
A STUDY ON REACTIVE AND PROACTIVE

PUSH-PULL/MAKE-BEFORE-BREAK DEFRAGMENTATION

FOR DYNAMIC RMSA

YAN MA

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JULY 2019

c YAN MA, 2019

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Yan Ma

Entitled: A Study on Reactive and Proactive Push-Pull/Make-Before-Break

Defragmentation for Dynamic RMSA

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair

Dr. Jinqiu Yang Examiner

Dr. Dhrubajyoti Goswami Examiner

Dr. Brigitte Jaumard Supervisor

Approved
Chair of Department or Graduate Program Director

20

Dean

Faculty of Engineering and Computer Science

Abstract

A Study on Reactive and Proactive Push-Pull/Make-Before-Break

Defragmentation for Dynamic RMSA

Yan Ma

In this thesis, we investigate several defragmentation techniques, with both proactive and reac-

tive triggering strategies, in the context of dynamic Routing, Modulation and Spectrum Assignment

(RMSA) in optical flexible networks.

Proactive defragmentation is executed periodically or according to some fragmentation degra-

dation thresholds in order to maintain spectral defragmentation at an acceptable level, the defrag-

mentation is independent of the request connection events. Reactive defragmentation, on the other

hand, is performed when a new request is blocked due to insufficient spectral resources. In the

context of dynamic traffic in a flexible optical network, we looked into different combinations of

proactive/reactive push-pull and make-before-break defragmentations.

Extensive numerical results show that reactive push-pull defragmentation performs quite well

in terms of network throughput and request blocking ratio. Consequently, it is efficient in order

to improve network throughput. For proactive push-pull defragmentation, we investigated two

different triggering events, namely, time-driven and throughput-driven. We observed that both

triggering strategies have a good performance on maintaining an efficient spectrum usage in net-

works. Throughput-driven strategy performs better when the network is heavily loaded, whereas

time-driven strategy is a better option when the network is less loaded.

Keywords: Routing, Modulation, Spectrum Assignment, Optical Network Defragmentation,

Push-Pull, Make-Before-Break.

iii

Contents

1 Introduction 1

1.1 General Background and Motivation . 1

1.1.1 Introduction to Elastic Optical Networks 1

1.1.2 Introduction to EON Provisioning . 2

1.1.3 Introduction to EON Defragmentation . 4

1.2 Dynamic RMSA Defragmentation . 5

1.3 Contributions of the Thesis . 6

1.4 Organization of the Thesis . 6

2 Literature Review 7

2.1 EON Provisioning Strategies . 7

2.1.1 Offline R(M)SA . 7

2.1.2 Dynamic R(M)SA . 9

2.2 EON Defragmentation Strategies . 11

2.2.1 Non-hitless Defragmentation . 11

2.2.2 Hitless Defragmentation . 12

3 Defragmentation in Elastic Optical Networks 15

3.1 Elastic Optical Networks . 15

3.2 Elastic Optical Network Modulation . 17

3.3 Elastic Optical Network Provisioning . 18

3.4 Elastic Optical Network Defragmentation . 20

iv

3.4.1 Generalities . 20

3.4.2 Push-Pull Defragmentation . 23

3.5 Problem Statement . 27

4 Reactive Push-Pull Defragmentation 29

4.1 Introduction . 29

4.2 Routing, Modulation and Spectrum Assignment with Push-Pull (RMSA-PP) 30

4.3 Spectrum Assignment with Push-Pull (SA-PP) . 33

5 Proactive Push-Pull and Make-Before-Break Defragmentation 37

5.1 Proactive Defragmentation with MBB . 38

5.2 Proactive Defragmentation with MBB and Push-Pull 40

6 Numerical Results 44

6.1 Experiment Framework . 44

6.1.1 Data Sets . 44

6.1.2 Defragmentation Strategies: Triggering Events 47

6.2 Impact of the Initial Solution . 49

6.3 Overview of the Various Defragmentation Strategies 55

6.4 Impact of Reactive Push-Pull Defragmentation 59

6.5 Impact of Proactive Push-Pull Defragmentation 62

6.5.1 Proactive Push-Pull with Different Triggering Strategies 62

6.5.2 Time Driven vs. Throughput Driven Triggering 65

6.6 Push-Pull Delay . 69

6.6.1 Reactive Push-Pull Delay . 69

6.6.2 Proactive Push-Pull Delay . 72

7 Conclusions and Future Work 76

7.1 Conclusions . 76

7.2 Contributions . 77

v

7.3 Future Work . 77

References 78

vi

List of Figures

1 Continuity and contiguity constraint examples . 3

2 Dynamic RMSA provisioning and defragmentation process 5

3 WDM-based and elastic optical network [28] . 16

4 Modulation level versus transmission distance [3] 17

5 Elastic optical network fragmentation and defragmentation example [10] 21

6 Elastic optical network defragmentation policies [28] 22

7 Shifted position with push-pull [6] . 25

8 Push-pull delay [6] . 26

9 Push-pull delay calculation . 34

10 MBBPP example . 41

11 Network topologies . 46

12 Overall throughput performance under different initial network status 52

13 Path hop bias under different stopping conditions 54

14 Comparison of all RMSA planning and defragmentation strategies 58

15 Blocking ratio comparison between FF and FFPP 61

16 Comparison of network throughput performance between time-driven and throughput-

driven strategies . 68

vii

List of Tables

1 Main characteristics of the networks . 45

2 Table of modulation . 48

3 Added value of proactive push-pull in the USA topology 63

4 Added value of proactive push-pull in the Germany topology 63

5 Added value of proactive push-pull in the CONUS topology 64

6 Added value of proactive push-pull in the NTT topology 64

7 Reactive delay in USA . 70

8 Reactive delay in Germany . 71

9 Reactive delay in CONUS . 71

10 Reactive delay in NTT . 72

11 Proactive delay in USA . 73

12 Proactive delay in Germany . 73

13 Proactive delay in CONUS . 74

14 Proactive delay in NTT . 74

viii

Chapter 1

Introduction

1.1 General Background and Motivation

1.1.1 Introduction to Elastic Optical Networks

The rapid growth in worldwide communications and the rapid adoption of the Internet has sig-

nificantly modified our way of life. This revolution has led to a vast growth in communication

bandwidth in every year. Optical network technologies are important to global Internet operations

since they are able to support crucial and reliable communication services [3]. In response to

rapidly growing traffic demands, so far, Wavelength-Division Multiplexing (WDM) systems with

more than 1,000 Gbps capacity per channel have been commercially deployed. It is expected that

international bandwidth demands will be approximately 1,103.3 Tb/s in 2020 [2]. Therefore, opti-

cal networks is required to support Tb/s class transmission [11]. Nevertheless, WDM-based optical

networks operate on a fixed wavelength grid, consequently, they necessarily grant traffic demands

on a full wavelength even though the demands do not fill the entire capacity. This inefficient utiliza-

tion of spectral resources is expected to become an even more serious issue with the deployment

of higher data rates. To meet the needs of the future Internet, optical transmission and networking

technologies are moving toward the goals of greater efficiency, flexibility, and scalability.

1

Elastic Optical Networks (EONs) are widely considered as the next generation optical net-

works. Different from the traditional Wavelength Division Multiplexing networks (WDM) where

channels have a 50 GHz width, frequency slots have a 12.5 or 6.25 GHz width in elastic optical

networks. EONs further improve the spectrum utilization with consideration of adaptive modula-

tion. Indeed, the modulation-based EONs can reduce the allocated spectral bandwidth for shorter

paths by increasing the number of modulated bits per symbol [40]. As a result, flexible network

utilization efficiency is greatly improved compared to WDM based optical networks. More details

on modulation are provided in Section 3.2.

1.1.2 Introduction to EON Provisioning

In EONs, routing and spectrum assignment (RSA) problem is defined as the problem of establish-

ing connections for each request by selecting an appropriate routing path and an available spectrum

allocation. The routing, modulation and spectrum assignment (RMSA) problem is an extension of

RSA, with additional requirements to select an appropriate modulation format and spectrum width

according to the transmission distance (see Section 3.2). Any request in EONs must use the same

channel(s), i.e., the same frequency slot(s), from source to destination, this property is known as

continuity constraint. Furthermore, the allocated frequency slots must be adjacent, this property

is known as contiguity constraint. The concept of the contiguity and continuity constraints of the

spectrum allocation is next explained with an example. Let us consider a simple network topology,

shown in Figure 1, with 5 nodes and 4 links. Assume each link has a 4 frequency slot capacity.

2

(a) Network topology (b) Network Provisioning

(c) Network topology (d) Network Provisioning

Figure 1: Continuity and contiguity constraint examples

As shown in Figure 1(a) and Figure 1(b), request r1 is following on optical routing path from

node A to node C, using frequency slots 1 and 2, and request r2 goes node C to node E using

frequency slots 3 and 4. If a new request r requiring two frequency slots from node A to node E

arrives, it cannot be granted even though 2 frequency slots are available on each link of the path

from A to E. In other words, the new incoming request cannot use frequency slots 3 and 4 from

node A to node C and frequency slots 1 and 2 from C to E. A request has to use the same frequency

slots from source all the way to the destination, this is the continuity constraint.

Consider a second example in Figure 1(c) and Figure 1(d). Request r1 from node A to D uses

frequency slot 1 and request r2 from node B to E uses frequency slot 3. If a new request r requiring

two frequency slots from A to E arrives, it cannot be granted even though the same 2 frequency

slots are available on each link of the path from node A to E. In other words, EONs cannot use

frequency slots 2 and 4 to transmit request r because the spectrum contiguity constraint cannot be

3

satisfied.

1.1.3 Introduction to EON Defragmentation

One of the major topics in EONs is the spectrum fragmentation. In a dynamic network scenario,

where requests are allocated and disconnected in a quite random fashion, spectral resources tend

to be highly fragmented because of the continuity and contiguity constraints for every request.

To address the issue of fragmentation, computer scientists and network experts are investigat-

ing dedicated mechanisms to rearrange existing traffic demands to avoid spectrum fragmentation.

This is the so-called spectrum defragmentation. Several defragmentation techniques have been

proposed, e.g., make-before-break, push-pull and hop-tuning. Those techniques are later detailed

in Chapter 2. We give a brief description of each defragmentation technique in the following

paragraphs.

Make-Before-Break defragmentation performs as follows. For each provisioned request con-

nection, this technique finds an available alternate route, modulation and slot set (e.g., a shorter

routing path). If it is better than the original one, then defragmentation can be performed in the

make-before-break manner, i.e., activate a new request (’make’) using the alternate route and slot

set first, and keep the original request connection. Only the newly created request is properly

transmitting on the new lightpath, then release (’break’) the old resources.

Both push-pull and hop-tuning techniques consist of shifting the conflicting connections to free

contiguous spectral resources. Conflicting connections are connections which share the expected

route and slot set with the new request route and slot set. The constraint of both push-pull and hop-

tuning is that the route of the processed request does not change. The difference is that push-pull

only shifts conflicting requests between its adjacent request set, whereas hop-tuning can reallocate

a request on any feasible spectrum location. More details on each defragmentation technique are

provided in Section 3.4.1.

4

1.2 Dynamic RMSA Defragmentation

Figure 2: Dynamic RMSA provisioning and defragmentation process

In this thesis, we focus on the online modulation based provisioning and defragmentation prob-

lems in EONs. Defragmentation techniques can be classified as proactive or reactive [14]. The

former is executed periodically or according to some predefined thresholds in order to maintain

spectral defragmentation at acceptable levels, the thresholds are independent of request connection

events. The reactive methods are usually performed when a new incoming request is blocked due

to insufficient spectral resources [28].

Figure 2 gives an example of RMSA reconfiguration process, X-axis represents timeline. As

time goes by, there are sets of incoming requests (colored in green) and departing requests (colored

in red). However, some of the new arriving requests are denied by the optical provisioning network

policy (colored in purple). Y-axis measures the provisioning network performance according to

some parameters, such as overall throughput, blocking ratio, time units, etc. As shown in Figure 2,

5

when the overall throughput decreases by a given threshold, proactive defragmentation is triggered,

meanwhile, the reactive defragmentation is triggered when a new incoming request is denied by the

provisioning network. This thesis focuses on reactive and proactive push-pull/make-before-break

defragmentation techniques.

1.3 Contributions of the Thesis

Contributions of the thesis are as follows. We developed a defragmentation framework that al-

lows the investigation of the added value of the push-pull and make-before-break defragmentation

techniques. Conclusions of the extensive computational experiments are that reactive push-pull de-

fragmentation performs quite well in terms of improving network throughput and reducing blocked

requests. For proactive push-pull defragmentation, we investigate time-driven and throughput-

driven strategies, both methods have good performances with respect to network throughput. The

time-driven triggering approach performs better than the throughput-driven approach in low traffic

loads, but in high traffic loads, the throughput-driven approach is a better option.

1.4 Organization of the Thesis

Chapter 2 presents a literature review of related subjects, including recent studies on EON provi-

sioning and defragmentation strategies. Chapter 3 provides a concise statement of the defragmen-

tation problem in flexible optical networks, with the corresponding background. All the related

algorithms we use for RMSA reactive defragmentation are presented in Chapter 4, complexity

analysis of algorithms are also discussed in this chapter. Chapter 5 introduces an RMSA proactive

defragmentation model based on make-before-break with and without push-pull. Finally, Chapter

6 conducts a numerical analysis of the performance of the designed algorithms in the previous

chapters, as well as the characteristics of the solutions. Conclusions and future work are discussed

in the last chapter.

