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Abstract

As the amount of information and the number of Internet users grow, the problem of

indexing and retrieval of electronic information resources becomes more critical. The existing

search systems tend to generate misses and false hits due to the fact that they attempt

to match the speci�ed search terms without context in the target information resource.

The COncordia INdexing and DIscovery system is an indexing system. It is a powerful

means of helping users locate documents, software, and other types of data among large

repositories. In environments that contain many di�erent types of data, content indexing

requires type-speci�c processing to extract information e�ectively. The Semantic Header,

which is proposed by Desai [11], contains the semantic contents of information resources. It

provides a useful tool in searching for a document based on a number of commonly used

criteria. The information from the semantic header could be used by the search system to

help locate appropriate documents with minimume�ort. This paper introduces an automatic

tool for the extraction and storage of some of the meta-information in a Semantic Header

and an automatic text classi�cation scheme.

1 Introduction

Rapid growth in data volume, user base and data diversity render Internet-accessible in-

formation increasingly di�cult to use e�ectively. At this time, a number of information

sources, both public and private, are available on the Internet. They include text, computer

programs, books, electronic journals, newspapers, organisational, local and national direc-

tories of various types, sound and voice recordings, images, video clips, scienti�c data, and

private information services such as price lists and quotations, databases of products and

services, and speciality newsletters [12]. There is a need for an automated search system

that allows easy search for and access to relevant resources available on the Internet. Proper
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functioning of this system will require a proper indexing of the available information. There-

fore, secondary information must be extracted and used as an index to the available primary

resource. Building this index requires information extraction methods tailored to each spe-

ci�c environment. The semantics of the �les in which the primary resource is stored will be

exploited in order to extract and summarise the relevant information that will support the

resource discovery. To do this, the primary �le type should be identi�ed and then the type

speci�c selection and extraction methods are applied to the �le.

It is envisioned that regional and/or specialised databases will be created to maintain archives

of the cover pages (or Semantic Headers). These databases could be searched by cooperating

distributed expert systems to help users in locating pertinent documents. Such a system is

currently under development at Concordia University and is called Concordia INdexing and

DIscovery system, or CINDI.

CINDI, a system under development at Concordia University, provides a mechanism to reg-

ister, search and manage the meta-information, with the help of an easy to use graphical user

interface. This meta-information, which is described in section 2, is the Semantic Header,

that is stored in the CINDI system. CINDI tries to avoid problems caused by di�erences in

semantics and representation as well as incomplete and incorrect data cataloguing. It also

tries to avoid the problems caused by the di�erence in index terms. This meta-information

could be entered either by the primary resource provider or by the Automatic Semantic

Header Generator (ASHG). ASHG, a software that generates some meta-information of the

submitted document, assists the user in this process. This thesis introduces ASHG, which

aims at saving the primary resource provider's time by automatically generating and ex-

tracting part of the meta-information (Semantic Header) of the document and classifying

the resource under a list of subject headings. As the provider helps in this process by ver-

ifying and correcting the Semantic Header entry, there is the potential for its accuracy is

high.

1.1 Organisation of the paper

This paper is organised as follows. In section 2, we will introduce the CINDI system. Section

3 describes information retrieval, its history and some of the algorithms used in that �eld.

Automatic text retrieval, natural language processing and text classi�cation is also discussed

in section 3. At the end of section 3, we describe some retrieval and information extraction

systems. Section 4 covers the Thesaurus used and how it is built. Section 5 describes the

Automatic Semantic Header Generator, or ASHG. This section covers the basic subparts

used by it as the type recognition, and the extractors. In section 6, we test and compare the

classi�cation of our generated index with the ones produced by cataloguers or the document's

author's opinion. Finally in section 7, we draw our conclusion.

2 The CINDI system

The current practice in most research institutes, universities and business organisations to

interconnect their computing facilities using a digital network is the accepted method of

sharing resources. Such networks, in turn, are interconnected allowing information to be

exchanged across networks using appropriate data transfer protocols.
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There is a need for the development of a system which allows easy search for and access to

resources available on the Internet. Solving the problem of fast, e�cient and easy access

to the documents can be started by building a standard index structure and building a

bibliographic system using standardised control de�nitions and terms. Such de�nitions could

be built into the knowledge-base of an expert system based index entry and search interface.

The purpose of indices and bibliographies (secondary information) is to catalogue the primary

information and allow easy access to it.

Preparing the primary source's meta or secondary information requires �nding the primary

source, identifying it as to its subject, title, author, keywords, abstract, etc. Since it is to

be used by many users, it has to be accurate, easy to use and properly classi�ed. Attempts

to provide easy search of relevant documents has lead to a number of systems including

WAIS, and more recently a number of Spiders, Worms and other creepy crawlers [9, 20,

28, 39, 65, 60, 68, 69, 70]. However, the problem with many of these tools is that their

selectivity of documents is often poor [12]. The chances of getting inappropriate documents

and missing relevant information because of poor choice of search terms is large. These

problems are addressed by CINDI, which provides a mechanism to register, manage and

search the bibliographic information.

2.1 Overview of CINDI

The overall CINDI system uses knowledge bases and expert sub-systems to help the user

in the registering and the search processes. CINDI standardises the terms. The index

generation and maintenance sub-system uses CINDI's thesaurus to help the provider of the

resource select correct terms for items such as subject, sub-subject and keywords. Similarly,

another expert sub-system is used to help the user in the search for appropriate information

resources [11].

2.1.1 The Semantic Header

For cataloguing and searching, CINDI uses a meta-data description called a Semantic Header

to describe an information resource. The Semantic Header includes those elements that are

most often used in the search for an information resource. Since the majority of searches

begin with a title, name of the authors (70%), subject and sub-subject (50%) [27], CINDI

requires the entry for these elements in the Semantic Header. Similarly, the abstract and

annotations are relevant in deciding whether or not a resource is useful, so they are included

too.[56, 12]. A brief descripton of the semantic header elements follows:

1. Title, Alt-title: The title �eld contains the name of the resource that is given by the

creator(s). The alternate title �eld is used to indicate a secondary title of the resource.

2. Subject: The subject and sub-subjects of the resource are indicated in the next �eld

which is a repeating group. This �eld contains a list of possible subject classi�cations

of the resource.

3. Language, Character Set: The character set and the language are the ones used in

resource.



4

4. Author and other responsible agents: The role of the person associated with

the document, for instance, author, editor, and compiler. This includes �elds such as

name, postal address, telephone number, fax number, and email address.

5. Keyword: This �eld contains a list of keywords mentioned in the resource.

6. Identi�er: The identi�ers for the document. Example of identi�ers are, ISBN(International

Standard Book Number), URL (Universal Resource Locator) of the document. This is

a multi-valued slot in case the document is available in many formats or is electronically

stored at more than one site.

7. Date: The date on which the document was created, catalogued, and the date on

which the document will expire, if any.

8. Version: The version number, and the version number being superseded, if any, are

given in these elements.

9. Classi�cation: The legal, security or other type of classi�cation of the document. For

each, nature of classi�cation is speci�ed.

10. Coverage: It indicates the targeted audience of the document or it may indicate

cultural and temporal aspect of the document's content.

11. System Requirements: The document being an electronic one requires certain sys-

tem requirements for it to be displayed or used. The components are the hardware,

the software or the network and for each the minimum needs.

12. Genre: It is used to describe the physical or electronic format of the resource. It

consists of a domain and the corresponding value or size of the resource.

13. Source and Reference: The Source indicates the documents being referenced or

which were required in its preparation. It could also be the main component for which

the current document is an addendum or attachment.

14. Cost: In case of a resource accessible for a fee, the cost of accessing it is given.

15. Abstract: The abstract of the document is either provided by the author or by ASHG.

16. Annotations: Annotations put in by readers of the document.

17. User ID, Password: A Provider ID of at least six characters and a password of four

to eight characters. More than one semantic header by the same provider can have the

same ID and password.

Next, the Semantic Header Database system is described.
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2.2 The Semantic Header Database System

The index entries registered by a provider of a resource is stored in a distributed database

system (SHDDB). From the point of view of the users of the system, the underlying database

may be considered to be a monolithic system. In reality, it would be distributed and repli-

cated allowing for reliable and failure-tolerant operations. The interface hides the distributed

and replicated nature of the database. The distribution is based on subject areas and as

such the database is considered to be horizontally partitioned [10]. It is envisaged that the

database on di�erent subjects will be maintained at di�erent nodes of the Internet. The

locations of such nodes need only be known by the intrinsic interface. A database catalog

would be used to distribute this information. However, this catalog itself could be distributed

and replicated as is done for distributed database systems.

The Semantic Header information entered by the provider of the resource using a graphical

interface is relayed from the user's workstation by a client process to the database server

process at one of the nodes of the SHDDB. The node is chosen based on its proximity to the

workstation or on the subject of the index record. On receipt of the information, the server

veri�es the correctness and authenticity of the information and on �nding everything in or-

der, sends an acknowledgment to the client. The server node is responsible for locating the

partitions of the SHDDB where the entry should be stored and forwards the replicated infor-

mation to appropriate nodes. For example, the semantic header entry would be part of the

SHDDB for subjects Computer Science and Library Studies. Similarly the database server

process is responsible for providing the catalogue information for the search system. In this

way the various sites of the database work in a cooperating mode to maintain consistency

of the replicated portion. The replicated nature of the database also ensures distribution of

load and ensures continued access to the bibliography when one or more sites are temporarily

nonfunctional.

2.3 The CINDI's Search System

CINDI guides the user in entering the various search items in a graphical interface similar

to the one used by the index entry system. The search system also uses a graphical interface

and a client process. Once the user has entered a search request, the client process commu-

nicates with the nearest SHDDB catalogue to determine the appropriate site of the SHDDB

database. Subsequently, the client process communicates with this database and retrieves

one or more semantic headers. The result of the query could than be collected and sent

to the user's workstation. The contents of these headers are displayed, on demand, to the

user who may decide to access one or more of the actual resources. It may happen that the

item in question may be available from a number of sources. In such a case the best source

is chosen based on optimum costs. The client process would attempt to use appropriate

hardware/software to retrieve the selected resources [12].

3 Information Retrieval Overview

Information Retrieval (IR) is concerned with the representation, storage, organisation and

accessing of information. The �rst step in the retrieval process is for the user to state the
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information needed. This has to be done in a format that enables the IR system to under-

stand it and to act on it [19]. To facilitate the task of �nding items of interest, libraries

and information centers provide information users with a variety of auxiliary aids. Each

incoming item is analysed and appropriate descriptions are chosen to re
ect the information

content of the item. Retrieval e�ectiveness is typically measured by two metrics, precision,

which is the percentage of the retrieved documents that are relevant to the information need,

and recall, which is the percentage of relevant documents in the collection that are retrieved.

