model accuracy of an OB model can be 

represented in terms of different performance metrics (such as the probability of a 

behavior and respective duration) which are further discussed in Section 5.3. 

Moreover, this model is eminently suitable for long-term OB schedule prediction (e.g. 

months or whole year) with consideration of both computational efficiency and 

prediction accuracy [85]. The model accuracy is also substantially dependent on the 

calculation of transition matrix (i.e. a matrix of state transition probabilities) [78]. 

However, since the transition probabilities are independent of the time when an 

activity was started and do not consider the duration for a particular behavior, they 

show potential deficiencies in simulating the duration distribution of occupants’ 

activities [86]. Meanwhile, the amount of states directly increases the difficulties to 

estimate the exact probability of each state transition, especially for the transitions 

that occurs rarely. In addition, time steps in existing Markov chain models are 

pre-defined and the selection is often subjective. A coarse interval might fail to 

capture the variations that occur between two successive time steps and lead to 

redundant calculation [67]. So far, only limited literature reported the relationship 

between the time step and model prediction accuracy [87].  
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4.2.2 Other probabilistic models 

Other probabilistic models assume that the state of OB follows specific 

probabilistic distribution (e.g. normal distribution and exponential distribution). In 

this study, existing probabilistic models are categorized into two groups: discrete-time 

models and discrete-event models. In discrete-time models, the variation of states is 

represented as the progress of time and the states only change at fixed discrete time 

intervals. Moreover, the state is independent at each time step, which can be deemed 

as a Bernoulli process and satisfies the memoryless property. Different from 

discrete-time models, OB in discrete-event is modeled as a discrete and ordered 

sequence of events and each event occurs at a specific point in time. Hence, the 

frequency and duration of states describe each behavior. Such duration can be 

obtained from empirical distribution or survival analysis [67].  

Table 5. Summary of probabilistic models of OB 

Model type Distribution type Behavior type Building type Variables Application Ref. 

Discrete-event  Weibull 
Domestic 

activities 
Residential 

Individual 

characteristics (e.g. 

age and gender) 

Building and 

urban energy 

simulation 

[86] 

Discrete-time Weibull 
Air-conditioning 

use 
Residential Indoor temperature NA [55] 

Discrete-time Exponential Light use Office 
Psychological 

magnitude 
NA [88] 

Discrete-time 

Poisson, 

exponential, and 

normal 

Light use Office Time of day NA [89] 

Discrete-event Empirical  
Domestic 

activities 
Residential 

Starting time, number 

of starts, and duration 
NA [90] 

Discrete-event 
Gaussian and  

Uniform 

Domestic 

activities 
Residential 

Day of week 

(weekdays, Saturday 

and Sunday), People 

attributes (e.g. 

working male/female 

NA [79] 

ACCEPTED M
ANUSCRIP

T



23 

 

and housewife) 

Discrete-event 
Cumulative 

probability 

Domestic 

activities 
Residential 

Occupants’ attributes, 

day type 

Community-/ 

urban-scale 

energy 

demand 

modeling 

[91] 

 

Probabilistic models can partially reflect the randomness of OB by characterizing 

its time-dependency probability. Discrete-event probabilistic models have been 

proved to be efficient in simulating the duration of OB since the probability is directly 

correlated with a particular behavior as well as its starting time. Examples of OB 

correlated with its starting time include light use [88], domestic activities [86] and 

air-conditioning use [55]. Meanwhile, discrete-event probabilistic models are 

computationally efficient since they do not need to simulate at each time step [15]. 

Though discrete-time probabilistic models require a fixed time step, they can directly 

incorporate various time steps for more flexible simulations [55, 88], which is 

different from discrete-time Markov chain models. A key to the success of 

probabilistic model development is to obtain suitable probabilistic distribution curves 

fitting the original datasets (such as behavioral state and influencing factors). To get 

the distribution curve, the data associated with each model input variables need to be 

discretized. The statistical performance of such curve fit is easily influenced by the 

number of data points in each discretized group (i.e. continuously numeric factors 

divided into several categories with different ranges). A narrow discretization might 

lead to less or even no points in some groups and thereby poor fitting results will be 

made because of the large jumping up and down from one group to another. On the 

other hand, if this discretization is coarse, it is also not beneficial to curve fitting, as it 

would be subject to over-fitting problems. Therefore, a proper discretization of 
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datasets for each model parameter is essential for the model performance [55]. 

4.3 Data mining models 

Data mining (DM) techniques are powerful methods to extract hidden patterns 

and knowledge from large datasets and have also been applied to develop OB models 

[92-94]. Among various DM techniques, decision tree, Bayesian network, cluster 

analysis, and association rule mining methods are commonly used for OB patterns 

prediction and recognition. It is reported that the application of these techniques in 

OB modeling has shown promising results identifying typical behavior patterns as 

well as predicting OB [95, 96] and their performance has also been compared. Zhao 

and Lasternas et al. [97] compared the decision tree method, Bayes method and 

support vector machine method to investigate the office appliance usage pattern and 

its relationship with power consumption. The authors found that among the above 

said methods; the decision tree method has significantly better performance for 

individual OB prediction. The predicted OB patterns can represent the stochastic 

nature of OB and be further used in BPS. 

In addition to the usage of a single DM technique, some researchers [66, 67] 

combined several DM techniques to take the advantage of the strengths associated 

with each technique. For example, Ren et al. [98] firstly used cluster analysis to find 

typical room temperature setting behavior patterns representing occupants’ diverse 

comfort demand. Then decision tree was employed to predict heating energy 

consumption based on the identified temperature patterns and system operation. 

D’Oca et al. [99] used cluster analysis to obtain window opening and closing behavior 

patterns based on distinct datasets, and association rule mining was then conducted to 

discover the frequent patterns that concurrently existed.  

Table 6. Summary of data mining models of OB 
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Methods Behavior type 

Building 

type Variables Ref. 

Cluster 

analysis 
Appliance use Residential 

Twelve factors (e.g. annual mean air temperature, 

annual mean RH, and annual mean wind speed, ) 
[95] 

Association 

rule mining 
Light use 

Educational Season, time, weekends, occupancy, light, waste, 

events, day of week 
[96] 

Decision tree 
Air-conditioning 

use 

Residential 
Temperature, RH, behavior data (on/off) [100] 

Decision tree Appliance use Office 
Behavior data (occupancy, computer logging time), 

computer consumption data 
[97] 

Decision tree Appliance use Residential Hour, day, season, month [101] 

Cluster 

analysis and 

decision tree 

Space heating  Residential  

Hourly average temperature on weekday, hourly 

standard deviation on weekday during the studied 

period (for cluster analysis); 

Room temperature clusters, heating system operation 

class, heating energy consumption (for decision tree) 

[98] 

Cluster 

analysis and 

association 

rule mining 

Window use Office 
Environment-related variables, weather data, behavior 

data, building and system-related variables 
[99] 

Nearest 

Neighbor 

Model 

Domestic 

activities 
Residential 

Thirty occupant activities (cooking, clothes washing, 

ironing etc.) 

