
Model-Driven Machine Learning for Predictive Cloud

Auto-scaling

Hanieh Alipour

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

May 2019

c Hanieh Alipour, 2019

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Hanieh Alipour

Entitled: Model-Driven Machine Learning for Predictive Cloud Auto-scaling

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Nikolaos Tsantalis

External Examiner

Dr. Dorina Petriu

Examiner

Dr. Olga Ormandjieva

Examiner

Dr. Juergen Rilling

Examiner

Dr. Ferhat Khendek

Supervisor

Dr. Yan Liu

Approved
Dr. Mustafa K. Mehmet Ali, Graduate Program Director

May 2019

Dr. Amir Asif, Dean Faculty of Engineering and Com-

puter Science

Abstract

Model-Driven Machine Learning for Predictive Cloud Auto-

scaling

Hanieh Alipour, Ph.D.

Concordia University, 2019

Cloud provisioning of resources requires continuous monitoring and

analysis of the workload on virtual computing resources. However,

cloud providers offer the rule-based and schedule-based auto-scaling

service. Auto-scaling is a cloud system that reacts to real-time metrics

and adjusts service instances based on predefined scaling policies. The

challenge of this reactive approach to auto-scaling is to cope with fluc-

tuating load changes. For data management applications, the workload

is changing and needs forecasting on historical trends and integrating

with auto-scaling service. We aim to discover changes and patterns on

multi metrics of resource usages of CPU, memory, and networking. To

address this problem, the learning-and-inference based prediction has

been adopted to predict the needs prior to provision action.

First, we develop a novel machine learning-based auto-scaling pro-

cess that covers the technique of learning multiple metrics for cloud

auto-scaling decision. This technique is used for continuous model

training and workload forecasting. Furthermore, the result of work-

load forecasting triggers the auto-scaling process automatically. Also,

we build the serverless functions of this machine learning-based process,

iii

including monitoring, machine learning, model selection, scheduling as

microservices and orchestrating these independent services by platform,

language orthogonal APIs. We demonstrate this architectural imple-

mentation on AWS and Microsoft Azure, and show the prediction re-

sults from machine learning on-the-fly. Results show significant cost

reductions by our proposed solution compared to a general threshold-

based auto-scaling.

Still, there is a need to integrate the machine learning prediction

with the auto-scaling system. So, the deployment effort of devising

additional machine learning components is increased. So, we present

a model-driven framework that defines first-class entities to represent

machine learning algorithm types, inputs, outputs, parameters, and

evaluation scores. We set up rules for validating machine learning en-

tities. The connection between the machine learning and auto-scaling

system is presented by two levels of abstraction models, namely cloud

platform independent model and cloud platform specific model. We au-

tomate the model-to-model transformation and model-to-deployment

transformation. We integrate model-driven with a DevOps approach

to make models deployable and executable on a target cloud platform.

We demonstrate our method with scaling configuration and deployment

of two open source benchmark applications - Dell DVD store and Netflix

(NDBench) on three cloud platforms, AWS, Azure, and Rackspace. The

evaluation shows our inference-based auto-scaling with model-driven

reduces approximately 27% of deployment effort compared to the ordi-

nary auto-scaling.

iv

Acknowledgments

First, and foremost, I am grateful to my Ph.D. supervisor Dr. Yan Liu for her

guidance, support, patience, and encouragement. She is the dedicated, professional

and caring advisor. Thank you.

I thankfully acknowledge my Ph.D. committee members, Dr. Ferhat Khendek,

Dr. Olga Ormandjieva and Dr. Juergen Rilling for their time, effort and constructive

comments. I would also like to extend my appreciation to the external examiner Dr.

Dorina Petriu for accepting to serve in my Ph.D. thesis committee.

I thank my ex-colleagues in SAP company for their help, cooperation, and encour-

agements. Special thanks to Pierre-luc Orsini for his companionship, support, ideas,

and fruitful discussions.

My very special thanks to Zahra Asadi and Pantea Koochemeshkian, my best

friends. You were always there with me through the toughest moments. Your friendly

advice, your soothing words, and your big heart helped me face all the obstacles and

continue with my work. I am truly lucky to count you amongst my friends.

Also, I am forever indebted to my family for their encouragement, continuous

support, love and encourage. My sincere thanks go to my mother Aseah, my dad

Mohammad and my brother Hessam. Without you, this thesis would not have been

possible. There are no words that can express my gratitude and love for you.

Last but not least, I owe a special thanks to my love and my best friend, Pierre

Yves Lambert. I love you for being so understanding and for putting up with me

through the toughest moments of my life. Thanks for being extremely supportive

throughout this entire process. In addition, I thank Dr. Yves Lambert and Therese

Baribeau for their kindness and support.

v

Table of Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Problem statement . 1

1.2 Research Questions . 5

1.3 Contributions . 5

1.4 Structure of the thesis . 7

2 Related Work 8

2.1 Microservice Architecture . 8

2.2 Machine Learning Service . 10

2.3 Auto-scaling service in Cloud Computing 13

2.4 Measurement . 15

2.5 Model-driven Software Development (MDD) 16

2.6 DevOps . 17

2.7 Evaluation methods . 18

2.8 Summary . 18

3 Integrating Machine Learning with Auto-scaling 20

3.1 Multiple Metrics Analysis . 20

3.2 Machine Learning Models . 23

3.2.1 Model Selection Method . 26

3.3 Architecture Design for Forecasting based Auto-scaling Process . . . 27

3.3.1 Original Auto-scaling process 27

vi

3.3.2 Forecasting based Auto-scaling Process 29

3.3.3 Microservice Design . 30

3.3.4 API Design . 31

3.3.5 Schedule-based Controller Service 32

3.4 Evaluation of Integrating Machine Learning with Auto-scaling 33

3.4.1 Demonstration Application . 34

3.4.2 Deployment Components on AWS and Azure 35

3.4.3 Tuning the Parameters of Machine Learning Algorithms . . . 38

3.4.4 Evaluation Results . 41

3.4.5 Resource Provision and De-provision 43

3.4.6 Cost Estimation . 46

3.5 Summary . 48

4 Model-Driven Architecture 50

4.1 Model Driven Approach . 50

4.2 Cloud Platform Independent Model 51

4.2.1 Machine Learning Abstraction 51

4.2.2 Machine Learning Meta Model 53

4.2.3 Auto-scaling Process Abstraction 57

4.2.4 Auto-scaling System Meta Model 58

4.2.5 The Predictive Auto-scaling System 60

4.2.6 The Predictive Auto-scaling System Cloud Independent Model 60

4.3 Cloud Platform Specific Model . 62

4.3.1 CPSM for Machine Learning Model 63

4.3.2 Constraints and Rules . 67

4.4 Model Validation . 68

4.5 Model Transformation . 70

4.6 Deployment Phase . 72

4.6.1 How to create machine learning environment? 73

4.6.2 How to deploy machine learning codes on the environment? . 75

4.6.3 Architecture Deployment on Microsoft Azure 76

4.6.4 Architecture Deployment on Microsoft AWS 81

4.7 Run-time Phase . 85

4.8 Summary . 85

vii

5 Evaluation 87

5.1 Evaluation Metric (CMP) . 87

5.2 Evaluation Scenarios . 92

5.3 CMP Results . 93

5.4 Summary . 96

6 Conclusion and Publications 103

6.1 Threats to Validity . 103

6.2 Future Work . 104

6.3 Conclusion . 105

6.4 Publication . 105

viii

List of Figures

1 Deployment of (a) the monolithic architecture and (b) the microservice

architecture on AWS [67] . 9

2 A container-based microservice architecture of OpenStack. (a) Open-

Stack deployment, (b) Service registration and discovery in microser-

vice architecture [44] . 10

3 System Architecture for applying machine learning on multi-tier web

application on AWS [21] . 11

4 Architectural overview of a predictive auto-scaling system [54] 12

5 Overview of the Resource Optimization, Allocation and Recommenda-

tion System (ROAR) [62] . 14

6 MODAClouds approach [25] . 17

7 Sample of multi metrics workload generated on cloud environment . . 22

8 Final result of the Weighted Metrics with Aggregation (WMA) Fti . . 23

9 Illustrations for basic LSTM [13] . 24

10 Illustrations for basic Bidirectional LSTM [4] 25

11 Original Auto-scaling Process . 28

12 An Inference-based Forecasting for Auto-scaling Process 31

13 Continuous Training and Inference Phases 32

14 DVD store architecture . 34

15 The NDBench Cluster with a Cassandra Cluster 36

16 Deployment Architecture for AWS . 37

17 Deployment Architecture for Azure 39

18 The prediction result of machine learning algorithms for Dell DVD store 42

19 The prediction result of machine learning algorithms on AWS and

Azure for NDBench . 43

ix

20 The prediction result of machine learning algorithms (VAR, LSTM,

BI-LSTM, LR, SVR, GBR) for NDBench and DVD store 44

21 Resource Provision and De-provision on AWS and Azure NDBench . 45

22 Resource Provision and De-provision on AWS for Dell DVD store . . 46

23 Model Transformation in the Life-cycle of Auto-scaling 51

24 An Example of the Machine Learning Environment Commonality . . 53

25 Meta-model of Machine Learning Model 55

26 Predictive Auto-scaling System based on Monitor-Analyze-Plan-Execute

(MAPE) loop . 58

27 Cloud Platform Independent Model for Auto-scaling System 59

28 Predictive Auto-scaling System based on Monitor-Analyze-Plan-Execute

(MAPE) loop . 60

29 Cloud Platform Independent Model of Integrated Machine Learning

with Auto-scaling Service . 61

30 Adding model objects to CPSM . 64

31 An example of creating CPSM from CPIM 65

32 Example of Cloud Platform Specific Model for Machine Learning In-

stance (SVR Algorithm) . 65

33 Example of Cloud Platform Specific Model for Machine Learning In-

stance (LSTM Algorithm) . 66

34 Example of EVL rules to validate CPSM 69

35 The machine learning meta-model rule in modeling language format . 69

36 The EGL template for generation code from EMF models 71

37 The EGL rule for generating JSON file 71

38 The EGX driver for launch Packer . 72

39 Sequence of Actions for Generating CPSMs and Deployment Scripts

for Machine Learning Environment and Models 74

40 Example of JSON template for creating an machine learning image . 75

41 Example of XML template for a machine learning algorithm 76

42 Example of YAML template for cloning code from GitHub [11] 77

43 Architecture Deployment on Microsoft Azure 77

44 Grafana Plug-in a on Azure Instance 78

45 Azure Blob Storage files . 79

x

46 The example of Ansible Auto-scaling group for Azure 81

47 CloudFormation Template for Creating AWS Lambda 81

48 Architecture Deployment on Microsoft AWS 82

49 The Ansible Auto-scaling group for AWS 84

50 Example of Cloud Platform Specific Model for Controller 84

51 The CMP Result for the Manual Threshold-based Auto-scaling Ser-

vice, and Proposed Model-driven Method Deployment Procedure With-

out Machine Learning . 95

52 The CMP result for the Machine Learning, the Threshold based Auto-

scaling service, and Proposed model-driven Method Deployment Pro-

cedure . 95

xi

List of Tables

1 Category of Auto-scaling Deployment Automation Method in Service

Level and Auto-scaling System Level 10

2 Notations for Algorithm 1 . 28

3 Example of REST APIs . 32

4 AWS configuration of each node for Dell DVD store application . . . 35

5 AWS and Azure configuration of NDBench node 36

6 Tuning SVR parameters on Azure . 39

7 Tuning SVR parameters on AWS . 40

8 Performance metrics results LR on Azure 40

9 Performance metrics results LR on AWS 40

10 Tuning GBR parameters on Azure 40

11 Tuning GBR parameters on AWS . 41

12 Hardware Specification of Machine Learning instances on AWS and

Azure . 41

13 Training and prediction times for machine learning algorithms for Dell

DVD store on AWS only . 42

14 Training and prediction times for machine learning algorithms on AWS

and Azure for NDBench . 43

15 Score Results for NDBench on AWS 44

16 Score Results for DVD Store on AWS 44

17 The Run-time Cost Comparison for Applications on Multi-Clouds for

Duration of 1 hour . 47

18 The Type of Costs for Cloud Services 47

19 Example of Machine Learning Algorithms for Workload Forecasting . 54

20 Notations for Constraints and Rules 67

21 Ansible Terms . 73

xii

22 Hardware Specification of Machine Learning instances on AWS and

Azure . 80

23 Complexity Evaluation for Each Installation and Configuration Task . 89

24 Weight Evaluation for Each Installation and Configuration Task . . . 89

25 Complexity Evaluation for Each Storage and Database Task 90

26 Weight Evaluation for Each Storage and Database Task 90

27 Complexity Evaluation for Each Template Changes Task 91

28 Weight Evaluation for Each Template Changes Task 92

29 Manual procedure of auto-scaling data nodes 93

30 For Scenario 1, deployment effort differences for the manual proce-

dure for the threshold-based auto-scaling system on AWS, Azure and

Rackspace are represented. For Scenario 2, we calculate CMP for

the manual deployment procedure for the threshold-based auto-scaling

system, and our model-driven method to deploy the auto-scaling sys-

tem without machine learning. 94

31 For Scenario 3, CMP results for the model-driven deployment proce-

dure for the auto-scaling system, and the predictive auto-scaling system

for DVD store on AWS. 95

32 For Scenario 4, CMP results for the manual deployment proce-

dure for machine learning service, manual deployment process of the

threshold-based auto-scaling system, and our model-driven method to

deploy the predictive auto-scaling system are represented. 96

33 Notation for CMP Calculation . 96

34 Manual Threshold-based Auto-scaling Deployment Actions for AWS . 97

35 Manual Threshold-based Auto-scaling Deployment Actions for Azure 97

36 MDD Auto-scaling Deployment Actions on AWS 98

37 MDD Auto-scaling Deployment Actions on Rackspace 98

38 Manual Machine Learning Deployment Actions for AWS 99

39 Manual Machine Learning Deployment Actions for Azure 100

40 MDD ML Auto-scaling Deployment Actions on AWS 101

41 MDD ML Auto-scaling Deployment Actions on Azure 102

xiii

Chapter 1

Introduction

Cloud computing offers many benefits including elastic resource allocation that en-

ables automated and fast deployment of services. A key value of resource elasticity is

allowing the provisioning and de-provisioning of computing resources on demand, via

auto-scaling [24]. We have three different auto-scaling approaches on cloud environ-

ment [49]: The first approach is reactive, and it reacts to changes in the system state.

It utilizes a threshold-based mechanism. The defined scaling policies adjust the num-

ber of instances, within the minimum and maximum number of instances. Second,

the proactive or scheduled-based approach allows to scale the application resources

based on the known load that will appear in future. It allows clients to pre-define a

schedule where they proactively scale a system at certain points of time. For example,

the service or application is heavily used on boxing day or black Friday and less used

on other days. Third, the predictive approach predicts usage of the application in the

future and thus changes done accordingly. This approach is suitable for environments

with unplanned load spikes and fluctuated workload. While auto-scaling has shown

considerable benefits of cloud computing, it still has remaining issues to solve.

1.1 Problem statement

Reactive and Proactive rather than Predictive approach: The current auto-

scaling systems are reactive, and proactive rather than predictive [33], [50]. The

reactive auto-scaling checks heuristic rules such as schedule-based, event-triggered

or threshold value-based to determine whether it is necessary to perform scaling

1

actions. The heuristic rules involve a set of metrics of varies types and kinds, including

system level, service level and application level metrics. This means that the decisions

of auto-scaling actions are multi-modal. Heuristic rules lack of the adaptivity to

combined effects and correlations among entities and metrics involved in the auto-

scaling process.

We need to forecast future demand by taking into account the workload history.

Having made a determination and prediction, the scaling engine proceeds to make

a decision concerning an alternative plan because of this unexpected situation. It

forecasts future demand for sustained performance despite workload fluctuations. So,

we need to study the behavior of demand from workload history. There is no process

that includes different cloud-based services such as a monitoring service, several ma-

chine learning models, model selection and prediction in order to analyze and deter-

mine the behavior of the systems under various workloads and capacity contractions.

Meanwhile, we need to design an architecture where the machine learning service is

composed of a set of cloud services rather than being implemented as a monolithic en-

tity. The challenge is to benefit complex cloud services by enabling each independent

service to be designed, implemented, scaled, upgraded independently.

Auto-scaling policy is mostly based on a single metric: The auto-scaling

policy is mostly based on a single metric, including CPU or Memory usage. The

group of metrics together define the behavior of the system, so scaling action based

on a single metric is not sufficient. A monitoring service helps an existing auto-

scaling by setting alarms to capture the workload changes and sends an alarm when

there is an increase in workload to the auto-scaling service. In addition, some cloud

providers offer the ability to define multi policies. This means a policy is defined

for each metric if you need to consider the effect of several metrics. However, each

policy will be defined separately and cannot demonstrate the relationship between

metrics. Hence learning-and-inference based approach brings a novel approach to the

auto-scaling system to act based on the prediction results learn from multiple metrics

as the workload features.

In order to have accurate forecasting for auto-scaling, there is a need to train

our models based on the multi metrics. To calculate a mix metrics effect, we need

to check the dependency and weight between metrics before training our workload.

There are also some important limitations that need to be considered for training the

2

multi metrics workload with the help of a machine learning approach. For instance,

when we have multi metrics, each metric may have a different effect on the behavior

of the system. Multi-metrics learning is challenging because we need to find the

relationship between metrics. So, we need to calculate the mix metric effect because

it is difficult to exploit potential dependencies among the target variables and show

the relationship between the different target variables.

How to integrate machine learning with auto-scaling process: Machine

Learning is the subject that studies methods for automatically deriving models from

data, and it has been successfully applied in many areas of software engineering

and cloud computing. A machine learning process includes training and inference

phases. Training refers to the process of fitting a machine learning model by optimal

model parameters from the sampling data. Inference refers to the process of running

a trained model to make predictions. For both training and inference, there are

common entities: (1) inputs, (2) outputs, (3) parameters, and (4) assessment metrics.

A machine learning model requires a set of inputs and outputs. The inputs are divided

into two parts: training dataset and testing dataset. Outputs are a set of data that

is being predicted by the trained model. For example, in cloud services inputs can

be low-level CPU, memory or network usage or higher-level kinds of data tied to

the services or applications, such as requests served per second. For data of distinct

categories that are non-numerical, data are first encoded into a numerical form by

feature engineering techniques. Hence, in our work, we consider input and output are

numeric data and time series type. Parameters include hyper-parameters and model

parameters. Hyper-parameters are configuration variables that typically searched by

greedy algorithms. To check the accuracy training and inference results, assessment

metrics are necessary. The assessment metrics are also used for the model selection

that is a process to select a suitable model from a set of candidate models. The value

of assessment metrics is also numerical applied.

The machine learning techniques need to be combined with the auto-scaling pro-

cess in order to scale, based on the prediction results. Integrating machine learning

components with the auto-scaling system requires substantial numbers of manual

tasks. In a nutshell, entities are in different scales and characters. The integration

of machine learning and auto-scaling should plug-and-play different machine models

in a uniform way rather than model-by-model. To support a wide range of machine

3

learning models, we need to generalize the common entities and represent them at an

abstract level.

How to automate the process across cloud platforms: The life-cycle of the

auto-scaling system includes five common parts: the auto-scaling group, the monitor,

the scaling policy, the scaling engine, and the launch configuration [46]. Machine

learning service also includes several components: monitoring, data and model stor-

age, machine learning algorithms, validation, and model selection. Integrating ma-

chine learning components with the auto-scaling system requires substantial numbers

of manual tasks. There is a need to automate the machine learning integration process

and reduce deployment effort. In addition, current auto-scaling approaches that are

offered by cloud providers typically require an expert to manually configure the added

resources for Cloud-based data management applications such as Dell DVD store

database [22], [57] and Cassandra database cluster [5] because auto-scaling services

only create and add the new instance to the auto-scaling group without re-configuring

the cluster. Manually configuring resources may increase the system downtime. For

example, for Cassandra dataset cluster [6], if we add a new instance we need to

reconfigure the cluster and change some configuration files include Cassandra.yaml.

Also, models should be transformed into deployment entities to help reduce de-

ployment effort. Otherwise, models remained at the design phase and isolated from

the rest of the life-cycle of the machine learning process. There is a need to auto-

mate the machine learning integration process and reduce deployment effort. The

goal is to hide the complexities of using different technologies from developers who

are responsible for managing the cloud environment. In other words, the deployment

effort is based on the effort required to tackle the considerable complexities arising

from the use of different cloud technologies and services. Moreover, minimizing ef-

fort is extremely important in practice since deploying and configuring cloud services

can be expensive. There is a need to reduce the gap between problem domains and

service implementation with technologies that support the efficient transformation of

the abstract model to service implementations.