[19]. Indexing is the basis for retrieving documents that are relevant to the user's need [34].

Building an accurate representation of a document, which would increase precision, is one

of CINDI's main concerns. Compact descriptions of a document's index may increase the

e�ciency of matching and the e�ectiveness of classifying textual material as relevant or non-

relevant. Document retrieval imposes con
icting normalising and accurate demands [34]. As

a result, variations in indexing that increase precision usually decrease recall, and vice versa.

The fundamental goal is to increase both. There are numerous types of indexing languages.

One which uses the same terms found in the document and another which is limited to those

from a controlled languages [34].

In this section, we will discuss the history of information retrieval, automatic document

indexing or representation, algorithms used by the IR community, natural language process-

ing, the automatic sentence extraction, abstract selection and the text classi�cation. We will

also be brie
y portraying Salton's SMART retrieval system, Oracle's ConText, Nordic and

Harvest's Essence information retrieval and extraction systems.

3.1 Information Retrieval Background

Tests of indexing languages have shown that indexing documents by individual terms corre-

sponding to words or word stems produces results that are at least as good as those produced

when indexing by controlled vocabularies [34]. Luhn[36] used frequency counts of words in

the document text to determine which words were su�ciently signi�cant to represent the

document. The use of statistical information about distributions of words in documents was

further exploited by Maron and Kuhn [37] and Stiles [58] who obtained statistical associ-

ations between keywords. Statistical Document Retrieval methods assign higher numeric

weights to terms showing evidence of being good content indicators, causing them to have

greater in
uence on the ranking of the documents. The number of occurrences of a term in a

document as a whole may be taken into account, when computing the in
uence of the term.

Evidence also suggests that combining single terms into compound terms may be useful[34].

3.2 Developments in Automatic Text Retrieval

In conventional information retrieval, the stored records are normally identi�ed by sets of key-

words or phrases known as index terms. Requests for information are typically expressed by

Boolean combinations of index terms, consisting of search terms interrelated by the Boolean

operators and, or, and not. The retrieval system is then designed to select those stored items

that are identi�ed by the exact combination of search terms speci�ed in the available queries.

The terms characterising the stored texts may be assigned manually by trained personnel, or

automatic indexing methods may be used to handle the term assignment. Re�nements have

been introduced into the Boolean processing environment. They allowed the terms assigned
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to documents to carry term weights. When term weights were introduced, they were called

the fuzzy-set retrieval model.

3.3 Algorithms used by the IR community

The IR community'smain concern is how to select signi�cant words and phrases from a docu-

ment that best describe the document or set of documents [36, 15]. Automatic summarisation

of full documents generates a condensed version of the document[7]. The condensed version

serves as an executive summary, which contains indicative information of the document's

content. Automatic summarisation of full documents ascertains the relative importance of

the material and generates coherent output[7]. The IR community has tried to automat-

ically �nd signi�cant words in documents and understand the content or meaning of the

document. The following subsections discuss some of the main ideas that make up the core

of our system.

Luhn's ideas: Luhn assumes that frequency data can be used in extracting words and

sentences that represent a document [36]. He ranked the words in the decreasing frequency

of occurrence. After plotting the graph of frequency related to rank, he found that the curve

was similar to the hyperbolic. This is in accordance with Zipf's law which states that the

product of the frequency of use of words and the rank is approximately constant. He then

excludes the non-signi�cant words and the very high frequency words. Luhn also used this

method to devise a method for automatic abstracting. He went on to develop a numerical

measure of signi�cance for sentences based on the number of signi�cant and non-signi�cant

words in each portion of the sentence. Sentences were ranked according to their numerical

score and only the highest ones would be included in the abstract.

C.J.van Rijsbergen's attempt: The document's representation aimed by Rijsbergen [46]

consisted simply of a list of class names, each name representing a class of words occurring

in the total input text. A document was indexed by a name if one of its signi�cant words

occurred as a member of that class. Such system consists of 3 parts:

1. Removal of high frequency words

2. Su�x stripping

3. Detecting equivalent stems

If two words have the same underlying stem, then they probably refer to the same concept

and they should be indexed as such. It is inevitable that a processing system such as this

will produce errors. Fortunately, experiments have shown that the error rate tends to be of

the order of 5 per cent [2]. Lovins [35] using a slightly di�erent approach to stemming also

quotes errors of the same order of magnitude. The �nal output would be a set of classes,

one for each stem detected. A class name is assigned to a document if one of its members

occurs as a signi�cant word in the document.
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Bayesian network: All IR systems draw conclusions about the content of a document

by examining some representation of that document. An automated system of indexing in

such an approach bases its conclusions about the document on the evidence of computable

document features, such as the presence or absence of particular words and phrases [19].

A Bayesian network is a directed acyclic graph in which each node represents a random

variable, that is a set of mutually exclusive and collectively exhaustive propositions. Each

set of arcs into a node represents a probabilistic dependence between the node and its parents

(the nodes at the other ends of the incoming arcs). A Bayesian network represents, through

its structure, the conditional independence relations among the variables in the network.

These independence relations provide a framework within which to acquire probabilistic

information. A Bayesian network represents beliefs and knowledge about a particular class of

situations. Given a Bayesian network for a class of situations and evidence about a particular

situation in that class, conclusions about the document and document's relevant topics can

be drawn [19]. The advantages that Bayesian networks bring to the IR task include an

intuitive representation of uncertain relationships and a set of e�cient inference algorithms.

Robert Fung and Brendan Del Favero [19] have used a probabilistic IR architecture that

assists users who have �xed information needs in routing large amounts of material. Towards

these goals, they have developed and implemented a system that allows a user to specify

the topics of interest (i.e., information need), the quantitative and qualitative relationships

among the topics, the document features, such as the presence or absence of particular words

and phrases, and the quantitative relationships between these features and the topics. [19].

The Vector Model: In the vector space model, documents are identi�ed by sets of at-

tributes, or terms. Instead of assuming that all terms are equally important, the system

uses term weighting. The vector processing model o�ers simple, parallel treatments for both

queries and documents. Extensions to the vector and Boolean models have been proposed

including a generalised vector space model based on an orthogonal vector space. Another

common retrieval model is the extended Boolean system which accommodates term weights

assigned to both query and document terms as well as strictness indicators. The extended

system thus covers vector processing, Boolean, and fuzzy set retrieval in a common frame-

work, and it produces a vastly improved retrieval performance over simple Boolean opera-

tions.

The Probabilistic Model: The probabilistic retrieval model di�ers from those previously

discussed. It represents an attempt to set the retrieval problem on a theoretical foundation.

In the classical probabilistic models, the needed term probability is estimated by accumu-

lating a number of user queries containing a term and determining the proportion of time

a document is found relevant to the respective queries. Alternatively, a �xed query is con-

sidered and an attempt to determine the probability of an arbitrary document containing

a query term will be judged relevant. The probabilistic retrieval approach accommodates a

large number of di�erent phenomena about terms and documents as part of the probabilistic

estimation process. This includes term co-occurence information, term relationships derived

from dictionaries and thesauruses, and prior knowledge about the occurrence distributions

of terms.
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3.3.1 Limitations of the Traditional Approaches

Traditional approaches to information retrieval use keyword searches and statistical tech-

niques to retrieve relevant documents (e.g., [61, 53]). Statistical techniques take advantage

of large document collections to automatically identify words that are useful indexing terms.

However, word-based techniques have several limitations:

� Synonymy: Di�erent words and phrases can express the same concept.

� Polysemy: Words can have multiple meanings [38].

� Anaphora: is a phenomenon of abbreviated subsequent reference to refer back to

an entity introduced with more descriptive phrasing earlier by using a lexically and

semantically abbreviated form [57]. It is used to make language more concise and

avoid repetition and the most common manifestation of this is in the use of pronouns.

For example in the following passage the anaphoric reference their refers to the earlier

target computers:

Computers are often mixed up with questions about their impact on ...

� Phrases: Some words are good indexing terms only in speci�c phrases.

� Local Context: Some words and phrases are good indexing terms only in speci�c

local contexts.

� Global Context: Some documents do not contain any words or phrases that are good

indexing terms.

3.3.2 Enhancing the document representation

The conventional wisdom is that the keyword-type systems, where the information items are

represented by sets of manually or automatically chosen index terms, have run their course.

Most keywords are believed to be ambiguous and are often poorly represented by small

collections of individual terms [54]. It is therefore widely believed that the keyword approach

is not adequate for text content representation in information retrieval. By extension, the

identi�cation of text content by weighted term sets may also be unacceptable. Quoting from

Blair: [6]

No number of brute linguistic facts (word statistics) can be added up to

give us the meaning of a text, where the meaning of a text would include such

things as its subject, intellectual content, context, use, purpose, or links to other

documents.

The available experimental evidence indicates that the use of abstracts in addition

to titles brings substantial advantages in retrieval e�ectiveness. However, the additional

utilisation of full texts of the documents appears to produce very little improvement over

titles and abstracts alone in most subject areas [50]. This is one of the main reasons why

the abstract is included in the Semantic Header.
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3.4 Natural Language Processing in IR

3.4.1 Progress of Natural Language Processing in IR

Information retrieval systems locate documents that are typically retrieved as a ranked list,

where the ranking is based on estimations of relevance [5]. Lexical ambiguity is a pervasive

problem in natural language processing, and previous literature divides it into two types:

syntactic and semantic [29]. For Natural Language Processing, or NLP, lexical processing

operates at the single word level and it involves identifying words and determining their

grammatical classes or parts of speech so that higher levels of language analysis can take place

[57]. This usually consists of looking up a dictionary or lexicon, essentially a list of known

words and their legitimate morphological variants. Ideally, lexical processing determines one

base form for each word. The main sources of structural syntactic ambiguity in English are

the attachment of prepositional phrases, the construction of nominal compounds and the

scope of coordination and conjunction.

The semantic level of language analysis is concerned with meaning and focuses on broad

questions like what type of knowledge representation framework should be used [57]. On

another level, there are semantic constraints on what should make semantically sensible

natural language statements. The semantic level language analysis should be able to analyse

grammatically parsed text into a knowledge representation. This is because a sentence

may have a number of semantic interpretations, possibly arising from a number of syntactic

interpretations, and as many of these should be eliminated. The di�culty with semantic

processing is that all the properties of every object and the legitimate arguments of all verbs

must be known [57]. As a possible remedy to this problem, huge knowledge base could be

built. Detecting anaphora and resolving references would improve the understanding of a

text. Even so, detecting anaphora is often di�cult as there are no indicator phrases or terms.