Household composition, dwelling type (detached house 

or apartment) 

[102] 

Bayesian 

network 
Window use Residential 

Indoor and outdoor temperature, time of the day, indoor 

CO2 concentration, indoor RH 
[103] 

Bayesian 

approach 

Shading devices 

use 
Office 

Work plane illuminance; vertical illuminance; shade 

position; electric light level; outside view; visual 

privacy 

[104] 

Deep learning 

method 
Window use Office 

Outdoor/ indoor environmental-related variables, 

time-related contextual factors, etc. 
[105] 

 

DM techniques can extract and exploit valuable information from large amounts 

of data and discover different behavior patterns among the data. This information and 

patterns can easily be interpreted and are understandable, as well as provide deep 
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insights into the way occupants behave. In addition, DM techniques can analyze both 

numerical and categorical attributes. This provides possibilities to study the influence 

of socioeconomic, psychological and physiological factors on OB since these factors 

are often categorical. The main limitation of these models is that they are static and 

incapable of simulating the dynamic and stochastic characteristics of OB. The 

successful application of DM techniques for describing OB, particularly cluster 

analysis and association rule mining, heavily relies on the size of databases (i.e. 

databases include data of potential influencing factors and behavior parameters) 

which are usually restricted by cost and effort in practice. Furthermore, the users’ 

prior expertise directly impacts the effectiveness of model construction and 

knowledge extraction, which adds difficulties in model development. In addition, 

some DM techniques might not be suitable for time series data [100]. For example, 

Zhou et al. [100] reported that decision tree has relatively poor performance in mining 

air-conditioning patterns from time-dependent parameters (temperature and relative 

humidity). It should be noted that, not all the data mining techniques can be directly 

integrated with building simulation tool as some techniques such as clustering 

analysis and association rule mining are descriptive which are generally used to 

extract useful profiles and understand the occupant behavior. Nevertheless, the 

discovered typical profiles and rules can be further implemented in the simulation tool 

[99]. 

4.4 Agent-based models 

Agent-based model (ABM) is a computational method that allows researchers to 

create, analyze and manipulate the models that constitute agents interacting with a 

specified environment [106]. In this method, each agent is described as real-world 

individuals with various features, capabilities, and interactions with other agents and 

the built environment. In response, each agent can evaluate their situation and reach 

decisions on changing their behavior. In this review, the agent-based model in this 
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section specifies the models that involve the social science and consider the 

interactions between different agents. 

Table 7. Summary of ABMs of OB 

Behavior Type 
Building 

Type 
Variables 

Theoretical 

framework 
Simulation tools Ref. 

Light use Commercial 

Occupant characteristics (e.g. location 

in building and light sensitivity); 

Design options and available controls 

(e.g. shading devices, illumination 

devices and target illumination levels); 

Environment conditions (e.g. sunrise 

and sunset) 

Belief-Desire-Int

ention (BDI) 

framework 

graphical user 

interface (GUI);  

RADIANCE 

[107] 

Appliance use Residential 

Perceptual: beliefs, psychological 

(cognitive) factors, social influence, 

domestic context: inhabitant, 

appliances, physical location 

BDI framework 

Business redesign 

agent-based 

holistic modeling 

system (Brahms) 

[108] 

Appliance use  Office 

User agents identified by working 

time: early birds, timetable compliers, 

and flexible workers 

User agents identified by energy 

saving awareness: environment 

champion, energy saver, regular user, 

and big user 

N/A Anylogic [109] 

Not specified Office 

High energy consumers, medium 

energy consumers, and low energy 

consumers 

N/A Anylogic [110] 

Not specified Dormitory 
Social network: relationship with their 

peers; initialized energy consumption 
N/A N/A [111] 

Blinds, door, 

fan, heater, and  

window use 

clothing 

adjustments  

Commercial 
Behavioral belief, control belief, 

normative belief 
N/A 

Matlab, Building 

Controls Virtual 

Test Bed 

(BCVTB) and 

MLE+; 

EnergyPlus 

[112] 

Not specified N/A Social network types: 

overview, design 

concepts, and 

details (ODD) 

Java using Repast 

J 3.0 
[113] 

Clothing Office  Occupants’ attributes ( e.g. commuting (ODD) Human and [114] 
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adjustment 

Personal fan 

on/off 

Thermostat 

up/middle/down 

Windows 

open/close 

method and personal traits) 

Thermal acceptability and comfort, 

behavioral preference and sequencing, 

behavioral constraints, the role of 

clothing and activity level 

Local thermal environment (e.g. 

ambient indoor/outdoor temperature) 

Building 

Interaction 

Toolkit (HABIT), 

MATLAB, 

BCVTB; 

EnergyPlus 

 

The ABM is capable of directly simulating the agent-to-agent and has flexibility 

in being further extended to different levels such as a system level, building level. 

Such flexibility also involves the addition of more agents and provides a possible 

solution for simulating multiple behaviors. Moreover, this model enables various 

factors (especially social and psychological factors [108]) to be easily considered, and 

thus it is well-suited for understanding the social and psychological influence on OB. 

On the other hand, due to the addition of the granularity of occupant diversity in ABM, 

it would significantly increase the computational time, which in turn increase the 

challenges to a large-scale simulation. Also, the development of ABM requires special 

expertise in detailed settings on each behavior and sequences of different behavior. 

The settings, however, are empirical and its applicability on other building contexts is 

questionable. Note that even minor changes in behavioral rules may have considerable 

impacts on model output. Besides, the real-time communication between the ABM 

and building energy simulation programs increases the difficulty in its application 

since these programs are normally unique in coding languages and protocols [115].  