4

1.2 Research Questions

To tackle these problems, a Model Driven Engineering (MDE) approach has been

adopted to build a Cloud platform independent and Cloud specific platform models.

In this approach, the models drive the process of machine learning and auto-scaling

system. These models are specified at different levels of abstraction and automated

tools are used for model-to-model, model-to-deployment and deployment-to-run-time

transformations between the levels. Our approach aims to provide answers for four

research questions.

• RQ1. How to design an architecture solution to orchestrate the machine learning

process?

• RQ2. Does representing machine learning models help an auto-scaling system?

• RQ3. How to integrate the machine learning with the auto-scaling system?

• RQ4. How to evaluate the effectiveness of the proposed approach?

1.3 Contributions

• We introduce a new solution in order to train a model based on multi-metrics.

We use a weighting approach based on Shannon information entropy, which

expresses the relative intensities of metrics importance to signify the average

intrinsic information transmitted to the decision maker. Then, we apply a mi-

croservice approach to orchestrate the machine learning process for auto-scaling.

Microservices are fully decoupled by means of well-defined and explicitly pub-

lished interfaces. A microservices approach provides the opportunity and flex-

ibility to use different technologies and different programming languages. In

addition, services are communicating with each other using language-agnostic

APIs. With the help of our proposed microservice process, we create and train

machine learning models, and publish them as web services. One of the advan-

tages of making the machine learning functions a microservice is the training

and inference execution can be managed independently. Machine learning algo-

rithms and strategies can be changed without impacting the other services. We

calculate the run-time cost for our proposed solution and compare it with the

5

cost of the general process to demonstrate the improvement. For implemented

applications, our solution is saving approximately 2$ for one hour (RQ 1).

• We propose a meta-model to represent the common entities of a machine learn-

ing process. Hence, a specific machine learning model becomes an instance of

the machine learning meta-model. We propose a high-level abstraction for mod-

eling the features of the machine learning such as machine learning algorithm

types, inputs, outputs, parameters, and evaluation scores. Furthermore, we pro-

pose a new data type metric to meet the machine learning requirements. Then,

we integrate a machine learning meta-model with the auto-scaling meta model

and introduce the predictive auto-scaling model. A Model Driven Engineering

(MDE) approach has been adopted to build a cloud platform independent and

Cloud specific platform models. These models are specified at different levels

of abstraction. We design the CPIM and the CPSM which they are focused on

the predictive auto-scaling system (RQ 2).

• We develop a method to integrate the model-driven solution with a DevOps

approach. DevOps is an emerging paradigm to actively foster the collaboration

between system developers and operations in order to enable efficient end-to-

end automation. DevOps is typically combined with cloud computing, which

allows rapid, on-demand provisioning of underlying resources such as virtual

servers, storage, or database instances using APIs in a self-service manner. The

goal is to bring together the strengths of DevOps and model-driven approach in

order to minimize the effort. So, models are transformed into scripts of DevOps

tools. Hence, the deployment, configuration, and trigger of cloud services are

carried out by DevOps tools. Thus, the result of this integration facilitates the

deployment actions and make the proposed models deployable and executable

on the target cloud platform (RQ 3).

• We designed a test scenario for estimating the effort of the predictive auto-

scaling model on two Cloud platforms. Based on the evaluation result, we ob-

serve the reduced effort using our model-driven method. The evaluation shows

our inference-based auto-scaling with model-driven reduces approximately 27%

of deployment effort compared to the ordinary auto-scaling (RQ 4).

6

In a nutshell, we categorize our research work in two groups: Scientific and De-

velopment contributions.

Scientific Contributions:

• Propose a new solution in order to train a model based on multi-metrics.

• Propose a meta-model to represent the common entities of a machine learning

process.

• Integrate a machine learning meta model with the auto-scaling meta-model and

introduce the predictive auto-scaling model.

Development Contributions:

• Apply the microservice approach to orchestrating and managing the machine

learning process for auto-scaling.

• Employ the DevOps approach to facilitates the deployment actions and make

the predictive auto-scaling models deployable and executable on the target cloud

platform.

1.4 Structure of the thesis

The rest of the thesis is organized as follows:

Chapter 2 presents the state of the art related to machine learning, auto-scaling,

model-driven development and DevOps that will explain the concepts and ideas rel-

evant to this research.

Chapter 3 present the proposed architecture based on a microservice approach

for orchestrating and integrating machine learning service and auto-scaling in Cloud.

It also includes a new solution to train a model based on multi-metric at system-level.

Chapter 4 describes the proposed new modeling approach for machine learning

service in Cloud computing. demonstrates how we integrate our proposed solution

with the auto-scaling process. It also includes CPIM, CPSM, and interaction of

DevOps and Model-driven approach.

Chapter 5 describes the experiments and evaluation of the approach.

Chapter 6 concludes the thesis by highlighting our contributions.

7

Chapter 2

Related Work

In this chapter, we will discuss the works from the literature that are closely related

to each of the thesis contributions. We first discuss and analyze the works related to

the microservice architecture and the machine learning service. After that, we review

the works related to the model-driven approach and the auto-scaling cloud service.

2.1 Microservice Architecture

Microservices are fully decoupled by means of well-defined and explicitly published

interfaces. A microservices approach provides the opportunity and flexibility to use

different technologies and different programming languages. In addition, services

are communicating with each other using language-agnostic APIs. With the help

of our proposed microservice process, we create and train machine learning models,

and publish them as web services. There are several advantages in merging micro-

service architecture with the cloud. Villamizar et al. [67] evaluate micro-services on a

cloud and report the performance difference between monolithic services and micro-

services. They compare the performance metrics and cloud operation cost between

two architectures. The monolithic and microservice architectures were deployed as it

is shown in Figure 1.

They identified some of the benefits and challenges that microservice architectures

provide to businesses. One of the benefits of using microservices is the ability to

publish a large application as a set of small applications (microservices) that can be

developed, deployed, scaled, operated and monitored independently. The agility, cost

8

Figure 1: Deployment of (a) the monolithic architecture and (b) the microservice
architecture on AWS [67]

reduction and granular scalability, brings some challenges of distributed systems.

Their paper [68] presents detailed performance and cost comparison of traditional

clouds with microservices and the AWS Lambda serverless architecture. An enterprise

application was benchmarked, and results show that serverless infrastructures can

reduce cost without impacting performance. In our work, we deployed our proposed

architecture on two different cloud environments: Azure and AWS and demonstrated

how the workload cost is reduced by proposed microservice architecture.

The work in [44] proposes a microservice architecture for dynamic service regis-

tration and discovery. This paper uses OpenStack as a case study and their work

illustrates the advantages of containerizing cloud infrastructure services and com-

bining with a microservice style architecture. They identified three main challenges

to improving operational efficiency: (1) minimize cross-configuration of services, (2)

maintain a state of running services, and (3) provide safe access to host resources. Our

work leverages lambda serverless functions to form microservices. These microservices

are the facades of machine learning modules running on the cloud platforms. Figure 2

shows the container-based microservice architecture on OpenStack.

This [63] paper focusing on micro-service monitoring and proposing an architec-

ture by integrating management functions into the micro-services. In this paper,

they proposed an architecture that enables scalable and resilient self-management of

micro-services applications on the cloud.

9

Figure 2: A container-based microservice architecture of OpenStack. (a) OpenStack
deployment, (b) Service registration and discovery in microservice architecture [44]

Table 1: Category of Auto-scaling Deployment Automation Method in Service Level
and Auto-scaling System Level

Platform
Automation
With ML With Model-Driven

Service Level [28] [61] [36] [62] [25] [59] [34] [71] [30]
Autoscaling System Level [61] [37] [38] [36] [66] [51]

2.2 Machine Learning Service

The auto-scaling system has received a great interest both within the service and the

system level. Studies related to our work fall into two categories for automating the

deployment of auto-scaling. The solutions proposed for automation can be classified in

”With ML (machine learning)” and ”With Model-Driven”. Table 1 lists the platform

levels and automation with machine learning and model-driven, and references of

work.

Machine learning techniques in resource prediction are applied to dynamically

build the model of resource consumption under a specific workload. Samuel et al. [21]

present methods for predicting resource utilization and provisioning strategies, to

improve performance and respect SLAs. They compared three different machine

learning algorithms for random-like workload traffic pattern: Support Vector Regres-

sion (SVR), Neural Networks (NN) and Linear Regression (LR). They used WEKA

for training and testing the three machine learning techniques. However, their fo-

cus is only on calculating the performance of algorithms and they just used AWS

10

Figure 3: System Architecture for applying machine learning on multi-tier web ap-
plication on AWS [21]

environment for evaluating their work (Figure 3).

They [42] present a method for learning appropriate application- and workload-

specific resource provisioning policies. With the help of access log and unsupervised

machine learning algorithm, they identified the parameters of workload patterns for

multi-tier Web applications. The approach provides resource allocation policies for

each workload.

Roy et al. [55] combined an ARMA model for workload forecasting, with the look-

ahead controller in order to optimize the resource allocation problem. They use a

second order ARMA for workload prediction, based on the last three observations.

The predicted value is then used to estimate the response time. In [54] machine

learning techniques, such as Support Vector Machine (SVM) and Neural Networks

(NN), were utilized as time-series prediction techniques to model different workload

patterns. SVM algorithm which is based on the structural minimization and the

ANN algorithm which uses the empirical minimization principle was used. As shown

in Figure 4, Monitor, Predictor, and Decision Maker are the main components of a

predictive auto-scaling system. To capture the current performance of cloud comput-

ing environment, auto-scaling systems monitor one or more performance metric(s).

Their result shows ANN has better accuracy in forecasting the unpredictable work-

load. In addition, Mehran et al. [46] reviewed existing auto-scaling techniques for

popular cloud providers. Then, they modeled core features and entities of the auto-

scaling operations. Furthermore, the model allows a proactive analysis of workload

11

Figure 4: Architectural overview of a predictive auto-scaling system [54]

patterns and estimation of the responsiveness of the auto-scaling operations. They

used Google cluster trace data to evaluate their work.

Multi-target learning has rapidly attracted interest in the machine learning liter-

ature, Tsoumakas et al. [65] presents a method for multi-target regression that con-

structs new target variables by the help of random linear target combinations. They

also discussed how their work can connect to the multi-label classification algorithms.

Furthermore, they tested their approach on 12 multi-metrics datasets. However, in

our solution, we have s single continuous target instead of multiple continuous tar-

gets based on the set of input variables. This work [20] introduced FIRE (Fitted

rule ensembles), an algorithm for learning rule-based ensembles for multi-target re-

gression problems. They tried to improve the accuracy of the algorithm by adding

simple linear functions to the ensemble. The goal is having a solution that can learn

multi-target models. Still, the weight calculation for metric is missing in this work.

In addition, Kocev at al. [47] represented the advantage of multi-target over a single-

target modeling approach. In their work, they compared single-target approach (a

regression tree) with multi-target approach (a multi-target regression tree) for mod-

eling their data. Variables in dataset are described by multiple scores. To model the

multiple scores, they used two approaches: single-target and multi-target regression.

With single target regression, they learn a model for each score separately, while

with the multi-target regression, we learn one model for all scores. In the meantime,

our dataset contains system-level metrics and we need define first the weight of each

metrics before apply machine learning algorithm.

12

There have been a number of works on dynamic resource provisioning on Cloud

computing environment. Gujarati et al. [40] introduced a new distributed approach

for auto-scaling called Swayam. Their approach is working on resource efficiency and

SLA compliance for ML inference services in a distributed setting. They try to provide

an appropriate number of service instances by predicting load, creating new instances

as needed, and removing unnecessary instances. Their work is based on single metric,

while we are working on multiple metrics. Also, we proposed microservice process for

machine learning service to decouple the services. Wajahat et al. [70] introduces an

application-agnostic machine learning based autoscaler called MLscale. They used

neural network for online (black-box) performance modeler and they also presented

a regression-based metrics predictor to estimate post-scaling application and system

metrics. They are working on single metric, but we consider multi metrics and scaling

based on multi-metrics. We present microservice process for workload prediction, so

any service can change independently. However, their work is implemented as a simple

controller in Python using a few hundred lines of code.

Gandhi et al. [30] proposed ADARES, an adaptive system that dynamically tunes

resources of VMs. They used the contextual bandits framework with transfer learning

to optimize configurations of VMs in a cluster, and exploits cluster, node and VM-level

information to promote efficient resource utilization across VMs. However, their work

applied on a single metric and they didnt focusing on modeling auto-scaling system.

The key component of their solution [37] is the modeling engine that characterizes the

workload and then quantitatively evaluates different scaling options for that workload.

Their modeling engine leverages Amdahls Law to model service time scaling in scale-

up environments and queuing-theoretic concepts to model performance scaling in and

scale-out environments. They employed Kalman filtering to account for inaccuracies

in the model-based methodology and to dynamically track changes in the workload

and cloud environment. However, they did not present the abstract model of auto-

scaling system level.

2.3 Auto-scaling service in Cloud Computing

Many academics and cloud technology vendors have loosely defined the concept of

auto-scaling [41]. Gartner defines auto-scaling as follows: Auto-scaling automates

13

Figure 5: Overview of the Resource Optimization, Allocation and Recommendation
System (ROAR) [62]

the expansion or contraction of system capacity that is available for applications

and is a commonly desired feature in cloud IaaS and PaaS offerings. When feasible,

technology buyers should use it to match provisioned capacity to application demand

and save costs. [9] [2]. Meanwhile, In RightScale [18], auto-scaling is defined as a way

to automatically scale up or down the number of compute resources that are being

allocated to your application based on its needs at any given time.

Sun et al. [62] proposed a ROAR modeling framework to automate, simplify and

optimize the testing and derivation of cloud resource allocation for web applications

to meet the QoS goal. The key components in the ROAR framework are summarized

in Figure 5. Due to the uniqueness of the proposed framework, end-to end test orches-

tration of resource allocation, load generation, resource utilization metric collection,

and QoS metric tracking (delay, throughout) perform automatically. In addition,

they support to deploy an application to multiple cloud providers. They mainly fo-

cus on optimizing load testing for resource allocation and enhance the existing cloud

deployment.

They do not introduce new auto-scaling and their work does not mention how to

take care of ”scale out” or ”scale in” based on unexpected load. They do not think

about the load fluctuation issue, which has a huge effect on auto-scaling. There is

still a lack of generalization of auto-scaling and synchronization between auto-scaling

mechanisms in two different cloud environments. Meanwhile, their work does not

consider some quality attributes such as high availability and security.

14

Meanwhile, Song et al. [61] used the exponentially weighted moving average

(EWMA) model to predict the demand for the number of VMs. They proposed

an online bin packing approach that uses virtualization technology to allocate cloud

resources dynamically based on application demands. Their proposed approach sup-

ports green computing by optimizing the number of servers used. Moreover, Bunch

et al. [28] designed provisioning systems that predict the future service demand to de-

cide the amount of resources for provision. They designed a pluggable and cost-aware

auto-scaling system that forecasts the future demand by analyzing metrics such as

the request volume.

2.4 Measurement

This work [31] objects to monitor and analyze load in cloud infrastructure by ap-

plying load collection and evaluation techniques. The goal is also to investigate CPU

load relationship between host and guest machines under varying workload condi-

tions. Also, Capra et al. [32] worked on cloud computing client-initiated workloads.

An investigative presented in the work defines a process of workload trace character-

ization and synthetic workload generation. They [56] provided an extensive study on

the variance of the current most popular Cloud computing provider Amazon EC2.

They used established micro-benchmarks to measure performance variance in CPU,

Memory, and Network. Li et al. [48] collected metrics adopted in the existing cloud

services evaluation work. The collected metrics were arranged following different cloud

service features to be evaluated, which essentially constructed an evaluation metrics

catalog. This metrics catalog can be used to facilitate the future practice and research

in cloud services evaluation. Moreover, considering metrics selection is a prerequisite

of benchmark selection in evaluation implementations, this work also supplements

the existing research in benchmarking the commercial Cloud services. In addition,

they [19] analyzed the research works in the cloud monitoring area. They have con-

sidered the main activities on the cloud environment that have convincing benefit

from or actual need of monitoring. They have provided background and definitions

for key concepts. They derived the main properties that cloud monitoring systems

should have, the issues arising from these properties, and the related contributions

provided in literature so far.

15

2.5 Model-driven Software Development (MDD)

The complexity of applications is increasing. At the same time, there are high ex-

pectations for the quality of software and applications. Model-driven development

(MDD) [69] can be a solution to take care of these challenges. MDD is a software en-

gineering approach that captures domain knowledge in high-level. The key goal is to

concentrate on model-orientation more than code-orientation in software production.

Gandhi et al. [36] presented Dependable Compute Cloud (DC2) as a new cloud

service. In their model-driven auto-scaling approach, they tried to automatically scale

applications in a cost-effective way. They combined a Kalman filtering technique and

queuing theoretical model in DC2 to choose the right scaling action. However, they

did not consider multiple clouds and the vendor lock-in issue in their approach. In

addition, quality attributes, such as high availability, were missing in their work.

MODAClouds [25] follows a model-driven approach to design and execute the ap-

plication on multiple clouds to support interoperability and prevent vendor lock-in.

They provided automatic deployment of applications on multiple clouds with guaran-

teed QoS. MODAClouds mainly aimed to support migration applications from cloud

to cloud as needed. However, their work does not focus on auto-scaling mechanisms

in cloud computing. MODAClouds consider three levels of abstraction: CCIM, the

cloud enabled Computation Independent Model to describe an application and its

data, CPIM, the cloud-Provider Independent Model to describe cloud concerns re-

lated to the application in a cloud agnostic way, and CSPM, the Provider Specific

Model to describe the cloud concerns needed to deploy and provision the application

on a specific Cloud (Figure 6).

In order to have strong and flexible software solutions for cloud software applica-

tions, Sharma et al [59] studied the MDA approach to developing software systems.

They tried to highlight the benefit of incorporating the MDA approach in the de-

velopment of cloud SaaS in contemplation of minimizing time, costs and efforts in

application development. Furthermore, Eldein et al. [26] studied how to use Model-

Driven architecture development and discussed open issues and explained future re-

search problems. In fact, this paper aimed to survey and analyze the research and

challenges that have been emerging in Cloud computing and Model-driven.

Ferry et al. [34] [35] proposed a model-based framework called Cloud Modeling

Framework (CloudMF). They employed MDE to face the complexity of developing

16

Figure 6: MODAClouds approach [25]

complex systems such as multi-cloud systems. They also introduced CloudML, which

relies on model-driven techniques. It is domain-specific modeling language and it

facilitates the specification at design-time of provisioning and deployment. On the

other hand, Caglar et al. [29] presented a new model-driven engineering solution and

described the design of the domain-specific modeling languages. They tried to inves-

tigate model-based simulation and automated deployment in the Cloud. Moreover,

they tried to reduce the complexity of price calculations and uncertainties by simu-

lating performance and cost.

2.6 DevOps

The DevOps approach has been investigated for its combination with model-driven

development to improve quality of service for a complex system. Guerriero et al. [39]

introduced SPACE4Cloud as a DevOps environment that links the processes of design-

time performance evaluation and the runtime self-adaptation of a cloud application

to reduce the cost of cloud applications.

Wettinger et al. [71] presented a concept that integrates the model-driven cloud

management and configuration management using Chef. The Chef is an agent-based

framework and requires master-agent communication. In our work, we chose Ansible

17

to demonstrate our work, which is simplified in terms of communication via standard

SSH commands.

Bruneo et al. [27] introduced the CloudWave that employs DevOps to create an

execution analytics cloud infrastructure to obtain high QoS levels. Their goal was

to improve both the development of SaaS solutions and the management of their

operation and execution.

2.7 Evaluation methods

We have some research related to how to calculate the effort of deployment. Jiang

et al. [43] studied the maintenance of infrastructure-as-code. They reviewed the co-

evolution of Puppet and Chef configuration files for 256 OpenStack projects. Their

study shows bugs in those configuration files related to the number of changes and size

of the files. They believe it is necessary to establish a link between infrastructure-as-

code and the software quality. In addition, Elbaum et al. [52] focused on measuring

effort of software development process. They compared the complexity of builds and

measured the code churn. Furthermore, code churn is defined as a set of changes, such

as added, modified or deleted files, from one version to another. They demonstrated

the effectiveness of code complexity churn. Sharma et al. [60] developed the tool

Puppeteer to detect code smells in Puppet. They analyzed common smells in software

engineering and Puppet-related smells and measured them on a number of GitHub

repositories. They examined 4621 repositories from GitHub. This work focused on

maintainability of configuration code quality, whilst we focus on the portability of

configuration code quality.