Some words are potentially anaphoric but not always so and anaphoric references can include

many constructs. Although Liddy [13] lists almost 150 words which could be indicators of an

anaphoric construct, the problem of reliably resolving anaphora still remains. It is important

to note that fully-
edged NLP is being used in information retrieval [57]. This has led to

the emergence of the application known as conceptual information retrieval. There, once the

user requests information, he/she is given the information directly, instead of just receiving

its reference.

Lexical level language processing in information retrieval The simplest applica-

tions of NLP to information retrieval have been at the word level. Indexing based on some

normalised or derived form of individual words occurs in the input [57]. An alternative to

the popular stemming and con
ation procedures would involve determining the base forms

of words from a lexicon lookup. Building such a lexicon is expensive considering its marginal

improvements over mechanical stemming. For those reasons, the idea has never really been

pursued. However, lexical level language analysis has had a surge of interest recently with

the increased availability of machine-readable dictionaries (MRDs)[57]. Its obvious use is to

index by word senses rather than by word base forms. In information retrieval experiments,

indexing by word senses using MRDs initially gave disappointing results in terms of retrieval

e�ectiveness [57]. Because of this, researchers believe that it may not be necessary to deter-
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mine the single correct sense of a word. Instead a su�cient understanding that allows one to

rule out unlikely senses and to weigh likely senses highly, Krovetz and Croft stressed the im-

portance of the word senses, that will provide a signi�cant separation between relevant and

non-relevant documents [29]. They mentioned that word ambiguity and the use of related

or synonym words are two problems that arise when using words to represent the content of

a document.

Syntactic level language processing in information retrieval NLP techniques have

been used to help index texts by elements more complex than word forms. Syntactic analysis

can be used to analyse text in order to determine the boundaries of noun phrases which could

then be used as internal representations. Indexing texts on a noun phrase basis using NLP

techniques was done in the IOTA system [8]. One major problem of indexing by noun phrase

units is the variety of ways of representing a complex concept in natural language. Three

approaches have addressed the issue of ambiguity in syntactic analysis of texts for indexing

purposes: ignoring ambiguity, normalising the identi�ed phrases or indexing by structures

which incorporate the ambiguities. Ignoring the ambiguity allows texts to be indexed by

phrases taken directly from the text. A large amount of work in this area has been done by

Salton and others at Cornell University [55]. Normalising indexing phrases from texts and

from queries into some standard form is used in the CLARIT project at Carnegie Mellon

university [18]. A �rst order thesaurus for a domain, essentially a phrase list, is �rst generated

automatically. Input texts are parsed and candidate noun phrases are identi�ed. These are

then compared to the thesaurus. They are classi�ed as either:

1. exact (identical to some phrase in the list),

2. general (terms are constituents of those in the list), or

3. novel (new terms not on the list).

This approach always uses terms from the list as the indexing units and thus always

yields the same syntactic form for a concept which could have been expressed in a number

of di�erent ways [18]. Encoding the ambiguity in some structure and allowing the retrieval

operation to make allowances for this, handles the syntactic ambiguity in syntactically based

indexing.

Semantic level language processing in information retrieval Any piece of text which

contains information essentially consists of a description of objects and actions on those ob-

jects. A number of conceptual information retrieval systems are described in the literature:

SCISOR [23], RESEARCHER[32] and OpEd[1]. SCISOR [23] parses and analyses input

stories into a knowledge base and then it answers users' questions about the content. RE-

SEARCHER operates in the domain of US patent applications. Trying to resolve outstanding

ambiguities, RESEARCHER uses limited semantics to resolve syntactic ambiguity and then

uses the knowledge assimilated from the whole of the patent application it is processing [32].

OpEd is an editorial comprehension and question answering system which answers questions

about beliefs, belief relationships and goals of those who have made arguments in the input

texts [1].
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3.5 Automatic Sentence Extraction used in Title and Abstract

selection

Text processing methods based on a determination of term or sentence importance have

been used not only for indexing but also for automatic abstracting purposes [52]. It was

hypothesised that an extract of a document, that is a selection of signi�cant sentences can

serve as an abstract. This hypothesis concerning the substitutability of extracts for abstracts

has been discussed in [15]. To achieve this, each sentence in the source text is scored according

to some measure of importance, and the best rated sentences are selected [59]. Ideally, given

a document represented as natural language text, one would like to construct a coherent

well written abstract that informs the readers of the contents of the original, or at least

indicates whether the full version may be of interest to the reader. A useful �rst step in

the automatic or semi-automatic generation of abstracts from source texts is the selection

of a small number of sentences, which are deemed to be important for purposes of content

representation, from the source text [59]. The extraction methods used over the years start

with a calculation of word and sentence signi�cance, similar in spirit to the computation

of the term weights. Criteria for the selection of important terms may be positional (the

term's location in the document), semantic, or pragmatic (a system which would consider

proper names as highly signi�cant). Statistical term weights may be also criteria in selecting

important terms. Since the frequency criteria are not very reliable, additional criteria should

be used such as contextual inference (the word location or the presence of cue words), and

syntactic coherence criteria [36, 16, 15, 49, 14, 4, 42, 43].

Kupiec et al.[30] describe a classi�cation task on the basis of a corpus of technical papers

with summaries written by professional abstractors. Their system identi�es sentences in the

text which also occur in the summary. Then it acquires a model of the abstract-worthiness of

a sentence as a combination of a limited number of properties of that sentence. These prop-

erties include the sentence location in the document, the sentence length and the presence

of thematic words in the sentence.

Simone H. Teufel and Marc Moens [59] report on a replication of Kupiec's experiment

with di�erent data. Summaries for their documents were not written by professional ab-

stractors, but by the authors themselves. This produced fewer alignable sentences to train

on. They used alternative meaningful sentences (selected by a human judge) as training and

evaluation material, because this has advantages for the subsequent automatic generation of

more 
exible abstracts. They employed �ve di�erent heuristics: four of the methods used by

Kupeic et al as well as the title method described below. Kupeic et al's methods were the

cue phrase method, location method, sentence length method and thematic word method.

1. Cue phrase method: it seeks to �lter out meta-discourse from subject matter. Cue

phrases were manually classi�ed into �ve classes. This corresponds to the likely-hood

of a sentence containing the given cue to be included in the summary. A score of minus

one means very unlikely to be included in the summary, whereas a score of plus three

means very likely to be included in the summary.

2. Location method: Paragraphs at the start and at the end are more likely to contain

material that is useful for a summary. These paragraphs tend to include crucial infor-
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mation. Simone et al's algorithm assigns non-zero values only to sentences which are

in document peripheral sections. Sentences in the middle receive a zero score.

3. Sentence length method: All sentences under a certain length (�fteen tokens including

punctuation are given a score of zero. All sentences above that criterion are assigned

a score of one.

4. Thematic word method: It identi�es key words that are characteristic for the contents of

the document. The top ten scoring words are chosen as the thematic words. Sentence

scores are then computed as a weighted count of thematic words in that sentence.

5. Title method: Words occurring in the title are good candidates for document speci�c

concepts. Simone et al. also experimented by taking into accounts words occurring in

the headings. Better results were generated using title words only [59].

3.6 Text Classi�cation or Categorisation

An important step in building up the document database of a full text retrieval system is to

classify each document under one or more classes according to the topical domains that the

document discusses. This is commonly referred to as classi�cation. Automatic classi�cation

has two major components:[24] The classi�cation scheme, which de�nes the available classes

under which a document can be classi�ed and their inter-relationships, and the classi�cation

algorithm, which de�nes the rules and procedures for assigning a document to one or more

classes. Text categorisation systems assign prede�ned category labels to texts. For example,

a text categorisation system for computer science might use categories such as operating

systems, programming languages, AI or information retrieval [47]. Text Categorisation are

typically applied to static databases [47].

Wong, Kan and Young presented an automatic classi�cation approach called ACTION

[24]. The key idea behind it is a scheme for measuring the signi�cance of each keyword in

a given document. That scheme takes into account not only the occurrence frequency of a

keyword, but also the logical relationship between the available classes.

The relevancy signatures algorithm [48] uses linguistic phrases, the augmented relevancy

signatures algorithm uses phrases and local context, and the case-based text classi�cation

algorithm uses larger pieces of context. These three algorithms were evaluated and the

results suggested that information extraction techniques can support high-precision text

classi�cation. In general, using more extracted information improves performance. There

have been approaches using knowledge bases relying on a domain-speci�c dictionary to drive

the information extraction system [48]. It seems reasonable to believe that we could produce

accurate classi�cations if we could actually understand the documents. However, natural

language understanding is an expensive endeavour that can strain computational resources.

Thus, some researches have turned their attention to information extraction that extracts

speci�c types of information from a document [48]. The main advantage of this approach is

that portions of a text that are not relevant to the domain can be e�ectively ignored. Since

the system is only concerned with the domain-speci�c portions of the text, some of the most
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di�cult problems in NLP are simpli�ed. As a result, information extraction is a practical

and feasible technology that has achieved success in the last few years [33, 48].

Edmundson [17] describes new methods of automatically extracting sentences from doc-

uments for screening purposes. His method describes the sentence signi�cance, the high

content words previously described and three additional components: pragmatic words (cue

words), words found in the title and the headings, and the structural indicators (sentence lo-

cation). An attempt was made by Edmundson to classify eligible sentences as to qualitative

degree of extract-worthiness. In practice, however, it did not prove satisfactory for sentence

selection. The principles he followed in devising the guide to the development of automatic

extracting methods so as to yield close approximations to target extracts were:

1. Detect and use all content and format clues to the relative importance of sentences

that were originally provided by the author, editor or printer.

2. Employ a system of reward weights for desired sentences and penalty for undesired

sentences.

3. Employ a system of parameters that can be varied to permit di�erent speci�cations

for extracts.

4. Employ a method that is a function of several linguistic factors (syntactic, semantic,

statistical locational, etc.).

Thus, the four basic methods Edmundson used in his automatic extracting system are the

Cue, Key, Title and location methods. Clearly, there are extracting clues that have not been

exploited-in captions of �gures and tables, in footnotes and references.