5. OB model performance improvement 

A robust OB model is expected to have acceptable predictive accuracy and high 

generalization capability (i.e. the model’s performance when it is applied to buildings 

or occupants other than the sample data used for the model development). The 

robustness of a model refers to the feasibility to predict OB for different contexts 

(such as two similar buildings in different climates). With respect to the predictive 
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accuracy of OB models, the selection of model input and output has a direct impact 

and has been investigated in different studies. The model input are parameters used in 

a model to describe the variation of OB and the output are OB model output 

parameters to represent occupants’ behavior. With respect to the generalization 

capability of OB models, accounting for occupant diversity and evaluating models 

comprehensively pose two major challenges to researchers. Hence, model input and 

output selection, occupant diversity and performance metrics for model evaluation are 

reviewed in Section 5.1 to 5.3, respectively. 

5.1 Model input/output selection 

Existing models discussed in Section 3 are intended to predict and interpret OB 

with consideration of their influencing factors in an explicitly quantitative way. 

However, OB is influenced by a wide range of factors which can be broadly classified 

into five categories: physical environmental (e.g. indoor environmental conditions), 

contextual (e.g. heating system type), physiological (e.g. age and gender), 

psychological (e.g. habits and attitudes), and social factors (e.g. household 

composition) [116]. Due to the diversity and complexity of these factors, the selection 

of them in OB models is a non-trivial task. Moreover, the impact of some factors (e.g. 

rainfall, outdoor CO2 concentration and ambient PM2.5 concentration etc.) remains 

unclear and these factors are unavailable in current BPS tools. It is highly desirable 

that the optimal factors can be identified and used for model construction not only to 

improve model’s predictive accuracy but also to reduce model’s complexity. Ideally, a 

model with optimal factors has high predictive accuracy and relatively low model 

complexity. It should be noted that, the issues about data collection is out of scope of 

this review, and model input and output selection issues are discussed based the 

assumptions that sufficient data needed for a specific OB model are available in the 

dataset. 
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5.1.1 Evaluation of the importance of influencing factors 

The importance of various influencing factors of OB was commonly evaluated 

based on statistical methods and significance metrics. In general, a factor with higher 

significance is more likely to be considered as important factors. Table 8 summarizes 

the analysis methods and significance metrics employed in previous studies. 

Statistical analysis methods have been effectively used to process physical factors 

for their importance evaluation. However, a major problem with this method is that 

categorical factors (e.g. psychological factors) are difficult to be processed. Compared 

to the numerical factors (mainly physical environmental variables), usually the amount 

of data points of the categorical factors is relatively small. Such data scarcity might 

result in a much lower significance value of these factors when calculated by statistical 

analysis methods. As a result, the importance of these factors is normally 

underestimated particularly in the understanding of general patterns in large datasets 

[99]. To recognize the real effect of these categorical factors, constructing controlled 

experiments in which only the investigated factor changes was considered as an 

effective solution [117].However, O’Brien et al. [117] claimed that this is not 

practically feasible due to the difficulties in implementing such experiments in real life. 

Alternatively, information entropy-based measures used in DM techniques such as 

information gain ratio [118] might provide a possible approach to quantify such effects.  

 

Table 8. Summary of significance analysis methods and indicators of OB influencing 

factors 

Behavior type Influencing factors 
Significance analysis 

method 

Significance 

metrics 
Ref. 

Lighting use Outdoor illuminance level Qualitative N/A [89] 

Small appliances use 
Attitude, subjective norms, perceived 

behavioral control, habits 

Stepwise multiple 

regression analysis 

F statistics and 

p-value 
[119] 

Window use 
Outdoor and indoor air temperature, 

outdoor and indoor RH, indoor CO2, 

Multi-factor variance 

analysis 

F statistics and 

p-value 
[68] 
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outdoor wind speed 

Window 

use(position) 

Outdoor air temperature, 

non-environmental factors: seasonal, 

effects, change of daylight saving time, 

occupant absence in subsequent days, 

window orientation, floor level, gender, 

personal preference 

Logistic regression 

analysis 

Wald statistics 

and p-value 
[120] 

Window use 

Outdoor air temperature, wind speed, 

rainfall, sunshine hours, solar radiation, 

RH 

Correlation analysis 

Pearson 

correlation and 

p-value [121] 

time of day, occupancy patterns, 

window orientation, seasonal effects 
qualitative analysis N/A 

Window use 
Outdoor temperature, indoor 

temperature 

Logistic regression 

analysis 
r2 [67] 

Window use 

indoor temperature, outdoor temperature Regression analysis 
Pearson 

correlation 
[65] 

seasonal effects, time of day, building 

occupancy 
Qualitative analysis N/A 

Blind use 

Temperature, wind speed, rainfall, 

sunshine hours, RH, solar altitude, solar 

radiation 

Correlation analysis 
Pearson 

correlation 
[122] 

Manual solar shades Outdoor temperature, solar radiation Regression analysis 
Wald statistics 

and p-value 
[123] 

Significance metrics can aid researchers in adopting the uniform standards to 

judge which factor is important. Despite the widespread usage of significance metrics 

(as shown in Table 8), they do not necessarily represent the causation of behavior [67]. 

More importantly, if the usage of these metrics lacks a consistency in different studies, 

the significance found in one study may not be true in another study. Thus, further 

research should be undertaken to develop suitable procedures for quantifying the 

significance of both categorical and numeric factors based on consistent metrics.  

5.1.2 Input variable selection methods 

Selection of optimal variables for model input can further improve model 

performance, model generalization, and computational effectiveness. For instance, 

Pan et al [124] reported that if suitable input variables were selected, the accuracy of a 
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Gaussian distribution model to predict window behavior was approximately 9% 

higher than that of a commonly used Logistic regression model with the same input 

parameter, i.e. outdoor temperature. Based on different evaluation criteria, the existing 

variable selection methods can be classified into two categories, namely filter 

methods and wrapper methods [125].  

Filter methods assess the significance of each factor of OB, and those factors 

with a higher metric value than a pre-determined threshold are selected as model 

inputs. Filter methods are relatively simple and computationally efficient. Its major 

limitation lies in the fact that the selection criterion might not be suitable for the 

modeling since it does not directly correlate with the model performance evaluation. 

In addition, the method cannot distinguish highly correlated factors and thus might 

result in the selection of redundant factors. It should be noted that, there exists a wide 

range of criteria and metrics such as distance measure and mutual information that 

can be applied for filter methods and significance analysis methods (e.g. correlation 

analysis and logistic regression) mentioned in section 5.1.1 can also be applied. 

Wrapper methods evaluate the model performance of all possible subsets of factors, 

and the subsets with the best performance are normally considered as optimal 

variables. The subsets can be found by different searching strategies (e.g., forward 

selection and backward selection [125]). Unlike the filter methods, the wrapper 

methods can quantify the possible inter-relationship between different factors. 