6

Chapter 2

Literature Review

In this chapter, we present related works on EON provisioning and defragmentation. We first

review the studies on provisioning strategies in EONs, and then the recent works in flexible optical

network key defragmentation techniques, i.e., make-before-break, push-pull, and hop-tuning.

2.1 EON Provisioning Strategies

The R(M)SA problem can be classified under one of the two board versions: offline R(M)SA

(or static R(M)SA), whereby the traffic demands are known in advance and online R(M)SA (or

dynamic R(M)SA), in which a sequence of client requests arrive in some random fashion [29].

The next two sections discuss spectrum management techniques for online and offline R(M)SA

respectively.

2.1.1 Offline R(M)SA

Offline R(M)SA with ILP (Integer Linear Programing)

The static RSA problem has been formulated as an ILP that returns the optimum solution through

a joint routing and spectrum allocation [4] and [15]. The objective of the ILP is to minimize the

utilized spectrum, with the constraints of spectrum continuity and contiguity constraints. In order

7

to reduce the complexity of the combined RSA, Christodoulopoulos et al. [4] present a decomposi-

tion ILP model which breaks RSA into its two substituent subproblems, namely, available routing

path searching and spectrum allocation, and solves them sequentially. To feed the sequential al-

gorithm, two ordering policies are proposed, i.e., most request demand first and shortest path first.

Results indicate that the proposed sequential heuristic combined with an appropriate ordering can

give close to optimal solutions in low running times.

An offline version of the RMSA problem was studied in [5]. In this problem, request demands

are mapped to a modulation level based on the requested data rate and the distance of the path over

which it is routed, with the mapping function provided as input to the problem. In [5], the path for

each request is predefined, and then the problem was decomposed into two subproblems, routing

and modulation level (RM) and spectrum assignment (SA) and solved sequentially (RM+SA) using

ILPs.

The above ILP formulations are able to find optimum or near-optimum solutions for small

networks. However, they are not scalable to large networks, e.g., in a simulation of DT (Deutsche

Telekom) network topology with 14 nodes and 46 links, the combined RSA ILP model in [4] and

[15] could not return a solution in a reasonable time, while the sequential RSA ILP model in [4]

took several hours [40].

Heuristic Algorithms for Offline R(M)SA

To solve the R(M)SA problem efficiently, several heuristic algorithms have been proposed to serve

each connection request sequentially in offline R(M)SA scenarios.

Wang et al. [35] developed two heuristic algorithms to solve offline RSA efficiently. The first

algorithm is referred to as shortest path with maximum spectrum reuse (SPSR). The algorithm first

sorts the requests in decreasing order of their demands, then uses the shortest path routing and

first-fit spectrum allocation strategy to assign frequency slots to demands. The second algorithm,

called balanced load spectrum allocation (BLSA), considers the k shortest path set as a candidate

for each request and selects the link set with the minimum spectrum usage, so as to balance the use

of the spectrum across the network links.

8

A greedy algorithm with consideration of modulation is proposed in [4] in order to address

offline RMSA problem. The algorithm firstly sorts the requests in decreasing order based on their

demands or the length of their shortest paths, then solves the routing path selection problem and

spectrum allocation problem sequentially. Another heuristic algorithm called adaptive frequency

assignment with collision avoidance (AFA-CA) is proposed in Klinkowski et al. [16], the algo-

rithm processes the requests in an order which is based on link traffic metric to avoid selecting

paths that will result in congested links.

2.1.2 Dynamic R(M)SA

Because of the real-time nature of the problem, RSA algorithms in a dynamic traffic environment

must be simple and fast [27]. Since combined routing and spectrum assignment is a hard problem,

most studies in dynamic RSA planning decompose RSA into sequential routing and spectrum

assignment problems and solve them separately [27]. Moreover, most of the studies on online

modulation based spectrum allocation have introduced heuristic algorithms [2].

In dynamic R(M)SA scenarios, the candidate routing paths can be predefined and ordered.

Therefore, the spectrum allocation policy, which determines which set of available (satisfying

spectrum continuity and contiguity constraints) slots are assigned to a request, is crucial to the

performance of an online R(M)SA algorithm. In spectrum allocation algorithms in the context of

R(M)SA, a first-fit policy (in [29] and [34]) selects the lowest slot index set. A random-fit policy

(in [39]) randomly allocates one of the available allocations, whereas a best-fit policy selects the

indexed slot set with the smallest size.

An improvement in the operation of the first-fit policy has been proposed in Almeida et al. [1].

The authors proposed an evolutionary algorithm to search for the most feasible spectrum ordering

for first-fit so as to minimize the blocking probability, the study showed that the algorithm has a

significant reduction on the blocking probability compared to the conventional first-fit policy.

The study in [34] investigated the optimal slot width for first-fit policy under the dynamic

traffic under a hypothesis that each request is routed on its shortest path, and the first-fit policy was

used for spectrum allocation selection. The author finds that the best performance, in terms of the

9

blocking probability, is achieved when the slot width is equal to the greatest common factor of all

the request frequency slot demands.

On the other hand, Wan et al. [30] proposed several first-fit based algorithms in dynamic RSA.

A request routing path is determined by different algorithms, including k shortest path (K-SP),

Modified Dijkstra Shortest Path (MDSF), and Spectrum-Constraint Path Vector Searching (PVC).

The first-fit policy is used to assign frequency slots to the request. In addition, a routing path

selection based on dynamic ant colony optimization (ACO) algorithm is proposed in [36], and the

authors find that the proposed algorithm performs better than (K-SP) in terms of request blocking

ratio.

We discussed in the above paragraphs for the basic online RSA problem. For RMSA problem,

the main difference is that the modulation should be defined for each request in order to determine

the slot demands based on their data rate and routing path. Therefore, the spectrum allocation

policy must search for different modulation formats which are dependent on the length of the path

considered.

In [26], an algorithm is proposed to address online RMSA problem. The algorithm pre-

computes the paths for each source-destination pair, and order them in decreasing length. In order

to locate the request on the spectrum allocation, it employs first-fit policy and sequentially con-

siders each path until a feasible (i.e., which satisfies the spectrum constraints) frequency slot set

that is able to accommodate the request data rate over the selected path length. A link load bal-

ance RMSA online algorithm is studied in [37], the heuristic algorithm grants requests with the

constraint to balance the link loads and it works as follows: for each modulation format, each link

in the network is assigned a weight. The weight is equal to the ratio of the required slots over the

number of free slots on the link. Next, for each modulation, a modified Dijkstra’s algorithm is used

to find the minimum cost path with the feasible contiguous spectrum for the request. Finally, the

path, and modulation with the smallest cost (if any is found) are assigned to the request.

10

2.2 EON Defragmentation Strategies

EONs grant requests on contiguous frequency slots and feasible routing paths. Therefore, dynam-

ically setting up and tearing down requests can generate the bandwidth fragmentation problem

[3]. It is the condition where available slots become isolated from each other by being misaligned

along the routing path or discontiguous in the spectrum domain. Thus, it is difficult to utilize them

for upcoming connection requests. Therefore, spectrum defragmentation strategies are necessary

to be investigated. Defragmentation usually involves rerouting or spectral reallocation of existing

requests and may require a large amount of time to converge [28]. During the defragmentation pro-

cess, the invoked requests would be affected and the Quality of Service would be deteriorated. This

is referred to as traffic disruptions. Hence, one of the key operational requirements is to not disrupt

the service during the defragmentation phase, or at least minimize disruptions. Based on traffic

disruption, defragmentation policies are categorized into the non-hitless (the defragmentation with

traffic disruptions) and hitless defragmentation (the defragmentation without traffic disruptions)

strategies, which are discussed in the following.

2.2.1 Non-hitless Defragmentation

Re-planning technique is proposed in [22]. The authors, in particular, formulate the network de-

fragmentation problem in EONs, model it, and propose two heuristic algorithms, namely, greedy

based (Greedy-Defragmentation) and shortest path based (SP-Defragmentation) heuristic algo-

rithms. The authors compare these algorithms with an ILP model, find that greedy based algorithm

is closer to the optimal solution but has higher defragmentation traffic disruptions than the short-

est path based algorithm. In [9], the authors examine defragmentation in practice by re-planning

requests while also considering the advantages obtained by different channel spacing selections.

Eira et al. [9] finds that the gain of re-planning defragmentaion strongly depends on the spectral

widths.

Spectrum partition technique is introduced in [31], this technique slices spectrum into several

parts and allocates requests in one of the parts according to some predefined rules. In [31], Wang

11

and Mukherjee proposed several spectrum partition methods, namely, i) complete sharing with

partitioning (CS), where all the granted requests are re-allocated to one part of the network (high

and low spectrum locations); ii) pseudo-partitioning (PP), where the requests with high and low

demands are allocated at the high and low spectrum location respectively; and iii) dedicated par-

titioning (DP), where each partition of spectrum carries a uniform data rate and where they seek

an optimal partitioning. The simulation shows that DP is a prior option since it is fair for requests

with high and low demands, and the request provisioning efficiency is significantly better than

other proposed methods (CS and PP), especially when the network becomes loaded.

In [41] and [43], the authors presented a study on the proactive defragmentation policies. They

considered the questions of when, what, and how to defragment. Firstly, they choose a portion of

existing requests as candidate rerouting request sets, using connection selection strategies and then

determine how to reroute them with the defragmentation based RSA. Finally, in order to minimize

the number of request migrations and minimize traffic disruptions, dependency graphs are intro-

duced. The dependency graph is a directed graph which finds the precedence relationships between

requests and is used to minimize defragmentation disruptions. For example, if there is an arc from

request A to B, it means that request B has to be processed before A in the defragmentation. In

addition, the authors tested the proposed algorithms under different network initial status in [43].

In [18], the authors compared the performance of the non-hitless defragmentation (including

rerouting and non-rerouting policies) in EONs, with both reactive and proactive approaches, in

terms of request blocking ratio, and bandwidth fragmentation ratio, etc. Simulation results show

that proactive defragmentation has a better performance in low traffic loads, but in high traffic

loads, the reactive approaches are better options.

2.2.2 Hitless Defragmentation

Hitless defragmentation is a defragmentation strategy that works continuously in EONs without

traffic interruptions. It advocates retuning the granted requests to fill the gap the provisioning

network, in order to make a compact spectrum utilization. The following discussion is about two

retuning approaches, namely, push-pull and hop-tuning.

12

The push-pull technique was proposed in [7], in which the authors considered push-pull as a

cheap and non-disruptive defragmentation technique because it does not require additional transpon-

ders and does not disrupt the other request connections. In order to evaluate the performance of

push-pull, a linear programming model is proposed, and the simulation is based on Telecom Italia

Sparkle topology. Results show that spectrum defragmentation operation is achieved without ad-

ditional cost transponder support and it successfully avoids connection disruptions.

In an in-depth study, Cugini et al. [8] focused on the feasibility demonstration and performance

evaluation of push-pull technique on different transmission and detection strategies. Technological

and impairment-related issues are also taken into account. The results show that actual request

frequency re-tuning required just few tens of milliseconds. Therefore, the authors believe that

push-pull technique can be considered for high frequent utilization.

In [33], Wang and Mukherjee proposed a heuristic algorithm based on push-pull. The authors

compared its defragmentation performance with first-fit and spectrum partition strategies. Simula-

tion results showed that the algorithm performs better in terms of the blocking ratio. Specifically,

they find that a novel framework of provisioning using reactive defragmentation perform quite

good when the network has a light load.

Coudert et al. [6] improved push-pull algorithms in [33] in terms of minimizing delay. Further-

more, a heuristic push-pull algorithm based on the shortest available path is proposed. The authors

simulated the algorithms on different undirected networks and tested the push-pull algorithms un-

der Spectrum Blocking Ratio (SBR), Average Delay (AD), and Average Shifted Distance (ASD).

Results show that the push-pull algorithm based on the shortest available path always has the best

SBR but the worst AD and ASD. However, the push-pull algorithm based on minimum delay has

the best ASD but not necessarily best AD and SBR.

Push-Pull is a cheap, fast and non-disrupted defragmentation technique which means that it can

complete the defragmentation process in a very short time without affecting the granted requests

and needing costly additional transponders. However, it has limitations of not being able to sweep

over other granted requests and not allowing rerouting.

13

In order to overcome the above limitations, Proietti et al. [24] proposed a new hitless defrag-

mentation technique, where an optical request can be allocated to any desired spectral location

with very short latency times (less than 1µs) based on using very fast tuning transponders. This

technique is named as hop-tunning.

Zhang et al. [42] proposed two hitless defragmentation algorithms, named as maximum spec-

trum rejoin (MSR) and minimum number of operations (MNO), in order to maximize spectrum re-

joins and to reduce the number of operations. The MSR algorithm is applied in both hop-retuning

and push-pull techniques, while the MNO is only applied for hop-tuning. Their results indicate

that both algorithms reduce spectrum fragmentation in EONs.

Moniz et al. [19] made a comparison between push-pull and hop-tuning techniques under a

unified framework. The authors proposed integer linear programming models and heuristic algo-

rithms to study the effectiveness of these techniques and presented a performance analysis based

on spectrum usage. The relative performance of the different defragmentation techniques was vali-

dated on different network topologies. This paper also validated that the spectrum gains associated

with them are greatly influenced by the initial loaded network.