2.8 Summary

System-level metrics are server information monitored at the physical server or vir-

tual machine (instance) layer, such as the utilization of CPU, memory, and network

resources, memory. These data can be obtained through a monitoring platform of

the cloud provider. Based on the reviewed researches, we have multiple metrics to

monitor and each metric may have a different effect. Moreover, an auto-scaling so-

lution from previous works tries to overcome the limitations of reactive mechanisms

18

by employing prediction methods. However, the prediction solutions are based on

single metric and deployment efforts are still high. In some works, integrating the

machine learning service with auto-scaling is missing. None of these methods address

an approach for automating the deployment of predictive auto-scaling.

To the best of our knowledge, none of the existing approaches consider common-

ality and diversity for machine learning service and auto-scaling system in abstract

levels as well as scaling based on multi metrics.

19

Chapter 3

Integrating Machine Learning with

Auto-scaling

In this chapter, we explain how to use a microservice approach to orchestrate and inte-

grate machine learning components with the auto-scaling system to have a predictive

auto-scaling system.

3.1 Multiple Metrics Analysis

For monitoring in a cloud environment, there are two types of metrics: Application-

level and System-level (resource) metrics. In our work, we utilize the system-level

metric. The system-level metric includes resources usage of virtual instances such as

CPU, memory, disks, and network interfaces. We consider resource utilization because

it represents the percentage of time that the resource is busy, or the percentage of

the resources capacity that is in use.

We collect samples of multi-metrics data and the following metrics were selected

for prediction:

• NetworkIn: This metric identifies the volume of incoming network traffic to an

application.

• NetworkOut: This metric tracks the volume of outgoing network traffic to an

application.

20

• CPU utilization: The percentage of allocated computer units that are currently

in use.

• Memory utilization: The percentage of allocated memory units that are cur-

rently in use.

We monitor CPU utilization because CPU usage is a critical computational re-

source that plays an important role in resource management [31]. In addition, we

monitor memory usage as well. The previous research [32] has analyzed cloud com-

puting workload characteristics and synthetic workload generation. This research has

proved that there is a positive relationship between memory and CPU consumption,

and they are highly correlated. Also, networkIn and networkOut metrics are impor-

tant for cloud-based services such as virtual instance that rely on consistently strong

network connections.

When we have multiple metrics, each metric may have different effects on the be-

havior of the system. In order to calculate the effects, we need to compute the weight

of each metric and find the multi-metrics mixture effect. Multiple Attribute (met-

ric) Decision Making (MADM) refers to make decisions in the presence of multiple

metrics. In line with the MADM concept, our focus is on building a machine learn-

ing model which involves multiple criteria and determine the appropriate weight for

each metric. Shannons entropy method is one of various methods for finding weights

discussed in literature [45], [72]. In terms of determining metric weight, this is one of

the most widely adopted approaches as it expresses the relative intensities of metric

importance. Here, we present how we solve the problem of multi-metrics via analysis

of metrics weights by means of entropy. In this research, we monitored one sample per

minute for each metric and thus collected 20160 samples of multi-metrics for training

over the course of two weeks. Figure 7 provides the workload of multi-metrics.

Moreover, our proposed solution calculates the multiple metrics mixture effect

based on the weight average of metrics. We suppose there are m samples of values

(V) in T time period with me number of metrics. Where m is 20160 samples for

two weeks and the four metrics are CPU, Memory, NetworkIn and NetworkOut. So,

the size of me is 4. The following steps demonstrate our solution for calculating the

weight of each metric.

Step 1: Normalize the records of each metrics:

21

Figure 7: Sample of multi metrics workload generated on cloud environment

Fnorm(V me
i) = V me

i /
mX
i=1

V me
i (1)

i ∈ [1,m]

me ∈ [CPU,Memory,NetworkIn,NetworkOut]

Step 2: Calculate Entropy for each metric as :

Eme = (−K)
mX
i=1

(Fnorm(V me
i) ln(Fnorm(V me

i))) (2)

K is the entropy constant and is equal to

K = 1/ln(m)

Step 3: Compute the degree (weight) of importance of metrics as:

Wme = 1− Eme/

4X
j=1

(1− Eme) (3)

22

Figure 8: Final result of the Weighted Metrics with Aggregation (WMA) Fti

When we have the weight of each metric, we can use the weight average metric

method to calculate the multiple metrics mixture effect which is the Weighted Metrics

with Aggregation (WMA) Fti. Therefore, a metric with a higher weight contributes

more to the weighted mean than metrics with a lower weight. So, for each row of the

dataset, we calculate the average weight of all metrics. After we calculate the multiple

metrics mixture effect, we use machine learning algorithms to train and predict the

data. Figure 8 demonstrates the final result of aggregated metrics. The calculated

final target captures the workload pattern on multiple metrics.

Fti =
mX
i=1

(Wme ∗ Fnorm(V me
i)/

4X
j=1

(Wme) (4)

3.2 Machine Learning Models

In our work, we apply six machine learning models: Long Short-Term Memory Model,

Bidirectional LSTM, Vector Auto Regression, Support Vector Regression, Gradient

23

Figure 9: Illustrations for basic LSTM [13]

Boosting Regression, and Linear Regression. These six models are described below

with a focus on their online training and prediction.

Long Short-Term Memory Model (LSTM): Long Short-Term Memory (LSTM)

network is a variation of Recurrent Neural Networks (RNN), which, at its most basic

level, extends memory. LSTMs enable RNNs to remember their inputs over a long

period of time. LSTMs contain information in a memory where it can read, write, and

delete information. LSTM has three gates: input, forget, and output gate. These

gates determine whether new information is inputted (input gate), deleted(forget

gate), or whether there is an impact on the output at the current time step (out-

put gate). Different hyper-parameters affect the model capacity differently. Learning

Rate is the most important hyper-parameter. The model capacity is maximized if

the learning rate is set to the correct value, which may not necessarily be the largest

or smallest value. The core idea behind LSTM lies in that at each time step, a few

gates are used to control the passing of information along with the sequences that

can capture long-range dependencies more accurately (Figure 9).

Bidirectional LSTM Model: Bidirectional LSTM (Bi-LSTM) is a combina-

tion of Long Short-Term Memory (LSTM) and Bi-directional Recurrent Networks.

However, both LSTM and RNN can only receive information from the previous con-

text so that further improvements are made using the Bidirectional Recurrent Neural

Network (Bi-RNN). As its name suggests, Bi-RNN can receive information in two di-

rections, from the front and back. The combination of Bi-RNN combined with LSTM

produces Bi-LSTM. So, the advantages of LSTM, with its storage in cell memory, and

24

Figure 10: Illustrations for basic Bidirectional LSTM [4]

Bi-RNN, with access to information from the context before and after, combine to

make Bi-LSTM excel. Bi-LSTM has the advantage of LSTM with feedback for the

next layer. However, Bi-LSTM can also handle data with dependence on the long

range (Figure 10).

Vector Auto Regression Model: Vector Auto Regression, known as VAR, is

an extension of the univariate autoregressive model to multivariate time series data.

The main idea of this model is that the value of a variable at a time point depends

linearly on the value of different variables at previous instances of time.

Support Vector Regression model: The model that is produced by the Linear

SVR depends on a subset of the training data. It discards any training data that is

close to the models prediction. SVR works on similar principles as Support Vector

Machine (SVM) classification. It can be argued that SVR is the adapted form of SVM

when the dependent variable is numerical rather than categorical. SVM regression

is considered a nonparametric technique because it relies on kernel functions. In

addition, Lr represents the linear kernel for SVR. Also, there are two important

parameters for SVR; parameter C, which is a penalty factor, and the parameter

epsilon, whose value defines a margin of tolerance where no penalty is given to errors.

Gradient Boosting Regression model: The GBR computes a sequence of

simple trees, where each successive tree is built for the prediction residuals of the

preceding tree. The number of trees and the learning rate are key parameters for the

GBR. The n estimators is the limit number of trees in the forest and the n estimators

simply corresponds to the number of trees that will be fit in series to correct the

prediction errors. Furthermore, the learning rate shrinks the contribution of each

tree by the learning rate value. The learning rate corresponds to how quickly the

25

error is corrected from each tree to the next.

Linear Regression Model: Linear Regression (LR) models the relationship

between one or more input variable x and a dependent output variable y by using a

linear equation [33]. The generic form of the LR model is

yt = β1 + β2xt (5)

Where y is the target variable, here it is the prediction workload. x is the explained

variable, here it is the time. t indexes the sample interval. The coefficients β1 , β2 are

determined by solving a linear regression equation based on the previous workloads

yt−1, yt−2, yt−3. According to the Cramer Rule, we can obtain the solution of linear

simultaneous equations of β1 , β2, as shown below:

β1 =

P
x2t

P
yt −

P
xt

P
xtyt

n
P
x2t − (

P
xt)2

(6)

β2 =
n
P
xtyt −

P
xt

P
yt

n
P
x2t − (

P
xt)2

(7)

3.2.1 Model Selection Method

The Model Selection phase is a process to select a suitable model from candidate

models and the information related to the performance of each model. The accuracy of

machine learning models must be evaluated and the best performing model is selected

for the prediction. For each model, we calculate three different performance metrics

in order to measure their accuracy. We then compare the results and select the best

model for online prediction. Meanwhile, the Boosting is a machine learning ensemble

meta-algorithm for the group of machine learning algorithms which transform weak

models to strong ones. A weak model is characterized as the one which is least

accurate. A strong model is then a model that has given the best result. The Mean

Absolute Error (MAE) and the Standard Root Mean Square Error (RMSE) measure

accuracy and they calculate the difference between the predicted value and the actual

value. A model with perfectly correct predictions would have an RMSE and MAE of

0. In addition, the Coefficient of Determination (R2) is a measure of the proportion

of variance of a predicted outcome with a value of 0 to 1. We calculate the model

26

accuracy noted as Score:

Score = MAE +RMSE + (1−R2) (8)

Input: dataset Fti , algorithm list : algorithm1..algorithmn

Output: trained model , score
hyperparameters list: { parameter1 : [values],
parameter2 : [values],...,parametern : [values] }

all models = []
Divide Fti into two disjointed subsets trainingSet , validationSet
for each algorithmi in range (algorithm list) do

base model ← algorithmi , default hyperparameters, initialized value of parameters
training(trainingSet, gridsearchCV (base model, hyperparameters list))
modeli ← algorithmi, optimal setting of hyperparameters list, value of parameters
validating(validationSet , modeli)
scorei ← MAE + RMSE + (1−R2)
all model ← h modeli , scorei i

end
for each modeli in range (all models) do

if scorei ≥ best score then
best score ← scorei
best model ← modeli

end

end
trained model ← best model
score ← best score
Return: trained model , score

Algorithm 1: Unified Algorithm for Machine Learning Training

3.3 Architecture Design for Forecasting based Auto-

scaling Process

In this section, we will explain how we can support the predictive approach for the

auto-scaling process by the help of machine learning forecasting. e wil then describe

how we can integrate workload forecasting with the auto-scaling process.

3.3.1 Original Auto-scaling process

Auto-scaling is a service to automatically scale up or down the number of resources

based on demand at any time. The life-cycle of auto-scaling service includes five

main parts (Figure 11): The Auto Scaling Group is responsible to group and manage

27

Table 2: Notations for Algorithm 1

Variables Description
Fti Weighted Metrics with Aggregatio as Input
algorithm list The list of algorithms used for training
hyperparameters list List of Tuning Parameters
trainingSet The data is used for training
validationSet The data is used for testing
all models List of models for each parameters
scores list List of scores for models
best score The best score result
best model The best model with best score

Figure 11: Original Auto-scaling Process

automatically instances. First(1) the Monitor checks the load on the Auto-Scaling

Group based on defined metrics (CPU or memory utilization). (2) When the load

for defined metric exceeds the configured threshold, the Scaling Policy is invoked

by Monitor to check the defined policies for current situation. We have two types

of policies: Threshold-based policy and Schedule-based policy. An example of the

threshold-based policy would be if CPU usage reaches up to 80%, the Scaling Engine

then needs to add more resources. While, for the schedule-based policy, the Scaling

Engine adds more resources during Black Friday. By checking the policies, (3) the

Scaling Policy communicates with the Scaling Engine so that it will take an action.

(4) The Scaling Engine is required to check the Launch configuration, if there is a need

for more resources. The Launch configuration provides all the necessary information

that is required to instantiate instances. At the end, (5) the Scaling Engine adds or

removes resources.

28

3.3.2 Forecasting based Auto-scaling Process

In order to support predictive approach for auto-scaling service, we need to forecast

future demand by taking into account the workload history. Figure 12 illustrates our

proposed machine learning-based forecasting for auto-scaling process. Each function

and responsibility wraps as a module. So, each module encapsulates a set of related

functions and several modules need to work together in order to complete the forecast-

ing process. The proposed solution implements machine learning-based forecasting

as a suite of small modules. Each module is described as follows:

Monitoring module: It is responsible for monitoring and collecting the system

level metrics that represent the resource demand (1).

Controller module: It coordinates and manages other modules. By changing

time intervals, the Controller module periodically invokes the Monitoring module to

collect the workload metrics (2.1). The Controller module also calls the Machine

learning algorithms module to train models (2.3) and calls the Model selection module

to select a suitable model for prediction part (2.7). Also, it launches the Prediction

module(2.9).

Data storage module: This module stores the monitoring data (2.2). The

data collected from the Monitoring module becomes the training samples to learn a

workload pattern for prediction and forecasting.

Machine learning algorithms module: It is responsible for using machine

learning to train models (2.3). Each algorithm is trained in parallel and independently.

Validation module: This module evaluates the results of each algorithm (2.5).

It is important for calculating model accuracy in machine learning. After training the

models, the Validation module evaluates them to determine accuracy. Each model’s

trained parameters are saved to the Model storage module (2.6).

Model selection module: Validation scores are retrieved for each model from

the Model storage module (2.8) and the Model selection module then selects the ap-

propriate model for prediction (2.7).

Model storage module: It is responsible for keeping the information and data

related to models. General data standard is used to deal with the wide variety of

formats for datasets without having to be locked into a particular format. One of the

popular data formats in cloud computing is a JSON which is what we use.to store the

model information. For each model, we have one JSON file that contains the name

29

of the algorithm, the model ID, the value of parameters, the performance metrics

results, and the score.

Prediction module:It is called by the Controller module to perform a real-time

workload prediction upon predefined intervals (2.9). The Prediction module retrieves

the selected model from the Model storage module (2.10). Finally, the prediction

result is returned to the cloud auto-scaling service for resource prevision decision

making.

The next step is to integrate the results of the prediction with the auto-scaling

process. Most of the Cloud providers offer an auto-scaling service for a single metric,

however, our proposed solution is based on multiple metrics. Thus, the solution

cannot use the general auto-scaling service. We employ Ansible for provisioning

and de-provisioning of resources. Ansible is one of the simplest ways to automate

infrastructure and configuration management. Also, Ansible provides a lot of inbuilt

modules for multiple Clouds, each of which we mapped. Ansible modules map to

the Auto Scaling Group, the Scaling Policy, Launch configuration, and the Scaling

Engine. Therefore, the prediction result is sent to the Ansible playbook which is

Scaling Policy (2.11) in order to check the defined policies related to the results.

After checking the policies, the Scaling Policy communicates with another Ansible

playbook that is called the Scaling Engine to take an action (3). At the end, the

Scaling Engine adds or removes resources (5).

3.3.3 Microservice Design

Each Cloud platform offers different types of services. We need to orchestrate and

coordinate Cloud services in order to integrate a machine learning approach with an

auto-scaling process. Each Cloud service needs to map onto one of the modules that

are presented in Section 5.2. In the Cloud platform, each Cloud service represents

an independent service that can be used to construct microservices architecture. The

Cloud Service loose coupling promotes the independent design and evolution of a

microservice implementation while still guaranteeing interoperability with other mi-

croservices. If each Cloud service function as an independent microservice, it means

a process is serving as single independent function and deliver the responsibility. We

have different techniques and implementation services on cloud platforms. So, mi-

croservices should be programming language agnostic, and each microservice should

30

Figure 12: An Inference-based Forecasting for Auto-scaling Process

be able to function with the help of different languages including Python, Java, or

R. In order to take advantage of using different cloud services, we should be able to

scale each service from small to dedicated large size. At the core of this process, each

module is encapsulated as a microservice. The microservices depicted as polygons in

Figure 12 are independently deployed and running. The composition of the Cloud

services are through their endpoints. Each microserivces life cycle is driven by re-

quests for the service that originate from the need of model training and prediction.

In our solution, all the requests are launched through a controller and then transferred

to other microservices. The services are the Monitoring service, the Controller

service, the Data storage service and Model storage service, the Machine

learning algorithms service, the Validation service, and the Model selection

service.

3.3.4 API Design

As the microservices represent different Cloud services that receive inputs, there are

APIs to retrieve and present information requested from other microservices. The

API is a way to access functions in each microservice. The API is required because

we need to achieve a high level of separation and independence in our processes. Most

of the Cloud providers offer REST API for their services. The interfaces between the

31

Table 3: Example of REST APIs

Operation HTTP method
Get monitored metrics (2.1) GET {base URL}/API/?metrics & metric-name

= CPUUtilization & start-time=2018-04-12T14:18:00
& end-time=2018-04-12T16:18:00 & period=3600

Create new machine POST {base URL}/API/?create-model & model-Name
learning model (2.3) =GBR-Model & n estimators = 1000 & learning rate = 0.1

& Training-DataSource-Id=2018-04-12
Get selected model GET {base URL}/API/?selected model
for prediction (2.7) & model-Names= LR-Model, SVR-Model, GBR-Model
Predict based on POST {base URL}/API/?predict&
real-time metric (2.9) 98, 67.34 , 33.10, 34.02 & modelid=LR-Model-v1

Figure 13: Continuous Training and Inference Phases

controller, monitoring, machine learning, model selection, and prediction are REST

API. We selected REST because it is standard-based, lightweight, and can support

multiple data representations. REST is a client-server architectural style for loosely

coupled distributed systems. Table 3 summarizes the example of resources that we

defined for our REST APIs.

3.3.5 Schedule-based Controller Service

The forecasting process includes four stages: Monitoring, Training, Prediction, and

Re-training. First stage is monitoring the workload history at a time interval [0, T].

In the second stage , the workload history and the accumulated data that it holds in

storage is moved to the training phase, and a new coming workload is stored for the

next training phase.

We can have different sizes of time windows for training. For instance, two weeks,

two days, or one hour. The advantage of the continuous training is that the model

32

has a higher probability of catching most recent workload patterns by training on the

recent workload history. During the third stage, there is an iterative process that is

able to predict real-time data and the data arrived for prediction in T + ∆t period.

The fourth stage, entails re-training; for the subsequent training of the model, the

window time is shifted and a model is trained and updated by new workload history.

Our method is able to update the prediction model smoothly. Figure 13 demonstrates

the continuous training and prediction intervals.

Therefore, there is a need to schedule multiple events and invoke APIs over dif-

ferent time periods for forecasting process. In this work, the Controller is a schedule-

based service and communicates with the multiple services over different time periods.

The Controller includes a time trigger to call APIs. For instance, when the train-

ing time is triggered, the Controller service calls the Machine learning algorithms to

start model training stage for constructing, testing, and validating the models. In

this work, we consider a 2 week time frame for training and the prediction stage is

called every 10 minute repeatedly.

3.4 Evaluation of Integrating Machine Learning

with Auto-scaling

The question is how to reduce the cost of the auto-scaling process through the use of

forecasting of future load. The goal of this evaluation is to measure the run-time cost

of machine learning-based forecasting for the auto-scaling process and demonstrate

how the run-time cost is reduced thanks to the work we have conducted. We determine

four metrics for evaluation:

• Multiple Applications: We implement multiple back-end applications to have

different workload patterns for forecasting and calculate the performances.

• Multiple Cloud Platforms: The microservices of proposed forecasting process

are mapped to the Cloud services and deploy the solution on AWS and Microsoft

Azure Cloud platforms.

• Efficiency: The model training time and the prediction time are measured for

NDBench and Dell DVD store applications on AWS and Microsoft Azure Cloud

platforms.

33

Figure 14: DVD store architecture

• Run-time Cost: We calculate the run-time cost and compare it with the cost of

normal auto-scaling.

3.4.1 Demonstration Application

We implement two different back-end applications to have different workload patterns

for forecasting and then calculate the performances.

Dell DVD store

DVD store is an intensive used benchmark and has been used in prior performance

engineering research [53], [58], [23]. Dell DVD store (DS2) application [8] is an open

source e-commerce test application that simulates an electronic commerce system

to benchmark new hardware system installations. This application includes a back-

end database component, a web application layer and, a driver program. Figure 14

demonstrates the general deployment architecture of the DVD store. This benchmark

simulates online transaction processing of a DVD store. The goal is to design a

34

Table 4: AWS configuration of each node for Dell DVD store application

Instance DVDStore VCPU Memory
Data Node 1 T2.medium 2 4GB
Data Node 2 T2.medium 2 4GB
Management Node T2.medium 2 4GB
Driver T2.Small 1 2GB

database component to utilize many advanced database features while keeping the

database easy to install and understand. This application may be used to test a

database or as a stress tool for any purpose. This application may be installed

on Windows or Linux and it can use many different database programs. DVD store

application is an application stack that can run on a single or multiple virtual machine.