3.7 Retrieval and Information extraction systems

3.7.1 The SMART Retrieval System

The SMART system is a sophisticated text retrieval tool based on storing all information

terms in a vector of terms. In principle, the terms might be chosen from a controlled

vocabulary list or a thesaurus [55]. A summary of the results after applying the SMART

system shows that abstract processing with phrase and synonym recognition had the best

results. Next most e�ective were the results that were drawn from using weighted word stem

matching and statistical word associations using abstracts for analysis purposes. The less

e�ective results were upon matching logical word stem and disregarding term weights. The

least e�ective results were when only document titles were used for analysis purposes.

3.7.2 Oracle ConText-Text Management System

The Oracle7 ConText option is a fully integrated text management solution that enables users

to process text-based information as quickly and easily as relational data. Oracle context
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analyses the contents and understands the structure of the English text it reads. The Oracle

Release 7.3 ConText option consists of two separate, yet closely interrelated functions: a

text management architecture contained entirely within Oracle7 and a text retrieval feature

which uses natural language processing technology to identify themes and content in text.

It is also capable of analysing the thematic content stored text and generating automatic

summaries.

By breaking down the text into its constituent grammatical elements and determining how

these elements contribute to the overall meaning, ConText works to understand the text it

processes. It then uses this knowledge to produce a database index which can identify the

development of key themes and determines their relative prominence [40]. Unlike other prod-

ucts that simply count words or use a hierarchical thesaurus to determine the main theme of

a document, ConText parses every sentence in a document to determine the relative weight

of the di�erent themes. The Oracle ConText Lexicon is the heart of this text retrieval sys-

tem. The Oracle ConText Lexicon contains a vast dictionary of over 1,000,000 words and

phrases as well as the linguistic rules that bind them into thematic units. The lexicon is

designed to recognise the vocabulary used in over 1,000 industries and can be augmented

by user dictionaries. The ConText option provides automatic text reduction, which creates

summaries conveying the main ideas and concepts of full documents. In addition to text re-

duction, ConText contains a powerful text classi�cation feature which categorises documents

according to linguistically identi�ed themes rather than word frequency and statistics.

3.7.3 Nordic WAIS/World Wide Web Project

The Nordic WAIS/World Wide Web Project works on Improving Resource Discovery and

Retrieval on the Internet [3]. The Nordic's automatic classi�cation depends on UDC [3],

an English medium classi�cation scheme. The dynamic nature of the information sources

on the network makes it necessary to have automatic tools that index and classify material.

The algorithm used is as follows:

1. From the di�erent �elds of the selected document, words are extracted into a number

of groups:

� words from the description �eld

� words from the subject �eld

� words from the keyword-list �eld

� words from the description �eld marked as keywords together with the name of

the database.

2. A list of suggested classi�cations is constructed by comparing words from these groups

with UDC's vocabulary. When a match between the vocabulary and a word is found

the corresponding classi�cation is added (restricted to the top 2 levels) to the list of

suggested classi�cations with a certain weight. The weight depends on which group

the matching word originates from. As an illustration, keywords in the subject �eld

have higher weights than ordinary words in the description �eld.
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3. From the list of suggested classi�cations, the �nal classi�cation is made. It is based on

the accumulated weights for each proposed classi�cation.

The Nordic project is not tied to UDC but can be used with other classi�cation

schemes such as the Library of Congress in order to produce di�erent views of the subject

trees.

3.7.4 Harvest's Essence

Essence's main objective is to extract indexing information from an input document. Content

indexing requires type-speci�c processing to extract information e�ectively. By exploiting the

semantics of common �le types

1

, Essence generates compact yet representative �le summaries

that can be used to improve both browsing and indexing in resource discovery systems

[22]. Essence decomposes the information extraction problem into four components that are

independent of how data are stored, updated or exported. The components are listed below:

1. The type recognition step that uses various methods to determine a �le's type. Essence

recognises �le types using a combination of �le and site naming conventions, content

testing, and user de�ned methods. The two main type recognition steps are:

� Naming conventions and heuristics.

� Examining �le contents in determining the �le types.

2. The presentation unnesting step that transforms nested �les into an unnested format.

When a presentation nested �le is encountered, it is unnested into one or more result

�les. The result �les themselves can also be nested. In addition to unnesting the input

�les, the presentation unnesting step also keeps a record of the nested origin of each

unnested �le, for use by the candidate selection and summarising steps.

3. Candidate selection step, selects which objects are to be summarised. Given a set of

typed objects, the candidate selection step chooses objects to summarise. It attempts

to eliminate redundancy among related �les.

4. The summarising step, which applies a type speci�c extraction procedure to each se-

lected object.

3.8 Conclusions

In this chapter, we described approaches in information retrieval, document indexing and

text classi�cation. We will be using some of these ideas in our system. Since the term

position in the document is weighted, we will give an importance of the term location in

the document. Since some of the available experimental evidence indicates that the use of

abstracts in addition to titles brings substantial advantages in retrieval e�ectiveness [50],

and since Salton's SMART system reveals that using the abstract rather than the whole

1

See The Summariser's functions for each document table at the end of this subsection
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text gives the best results in information retrieval, the abstract and the title are used as

two of the components of the Semantic Header. Since the titles could be good candidates

for document speci�c concepts as Simone et al stressed, we will assign high weights to the

terms located in the abstract and title �elds. The additional utilisation of full texts of the

documents appears to produce very little improvement over titles and abstracts alone in

most subject areas [50]. In addition to assigning term weights, our system used the term

frequency of occurrence addressed by Luhn.

The automatic classi�cation approach used in ACTION relates the signi�cant keywords

to a set of available classes. Our system's thesaurus concept will be based on this idea;

however, our system relates controlled terms with a set of subject headings. Our document

classi�cation scheme is based on Nordic's classi�cation scheme. Nordic classi�es documents

by looking for a match between a set of vocabulary and the words in the document. Nordic

uses words extracted from a set of groups and UDC's vocabulary to classify a document.

Each classi�cation gets a weight depending on which group the matching words originated

from. The classi�cation having the highest weight is selected. Our system will look for a

match between a set of di�erent weighted terms generated from the document and a set

of controlled terms. The highest weighted subject headings associated with the matched

controlled terms will be selected.

Luhn's automatic abstracting idea will be used in generating an abstract for a document

and Harvest's �le type recognition will be implemented in our thesis.

4 ASHG's Thesaurus

4.1 The Thesaurus in IR

A thesaurus is a set of items (phrases or words) plus a set of relations between these items [25].

The Thesauri commonly used in IR have shown inconsistent e�ects on retrieval e�ectiveness,

and there is a lack of viable approaches for building a thesaurus automatically [25]. There

are two types of manual thesauri. The general purpose and word based thesauri like Roget's

and WordNet contain sense relations such as antonym and synonym but are rarely used

in IR systems. The IR oriented and phrase based thesauri such as INSPEC, Library of

Congress Subject Headings (LCSH), and Medical Subject Headings (MeSH) are widely used

in commercial systems [25]. The major drawback of both types are that they are expensive

to build and hard to update in a timely manner.

This paper addresses the issue of constructing a thesaurus in a semi-automatic fashion.

We used a number of rules in merging the subject headings found in INSPEC [62], LCSH

[66] and ACM [67].
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4.2 ASHG's Thesaurus

The ASHG's Thesaurus is composed of a three level subject hierarchies and a set of control

terms associated with the subject headings found in the subject hierarchies. The Thesaurus

used by ASHG contains four object classes: Level 0 which represents the general subject of

the subject hierarchy, Level 1 which represents the sub-subject of the general subject and

is derived from Level 0; Level 2 which represents the sub-subject of the Level 1 subject and

is derived from Level 1, and �nally Control term which contains the root terms that are

derived from the subject headings. A root term is the origin of all possible terms that can

be generated from it by adding the su�xes and pre�xes.

4.2.1 The Subject Hierarchies

Since di�erent subject headings may be used to convey the same subject, and since di�erent

people may have di�erent perspectives on the same single subject, controlled subject headings

were derived. The CINDI system focuses on the standardisation of subject headings. This

database helps the provider of the primary resource in selecting the correct subjects and

sub-subjects' headings for the semantic header entry. CINDI's subject hierarchy is made

up of three levels, where level 0 contains the general subject heading. Currently we have

included only two general subject headings: Computer Science and Electrical Engineering.

Level 1 contains all the subjects that fall under level 0 subjects, and similarly level 2 will

contain more precise subjects that fall under level 1 subjects.

4.2.2 Building CINDI's Classi�cation

ACM, INSPEC and LCSH were the main building blocks of CINDI's three level Subject

Hierarchy. ASHG's computer science subject hierarchy used ACM's subject hierarchy as the

starting point, and ASHG's electrical engineering subject hierarchy was based on INSPEC's

subject hierarchy. We have exploited LCSH's subject headings relations to re�ne both hi-

erarchies. LCSH contained relations between subject headings such as BT (Broader Term),

NT (Narrow Term), UF (Used For), and RT (Related To). In order to augment ACM and

INSPEC subject hierarchies, a search for an ACM or INSPEC subject heading was made in

LCSH. If a match was found, the narrow terms found in LCSH under the matched subject

were added to the list of subjects or terms under the ACM or INSPEC's matched subject

heading.

This augmentation produced a hierarchy composed of �ve or six levels. Since CINDI's

subject hierarchy was limited to only three levels, rules were applied to merge these subject

headings. The resulting subject hierarchy was formed of three level subject hierarchy and

one additional level. This last level contains terms used as control terms associated with

the Level 2 subject headings. Merging the subjects of di�erent levels involves the following

rules:

1. The Computer Science's subject hierarchy's general (Level 0) subject is Computer Sci-

ence. The Electrical Engineering's subject hierarchy's general (Level 0) subject is Elec-
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trical Engineering. Similarly, other subject hierarchies will be disciplined based as in

the LCSH.

2. Level 1 and Level 2 subject headings found in the augmented ACM (or INSPEC) were

merged to form one level, the CINDI's Level 1 subject heading. For some of the subject

headings found in Level 2 which contained the subject headings found in Level 1, the

Level 1 subject headings were dropped. The same rule was applied on subject headings

found in Level 3 and Level 4 to give the CINDI's Level 2 subject heading. For exam-

ple, Software and Software Engineering were found in the augmented ACM Level 1

and Level 2 subject headings respectively. We dropped Software, to yield Software

Engineering as CINDI's Level 1 subject heading.