However, as stated in [24], hop-retuning technology is hard to deploy in EONs. This is due to

the sensitivity of the spectrum wavelength modulation. Therefore, hop-retuning technology is not

preferred as a defragmentation approach for a fine granular grid.

In online RMSA environment, we only consider hitless defragmentation techniques. As the

hop-tuning is costly to deploy and has limitations on defragmentation performance (only reallo-

cation, no rerouting of a request) [24]. Therefore, hop-tuning can be considered as a restricted

make-before-break technique with no change in the original routes of requests [40]. In addition,

according to the conclusion from Proietti et al. [24], hop-tuning is sensitive to request modulation.

Based on the mentioned constraints of using hop-tuning, in this thesis, we only consider push-pull

and make-before-break defragmentation techniques in RMSA.

14

Chapter 3

Defragmentation in Elastic Optical

Networks

This chapter is devoted to the detailed description of the defragmentation problem in flexible op-

tical networks. We gradually introduce the various technical components of the problem and de-

scribe all the notations that will be used in the sequel of the thesis. Finally, we formally state the

sub-problems we will study in order to be able to address the defragmentation problem.

3.1 Elastic Optical Networks

The traditional WDM-based optical network divides the spectrum into non-overlapping channels.

Each channel has its central frequency. The spacing between two adjacent central frequencies is

50 GHz, which is specified by International Telecommunication Union (ITU)-T standards [40]. As

shown in Figure 3(a), if a request connection only requires a fraction of the available bandwidth of

a channel, that channel would not be used efficiently since there would be a big wasted spectrum

in it and no other requests would be able to use it for their transmission.

An elastic optical network has the capability to slice the spectrum into slots with finer gran-

ularity than WDM-based networks. A frequency slot is defined by its nominal central frequency

15

in the whole spectrum range and its slot width [28]. As shown in Figure 3(b), the width of a fre-

quency slot depends on the transmission system. There are two standard values today: 12.5 Ghz

and 6.25Ghz. In the example of Figure 3(b) [28], one frequency slot is 12.5 GHz. According to

the bandwidth demand of a connection request, a group of frequency slots needs to be assigned

consecutively in the frequency domain. Since the spectrum assignment is more flexible compared

to traditional WDM-based optical network, EONs improve the spectrum utilization significantly.

(a) WDM-based optical network

(b) Elastic optical network

Figure 3: WDM-based and elastic optical network [28]

16

3.2 Elastic Optical Network Modulation

The traditional WDM-based optical network grants requests on routing paths without considering

the appropriate modulation technique, which leads to an inefficient utilization of the spectrum re-

sources [40]. The elastic optical network grants requests while taking adaptive modulation into

consideration to further improve the spectrum efficiency. The modulation-based spectrum alloca-

tion scheme improves the spectrum efficiency, as an advanced (higher level) modulation can reduce

the transmitted symbol rate and achieve higher spectrum efficiency [40], which reduces the request

slot requirements.

Figure 4: Modulation level versus transmission distance [3]

Jinno et al. [15] have presented a distance adaptive spectrum allocation scheme that adopts a

high-level modulation format for long distance paths, and a low-level modulation format to shorter

paths. As the optical signal-to-noise ratio (OSNR) tolerance of 64-QAM is lower than that of

QPSK [40], it suits shorter distance requests as shown in Figure 4. In summary, a high-level

modulation format with narrow spectrum and low OSNR tolerance maybe selected for a short

path, whereas a low level modulation with a wider spectrum and high OSNR tolerance may be

used for a longer path [27].

17

3.3 Elastic Optical Network Provisioning

Elastic Optical Network provisioning problems can first be partitioned into a routing path and

modulation selection sub-problem, then into a spectrum assignment sub-problem and solved se-

quentially [40]. In the routing path and modulation selection sub-problem, as we discussed in

Chapter 2, the candidate routing paths can be predefined. k shortest path (KSP)-based routing path

selection is discussed in [4] and [29], whereas KSP with load balancing constraint is discussed

in [15], in which it determines the routing by balancing the load within the network, in order to

potentially minimize the spectrum usage in the network. It was shown that KSP-based routing path

selection has a better performance in terms of total spectrum usage, whereas load-balanced routing

path selection performs better in terms of minimizing used spectrum index in the network.

After the routing path is selected, the spectrum allocation problem has to be solved by using

some spectrum allocation selection policies, e.g., first-fit, random-fit, etc. The first-fit spectrum

allocation policy always attempts to choose the first feasible indexed slot for a request connection

and allocates it. By selecting spectrum allocations in this way, provisioned requests are compacted

into a relatively smaller number of spectrum slots, leaving a larger number of spectrum slots avail-

able for future use. This policy is widely used in online R(M)SA provisioning due to its lower call

blocking probability and computation complexity.

In this thesis, we use k shortest path-based first-fit algorithm for online RMSA planning, since

this is a cheap and easy online RMSA planning strategy. The idea is as follows: Considering a new

incoming request r with its source SRCr, destination DSTr and data rates. Note that the spectrum

requirements, i.e., number of frequency slots dm
r , depends on the assigned modulation m. We can

easily choose one path from the pre-calculated k-shortest path set. We assume k to be a small

integer, and the k-shortest paths using Yen’s algorithm [38]. For each candidate routing path, we

assign the highest-level modulation to r in order to get less slot demands. Then, we choose the 1st

feasible spectrum allocation which satisfies the contiguity and continuity constraints, otherwise,

the request is denied. The pseudo-code is presented in Algorithm 1 and denoted by KSP-FF.

18

Algorithm 1: KSP-FF(r), online RMSA provisioning
Input : A new incoming request r with source SRCr, destination DSTr and its data rate,

an optical provisioning network

Output: r’s provisioning in the network if it is provisioned.

1 KSP = find k shortest paths from SRCr to DSTr;

2 RG = provisioned request connection set;

3 for (p ∈ KSP) {

4 dtemp = slot demands based on a modulation m (m is the highest-level modulation

associated with routing path p’s distance);

5 for (every spectrum allocation s ∈ S) {

6 if request r can be provisioned on spectrum interval [s,s+dtemp −1] with routing

path p then

7 set r’s routing path as p;

8 set r’s spectrum allocation as s;

9 set r’s modulation as m;

10 set r’s slot demands as dtemp;

11 RG = RG ∪{r};

Here is the running time complexity analysis for Algorithm 1:

Step 1 finds the k shortest path (KSP) for the new incoming requests from source SRCr to

destination DSTr using Yen’s algorithm [38], which has a running time O(kN(L+N logN)), in

which L represents the number of links and N is the number of nodes, k is an integer. Step 3 iterate

all the candidate routing paths p ∈ KSP. Step 4 assigns slot demands to r based on modulation m,

where m is the highest-level of modulation can be used on p. Step 5 iterates spectrum allocations

s∈ S\{|S|−dtemp+1, . . . , |S|} , where |S| represents the link capacity, i.e., the number of frequency

slots. Step 6 checks if the spectrum allocation s is feasible on the selected routing paths. The time

complexity depends on r’s path size and the slot requirements. Step 7-12 set the routing path,

spectrum allocation and modulation format for r and return.

19

The overall running time complexity is O(k(NL+N2 logN+ |S|2L)). In this thesis, we consider

a capacity of 400 slots on each link ‘ (‘ ∈ L), therefore, we consider link capacity S (400 slots) as

a constant. Therefore, we can simplify the time complexity as O(k(NL+N2 logN)).

3.4 Elastic Optical Network Defragmentation

3.4.1 Generalities

Any request connection in EONs must satisfy the spectrum contiguity and continuity constraints.

Therefore, dynamically setting up and tearing down request connections with different demands

will unavoidably generate a network fragmentation problem [40]. As a result, slots are isolated

from each other by being misaligned along the routing path or discontiguous in the spectrum

domain. Thus, it is difficult to utilize them for upcoming connection requests because of the

spectrum constraints. A request is blocked if there is no available slot set can fulfill its required

demands. This is referred to as network fragmentation.

Therefore, dedicated spectrum defragmentation mechanisms have begun to be investigated.

Their aim is to rearrange existing request connections to make room for the other potential forth-

coming request connection(s). As rearrangement usually involves rerouting or spectral reallocation

of existing connections, defragmentation techniques may require a large amount of time to con-

verge [27]. Hence, one of the key operational requirements is to not disrupt the service during the

reconfiguration phase (or at least minimize its effects) [40].

An example is shown in Figure 5. The X-axis represents links in network topology and the

Y-axis represents frequency slots. Figure 5(a) is the optical provisioning network before defrag-

mentation, Figure 5(b) shows the network after defragmentation. As we can observe from Figure

5(a), the network can hardly grant a new incoming request even though it has a lot of vacancy

spaces. Then, we follow a predefined rule in order to reconfigure the provisioned requests on bet-

ter spectrum locations. Finally, a big set of contiguous slot set is made after the defragmentation,

as shown in Figure 5(b), so that the optical provisioning network can easily grant a new request

which satisfies the spectrum constraints. This process is the EON defragmentation.

20

Figure 5: Elastic optical network fragmentation and defragmentation example [10]

Many R(M)SA defragmentation policies have been proposed to address EON fragmentation.

Here are examples to explain how these methods work. Figure 6 shows several spectrum defrag-

mentation policies, namely, re-planning, make-before-break, push-pull and hop-tuning.

21

Figure 6: Elastic optical network defragmentation policies [28]

Re-planning technique was discussed in [22]. This scheme achieves defragmentation by mov-

ing a request to any desired spectrum location on any feasible routing path. An application of

the re-planning solution is exemplified in Figure 6(a). Therein, all the requests are reconfigured

by using the re-planning defragmentation policy. The re-planning offers the most flexibility in

reassigning connections (in terms of available paths and spectrum resources) and is easy to de-

ploy. However, this method introduces request disruptions and takes a long time to complete the

defragmentation process [3].

The make-before-break approach presented in [25]. Figure 6(b) depicts the defragmentation

processes of make-before-break. This scheme carries out the defragmentation operation by moving

a request to any desired spectrum location on any feasible routing path. However, the desired

request connection should be established properly before make-before-break releases the original

request connection. As shown in Figure 6(b), the desired location of the request in blue is between

the request in red and the request in green. The make-before-break policy establishes the blue

request on its desired position first and then releases the original request connection.

22

The push-pull approach is proposed in [8]. This technique achieves defragmentation by shifting

the invoked request to nonconflicting and contiguous slots without changing the request original

routing path. Figure 6(c) illustrates the equivalent steps of push-pull defragmentation. As shown

in Figure 6(c), in order to make room at a higher indexed spectrum allocation, the request in green

is shifted to lower the spectrum allocation as much as possible and is allocated just adjacent to the

request in red, and then the blue request follows the same policy and is allocated next to the green

request.

The hop-tuning technique is introduced in [24]. This scheme carries out the defragmentation

operation by moving the connection to any desired spectrum location subject only to the constraint

of not changing its initial path. Figure 6(d) depicts the steps for hop-tuning. As seen in Figure

6(d), the request in blue can be reconfigured directly to the spectral allocation between the request

in red and the request in green in a very short time and without affecting other provisioned requests

[28]. Although the defragmentation process of hop-tuning is very fast (< 1µs) and is an efficient

defragmentation technique [28], it requires high-level hardware support and it is sensitive for a fine

granular grid [24].

3.4.2 Push-Pull Defragmentation

In this section, we will introduce all the definitions and notations throughout the thesis.

We consider an elastic optical network represented by a directed multi-graph G = (N,L) where

N is the set of nodes (indexed by n) and L denotes the set of links (indexed by ‘). Different links

may exist between two nodes in order to model different fiber links.

Let S‘ denote the transport capacity of link ‘, measured by the number of frequency slots

in the context of RMSA. Let R be the set of provisioned requests (indexed by r). Request r is

characterized by its source (SRCr), destination (DSTr), and data rate. A provisioned request has

its modulation format m, a routing path pr (indicates a set of links that the request is using) and

slot demand dm
r (the number of slots is being used by r). We refer to b(r) and e(r) as the beginning

slot index and ending slot index for a provisioned request r respectively, and e(r) = b(r)+dr −1.

We borrow some definitions and notations from [33]. For a request r with its routing path,

23

the conflict set is defined as the set of provisioned requests that use routing paths sharing at least

one link with r, denoted by CS(r). If the request is provisioned, the new request r will partition

the set CS(r) into two subsets, requests above r and requests below r, i.e., every position in the

spectrum of r corresponds to a partition A∪A0 of CS(r). With respect to the possible shiftings of

the requests, we have the ∆ and ∇ states. ∆ state is the state of the network after shifting all the

requests down (towards slot index 1) until they are blocked. ∇ state is the state of the network

after shifting all the requests up (towards the link capacity S‘) until they are blocked. A partition

A∪A0 gives the largest free interval when we shift the requests that are above (i.e. A) to the ∆ state

and those below (i.e., A0) to the ∇ state. In each partition A∪A0 we call the floors of a position

α , where α = (A,A0), which is defined as f (α) = max{e(r) : r ∈ A}. The floor star of a position

α = (A,A0) is f ?(α) = max{e∆(r) : r ∈ A}. On the other hand, we define the ceiling of a position

α as c(α) = min{b(r) : r ∈ A0}. The ceiling star of a position α is c(α) = min{b∇(r) : r ∈ A0}. We

define b∆(r)/e∆(r) and b∇(r)/e∇(r) which are the beginning/ending frequency slots of request r in

the ∆ state and the ∇ state respectively. An illustrative example of the above notations is presented

in Figure 7:

24

(a) Original position

(b) ∆ position (c) ∇ position

Figure 7: Shifted position with push-pull [6]

As shown in Figure 7(a), the original optical provisioning network has 5 nodes and 4 links, and

all the links have the same capacity: 4 frequency slots. The provisioned request set R contains r1

and r2, request r1 uses a routing path from node A to node D on frequency slot index 2, and r2 uses

a routing path from node B to node E on frequency slot index 3. Figure 7(b) shows the ∆ positions

for both r1 and r2 (shifting a set of provisioned requests down as much as possible), therefore

b∆(r1) = e∆(r1) = 1, and b∆(r2) = e∆(r2) = 2. Figure 7(c) illustrates the ∇ positions (shifting a

set of provisioned requests up as much as possible) for both requests. b∇(r1) = e∇(r1) = 3 and

b∇(r2) = e∇(r2) = 4.