However, the iteration of model evaluation based on the subsets results in more 

computational time. Also, the wrapper method has a high risk of over-fitting problems. 

The research works that applied the filter method and wrapper method in behavior 

modeling are summarized in Table 9. 

Table 9. Summary of research studies that adopted filter and wrapper methods in 

behavioral modeling 

Behavior type OB model type  Optimal model input variable Variable selection method Ref. 
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Window use  Univariate and 

multivariate 

logistic regression 

models; 

Markov chain 

models 

Univariate: outdoor temperature; 

Multivariate: outdoor and indoor 

temperature 

Filter and wrapper 

method 

[67] 

Window use  Bayesian network time of the day, indoor CO2 

concentration, solar radiation, 

indoor air temperature, indoor RH, 

and outdoor air temperature 

Filter method [103]  

Window use Logistic regression 

model 

Outdoor temperature Filter method [68] 

Window use Gaussian 

distribution model 

Outdoor temperature Filter method [124] 

Blinds use Logistic regression 

model and 

probabilistic 

model 

local stimuli on the work plane Wrapper method [70] 

Adaptive 

actions 

Logistic regression 

model 

Indoor and outdoor temperature Wrapper method [126] 

Blinds control Logistic regression 

model 

Air temperature Wrapper method 

(backward elimination 

method) 

[69] 

Shading 

devices and 

light use 

Bayesian model Work plane illuminance, vertical 

illuminance, shade position, electric 

lighting level, lighting condition 

preference, outside view need, 

visual privacy need 

Wrapper method (forward 

selection) 

[58] 

 

As can be seen in Table 5, both the filter methods and wrapper methods have 

been widely adopted in existing studies, particularly when developing statistical and 

data mining models. These studies illustrated the advantages of variable selection 

methods in identifying optimal factors for OB models. Their results implies that only 

few variables are needed for OB models, for example, outdoor temperature and indoor 

temperature were frequently identified as important variables for window use models   

[68, 124]. Indeed, a possible way to take advantage of their strengths is the combined 
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use of both methods. For example, Haldi and Robinson [67] used a combination of 

them to develop the multivariate logistic regression models for modeling the window 

behavior. However, very few research works applied both filter and wrapper methods 

when constructing OB models. Additionally, some data mining models, such as the 

decision tree model, are able to determine the optimal variables by using the 

entropy-based measure [118]. Nevertheless, removing irrelevant and redundant 

variables from an initial set of measured data is still required and is critical for these 

models to reduce data dimensionality, thereby enhancing the model’s computational 

efficiency. Such efforts would be beneficial to provide useful insights in the 

identification of important factors so that reduce unnecessary measurement sensors 

for future studies and real-world applications. 

5.1.3 Model output selection 

OB model output is the parameters used to represent OB and are commonly 

identified in terms of research purposes. Existing OB model output can be grouped 

into two categories, i.e. states and events/actions [127]. The use of states can directly 

indicate the status of building components or systems caused by occupants’ specific 

actions (e.g. window status-opened/closed). A transition event, i.e. an action, indicates 

the changes of status which can be considered as a proximity of behavior. Both states 

and actions can be applied for aggregation and individual comparison. Note that, 

however, the former one is only indicative of occupant’s preferred states rather than 

an actual characterization of OB. Thus, it could not be able to identify the triggers that 

cause occupants to perform an action and OB models as well. The latter overcomes 

such limitations and it can directly reflect the triggering factors.  

An important issue needs to be addressed is the proper identification of model 

output variables because an inappropriate use might hinder the future application. For 

example, shade movement rates, i.e. the average percentage of shades that are moved 
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at different times, is a useful indicator describing how occupants operate the shades 

devices [128]. Yet this indicator is not applicable to OB models in visual simulation, 

as it does not specify the direction of shade position change. Meanwhile, when 

multi-class states (e.g. small, medium and large window openings) are adopted as OB 

model output, appropriate discretization is essential and there has to be a trade-off 

between accuracy requirements and technical difficulty [16, 128]. This is due to the 

fact that most experimental instruments (e.g. contact sensor for measuring window 

status) monitor only the discontinuous parameters and it is not practical for the 

researchers to use a continuously varied metric to represent the state of OB. This type 

of OB mainly includes window opening behavior, blind turning up and down, and dim 

lights. Moreover, such discretization needs to be considered based on model 

application purposes. For example, discretization of shade positions plays a vital role 

in visual comfort and daylighting simulation than in a whole-building simulation.  

5.2 Occupant diversity characterization 

5.2.1 Approaches for occupant diversity characterization 

The diversity of occupants and its impact on energy-related OB prediction have 

raised increasing interests among research community in recent years [129]. Basically, 

occupant diversity can be defined as differences in occupants and their responses and 

actions to indoor environment and energy use in buildings. Several studies reported 

that the diversity of different occupants, if properly addressed, can improve the 

capability of OB models used in BPS [129]. In this review, the occupant diversity 

characterized in existing models were categorized into two main dimensions: 

explicit-implicit and individual-group, as illustrated in Fig. 2.  ACCEPTED M
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Individual action Collective/Aggregate actionExplicit level

Implicit level Contextual Psychological Physiological Social

(Physical factors)

(Non-physical factors)

Individual Group

 

Fig. 2. Two-dimension framework of occupant diversity characterization with 

consideration of different influencing factors 

The former dimension represents the methods by which OB is expressed (i.e. 

which factors are used to predict the behavior). The latter dimension represents 

occupants’ actions observed in individuals and groups (e.g. zone/building). Based on 

these two dimensions, four strategies can be developed to characterize occupant 

diversity, including implicit-group, implicit-individual, explicit-individual, and 

explicit-group. Except for agent-based models, most existing OB models adopted the 

explicit-group strategies. In particular, by using ‘average’/‘typical’ occupants, they 

tended to characterize occupant actions in an aggregate level with physical factors. 

For these modeling methods, an independent model can be developed for each 

occupant (i.e. explicit-individual) which can partially reflect the occupant diversity. 

For example, in [129], seven logistic regression models of window operation were 

developed for seven occupants in an open-plan office where the different coefficients 

can be viewed as indicators of occupant diversity. The limitation of explicit-group or 

explicit-individual characterization lies in the fact that it neglects the relationship of 

occupants’ energy-related behavior with non-physical factors such as the social 

context [130]. Consequently, most OB models developed are yet case-specific and 

their generalization capability is highly questioned. However, one fundamental 
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challenge is that non-physical factors are qualitative and quite diverse, thereby 

increasing the difficulties in being directly incorporated into OB models [14, 131]. 