Table 4 listed the AWS configuration for Dell DVD store instances.

Netflix Data Benchmark

We use the Netflix Data Benchmark (NDBench) [14] to emulate the resource demand

of a microservice. NDBench is designed to examine the microservices performance

impact on the back-end data systems. NDBench is pluggable for a wide range of cloud

providers. It works with Archaius for configuration, with Spectator for metrics, and

with Eureka for service discovery. NDBench generates two types of loads; namely,

random traffic and sliding window traffic. In our work, we adopt the sliding window

traffic that generates realistic loads locally for the catching layers with disk input and

output operations. We also write and read operations for each node in a networked

cluster.

We have a separate instance for NDBench and connect to an Apache Cassandra

cluster of data storage as a backend system (Figure 15). Apache Cassandra is a highly

scalable, high-performance distributed database designed to handle large amounts of

data across many servers, providing high availability with no single point of failure.

Cassandra is a type of NoSQL database. Table 5 listed the Cassandra and NDBench

instances on AWS and Azure Clouds.

3.4.2 Deployment Components on AWS and Azure

The following entities are deployed on the AWS (Figure 16):

35

Figure 15: The NDBench Cluster with a Cassandra Cluster

Table 5: AWS and Azure configuration of NDBench node

In AWS Cloud Platform In Azure Cloud Platform
Name Type VCPU Memory Type VCPU Memory
Cassandra Node 1 M3.medium 2 4GB DS1V2 1 4GB
Cassandra Node 2 M3.medium 2 4GB DS1V2 1 4GB
Cassandra Node 3 M3.medium 2 4GB DS1V2 1 4GB
NDBench Driver T2.Small 1 2GB DS1V2 1 4GB

36

Figure 16: Deployment Architecture for AWS

• Lambda Function: The Lambda function employs a serverless architecture and

the code runs without managing any servers or a backend service. The Lambda

function calls CloudWatch to collect the workload metrics. Also, the Lambda

function calls the machine learning API, to train the models, and the predictor,

for the prediction.

• Machine Learning EC2 Instance: It hosts the training and prediction services.

It is a fully-managed cloud instance for a predictive analytic solution. The

workload history is pulled from S3 and utilized by a Machine Learning EC2

instance to train the models.

• Amazon S3 Storage: It stores the metrics collected by CloudWatch.

• DynamoDB Storage: It stores the training results including the performance

scores, values of trained parameters, and configuration of the tuning parameters.

These values are stored in a NoSQL storage with key/value pairs.

The following entities are deployed on Azure (Figure 17):

37

• Azure Function App: It periodically invokes the Azure Monitoring to collect

the workload metrics. Also, the Azure Function App calls the machine learning

algorithms to train models. Furthermore, it is the entry to launch the prediction

service using a trained model.

• Azure Data Science Virtual Machine: As customized VM image on the Microsoft

Azure cloud explicitly built for data science. Furthermore, we implement a

REST API to access the inference model as a service for the real-time prediction

phase. This service is called by the Azure Function App to perform training

and prediction.

• Azure Blob Storage: It contains Blob storage, File storage, and Queue storage.

For deployment, we use the Azure Blob Storage. The Azure Blob Storage saves

the model training results and the collected metrics as inputs for training.

• Resource Group: It groups Azure instances (resources) for scaling and man-

aging the instances based on the minimum and maximum number of running

instances allowed at any time.

3.4.3 Tuning the Parameters of Machine Learning Algorithms

Optimizing the parameters of machine learning algorithms is an important task. In

order to find the suitable values for each parameter, we measure performance metrics

for each set of parameters and compare the results of the calculated scores. In concise

terms, the parameters are a factor to be considered when selecting a best score for

each machine learning algorithm as different parameters can present different perfor-

mance results depending on the value of the parameters. In order to improve the

performance of the SVR model, we need to adjust and select the best values for the

SVR parameters. There are two important parameters for SVR: C takes 1 by default.

Also, the parameter epsilon is a float and default value is 0.1. Table 6, 7 depict dif-

ferent values that we uses for tuning SVR algorithm. Results from the column Score

of Table 6, 7 show the result of different scores when the value of C and epsilon are

changed. Furthermore, the best value for C is 100 and for epsilon is 1e− 5.

For GBR algorithm, the default value for the n estimators and the learning rate

respectively are 100 and 1. The parameter tuning is an important task in finding the

38

Figure 17: Deployment Architecture for Azure

model with the highest performance. So, we run different values for each parameter

and find the appropriate performance results that are presented in Table 10, 11.

Lowering the value of the learning rate and increasing the number of trees produces

better performance. So, a larger number for the n estimators results in better per-

formance. We dont have specific parameters for linear regression algorithm, so we

only calculate the performance metrics. The best performance results are presented

in Table 8 and 9.

Table 6: Tuning SVR parameters on Azure

C Epsilon MAE RMSE R2 Score
1 0.1 0.04486 0.048696 0.9999912 0.09357
20 0.02 0.04680 0.051773 0.9999905 0.09858
40 0.01 0.04483 0.050094 0.9999914 0.09493
60 0.001 0.04516 0.050144 0.9999911 0.09531
80 0.0001 0.04471 0.049709 0.9999913 0.09442
100 1.00E-05 0.04386 0.04861 0.9999914 0.09249

39

Table 7: Tuning SVR parameters on AWS

C Epsilon MAE RMSE R2 Score
1 0.1 0.04514 0.049259 0.9999918 0.09464
20 0.02 0.04617 0.050541 0.9999911 0.09649
40 0.01 0.04513 0.050127 0.9999906 0.09421
60 0.001 0.04634 0.050692 0.9999915 0.09683
80 0.0001 0.04489 0.048999 0.9999904 0.09384
100 1.00E-05 0.04401 0.04742 0.9999901 0.09253

Table 8: Performance metrics results LR on Azure

MAE RMSE R2 Score
0.000015435 0.000027958 0.9999956 0.000024492

Table 9: Performance metrics results LR on AWS

MAE RMSE R2 Score
0.000010671 0.000021374 0.9999929 0.000034713

Table 10: Tuning GBR parameters on Azure

n estimator learning rate MAE RMSE R2 Score
10 1 0.364528 0.572674 0.998830081 0.938372
10 0.1 0.359521 0.565862 0.998894623 0.926488
10 0.5 0.250691 0.419449 0.999397346 0.97014
100 1 0.302858 0.576622 0.998874099 0.970743
100 0.1 0.101868 0.211845 0.999845792 0.926488
100 0.5 0.175009 0.287338 0.999706122 0.97014
500 1 0.310088 0.562292 0.998910182 0.970743
500 0.1 0.082371 0.151487 0.99991855 0.933939
500 0.5 0.165836 0.30911 0.999672378 0.904344
1000 1 0.323547 0.579635 0.998838125 0.975274
1000 0.1 0.083081 0.157534 0.999914351 0.890701
1000 0.5 0.170609 0.282764 0.999716063 0.953657

40

Table 11: Tuning GBR parameters on AWS

n estimator learning rate MAE RMSE R2 Score
10 1 0.356518 0.576821 0.998890081 0.949531
10 0.1 0.357134 0.565862 0.998787921 0.937529
10 0.5 0.249091 0.419449 0.999289263 0.9784329
100 1 0.309356 0.576622 0.998783212 0.963012
100 0.1 0.101868 0.297145 0.999845792 0.919875
100 0.5 0.167456 0.263338 0.999810439 0.98302
500 1 0.301658 0.569291 0.998890387 0.970743
500 0.1 0.088436 0.160382 0.999867132 0.940875
500 0.5 0.198463 0.308543 0.999816326 0.904344
1000 1 0.312474 0.569983 0.998728375 0.968432
1000 0.1 0.082975 0.162947 0.999920924 0.891948
1000 0.5 0.180131 0.275346 0.999728512 0.947048

Table 12: Hardware Specification of Machine Learning instances on AWS and Azure

Cloud Provider Type VCPU Memory
Azure B2s 2 4 GB
AWS M3.medium 2 4 GB

3.4.4 Evaluation Results

For both Dell DVD store and NDBench, we produce one sample per minute and

collect 20160 samples within the span of two weeks. We collect a total of 20160

samples of multi-metrics for training. Among these samples, 70% (14112 samples)

are used for training and 30% (6048 samples) are used for validation. To setup

the experiment environment for the machine learning algorithms and the prediction,

we use AWS EC2 instance and the Azure Data Science Virtual Machine. In order

to implement the inference process, we use the scikit-learn which is a free machine

learning library for Python. The capacities of instances are presented in Table 12.

At runtime, the models are constantly updated: whenever a new dataset for the next

two weeks arrives, new models are created and new calculated scores are incorporated

to the model storage and older scores are removed. The forecasting process is then

repeated, which may lead to changes in the models, performance metrics, and score

results.

41

Figure 18: The prediction result of machine learning algorithms for Dell DVD store

Table 13: Training and prediction times for machine learning algorithms for Dell
DVD store on AWS only

Technique Training Time Prediction Time
LR 1 min 20 sec 55 sec
SVR 17 min 22 sec 3 min 30 sec
GBR 37 min 16 sec 5 min 2 sec

Evaluation Results for Dell DVD store

We implement the DVD store benchmark on AWS and generate workload. Figure 18

illustrates the graph of the actual workload and predicted results for LR, SVR, and

GBR. In addition, Table 13 displays the time measured for the model training and

the prediction on AWS environment for DVD Dell store.

Evaluation Results for NDBench

We implement NDBench on AWS and Azure Cloud environments. Table 14 represents

the time that we measure for the model training and the prediction on Azure and AWS

environments for NDBench. Figure 19 displays the graph of the actual and predicted

final target for LR, SVR and GBR on Azure and AWS cloud platforms. The LR

model achieves better prediction results in comparison to the other models. As seen

in Figure 19, the red line relating to the LR model prediction result, is in higher

42

Table 14: Training and prediction times for machine learning algorithms on AWS and
Azure for NDBench

In AWS Cloud Platform In Azure Cloud Platform
Technique Training Prediction Training Prediction

Time (min) Time (min) Time (min) Time (min)
LR 2 min 6 sec 45 sec 1 min 15 sec 1 min
SVR 16 min 15 sec 4 min 42 sec 14 min 53 sec 03 min 18 sec
GBR 38 min 41 sec 6 min 29 sec 46 min 11 sec 5 min 13 sec

(a) The prediction result of machine learn-
ing algorithms on Azure

(b) The prediction result of machine learn-
ing algorithms on AWS

Figure 19: The prediction result of machine learning algorithms on AWS and Azure
for NDBench

conformity with the blue line which is related to Weighted Metrics with Aggregation

(Fti). The SVR can be considered as the second-best model for prediction. Except

for slightly large variations from Fti in a few number of points, the SVR tracks

Fti variations suitably. Figure 20 illustrates the graph of the actual workload and

predicted results for VAR, LSTM, BI-LSTM, LR, SVR, and GBR.

3.4.5 Resource Provision and De-provision

While using an auto-scaling service on AWS and Azure, one of the issues is the new

added instance does not configure and join the cluster properly. Thus, adding a new

instance alone is not enough for applications. There are some configuration steps

required after adding a new instance in order to manage the increased workload.

So, there are still some manual tasks performed by application providers to handle

unexpected workload.

43

(a) The prediction results for NDBench (b) The prediction results for DVD store

Figure 20: The prediction result of machine learning algorithms (VAR, LSTM, BI-
LSTM, LR, SVR, GBR) for NDBench and DVD store

Table 15: Score Results for NDBench on AWS

MAE RMSE R2

VAR 0.864528 0.472674 0.9588300
LSTM 0.290691 0.179449 0.9999973
BI-LSTM 0.302354 0.179635 0.9999209
LR 0.106718 0.021376 0.9999929
SVR 0.340163 0.117421 0.9999601
GBR 0.529759 0.262947 0.9988381

Table 16: Score Results for DVD Store on AWS

MAE RMSE R2

VAR 0.749091 0.419449 0.9982892
LSTM 0.209356 0.176622 0.9997832
BI-LSTM 0.201868 0.197145 0.9998457
LR 0.167456 0.096333 0.9999104
SVR 0.501658 0.269291 0.9998903
GBR 0.884361 0.460382 0.9988671

44

(a) Changes in workload over time on Azure
for NDBench

(b) Azure instances for a Microservice change
over time for NDBench

(c) Changes in workload over time on AWS
for NDBench

(d) AWS instances for a Microservice change
over time for NDBench

Figure 21: Resource Provision and De-provision on AWS and Azure NDBench

We employ Ansible to automatically configure the new instance and join it to

the cluster. When the prediction service decides (Figures 48 and 43),the Ansible is

invoked in order to add or remove resources based on predicted workload. In addition,

Ansible must re-balance a cluster because a new instance assumes management of this

portion of the data. We consider two scenarios for evaluating our approach. In the

first scenario, we deploy normal threshold-based auto-scaling for CPU usage and set

window times, which is the amount of time monitored before the metric and threshold

values are compared, for 10 minutes. The threshold is set at 80% for adding more

resources and at 30% for removing idle resources. We then compare this result with

the result of our solution of applying machine learning prediction for multi-metrics

and its integration with Ansible for resource provision and de-provision. In addition,

we assume the time frame for the prediction is 10 minutes.

45

(a) Changes in workload over time on AWS
for Dell DVD store

(b) AWS instances for a Microservice change
over time for Dell DVD store

Figure 22: Resource Provision and De-provision on AWS for Dell DVD store

In addition, Figure 19 demonstrates the comparison between two aforementioned

scenarios for NDBench on AWS and Azure. Figure 21b reflects the number of Azure

instances that are added and removed based on the workload that we present in

Figure 21a. As we can see in the Figure 21b, the final target usage exceeds the

threshold in the second 10 minutes for our method (blue line). The workload goes

under the threshold at Time 26 which after resources are added. However, for the

orange line, which is the normal auto-scaling solution, the resources are added and the

workload goes down under threshold at Time 31. In our method, Azure VM spin up

approximately around 5 minutes and Ansible needs around 3 minutes to reconfigure

the cluster. Whereas, in normal auto-scaling, we have 5 minutes for a spin up VM

and about 5 minutes or more for manual configurations. This experiment under the

workload generated by NDBench on Azure cloud environment shows our method is

more proactive than the auto-scaling group by default for a single metric. Figures 22a

demonstrates the comparison between two mentioned scenarios for the Dell DVD

store and also Figures 22b illustrates the number of AWS instances that are added

and removed based on the workload.

3.4.6 Cost Estimation

The cost is the price charged by cloud providers for the service utilization in a spe-

cific time period. The cost estimation includes the workload cost and inference cost.

Table 18 demonstrates the types of cost. We assume the workload has an associated

46

Table 17: The Run-time Cost Comparison for Applications on Multi-Clouds for Du-
ration of 1 hour

Application Cloud Instance Cost Instance Cost Saved
platform Usage /With Usage //WO

/ With ML ML($) /WO ML ML ($)
(billing time (billing time

unite) unite)
NDBench AWS(2.25$/h) 11.06 24.88$ 11.93 26.84$ 1.96$/h
NDBench Azure(0.65$/h) 11.43 7.42$ 13.09 9.03$ 1.61$/h
DVD Dell AWS(2.25$/h) 11.27 25.35$ 12.62 28.39$ 3.04$/h

Table 18: The Type of Costs for Cloud Services

Cost Type Service Used
Workload Cost Virtual Instance
Inference Cost Monitoring

Model Storage
Training
Prediction

cost, which depends on the virtual instance in which the workload run. The Cost

(workload) presents the cost of workload. The inference procedure includes monitor-

ing, training, model selection, and prediction. So, the inference cost refers to the cost

of cloud services that are part of the inference procedure. In our work, we calculate

a metric as the workload cost to compare each method of provisioning resources. As-

sume T is the total time of evaluation, and Ii is the number of the virtual instance

at the time duration ti. The pi is the charge rate per billing time unite, and the τ is

the billing time. Thus, the workload cost for each application on multiple clouds is

calculated as equation 9.

Cost(workload) =
TX
i=1

(pi ∗ Ii ∗ (ti/τ)) (9)

We assume the pi is constant because the price of instances that are used for

deploying the applications on AWS and Azure does not change. So we have:

Cost(workload) = pi ∗
TX
i=1

(Ii ∗ (ti/τ)) (10)

We assume T is one hour (60 minutes) and τ is billing time for one hour. In

addition, we consider the time period (ti) as 10 minutes. For example, referring back

to Figure 9b (for NDBench on AWS), The pi is 0.65$ per hour for virtual instance. We

calculate the instance usage for one hour is 13.09 of using auto-scaling directly without

47

using machine learning. So the cost is 9.03$ while the cost of our machine learning

method is 7.42$ for one hour. Thus, our solution is saving 1.61$ for one hour, and we

suppose our solution save 38.64$ for 24 hours and 14111.65$ for 8765 hours. It means

our method helps the system to use less cost in total compared to the default auto-

scaling method. Table 17 demonstrates a comparison between the costs for NDBencha

and Dell DVD store on AWS and Azure. The cost of instances are different on AWS

and Azure, so we have a different result on each Cloud environment. The instance that

we use for AWS is more expensive than the Azure instance. However, the comparison

shows we save a significant amount of money for both Cloud platforms. The inference

costs for AWS and Azure are 2.68$ and 0.21$, respectively. The inference cost looks

high because we deploy our forecasting process on the separate instance and the cost

of that instance also needs to be added. However, in our work, the size of the cluster

is small and includes 3 instances. Although, for a large size cluster, inference cost

does not increase but the computing cost changes. For instance, for a cluster with

10 large EC2 instances on AWS, the inference cost remains unchanged, but the saved

cost increases significantly.

3.5 Summary

In this chapter, we answered the first research question:

RQ 1. How to design an architecture solution to orchestrate the ma-

chine learning process?

Motivation: In order to support a predictive approach for auto-scaling service,

we need to forecast future demand by taking into account the workload history. Each

cloud platform offers different types of services. We need to orchestrate and coordinate

cloud services to integrate machine learning approach with auto-scaling process.

Approach: We introduced a new solution to train models based on multi-metrics.

In order to calculate the effects of multi-metrics, we used Shannon Entropy to compute

the weight of each metric. Also, we presented the architecture based on microservice

approach for a forecasting-based auto-scaling process that adaptively monitors the

workload based on multi-metrics and schedules multiple machine learning models to

learn the workload pattern online and predict the workload classification at runtime.

To evaluate, we used Dell DVD Store and Netflix Data Benchmarks and applied the

48

proposed solution on Amazon Web Services and Azure cloud environment. In addi-

tion, we deployed six machine learning regression algorithms on cloud environments.

We demonstrated that the real-time prediction is integrated to the auto-scaling con-

figuration of a cloud infrastructure to add or remove computing resources.

49

Chapter 4

Model-Driven Architecture

In this chapter, we present a model-driven approach for the predictive auto-scaling.

We will explain why we need a meta model for machine learning service. Also, we

introduce the overview of model-based configuration and deployment process. Then,

we describe CPIM and CPSM. Finally, we discuss how to combine the Model-driven

approach with DevOps.

4.1 Model Driven Approach

The proposed method captures the predictive auto-scaling system including its com-

ponents, connections, and resources. The proposed method relies on a model-driven

approach which is a branch of software engineering that focuses on models rather

than source code and improves the service deployment. The proposed model-driven

framework consists of three main phases: Design, Deployment, and Run-time (Fig-

ure 23).

The Design phase includes the model-to-model transformation. This phase re-

lies on types of models representing two layers of abstraction, the Cloud Platform

Independent Model (CPIM) and the Cloud Platform Specific Model (CPSM). The

CPIM specifies the provisioning and deployment in a cloud provider-agnostic way.

The CPSM refines the CPIM with cloud provider-specific information. Model trans-

formation automatically generates parts of deployment scripts. We are using Eclipse

Modeling Framework (EMF) for the Design phase. EMF is the core modeling frame-

work and code generation facility for building tools and applications based on models

50

Model
Objects
(CPSM)

Model
Editor

Transfer
to CPSM

Validate CPSM

Transfer
to
scripts

Machine Learning
Instance

Prediction API

DevOps
Tool

DevOps
Tool

DevOps
Tool

Ecore Model
(CPIM)

Model
Transform

ation

Deployment
Scrips (YAML)

Resource
provisioning

Model
Validation

Phase 1) Model to Model Transformation Flow
(Design Phase)

Phase 2) Model to Deployment Transformation
Flow (Deployment Phase)

Phase 3) Deployment to Run-time
Transformation Flow (Run-time Phase)

Controller

Controller

AWS/Azure

Call

Transfer
to CPSM

Tr
an

sf
er

 t
o

 s
cr

ip
ts

Run
scripts

Run

Deploy

Process

Results / Artifacts

Deploy

Figure 23: Model Transformation in the Life-cycle of Auto-scaling

defined in the ecore meta model. The Deployment phase includes the process of au-

tomatic deployment of the predictive auto-scaling system on a target platform. The

deployment scripts provide a description of the most important classes and corre-

sponding properties of the target. The Run-time phase phase triggers the execution

of deployed machine learning components upon the collection of the system level

metrics.