3. Some of the subject headings found in the Level 1 and Level 2 augmented ACM (or

INSPEC) subject hierarchies were concatenated with a colon to form the CINDI's

Level 1 subject heading. The same rule was applied on subject headings found in the

augmented ACM (or INSPEC) Level 3 and Level 4 to yield CINDI's Level 2 subject

heading. For instance, O�ce Automation and Spreadsheets were found in the aug-

mented ACM (or INSPEC) Level 3 and Level 4 subject headings respectively. We

concatenated them to derive CINDI's Level 2 subject heading, O�ce Automation:

Spreadsheets.

4. The Level 5 and Level 6 augmented ACM (or INSPEC's) subjects were used as con-

trolled terms associated with CINDI's Level 2 subject headings. Copyrights, for ex-

ample, was used as a control term associated with CINDI's Level 2 subject heading,

Hardware and Software Protection

4.2.3 The Control Term Subject Association

The CINDI system uses a thesaurus to help the user in the registering and search processes.

One such need for a thesaurus is in avoiding chaos introduced by di�erences in perception

of di�erent indexer. Hence, some form of standardisation of terms used has to be enforced.

The main reason behind the Control Term Subject association is to extract or classify the

primary source under a number of subject headings by comparing the signi�cant list of

words contained in the document with the list of controlled terms. An association between

the controlled terms and their corresponding subject headings is created.

Each controlled term has three lists of subject headings attached to it. The three lists cor-

respond to the general subject headings, sub-subject Level 1 subject headings, and Level 2

subject headings. Our controlled terms were based on the terms found in CINDI's subject hi-

erarchy and the additional terms that are associated with CINDI's Level 2 subject headings.

For each subject heading found in CINDI's subject hierarchy and the additional terms, we

used their constituent English none noise words as their corresponding controlled terms. For

example, the control term compute will be associated with Computer Science general subject

heading. Similarly, the control term hardware will be associated with Hardware integrated

circuits and Hardware performance and reliability level 1 subject headings and Hardware

Simulation Design Aids level 2 subject heading. Each controlled term is associated with one

or more subject headings.
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Figure 1: Transforming ACM (or INSPEC) Subject Hierarchy into CINDI's Subject Hierar-

chy
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Building the Controlled Terms: The subject headings found in CINDI's Level 0, Level 1

and Level 2 will be used as the basis for �nding the controlled terms. In addition, the

additional terms associated with CINDI's Level 2 subject headings are mapped into some

controlled terms. Mapping CINDI's subject headings terms into controlled terms involves:

1. Since the controlled term dictionary is only composed of signi�cant words, English stop

words are removed from CINDI's subject hierarchy headings and the additional terms

associated with CINDI's Level 2 subject headings. English Stop words are found in

Table 2.

2. Applying ASHG's stemming process to the remaining list of words in order to get their

root, which will be stored in the list of controlled terms.

3. Generating a list of words to be added to the spell check dictionary. These words are

found in the subject headings but not in the spell check dictionary. Words like WWW

would be checked as wrong by the Unix spell check command, because WWW is not

found in the spell's dictionary. So, WWW should be an added to the list of controlled

terms.

Associating the controlled terms with the subject headings A document often

covers a number of subjects or domains. Naturally some of them are of higher importance

than others. CINDI uses the words in a document to classify it under a list of subject

headings. This list of words from the document are matched against the controlled terms,

generated above. The association between the subject headings and the controlled terms is

constructed by comparing the root words found in these subject headings with the CINDI's

controlled terms. If a match is found, then this subject heading is associated with the

controlled term. The reason behind building such an association is that ASHG will generate

a suggested list of subject headings using the words found in the document by consulting

the Controlled term subject association. A summary of the steps used is discussed below:

1. Split each subject heading and the terms associated with CINDI's Level 2 subject

headings into the words they are made up of.

2. English noise words found in the list of words are removed.

3. Words are checked using the spell command.

4. Similarly, words not found in the spell Unix dictionary and the new added words are

dropped.

5. Apply the stemming process to generate the root controlled terms from the words.

6. Each root controlled term will be associated with the subject headings that contains

it.

For example,Theory of computation by abstract devices subject heading is divided into

the following words: theory, of, computation, abstract, by, and devices. The English noise

words such as of and by are dropped. Steps 3, 4 and 5 are applied on the remaining terms.

The generated root terms such as abstract, theory, computation, and device are associated

with the initial subject heading.
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Figure 2: Associating words' roots to their subject headings
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I you she he it we mine

they me her him us them yours

hers his its ours theirs their my

this that the these those who whom

which what whoever whomever whichever whatever all

any anybody anyone anything each everybody everyone

everything few many nobody none one several

some somebody someone myself yourself herself himself

itself ourselves a more less also consequently

�nally furthermore hence however incidentally indeed instead

likewise meanwhile nevertheless next nonetheless otherwise still

then therefore thus forever moreover only are

is afterwards again almost alone already always

about above across after against along among

around at before behind below beneath beside

between beyond but by despite down during

except for from in inside into like

near of o� on onto out outside

over past since through throughout till to

toward under underneath until up upon with

within without amongst anyhow anything anywhere be

became become becomes becoming been beforhand being

besides can and but or nor for

so yet after although as because before

how if once since than that till

though until when where whether while both

either neither whether an another

Table 1: Noise (Stop) words extracted by ASHG

5 ASHG

5.1 Introduction

In this section, we present the Automatic Semantic Header Generator (ASHG) of the CINDI

system. This is an important step in building the Semantic Header. To save time for the

document's provider, ASHG provides an initial set of subject classi�cation and a number
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of components of the Semantic Header for the document. The design goal of ASHG is to

automatically build a reliable Semantic Header, which includes classifying a document under

a list of subject headings. ASHG's scheme is measuring both the occurrence frequency and

positional weight of keywords found in the document. Based on the selected document's

keywords, ASHG assigns a list of subject headings by matching those keywords with the

controlled terms found in the controlled term subject association.

The ASHG extracts some of the meta-information from a document and stores it in a

Semantic Header. For example, when a new document is presented to the system, �elds

such as document's title, abstract, keywords, dates, author, author's information, size and

type are extracted. Using frequency occurrence and positional schemes, ASHG measures the

signi�cance of the words found in the previously mentioned list. Word stemming is used

in order generate a base form for each word. The system tries to match the base forms of

the words with the controlled terms found in the controlled term subject association. If a

match was found the subject headings associated with the controlled terms are extracted

and ranked accordingly. The major steps followed by ASHG are brie
y described below:

1. Document Type Recognition: In order to apply the correct ASHG to a document,

the type of the document has to be recognised. The system currently understands

HyperText Markup Language (HTML), Latex and plain text documents.

2. Applying ASHG's Extractor: The summariser corresponding to the type of document

is applied to the input document.

3. ASHG's Document Classi�cation: The document is assigned subject headings. It

involves:

(a) Word stemming: The system applies the stemming process

2

, to map the words

found in the extracted �elds onto a base root word.

(b) A Look up into the Controlled Term Subject dictionary.

4. Semantic Header Validation: The generated Semantic Header is presented to the user

to validate.

5.2 Document Type Recognition

When a document is submitted to the system, the system tries to recognise the type of

the document through the name conventions. If it fails the system will then examine its

contents. If a failure arises following the examination of the content, the system informs the

user that the document type is unrecognised, and the user is asked to enter the Semantic

Header. Naming conventions and heuristics and Examining �le contents are the two steps

used in the document type recognition process.

2

The stemming process will be discussed in more details in section 5.3.5
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The document �le upon submitting is passed to a function, which checks the document's

name extension. If the naming conventions fails in recognising the document type, the

system examines the �le content. The semantics of the ASHG's types are exploited when

attempting to recognise the �le type. Finally, the user either con�rms or rejects the result.

If the user rejects the result, he should choose a type from a list that is displayed. If the user

con�rms the document's type as recognised, ASHG applies the extractor corresponding to

the type con�rmed by the user. Otherwise, he should choose a type and then apply ASHG.

If the �le type is unrecognised by ASHG, the system extracts the size of the �le and the date

of creation.

If N

Y

DOCUMENT

Recognition  

Using Byname

Recognised
Type

Recognise using
Bycontent

User Validation
 (user_verify)

Apply Extractor

Figure 3: Document Type Recognition

5.3 Applying ASHG's Extractors

Based on the document's type uncovered in the document type recognition step, ASHG

applies an extraction procedure. ASHG uses its understanding of HTML, Latex and text

syntax documents to extract the document's meta-information. ASHG's HTML extractor,

LATEX extractor, TEXT extractor and UNKNOWN extractor are applied to HTML type

documents, to Latex type documents, to Text type documents and to unrecognised type

document respectively.
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Using the document's syntax, ASHG extracts summary information, such as the title, key-

words, dates of creation, author, author's information, abstract and size. In both HTML and

Latex documents, the author might explicitly tag some of the �elds to be extracted. In case

these �elds were not explicitly tagged, ASHG attempts to extract them using some heuris-

tics. For example, extracting the keywords in an HTML document, The HTML extractor

extracts words that are found in the meta tag �eld, if they were included by the author.

However, if the explicit keywords were not found in the document, then words found in the

title, abstract and other tagged words would be used to extract an implicit list of keywords.

5.3.1 HTML extractor

HTML is designed to specify the logical organisation of a document, with important hy-

pertext extensions [21]. An HTML document is designed in a way to mark selections of

text as titles or paragraphs, and then leaves the interpretation of these marked elements up

to the browser. The HTML extractor exploits this mark-up in order to extract the meta-

information.

ASHG exploits both the HEAD's TITLE mark-up element and the HEAD's META mark-

up element, which is a general element for document meta-information. TheMETA mark-up

element contains information such as date of creation, and date of expiry. It can also contain

Arbitrary User-Speci�ed Information, which includes information such as keywords, name of

the author, and a summary of the document. In case these mark-up elements are not found in

the HTML document, ASHG extracts the meta-information by applying some heuristics that

will exploit the BODY mark-up elements such as the Hn headings, P paragraphs, ADDRESS

Address, Blockquote, Lists and text emphasis.

HTML extractor extracts the title, explicitly stated keywords, language (English), au-

thor(s), dates (Created, Expiry), size of the �le, and the abstract from an HTML document.

Generating an implicit list of keywords will be discussed in sub-section 5.3.5, and the subject

headings classi�cation scheme is described in section 5.4. Both procedures are standard for

all extractors.

1. Extracting the author from an HTML document: The HTML extractor extracts

the author from the META mark-up element. For instance, if the HTML document

contains <META name = \author" content = \Sami Haddad" >, the HTML extractor

extracts Sami Haddad as the author of the document.