Different from the other models, agent-based models enable non-physical factors 

to be directly added to represent intra-individual diversity among different occupants 

in addition to physical factors (i.e. implicit-individual). For example, in [114] personal 

traits were added in order to assess individual’s adaptive behavior. Furthermore, this 

model can easily and flexibly reflect the occupant diversity in the implicit-group level 

by adding more agents and defining relationship among different agents. For example, 

Kashif et al. [108] considered perceptual beliefs, psychological factors, and social 

influence among different agents through a theoretical framework originated from the 

social domain (i.e. Belief-Desire-Intension framework). In implicit-individual and 

implicit-group characterization, however, one crucial issue is that strong domain 

expertise is required in the selection and determination of these non-physical factors. 

To address the issue of occupant diversity, some studies proposed an improved 

version of ‘average’ occupants based on simple classifications (e.g. active and passive 

occupants) [109, 132] or occupant typologies obtained by cluster analysis. Although 

this method can improve the model accuracy, such a division may have been still 

overly simplistic and tends to underestimate the diversity of occupants and their 

behavior. Also, it is argued that the occupant traits should be described by a 

continuous function rather than a discrete typology [133]. A recent advancement was 

made by Haldi et al. [134] which applied a generalized linear mixed model by adding 

a built-in probabilistic term to capture the random effects of occupant diversity. 

Results indicated that such expression could help to differentiate the uncertainty of 

behavior caused by environmental stimuli and individual diversities.  

5.2.2 Occupant diversity characterization in large-scale simulation 

As discussed in previous sections, the uncertainty of building energy 

ACCEPTED M
ANUSCRIP

T



38 

 

performance introduced by OB on different scale simulation remains unclear. One 

main reason is due to the simplification of occupant diversity in previous studies. 

Hence, how and to which extent occupant diversity needs to be presented in OB 

models plays important role in understanding such uncertainty (particularly for 

large-scale simulation [133, 134]). Since occupants in different buildings may behave 

in a very dissimilar manner. For example, the peak load in district heating and cooling 

simulation would be largely smoothed if the preferences of thermostat setting points 

are rather diverse. Baetens and Saelens [50] reported that the local disaggregation of 

demographic statistics (an indicator of the occupant diversity), which assumed as 

homogeneous in OB models) might create epistemic uncertainties in the simulation at 

a district level. To address this issue, several studies attempted to incorporate 

occupant’s intra- and inter- diversity in OB models [133]. They reported that, 

compared with large scale simulation, modeling occupant diversity in small scale 

simulation is much more important due to the smoothing effects of energy demand. 

Note that only 16 occupants were investigated in their study and more evidence is still 

needed to support such argument. An et al. [43] used stochastic sampling methods to 

distribute typical patterns of each behavior to individual apartments for district 

cooling energy simulation. Despite the promising results, it requires detailed and 

extensive questionnaire surveys to extract occupants’ information (e.g. setting point 

preferences).  

To explore the occupant diversity in large-scale simulation, a real challenge is to 

establish a database with sufficient sample size so that the selected samples can be 

properly characterized to represent aggregate behavior among various occupants. It is 

reported that epistemic uncertainty would increase if behavior and occupant related 

data is not properly collected [12]. Currently, there is no clear guidelines for selecting 

appropriate samples for developing OB models so as to consider the impact of 

occupant diversity. However, O’Brien et al. [133] investigated the diversity issues for 
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modeling occupancy pattern in office buildings through in-situ measurements which 

would give implications for OB modeling. Results of [133] indicated that the sample 

size is of great importance to monitor occupant diversity in a population. They 

suggested that hundreds of occupant samples were more appropriate rather than 10 to 

15 samples which were used in most existing studies. Aside from the appropriate data 

collection, some advanced machine learning models (such as deep learning models 

and Bayesian approaches) shows some advantages to generalize its predictive 

performance to a large number of occupants and automatically recognize their 

individual behavior patterns [105]. 

5.3 Comprehensive evaluation of OB models 

A proper model evaluation is an important step in OB model development and 

future implementation in building energy simulation. Internal evaluation and external 

evaluation are two common methods to evaluate OB models. The former method is to 

assess the performance of OB models by checking their fitness with the measured 

data from the same dataset. Although it is relatively simple and effective, its 

applicability to other datasets is highly questionable. In this view, model evaluation 

based on independent datasets is desirable and correspondingly, external evaluation 

procedures have been recently highlighted. These procedures test the predictive 

performance of OB models based on external datasets from a different but ‘slightly 

related’ population with respect to different locations, other built environment or 

occupants [135, 136]. The issues of OB model evaluation have been thoroughly 

summarized in the main report of Annex 66 and details can found in [127].  

To understand the whole process of model construction, a fundamental challenge 

in both internal and external procedures [137] is the selection and usage of suitable 

performance metrics. In this study, existing performance metrics are sorted into two 

groups: behavior-oriented and application-oriented. The behavior-oriented metrics 
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refer to indicators associated with the accuracy of behavior prediction. Several 

indicators were used according to model output’s category (i.e. numeric output such 

as the probability of an action, or categorical output such as the states of a behavior, 

as mentioned in Section 4.1.3). If the outcome is numeric, root mean squared error 

(RMSE) and coefficient of determination (R2) are frequently used. Otherwise, 

confusion matrixes i.e., a matrix consisting of predicted classes being classified into 

four groups: truly positive (TP), falsely positive (FP), truly negative (TN) and falsely 

negative (FN)), are normally used to evaluate the overall accuracy, precision, recall 

and F1 [105, 118, 125]. Overall accuracy indicates the proportion of correct prediction 

outcome, which is defined as (TP+TN)/ (TP+FP+TN+FN). Precision refers to ratio of 

positively predicted outcome and all positively predicted results, i.e. TP/(TP+FP). 

Recall refers to the proportion of truly predicted positive results and all true positive 

results (i.e., TP/TP+FN). F1 is defined as 2TP/(2TP+FP+TN+FN), which is the 

harmonic mean of precision and recall. The application-oriented metrics are used to 

assess the simulation performance of energy demand models integrated with OB 

models. Besides, these application-oriented metrics can evaluate the combined effects 

when simultaneously employing multiple OB models. For example, Andersen et al. 

[136] estimated the mixed predictive power for indoor environmental parameters (i.e. 

temperature, relative humidity and CO2 concentration) by applying two stochastic 

models of the window opening and thermostat set-point adjustments. As most 

performance metrics are numeric, RMSE is commonly used. Different performance 

metrics employed in previous studies are summarized in Table 10. 

