Login | Register

Glycogen Dynamics in Proliferating Human Helper T Cells


Glycogen Dynamics in Proliferating Human Helper T Cells

Stopnicki, Brandon ORCID: https://orcid.org/0000-0003-4713-683X (2019) Glycogen Dynamics in Proliferating Human Helper T Cells. Masters thesis, Concordia University.

Text (application/pdf)
Stopnicki_MSc_F2019.pdf - Accepted Version
Available under License Spectrum Terms of Access.


The immune system protects the body against infections and cancer. A type of lymphocyte called “helper T cell” plays a vital role in coordinating immune responses. Helper T cells are arguably the most important type of immune cell as they are required for almost all adaptive immune functions. T cells play a vital role in the adaptive immune system, however, very little is known about their metabolic pathways. When presented with an antigen, helper T cells proliferate, differentiate and produce cytokines. The activation of helper T cells is metabolically demanding. T cells require large amounts of glucose from their environment as they proliferate. Glycolytic by-products support rapid cell division through the building of biomass. Systematically, excess glucose is stored in the liver in the form of glycogen, but there is growing evidence that glycogen is found in non-hepatic cells as well. With an increase in glucose uptake in helper T cells, surplus must be stored for later use. Currently, there is very little knowledge on the role of glycogen dynamics in helper T cells. I hypothesized that glycogen is important in helper T cell proliferation and cytokine production. I demonstrated that isolated human helper T cells accumulated glycogen upon activation. Activated T cells accumulated a greater amount of glycogen as compared to non-activated cells (p<0.0001). The enzyme α-amylase, added as a control, digested glycogen and reduced the glycogen signal. Inhibition of glycogen breakdown significantly attenuated proliferation and had a trend to decrease pro-inflammatory cytokine IL-17A production in activated peripheral blood mononuclear cells. This is among the first accounts of glycogen dynamics in helper T cells. It is important to study helper T cells because they are implicated in autoimmune diseases and immune deficiencies. This newfound understanding on how helper T cells manage their metabolic needs during an immune response could aid in the development of immunomodulatory treatments.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (Masters)
Authors:Stopnicki, Brandon
Institution:Concordia University
Degree Name:M. Sc.
Date:8 August 2019
Thesis Supervisor(s):Darlington, PJ
Keywords:glycogen, helper T cell, immunometabolism, proliferation
ID Code:985609
Deposited On:05 Feb 2020 02:29
Last Modified:05 Feb 2020 02:29


Aderem, A., and Ulevitch, R.J. (2000). Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787.
Alberts, B., Johnson, A., and Lewis, J. (2002). Introduction to Pathogens. In Molecular Biology of the Cell, (New York: Garland Science), pp. 1485–1501.
Alberts, B., Bray, D., Hopkins, K., Johnson, A., Lewis, J., Raff, M., and Roberts, K. (2009). In Essential Cell Biology, (Garland Science), pp. 426–450.
Antel, J.P., Lin, Y.H., Cui, Q.-L., Pernin, F., Kennedy, T.E., Ludwin, S.K., and Healy, L.M. (2018). Immunology of oligodendrocyte precursor cells in vivo and in vitro. J. Neuroimmunol. 331, 28–35.
Appleman, L.J., Berezovskaya, A., Grass, I., and Boussiotis, V.A. (2000). CD28 Costimulation Mediates T Cell Expansion Via IL-2-Independent and IL-2-Dependent Regulation of Cell Cycle Progression. J. Immunol. 164, 144–151.
Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H.R., Robitaille, R., and Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron 81, 728–739.
Arrizabalaga, O., Lacerda, H.M., Zubiaga, A.M., and Zugaza, J.L. (2012). Rac1 Protein Regulates Glycogen Phosphorylase Activation and Controls Interleukin (IL)-2-dependent T Cell Proliferation. J. Biol. Chem. 287, 11878–11890.
Artyomov, M.N., Lis, M., Devadas, S., Davis, M.M., and Chakraborty, A.K. (2010). CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl. Acad. Sci. U. S. A. 107, 16916–16921.
Baaten, B.J.G., Li, C.-R., Deiro, M.F., Lin, M.M., Linton, P.J., and Bradley, L.M. (2010). CD44 Regulates Survival and Memory Development in Th1 Cells. Immunity 32, 104–115.
Bennett, J.M., and Dutcher, T.F. (1969). The Cytochemistry of Acute Leukemia: Observations on Glycogen and Neutral Fat in Bone Marrow Aspirates. Blood 33, 341–347.