2. Extracting dates from an HTML document: Document's creation and expiry

dates could be found in the META mark-up element, for example <META name =

\Created" content = \18/03/98">. The HTML extractor extracts both the date of

creation and date of expiry. If it fails to locate them in the META mark-up element,

it uses the stat and GM-time commands to extract the date of creation. stat unix

command contains information about the �le such as File size in bytes, Time of last

access, Time of last data modi�cation and Time of last �le status change. GM-time

unix command converts the time to Coordinated Universal Time (UTC), which is what

the UNIX system uses internally.
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3. Extracting the size of the HTML document: Using the stat unix command, the

size of the �le can be extracted.

4. Extracting the title from an HTML document: The title, which is found in be-

tween <title> and </title> tags, is extracted. For example, if the HTML document

contains <title> Cindi System analysis </title>, HTML extractor extracts Cindi Sys-

tem analysis as the document's title. If the title tags were not found in the HTML

document, then the HTML extractor will extract the �rst heading found in between

<h1> and </h1> tags. If it fails, then the �rst sentence is extracted after generating

an HTML tag-free document.

5. Extracting the abstract from an HTML document: The HTML extractor at-

tempts �rst to extract the content from the META abstract mark-up element. If it

fails to �nd the abstract in the META mark-up element, it extracts the paragraph

headed by the tagged word abstract. If it fails to locate an abstract heading, it applies

an automatic abstracting method. This method, which is similar to Luhn's automatic

abstracting method described in chapter 3, attempts to extract a section or paragraph

that is headed by introduction. Based on the number of signi�cant root words in the

sentence, a numerical measure is developed for a sentence. The automatic abstracting

includes the highest measured sentences in the abstract. If it fails, the HTML extractor

extracts the �rst paragraph after removing the HTML tags and applies the automatic

abstracting method, described above, on this paragraph.

6. Extracting other tagged words from an HTML document: The HTML extractor

extracts a list of tagged words. For example, if the HTML document contains the meta

tags <b> Database </b>, the HTML extractor includes Database in the list of other

tagged words. This list of words is used in generating an implied list of keywords and

in generating a list of signi�cant words used in the document classi�cation scheme.

Both processes will be described in subsection: 5.3.5.

7. Extracting explicitly stated keywords from an HTML document: The HTML extractor

attempts �rst to extract the keywords from the META mark-up element. If it fails, it

extracts the list of keywords following the tagged word, keywords. For example, if the

HTML document contains the meta tags <b>Keywords</b> :Bibliographic record,

search engineering , analysing search, Content description, Database Systems, Expert

System, Indexing applications, Searching, URC <p>, the HTML extractor extracts

these as the document's keywords.

5.3.2 Latex extractor

LaTeX is a TeX macro package, originally written by Leslie Lamport [31], that provides an

easy way to use the TeX document processing system. LaTeX allows mark-up to describe

the structure of a document, so that the user need not think about presentation. Latex

commands describe the structure of the document. There is a list of things that should be

realized about these commands:

1. All Latex commands consist of a backslash followed by one or more characters. They

should be typed using the correct mixture of upper and lower case letters.
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2. Some commands are placed within the text. These are used to switch on and o� things,

like di�erent type styles.

3. There are other commands that look like ncommandftextg

4. When a command's name is made up entirely of letters, its end is marked by something

that isn't a letter. The mark, for instance, could be a space.

The LATEX extractor exploits the use of mark-up elements of speci�cally the Latex

article style to extract the meta-information. It extracts the title, explicitly stated keywords,

language (English), author(s), dates (Created, Expiry), size of the �le, and the abstract from

a Latex document. Generating both implicit keywords and a list of subject headings for a

document will be described in a later section, since they are a standard procedure for all

extractors.

1. Extracting the author from a Latex document: The nauthorfnamesg command

declares the author(s), where the name(s) is a list of authors separated by nand com-

mands. The nn is used to seperate lines within a single author's entry. For example,

to give the author's institution or address. If the following was in the latex document:

\author{Bipin C. DESAI \\

Department of Computer Science,\\

Concordia

University, \\

Montreal, H3G 1M8, CANADA\\}

LATEX extractor extracts Bipin C. DESAI as the author's name and Department

of Computer Science, Concordia University, Montreal, H3G 1M8, CANADA as the

author's address.

2. Extracting dates from a Latex document: The ndateftextg declares text to be

the document's date. For example, if \ndatef18/04/98g" was found in the Latex

document, LATEX extractor extracts 18/04/98 as the document's date. If no ndate

command is found in the Latex document, LATEX extractor uses the stat and GM-time

commands to extract the date of creation.

3. Extracting the size of the Latex document: Using the stat unix command, the

size of the �le can be extracted.

4. Extracting the title from a Latex document: The ntitleftextg command de-

clares text to be the title. The LATEX extractor exploits the title mark-up element

to extract the title. For instance, if the latex document contains ntitlefCINDI system

analysisg, LATEX extractor extracts CINDI system analysis as the title. If it fails,

LATEX extractor exploits the following mark-up element:

\begin{titlepage}

text

\end{titlepage}
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It extracts the �rst sentence found in the text. If it fails, it extracts the text marked

up by huge, or large. It can exploit the presence of nbeginfhugeg text nendfhugeg or

nhugeftextg. If it fails, it exploits the presence of nbeginfLargeg text nendfLargeg or

nLargeftextg. If none of the above mark-up elements were found in the document,

LATEX extractor �lters out all latex mark-up elements and extracts the �rst sentence

as the document's title.

5. Extracting the abstract from Latex document: A latex document might contain

nbeginfabstractg text nendfabstractg. If it does, the LATEX extractor extracts the text

as the document's abstract. Otherwise, it extracts the sections which are headed by

the word abstract. For example, if nsectionfAbstractg is found in the document, the

paragraph that follows is extracted. However, if it fails, it extracts the paragraph that

follows nhugefAbstractg, nlargefAbstractg, nbffAbstractg, or nitfAbstractg. If none of

these are found, the automatic abstracting method is applied. This method, which

is similar to Luhn's automatic abstracting method, is described in chapter 3 and in

the HTML extractor. If the automatic abstracting method fails, the �rst marked up

paragraph is extracted, otherwise, all the latex mark-ups are removed and the �rst

paragraph is extracted as the document's abstract.

6. Extracting other tagged words from a latex document: The LATEX extractor

extracts a list of other marked up words. It uses the sectioning commands and the

three typefaces latex commands: nem (Emphatic), nbf (Boldface) and nit (Italic) to

extract the marked up words. The extracted words will be used in the generation of

an implicit list of keywords and the generation of a list of signi�cant words used in

the document's classi�cation scheme. This process of generating an implicit list of

keywords and a list of signi�cant words is described in subsection 5.3.5. Here are the

Latex sectioning commands: npart, nchapter, nsection, nsubsection, nsubsubsection,

nparagraph, and nsubparagraph.

7. Extracting explicitly stated keywords from a latex document: LATEX extractor

exploits three typefaces latex commands: nem (Emphatic), nbf (Boldface) and nit

(Italic). These commands are used inside a pair of braces to limit the amount of text

that they a�ect. For instance, if the following was in the latex document:

fnbf Keywords: g Information retrieval, Modelling, meta-data, cataloguing. searching,

discovery, information resources, WWW, Internet, resource discovery nn

, the LATEX extractor extracts the words as the document's keywords.

5.3.3 Text extractor

Perhaps one of the most challenging tasks in information extraction is to extract and ma-

nipulate information found in plain text documents. Since these documents do not contain

tags or mark-up elements, the TEXT extractor relies heavily on heuristics in extracting the

title, explicitly stated keywords, language (English), author(s), dates (Created, Expiry), size

of the �le, and the abstract from a Latex document. Generating both implicit keywords and

a list of subject headings for a document will be described in a later section.

1. Extracting the author from a plain text document: The TEXT extractor looks

for a pattern such as written by, edited by or revised by. If it �nds one of them, it

extracts the text following it and stores it as the author's Semantic Header �eld.
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2. Extracting dates from a plain text document: The TEXT extractor uses the

stat and GM-time commands on the document �le to extract the date of creation.

3. Extracting the size of the plain text document: Using the stat unix command,

the size of the �le can be extracted.

4. Extracting the title from a plain text document: When presented with a plain

text document, the TEXT extractor extracts the �rst sentence from the document.

This sentence is used as the document's title. If it fails, it generates a list of sen-

tences by extracting all sentences found in the �rst, second and last paragraph and

by extracting the �rst sentence of all other paragraphs. Each sentence is divided into

its constituent words. After dropping all English Noise or Stop words, the remain-

ing words are stemmed. Each sentence is given a weight according to the frequencies

occurrences' sum of the stemmed words found in the sentence. The TEXT extractor

selects the highest weighted sentence as the document's title.

5. Extracting the abstract from plain text document: The TEXT extractor looks

for the pattern, abstract, and extracts the �rst paragraph following it. If it fails,

the automatic abstracting method is applied on the document's introduction . If

it fails to construct an abstract, TEXT extractor applies the automatic abstracting

method on the sentences found in the �rst, second and last paragraph and on the �rst

sentence of all other paragraphs. The sentences are divided into their constituent words.

Dropping all English Noise words, the remaining words are stemmed. The extracted

sentences are weighted according to the frequency occurrence of the stemmed words.

The TEXT extractor will construct the document's abstract by extracting the highest

weighted sentences.

6. Extracting other words from a plain text document: The TEXT extractor

extracts the words found in the �rst two paragraphs, the last paragraph and in the

�rst sentence of each other paragraph. After removing the English Noise words, a list

of stemmed words is derived. The derived words will be used in the generation of an

implicit list of keywords and the generation of a list of signi�cant words used in the

document's classi�cation scheme.

7. Extracting explicitly stated keywords from a plain text document: The

TEXT extractor extracts the text following the word keyword as the document's key-

words, until the TEXT extractor reaches an introduction heading or a new paragraph.

5.3.4 Unknown extractor

ASHG supports HTML, Latex and Text documents; however, if the document is not any of

these types, ASHG applies the UNKNOWN extractor. It extracts the size of the document

and the creation date. It is up to the document's author or provider to enter the Semantic

Header's information.