The delay (δ) of insertion of a new request using push-pull indicates the duration of the shifting

done to free the needed space. In [32], the authors take the number of slots through which the

25

shifting is done over as an indicator of the delay and consider two types of parallelism to compute

it as illustrated in Figure 8. In Figure 8(a), requests r1 and r2 are both shifted in the same direction

(down) by two slots and one slot respectively, the delay of shifting is δ = max{2,1}= 2. In Figure

8(b), request r1 is shifted by two slots and r2 is shifted in the opposite direction by one slot. The

delay of shifting is δ = max{2,1}= 2

(a) Example 1

(b) Example 2

Figure 8: Push-pull delay [6]

The absolute position is a position in frequency slot range, i.e., an index in the interval [1,S]

which can be assigned to r satisfying spectrum constraints in the context of RMSA. The Relative

26

position, (A,B), is defined as a position between two sets of provisioned requests. Allocating

request r in a position (A,B) means that request r is above the set of requests A and below the set

of requests B. (A,B) is valid if no request in B is constrained to be below a request of A. A relative

position (A,B) is valid on a link ‘ if the position is valid and (A,B) is a partition of the requests

using ‘. We denote a complete relative position as (Ac,Bc) for every relative position (A,B). Ac

contains the request set A and all the requests are constrained to be below them and Bc contains

the request set B and all the requests are constrained to be above them. We say that two relative

positions (A,B) and (C,D) are conflicting if and only if Ac ∩Dc 6= /0 or Cc ∩Bc 6= /0.

We assume that the network undergoes a series of connection re-optimization at different time

units. Let T (indexed by t) be the set of those time units, with t = 0 being the initial one. The

details of the push-pull defragmentation algorithms are discussed in the following chapter.

3.5 Problem Statement

In this subsection, we formally state the problems as follows, including both reactive and proac-

tive defragmentation. Both reactive and proactive defragmentations include two scenarios, i.e.,

defragmentation with and without push-pull.

Reactive Push-Pull Defragmentation

Input:

• An optical provisioning network with a set of provisioned requests R.

• A dynamic RMSA provisioning process, i.e., a timeline (length is T) with a set of pre-defined

new incoming requests and a set of departure requests in each time unit.

Provisioning Strategies:

• Scenario 1: For each new incoming ADD request, we use an online RMSA algorithm that

searches for an available routing path (e.g., the first shortest one) which satisfies the slot

requirements (contiguity and continuity constraints) and then assigns it to the new request.

27

In this scenario, no reactive push-pull defragmentation is introduced. Denote by R1 the

resulting RMSA provisioning.

• Scenario 2: For each new incoming ADD request, we use an online RMSA algorithm pro-

posed in Scenario 1 to search for an available position (an available routing path with a

spectrum allocation which satisfies spectrum constraints) for the new request. However, if

the proposed online RMSA algorithm cannot grant the new request, reactive push-pull de-

fragmentation is triggered. The new request is denied only if there is no feasible position for

it after reactive push-pull shifting. Denote by R2 the resulting RMSA provisioning.

Output: The performance of push-pull in reactive defragmentation.

Proactive Push-Pull and Make-Before-Break Defragmentation

Input:

• An optical provisioning network with a set of provisioned requests R

Defragmentation Strategies:

• Scenario 1: In an online RMSA scheme, for each provisioned request r, check if there is

an exact shorter available routing path that can assign r on a feasible spectrum allocation

knowing that only make-before-break based defragmentation can be used.

• Scenario 2: In an online RMSA scheme, for each provisioned request r, check if there is

an exact shorter available routing path that can assign r on a feasible spectrum allocation

knowing that only make-before-break and push-pull defragmentation can be used.

Output: The performance of push-pull and make-before-break in proactive defragmentation.

28

Chapter 4

Reactive Push-Pull Defragmentation

In this chapter, we focus on the RMSA provisioning process with reactive defragmentation. For

the RMSA planning method, k shortest path-based first-fit strategy has been discussed in Chapter

3, Algorithm 1. For RMSA defragmentation, two algorithms related to push-pull are introduced in

this chapter. Since additional costly transponders are needed by make-before-break fragmentation

[6], and reactive defragmentation is triggered as soon as a request is denied. In order to reduce the

defragmentation expenses, only Push-Pull defragmentation is presented in this chapter. For each

algorithm, we will present the idea of the scenario, pseudo-code, and running time complexity

analysis.

4.1 Introduction

In an online RMSA scenario, requests with different data rates are allocated and disconnected in a

quite random fashion. In the scenario without any defragmentation, spectral resources tend to be

highly fragmented because of the spectrum constraints [28]. In order to improve network fragmen-

tation and to grant more requests, in this chapter, we introduce reactive Push-Pull defragmentation

in online RMSA.

Reactive push-pull defragmentation is triggered when a new incoming request is denied. In or-

der to grant the request on a feasible spectrum allocation (which satisfies spectrum continuous and

29

contiguous constraints) with the minimum push-pull shifting delay, the following two problems

need to be investigated.

1. How to find a set of links which are able to make enough space for the denied request r under

RMSA scenario knowing that only push-pull can be used? Denote as RMSA-PP problem.

2. How to provision a request r (with a given routing path) using a minimal defragmentation delay

while using push-pull? Denote as SA-PP problem.

We formally state the problems as follows:

Problem 1 (RMSA-PP). Given an optical provisioning network, a set of provisioned requests

R, and a new request r with data rate, source SRCr and destination DSTr, is it possible to find a set

of links that have routes from source to destination with enough space for r (unknown modulation),

knowing that only push-pull can be used? (The algorithm is discussed in Section 4.2)

Problem 2 (SA-PP). Given an optical provisioning network, a set of provisioned requests R,

and a new incoming request r with slot demands dm
r , a modulation and routing path pr, is it possible

to assign spectrum interval to r, with minimum shifting delay, knowing that only push-pull can be

used? (The algorithm is discussed in Section 4.3)

4.2 Routing, Modulation and Spectrum Assignment with Push-

Pull (RMSA-PP)

Routing and Spectrum Assignment with push-pull (RSA-PP) was solved in [6]. The only differ-

ence between RMSA-PP and RSA-PP is that modulation in RSA-PP is fixed, in other words, slot

requirements in RSA-PP only depends on request data rates. In this chapter, we will modify the

RSA-PP algorithm in [6] and use it to solve RMSA-PP.

Algorithm 2 solves the RMSA-PP problem by finding the available links on each spectrum

allocation. The idea is as follows: Suppose r is a new incoming request from source SRCr to

destination DSTr with its data rate. Since the modulation is not set yet, the algorithm will try

all the modulation formats associated with request demands dm
r (slot demands of request r under

30

modulation m), the feasibility of the modulation m will be checked later (a feasible modulation

means that the length of the routing path matches the modulation distance requirements). For

each dm
r , there are at most S− dm

r + 1 absolute positions to allocate request r. For each absolute

position λ , we create a graph consisting of a set of links Lλ , each link ‘λ ∈ Lλ is able to make

enough space for request r by using push-pull defragmentation on spectrum allocation λ , we find

the shortest path from the source SRCr to the destination DSTr in the graph. And then, we choose

the shortest feasible path among the ones found for each λ , the feasible path means that the length

of the routing path is modulation m reachable. In the end, we choose the one with the shortest

geographical distance among the paths we found for each modulation.

The feasibility checking on each link ‘ is based on Lemma 1 and it has been proved in [6].

Suppose that a new request r is provisioned, r will partition the confliction set CS(r) into two

subsets: requests above r and requests below r. A partition (A,A0 gives the largest free interval

when we shift the requests that are above (i.e. A) to the ∇ state and those below (i.e., A0) to

∆ state). The widths of the position α = A,A0 before and after defragmentation are given by

w(α) = c(α)− f (α) and w?(α) = c?(α)− f ?(α). Therefore, in order to check if we can provision

request r at a position α = (A,A0) on link ‘, it is enough to check if w?(α)≥ dm
r .

In addition, the feasibility checking the non-confliction shiftings on an absolute position is

based on Lemma 2. It has been proved in [6] that if we can free a position λ on each of links ‘λ

in Lλ , i.e., freeing all frequency slots indexed in [λ ,λ +dm
r −1], then we can free this position on

Lλ using non-conflicting shiftings.

Lemma 1: Let r be a request of demand dr and path pr, |CS(pr)|= k and αi, where i ∈ 0, ...,k

are the corresponding decision-positions. Request r is provisionable over pr using push-pull, if

and only if there exists some i ∈ {0, ...,k}, such that ω?(αi)≥ dm
r

Lemma 2: If the absolute position λ can be freed for a request r with demand dm
r on a set of

links E, then there are valid non-conflicting relative positions on the links of E which can free λ

for r.

31

Algorithm 2: RMSA-PP(r, R, Mod) → pr, shortest available path selection
Input : Optical provisioning network, a set of modulation format Mod, the provisioned

request set R and a new incoming request r with its data rate, source SRCr and

destination DSTr

Output: Shortest available routing path for r

1 Sort Mod in the decreasing order of modulation level;

2 Initialize pr = /0;

3 for (m ∈ Mod) {

4 Set request slot requirements dm
r base on m;

5 for (‘ ∈ L) {

6 Sort provisioned requests which are using ‘ in the increasing order of b(r), denote

the sorting list as < r1,,rk >;

7 initialize e4 (r0) = 0; and b5(rk+1) = |S|;

8 for (λ ∈ S) {

9 for (i ∈ {0,1, ...,k}) {

10 if [λ ,λ +dm
r −1]⊆ [e4(ri),b5(ri+1)] then

11 color link ‘ with color λm and break;

12 Find the shortest mono-colored st-path p, (a monocolored path is a path whose links

share a color);

13 if the length of p is modulation m reachable then

14 modulation of r = m;

15 dr = dm
r ;

16 pr = p;

17 return pr;

Here is the algorithm explanation and running time complexity analysis:

Step 3 sorts all the modulations Mod. Step 4 assumes that r is using modulation m and the

slot demands is set based on m, the feasibility of m will be checked later. Step 5 selects all the

32

possible link ‘ in the optical provisioning network. Step 6 sorts all the requests using link ‘, the

running time for sorting is O(|R0| × log(|R0|)), where R0 is a set of requests using link ‘, in the

worst case, sorting operation invokes all the provisioned requests. Step 8 is a loop for checking

the feasibilities for spectrum allocations and the number of iterations is bounded by |S|. Step 9

checks all the possible relative positions in set R0. Step 10-11 check the feasibility of relative

locations according to Lemma 1. Step 12 finds the shortest path using Fredman’s alogorithm

[13], which takes O(L+N logN), where N and L are nodes and links in the provisioning network

respectively. Step 13 checks the feasibility of the modulation m, if the length of p is reachable for

the modulation distance requirements, then we set r’s modulation format as m, routing path as p

and return, otherwise, continue.

The worst time complexity for RMSA-PP is O(M(L(|R| log |R|+ |S||R|)+N logN + logM)).

where M is the number of modulations, N and L are the number of nodes and links in the optical

provisioning network, |S| is the link capacity and |R| is the number of the provisioned request.

In this thesis, modulation format only contains BPSK, QPSK, 8QAM and 16QAM, and the link

capacity S is a constant (400 slots), therefore, we can simplify the time complexity for RMSA-PP

as O(L|R| log |R|+N logN).

4.3 Spectrum Assignment with Push-Pull (SA-PP)

It has been proven in [33], that SA-PP can be solved in polynomial time. Authors of [6] proposed

an algorithm to find the spectrum allocation with the minimum delay on a given routing path. The

idea is as follows: In order to find a location with the minimum delay, we need to know how many

extra spaces are needed in a given partition α to grant r, and push-pull operation stops as soon as

the required rooms are freed.

Here is the analysis to calculate the delay of a given position in push-pull technique:

33

Figure 9: Push-pull delay calculation

As shown in Figure 9, suppose that the request demand is dr, given a partition α = (A,A0).

The original width of this partition is ω(α) = c(α)− f (α). When the push-pull is triggered,

we push A0 up and pull A down at the same time. Push-Pull operation stops if dr − ω(α) =

shi f ts(A)+shi f ts(A0), where shi f ts(A)= f (α)− f ?(α), shi f ts(A0)= c(α?)−c(α) and dr−ω(α)

is the extra needed spaces in order to grant r. The following 3 cases are considered, we define delay

of partition α as δ (α):

Case1 : If shi f ts(A) > shi f ts(A0), then δ (α) = shi f ts(A) and δ (α) = dr −ω(α)− shi f t(A0),

therefore, δ (α) = dr −ω(α)− (f (α)− f ?(α)).