4.2 Cloud Platform Independent Model

Cloud Platform Independent Model (CPIM) focuses on the operation of the system

while hiding details related to the use of a particular platform. CPIM maintains

platform independence to be suitable for use with different platforms. The CPIM in

an ecore model follows the model-driven principles to create an abstract representation

of the knowledge and activities in the context of a predictive auto-scaling system.

4.2.1 Machine Learning Abstraction

A machine learning process includes training and inference phases. Training refers to

the process of fitting a machine learning model by optimal model parameters from

51

the sampling data. Inference refers to the process of running a trained model to make

predictions. In Chapter 3, we review the basics of six different machine learning

algorithms.

Machine Learning Model Elements Commonality

A machine learning process includes training and inference phases. Training refers

to the process of fitting a machine learning model by optimal model parameters

from the sampling data. Inference refers to the process of running a trained model

to make predictions. For both training and inference, there are common entities:

(1) inputs, (2) outputs, (3) parameters, and (4) assessment metrics. A machine

learning model requires a set of inputs and outputs. The inputs are divided into

two parts: the training dataset and testing dataset. Outputs are a set of data that

is being predicted by the trained model. For example, in cloud services, inputs can

be low-level CPU, memory or network usage, or higher-level kinds of data tied to

the services or applications, such as requests served per second. For data of distinct

categories that are non-numerical, data is first encoded into a numerical form by

feature engineering techniques. Hence, in our work, we consider input and output

as numeric data and time series type. Parameters include hyper-parameters and

model parameters. Hyper-parameters are configuration variables that are typically

searched by greedy algorithms. To check the accuracy training and inference results,

assessment metrics are necessary. The assessment metrics are also used for the model

selection that is the process of selecting a suitable model from a set of candidate

models. The value of assessment metrics is also numerically applied. In conclusion,

entities are in different scales and characters. The integration of machine learning and

auto-scaling should plug-and-play different machine models in a uniform way rather

than model-by-model.

Machine Learning Model Environments Commonality

Machine learning model environment includes frameworks, programming languages,

and libraries. There are three popular languages: Python, R, and MATLAB. Python

is a programming language that consists of a large standard library. This library is

structured to focus on general programming and contains modules for OS specific

52

Figure 24: An Example of the Machine Learning Environment Commonality

threading, networking, and databases. R is the most comprehensive statistical anal-

ysis package available and incorporates all of the standard statistical tests, models,

and analyses, as well as provides a comprehensive language for managing big data.

Finally, MATLAB is a commercial numerical computing environment and a program-

ming language. MATLAB similarly has a standard library, but its uses include matrix

algebra and a large network for data processing and plotting.

Libraries are sets of functions that are written in a given language. A robust set of

libraries can make it easier for developers to perform complex tasks without rewriting

many lines of code. Scikit-learn is one of the most popular machine learning libraries.

It supports many supervised and unsupervised learning algorithms. Tensorflow is an-

other machine learning library and contains several deep learning and neural network

algorithms. Figure 24 provides an example of two machine learning algorithms with

different configurations. The commonality of configurations is used to specify the

same setting between machine learning models of certain group of algorithms. The

use of the common environment for different machine learning algorithms leads to a

reduction in production time and improved deployment process.

4.2.2 Machine Learning Meta Model

The auto-scaling system needs to decide when to perform the scaling actions and it

commonly performs actions reactively when workload change has already occurred.

The actions are based on the predefined rules of the analysis phase which are static.

There is a need to predictively provide resources ahead of workload changes. So,

we are focusing on enhancing the analysis phase with a machine learning approach

53

Table 19: Example of Machine Learning Algorithms for Workload Forecasting

Algorithm Type Version Input Tuning Parameters Output Score
Support Vts Iti -C (Penalty Factor) -Model ID -MAE
Vector -Epsilone -Parameters -RMSE
Regression (Margin of Tolerance) Value list R2

Gradient Vts Iti -N estimators -Model ID -MAE
Boosting (Limit number of trees) -Parameters -RMSE
Regression -Learning rate Value list -R2

(How quickly the
error is corrected)

Linear Vts Iti − -Model ID -MAE
Regression − -Parameters -RMSE

Value list -R2

LSTM 1 Vts Iti - HiddenLayerSize -Model ID -MAE
- HiddenUniteSize -Parameters -RMSE
- Learning rate Value list -R2

Bi-LSTM 1 Vts Iti - HiddenLayerSize -Model ID -MAE
- HiddenUniteSize -Parameters -RMSE
- Learning rate Value list -R2

Vector Vts Iti - ErrorV ector -Model ID -MAE
Auto -Parameters -RMSE
Regression Value list -R2

instead of heuristic rules. Also, we plan to automate the machine learning process into

the auto-scaling system. For the rest of this section, we try to answer the following

questions:

• How to develop meta model for machine learning in general?

• Do we need new data types?

The machine learning service includes two main phases: training and inference.

In both phases, we have a set of common entities for machine learning algorithms.

In Table 19, we list different machine learning algorithms and demonstrate key com-

mon entities of the machine learning algorithms. There are common elements across

algorithms which are version, input, output, tuning parameters, and score.

.

To support a wide range of machine learning models, we need to generalize the

common entities and represent them at an abstract level. In our work, we propose a

1Default parameters are explained here, other optional parameters are explained in Section 4.3.1

54

Figure 25: Meta-model of Machine Learning Model

meta model to represent the common entities of a machine learning process. Hence,

a specific machine learning model becomes an instance of the machine learning meta

model. In Figure 25, we try to decompose machine learning into reusable and inde-

pendent small elements, which we refer to as machine learning meta model elements.

We propose higher-level abstractions to model the machine learning itself. Therefore,

the meta model will be applied to different machine learning algorithms.

• MachineLearning: This component is responsible for using machine learning

algorithms to train models. Each algorithm is trained in parallel and indepen-

dently. Then, it evaluates the results of each algorithm to determine accuracy.

At the end, it selects the appropriate model for prediction.

• MLparameter: Tuning parameters differ from the model parameters in that

they are not learned by the model automatically through training. Instead,

55

these parameters, such as learning rate, are related to how fast the machine

learning model converges for a solution. Therefore, tuning parameters should

be explicitly modeled. Each time we change a tuning parameter, we have a new

instance of the machine learning model. To distinguish each setting of turning

parameters tried, we introduce the version as an essential attribute for modeling

in addition to the intrinsic elements of machine learning as inputs, outputs, and

scores.

• Input: Machine learning entities require a set of inputs and outputs. Inputs

are a set of data that are used by machine learning algorithms to train the

model. The inputs are divided into two parts: the training dataset and testing

dataset. We consider the input as time series data.

• Output: Outputs are a set of data that are being predicted by the trained

model. For example, in cloud services, outputs can be low-level usage provided

by infrastructure, or higher-level types of data tied to the service or application,

such as requests served per second. Input and output values are numeric data

and time series type. Data generally includes distinct categories, which are

non-numerical and thus need to be converted to a numerical format by data

processing techniques.

• Score: To check the accuracy of the training and inference, assessment metrics

(Score) are necessary. The assessment metrics are used for the model selection

phase which is a process to select a suitable model from candidate models and

from given information related to the performance of each model. The accuracy

of machine learning models needs to be evaluated and the best performing model

is selected for the prediction. The value of assessment metrics is numeric and

ordering is not applied.

• Prediction: It is called to perform a real-time workload prediction. The pre-

diction result is returned to the cloud auto-scaling service for resource provision

decision making.

• MeasurementData: This component represents the metrics that we need to

collect for the Monitor component.

56

• MLEnvironment: It represents the commonality of configurations required

between machine learning models of certain group of algorithms.

• Metrics: The numeric values of inputs, outputs, tuning parameters, and scores

are of different types and scales. The values of inputs are time series, and order-

ing is essential; while the value of performance scores are singular real numbers.

The outputs are trained values of model parameters that are also real numbers.

The output also contains inference results as the probability that are real num-

bers between 0 to 1. To customize these variations of data types, one possible

solution is using the default data types with constraints attached. However, this

way lacks of explicitly in the first order of modeling, as the characters of the

data type depending on the constraints defined behind. Instead, we introduce a

data type, called Metrics for representing metrics of which each attribute is of a

specific type. The attribute Percentage is of double type in the range of 0 to 1.

The Byte attribute has the type of positive long values. The attribute Double

is used for values of parameters and scores. Finally, the attribute BytePerSec

is used to capture metrics of rates, such as NetworkIn and NetworkOut system

level network communication metrics.

4.2.3 Auto-scaling Process Abstraction

The life-cycle of an auto-scaling service includes five main parts (Figure 26): The Auto

Scaling Group is responsible for grouping and managing instances automatically. The

Monitor (1) checks the load on the Auto-Scaling Group based on defined metrics (CPU

or memory utilization). When the load for the defined metric exceeds the configured

threshold, the Scaling Policy (2) is invoked by the Monitor to check the defined policies

for the current situation. We have two types of policies: a threshold-based policy and

a schedule-based policy. For the threshold-based policy, if CPU usage reaches up to

80%, the Scaling Engine needs to add more resources. For the schedule-based policy,

the Scaling Engine adds more resources during the Black Friday. By checking the

policies, the Scaling Policy (3) communicates with Scaling Engine to take an action.

The Scaling Engine (4) is required to check the Launch configuration if there is a

need for more resources.

57

Figure 26: Predictive Auto-scaling System based on Monitor-Analyze-Plan-Execute
(MAPE) loop

4.2.4 Auto-scaling System Meta Model

In this section, we present the meta model of an auto-scaling system. In this model,

we identify features of auto-scaling as monitoring, scaling out, scaling in, and the

auto-scaling group. We focus on the techniques, derived functions and associated

connections of each feature. We build a meta model to capture these artifacts shown

in Figure 27.

The resulting model provides a CPIM that represents the main auto-scaling com-

ponents. The CPIM components and their responsibilities are as follows:

• AutoScalingGroup: This represents a group of virtual machine instances that

the application deployed on. AutoScalingGroup has a launch configuration and

a list of virtual machine instances. It is related to the Monitor component

for sending the states of instances. AutoScalingGroup communicates with the

LoadBalancer component to allow LoadBalancer automatically spreads incom-

ing traffic across the instances in AutoScalingGroup.

• Monitor: collects states (or metrics) of virtual machine instances within an

AutoScalingGroup.

• PolicyScaling:The current auto-scaling systems are following two approaches:

58

Figure 27: Cloud Platform Independent Model for Auto-scaling System

threshold-based and schedule-based. PolicyScaling inputs to ScalingEngine on

actions such as scaling in or scaling out.

• ScalingEngine: This acts on the decision from PolicyScaling to create or delete

virtual machine instances.

• CloudServiceBroker: This specifies the cloud platform name, security-username

and security-password. This information is used to create security credentials

to access the target cloud platform.

• LoadBalancer: This is responsible for controlling the load spread equally

across virtual machine instances in an AutoScalingGroup.

• LaunchConfiguration: an essential entity to instantiate a new instance in

AutoScalingGroup. It contains primary configuration information.

• Instance: This represents the virtual resource of cloud computing. It can be

storage, computing or network resources.

• Stack: This contains a list of software package information. Each software is

installed on an image that is eventually launched on a newly provisioned node.

59

Service Level

Auto-scaling System Level

AG1 AG2 AGn

Autoscaling Engine

VM

VM
VM

VM

VM
VM

Service 1

<<Monitor>>
Monitoring

Service

<<Analyze>>
ML Service

<<Plan>>
Controller

<<Execute>>
Controller

Cloud Infrastructure Level

MAPE Loop

ML
Model

Instance

Deployment
Scripts

ML
APIs

ML
Results
/Scores

Machine Learning Entities

Service 2 Service 3 Service n

Figure 28: Predictive Auto-scaling System based on Monitor-Analyze-Plan-Execute
(MAPE) loop

• BasicImage: This contains a pre-configured operating system and installed

software packages, which is used to quickly create new instances of a computing

resource.

4.2.5 The Predictive Auto-scaling System

To have the predictive auto-scaling system, we need to integrate machine learning

entities with the auto-scaling system. Figure 28 presents the machine learning entities

as: ML Model Instance, Deployment Scripts, ML APIs, and ML Results and Scores.

During the Design Phase, ML model instance is created and transferred to a set

of deployable scripts. Then, the Deployment Scripts are deployed with the help

of Ansible (DevOps tool) and generate the ML APIs (Deployment Phase). The

controller uses the ML APIs to run the models and receive the prediction results and

scores during Run-time Phase. More details about implementation and deployment

process can be found in [11].

4.2.6 The Predictive Auto-scaling System Cloud Indepen-

dent Model

In our work, we build a new meta model shown in Figure 29. The CPIM represents

the main predictive auto-scaling components. The CPIM model hides cloud platforms

details and remains at the service level abstraction.

60

Figure 29: Cloud Platform Independent Model of Integrated Machine Learning with
Auto-scaling Service

61

In order to support a predictive approach for auto-scaling process with the help of

machine learning forecasting, we integrate workload forecasting with the auto-scaling

process. We need to coordinate and orchestrate two models (CPIMs for auto-scaling

and machine learning), so we add two more components:

• Data Storage is responsible for keeping the information and data related to

models such as the name of algorithm, the model id, the value of parameters, the

performance metrics results and the score. In addition, it stores the monitoring

data. The data collected from the Monitoring instance becomes the training

samples to learn a workload pattern for prediction and forecasting.

• Controller coordinates and manages the Monitor, the MachineLearning, and

the Prediction. The Controller is responsible for invoking the Monitor to collect

the workload metrics. The Controller calls the MachineLearning to train models

and launches the Predictor. Also, The Controller also invokes the scaling engine

after having received the prediction results.

4.3 Cloud Platform Specific Model

The idea of the proposed framework is to reduce as much as possible the deployment

process in the Cloud by using an abstraction layer isolating the predictive auto-scaling

system from the underlying Cloud platform and hiding details. In fact, shielding users

from having to manually write scripts using low-level APIs hides the deployment

complexity and reduces manual efforts and the time required to configure Cloud

resources.

The CPIM is transferred to the model objects which includes class objects and

associations that is specified for a target Cloud platform. A CPSM model is created

as a model instance of the CPIM using the EMF generator function. The CPSM

objects require details to be customized for a specific Cloud platform. The next step

is to add model objects with their attribute values configured. The model object is

selected by using the EMF editor (Figure 30). Upon the creation of a model object,

the rule defined at the class level is checked and validated. The Epsilon Validation

Language validates the CPSM in order to ensure the model generated is correct and

complete.

62

A CPSM model is created as a model instance of CPIM using the EMF generator

function. Such an instance model requires details to be customized for a cloud specific

platform (as shown in Figure 31).

The question of how to integrate the machine learning with the auto-scaling sys-

tem is interesting. The life-cycle of auto-scaling system includes five common parts:

the auto-scaling group, the monitor, the scaling policy, the scaling engine and the

launch configuration. The machine learning service also includes several components:

monitoring, data and model storage, machine learning algorithms, validation, and

model selection. Several cloud services need to work together to deliver the pre-

dictive auto-scaling system. Each cloud provider offers different types of APIs and

programming languages. There is a need to automate and orchestrate the integration

process.

Instead of having separate deployment processes for machine learning and auto-

scaling, we have one framework for the predictive auto-scaling. The model-driven

development principle is used to describe the predictive auto-scaling system at the

service level. The mapping to the cloud platform-specific configuration is automati-

cally generated and deployable.

4.3.1 CPSM for Machine Learning Model

For a machine learning instance, we need to choose programming language and avail-

able programming libraries. One prominent example is the Python platform for a

machine learning environment.

The MLEnvironment component allows us to specify the required configuration

for building an environment for running machine learning models. Figure 39 demon-

strates how the MLEnvironment instance is created from CPIM and specifies the

setting and configuration.

Figure 32 depicts an example of specifications for the machine learning instance.

The instance is for SVR algorithm and CPU metric. In addition, we use MAE,

RMSE, and R2 as performance metrics (Score) to evaluate the accuracy of the ma-

chine learning model. In MachineLearning instance, there is an attribute called Re-

poURL. This attributed addresses the location of machine learning codes. We are

using a central repository called GitHub, so in this stage we need to add the address

of the location of the codes.

63

Figure 30: Adding model objects to CPSM

64

Figure 31: An example of creating CPSM from CPIM

Figure 32: Example of Cloud Platform Specific Model for Machine Learning Instance
(SVR Algorithm)

65

Figure 33: Example of Cloud Platform Specific Model for Machine Learning Instance
(LSTM Algorithm)

Moreover, there is another example of CPSM for LSTM algorithm (Figure 33).

We specified three different parameters for the LSTM algorithm:

• LearningRate: controls how quickly or slowly a neural network model learns

a problem.

• HiddenLayer: represents the number of layers in deep learning neural net-

works.

• HiddenUnit: refers to the dimensionality of the ’hidden state’ of the LSTM.

LSTM and BI-LSTM have more parameters such as Epochs and Batch Size. The

proposed CPIM of machine learning allows us to define several parameters based on

our need. In the CPIM of machine learning, we have a MLParameter class and it has

a relation of one to many with MachineLearning class. So, based on requirements,

we can decide which parameters fit and how many parameters are needed.

66

Table 20: Notations for Constraints and Rules

Variables Description
m MachineLearning class
Im instance of MachineLearning class
◦ composition relation
vm Instance
VMs Group of instances
algn Machine learning algorithm
Algs Group of algorithms
CompalgnInstancevm Algorithm algn is deployed

on vm (instance)

4.3.2 Constraints and Rules

Table 20 presents a description of the notations used in constraints and rules. The

constraints that need to be satisfied in order to have a machine learning service for

the auto-scaling system are presented below:

• At least one machine learning (virtual machine) instance is required:X
vm∈VMs

number ofvm > 0

• Machine Learning algorithms must be deployed on the machine learning in-

stance:

∀algx, algy|algx, algy ∈ Algs : (∀vm|vm ∈ VMs :

CompalgxInstancevm ≡ CompalgyInstancevm)

• We have previously discussed variation of tuning parameters which produce a

new instance of machine learning. Therefore, tracking the instance linkages and

ensuring consistency is mandatory.

67

Im ◦ Iinput ⇒ Im(V ersion) ≡ Iinput(V ersion)

Im ◦ Ioutput ⇒ Im(V ersion) ≡ Ioutput(V ersion)

Im ◦ Iscore ⇒ Im(V ersion) ≡ Iscore(V ersion)

Im ◦ Ipar ⇒ Im(V ersion) ≡ Ipar(V ersion)

4.4 Model Validation

Epsilon Validation Language (EVL) delivers model validation capabilities by defining

constraints and conditions on models. The constraints are specified within a context

which represents the set of model instances that will be evaluated against the con-

straint. The constraint may have a guard that determines the condition to be met.

If this is not satisfied, an appropriate error message will be displayed. EVL supports

two types of constraints: errors and warnings. Error constraints are critical and cause

the execution to terminate. EVL also provides a feature for fixing those validation

errors programmatically. Therefore, EVL is used to validate the CPSM. We define

the set of constraints that need to be satisfied in CPSM.

The rule is about defining the value of attributes. There are two types of at-

tributes. For the first type, the rules need to check the input to ensure that they are

not empty. In order to have accurate deployment, the input of those attributes are

significantly essential, and they should define adequately. For the second type, we

set the warning and suggest the default value. For example, for a machine learning

object, we need to specify the name of algorithms and tuning parameters. Otherwise,

this object cannot be mapped to a specific deployable service. The code snippet in

Figure 34 demonstrates example of constraints that defined for CPSM.

The MachineLearning class is a composition class of composing classes such as In-

put, Output, MLParameter, and Score. We have discussed the fact that any variation

of tuning parameters produces a new instance of machine learning. Therefore, track-

ing the instance linkages and ensuring consistency becomes a mandatory requirement.

Such a requirement is defined as rules for checking instance consistency by the at-

tribute of Version. There is a rule that each instance which has composition instance

have to have the same value for attribute of Version. Figure 35 demonstrates the rule

in modeling language format.