5.3.5 Generating an implicit list of keywords and words used in Document

classi�cation

ASHG generates an implicit list of keywords in case explicit keywords were not found in

the document. It derives a list of most signi�cant words, which is used in the document
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classi�cation scheme. In case keywords were not found in the document, the system derives

a list of words from the words found in the title, abstract, and other tagged �elds. This list

of derived words will also be used in classifying the document. However, if the keywords were

explicitly stated in the document, then ASHG will generate a list of words from the words

found in the title, abstract, keywords and other tagged �elds. This list is used to assign a

list of subject headings for the document.

Generating both lists of words relies on the stemming process that will map the words

into their root words, the stemmed word frequency of occurrence and the word location in

the document. It uses the following algorithm in generating the list of implicit keywords, in

case the keywords were not found in the document, and the words used in the classi�cation

scheme:-

1. Extract the title, abstract and other tagged �elds. If the document wasn't tagged such

as in a plain text document, words found in the �rst two and last paragraphs and in

the �rst sentence of each paragraph are selected. Keywords are extracted if they were

found in the document.

2. English Noise words constitute usually around 30 to 50 per-cent of a document. The

Information Retrieval community calls them the Stop List. These words are dropped

from the extracted �elds.

3. The remaining words are sent to the stemming process. This process will remove the

words' su�xes and pre�xes. For example, the words: cycled, cycler, cycling and cycles

are stemmed to the root term, cycle. The aim of the stemming process is to generate

base word class, which include all the forms that could be generated from it.

4. Because the terms are not equally useful for content representation, it is important

to introduce a term weighting system that assigns high weights for important terms

and low weight for the less important terms [55]. Therefore, the weights constitute the

importance of a word. The system assigns weights to both lists of root words. The

weight assignment uses the following scheme:

(a) If the word appears in the explicitly stated keywords, it is assigned a weight of �ve

3

. Since authors explicitly state the keywords to convey some important terms,

which their document covers, it is assigned the highest weight. For example, if

the word device is found in the list of explicitly stated keywords, the word device

is assigned a weight of �ve.

(b) Usually, words found in the abstract are the second most important words, because

this is where the author tries to convey his/her idea. Therefore, words found in

the abstract are the second most signi�cant and they convey the idea of the article

more than any words found in other locations [51]. If the word appears in the

abstract, it is assigned a weight of four.

(c) If the word appears in the title, it is assigned a weight of three. For example, if

the word compute is found in the title, it is assigned a weight of three.

3

If the keywords are stated, then they will be used in addition to the other weight classes in determining

the subject classi�cation for the document
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(d) If the word appears in the other tagged words, it is assigned a weight of two.

5. Each numeric weight is a class by itself de�ning the words' location. The system has

the following classes:

(a) A class weight of two de�nes the OTHER WORDS class. This class contains the

terms found in only the OTHER WORDS �eld.

(b) A class weight of three de�nes the TITLE class. The class three contains all the

terms found only in the title �eld.

(c) The class weight four contains all the terms found only in the abstract �eld.

Therefore a class weight of four de�nes the ABSTRACT class.

(d) A class weight of �ve includes all the terms found in either the keywords' �eld or

in the title and other words �elds.

(e) A class weight of six includes all the terms found in both the abstract �eld and

the other words �eld.

(f) A class weight of seven includes all the terms found in either the keyword and

other words �elds or the abstract and title �elds.

(g) A class weight of eight contains all the terms found in keyword and title �elds.

For example, if the word compute appears in both the title and explicitly stated

keywords, it is assigned a weight of eight. The word compute will be an element

of the class weight of eight.

(h) A class weight of nine contains all the terms found in either the abstract, title

and other words �elds, or abstract and keywords �elds.

(i) A class weight of ten contains all the terms found in the other words, title and

keywords �elds.

(j) A class weight of eleven contains all the terms found in the other words, abstract

and keywords �elds.

(k) A class weight of twelve contains all the terms found in the title, abstract and

keywords �elds.

(l) A class weight of fourteen contains all the terms found in the other words, title,

abstract and keywords �elds.

A term appearing in other words �eld is less important than the one appearing in the

abstract �eld. Furthermore, a term appearing in both title and other words �elds is

less signi�cant than the one appearing in the keywords, abstract and title �eld. In

a high class weight, we are interested in extracting more terms than in lower class

weights. Thus, we tend to extract more terms from the high weighted classes. To limit

the number of extracted terms, we use the term's frequency of occurrence. Signi�cant

terms have the highest frequency of occurrence in the low weighted classes. As the

class weight increases, more of its terms are regarded as signi�cant. To include more

signi�cant terms, the domain of the terms' frequencies is expanded. The more is the

class weight, the wider is the domain frequency of the signi�cant terms.
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For each class, we set the maximum class frequency to be the maximum frequency

of occurrence of a term found in that class. For instance, if, in class four, we had

three terms having two, four and six as frequencies, the system would select six as

the maximum class four frequency. The words' frequencies are compared with their

corresponding maximum class frequency. For low weighted classes such as two and

three, signi�cant terms have the maximumclass frequencies. Thus, limiting the number

of signi�cant terms. However, all terms found in class eight and more are signi�cant

regardless of their frequency of occurrence.

Term Weight Term Frequency

2 Maximum Class 2 frequency

3 Maximum Class 3 frequency

4 Greater or equal to Maximum Class 4 frequency minus 1

5 Greater or equal to Maximum Class 5 frequency minus 1

6 Greater or equal to Maximum Class 6 frequency minus 2

7 Greater or equal to Maximum Class 7 frequency minus 3

8 or more All

Table 2: Weight and Frequency numbers used in extracting terms

6. Two lists of words will be generated. The �rst one containing only the root words

or controlled terms found in CINDI's thesaurus. This list of controlled terms is used

in the document's subject classi�cation scheme. The second list contains the most

signi�cant root words not found in CINDI's thesaurus.

7. If no keywords were found in the document, ASHG extracts words having a term weight

more than four and their corresponding frequencies of occurrence is the same as the

ones tabulated. These words are the document's keywords.

8. In generating a list of controlled terms used to classify the document, terms having

weight of two or more are extracted. The extracted words should have the frequencies

of occurrence as the ones tabulated.

5.3.6 ASHG's Stemming Process

Stemming consists of processing a word so that only its stem or root form is left. Plural

stemming attempts to identify and index the singular form of a term. Porter stemming

attempts to identify and index the word stem. If a word and its stem are di�erent, only the

word stem is indexed. The stemming algorithm developed by Porter [44] at Cambridge uses

weak stemming to remove common plural endings and other grammatical su�xes like -ing

and -ed and implements strong stemming to remove derivational su�xes like -ent, -ence,

and -ision. Many searchers use right hand truncation to �nd di�erent variations of a search

term that is of interest. The problem with right hand truncation is that it indiscriminately

adds words to the query [72]. For example, if a searcher were to search for the truncated

form of the word cover, the searcher would not only retrieve instances of the terms covers,
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covering and covered but also the terms covert, coverall, coversheet and coverage. QPAT-US

[72] helps you avoid extraneous right hand truncation terms by automatically performing

a process called stemming. First, QPAT-US evaluates your terms for common su�xes that

indicate plurality, verb tense, etc. If QPAT-US discovers these su�xes, it will strip them

to �nd the root form of the term. For instance, if QPAT-US �nds the term covering it will

strip the su�x to obtain the root word of cover. Next, QPAT-US takes the root form of your

search terms and, using sophisticated linguistic rules, creates a set of word variants. If your

original term is covering, QPAT-US will also search for cover, covers and covered.

ASHG`s stemming process implements the removal of both su�xes and pre�xes of a given

word in order to get the root of the word. For example, applying the stemming process on

the words simulation and analogies, the words simulate and analogy are generated as their

root words respectively. ASHG stores the root forms of the words.

Suppose the word impressionists is in a document for which meta-information is to be

extracted. Without stemming, this would match only the keyword impressionists and not

the singular form. Now suppose that the word impressionist was in CINDI's list of controlled

terms, then that document will miss that term and will not have it as a keyword. Following

stemming, documents having the word impressionistic and impressionismwill match the root

term that is found in CINDI's list of controlled terms. We have mainly used the spell unix

command in our system in extracting the root of a word. The spell command collects words

from an input �le and looks them up in a dictionary list. Words that neither occur among

nor are derivable (by applying certain in
ections, pre�xes, and/or su�xes) from words in

the spelling list are printed on the standard output. Two options were used along the spell

unix command in our system: the -v option, in which all words not literally in the spelling

list are printed, and plausible derivations from the words in the spelling list are indicated,

and the -x option, in which every plausible stem is displayed, one per line, with = preceding

each word. The steps of the ASHG stemming process are:

1. Using the sort unix command, sort the input words.

2. Apply the uniq unix command to �lter out duplicate words.

3. Apply the spell command with the -x option. Thus, all the plausible stems are stored

in an output �le.

4. Apply the spell command with the -v option. Thus, all words not found in the spelling

list are stored.

5. Create a �le which contains the words found in step 3 but not in step 4.

6. Apply the spell command with the -v option to each word found in the �le that resulted

from the previous step. If the resulting output is empty, this means that this root word

is found.
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5.4 ASHG's Document Subject Headings Classi�cation scheme

An important step in constructing the semantic header is to automatically assign subject

headings to the documents. The title, explicitly stated keywords, and abstract are not

enough by themselves to convey the ideas or subjects of the document. Since the author

tries to convey or to summarise his ideas in the previously mentioned �elds, there is a need

to use all English none noise words found in those �elds. To assign the subject headings,

ASHG uses the resulting list of signi�cant words generated from the previous section and

CINDI's controlled term subject association. The subject heading classi�cation scheme relies

on passing weights from the signi�cant terms to their associated subjects, and selecting the

highest weighted subject headings.

5.4.1 The Algorithm followed

Having the keywords, title words, abstract words and other tagged words, will help us select

the most appropriate subjects for a given document. The following algorithm is used:-

1. Three lists of subject headings are to be constructed. The list of Level 0 subject

headings, the list of Level 1 subject headings and the list of Level 2 subject headings.

2. For each term found in both CINDI's controlled terms and the generated list of words,

the system traces the controlled term's attached list of subjects (list of level0, level1 and

level2) headings, and adds the subject headings to their corresponding list of possible

subject headings.

3. Weights are also assigned to the subject hierarchies. The weight for a subject is given

according to where the termmatching its controlled term was found. A subject heading

having a term or set of terms occuring in both title and abstract, for instance, gets a

weight of seven. The matched terms' weights are passed to their subject headings.

4. The system extracts Level 2, Level 1 and Level 0 subject headings having the highest

weights from the three lists of possible subject headings.

5. After building the three lists for the three level subject headings, the system :

(a) selects the subjects using the bottom-up scheme.