Bental, M., and Deutsch, C. (1993). Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn. Reson. Med. 29, 317–326.
Berg, J.M., Stryer, L., Tymoczko, J.L., and Gatto, G. (2010). In Biochemistry, (WH Freeman), pp. 328–329, 615–635.
Bluestone, J.A. (1995). New perspectives of C1328-137-mediated T cell costimulation - ScienceDirect. Immunity 2, 555–559.
von Boehmer, H. (1992). T cell development and selection in the thymus. Bone Marrow Transplant. 9 Suppl 1, 46–48.
Brown, A.M., Tekkök, S.B., and Ransom, B.R. (2003). Glycogen regulation and functional role in mouse white matter. J. Physiol. 549, 501–512.
Carroll, N., Longley, R., and Roe, J. (1956). The Determination of Glycogen in Liver and Muscle by use of Anthrone Reagent. J. Biol. Chem. 583–593.
Chen, R.J., Zhang, G., Garfield, S.H., Shi, Y.-J., Chen, K.G., Robey, P.G., and Leapman, R.D. (2015a). Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States. PLOS ONE 10, e0142554.
Chen, Y., Zhang, J., and Zhang, X. (2015b). 2-NBDG as a Marker for Detecting Glucose Uptake in Reactive Astrocytes Exposed to Oxygen-Glucose Deprivation In Vitro. J. Mol. Neurosci. 55, 126–130.
Cibrián, D., and Sánchez-Madrid, F. (2017). CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 47, 946–953.
Courtney, P.A., Crockard, A.D., Williamson, K., Irvine, A.E., Kennedy, R.J., and Bell, A.L. (1999). Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus: relations with disease activity, antibodies to double stranded DNA, and neutropenia. Ann. Rheum. Dis. 58, 309–314.
Crotty, S. (2015). A brief history of T cell help to B cells. Nat. Rev. Immunol. 15, 185–189.
DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metab. 7, 11–20.
Drochmans, P. (1962). Morphologie du glycogène: Etude au microscope électronique de colorations négatives du glycogène particulaire. J. Ultrastruct. Res. 6, 141–163.
Dumitru, C., Kabat, A.M., and Maloy, K.J. (2018). Metabolic Adaptations of CD4+ T Cells in Inflammatory Disease. Front. Immunol. 9, 540. doi: 10.3389/fimmu.2018.00540
Eiraku, N., Hingorani, R., Ijichi, S., Machigashira, K., Gregersen, P.K., Monteiro, J., Usuku, K., Yashiki, S., Sonoda, S., Osame, M., et al. (1998). Clonal Expansion Within CD4+ and CD8+ T Cell Subsets in Human T Lymphotropic Virus Type I-Infected Individuals. J. Immunol. 161, 6674–6680.
Erbel, C., Akhavanpoor, M., Okuyucu, D., Wangler, S., Dietz, A., Zhao, L., Stellos, K., Little, K.M., Lasitschka, F., Doesch, A., et al. (2014). IL-17A Influences Essential Functions of the Monocyte/Macrophage Lineage and Is Involved in Advanced Murine and Human Atherosclerosis. J. Immunol. 193, 4344–4355.
Esensten, J.H., Helou, Y.A., Chopra, G., Weiss, A., and Bluestone, J.A. (2016). CD28 Costimulation: From Mechanism to Therapy. Immunity 44, 973–988.
Fadista, J., Vikman, P., Laakso, E.O., Mollet, I.G., Esguerra, J.L., Taneera, J., Storm, P., Osmark, P., Ladenvall, C., Prasad, R.B., et al. (2014). Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc. Natl. Acad. Sci. 111, 13924–13929.
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., et al. (2007). Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 109, 3812–3819.
Franciszkiewicz, K., Boissonnas, A., Boutet, M., Combadiere, C., and Mami-Chouaib, F. (2012). Role of Chemokines and Chemokine Receptors in Shaping the Effector Phase of the Antitumor Immune Response. Cancer Res. 72, 6325–6332.
Frauwirth, K.A., Riley, J.L., Harris, M.H., Parry, R.V., Rathmell, J.C., Plas, D.R., Elstrom, R.L., June, C.H., and Thompson, C.B. (2002). The CD28 Signaling Pathway Regulates Glucose Metabolism. Immunity 16, 769–777.
Fu, J., Baines, K.J., Wood, L.G., and Gibson, P.G. (2013). Systemic Inflammation Is Associated with Differential Gene Expression and Airway Neutrophilia in Asthma. OMICS J. Integr. Biol. 17, 187–199.