Case2 : If shi f ts(A) < shi f ts(A0), then δ (α) = shi f t(A0). Therefore, δ (α) = dr − ω(α)−

(c?(α)− c(α)).

Case3 : If shi f t(A) = shi f t(A0). In this case δ (α) = dr −ω(α)−
j

dr−ω(α)
2

k
.

34

In summary, we can write the delay function as follows:

δ (α) = dr −ω(α)−min{ f (α)− f ?(α),c?(α)− c(α),
dr −ω(α)

2
}.

In order to allocate the request r with the minimum delay, let CS(r) be sorted as < r1,r2, ...,rk >

in the ascending order of the requests ending slots in the 4 state, (recalling that 4 state is to

shift requests down until they are blocked), i.e., e4(r1) ≤ e4(r2) ≤ ·· · ≤ e4(rk). The defined

decision-positions of r over path pr as the k + 1 positions αi such that α0 = (/0,r1, ...,rk) and

αi = (r1, ...,ri,ri+1, ...,rk), for i ∈ [0,k]. It has been proved in [33] that to decide if it is possible

to assign a spectrum set to r on path pr, it is sufficient to check the k+ 1 decision-positions αi,

i ∈ 0, ...,k.

Thanks to Lemma 1, to solve the SA-PP problem, the authors in [33] and [6] have designed

an algorithm which checks all of the decision-positions then chooses the one over which the new

request can be provisioned with minimum delay. The pseudo-code of the proposed algorithm is

presented in Algorithm 3.

35

Algorithm 3: SA-PP(r, R) → λ , spectrum allocation with the minimum delay
Input : Optical provisioning network, a set of provisioned requests R and a new incoming

request r with its demand dr and routing path pr

Output: Allocate spectrum to r on a spectrum domain with the minimum delay

1 Initializing λ = Null, β = /0 and δ = ∞

2 Find CS(r) the set of requests conflicting with r and sort it in the ascending order of e4.

Denote the sorted list as < r1,r2, ...,rk >. The corresponding decision-positions are

α0,α1, ...αn, such that αi = (Ai,A0
i)

3 for (i ∈ {0,1, ...n}) {

4 if ω∗ (αi)≥ dr then

5 Sort the requests in Ai in the descending order of e(x). The sorted list is

< x1,x2, ...,xi > and α
j

i = Ai \ x1,x2, ...,x j ∪ Ai, x1,x2, ...,x j where

j ∈ {1, ..., i−1} and α0
i = αi

6 for (j ∈ {0, ..., i−1}) {

7 if δ α
j

i < δ then

8 β = α
j

i and δ = δ α
j

i and λ = max(f (β)−δ , f ∗ (β))

Here is the algorithm explanation and running time complexity analysis:

Step 1 is a setting operation, where β is the desired position, initialized with NULL. Step 2 finds

the conflicting set of r, CS(r), and sorts it. Taking O(|R0| log |R0|) time complexity, where |R0| =

|CS(r)| and is bounded by |R|. Step 3 iterates the possible decision positions. In the worst case, this

step invokes all the provisioned requests. Step 4 calculates the largest spectrum interval according

to a partition αi. Step 5 sorts the requests below the partition, in the worst case, the time complexity

of this step is O(|R| log |R|). Step 6-8 checks all the feasible relative positions in order to find the

minimum delay, in the worst case, this step invokes all the provisioned requests.

Therefore, the overall time complexity of Algorithm 3 is O(|R|2 log |R|), where |R| is the num-

ber of the provisioned requests.

36

Chapter 5

Proactive Push-Pull and

Make-Before-Break Defragmentation

In this chapter, we focus on proactive defragmentation. It is performed periodically or according to

some fragmentation degradation thresholds in order to maintain spectral defragmentation at an ac-

ceptable level. In addition, proactive defragmentation is independent of request connection events

[27]. Since proactive defragmentation is performed periodically and push-pull defragmentation in-

troduces delays. In order to reduce the defragmentation delay, we will combine make-before-break

and push-pull in the proactive defragmentation. We will compare two proactive defragmentation

techniques, i.e., make-before-break (or MBB for short), and make-before-break combined with

push-pull (or MBBPP for short). We will then define them.

Proactive MBB. Given an optical provisioning network with a set of requests R, what is the most

efficient way to use Make-Before-Break in order to reduce the spectrum usage as much as possible?

See our proposal in Section 5.1.

Proactive MBBPP. Given an optical provisioning network with a set of provisioned requests R,

what is the most efficient way to use a combination of Push-Pull and Make-Before-Break in order

to reduce the spectrum usage as much as possible? See our proposal in Section 5.2.

37

In the sequel, we define spectrum usage in a provisioned network as follows:

SU = ∑
r∈R

∑
‘∈pr

w‘ dr,

where w‘ is the distance/length of link ‘ and dr is the slot demand of r.

5.1 Proactive Defragmentation with MBB

In this section, we discuss proactive defragmentation with make-before-break (MBB). The objec-

tive is to design an algorithm to re-configure provisioned requests with a reduced spectrum usage.

The idea is to grant requests on the shortest available routing path. A provisioned request that

uses a shorter route means that there is less spectrum usage [12]. In addition, a shorter routing

path may change the request modulation from a lower modulation level to a higher level one, and

a higher level of modulation means a higher spectrum efficiency. Spectrum efficiency is the ratio

of bit rate to available bandwidth, therefore, a higher level of spectrum efficiency reduces the slot

requirements to carry the same data rate requests, which has been discussed in Section 3.2.

Another concern that is addressed in this thesis, is the online RMSA environment, therefore,

the defragmentation algorithm needs to be simple and fast [27]. Therefore, the proposed algorithm

only considers those requests not using the shortest path and it is described in Algorithm 4.

38

Algorithm 4: MBB(R)→ R0, proactive defragmentation using only make-before-break
Input : An optical provisioning network with a set of requests R

Output: A new request provisioning R0 with a reduced spectrum usage

1 Initialize R0 = R;

2 Sort the requests of R0 in the decreasing order of their slot demands;

3 for (r ∈ R0 : r is not on its shortest possible path) {

4 KSHP = Set of k shortest paths of r from SRCr to DSTr;

5 for (p ∈ KSHP) {

6 if LENGTH(p)≥ LENGTH(pr) then

7 Go to step 3;

8 dtemp = slot demand based on a modulation m (m is the highest-level modulation

associated with routing path p’s distance);

9 for (s ∈ S) {

10 if [s,s+dtemp −1] is feasible on routing path p then

11 set pr = p; set b(r) = s;

12 set r’s modulation as m; set dr = dtemp;

13 Go to step 3;

14 Return R0

Here is the algorithm explanation and running time complexity analysis:

Step 2 sorts the provisioned requests R, takes O(|R| log |R|). Step 3 iterates all the provisioned

requests which are not routed on one of their shortest paths. Step 4 finds the k-shortest path using

Yen’s algorithm [38]. The running time for this algorithm is O(kN(L+N logN). Step 5 iterates

over all the candidate routing paths. Step 8 selects frequency slots according to a modulation

format. The highest-level modulation can be used on the selected path p. Step 9 loops over all

the set of frequency slots, O(|S|) time complexity. Step 10-14 check if spectrum allocation s is

available using the candidate routing path and slot demands. The time complexity of step 10 is

dependent on the size of the path and slot demands.

39

Therefore, the overall running time complexity is O(|R| log |R|+k|R|(NL+N2 logN + |S|2L)).

Since the link capacity S is a constant (400 slots) and k is a small integer, we choose k = 3 in the

thesis. Therefore, we simplify the time complexity as O(|R|(log |R|+NL+N2 logN))

5.2 Proactive Defragmentation with MBB and Push-Pull

In the previous section, we proposed a proactive defragmentation algorithm based on make-before-

break. However, only make-before-break does not always work as we will see in the following

example. As shown in Figure 10, a network topology has 4 nodes (A,B,C,D) and 4 arcs, i.e., A-B,

B-C, C-D, and D-A. r1 and r2 are 2 provisioned requests, where r1 is from node A to node C,

uses routing path A-B-C and is assigned slots 1 and 2; r2 is from node A to node C, uses routing

path A-D-C and is assigned slots 2 and 3. Make-Before-Break technique cannot reconfigure r1 on

routing paths A-D-C (if r2’s provisioning is not changed), which has a shorter routing distance,

because of the spectrum contiguity constraints.

In order to overcome such an issue, we combine the push-pull and make-before-break tech-

niques to improve the proactive defragmentation performance. Request r1 cannot be rerouted on

path A-D-C because of the spectrum constraints. In order to reroute r1 on a better routing path,

we trigger push-pull. As a result, r2 can be pulled down (or pushed up) and be assigned lower (or

higher) indexed slots using the push-pull technique. Figure 10(b) illustrates the network provision-

ing after defragmentation. Request r2 is re-assigned slots 1 and 2 using push-pull and request r1 is

rerouted on paths A-D-C and is re-assigned slots 3 and 4 using make-before-break.

40

(a) Before Defragmentation

(b) After Defragmnetation

Figure 10: MBBPP example

The idea is as follows: Consider the provisioned requests which are not provisioned on their

shortest path. Try Algorithm 4 to re-provision the requests which are not provisioned on the

shortest path. If only make-before-break cannot find a better provisioning (make-before-break with

no changing other provisioned requests), we trigger push-pull defragmentation, the routing path

selection uses RMSA-PP (Algorithm 2) and spectrum allocation selection uses SA-PP (Algorithm

3). The resulting algorithm is described in Algorithm 5.

41

Algorithm 5: MBBPP(R) → R0, Proactive defragmentation with make-before-break and

push-pull
Input : A provisioning network with a set of established requests R

Output: A new request provisioning R0, which has a reduced spectrum usage

1 Initialize R0 = R;

2 Sort R0 in decreasing order of request demands;

3 for (r ∈ R0 \{r0|r0 ∈ R0 & r0 on the shortest path }) {

4 pav = RMSA-PP(r, R0 \{r}, Mod);

5 KSHP = Find k shortest path from SRCr to DSTr;

6 for (p ∈ {p0|p0 ∈ KSHP & p0 < pav & p0 < pr}) {

7 dtemp = slot demand associated with p and a modulation m;

8 for (s ∈ S) {

9 if [s,s+dtemp −1] is feasible on routing path p then

10 set pr=p; set b(r)=s;

11 set r’s modulation as m;

12 Go to step 3;

13 if pav < pr then

14 λ = SA-PP (r, R0 \{r});

15 set pr=pav; set b(r)=λ ;

16 set r’s modulation which is obtained from RMSA-PP;

17 Return R0

Here is the algorithm explanation and running time complexity analysis:

Step 2 sorts the provisioned requests R, O(|R| log |R|). Step 3 iterates all the provisioned requests

which are not routed on one of their shortest paths. Step 4 finds the shortest available routing

path in provisioning network by using Algorithm 2 proposed in Chapter 4. Algorithm 2 takes

O(L|R| log |R|+N logN) time complexity. Step 5, finds the k shortest path using Yen’s algorithm

42

[38] and takes O(kN(L+N logN) computational complexity. Step 6-12, are the steps for make-

before-break technique. The length of the candidate routing paths are less than the original one

and the shortest available path pav. The loop has a time complexity of O(k|S|2L) ; Step 13-16, if

make-before-break is not able to reconfigure the request and the shortest available routing path is

less than the original one, use Algorithm 3 to get the spectrum allocation with the minimum delay.

The overall computation complexity is O(|R|(L|R| log |R|+N logN+kN(L+N logN)+k|S|2L+

|R|2 log |R|). As we have discussed in the previous section, the link capacity S is a constant and k is

a small integer. Therefore, in this thesis, the running time complexity is O(|R|(L|R| log |R|+NL+

N2 logN + |R|2 log |R|)).

43

Chapter 6

Numerical Results

This chapter mainly discusses the dynamic RMSA defragmentation on different topologies using

push-pull with various combinations of reactive and proactive strategies. Firstly, we will describe

the details of the data sets in Section 6.1.1, then, of the simulation environment, i.e., RMSA provi-

sioning strategies and defragmentation triggering events in Section 6.1.2. We conducted different

numerical analysis, which are reported in the remaining subsections.

6.1 Experiment Framework

6.1.1 Data Sets

Datasets are from SNDlib [21], Monarch Network Architects [20] and The Internet Topology

Zoo [17]. We run our simulations on 4 different topologies, namely USA (shown in Figure 11(a)),

Germany (shown in Figure 11(b)), CONUS (shown in Figure 11(c)) and NTT (shown in Figure

11(d)). The key characteristics of each topology (number of nodes and links, average node degrees)

are described in Table 1. The simulation runs on directed topologies.