Table 10. Summary of performance metrics used in OB models evaluation 

Type Performance metrics Statistic Category Units 

Behavior-oriented 

The fraction of a building 

component's state 

Overall probability/ 

daily change 

rate/average daily 

change rate 

Numerical 

% 

The probability of state 

transitions or behavior 
% 

Number of behavioral state – – 
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transitions 

Duration of a behavioral state hours 

Two-class behavioral states 
Categorical 

 

Multi-class behavioral states  

Application

-oriented 

Energy 

Total energy consumption 

1. Annual/ monthly/ 

daily/ hourly 

2. during occupied/ 

unoccupied hours 
Numerical 

kWh 

kJ 

Heating energy consumption 

Cooling energy consumption 

Lighting energy consumption 

Energy consumption of plug 

loads 

Total peak demand 

– 

kW 
Heating peak demand 

Cooling peak demand 

Lighting peak demand 

Load distribution - – 

Electricity 

grid 

interaction a 

Mismatch hours 

Numerical 

hours 

Indoor 

environment 

quality 

Indoor air temperature 

Mean/ minimum/ 

maximum/ standard 

deviation 

ºC 

Indoor operative temperature ºC 

Indoor relative humidity % 

Count of hours b hours 

CO2 concentration ppm 

Transmitted solar radiation kWh 

Indoor 

thermal 

comfort 

Predicted mean vote (PMV) 

– 

– 

Predicted percentage of 

dissatisfied (PPD) 
% 

a Electricity grid interaction is used to assess the effect of intermittent power generation from the building (e.g. 

photovoltaics systems) on electricity grid [42]. 

b Count of hours refers to numbers of occurrence of temperatures above a given threshold/cut-off temperature 

[138]. 

Behavior-oriented metrics are normally used as stand-alone criteria and they only 

describe how well the OB models can predict the data, while the influence of these 

models on building energy simulation remains unknown. For instance, a transition 

event (e.g. blinds from closed to opened) causes a change in the indoor climate. 

Failing to predict these transition events leads to prediction errors in energy demand 

models, resulting in a discrepancy between the actual and simulated indoor 

environmental conditions and energy consumption. In this aspect, application-oriented 
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metrics should also be considered if an OB model is selected for fit-for-purpose. 

However, lacking standardized metrics and respective statistics presents a real 

challenge to modelers and engineers, and very few OB models have been assessed 

based on both behavior- and application-oriented metrics. Currently, the performance 

metrics are scattered and often used by researcher based on their own experience. 

Future efforts in this direction are thus of utmost importance. Extensive and 

cross-sectional observational studies are also suggested to promote more 

representative evaluation. In addition, special focus should be placed on models 

developed and used for large-scale simulation purposes.  

6. Tools to integrate OB models with BPS  

The integration of OB models into building energy demand simulation plays an 

important role in achieving the goal of model accuracy improvement [139]. For 

current BPS tools, existing integration methods were classified into four groups: 

direct input or control, built-in OB models, user function or custom code, and 

co-simulation [19]. Among these methods, co-simulation has received considerable 

interests due to its flexibility in offering a co-operative way of different programs. So 

far, two different methods have been further developed for realizing co-simulation: 

middleware coupling methods and standardized coupling methods. 

The middleware coupling method uses a middleware (e.g. building controls 

virtual test bed (BCTVB) and MLE+ Toolbox) as a master to manage data exchange 

between OB models and simulation programs. This method has been used to integrate 

agent-based models with EnergyPlus [112, 114]. It enables different programs to 

communicate with the middleware while each program needs to be implemented in a 

specific interface defined by the middleware. This implies that researchers must be 

familiar with different data coding format (e.g. R-code, C-code) to pre-define the 

exchange parameters. 
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Instead of using a specific interface, the standardized coupling method provides a 

uniform interface for information and data exchange. In this method, functional 

mock-up interface (FMI) has been widely adopted due to its popularity and 

widespread application in many simulation environments [140]. Different from the 

middleware coupling method, this method allows for direct link between the 

simulation programs without using a middle data exchange tool. Thus, it is more 

efficient and less complex than the middleware coupling method. Hong et al [140] 

developed the obFMU through FMI framework and tested several OB models with 

EnergyPlus and ESP-r. However, other simulation programs have not been tested yet 

and the performance of co-simulation have been rarely reported. Also, future studies 

need to be done to create a set of OB functional mock-up units for different categories 

of behavior. 

7. Discussion 

7.1 Selection of modeling methods 

The use of OB models in building energy simulation plays a vital role in 

improving the accuracy of energy demand prediction. As existing modeling methods 

have different advantages and constraints, the selection of a suitable method from 

them poses a real challenge as a random selection might result in ineffectiveness or 

even failure in OB model development and applications. For example, Haldi et al. [37] 

claimed that stochastic models are not the necessities for the total energy performance 

simulation while they are desirable if the distribution of peak demand is expected.  

To facilitate such a selection, detailed comparisons of modeling methods are 

prerequisites to identify the model’s capabilities (e.g. prediction accuracy) and 

requirements (e.g. computational time) versus different application purposes (e.g. 

building system control). Existing comparative studies of different modeling 

approaches were scarcely found and also limited to window behavior prediction. 
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Haldi et al. [67] developed window behavior prediction models based on the logistic 

regression method, the Markov chain method and a combination of both. A 

comparison between them indicated that the predicted fraction of windows being 

opened varied significantly. Moreover, compared with the Markov chain model, the 

hybrid model obtained relatively small percentage of opening and closing durations. 

Indeed, consensus has not been reached about which approaches are preferred for 

different simulation purposes. This is possibly because OB model’s intended 

application scenarios and objectives are rather diverse and specific rules cannot be 

provided (and might be even ultimately unachievable). On the other hand, a lack of 

sound documentation and validation of OB models can also be attributed to the 

insufficiency of comparative studies among existing models. To address such a 

research gap, a variety of general simulation scenarios in contexts of different spatial 

scales and temporal granularities of simulation (as discussed in Section 2), application 

domains (e.g. heating and cooling demand) should be studied in the future. 

Recommendations and insights need to be gained from the level of difference 

introduced by different OB models in which such difference relies on the assessment 

of different performance indicators (e.g. annual total energy demand v.s. hourly). 