68

Figure 34: Example of EVL rules to validate CPSM

Figure 35: The machine learning meta-model rule in modeling language format

69

4.5 Model Transformation

A CPSM is the further input of the Deployment phase. By the help of Epsilon (EGL),

the CPSM is transferred to a set of deployable scripts. The model to deployment

entails transforming the models of a predictive auto-scaling service to scripts. We

automate this transformation using Epsilon [71] on top of EMF. Epsilon includes

Epsilon Object Language (EOL) and Epsilon Generation Language (EGL) for parsing

EMF models, UML models, and XML files to generate text with EGL templates.

• The EGL template contains a static text and a dynamic text retrieved from

CPIM and CPSM models defined using EMF.

• The EGL rule defines the transformation templates and targets.

• The EGX program is the driver to execute EGL rules within Eclipse to launch

deployment tools to run on the scripts and/or configuration files created using

EGL.

An example of this is how, for building machine learning instance on AWS, we

need to transfer CPSM to a JSON file for using Packer as a DevOps tool. The Packer

is a deployment tool for building pre-configured images for multiple platforms from a

single source of configuration. Packer uses a JSON configuration file to describe the

related information of software packages in an image. Packer installs and configures

all the software at the time.

In this example, the CPSM for AWS is called AWSPSM. First, we need EGL

template that is generating the JSON file. It describes the basic image of a data node

(Figure 36 demonstrates part of our EGL template). The tag pair [% %] is used to

limit a dynamic section. Any text not enclosed in such a tag pair is contained in a

static section. Second, we defined the EGL rule which is presents our rule in EGL

for generating the builder JSON file for Packer (Figure 37). The PackerImage rule of

the EGX program will transform every AWSPSM elements into a target file (in this

case is our JSON file), using the specified template (AWSPSM.egl).

Finally, we need to execute EGL rule within Eclipse to run deployment tools

(Packer) to run on the JSON file. An EGX program (shown in Figure 38) coordinates

EGL rules and launches Packer to run on the builder.json file created from our CSPM

instance on AWS AWSPSM.

70

Figure 36: The EGL template for generation code from EMF models

Figure 37: The EGL rule for generating JSON file

71

Figure 38: The EGX driver for launch Packer

4.6 Deployment Phase

The deployment process of predictive auto-scaling on a target cloud provider may

require the construction of different vendor-specific configuration artifacts. Also, in-

tegrating machine learning services with an auto-scaling system requires a substantial

amount of manual tasks. We are proposing a model-driven approach to abstract and

automate a predictive auto-scaling system through model-driven techniques and De-

vOps. In order to deploy the deployment scripts on the target cloud platform, we

employ DevOps tools: Packer and Ansible. Cloud-based DevOps processes facili-

tate the continuous delivery of infrastructure and services. Infrastructure as Code is

the cornerstone of DevOps for automating the infrastructure provisioning based on

practices from software development.

We used Packer [15] as a DevOps tool in order to create pre-configured images.

Packer is an open source tool for creating identical machine images for multiple plat-

forms from a single source of configuration. Packer installs and configures all the

software for a machine at the time the image is built. Moreover, Packer uses a JSON

template to create an image.

A JSON template has the following three main parts:

72

Table 21: Ansible Terms

Terms Definition
Host and Groups A host is a remote machine that

Ansible manages. Hosts can be organized
in groups. All hosts have a name (IP or
domain name) where they can be reached.

Inventory A file that describes Hosts and
Groups in Ansible Modules Modules are the
units of work that Ansible sends to remote
machines. Ansible refers to the collection
of available modules as a library.

Playbooks Playbooks are the language by which Ansible
configures, administers, or deploys systems.

Plays A play is a mapping between selected
hosts and the tasks that run on those
hosts to define the role that those systems
will operate. A playbook is a list of plays.

• Variables: where custom variables are defined.

• Builders: where all the required image parameters are mentioned.

• Provisioners: where Ansible playbook for configuring and settings in the image

is integrated.

Ansible [1] allows the management of infrastructure and easily adapts to new

cloud environments in a migration scenario. It is a configuration management and

provisioning tool, similar to Chef, Puppet or Salt. In addition, Ansible supports pub-

lic and private Cloud technologies and vendors like AWS, Google Compute Engine,

Microsoft Azure, OpenStack, Rackspace Cloud service and VMware. In our work, we

chose Ansible to demonstrate the process which is simplified in terms of communica-

tion via standard SSH commands. Furthermore, Table 21 contains some important

terms.

4.6.1 How to create machine learning environment?

To perform training and prediction on workload history, we need to create a machine

learning environment. Figure 39 demonstrates how CPSM of the MLEnvironment

instance transfer to deployment script are used by Packer.

73

Figure 39: Sequence of Actions for Generating CPSMs and Deployment Scripts for
Machine Learning Environment and Models

74

Figure 40: Example of JSON template for creating an machine learning image

One of the classes in our CPIM is the MLEnvironment class which represents the

setting and configuration for machine learning instance and help us launch completely

configured cloud instance from the pre-build image (Figure 39). A machine (instance)

image is a single static unit that contains a pre-configured operating system and

installed software which is used to quickly create new running machines. Machine

image formats change for each platform.

Then, in CPSM instance (shows in Figure 39), we specify the environment config-

uration such as language, package and library. As previously mentioned, the CPSM

is in XML format and it must be automatically transferred it to JSON file for Packer.

To create an image, we employ Packer. Figure 40 demonstrates A JSON template

used by Packer. The created image by Packer is used to instantiate machine learning

instance.

4.6.2 How to deploy machine learning codes on the environ-

ment?

When the machine learning instance is ready, we need to deploy machine learning

algorithms. The related classes in our CPIM are MachineLearning, Input, Output,

Score, MLParameter. Then, in CPSM instances (shows in Figure 39), we specify the

input, output, performance metrics and hyperparameters for each algorithm. As Fig-

ure 39 illustrates, In MachineLearning instance, there is an attribute called RepoURL.

75

Figure 41: Example of XML template for a machine learning algorithm

This attributed address the location of machine learning code for algorithms.

This attribute addresses the location of machine learning code for algorithms. We

are using Ansible to pull the machine learning codes from the repository. Ansible

allows for the management of infrastructure and is easily adaptable to new cloud

environments. In this research, code from a central repository called GitHub is being

deployed. In addition, CPSM instances for the machine learning model are in an

XML format (Figure 41). It contains the essential information such as input, output,

score, and version. These XML file is parsed and converted YAML file (Figure 42)

for Ansible.

4.6.3 Architecture Deployment on Microsoft Azure

Microsoft Azure [3] is a cloud computing service created by Microsoft for building,

testing, deploying, and managing applications and services on Microsoft cloud plat-

form. Figure 43 illustrates the deployment approach for our proposed architecture

on the Microsoft Azure. We use the PowerShell script to deploy the CPSM model.

The Ansible script runs the PowerShell script and then the Azure Function App is

deployed with the necessary codes. The following entities are deployed by the Ansible

script:

76

Figure 42: Example of YAML template for cloning code from GitHub [11]

Figure 43: Architecture Deployment on Microsoft Azure

77

Figure 44: Grafana Plug-in a on Azure Instance

• Monitoring service: The Azure Monitoring is responsible to collect the generated

workload on instances of the system under test (1). It monitors base-level

metrics including CPU percentage or Memory usage and stores them in the

Azure Storage (2.2). We use the Prometheus and the Grafana plugin for Azure

Monitor service. Prometheus [16] is a monitoring solution for storing time

series data like metrics. Grafana [10] allows to visualize the data stored in

Prometheus (and other sources). Figure 44 demonstrates Grafana plugin a on

Azure instances. The following queries are the example of the queries for each

metric:

- Memory query: avg ((node memory MemTotal bytes-node memory MemFree bytes-

node memory Cached bytes)/(node memory MemTotal bytes) * 100)

- CPU query: avg(100-(avg by(instance) (irate (node cpu seconds totalmode=”idle”

[5m]))*100))

- Network in: avg(node network receive bytes total)

- Network out: avg(node network transmit bytes total)

• Data Storage service: The Microsoft Azure Storage is a powerful cloud service

and includes three different data services: Blob storage, File storage, and Queue

storage. In our implementation, we utilize the Azure Blob storage. The data

78

Figure 45: Azure Blob Storage files

collected from the Azure Monitoring becomes the training samples to learn

a workload pattern for prediction and forecasting. The Azure Blob Storage

saves the model training results and the collected metrics as inputs for training.

Figure 45 demonstrates the files of blob storage in Azure. The ML-model.json

contains the model information. The following information is an example of the

model information and the data is stored in JSON format.

”selected model”: ”LR”, ”model id”: ”ski model LR.pkl”, ”params”:”penalty”:

”l2”, ”dual”: false, ”tol”: 0.0001, ”C”: 1.0, ”fit intercept”: true, ”intercept scaling”:

1, ”solver”: ”liblinear”, ”max iter”: 100, ”multi class”: ”ovr”, ”verbose”: 0,

”warm start”: false, ”n jobs”: 1 The database.json contains the information

related to add or remove resources, also the dataset.csv is stored the time se-

ries workload. In addition, the dataset-config.json file includes the configuration

data that is related to dataset. The following example shows the information re-

lated to our dataset. ”type”: ”csv”, ”name”: ”dataset.csv”, url”:”dataset.csv” ,

”has header row”: ”yes”, ”train columns”: [”col name”: ”cpu”, ”col number”:

”2”, ”col name”: ”memory”, ”col number”: ”3”, ”col name”: ”network in”,

”col number”: ”4”, ”col name”: ”network out”, ”col number”: ”5”], ”multi-

class target col”: ”col name”: ”final class”, ”col number”: ”7”, ”regression tag”:

”col name”: ”final target”, ”col number”: ”6”, ”expt model name”: ”ski model”

• Controller service: The Azure Function App is an automation tool to manage

different resources. The Azure Function App periodically invokes the Azure

79

Table 22: Hardware Specification of Machine Learning instances on AWS and Azure

Cloud Provider Type VCPU Memory
Azure B2s 2 4 GB
AWS M3.medium 2 4 GB

Monitoring to collect the workload metrics (2.1). Also, the Runbook calls the

machine learning algorithms to train models (2.3). Furthermore, this service

launches the prediction service using a trained model (2.9). Azure Functions

can be triggered on a schedule. When a function timer is triggered, the function

performs the responsibility.

• Azure Data Science Virtual Machine: The monitored data from the Azure Blob

Storage is retrieved and then converted to the proper dataset for our machine

learning algorithms (2.4). The Data Science Virtual Machine is a customized

VM image on the Microsoft Azure cloud built specifically for doing data science.

There are several pre-installed machine learning toolkits on that VM, so we

can have different machine learning algorithms for our implementation (2.3).

As customized VM image on the Microsoft Azure cloud explicitly built for

data science. Furthermore, we implement a REST API to access the inference

model as a service for the real-time prediction phase. This service is called by

the Azure Function App used to perform training and prediction. In order to

implement The inference process, we use the scikit-learn [17] which is a free

machine learning library for the Python. The capacities of Azure instances are

presented on Table 22. At runtime, the models are constantly updated whenever

a new dataset for the next two weeks arrives. New models are created, new

calculated scores are incorporated to the model storage, and older scores are

removed. The forecasting process is then repeated, which may lead to changes

in the models, performance metrics, and score results.

• Resource Group: It groups Azure instances (resources) for scaling and managing

based on the minimum and maximum number of running instances allowed at

any time.

The Ansible playbooks map the Azure Autoscale service. The Ansible resource

group playbook contains the capacity setting which indicates the minimum, maxi-

mum, and default values for number of instances. Also, there is an Ansible playbook

80

Figure 46: The example of Ansible Auto-scaling group for Azure

Figure 47: CloudFormation Template for Creating AWS Lambda

for setting the rules, policy, and scale actions. Figure 46 illustrates an example of

Ansible auto-scaling group playbook.

4.6.4 Architecture Deployment on Microsoft AWS

For AWS, we use the AWS CloudFormation service to deploy machine learning ele-

ments. The CloudFormation service includes a template that contains all the infor-

mation extracted from the CPSM model. When the template is submitted by the

Ansible script, the CloudFormation service launches the necessary resources such as

a Machine Learning EC2 Instance, a Lambda Function, and a DynamoDB Storage.

The example of the CloudFormation template for creating AWS Lambda (Figure 47).

The following Figure 48 shows our solution that we have adopted for experimenting

with Amazon cloud environment. The following entities are deployed by the Ansible

script and the CloudFormation service on the AWS:

• Monitoring service: The CloudWatch tracks metrics, generates log files, sets

81

Figure 48: Architecture Deployment on Microsoft AWS

alarms, and automatically sends alarm to AWS resources (1). It is responsible

for retrieving logs and storing them into AWS S3 (2.2). Amazon Cloudwatch

monitoring service provides hypervisor-specific metrics. To have OS-specific

metrics such as memory utilization, we need to add an extra monitoring script.

So, we can collect the percentage of system memory as a custom metric. In

addition, we need to standardize the range of variables and generally performed

during the data processing step. Since the range of values in the raw data

varies widely, it is required we normalize the metrics so that they are all in the

same scale.Network metrics are in Bytes which need to be transformed into a

percentage. We need to measure the network bandwidth between Amazon EC2

instances in order to convert Bytes to a percentage. AWS suggests iPerf3 [12]

which is a tool for achieving measurements of maximum achievable IP net-

works. We used this tool to calculate the maximum network bandwidth and

then convert the collected metrics to percentage form.

• Data storage service: The S3 acts as our data warehouse where we can efficiently

retrieve datasets when we are testing or training our models. We use the AWS

S3 as the data storage.

82

• Controller service:We use Amazon Lambda function to orchestrate our different

parts of the architecture. Lambda employs a serverless architecture which means

the code runs without managing any servers or a backend service. The Lambda

calls the CloudWatch to collect the workload metrics (2.1). Also, the Lambda

function calls machine learning API to train our models (2.3) and the prediction

service for prediction functions (2.9). We create a Lambda function and direct

AWS Lambda to execute it on a regular schedule. We can specify a fixed rate

(for example, execute a Lambda function every hour or 10 minutes).

• Machine learning algorithms service: We implement different machine learning

models on EC2 instance (2.3). The workload history is pulled from S3 (2.4),

training the models and test them.

• Validation service: By machine learning EC2 instance, we calculate performance

metrics to evaluate the result of each algorithm (2.5). Once the validation is

completed, the parameter values are stored in AWS DynamoDB as the model

storage (2.6).

• Model selection service: The result of validation service is retrieved from Dy-

namoDB (2.8) and used for selecting a suitable model for the prediction (2.7).

• Model storage service: DynamoDB stores our machine learning models, the

result of performance metrics, and scores.

• Prediction service: The machine learning service and the prediction service are

implemented in the machine learning EC2 instance. The selected model, which

is retrieved by the prediction service from the DynamoDB (2.10) is used for the

prediction part (2.9). Then, the result is returned to the auto-scaling service

for decision making.

There is an Ansible playbook which is responsible for grouping the EC2 instances

in order to scale and manage the instances, based on the minimum and maximum

number of running EC2 instances(Figure 49). Also, we have an Ansible playbook

which provides all the necessary information that is required to instantiate EC2 in-

stances. In addition, a set of policies for scaling in and out are defined on the separate

Ansible playbooks.

83

Figure 49: The Ansible Auto-scaling group for AWS

Figure 50: Example of Cloud Platform Specific Model for Controller

84

4.7 Run-time Phase

The run-time phase triggers the execution of deployed machine learning components

upon the collection of the system level metrics. The core component to bridge the

machine learning components and components of the cloud auto-scaling system is the

Controller component. Figure 50 shows a cloud platform specific model generated

for the Controller instance on the AWS cloud. The Controller is a schedule-based

service, and it is trigger by a time interval to call APIs of machine learning services.

For example, when the training time is triggered, the Controller calls the Machine-

Learning to start model training stage for constructing, testing and validating the

models. Each machine learning instance contains one machine learning algorithm.

The API is defined on the instance level. The same machine learning algorithm with

different tuning parameter values produces multiple instances. Each instance has its

unique REST API.

4.8 Summary

In this chapter, we answered the second and third research questions:

RQ 2. Does representing machine learning models help an auto-scaling

system?

RQ 3. How to integrate the machine learning with the auto-scaling

system?

Motivation: The machine learning techniques need to be combined with the

auto-scaling process in order to scale based on the prediction results. Integrating

the machine learning components with the auto-scaling system requires that a sub-

stantial number of manual tasks be completed. Also, the life-cycle of auto-scaling

system includes five common parts: the auto-scaling group, the monitor, the scaling

policy, the scaling engine, and the launch configuration. Machine learning service also

includes several components: monitoring, data and model storage, machine learning

algorithms, validation, and model selection. Several cloud services need to work to-

gether to deliver the predictive auto-scaling system. There is a need to automate and

orchestrate the integration process. The deployment process of predictive auto-scaling

on a target cloud provider may require the construction of different vendor-specific

configuration artifacts.

85

Approach: We propose a high-level abstraction for modeling the entities of the

machine learning models such as machine learning algorithm types, inputs, outputs,

parameters, and evaluation scores. Then, we integrate it with proposed auto-scaling

meta model to have a predictive auto-scaling model. Moreover, instead of having

a separate deployment process for machine learning and auto-scaling, we have one

framework for the predictive auto-scaling. The model-driven development principle is

used to describe the predictive auto-scaling system at different levels and the mapping

to cloud platform-specific configuration is automatically generated and deployable.

We are proposing a model-driven approach to abstract and automate a predictive

auto-scaling system through model-driven techniques and DevOps.

86

Chapter 5

Evaluation

In this chapter, the results of the experiments conducted to evaluate our proposed

approach are presented. The experiments are deployed on three cloud environments:

Rackspace, Amazon EC2, and Microsoft Azure. The goal of these experiments is

to evaluate the advantage of using a model-driven approach for machine learning

service in cloud computing and to illustrate how we combine this approach with the

DevOps approach. In addition, the subsequent goal is to measure the run-time cost

of machine learning-based forecasting for the auto-scaling process and demonstrate

how the run-time cost is reduced with the help of this proposed architecture.

5.1 Evaluation Metric (CMP)

Cloud Migration Point (CMP) approach has been developed in [64] as an important

software size measure for legacy-to-cloud migration projects. They showed that CMP

is more suitable for cloud migration projects than other existing size metrics in pre-

vious literature since it captures special aspects of the cloud migration context. The

CMP model takes into consideration cloud-specific dependencies for each migration

task. This model satisfies all necessary conditions of a software size measurement

and it has been empirically validated as a predictor of effort estimation for cloud

migration projects. We use CMP as an evaluation metric to estimate the deployment

effort of our proposed model-driven framework.

The cloud deployment process includes five main components, namely installation,

configuration, database migration, code modification, and network connection. Since

87

the data node of the NDBench and DVD store consist of the full stack of packages,

the predictive auto-scaling service deployment involves building an image of software

packages and launching the image on provisioned instances. There are no application

code changes required. In addition, for the machine learning service, we employ the

Scikit-learn library. The codes are applicable to both cloud environments. There are

no code changes required. Our evaluation involves installation, configuration, and

model template modification.

The evaluation is structured into three phases, corresponding to the Cloud Mi-

gration Point (CMP) [64] approach. During the first phase, the deployment tasks

are analyzed to identify and classify the tasks into three categories, namely the Stor-

age and Database, the Template Changes, and the Installation and Configuration.

In the second phase, each task is assigned a complexity level, which is determined

by the functionality of the cloud services and the interaction of the cloud services

with each other. In the last phase, the CMP value is computed as a weighted sum.

Based on [64], each function (task) is weighted based on its type and the level of its

complexity, in agreement with standard values as specified in the Counting Practices

Manual [7]. Interviews and surveys used to collect data from different projects for

the weight of tasks.

The evaluation starts with identifying the type of deployment tasks.

• Storage and Database- Tasks involved account for authentication and establish-

ing connections.

• Template Changes- Deployment tasks consist of creating template and model

objects. Also, tasks include specification of attributes.

• Installation and Configuration- Setup software installation scripts and configure

the values of environment variables.

The behavior of each task is taken into account to evaluate its complexity level

in terms of the number of methods changed, the number of services edited and the

number of attributes modified. The value of CMP is defined as a weighted sum of its

three categories CMPi with i ∈ {Installation and Configuration, Template Changes,

88

Table 23: Complexity Evaluation for Each Installation and Configuration Task

Configuration
Installation
Run Package Installation
No-Installation Library

< 2 Low Low Average
2− 5 Low Average High
>= 6 Average High High

Storage and Database}.

CMP =
2X

i=0

CMPi ∗ wi (11)

Where CMPi is the value of CMP of type i, and wi is the weighted value for CMP

type i.

CMPIns

The Installation and Configuration category (CMPIns) reviews tasks such as installa-

tion of software, servers, third-party library, and configuration environment variable.