44

Networks |V | |L| Avg.deg Di-Gragh

USA 24 88 3.7

True
Germany 50 176 3.5

CONUS 60 158 2.6

NTT 55 144 2.6

Table 1: Main characteristics of the networks

(a) USA [21]

(b) Germany [21]

45

(c) CONUS [20]

(d) NTT [17]

Figure 11: Network topologies

46

6.1.2 Defragmentation Strategies: Triggering Events

The spectrum for each link is slotted into 400 slots where each slot corresponds to a spectrum

interval of width 12.5 GHz. The simulation starts from a loaded optical network. The provisioning

sequence of requests arriving and departing is predefined, specifically, requests arrive and depart

in the network with a Poisson Distribution, P(k) = e−λ λ k

k!
, with λa = λd = 1, where λa is the

request arrival rate and λd is the request departure rate, which means that in a time unit, there is an

average of 1 request arriving and 1 request departing. For each topology, a total of at least 5×104

time units are simulated, according to network topology convergence statuses, the total simulated

time units are different. The source and destination are randomly selected between the nodes of the

network. Three types of request data rate are considered: 100 Gbps, 200 Gbps and 400 Gbps, all

the invoked data rates are equally distributed . The number of slots usage with different modulation

format and the data rate is given in the following Table 2. Recalling that proactive defragmentation

is triggered when network status reaches a predefined threshold, which is independent on request

connection events. The reactive defragmentation, on the other hand, is triggered when a request is

denied.

47

Data Rate (Gbps) Modulation #Slots Distance (km)

100

BPSK 8 >4000

QPSK 3 4000

8QAM 2 1200

16QAM 1 600

200

BPSK 16 >4000

QPSK 6 4000

8QAM 4 1200

16QAM 3 600

400

BPSK 32 >4000

QPSK 12 4000

8QAM 8 1200

16QAM 6 600

Table 2: Table of modulation

For each topology, we compared 6 different RMSA requests provisioning and defragmentation

strategies, we denote:

• FF: RMSA online provisioning strategy uses first-fit without any defragmentation.

• FFPP: RMSA online provisioning strategy uses first-fit with reactive push-pull and without

proactive defragmentation.

• FF MBB: RMSA online provisioning strategy uses first-fit and proactive defragmentation

uses only make-before-break.

• FFPP MBB: RMSA online provisioning strategy uses first-fit with reactive push-pull de-

fragmentation. Proactive defragmentation uses only make-before-break.

48

• FF MBBPP: RMSA online provisioning strategy uses first-fit and proactive defragmenta-

tion uses make-before-break with push-pull.

• FFPP MBBPP: RMSA online provisioning strategy uses first-fit and reactive push-pull de-

fragmentation. Proactive defragmentation uses make-before-break and push-pull.

In addition, we capture the following measurements in our simulations throughout this chapter:

• Overall Throughput (OTH), which equals the sum of the data rate in the provisioned requests

set , OTH = ∑
R
r rdr where R is the provisioned request set and rdr is the data rate of r.

• Blocking Ratio (BR), which equals to the ratio of the number of the blocked requests to the

recent 1000 arriving requests in the simulation, BR = num(D)/1000, where num(D) is the

number of denied requests in recent 1000 request arriving.

• For each proactive defragmentation, we capture the improved values of spectrum usage

4SU , where spectrum usage SU is defined as SU = ∑
r∈R

∑
‘∈pr

w‘ dr, where w‘ is the weight of

link ‘, pr is the routing path of request r and R is the provisioned request set. The improved

value 4SU is the difference of the spectrum usage before and after proactive defragmenta-

tion.

• We track the defragmentation delays in both reactive and proactive defragmentations. Specif-

ically, in reactive defragmentations, i.e., FFPP, FFPP MBB, and FFPP MBBPP scenarios,

we capture the minimum, maximum and average defragmentation delay, whereas, in proac-

tive push-pull defragmentations, namely FF MBBPP and FFPP MBBPP, we measure the

minimum, maximum and average summed delay. The summed delay is defined as the total

defragmentation delay in proactive defragmentations.

6.2 Impact of the Initial Solution

In this section, we discuss the impact of the initial network status. The initial network is generated

by the following strategy. Given a positive integer i, using the Algorithm 1 (proposed in Chapter

49

2) to feed the network, if requests are denied consecutively up to the given integer i, we stop

feeding and consider the network provisioning as the initial network provisioning. We choose one

particular RMSA strategy, i.e., FFPP MBBPP (we will see in the subsequent experiments that it is

one of the best) and set i equal to 10, 15, 20, 25 and 30 respectively, and we measure the impact of

the different initial network provisioning on the performance of the network overall throughput.

Figure 12 illustrates the impact of the different initial network provisioning on the overall

throughput. The X-axis represents the simulated time units and the Y-axis is the overall through-

put. As we can observe from figures below, in the same network topology, network throughputs

of different initial network provisioning converge at a similar level. Therefore, different initial

network provisioning do not have a significant influence on the RMSA provisioning and defrag-

mentation strategies discussed in this thesis.

However, a larger stopping condition value, i, has a higher bias on requests which are using long

routing hops. This is shown in Figure 13, which illustrates path distributions of each initial network

condition. The bar charts show the number of provisioned requests on different hops whereas the

line charts illustrate the cumulative percentage of path hops. We can observe from Figure 13, as

the stop condition value i increases, provisioning network tends to grant more requests (according

to cumulative percentage) use shorter hops.

In this thesis, we choose stop condition i = 10, since the network status will converge faster

compared with other stopping conditions and the provisioned request set has a lower hop bias.

50

(a) USA

(b) Germany

51

(c) CONUS

(d) NTT

Figure 12: Overall throughput performance under different initial network status

52

(a) USA

(b) Germany

53

(c) CONUS

(d) NTT

Figure 13: Path hop bias under different stopping conditions

54

6.3 Overview of the Various Defragmentation Strategies

In the previous section, we found that the initial network does not have a significant impact on

the performance of RMSA provisioning and defragmentation strategy. Therefore, we select the

initial network with stopping condition i=10, since it has a lower bias on longer hop requests and

converges faster.

We compare all the RMSA provisioning strategies, i.e., FF, FFPP, FF MBB, FF MBBPP,

FFPP MBB, FFPP MBBPP. Recalling that reactive push-pull defragmentation is triggered when a

new incoming request is denied, in this thesis, we design 2 proactive defragmentation triggering

policies, i.e., time-driven and throughput-driven. We define that time-driven proactive defragmen-

tation is triggered when the optical network reaches the predefined number of adding and dropping

sequences. The throughput-driven defragmentation policy, on the other hand, is triggered when

the overall throughput reaches the predefined percentage of decreases.

In this section, time-driven proactive defragmentation is triggered every 1000 request adding

and dropping sequence (denoted with suffix 1000) and throughput-driven proactive defragmen-

tation is triggered when the overall throughput has a 3% decrease (denoted with suffix d3). In

addition, in order to ’approximate the best performance of the proposed combinations of RMSA

provisioning and defragmentation strategies’, we use FFPP MBBPP strategy so that proactive de-

fragmentation can be triggered when the network throughput decreases by 1% (denoted with suffix

d1) in throughout-driven triggering policies. Moreover, in time-driven policies, we set the fre-

quency of defragmentation to be similar to the throughput-driven one, e.g., in Figure 14(a), we

have FFPP MBBPP 189, where the suffix 189 means that proactive defragmentation is triggered

every 189 adding and dropping sequences, and the number of the proactive defragmentation events

are similar to the frequency of throughput-driven policy.

Simulation results are shown in Figure 14. The X-axis represents the time units, which each

have an average of 1 request adding and 1 request dropping, and the Y-axis shows the network

overall throughput. As we can observe from Figure 14, both reactive and proactive push-pull

defragmentation have impacts on network overall throughput. Specifically, RMSA provisioning

55

strategies with reactive push-pull defragmentation have significant improvements on the network

throughput. In addition, in every plot in Figure 14, the RMSA strategies without proactive push-

pull defragmentation are FFPP and FF, and represent the lower bound for RSMA strategies with

and without reactive push-pull respectively. We use these 2 RMSA strategies to investigate the

impact of the reactive push-pull defragmentation, the details of which are discussed in Section 6.4.

For proactive push-pull defragmentation, it is obvious to see that RMSA strategies with proac-

tive defragmentation have better performance compared with those without proactive defragmen-

tation, e.g., FFPP MBB and FFPP, etc. Furthermore, under the same proactive defragmentation

triggering strategy, proactive defragmentation with push-pull have better performance compared

with those do not have push-pull, for example, FFPP MBB d3 and FFPP MBBPP d3. However,

different proactive defragmentation triggering strategies have different performances. In Section

6.5, we investigate 2 proactive defragmentation triggering strategies under similar push-pull trig-

gering events.

56

(a) USA

(b) Germany

57

(c) CONUS

(d) NTT

Figure 14: Comparison of all RMSA planning and defragmentation strategies

58

6.4 Impact of Reactive Push-Pull Defragmentation

In this section, we comment on the results of reactive push-pull defragmentation in depth. As

we can observe from Figure 14, RMSA strategies with reactive push-pull defragmentation have

at least 1.5 times overall throughput compared with those without reactive push-pull defragmen-

tation. Therefore, reactive push-pull defragmentation has significant improvements on network

throughput.

Figure 15 illustrates the blocking ratio of FF and FFPP in every 1000 request adding events.

The X-axis represents nth 1000 adding events and the Y-axis shows the number of the blocked

requests. The blue and green bar represents the number of blocked requests in every 1000 adding

events of FF and FFPP respectively. As we can observe from Figure 15, the measured values are

different on different network topologies. However, as time goes by, the number of denied requests

for both FF and FFPP decreases since the overall throughput in each topology also decreases,

making the network less loaded. Reactive push-pull defragmentation reduces the number of denied

requests, especially when the network is heavily loaded.

According to the experiment results, we find that push-pull in reactive defragmentation has a

quite good performance in terms of improving network throughput and reducing the number of

blocked requests.

59

(a) USA

(b) Germany

60

(c) CONUS

(d) NTT

Figure 15: Blocking ratio comparison between FF and FFPP

61

6.5 Impact of Proactive Push-Pull Defragmentation

In this section, we will discuss the impact of proactive push-pull defragmentation. Since proac-

tive defragmentation is performed periodically and is independent on request connection events, a

proper triggering policy is essential and necessary to be investigated [23].

We designed two different proactive defragmentation triggering strategies, i.e., time-driven

and throughput-driven, and for each strategy, we tested several triggering thresholds. For the time-

driven strategy, we tried to do proactive defragmentation every 500, 1000, 1,500 to 2,000 request

adding and dropping sequence respectively. For the throughput-driven strategy, proactive defrag-

mentation is performed if the network throughput decreased by 3%, 4%, and 5% respectively.

6.5.1 Proactive Push-Pull with Different Triggering Strategies

We compare proactive defragmentation with different triggering strategies. The results showing

in each table cell are represented by a tuple. The 1st element in the tuple represents the number

of proactive defragmentations triggered based on the predefined triggering policy. In order to

measure the impact of the defragmentation, we capture the spectrum usage improvements, denoted

as 4SU , which equal to the difference between SU before and SU after defragmentation, that is,

SU = ∑
r∈R

∑
‘∈pr

w‘ dr. The 2nd value in the tuple represents 4SU .

In addition, the 1st column in each table represents different proactive triggering strategies,

for example, 500 means that the proactive defragmentation is triggered every 500 request adding

and dropping sequences, d3 means that proactive defragmentation is triggered when the network

throughput decreased by 3%, and so on and so forth. Every throughput-driven strategy d1 is as-

sociated with a time-driven strategy. The corresponding time-driven strategy has a similar number

of proactive defragmentation events and is shown in the 2nd line in each table, e.g., 189 in USA

topology and 325 in Germany topology, etc. Both triggering strategies are used to approximate the

upper bound of the added value of proactive defragmentation. Results are recorded from Table 3

to Table 6.