A few studies have been carried out with the focus on the establishment of model 

selection criteria and framework. Isabella Gaetani et al. [141] and Yan et al. [14] 

suggested a fit-for-purpose (FFP) strategy framework with a focus on the influence of 

model complexity (predictability of different aspects of OB) in selecting the modeling 

methods. Nevertheless, the criteria involved in prior studies are scattered and there is 

not yet a set of uniform and common criteria for model selection.  

To address this issue, this study attempts to suggest a set of general selection 

criteria concerning the comprehensive performance of OB models. The 

comprehensive performance calls for the trade-off in prediction accuracy under 

different scenarios, requirements and contexts. Based on a thorough review of 
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existing modeling methods, the following six criteria were proposed, and for future 

reference, the performance of each modeling method regarding these criteria is 

compared in Table 11. It should be noted that, this table presents an empirical 

comparison among the four main categories of modeling methods according to the 

proposed criteria based on the comprehensive review of recent works. 

 Model complexity. This can be mainly explained by model structure and 

resolution (i.e. the number of parameters and their granularity [141]). It is an 

important criterion for selecting a modeling method due to the principle of parsimony 

[141]. Typically, a model with a simple structure and high accuracy suited for its 

attended application is often desirable. For example, Akaike information criterion 

(AIC), commonly used in current statistical models, is a criterion to measure the 

relative model performance of a set of models with different input data (i.e. the 

complexity level) and therefore, it can balance the trade-off between model 

complexity and prediction performance [60]. 

 Computational efficiency. This refers to the computational efforts and time 

required for modeling OB and its further integration into building energy models. Its 

importance is particularly stressed when OB models are used for the different 

application purposes (e.g. building system control). 

 Variable selection. This refers to a model’s ability to automatically select 

suitable input parameters that straightly influence the model accuracy and complexity. 

Such parameters can be factors measured through experiments/fields and/or available 

in simulation tools. The questions concern to variable selection were discussed in 

Section 5.  

 Flexibility. This relates to a model’s applicability to different modeling tasks 

such as prediction and pattern recognition (usually needed for sensor-measured data). 

This criterion considers the implication of model application but has seldom been 
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highlighted in previous studies. 

 Integration capability. This criterion explores the capability of OB models to be 

further integrated into BPS tools. This criterion enables the linkage between OB and 

building energy model performance for future application and thus is non-trivial. 

 Expertise requirements. This criterion describes the grade/degree of expertise 

required in OB (e.g. how detailed input information are needed in an advanced OB 

model) and mathematical background. This criterion deserves deliberate consideration 

since the extent of which the impacts of specific level of modeler’s knowledge might 

imposes uncertainty for the building energy analysis. Such impact was demonstrated 

for occupancy variables [142] but remains unclear for the usage of occupants’ action 

models.  

Table 11. Comparison of different models with respect to six criteria 

Model type 

Modeler/researchers 

Model 

complexity 

Computational 

time a 

Variable 

selection  

Flexibility 
Integration 

capability 

Expertise 

requirements Function 
Behavior 

type 

Statistical Low Low  N Prediction 
Adaptive 

behavior 
Low Low 

Stochastic Medium Medium N Prediction 

Both 

adaptive 

behavior and 

other 

behavior 

Medium Medium 

Data mining Medium Medium 

Y 

(decision 

tree)/N 

Prediction 

Pattern 

recognition 

Both 

adaptive 

behavior and 

other 

behavior 

High High 

Agent-based High High N Prediction 
Adaptive 

behavior 
Medium High 

        a Computational efficiency: computational effort for model application is considered while the 

effort for model development is not included. 
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7.2 Proposed framework: towards improving the overall performance of OB 

models 

The usefulness of OB models in facilitating realistic simulations of building 

performance has been recognized by academics. However, it tends to be neglected by 

practitioners and the availability of behavioral models in existing BPS tools is scarce. 

Necessarily, efforts are needed to enable the OB models understandable and easy to 

use by different building stakeholders (e.g. engineers and policy makers) who are not 

familiar with the concepts of human-building interaction and relevant details. Based 

on the literature reviewed in previous sections, the critical issue to enhance the 

capability and generalizability of OB models is to address the practical problems 

associated with necessary steps during the model developments (i.e. model input and 

output selection, occupant diversity characterization and model evaluation), indexed 

to different spatial scales (e.g. building zone to city ) and application scenarios. In this 

view, a detailed framework was proposed based on those important technical aspects, 

as shown in Fig. 3. This framework makes explicit the interactive relationship 

inherent to different steps and also defines the options for modeling methods selection, 

occupant diversity characterization and performance metrics selection. 

Model integration with BPS

Specify scales and potential 

scenarios

Input/output selection

Selection of modeling methods and development

Model evaluation

(Internal evaluation)

W
ra

p
p

er
 m

e
th

o
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Filter 

method
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Model evaluation

(External evaluation)

Other building 

stakeholders
(e.g. engineers, 

building/city managers)

Occupant diversity characterization

O
B

 m
o
d

el
 d

e
v
el

o
p
m

en
t

Researchers/Modelers

Influencing factors 

(environmental, contextual, 

social factors etc.)

Occupant behavior data

(e.g. continuous/discrete 

state)
 Modeling methods

statistical models, stochastic/probabilistic models, 

data mining models, agent-based models

 Selection criteria

model complexity, computational efficiency, variable 

selection, integration capability, expertise 

requirements

Choose performance metrics and evaluation indicators

behavior-oriented 

metrics

application-oriented 

metrics

Numeric: RMSE, R2

Categorical: confusion 

matrix(overall accuracy, 

precision, recall, F1)

Fig. 3 A detailed framework of OB model development 
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The first step in the proposed framework is to specify spatial scales and possible 

application scenarios. Due to the difficulties to collect occupant related data from 

different data sources, such information is critical to other researchers who intend to 

conduct comparable studies in the future and different building stakeholders who 

might use such models. As stated in Section 3, as the aggregation and smoothing 

effects, the uncertain effects of OB on energy demand of buildings in a district or city 

scale could possibly be reduced. Hence, modeling approaches with simple structure 

(e.g., less required input information) seem to be a general trend. In line with this, 

statistical models and stochastic models would be preferable for large-scale 

simulation because of their relatively lower complexity level (as compared in Table 