All tasks are classified into two types:

• Infrastructure level: Installation of infrastructure level software and servers.

For example, setting up an Azure or AWS instance or image, installing OS, and

installing the database such as S3 and Blob.

• Application level: Configure application level environment and libraries.

We estimate the complexity level (Low, Average, or High) of each task based on

the number of configuration steps and installation type as shown in Table 23. Each

task is allocated with a weighted value as shown in Table 24 based on its type and

complexity level.

Table 24: Weight Evaluation for Each Installation and Configuration Task

CMP Type
Complexity Level
Low Average High

CMPIns
Application 1 2 7
Infrastructure 1 3 9

89

Table 25: Complexity Evaluation for Each Storage and Database Task

Storage and Database Complexity Level
Database Changes High
API Changes Average

CMPdb

First, all cloud storage related tasks are grouped into two types, database changes,

and API changes. The complexity of each task is determined based on differences

between cloud storages and steps for configuring APIs as shown in Table 25. Then,

each task is allocated with a weighted value as shown in Table 26 based on its type

and complexity level.

Table 26: Weight Evaluation for Each Storage and Database Task

CMP Type
Complexity Level
Low Average High

CMPdb
Database Changes 1 4 7
API Changes 1 3 6

CMPcode

The Template Changes category CMPcode assesses all tasks related to create or modify

a new model object and a template. Three different types are defined to capture

aspects of code and template changes:

• Create and Instantiation: Tasks that accommodate the creation of a new model

object or template.

• Add or Remove Attributes: Each cloud service requires a set of input (attribute

value) and this type cover tasks related to changes in attributes.

• Change or Edit Service: Different cloud services communicate with each other

in order to deliver service or functionality.

Based on three types, there are three dimensions to evaluate complexity level as

shown in Table 27. Then, each task is allocated with a weighted value as shown in

Table 28 based on its type and complexity level.

90

Table 27: Complexity Evaluation for Each Template Changes Task

Create and Instantiation
Add or Remove Attributes
0− 3 4− 7 7− 10

0− 4 Low Low Average
5− 8 Low Average High
>= 9 Average High High

(a) For Change or Edit Service (0− 2)

Create and Instantiation
Add or Remove Attributes
0− 4 5− 8 >= 9

0− 3 Low Low Average
4− 7 Low Average High
>= 8 Average High High

(b) For Change or Edit Service (2− 4)

Create and Instantiation
Add or Remove Attributes
0− 3 4− 7 >= 8

0− 2 Low Low Average
3− 6 Low Average High
>= 7 Average High High

(c) For Change or Edit Service (>= 5)

91

Table 28: Weight Evaluation for Each Template Changes Task

CMP Type
Complexity Level
Low Average High

CMPcode
Change or Edit Service 1 2 7
Create and Instantiation 1 4 9
Add or Remove Attributes 1 3 6

5.2 Evaluation Scenarios

We devise scenarios that auto-scales data nodes of a benchmark application on three

cloud platforms: AWS, Rackspace and Azure. The goal of these experiments is to

evaluate the advantage of using model-driven for predictive auto-scaling service in

cloud computing and to show how the deployment effort is reduced. We use the

Netflix Data Benchmark (NDBench) and Dell DVD store application to evaluate our

scenarios.

Scenario 1) Deployment Effort of Manual Process Cross Platforms: A

hybrid cloud environment is, typically, a cloud computing environment that uses a

combination of on premises, private cloud and public cloud services by combining

between the two platforms. The combining is defined as allowing workloads to move

between private and public clouds as computing needs and costs change. The hybrid

cloud solutions give businesses greater flexibility and more data deployment options.

Sometimes a monolithic middle-ware is used by hybrid cloud computing to integrate

different services and resources. For instance, the public and private cloud may offer

different auto-scaling techniques that are not compatible with each other even by using

a middle-ware. To have the predictive auto-scaling system, we embedded machine

leaning service to our general scaling strategy. However, there are still several steps

to deploy the predictive auto-scaling system. So, the model-driven approach is acting

as a bridge to facilitate the deployment process. For the first scenario, we are focusing

on deployment effort differences across cloud platforms on the hybrid environment.

In this case, we review the auto-scaling system on AWS and Rackspace. AWS and

Rackspace offer different mechanisms for configuration and deployment for an auto-

scaling service.

Scenario 2) Deployment Effort of Manual vs. MDD Without ML: In

this scenario, we compare two categories for DVD store on AWS and Rackspace cloud

platforms. In the first category, we deploy the auto-scaling system manually. Then,

92

Table 29: Manual procedure of auto-scaling data nodes

AWS Rackspace
Download AWS Java SDK Download Rackspace API
Install Java Install Java
Configure username and password on Eclipse Install Apache Jclou
Call Auto-scaling API Provide URL for authorizing
Create EC2 Instance Call Auto-scaling API
Create AMI Create Cloud Server
Create Auto-scaling Group Create Cloud Server Image
Create Launch Configuration Create Auto-scaling Group
Create Auto-scaling Policy Create Launch Configuration
- Create Policy

we compare the result with the second category which contains deployment of the

auto-scaling system with our proposed model-driven framework.

Scenario 3) Deployment Effort of MDD vs. MDD+ML: In this scenario,

the evaluation of our model-driven framework focuses on the effort in terms of the

impact of changes required between calling auto-scaling and predictive auto-scaling

system for DVD store on AWS.

Scenario 4) Deployment Effort Manual ML vs. MDD+ML: We evaluate

the effort of our model by the scenario of reconfiguring predictive auto-scaling service

when the back-end cluster of NDBench is migrated from one cloud platform to an-

other. We measure the effort in terms of the impact of changes on both clouds (AWS

and Azure).

5.3 CMP Results

We calculate CMP for the manual deployment procedure for machine learning, manual

deployment process of the threshold-based auto-scaling service, and our model-driven

method to deploy the predictive auto-scaling service on the different cloud environ-

ment. The detail of calculations are presented in Tables 38, 39, 34, 35, 40, 41,

37, 36.

Scenario 1) For the first scenario, we are focusing on deployment effort differ-

ences across cloud platforms on a hybrid environment. In this case, we review the

auto-scaling system on AWS and Rackspace. AWS and Rackspace offer different

93

Table 30: For Scenario 1, deployment effort differences for the manual procedure
for the threshold-based auto-scaling system on AWS, Azure and Rackspace are rep-
resented. For Scenario 2, we calculate CMP for the manual deployment procedure
for the threshold-based auto-scaling system, and our model-driven method to deploy
the auto-scaling system without machine learning.

Category
DVD store NDBench
Rackspace AWS Azure AWS

Manual Auto-scaling 400 478 492 478
MDD Auto-scaling 123 123 123 123

mechanisms for configuration and deployment for an auto-scaling service. We present

a comparison between manual procedures listed in Table 29.

Scenario-2) We calculate CMP for the manual deployment procedure for the

threshold-based auto-scaling system and our model-driven method to deploy the auto-

scaling system without machine learning. Figure 51 demonstrates the comparison

between the mentioned scenarios for NDBench. There are two categories: Existing

Auto-scaling and Auto-scaling with MDD without machine learning.

1. Existing Auto-scaling

• Manual Auto-scaling service for DVD on AWS

• Manual Auto-scaling service for DVD on Rackspace

2. Auto-scaling with MDD

• MDD Auto-scaling service for DVD on AWS

• MDD Auto-scaling service for DVD on Rackspace

Scenario-3) We calculate CMP for the MDD deployment procedure for auto-

scaling system, and model-driven method to deploy the predictive auto-scaling system

for DVD store on AWS cloud environment.

Scenario-4) We calculate CMP for the manual deployment procedure for ma-

chine learning, manual deployment process of the threshold based auto-scaling system,

and our model-driven method to deploy the predictive auto-scaling system. Figure 52

demonstrates the comparison between the two-mentioned scenarios for NDBench.

There are two groups: Existing Auto-scaling and Auto-scaling with MDD ML. We

observe the reduced effort is approximately 25.3% for AWS and 26.6% for Azure.

94

Figure 51: The CMP Result for the Manual Threshold-based Auto-scaling Service,
and Proposed Model-driven Method Deployment Procedure Without Machine Learn-
ing

Figure 52: The CMP result for the Machine Learning, the Threshold based Auto-
scaling service, and Proposed model-driven Method Deployment Procedure

Table 31: For Scenario 3, CMP results for the model-driven deployment procedure
for the auto-scaling system, and the predictive auto-scaling system for DVD store on
AWS.

Category
AWS
DVD Stoe NDBench

Reactive Auto-scaling 123 123
Predictive Auto-scaling 1181 1181

95

Table 32: For Scenario 4, CMP results for the manual deployment procedure for
machine learning service, manual deployment process of the threshold-based auto-
scaling system, and our model-driven method to deploy the predictive auto-scaling
system are represented.

Category
NDBench
Azure AWS

Manual Auto-scaling 492 478
Manual Machine Learning 117 1103
MDD Predictive Auto-scaling 1181 1181

Table 33: Notation for CMP Calculation

CMP types Symbol
Database Changes T1
API Changes T2
Create / instantiation T3
Add attribute T4
Edit /change service T5
Infrastructure level T6
Application level T7

5.4 Summary

In this chapter, we answered the last research questions:

RQ 4. How to evaluate the effectiveness of the proposed approach?

Motivation: As effort is required for the deployment of the predictive auto-

scaling on a target cloud platform and the amount of effort required is diverse, the

effort estimation can illustrate the effectiveness of our proposition. We need to decide

which metric to use in order to calculate the effectiveness of the proposed approach.

Approach: We calculate the effort in terms of the impact of changes in multi-

clouds. We consider different scenarios to calculate deployment effort across multiple

cloud environments. The evaluation of our model-driven framework focuses on the

effort in terms of the impact of changes required between calling auto-scaling service

with and without the support of our model-driven framework.

96

Table 34: Manual Threshold-based Auto-scaling Deployment Actions for AWS

Tasks Types (Complexity) Weight CPM
Log in Aws T7 (Low) /T4 (Low) 1 , 1 CMP (Ins) =1*1=1

CMP (code) =2*1=2
Instantiate Instance T6 (High) / T4 (Average) 9 , 3 CMP (Ins) =3*9= 27

CMP (code) =7*3=21
Create Image (AMI) T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =2*3= 6

CMP (code) =3*3=9
Create Auto-scaling T7 (Average) / T4 (Average) 2 , 3 CMP (Ins) =2*4= 8
Group CMP (code) =6*3=18
Create Launch T7 (Average) / T4 (Average) 2, 3 CMP (Ins) =2*3= 6
Configuration CMP (code) =4*3=12
Create Scaling T7 (Average) / T4 (Average) 2, 3 CMP (Ins) =2*3= 6
Policy CMP (code) =4*3=12
Total CMP(code) =74

CMP (Ins) = 54
CMP (total) =74*5+ 54*2= 478

Table 35: Manual Threshold-based Auto-scaling Deployment Actions for Azure

Tasks Types (Complexity) Weight CPM
Log in Azure T7 (Low) /T4 (Low) 1 , 1 CMP (Ins) =1*1=1

CMP (code) =2*1=2
Instantiate Instance T6 (High) / T4 (Average) 9 , 3 CMP (Ins) =3*9= 27

CMP (code) =5*3=15
Create Managed Image T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =3*3= 9

CMP (code) =3*3=9
Create Resource T7 (Average) / T4 (Average) 2 , 3 CMP (Ins) =3*4= 12
Group CMP (code) =5*3=15
Create Profile T7 (Average) / T4 (Average) 2, 3 CMP (Ins) =2*3= 6

CMP (code) =5*3=15
Create Rules T7 (Average) / T4 (Average) 2, 3 CMP (Ins) =2*3= 6

CMP (code) =6*3=18
Total CMP(code) =74

CMP (Ins) = 61
CMP (total) =74*5+ 61*2= 492

97

Table 36: MDD Auto-scaling Deployment Actions on AWS

Tasks Types (Complexity) Weight CPM
Create CloudService T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 3*1 =4
Broker Object
Create AutoScaling T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =1*3 + 1*8 =11
Group Object
Create Instance T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Create BasicImage T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Create ScalingPolicy T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*2 =3
Object
Install Ansible T7 (Average) 2 CMP (Ins) =1*2=2
Install Packer T7 (Average) 2 CMP (Ins) =1*2=2
Total CMP(code) =23

CMP (Ins) = 4
CMP (total) =23*5+ 4*2= 123

Table 37: MDD Auto-scaling Deployment Actions on Rackspace

Tasks Types (Complexity) Weight CPM
Create CloudService T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 3*1 =4
Broker Object
Create AutoScaling T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =1*3 + 1*8 =11
Group Object
Create Instance T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Create BasicImage T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Create ScalingPolicy T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*2 =3
Object
Install Ansible T7 (Average) 2 CMP (Ins) =1*2=2
Install Packer T7 (Average) 2 CMP (Ins) =1*2=2
Total CMP(code) =23

CMP (Ins) = 4
CMP (total) =23*5+ 4*2= 123

98

Table 38: Manual Machine Learning Deployment Actions for AWS

Tasks Types (Complexity) Weight CPM
Log in Aws T7 (Low) /T4 (Low) 1 , 1 CMP (Ins) =1*1=1

CMP (code) =2*1=2
Set up Security T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =2*3=6
Group CMP (code) =3*1=3
Set up VPC T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =2*3=6

CMP (code) =4*1=4
Create Lambda T6 (Average)/ T4 (Low) 3 , 1 CMP (Ins) =5*3=15
function CMP (code) =5*1=5
Configure Setting T7 (Average) / T4 (Average) 3, 3 CMP (Ins) =4*3=12
for Lambda CMP (code) =2*3=6
Configure API T7 (Average) / T4 (Low) 2 , 1 CMP (Ins) =2*2=4
for Lambda CMP (code) =2*1=2
Create CloudWatch T6 (High) / T4 (Average) 9 , 3 CMP (Ins) =4*9= 36
Monitoring CMP (code) =5*3=15
Configure API T7 (Average) / T4 (Low) 2 , 1 CMP (Ins) =2*2= 4
for Monitoring CMP (code) =2*1=2
Create S3 T1(High) / T4 (Low) 7 , 1 CMP (db) =3*7= 21
Bucket storage CMP (code) =2*1=2
Configure the T2 (Average) / T4 (Low) 3 , 1 CMP (db) =2*3= 6
API for Storage CMP (code) =2*1=2
Create Machine T6 (High) / T4 (Average) 9 , 3 CMP (Ins) =3*9= 27
Learning Instance CMP (code) =7*3=21
Create Image for T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =2*3= 6
Machine Learning Instance CMP (code) =3*3=9
Instance
Deploy Python code T7 (High) / T4 (High) 7 , 6 CMP (Ins) =3*7= 21
for Machine Learning CMP (code) =6*10=60
Algorithms
Install Apache Server T7 (Average) 2 CMP (Ins) =1*2= 2
Configure API for T7 (High) / T4 (Low) 7 , 1 CMP (Ins) =4*7= 28
Machine Learning CMP (code) =2*1=2
Instance
Configure API for T7 (Average) / T4 (Low) 2 , 1 CMP (Ins) =2*2= 4
Prediction CMP (code) =2*1=2
Create DynamoDB table T1 (High) / T4 (Low) 7 , 1 CMP (db) =3*7= 21

CMP (code) =2*1=2
Configure API T2 (Average) / T4 (Low) 3 , 1 CMP (db) =2*3= 6
DynamoDB CMP (code) =2*1=2
Total CMP(code) =141

CMP (db) = 54
CMP (Ins) = 172
CMP (total) =141*5+54*1+ 172*2= 1103

99

Table 39: Manual Machine Learning Deployment Actions for Azure

Tasks Types (Complexity) Weight CPM
Log in Azure T7 (Low) /T4 (Low) 1 , 1 CMP (Ins) =1*1=1

CMP (code) =2*1=2
Set up Network T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =3*3=9
Security Group CMP (code) =4*1=4
Set up Route T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =3*3=9
Table CMP (code) =3*1=3
Create AppFunction T6 (Average)/ T4 (Low) 3 , 1 CMP (Ins) =5*3=15
function CMP (code) =4*1=4
Configure Setting T7 (Average) / T4 (Average) 3, 3 CMP (Ins) =4*3=12
for AppFunction CMP (code) =4*3=12
Configure API T7 (Average) / T4 (Low) 2 , 1 CMP (Ins) =2*2=4
for AppFunction CMP (code) =2*1=2
Install Grafana T6 (High) / T4 (Average) 9 , 3 CMP (Ins) =5*9= 45
Monitoring CMP (code) =6*3=18
Configure API T7 (Average) / T4 (Low) 2 , 1 CMP (Ins) =2*2= 4
for Monitoring CMP (code) =2*1=2
Create Blob T1(High) / T4 (Low) 7 , 1 CMP (db) =3*7= 21
Storage Account CMP (code) =2*1=2
Configure the T2 (Average) / T4 (Low) 3 , 1 CMP (db) =2*3= 6
API for Storage CMP (code) =2*1=2
Create Machine T6 (High) / T4 (Average) 9 , 3 CMP (Ins) =3*9= 27
Learning Instance CMP (code) =6*3=18
Create Image for T6 (Average) / T4 (Low) 3 , 1 CMP (Ins) =3*3= 9
Machine Learning Instance CMP (code) =3*3=9
Deploy Python code T7 (High) / T4 (High) 7 , 6 CMP (Ins) =3*7= 21
for Machine Learning CMP (code) =6*10=60
Algorithms
Install Apache Server T7 (Average) 2 CMP (Ins) =1*2= 2
Configure API T7 (High) / T4 (Low) 7 , 1 CMP (Ins) =4*7= 28
for Machine Learning CMP (code) =2*1=2
Instance
Configure API for T7 (Average) / T4 (Low) 2 , 1 CMP (Ins) =2*2= 4
Prediction CMP (code) =2*1=2
Total CMP(code) =142

CMP (db) = 27
CMP (Ins) = 190
CMP (total) =142*5+27*1+ 190*2= 1117

100

Table 40: MDD ML Auto-scaling Deployment Actions on AWS

Tasks Types (Complexity) Weight CPM
Create S3 T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 2*1 =3
(Data Storage)
Object
Create DynamoDB T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 2*1 =3
(Data Storage)
Object
Create Lambda T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 3*1 =4
(Controller)
Object
Create GBR T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 9*4 =45
(MachineLearning)
Object
Create SVR T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 9*4 =45
(MachineLearning)
Object
Create LR T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 5*4 =29
(MachineLearning)
Object
Create Predictor T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 6*4 =33
Object
Create CloudWatch T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =2*3 + 5*4 =26
(Monitor) Object
Create CloudService T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 3*1 =4
Broker Object
Create T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =1*3 + 1*8 =11
AutoScalingGroup
Object
Create Instance T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Create BasicImage T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Create ScalingPolicy T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*2 =3
Object
Create Stack T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Install Ansible T7 (Average) 2 CMP (Ins) =1*2=2
Install Packer T7 (Average) 2 CMP (Ins) =1*2=2
Total CMP(code) =233

CMP (Ins) = 8
CMP (total) =233*5+8*2= 1181

101

Table 41: MDD ML Auto-scaling Deployment Actions on Azure

Tasks Types (Complexity) Weight CPM
Create Blob T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 2*1 =3
(Data Storage)
Object
Create FunctionApp T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 3*1 =4
(Controller)
Object
Create GBR T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 9*4 =45
(MachineLearning)
Object
Create SVR T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 9*4 =45
(MachineLearning)
Object
Create LR T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 6*4 =33
(MachineLearning)
Object
Create Predictor T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =3*3 + 6*4 =33
Object
Create Grafana T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =2*3 + 5*4 =26
(Monitor)
Object
Create CloudService T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 3*1 =4
Broker Object
Create ResourceGroup T4 (Average)/ T3 (Average) 3 , 4 CMP (code) =1*3 + 1*6 =9
Object
Create Instance T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Create BasicImage T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*4 =5
Object
Create ScalingPolicy T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*2 =3
Object
Create Stack T4 (low)/ T3 (low) 1 , 1 CMP (code) =1*1 + 1*3 =4
Object
Install Ansible T7 (Average) 2 CMP (Ins) =1*2=2
Install Packer T7 (Average) 2 CMP (Ins) =1*2=2
Create EGL T4 (High) / T3 (High) 6 ,9 CMP (code) =1*6 + 1*9 =15
template
Total CMP(code) =233

CMP (Ins) = 8
CMP (total) =233*5+8*2= 1181

102

Chapter 6

Conclusion and Publications

In this chapter, we summarize the research contributions. We explain challenges and

limitation. Also, we address the future work. Then, we list the publications related

to this work.