62

FF MBB FF MBBPP FFPP MBB FFPP MBBPP

189 (292, 132609.07)

500 (110, 141012.47) (110, 314463.27) (110, 111314.66) (110, 314571.80)

1000 (55, 224954.74) (55, 502862.28) (55, 191014.40) (55, 540505.00)

1500 (37, 269967.69) (37, 603503.07) (37, 242515.12) (37, 686919.10)

2000 (28, 300600.17) (28, 641728.10) (28, 281157.75) (28, 765879.48)

d1 (290, 128079.85)

d3 (176, 92499.03) (130, 254403.61) (68, 157717.94) (54, 530051.55)

d4 (105, 137174.29) (81, 367482.93) (44, 207546.70) (39, 626016.31)

d5 (70, 181872.33) (60, 444639.29) (29, 257910.16) (28, 696354.50)

Table 3: Added value of proactive push-pull in the USA topology

FF MBB FF MBBPP FFPP MBB FFPP MBBPP

325 (219, 4380.39)

500 (142, 2278.43) (142, 5729.31) (142, 2469.25) (142, 6472.09)

1000 (71, 3854.41) (71, 9862.87) (71, 4468.16) (71, 11787.21)

1500 (46, 4949.43) (46, 12474.84) (46, 5970.27) (46, 16062.18)

2000 (35, 5644.37) (35, 14588.54) (35 7211.52) (35, 19468.75)

d1 (220, 4171.55)

d3 (154, 1957.41) (99, 7063.46) (47, 5401.83) (38, 17489.28)

d4 (80, 3084.68) (62, 9854.52) (27, 7393.33) (23, 21865.45)

d5 (62, 3613.94) (42, 11635.40) (20, 8780.23) (18, 24045.02)

Table 4: Added value of proactive push-pull in the Germany topology

63

FF MBB FF MBBPP FFPP MBB FFPP MBBPP

103 (776, 59954.78)

500 (159, 105505.28) (159, 220904.67) (159, 105162.95) (159, 250784.46)

1000 (79, 143368.14) (79, 291228.07) (79, 159850.77) (79, 392253.57)

1500 (52, 149454.27) (52, 291194.12) (52, 189157.07) (52, 452778.96)

2000 (39, 151339.35) (39, 308015.27) (39, 201288.54) (39, 472598.58)

d1 (775, 59284.17)

d3 (747, 30667.92) (528, 83318.23) (188, 86605.41) (161, 227882.56)

d4 (429, 47568.62) (291, 131945.83) (125, 115938.81) (103, 300305.81)

d5 (294, 62700.74) (233, 150115.87) (77, 145322.91) (76, 357070.62)

Table 5: Added value of proactive push-pull in the CONUS topology

FF MBB FF MBBPP FFPP MBB FFPP MBBPP

126 (1100, 1140.98)

500 (260, 1007.77) (260, 2886.44) (260, 1618.01) (260, 4024.25)

1000 (130, 1526.50) (130, 3898.19) (130, 2654.06) (130, 6729.80)

1500 (87, 1488.14) (87, 4015.28) (87, 3281.79) (87, 8365.99)

2000 (65, 1482.28) (65, 4013.03) (65, 3680.36) (65, 9356.70)

d1 (1108, 1086.13)

d3 (1873, 176.64) (1062, 899.13) (259, 1508.79) (189, 4676.17)

d4 (1317, 211.79) (765, 1128.93) (156, 2083.66) (128, 5796.40)

d5 (794, 440.11) (506, 1451.87) (107, 2600.52) (95, 6287.08)

Table 6: Added value of proactive push-pull in the NTT topology

According to the results from the tables above. We can summarize as follows: In through-

put driven strategies, proactive defragmentation with push-pull always have less triggering events

64

(i.e, FF MBB v.s FF MBBPP or FFPP MBB v.s FFPP MBBPP). It is easy to understand since

proactive defragmentation with push-pull has higher average spectrum improvements and the net-

work work has more free spectrum allocations to grant upcoming requests. Moreover, if we

decrease the number of proactive defragmentation events, we always get a higher 4SU , which

means that proactive defragmentation does have improvements in spectrum usage. However, 4SU

does not keep increasing with the number of triggering events decreasing, e.g., FF MBB (1500)

and FF MBB (2000). Most importantly, if we compare time-driven methods with throughput-

driven methods under a similar number of proactive events, for example, FFPP MBBPP (1000) v.s

FFPP MBBPP (d3) in USA topology, FFPP MBB (1500) v.s FFPP MBB (d3) in Germany topol-

ogy, FFPP MBBPP (500) v.s FFPP MBBPP (d3) in CONUS topology and FFPP MBBPP (1000)

v.s FFPP MBBPP (d4) in NTT topology, etc, we can see that time-driven strategies always have

a better performance in terms of spectrum usage improvements, which can be explained by the

fact that throughput-driven strategies trigger some ’unnecessary’ or ’inefficient’ defragmentation

events, which we will discuss in the following subsection.

6.5.2 Time Driven vs. Throughput Driven Triggering

In the previous section, we find that the time-driven strategy always has a better 4SU compared

with throughput-driven strategy under a similar number of proactive defragmentation triggering

events. In this section, we will discuss the overall throughput performance of two defragmen-

tation triggering strategies. Figure 16 shows the comparison between the time-driven proactive

defragmentation strategy and the throughput-driven proactive defragmentation strategy. For each

network topology, we choose 3 pairs of RMSA strategies to compare.

In the USA topology, we compare FFPP MBBPP (189, with 292 proactive defragmentations)

with FFPP MBBPP (d1, with 290 proactive defragmentations), FFPP MBBPP (1000, with 55

proactive defragmentations) with FFPP MBBPP (d3, with 54 proactive defragmentations) and

FFPP MBB (2000, with 28 proactive defragmentations) with FFPP MBB (d5, with 29 proactive

defragmentations). Results are shown in Figure 16(a).

65

In the Germany topology, we compare FFPP MBBPP (325, with 219 proactive defragmenta-

tions) with FFPP MBBPP (d1, with 220 proactive defragmentations), FFPP MBBPP (2000, with

35 proactive defragmentations) with FFPP MBBPP (d3, with 38 proactive defragmentations) with

FFPP MBB (1500, with 46 proactive defragmentations) with FFPP MBB (d3, with 47 proactive

defragmentations). Results are shown in Figure 16(b).

For the CONUS topology, we compare FFPP MBBPP (103, with 776 proactive defragmenta-

tions) with FFPP MBBPP (d1, with 775 proactive defragmentations), FFPP MBBPP (500, with

159 proactive defragmentations) with FFPP MBBPP (d3, with 161 proactive defragmentations)

and FFPP MBB (1000, with 79 proactive defragmentations) with FFPP MBB (d5, with 77 proac-

tive defragmentations). Results are shown in Figure 16(c).

In terms of the NTT topology, we compare FFPP MBBPP (126, with 1100 proactive de-

fragmentations) with FFPP MBBPP (d1, with 1108 proactive defragmentations), FFPP MBBPP

(1000, with 130 proactive defragmentations) with FFPP MBBPP (d4, with 128 proactive defrag-

mentations) and FFPP MBB (500, with 260 proactive defragmentations) with FFPP MBB (d3,

with 259 proactive defragmentations). Results are shown in Figure 16(d).

As we can observe from Figure 16, throughput-driven method always have better defragmen-

tation performance when the provisioning network is heavily loaded. It is easy to understand

since throughput-driven strategies are based on the network status. In the beginning, the network

is heavily loaded and hard to grant new requests, therefore, throughput-driven strategy triggers

more defragmentations compared with the time-driven strategy. However, as time goes by, we

can observe that the time-driven method always has better throughput performance. This can be

explained by the fact that the throughput-driven method triggers some inefficient defragmentations

when the network status becomes stable.

66

(a) USA

(b) Germany

67

(c) CONUS

(d) NTT

Figure 16: Comparison of network throughput performance between time-driven and throughput-

driven strategies

68

6.6 Push-Pull Delay

In the previous sections, we discussed the added values of reactive and proactive push-pull de-

fragmentation. However, delays are associated with push-pull. In this section, we will discuss

defragmentation delays in reactive and proactive defragmentations.

6.6.1 Reactive Push-Pull Delay

In this section, we capture the delay of the reactive push-pull defragmentation. Results are recorded

from Table 7 to Table 10. We record the results into triples: the 1st and 2nd elements are the

minimum and the maximum delay of push-pull during the request adding and dropping sequence

and the 3rd element represents the average delay. The minimum delay for all the topology is 1

shifting distance, whereas the maximum delays are various.

For the USA topology, the reactive push-pulll delays are shown in Table 7, the maximum

delays are between 16 and 26, this is because of the maximum request demands in USA topology

is 32 frequency slots (request with 400 Gbps using a routing path which distance longer than 4000

km, Table 2), therefore, push-pull needs more shifting distance in order to grant those requests,

and average delays in USA topology are between 7.32 and 7.66. Reactive push-pull delays of

Germany topology are shown in Table 8, the maximum delays are between 4 and 7, and the average

delays are between 2.42 and 2.71. Delays in Germany are less than in the USA since requests in

Germany always use shorter routing paths associated with higher level modulation formats. Results

of CONUS topology are shown in Table 9, which are similar to the results of USA, the maximum

delays vary from 16 to 18 shifting distances and average delays vary from 8.20 to 8.37. For the

NTT topology, because of the modulation, request demands in NTT are not as large as the other

topologies: the maximum shifting distance is 4, and the average delays vary from 1.52 to 1.80. We

can summarize the reactive push-pull delay as follows:

The RMSA strategies with proactive defragmentation always have larger delay values, in ad-

dition, proactive defragmentations with push-pull tend to have larger delays since RMSA strate-

gies with proactive push-pull defragmentation always have larger network throughput and more

69

provisioned requests. Moreover, reactive push-pull delay under same RMSA strategy depends on

proactive defragmentation frequency, RMSA strategies with more proactive defragmentations tend

to have larger delays. Furthermore, the proactive triggering strategy does not have a significant im-

pact on average delays under the same RMSA strategy. Reactive push-pull delays vary on different

network topologies, a network with longer paths tends to have larger delays since a long routing

path may use lower-level modulation and higher slot requirements.

FFPP FFPP MBB FFPP MBBPP

(min delay, max delay, average delay)

189

(1, 16, 7.32)

(1, 20, 7.66)

500 (1, 17, 7.41) (1, 23, 7.60)

1000 (1, 14, 7.39) (1, 19, 7.60)

1500 (1, 22, 7.38) (1, 25, 7.53)

2000 (1, 19, 7.37) (1, 23, 7.50)

d1 (1, 25, 7.65)

d3 (1,20, 7.38) (1, 26, 7.57)

d4 (1, 18, 7.38) (1, 18, 7.53)

d5 (1, 16, 7.36) (1, 16, 7.48)

Table 7: Reactive delay in USA

70

FFPP FFPP MBB FFPP MBBPP

(min delay, max delay, average delay)

325

(1, 6, 2.42)

(1, 5, 2.71)

500 (1, 4, 2.52) (1, 6, 2.69)

1000 (1,7, 2.50) (1,7, 2.67)

1500 (1, 6, 2.49) (1, 4, 2.67)

2000 (1, 4, 2.47) (1, 4, 2.66)

d1 (1, 5, 2.68)

d3 (1, 4, 2.47) (1, 5, 2.65)

d4 (1, 4, 2.45) (1, 4, 2.63)

d5 (1, 4, 2.45) (1, 4, 2.63)

Table 8: Reactive delay in Germany

FFPP FFPP MBB FFPP MBBPP

(min delay, max delay, average delay)

103

(1, 16, 8.20)

(1, 18, 8.37)

500 (1, 16, 8.27) (1, 17, 8.36)

1000 (1, 16, 8.26) (1, 16, 8.35)

1500 (1, 16, 8.26) (1, 16, 8.33)

2000 (1, 15, 8.26) (1, 15, 8.33)

d1 (1, 18, 8.36)

d3 (1, 16, 8.26) (1, 16, 8.34)

d4 (1, 16, 8.25) (1, 16, 8.33)

d5 (1, 16, 8.24) (1, 16, 8.33)

Table 9: Reactive delay in CONUS

71

FFPP FFPP MBB FFPP MBBPP

(min delay, max delay, average delay)

126

(1, 3, 1.52)

(1, 4, 1.80)

500 (1, 3, 1.64) (1, 4, 1.78)

1000 (1, 3, 1.63) (1, 3, 1.77)

1500 (1, 3, 1.59) (1, 3, 1.75)

2000 (1, 3, 1.58) (1, 3, 1.75)

d1 (1, 4, 1.79)

d3 (1, 3, 1.57) (1, 4, 1.75)

d4 (1, 3, 1.55) (1, 4, 1.73)

d5 (1, 3, 1.55) (1, 3, 1.70)

Table 10: Reactive delay in NTT

6.6.2 Proactive Push-Pull Delay

In this section, we discuss the proactive delay of push-pull. Results are shown from Table 11 to

Table 14. Results are recorded into triples: the 1st element represents the minimum sum delays,

maximum sum delays are shown by the 2nd element and the average sum delays are shown in the

3rd positions. The sum delay is defined as

∆ j =
n

∑
i

δ
j

i

where n is the number of triggered push-pull defragmeantion in jth proactive defragmentation.

72

FF MBBPP FFPP MBBPP

(min sum delay, max sum delay, Avg sum delay)

189 (42, 578, 263.23)

500 (25, 288, 115.47) (168, 668, 394.53)

1000 (32, 345, 135.78) (162, 592. 409.41)

1500 (20, 212, 119.58) (255, 587. 408.27)

2000 (18, 292, 111.33) (254, 534, 396.00)

d1 (16, 579, 282.67)

d3 (2, 338, 79.53) (88, 589, 356.00)

d4 (8, 367, 109.34) (133, 607, 341.69)

d5 (10, 399, 106.69) (88, 490, 337.18)

Table 11: Proactive delay in USA

FF MBBPP FFPP MBBPP

(min sum delay, max sum delay, Avg sum delay)

189 (2, 279, 44.13)

500 (2, 177, 32.56) (3, 276, 58.08)

1000 (1, 216, 38.55) (12, 357, 108.75)

1500 (2, 272, 48.00) (22, 352, 123.25)

2000 (4, 260, 48.91) (18, 343, 150.35)

d1 (2, 306, 46.06)

d3 (3, 286, 44.60) (17, 307, 156.25)

d4 (4, 239, 59.00) (3, 313, 196.00)

d5 (3, 256, 56.00) (16, 318, 198.50)

Table 12: Proactive delay in Germany

73

FF MBBPP FFPP MBBPP

(min sum delay, max sum delay, Avg sum delay)

103 (1, 295, 112.21)

500 (1, 222, 76.82) (5, 303, 190.08)

1000 (3, 203, 82.10) (5, 293, 250.94)

1500 (2, 239, 94.43) (17, 409, 258.81)

2000 (13, 211, 114.40) (28, 461, 286.64)

d1 (1, 292, 94.61)

d3 (1, 215, 34.23) (7, 369. 168.00)

d4 (1, 251, 36.36) (1, 404, 182.10)

d5 (3, 228, 49.76) (1, 452, 219.91)

Table 13: Proactive delay in CONUS

FF MBBPP FFPP MBBPP

(min sum delay, max sum delay, Avg sum delay)

126 (1, 103, 24.34)

500 (1, 99, 24.26) (1, 166, 38,86)

1000 (7, 57, 30.86) (1, 153, 46.88)

1500 (7, 75, 33.8) (2, 184, 52.53)

2000 (15, 109, 42.71) (2, 129, 50.96)

d1 (1, 185, 25.96)

d3 (2, 86, 31.06) (1, 135, 39.65)

d4 (3, 53, 31.30) (7, 128, 46.91)

d5 (5, 105, 38.10) (1, 123, 44.48)

Table 14: Proactive delay in NTT

74

As we observe from the tables above, FFPP MBBPP has larger delays compared with FF MBBPP

under the same proactive defragmentation frequency. It is easy to understand since FFPP MBBPP

always has a larger set of provisioned requests and the proactive defragmentation process involves

more requests in order to reconfigure a request by using push-pull. Therefore, the minimum, max-

imum and average sum delays are relatively larger. In addition, just like the delays of reactive

push-pull, proactive push-pull delays vary on different network topologies; a network with longer

paths tends to have larger sum delays because of the modulation formats.