11). On the other hand, Happle et al. [23] argued that agent-based models could be 

also options for urban-scale building energy simulation due to its high flexibility for 

different levels. Because of the computation concerns for large-scale simulation, a 

trade-off needs to be made when applying such models with consideration of the 

computational efficiency. Additionally, once the scales and scenarios are specified, it 

would also support the selection of suitable performance metrics in assessing OB 

models (which has been addressed in Section 5.3). The second step consists of 

conduct input and output selection based on the data collected according to defined 

scales and scenarios. This step is highlighted in this framework since it is not only 

important for reducing model complexity as well as model generalizability (both are 

important features for large-scale simulation). This framework suggests that the input 

variables can be selected based on a combination of the filter method and wrapper 

method. Note that, for the wrapper selection method, the choice of performance 

metrics also has a direct impact on the results of the selected input variables. The 

results obtained from such steps can provide useful evidence for determining 

important factors that are necessarily monitored in the future. The third step is to 

select modeling methods based on a set of general selection criteria proposed in this 
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review. Occupant diversity, a critical aspect for OB models’ generalization capability, 

needs to be considered in the fourth step. As discussed in Section 5.1, the second and 

fourth step are simultaneously influenced by modeling methods selected. In the fifth 

step, internal evaluation is conducted to assess model performance by comparing its 

predicted results with measured data from the same population. It should be 

mentioned that, in this step, the evaluation indictors need to be carefully chosen and 

the usage of a single overall accuracy indicator may be insufficient as it cannot reflect 

the fact whether different behavioral states are accurately predicted. This is 

particularly important when a certain behavioral state dominates the database in 

which a high overall accuracy can be easily achieved. After the internal evaluation, 

the model can be optionally tested with independent datasets (if available) to further 

assess its performance under the potential application scenarios. With the increasing 

data released as open datasets (e.g. [143]), this would allow for further support of OB 

development and assessment. Finally, the sixth step is to integrate OB models with 

BPS tools and apply developed models. As discussed in Section 6, advanced OB 

models (such as agent-based models) often require the co-simulation when 

implementing the developed OB models in real cases. These scenarios can be 

specified by application domains, simulation purposes in different stages of building 

projects (e.g. early-stage design and retrofitting analysis). In general, modeling 

approaches for a wide array of different applications should be determined in line 

with the availability of data and application domains. For instance, in terms of a 

building-scale early-stage design evaluating the natural ventilation performance and 

total annual energy use, sophisticated and advanced models are not necessarily needed 

as limited information related occupant’s window operation behavior in this stage. On 

the other hand, such models would provide more realistic estimations of total and 

peak energy demand for a building-scale retrofitting analysis with the possibility of 

investigating necessary information. The proposed framework would be useful to give 
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directions for new studies in the area of OB modeling for fully-documented and 

models that can be transferrable and comparative performance. It could be vital for 

the systematic use of OB related information and models in the context of simulating 

building performance in a realistic way at different scales.  

8. Conclusions and future work 

The uncertainty and stochastic nature of OB is a complex, multi-faceted issue 

that has a substantial impact on the variation of building energy consumption. In 

previous studies, such impacts on building energy consumption and indoor 

environment were explored by applying UA and SA in BPS tools. However, the 

temporal variation of OB has not been well-understood. Hence, OB  models, 

including statistical models, stochastic/probabilistic models, data mining models and 

agent-based models, and their application in building energy demand modeling and 

simulation have been widely investigated in recent years. The advancement of 

developing different OB modeling approaches (especially stochastic methods) 

integrated with BPS would facilitate a paradigm shift from existing deterministic 

simulation practices to a probabilistic form. It is found that OB models could also be 

used in the uncertainty analysis procedure to understand the uncertain effects of OB 

on BPS and improve the simulation performance, while its integration can also 

introduce the uncertainties if inappropriate modeling approach is used. At present, OB 

needs to be considered in building energy simulation at different spatial scales (zone, 

building, district, and city). Considering the model complexity at different scales, the 

simplification (especially for occupant diversity) and modeling granularities 

associated with the OB should be recognized for various spatial scales and also 

computational costs for temporal granularities. However, existing OB models are 

diverse and each has its own objectives, constraints, and technical capabilities. To 

successfully develop and apply OB models, modeling methods should be elaborately 

selected based on a set of criteria with the trade-off in prediction accuracy under 
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different simulation scenarios and requirements. Moreover, as the model performance 

and generalizability are directly influenced by the selection of model input and output, 

a combination of internal and external evaluation with standardized metrics (i.e. 

behavior-oriented and application-oriented metrics) is necessary. 

Despite the considerable researches carried out on OB modeling, yet there are 

several important challenges need to be addressed before implementing its wide 

application in building energy simulation. The following future work is therefore 

suggested: 

1) Only few research works explored the simulation uncertainty associated with 

OB and the outcomes of OB models in different spatial and temporal scales. The 

understanding of OB in large-scale simulation are still vague which is imperative for 

the increasing need for energy simulation at multi-domain and multi-scale. Future 

research is required to conduct sensitivity and uncertainty analysis of OB under 

commercial districts and mix-districts. It would help to form guidelines for 

developing and choosing OB models that are suitable for using on different simulation 

scales. 

2) While a multitude of OB models have been developed, their effectiveness in 

behavioral prediction and building energy simulation still needs rigorous evaluation. 

To improve model performance, a promising way is to establish hybrid models 

making the best of each method. At the same time, seeking new methods to address 

the increasing amount of data is necessary with thorough documentation of the details 

in model development in terms of development process, purpose and validation to 

avoid unnecessary duplication of research effort. Additionally, as consensus has not 

been reached about the model chosen preferences, a systematic framework with 

standardized criteria and metrics is necessary to support optimal model selection. 

3) Interdisciplinary studies that incorporate physical, social, and psychological 

ACCEPTED M
ANUSCRIP

T



52 

 

science to reveal the intrinsic cause of OB (especially social and psychological factors) 

are essential for future focus. Well-established methods to quantify significance of 

such factors on OB are necessary for model performance improvement. Moreover, 

existing approaches to represent occupant diversity should be tested extensively 

which requires suitable sample size and careful selection of samples. 

4) Many of the research issues discussed in previous sections can be ascribed to 

the lack of sufficient large-scale data due to the fairly large cost and efforts. 

Nevertheless, the advent of smart sensors, metering technologies and on-line 

distrusting questionnaires could support large-scale surveys and long-term data 

measurement. To consolidate the international monitoring campaigns, holistic 

methods and roadmaps to determine appropriate sample size, sensor deployment and 

length of measurement are of high-priority. Besides, Time-use surveys (TUSs) data 

shows significant potentials for developing detailed stochastic models but has been 

only conducted in several developed countries (Sweden, Japan, German France, the 

United States, etc.). Therefore, more extensive TUSs are needed for other countries. 
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