Gate, R.E., Cheng, C.S., Aiden, A.P., Siba, A., Tabaka, M., Lituiev, D., Machol, I., Gordon, M.G., Subramaniam, M., Shamim, M., et al. (2018). Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat. Genet. 50, 1140.
Goldsmith, E., Sprang, S., and Fletterick, R. (1982). Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J. Mol. Biol. 156, 411–427.
Greiner, E.F., Guppy, M., and Brand, K. (1994). Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J. Biol. Chem. 269, 31484–31490.
Grist, J.T., Jarvis, L.B., Georgieva, Z., Thompson, S., Kaur Sandhu, H., Burling, K., Clarke, A., Jackson, S., Wills, M., Gallagher, F.A., et al. (2018). Extracellular Lactate: A Novel Measure of T Cell Proliferation. J. Immunol. Author Choice 200, 1220–1226.
Güemes, M., Rahman, S.A., and Hussain, K. (2016). What is a normal blood glucose? Arch. Dis. Child. 101, 569–574.
Hagemans, M.L.C., Stigter, R.L., van Capelle, C.I., van der Beek, N.A.M.E., Winkel, L.P.F., van Vliet, L., Hop, W.C.J., Reuser, A.J.J., Beishuizen, A., and van der Ploeg, A.T. (2010). PAS-positive lymphocyte vacuoles can be used as diagnostic screening test for Pompe disease. J. Inherit. Metab. Dis. 33, 133–139.
Hayhoe, F.G.J., and Quaglino, D. (1965). Autoradiographic Investigations of RNA and DNA Metabolism of Human Leucocytes Cultured with Phytohæmagglutinin ; Uridine-5-3h as a Specific Precursor of RNA. Nature 205, 151–154.
Hedeskov, C.J. (1968). Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes. Biochem. J. 110, 373–380.
Heiden, M.G.V., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 324, 1029–1033.
Hertz, L., and Chen, Y. (2018). Glycogenolysis, an Astrocyte-Specific Reaction, is Essential for Both Astrocytic and Neuronal Activities Involved in Learning. Neuroscience 370, 27–36.
Horvat, A., Vardjan, N., and Zorec, R. (2017). Targeting Astrocytes for Treating Neurological Disorders: Carbon Monoxide and Noradrenaline-Induced Increase in Lactate. Curr. Pharm. Des. 23, 4969–4978.
Iritani, B.M., Delrow, J., Grandori, C., Gomez, I., Klacking, M., Carlos, L.S., and Eisenman, R.N. (2002). Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. EMBO J. 21, 4820–4830.
Jacobs, S.R., Herman, C.E., MacIver, N.J., Wofford, J.A., Wieman, H.L., Hammen, J.J., and Rathmell, J.C. (2008). Glucose Uptake Is Limiting in T Cell Activation and Requires CD28-Mediated Akt-Dependent and Independent Pathways. J. Immunol. 180, 4476–4486.
Jones, R.V., Goffi, G.P., and Hutt, M.S.R. (1962). Lymphocyte glycogen content in various diseases. J. Clin. Pathol. 15, 36–39.
Kamphorst, A.O., Wieland, A., Nasti, T., Yang, S., Zhang, R., Barber, D.L., Konieczny, B.T., Daugherty, C.Z., Koenig, L., Yu, K., et al. (2017). Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science 355, 1423–1427.
Klabunde, T., Wendt, K.U., Kadereit, D., Brachvogel, V., Burger, H.-J., Herling, A.W., Oikonomakos, N.G., Kosmopoulou, M.N., Schmoll, D., Sarubbi, E., et al. (2005). Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J. Med. Chem. 48, 6178–6193.
Klein Geltink, R.I., Kyle, R.L., and Pearce, E.L. (2018). Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annu. Rev. Immunol. 36, 461–488.
Kleiveland, C.R. (2015). Peripheral Blood Mononuclear Cells. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models, K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, eds. (Cham (CH): Springer), pp. 161–167.
Komori, H.K., Hart, T., LaMere, S.A., Chew, P.V., and Salomon, D.R. (2015). Defining CD4 T Cell Memory by the Epigenetic Landscape of CpG DNA Methylation. J. Immunol. 194, 1565–1579.
Kündig, T.M., Shahinian, A., Kawai, K., Mittrücker, H.-W., Sebzda, E., Bachmann, M.F., Mak, T.W., and Ohashi, P.S. (1996). Duration of TCR Stimulation Determines Costimulatory Requirement of T Cells. Immunity 5, 41–52.