75

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have studied online RMSA with push-pull in both proactive and reactive defrag-

mentation under several RMSA request provisioning and defragmentation strategies.

Simulation results show that the RMSA provisioning strategy with reactive push-pull defrag-

mentation has a significant improvement in terms of network throughput and request blocking

ratio. On the other hand, proactive defragmentation has shown significant improvements in terms

of spectrum usage. Moreover, proactive defragmentation with push-pull always has fewer trig-

gering events and better network throughput performances compared with the strategies without

push-pull. If the networking is not heavily provisioned, only make-before-break proactive de-

fragmentation is a better option since it will not introduce defragmentation delays. Therefore,

reactive push-pull defragmentation can be used to improve network throughput whereas proac-

tive defragmentation can be used to maintain network throughput at an acceptable level. In addi-

tion, throughput-driven proactive defragmentation has a better performance in terms of network

throughput when the network is heavily loaded, whereas time-driven proactive defragmentation

is a better option when the network status becomes stable. We also captured delays in reactive

and proactive push-pull, and results show that delays in the same network topology are similar but

76

vary in different network topologies. Therefore, delays in both proactive and reactive push-pull de-

pend on the modulation and network characteristics. Furthermore, in the same network topology,

both reactive and proactive push-pull delays depend on the network throughput and the number of

granted requests.

7.2 Contributions

• We evaluated reactive and proactive push-pull defragmentation in an online RMSA environ-

ment.

• We investigated different combinations of RMSA request provisioning and defragmentation

strategies. A better combination option depends on the network topology characteristics and

network status.

• We proposed a cheap and easy proactive push-pull defragmentation with rerouting scenario.

• The simulation is based on a large directed and weighted network topology and modulations

are also taken into account

7.3 Future Work

Future research directions for the problem of online RMSA with push-pull might focus on the three

following axes.

• Optimizing another criterion instead of the delay in push-pull spectrum location selection.

This criterion might be the total number of requests shifted in order to empty space for the

new arriving request or the number of the granted requests involved in this defragmentation

process.

• Considering investigating the other parameters for triggering proactive defragmentation, e.g.,

blocking ratio, number of granted requests, etc.

77

• Working on designing an ILP model under current online RMSA provisioning and defrag-

mentation environment and comparing the current results with the optimal solutions.

78

References

[1] R. Almeida, R. Delgado, C. J. Bastos-Filho, D. Chaves, H. A. Pereira, and J. Martins-Filho.

An evolutionary spectrum assignment algorithm for elastic optical networks. In ICTON,

pages 1–3. IEEE, 2013.

[2] B. Chatterjee, N. Sarma, and E. Oki. Routing and spectrum allocation in elastic optical

networks: a tutorial. IEEE Communications Surveys & Tutorials, 17(3):1776–1800, 2015.

[3] B. C. Chatterjee, N. Sarma, and E. Oki. Routing and spectrum allocation in elastic optical

networks: A tutorial. IEEE Communications Surveys & Tutorials, 17(3):1776–1800, 2015.

[4] K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos. Routing and spectrum allocation in

ofdm-based optical networks with elastic bandwidth allocation. In GLOBECOM, pages 1–6,

2010.

[5] K. Christodoulopoulos, I. Tomkos, and E. Varvarigos. Elastic bandwidth allocation in flexible

OFDM-based optical networks. Journal of Lightwave Technology, 29(9):1354 – 1366, May

2011.

[6] D. Coudert, B. Jaumard, and F. Moataz. Dynamic routing and spectrum assignment with

non-disruptive defragmentation. In 16èmes Rencontres Francophones sur les Aspects Algo-

rithmiques des Télécommunications, pages 1–4, 2014.

[7] F. Cugini, M. Secondini, N. Sambo, G. Bottari, G. Bruno, P. Iovanna, and P. Castoldi. Push-

pull technique for defragmentation in flexible optical networks. In NFOEC, pages 1–3, 2012.

79

[8] F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi, N. Sambo, L. Poti,

and P. Castoldi. Push-pull defragmentation without traffic disruption in flexible grid optical

networks. Journal of Lightwave Technology, 31(1):125–133, 2013.

[9] A. Eira, J. Pedro, D. Fonseca, F. J. Arribas, J. Fernandez-Palacios, I. L. Polo, D. Schmuhl,

S. Spaelter, D. Marzo, and M. Bohn. Defragmentation of fixed/flexible grid optical networks.

In FNMS, pages 1–10, 2013.

[10] J. Enoch and B. Jaumard. Towards optimal and scalable solution for routing and spectrum

allocation. In International Network Optimization Conference - INOC, pages 1–8, 2017.

[11] J. Enoch and B. Jaumard. Towards optimal and scalable solution for routing and spectrum

allocation. Electronic Notes in Discrete Mathematics (ENDM), 64C:335–344, 2018.

[12] S. Fernández-Martı́nez, B. Barán, and D. P. Pinto-Roa. Spectrum defragmentation algorithms

in elastic optical networks. Optical Switching and Networking, 34:10–22, 2019.

[13] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-

mization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[14] D. Hunter and D. Marcenac. Dynamic routing, rearrangement, and defragmentation in wdm

ring networks. In Optical Fiber Communication Conference, pages 168–170, 2000.

[15] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano. Distance-

adaptive spectrum resource allocation in spectrum-sliced elastic optical path network. IEEE

Communications Magazine, 48(8):138–145, 2010.

[16] M. Klinkowski and K. Walkowiak. Routing and spectrum assignment in spectrum sliced

elastic optical path network. Communications Letters, 15(8):884–886, 2011.

[17] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet topology

zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–1775, 2011.

80

[18] S. F. Martı́nez and D. P. Pinto-Roa. Performance evaluation of non-hitless spectrum defrag-

mentation algorithms in elastic optical networks. In CLEI, pages 1–8. IEEE, 2017.

[19] D. Moniz, A. Eira, A. de Sousa, and J. Pires. On the comparative efficiency of non-disruptive

defragmentation techniques in flexible-grid optical networks. Optical Switching and Net-

working, 25:149–159, 2017.

[20] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable Network

Design Library. In Proceedings of the 3rd International Network Optimization, 2007.

[21] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable Network

Design Library. In Proceedings of the 3rd International Network Optimization Conference,

2007.

[22] A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang. Survivable transparent flexible optical WDM

(FWDM) networks. In OFC, pages 1–3. Optical Society of America, 2011.

[23] M. Presi, M. Rannello, M. Artiglia, I. Tomkos, I. Cano, J. Prat, and E. Ciaramella. Hitless

wavelength assignment in filterless optical access networks. In ICTON, pages 1–4, 2016.

[24] R. Proietti, C. Qin, B. Guan, Y. Yin, R. P. Scott, R. Yu, and S. Yoo. Rapid and complete

hitless defragmentation method using a coherent RX LO with fast wavelength tracking in

elastic optical networks. Optics express, 20(24):26958–26968, 2012.

[25] T. Takagi, H. Hasegawa, K. Sato, Y. Sone, A. Hirano, and M. Jinno. Disruption minimized

spectrum defragmentation in elastic optical path networks that adopt distance adaptive mod-

ulation. In ECOC, pages 1–2, 2011.

[26] T. Takagi, H. Hasegawa, K.-i. Sato, Y. Sone, B. Kozicki, A. Hirano, and M. Jinno. Dynamic

routing and frequency slot assignment for elastic optical path networks that adopt distance

adaptive modulation. In OFC, pages 1–3. IEEE, 2011.

81

[27] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Salama, and G. N. Rouskas. Spectrum manage-

ment techniques for elastic optical networks: A survey. Optical Switching and Networking,

13:34–48, 2014.

[28] I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou. A tutorial on

the flexible optical networking paradigm: State of the art, trends, and research challenges.

Proceedings of the IEEE, 102(9):1317–1337, 2014.

[29] X. Wan, L. Wang, N. Hua, H. Zhang, and X. Zheng. Dynamic routing and spectrum assign-

ment in flexible optical path networks. In OSA, pages 1–3, 2011.

[30] X. Wan, N. Hua, and X. Zheng. Dynamic routing and spectrum assignment in spectrum-

flexible transparent optical networks. Journal of Optical Communications and Networking,

4(8):603–613, 2012.

[31] R. Wang and B. Mukherjee. Spectrum management in heterogeneous bandwidth networks.

In GLOBECOM, pages 2907–2911, 2012.

[32] R. Wang and B. Mukherjee. Provisioning in elastic optical networks with non-disruptive

defragmentation. In Conference on Optical Network Design and Modeling - ONDM, pages

1–6, December 2013.

[33] R. Wang and B. Mukherjee. Provisioning in elastic optical networks with non-disruptive

defragmentation. Journal of Lightwave Technology, 31(15):2491–2500, 2013.

[34] X. Wang, Q. Zhang, I. Kim, P. Palacharla, and M. Sekiya. Blocking performance in dynamic

flexible grid optical networks-what is the ideal spectrum granularity? In ECOC, pages 1–2,

2011.

[35] Y. Wang, X. Cao, and Q. Hu. Routing and spectrum allocation in spectrum-sliced elastic

optical path networks. In ICC, pages 1–5, 2011.

82

[36] Y. Wang, J. Zhang, Y. Zhao, J. Wang, and W. Gu. Routing and spectrum assignment by

means of ant colony optimization in flexible bandwidth networks. In OFC/NFOEC, pages

1–3, 2012.

[37] S. Yang and F. Kuipers. Impairment-aware routing in translucent spectrum-sliced elastic

optical path networks. In EuCNOC, pages 1–6, 2012.

[38] J. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11):

712–716, 1971.

[39] Y. Yu, J. Zhang, Y. Zhao, X. Cao, X. Lin, and W. Gu. The first single-link exact model for

performance analysis of flexible grid wdm networks. In OSA, pages 1–3, 2013.

[40] G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee. A survey on ofdm-based elastic

core optical networking. IEEE Communications Surveys & Tutorials, 15(1):65–87, 2013.

[41] M. Zhang, W. Shi, L. Gong, W. Lu, and Z. Zhu. Bandwidth defragmentation in dynamic

elastic optical networks with minimum traffic disruptions. In ICC, pages 3894–3898, 2013.

[42] M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. B. Yoo. Spectrum defragmentation algo-

rithms for elastic optical networks using hitless spectrum retuning techniques. In OFC, pages

OW3A–4, 2013.

[43] M. Zhang, C. You, H. Jiang, and Z. Zhu. Dynamic and adaptive bandwidth defragmentation

in spectrum-sliced elastic optical networks with time-varying traffic. Journal of Lightwave

Technology, 32(5):1014–1023, 2014.

83

	Introduction
	General Background and Motivation
	Introduction to Elastic Optical Networks
	Introduction to EON Provisioning
	Introduction to EON Defragmentation

	Dynamic RMSA Defragmentation
	Contributions of the Thesis
	Organization of the Thesis

	Literature Review
	EON Provisioning Strategies
	Offline R(M)SA
	Dynamic R(M)SA

	EON Defragmentation Strategies
	Non-hitless Defragmentation
	Hitless Defragmentation

	Defragmentation in Elastic Optical Networks
	Elastic Optical Networks
	Elastic Optical Network Modulation
	Elastic Optical Network Provisioning
	Elastic Optical Network Defragmentation
	Generalities
	Push-Pull Defragmentation

	Problem Statement

	Reactive Push-Pull Defragmentation
	Introduction
	Routing, Modulation and Spectrum Assignment with Push-Pull (RMSA-PP)
	Spectrum Assignment with Push-Pull (SA-PP)

	Proactive Push-Pull and Make-Before-Break Defragmentation
	Proactive Defragmentation with MBB
	Proactive Defragmentation with MBB and Push-Pull

	Numerical Results
	Experiment Framework
	Data Sets
	Defragmentation Strategies: Triggering Events

	Impact of the Initial Solution
	Overview of the Various Defragmentation Strategies
	Impact of Reactive Push-Pull Defragmentation
	Impact of Proactive Push-Pull Defragmentation
	Proactive Push-Pull with Different Triggering Strategies
	Time Driven vs. Throughput Driven Triggering

	Push-Pull Delay
	Reactive Push-Pull Delay
	Proactive Push-Pull Delay

	Conclusions and Future Work
	Conclusions
	Contributions
	Future Work

	References