6.1 Threats to Validity

Change of Platform: The architecture should be generally applicable on different

cloud platforms. Currently, we have implemented our proposed architecture on the

AWS and Azure. If we want to implement this architecture on other cloud platform,

we need to map the architecture to target cloud services. Finding the right modules

with right assignment of responsibilities with well-designed interfaces is a challenge

and each service has some limitations and open issues. For instance, each cloud

provider offers different type of monitor service and there are some limitation for each

one. Amazon Cloudwatch monitoring service provides hypervisor-specific metrics.

To have OS-specific metrics such as memory utilization, we need to add an extra

monitoring script. So, we can collect the percentage of system memory as a custom

metric. While, Azure monitor service has some limitations for retrieving the monitor

metrics including limits the number of rows that can be retrieved in one call to 1000

rows.

Change of Application: In this work, the Ansible tries to reduce the manual

tasks when the new instance is added to the cluster. However, the new applications

may have some limitations for using the Ansible for reconfiguring the cluster. In

103

addition, deploying the new application on target Cloud platform can introduce new

issues. Application versions also are changed regularly and sometimes new versions

introduce limitation.

Continuous Training: Continuous model training allows models retrain and

updates over a period of time. The advantage of training over the arbitrary intervals

is that the model has a higher probability to catch more workload patterns and always

the model is trained by recent workload history. In this paper, we have two weeks

window time for training because two weeks is enough to catch the pattern. However,

if we want to have an accurate model, we need to reconfigure our process in order to

have an arbitrary intervals for training stage.

System Level Metric: Our work is limited to collect only system level met-

rics (CPU usage and memory), so we did not consider application level metrics like

response time or number of requests.

6.2 Future Work

This thesis presented contributions in the area of model-driven machine learning for

auto-scaling system. Yet, there exist research directions for the future:

Clusters are sets of servers that are managed together and participate in workload

management. Through the thesis, we assumed that the workloads are balance in a

cluster. It means workloads are distributed across all members of a cluster equally.

This raises the challenge of scaling the resources with an unbalanced workload. It

would be interesting to investigate the forecasting-based auto-scaling to manage re-

source of cluster with an unbalance workload.

This thesis for predictive auto-scaling is using infrastructure level (system-level)

metrics such as CPU/memory/network utilization. However, auto-scaling uses not

only infrastructure, but also application-level monitoring data. In the future, it would

be interesting to study on how effective predictive auto-scaling can use application-

level metrics such as throughput and response time.

104

6.3 Conclusion

In this work, we present a model-driven framework to automate the operations of

predictive auto-scaling service design, deployment and launching on multiple clouds.

Our approach contains two parts of models: one for modeling machine learning mod-

els and auto-scaling service independent of a cloud platform; and the other for model

cloud-specific predictive auto-scaling process. To connect the design level models

with the deployment of a cloud platform, we propose the transformation from mod-

els to deployment scripts and launch cloud management tools within a single inte-

grated modeling environment. A practical case of this framework is evaluated on both

AWS, Rackspace and Azure clouds. Our contribution is to hide the technical details

of developing cloud provider specific auto-scaling operations with machine learning

techniques.

Also, we present the microservice architecture for forecasting-based auto-scaling

process that adaptively monitors the workload based on multi metrics and schedules

multiple machine learning models to learn the workload pattern online and predict

the workload classification at runtime. The process of model training, model valida-

tion, model selection, and prediction are decoupled into separate microservices. For

evaluation, we use Dell DVD Store and Netflix Data Benchmark that are designed

to explore the performance impact generated from microservices. We applied the

proposed solution on Amazon Web Services and Azure cloud environment, also three

machine learning regression algorithms. We demonstrate the real-time prediction is

integrated to the auto-scaling configuration of a cloud infrastructure to add or remove

computing resources. This forecasting-based solution is independent of distributed

framework and thus is applicable to other cloud infrastructures.

6.4 Publication

I listed our publication here:

• Alipour, Hanieh, Yan Liu, and Abdelwahab Hamou-Lhadj. ”Analyzing auto-

scaling issues in cloud environments.” In Proceedings of 24th Annual Interna-

tional Conference on Computer Science and Software Engineering, pp. 75-89.

IBM Corp., 2014.

105

• Alipour, Hanieh, Yan Liu, Abdelwahab Hamou-Lhadj, and Ian Gorton. ”Model

driven performance simulation of cloud provisioned Hadoop MapReduce appli-

cations.” In Proceedings of the 8th International Workshop on Modeling in

Software Engineering, pp. 48-54. ACM, 2016.

• Alipour, Hanieh, and Yan Liu. ”A model driven method to deploy auto-scaling

configuration for cloud services.” In Proceedings of the 4th International Work-

shop on Release Engineering, pp. 23-23. ACM, 2016.

• Alipour, Hanieh, and Yan Liu. ”Online machine learning for cloud resource pro-

visioning of microservice backend systems.” In 2017 IEEE International Con-

ference on Big Data (Big Data), pp. 2433-2441. IEEE, 2017.

• Alipour, Hanieh, and Yan Liu. ”Model Driven Deployment of Auto-Scaling Ser-

vices on Multiple Clouds.” In 2018 IEEE International Conference on Software

Architecture Companion (ICSA-C), pp. 93-96. IEEE, 2018.

• Alipour, Hanieh, and Yan Liu. ”Microservice Orchestration to Inference-based

Cloud Workload Auto-scaling”, IEEE Transactions Cloud Computing, 2019

(Submitted0).

• Alipour, Hanieh, and Yan Liu, Abdelwahab Hamou-Lhadj.”Model-Driven Ma-

chine Learning for Predictive Cloud Auto-scaling”, IEEE Transactions Software

Engineering, 2019 (Submitted).

.

0We submitted our journal paper in IEEE Transaction Service Computing (TSC) on 27-Jun-2018
and we received the first review on 13-Nov-2018. So, we submitted the revision version on 08-Dec-
2018 and unfortunately because of the leave of absence of the chair, we didnt receive the answer
after 6 months. So, we decided to withdraw our paper and submit it in IEEE Transaction Cloud
Computing.

106

Bibliography

[1] Ansible. https://www.ansible.com/.

[2] Aws auto-scaling. http://aws.amazon.com/documentation/autoscaling.

[3] Azure. https://azure.microsoft.com.

[4] Bi-lstm. www.cl.cam.ac.uk/~pv273/slides/LSTMslides.pdf.

[5] Cassandra. http://cassandra.apache.org.

[6] Cassandra configuration. https://www.digitalocean.com.

[7] Counting practices manual. http://www.ifpug.org/.

[8] Dvd store. http://linux.dell.com/dvdstore/.

[9] Gartner. http://www.gartner.com/technology/home.jsp.

[10] Grafana. https://grafana.com/.

[11] Implementation codes. https://github.com/haniehalipour/

Online-Machine-Learning-for-Cloud-Resource-Provisioning-of-Microservice.

[12] iperf3. https://iperf.fr/iperf-download.php/.

[13] Lstm. www.mathworks.com/help/deeplearning.

[14] Netflix. https://medium.com/netflix-techblog.

[15] Packer. https://www.packer.io.

[16] Prometheus. https://prometheus.io/.

[17] Scikit-learn. https://scikit-learn.org/stable/.

107

https://www.ansible.com/
http://aws.amazon.com/documentation/autoscaling
https://azure.microsoft.com
www.cl.cam.ac.uk/~pv273/slides/LSTMslides.pdf
http://cassandra.apache.org
https://www.digitalocean.com
http://www.ifpug.org/
http://linux.dell.com/dvdstore/
http://www.gartner.com/technology/home.jsp
https://grafana.com/
https://github.com/haniehalipour/Online-Machine-Learning-for- Cloud-Resource-Provisioning-of-Microservice
https://github.com/haniehalipour/Online-Machine-Learning-for- Cloud-Resource-Provisioning-of-Microservice
https://iperf.fr/iperf-download.php/
www.mathworks.com/help/deeplearning
https://medium.com/netflix-techblog
https://www.packer.io
https://prometheus.io/
https://scikit-learn.org/stable/

[18] What is auto-scaling? http://docs.rightscale.com/faq/What_is_

auto-scaling.html.

[19] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè. Cloud

monitoring: A survey. Computer Networks, 57(9):2093–2115, 2013.

[20] Timo Aho, Bernard Ženko, Sašo Džeroski, and Tapio Elomaa. Multi-

target regression with rule ensembles. Journal of Machine Learning Research,

13(Aug):2367–2407, 2012.

[21] Samuel Adesoye Ajila and Akindele A. Bankole. Using machine learning al-

gorithms for cloud client prediction models in a web vm resource provisioning

environment. In Transactions on Machine Learning and Artificial Intelligence 4,

2016.

[22] Hammam M AlGhmadi, Mark D Syer, Weiyi Shang, and Ahmed E Hassan. An

automated approach for recommending when to stop performance tests. In 2016

IEEE international conference on software maintenance and evolution (ICSME),

pages 279–289. IEEE, 2016.

[23] Hammam M AlGhmadi, Mark D Syer, Weiyi Shang, and Ahmed E Hassan. An

automated approach for recommending when to stop performance tests. In 2016

IEEE international conference on software maintenance and evolution (ICSME),

pages 279–289. IEEE, 2016.

[24] Hanieh Alipour, Yan Liu, and Abdelwahab Hamou-Lhadj. Analyzing auto-

scaling issues in cloud environments. In Proceedings of 24th Annual International

Conference on Computer Science and Software Engineering, pages 75–89. IBM

Corp., 2014.

[25] Danilo Ardagna, Elisabetta Di Nitto, Giuliano Casale, Dana Petcu, Parastoo

Mohagheghi, Sébastien Mosser, Peter Matthews, Anke Gericke, Cyril Ballagny,

Francesco D’Andria, et al. Modaclouds: A model-driven approach for the de-

sign and execution of applications on multiple clouds. In Proceedings of the 4th

international workshop on modeling in software engineering, pages 50–56. IEEE

Press, 2012.

108

http://docs.rightscale.com/faq/What_is_auto-scaling.html
http://docs.rightscale.com/faq/What_is_auto-scaling.html

[26] Matthias Becker, Markus Luckey, and Steffen Becker. Model-driven performance

engineering of self-adaptive systems: a survey. In Proceedings of the 8th inter-

national ACM SIGSOFT conference on Quality of Software Architectures, pages

117–122. ACM, 2012.

[27] Dario Bruneo, Thomas Fritz, Sharon Keidar-Barner, Philipp Leitner, Francesco

Longo, Clarissa Marquezan, Andreas Metzger, Klaus Pohl, Antonio Puliafito,

Danny Raz, Andreas Roth, Eliot Salant, Itai Segall, Massimo Villari, Yaron

Wolfsthal, and Chris Woods. CloudWave: Where adaptive cloud management

meets DevOps. In 2014 IEEE Symposium on Computers and Communications

(ISCC). IEEE, 2014.

[28] Chris Bunch, Vaibhav Arora, Navraj Chohan, Chandra Krintz, Shashank Hegde,

and Ankit Srivastava. A pluggable autoscaling service for open cloud paas sys-

tems. In Proceedings of the 2012 IEEE/ACM Fifth International Conference on

Utility and Cloud Computing, pages 191–194. IEEE Computer Society, 2012.

[29] Faruk Caglar, Kyoungho An, Shashank Shekhar, and Aniruddha Gokhale.

Model-driven performance estimation, deployment, and resource management

for cloud-hosted services. In Proceedings of the 2013 ACM workshop on Domain-

specific modeling. ACM Press, 2013.

[30] Lequn Chen Pedro Fonseca Tianqi Chen Chern Cheah Karan Gupta

Ramesh Chandra Cano, Ignacio and Arvind Krishnamurthy. Adares: Adaptive

resource management for virtual machines. In arXiv preprint arXiv:1812.01837,

2018.

[31] Salvatore Capra. Cloud computing trace characterization and synthetic workload

generation. 2013.

[32] Krishna Varaynya Chivukula. Monitoring and analysis of cpu load relationships

between host and guests in a cloud networking infrastructure: An empirical

study, 2015.

[33] Filippo Lorenzo Ferraris, Davide Franceschelli, Mario Pio Gioiosa, Donato Lucia,

Danilo Ardagna, Elisabetta Di Nitto, and Tabassum Sharif. Evaluating the

auto scaling performance of flexiscale and amazon ec2 clouds. In 2012 14th

109

International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing, pages 423–429. IEEE, 2012.

[34] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor Sol-

berg. Towards model-driven provisioning, deployment, monitoring, and adapta-

tion of multi-cloud systems. In 2013 IEEE Sixth International Conference on

Cloud Computing. IEEE, 2013.

[35] Nicolas Ferry, Hui Song, Alessandro Rossini, Franck Chauvel, and Arnor Solberg.

CloudMF: Applying MDE to tame the complexity of managing multi-cloud appli-

cations. In 2014 IEEE/ACM 7th International Conference on Utility and Cloud

Computing. IEEE, 2014.

[36] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang.

Adaptive, model-driven autoscaling for cloud applications. In 11th International

Conference on Autonomic Computing ({ICAC} 14), pages 57–64, 2014.

[37] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang.

Model-driven optimal resource scaling in cloud. Softw. Syst. Model., 17(2):509–

526, 2018.

[38] Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali Pourmina. An au-

tonomic approach for resource provisioning of cloud services. Cluster Computing,

19(3):1017–1036, 2016.

[39] Michele Guerriero, Michele Ciavotta, Giovanni Paolo Gibilisco, and Danilo

Ardagna. A model-driven DevOps framework for QoS-aware cloud applications.

In 2015 17th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC). IEEE, 2015.

[40] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S McKinley, and Björn B

Brandenburg. Swayam: distributed autoscaling to meet slas of machine learning

inference services with resource efficiency. In Proceedings of the 18th ACM/I-

FIP/USENIX Middleware Conference, pages 109–120. ACM, 2017.

[41] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in cloud

computing: What it is, and what it is not. In Proceedings of the 10th Interna-

tional Conference on Autonomic Computing ({ICAC} 13), pages 23–27, 2013.

110

[42] Waheed Iqbal, Mathew N Dailey, and David Carrera. Unsupervised learning of

dynamic resource provisioning policies for cloud-hosted multitier web applica-

tions. IEEE Systems Journal, 10(4):1435–1446, 2016.

[43] Yujuan Jiang and Bram Adams. Co-evolution of infrastructure and source code

- an empirical study. In 2015 IEEE/ACM 12th Working Conference on Mining

Software Repositories. IEEE, 2015.

[44] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven design

for cloud infrastructure devops. In 2016 IEEE International Conference on Cloud

Engineering (IC2E), pages 202–211. IEEE, 2016.

[45] Amin Karami. Utilization and comparison of multi attribute decision making

techniques to rank bayesian network options, 2011.

[46] Mehran NAH Khan, Yan Liu, Hanieh Alipour, and Samneet Singh. Modeling

the autoscaling operations in cloud with time series data. In 2015 IEEE 34th

Symposium on Reliable Distributed Systems Workshop (SRDSW), pages 7–12.

IEEE, 2015.

[47] Dragi Kocev, Sašo Džeroski, Matt D White, Graeme R Newell, and Peter Grif-

fioen. Using single-and multi-target regression trees and ensembles to model a

compound index of vegetation condition. Ecological Modelling, 220(8):1159–1168,

2009.

[48] Zheng Li, Liam O’brien, He Zhang, and Rainbow Cai. On a catalogue of metrics

for evaluating commercial cloud services. In Proceedings of the 2012 ACM/IEEE

13th International Conference on Grid Computing, pages 164–173. IEEE Com-

puter Society, 2012.

[49] Ying Liu, Navaneeth Rameshan, Enric Monte, Vladimir Vlassov, and Leandro

Navarro. Prorenata: Proactive and reactive tuning to scale a distributed storage

system. In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, pages 453–464. IEEE, 2015.

[50] Tania Lorido-Botrán, José Miguel-Alonso, and Jose Antonio Lozano. Auto-

scaling techniques for elastic applications in cloud environments. Department

111

of Computer Architecture and Technology, University of Basque Country, Tech.

Rep. EHU-KAT-IK-09, 12:2012, 2012.

[51] Mohamed Mohamed, Mourad Amziani, Djamel Beläıd, Samir Tata, and Tarek

Melliti. An autonomic approach to manage elasticity of business processes in the

cloud. Future Gener. Comput. Syst., 50:49–61, 2015.

[52] J.C. Munson and S.G. Elbaum. Code churn: a measure for estimating the

impact of code change. In Proceedings. International Conference on Software

Maintenance (Cat. No. 98CB36272). IEEE Comput. Soc.

[53] Thanh HD Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E Hassan, Mohamed

Nasser, and Parminder Flora. Automated detection of performance regressions

using statistical process control techniques. In Proceedings of the 3rd ACM/SPEC

International Conference on Performance Engineering, pages 299–310. ACM,

2012.

[54] Ali Yadavar Nikravesh, Samuel A Ajila, and Chung-Horng Lung. Towards an

autonomic auto-scaling prediction system for cloud resource provisioning. In

Proceedings of the 10th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, pages 35–45. IEEE Press, 2015.

[55] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscaling in

the cloud using predictive models for workload forecasting. In 2011 IEEE 4th

International Conference on Cloud Computing, pages 500–507. IEEE, 2011.

[56] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measure-

ments in the cloud: observing, analyzing, and reducing variance. Proceedings of

the VLDB Endowment, 3(1-2):460–471, 2010.

[57] Weiyi Shang, Ahmed E Hassan, Mohamed Nasser, and Parminder Flora. Auto-

mated detection of performance regressions using regression models on clustered

performance counters. In Proceedings of the 6th ACM/SPEC International Con-

ference on Performance Engineering, pages 15–26. ACM, 2015.

[58] Weiyi Shang, Ahmed E Hassan, Mohamed Nasser, and Parminder Flora. Auto-

mated detection of performance regressions using regression models on clustered

112

performance counters. In Proceedings of the 6th ACM/SPEC International Con-

ference on Performance Engineering, pages 15–26. ACM, 2015.

[59] Ritu Sharma and Manu Sood. Enhancing cloud saas development with model

driven architecture. International Journal on Cloud Computing: Services and

Architecture (IJCCSA), 1(3):89–102, 2011.

[60] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does your configura-

tion code smell? In Proceedings of the 13th International Workshop on Mining

Software Repositories. ACM Press, 2016.

[61] Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. Adaptive resource provi-

sioning for the cloud using online bin packing. IEEE Transactions on Computers,

63(11):2647–2660, 2014.

[62] Yu Sun, Jules White, Sean Eade, and Douglas C Schmidt. Roar: A qos-oriented

modeling framework for automated cloud resource allocation and optimization.

Journal of Systems and Software, 116:146–161, 2016.

[63] Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Florian Dudouet, and

Andrew Edmonds. An architecture for self-managing microservices. In Proceed-

ings of the 1st International Workshop on Automated Incident Management in

Cloud, pages 19–24. ACM, 2015.

[64] Van TK Tran, Kevin Lee, Alan Fekete, Anna Liu, and Jacky Keung. Size esti-

mation of cloud migration projects with cloud migration point (cmp). In 2011

International Symposium on Empirical Software Engineering and Measurement,

pages 265–274. IEEE, 2011.

[65] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Aikaterini Vrekou, and

Ioannis Vlahavas. Multi-target regression via random linear target combinations.

In Joint european conference on machine learning and knowledge discovery in

databases, pages 225–240. Springer, 2014.

[66] Aparna Vijaya, V. Neelanarayanan, and V. Vijayakumar. Framework for Sup-

porting Heterogenous Clouds Using Model Driven Approach, pages 219–235.

Springer International Publishing, 2015.

113

[67] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena Sala-

manca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic and the

microservice architecture pattern to deploy web applications in the cloud. In

2015 10th Computing Colombian Conference (10CCC), pages 583–590. IEEE,

2015.

[68] Mario Villamizar, Oscar Garces, Lina Ochoa, Harold Castro, Lorena Salamanca,

Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zam-

brano, et al. Infrastructure cost comparison of running web applications in the

cloud using aws lambda and monolithic and microservice architectures. In 2016

16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-

ing (CCGrid), pages 179–182. IEEE, 2016.

[69] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen.

Model-driven software development: technology, engineering, management. John

Wiley & Sons, 2013.

[70] Muhammad Wajahat, Anshul Gandhi, Alexei Karve, and Andrzej Kochut. Using

machine learning for black-box autoscaling. In 2016 Seventh International Green

and Sustainable Computing Conference (IGSC), pages 1–8. IEEE, 2016.

[71] Johannes Wettinger, Michael Behrendt, Tobias Binz, and all. Integrating con-

figuration management with model-driven cloud management based on tosca.

In In Proceedings of the 3rd International Conference on Cloud Computing and

Services Science (CLOSER). SciTePress, 2013.

[72] Chung-Hsing Yeh. A problem-based selection of multi-attribute decision-making

methods. International Transactions in Operational Research, 9(2):169–181,

2002.

114