Kurrer, M.O., Pakala, S.V., Hanson, H.L., and Katz, J.D. (1997). β cell apoptosis in T cell-mediated autoimmune diabetes. Proc. Natl. Acad. Sci. 94, 213–218.
Leder, L.D., and Donhuijsen, K. (1978). PAS-positive lymphatic cells in angioimmunoblastic lymphadenopathy. Klin. Wochenschr. 56, 225–227.
Linsley, P.S., Greene, J.L., Tan, P., Bradshaw, J., Ledbetter, J.A., Anasetti, C., and Damle, N.K. (1992). Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med. 176, 1595–1604.
Lunt, S.Y., and Vander Heiden, M.G. (2011). Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464.
Ma, R., Ji, T., Zhang, H., Dong, W., Chen, X., Xu, P., Chen, D., Liang, X., Yin, X., Liu, Y., et al. (2018). A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells. Nat. Cell Biol. 20, 21–27.
Macintyre, A., Gerriets, V., Nichols, A., Michalek, R., Rudolph, M., Deoliveira, D., and Rathmell, J. (2014). The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function. Cell Metab. 20, 61–72.
Magistretti, P.J., and Allaman, I. (2018). Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249.
McKinney, E.F., and Smith, K.G.C. (2018). Metabolic exhaustion in infection, cancer and autoimmunity. Nat. Immunol. 19, 213–221.
Menk, A.V., Scharping, N.E., Moreci, R.S., Zeng, X., Guy, C., Salvatore, S., Bae, H., Xie, J., Young, H.A., Wendell, S.G., et al. (2018). Early TCR Signaling Induces Rapid Aerobic Glycolysis Enabling Distinct Acute T Cell Effector Functions. Cell Rep. 22, 1509–1521.
Modiano, J.F., Domenico, J., Szepesi, A., Lucas, J.J., and Gelfand, E.W. (1994). Differential requirements for interleukin-2 distinguish the expression and activity of the cyclin-dependent kinases Cdk4 and Cdk2 in human T cells. J. Biol. Chem. 269, 32972–32978.
Moore, C.S., Cui, Q.-L., Warsi, N.M., Durafourt, B.A., Zorko, N., Owen, D.R., Antel, J.P., and Bar-Or, A. (2015). Direct and Indirect Effects of Immune and Central Nervous System–Resident Cells on Human Oligodendrocyte Progenitor Cell Differentiation. J. Immunol. 194, 761–772.
Newman, L.A., Korol, D.L., and Gold, P.E. (2011). Lactate Produced by Glycogenolysis in Astrocytes Regulates Memory Processing. PLOS ONE 6, e28427.
Pascarella, A., Terracciano, C., Farina, O., Lombardi, L., Esposito, T., Napolitano, F., Franzese, G., Panella, G., Tuccillo, F., Marca, G. la, et al. (2018). Vacuolated PAS-positive lymphocytes as an hallmark of Pompe disease and other myopathies related to impaired autophagy. J. Cell. Physiol. 233, 5829–5837.
Pennock, N.D., White, J.T., Cross, E.W., Cheney, E.E., Tamburini, B.A., and Kedl, R.M. (2013). T cell responses: naïve to memory and everything in between. Adv. Physiol. Educ. 37, 273–283.
Quaglino, D., Hayhoe, F.G.J., and Flemans, R.J. (1962). Cytochemical observations on the effect of phytohaemagglutinin in short-term tissue cultures. Nature 196, 338–340.
Quaglino, D., Cowling, D.C., and Hayhoe, F.G.J. (1964). Cytochemical and Autoradiographic Studies on Normal and Leukaemic Cells in Short-Term Tissue Cultures. Br. J. Haematol. 10, 417–436.
Rashida Gnanaprakasam, J.N., Wu, R., and Wang, R. (2018). Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity. Front. Immunol. 9, 1075. doi: 10.3389/fimmu.2018.01075
Rathmell, J.C., Elstrom, R.L., Cinalli, R.M., and Thompson, C.B. (2003). Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur. J. Immunol. 33, 2223–2232.
Roach, J.C., Glusman, G., Rowen, L., Kaur, A., Purcell, M.K., Smith, K.D., Hood, L.E., and Aderem, A. (2005). The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. 102, 9577–9582.
Roach, P.J., Depaoli-Roach, A.A., Hurley, T.D., and Tagliabracci, V.S. (2012). Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441, 763–787.
Robinson, P.J. (1992). Differential stimulation of protein kinase C activity by phorbol ester or calcium/phosphatidylserine in vitro and in intact synaptosomes. J. Biol. Chem. 267, 21637–21644.
Sadiku, P., Willson, J.A., Dickinson, R.S., Murphy, F., Harris, A.J., Lewis, A., Sammut, D., Mirchandani, A.S., Ryan, E., Watts, E.R., et al. (2017). Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. J. Clin. Invest. 127, 3407–3420.
Salou, M., Nicol, B., Garcia, A., and Laplaud, D.-A. (2015). Involvement of CD8+ T Cells in Multiple Sclerosis. Front. Immunol. 6, 604. doi: 10.3389/fimmu.2015.00604
Saparov, A., Wagner, F., Zheng, R., and Weaver, C. (1999). Interleukin-2 Expression by a Subpopulation of Primary T Cells Is Linked to Enhanced Memory/Effector Function. Immunity 11, 271–280.
Savtchouk, I., and Volterra, A. (2018). Gliotransmission: Beyond Black-and-White. J. Neurosci. 38, 14–25.
Smith-Garvin, J.E., Koretzky, G.A., and Jordan, M.S. (2009). T cell activation. Annu. Rev. Immunol. 27, 591–619.
Snapper, C.M., Zelazowski, P., Rosas, F.R., Kehry, M.R., Tian, M., Baltimore, D., and Sha, W.C. (1996). B cells from p50/NF-kappa B knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J. Immunol. 156, 183–191.
van Stipdonk, M.J.B., Hardenberg, G., Bijker, M.S., Lemmens, E.E., Droin, N.M., Green, D.R., and Schoenberger, S.P. (2003). Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol. 4, 361–365.
Stopnicki, B., Blain, M., Cui, Q.-L., Kennedy, T.E., Antel, J.P., Healy, L.M., and Darlington, P.J. (2019). Helper CD4 T cells expressing granzyme B cause glial fibrillary acidic protein fragmentation in astrocytes in an MHCII-independent manner. Glia 582–593.
Suzuki, A., Stern, S.A., Bozdagi, O., Huntley, G.W., Walker, R.H., Magistretti, P.J., and Alberini, C.M. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823.
Tabatabaei Shafiei, M. (2016). The Effect of Immune Cell Activation on Glycogen Storage in the Context of a Nutrient Rich Microenvironment. Masters thesis. Concordia University.
Tabatabaei Shafiei, M., Gonczi, C.M.C., Rahman, M.S., East, A., François, J., and Darlington, P.J. (2014). Detecting Glycogen in Peripheral Blood Mononuclear Cells with Periodic Acid Schiff Staining. JoVE J. Vis. Exp. e52199–e52199.
Thwe, P.M., Pelgrom, L., Cooper, R., Beauchamp, S., Reisz, J.A., D’Alessandro, A., Everts, B., and Amiel, E. (2017). Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses. Cell Metab. 26, 558-567.e5.
Waitt, A.E., Reed, L., Ransom, B.R., and Brown, A.M. (2017). Emerging Roles for Glycogen in the CNS. Front. Mol. Neurosci. 10, 73. doi: 10.3389/fnmol.2017.00073
Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L.L., Fitzgerald, P., Chi, H., Munger, J., et al. (2011). The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity 35, 871–882.
Weinhouse, S., Warburg, O., Burk, D., and Schade, A.L. (1956). On Respiratory Impairment in Cancer Cells. Science 124, 267–272.
Wipke, B.T., and Allen, P.M. (2001). Essential Role of Neutrophils in the Initiation and Progression of a Murine Model of Rheumatoid Arthritis. J. Immunol. 167, 1601–1608.
Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O’Keeffe, S., Phatnani, H.P., Guarnieri, P., Caneda, C., Ruderisch, N., et al. (2014). An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci. 34, 11929–11947.
Zhao, Y., Zhang, Q., Shao, X., Ouyang, L., Wang, X., Zhu, K., and Chen, L. (2017). Decreased Glycogen Content Might Contribute to Chronic Stress-Induced Atrophy of Hippocampal Astrocyte volume and Depression-like Behavior in Rats. Sci. Rep. 7.
Ziegler, S.F., Ramsdell, F., Hjerrild, K.A., Armitage, R.J., Grabstein, K.H., Hennen, K.B., Farrah, T., Fanslow, W.C., Shevach, E.M., and Alderson, M.R. (1993). Molecular characterization of the early activation antigen CD69: A type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur. J. Immunol. 23, 1643–1648.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top