(b) Having selected the highest weighted level 2 subject headings, the system derives

their level 1 parent subject headings.

(c) An intersection is made between the derived level 1 subject headings and the list

of the highest weighted level 1 subject headings. The common level 1 subjects

are the document's level 1 subject headings.

(d) The system uses the same procedure in selecting level 0 subject headings.
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5.5 Semantic Header Validation

Once the process of extracting the meta-information is terminated, the semantic header is

displayed for the source provider to modify, add or remove some of the attributes. Once the

provider �nishes, the semantic header can be stored in the CINDI database.

6 Analysis of ASHG's Results

In this section, we illustrate how the ASHG system extracts the meta-information from the

HTML, Latex and text documents, and we demonstrate ASHG's automatic subject headings

classi�cation. For each of these document types, we apply ASHG and show the results. We

compare the subject classi�cation generated by ASHG with that of INSPEC for the same

set of documents. We also compare the results with what the papers' authors would regard

as good subject classi�cations and poor ones.

6.1 Reduction of Controlled Terms

Salton et al [55] introduces the term weighting system that assigns high weights to terms

deemed important and lower weights to the less important terms. The term weighting system

favours terms with high frequency in particular documents but with a low frequency overall

in the collection.

ASHG's controlled terms favours the terms that have low frequency in the ASHG's subject

headings over the terms having high frequency. Controlled terms having high frequency are

dropped from the ASHG's list of controlled terms. Terms having lower frequency distinguish

the subject headings associated for the document. The controlled term system occurs two

hundred and eleven times in the ASHG's subject headings, which is the highest frequency

control term. Therefore, it is dropped from the ASHG's list of controlled terms. Other

control terms such as section, two, three, function, and method were dropped due to their

ambiguity. The following table shows the words that are dropped and their corresponding

frequencies.

6.2 Experiments

The experiments described here are designed to test the accuracy of the generated index and

the subject headings classi�cation results. After applying the ASHG on a set of documents,

the generated index �elds such as title, keywords, abstract and author are compared with

those that are found in the document. The ASHG's automatic subject headings classi�cation

results are compared with the INSPEC's classi�cation and with what the papers' authors

would regard as good subject classi�cations and poor ones.
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Words Frequency

system 211

power 115

design 106

electric 100

circuit 96

application 93

language 87

device 84

measure 83

general 72

manage 71

information 70

analysis 69

miscellaneous 58

other 47

Table 3: Words Dropped from the list of controlled terms

The experiments were conducted on thirty three documents. The titles of these documents

can be viewed in appendix A. These documents dealt with computer science and electrical

engineering subjects. ASHG was able to extract all the explicitly stated �elds such as

title, abstract, keywords, and author's information with a hundred percent accuracy. If the

abstract was not explicitly stated, ASHG was able to automatically generate an abstract

that would describe the paper. However, ASHG's implicit keyword extraction generated a

list of words which included some words that are insigni�cant. These insigni�cant words in

turn lead to the diversion in subject classi�cation.

We have consulted the papers' authors on the ASHG's subject classi�cation results. Their

response was divided into three categories: good, OK/Not sure and poor subject hierarchy

selection. Good subject hierarchy selection implied that the authors would have chosen them

as subject hierarchies for the documents. OK/Not sure subject hierarchy selection implied

that the authors doubt the results and they would not choose them. Finally, the poor subject

hierarchy selection implied that the selected subject hierarchies described another di�erent

subject. We compared the ASHG's subject classi�cation results against the INSPEC's classi-

�cation done by expert cataloguers and thesaurus. Some of the ASHG's subject classi�cation

had di�erent words than INSPEC's even though they described the same subject. That was

due to the fact that our computer science subject classi�cation was built from ACM and not

from INSPEC.
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Number of Accuracy

HTML Subject Headings Author's Opinion A: Author OK/Good's

Document generated by ASHG Good OK/Not Sure Poor I: INSPEC Accuracy

D1 6 4 2 0 66.66% (A) 100%

16.6% (I)

D2 7 4 1 2 57.14% (A) 71.42%

D3 8 6 0 2 75% (A) 75%

D4 9 3 4 2 33.33% (A) 77.77%

D5 7 0 3 4 0 (A) 42.85%

D6 6 0 2 4 0 (A) 33.33%

D7 4 1 3 0 25% (A) 100%

D9 6 0 3 3 0 (A) 50%

16.66% (I)

D10 5 0 4 1 0 (A) 80%

D11 3 0 1 2 0 (A) 33.33%

D12 5 1 4 0 20% (A) 100%

20% (I)

D13 5 1 3 1 20% (A) 80%

D14 5 0 3 2 0 (A) 60%

D15 6 1 4 1 16.66% (A) 83.33%

16.66% (I)

D17 3 0 (I)

D18 3 1 1 1 33.33% (A) 66.66%

33.33% (I)

D19 7 4 1 2 57.14% (A) 71.42%

42.8% (I)

D20 4 1 0 3 25% (A) 25%

D21 5 0 2 3 0 (A) 40%

20% (I)

D22 4 25% (I)

D23 6 16.66% (I)

D24 4 25% (I)

D25 4 25% (I)

D26 3 0% (I)

D27 3 66.66% (I)

D28 26 7.69% (I)

D29 5 0 (I)

D30 3 0% (I)

D31 5 20% (I)

D32 5 40% (I)

Averages 22.2% 66.11%

Table 4: Summary of ASHG's HTML test results against the authors and INSPEC's results
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Number of Accuracy

Latex Subject Headings Author's Opinion A: Author OK/Good's

Document generated by ASHG Good OK/Not Sure Poor I: INSPEC Accuracy

D1 5 2 3 0 40% (A) 100%

16.6% (I)

D2 5 4 0 1 66.66% (A) 66.66%

D3 4 1 0 3 25% (A) 25%

D4 10 from 11 4 4 2 40% (A) 80%

D5 6 0 2 4 0 (A) 33.33%

D6 4 0 2 2 0 (A) 50%

D7 4 0 2 2 0 (A) 50%

D8 5 1 2 2 20% (A) 60%

D9 4 from 6 0 2 2 0 (A) 50%

25% (I)

D10 4 0 4 0 0 (A) 100%

D11 5 1 1 3 20% (A) 40%

D12 5 0 5 0 0 (A) 100%

20% (I)

D13 6 2 3 1 33.33% (A) 83.33%

D14 4 0 4 0 0 (A) 100%

D15 5 1 4 0 20% (A) 100%

20% (I)

D16 4 1 2 1 25% (A) 75%

D17 3 0 (I)

D18 3 1 1 1 33.33% (A) 66.66%

66.66% (I)

D19 3 1 0 2 50% (A) 50%

50% (I)

D20 4 1 0 3 25% (A) 25%

D21 3 0 0 3 0 (A) 0

33.33% (I)

D22 7 28.57% (I)

D23 7 14.28% (I)

D24 4 0 (I)

D25 24 25% (I)

D26 4 0% (I)

D27 3 66.66% (I)

D28 26 50% (I)

D29 5 0 (I)

D30 4 50% (I)

D31 25 4% (I)

D32 4 25% (I)

Averages 22.91% 62.75%

Table 5: Summary of ASHG's Latex test results against the authors and INSPEC's results
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Number of Accuracy

Text Subject Headings Author's Opinion A: Author OK/Good's

Document generated by ASHG Good OK/Not Sure Poor I: INSPEC Accuracy

D1 5 2 3 0 40% (A) 100%

20% (I)

D2 17 1 3 13 5.88% (A) 23.52%

D3 8 6 0 2 75% (A) 75%

D4 4 1 2 1 25% (A) 75%

D5 7 0 3 4 0 (A) 42.87%

D6 6 0 2 4 0 (A) 33.33%

D7 5 1 3 1 20% (A) 80%

D8 5 2 2 1 40% (A) 80%

D9 4 0 2 2 0 (A) 50%

0 (I)

D10 7 0 2 5 0 (A) 28.57%

D11 9 4 3 2 44.44% (A) 77.77%

D12 5 1 4 0 20% (A) 100%

20% (I)

D13 5 2 2 1 40% (A) 80%

D14 7 0 3 4 0 (A) 42.85%

D15 4 1 3 0 25% (A) 100%

20% (I)

D16 7 3 1 3 42.85% (A) 57.14%

D17 3 0 (I)

D18 3 1 0 2 33.33% (A) 33.33%

33.33% (I)

D19 5 1 1 3 20% (A) 40%

20% (I)

D20 5 1 0 4 20% (A) 20%

D21 3 0 0 3 0 (A) 0

0% (I)

D22 4 50% (I)

D23 8 12.5% (I)

D24 4 25% (I)

D25 28 7.14% (I)

D26 4 25% (I)

D27 44 25% (I)

D28 4 0 (I)

D29 18 27.77% (I)

D30 14 14.28% (I)

D31 28 14.28% (I)

D32 5 40% (I)

Averages 20.66% 56.97%

Table 6: Summary of ASHG's Text test results against the authors and INSPEC's results
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After conducting the tests over the three document types, ASHG's average percentage

accuracy was 21.92%. Since our system was only based on the frequency and location of

words in a document to determine the document's keywords and subject classi�cation, it has

missed the importance of the word senses and the relationship between words in a sentence.

Our simplistic system did not capture the concepts behind the documents, or the ideas that

the author is trying to convey. Our results support the idea that word frequency and location

are not enough in information retrieval. However, since the ASHG's result will be used as

a starting point by the author, he/she has the opportunity to correct the errors and include

�elds of the Semantic Header not given before registering it. Further work is required in

re�ning the subject classi�cation.

6.3 Sample Result

In this section, we will show an indexe that is generated by ASHG.

<semhdrB>

<useridB> <useridE>

<passwordB> <passwordE>

<titleB> Resource Discovery: Modelling, Cataloguing and Searching <titleE>

<alttitleB> <alttitleE>

<subjectB>

<generalB> Computer Science <generalE>

<sublevel1B> Software <sublevel1E>

<sublevel2B> Computer programs and softwares <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Information storage and retrieval <sublevel1E>

<sublevel2B> Information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Information storage and retrieval <sublevel1E>

<sublevel2B> Query formulation in information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Information storage and retrieval <sublevel1E>

<sublevel2B> Relevance feedback in information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Information storage and retrieval <sublevel1E>

<sublevel2B> Retrieval models in information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Information storage and retrieval <sublevel1E>

<sublevel2B> Information search and retrieval process <sublevel2E>

<subjectE>

<languageB> English <languageE>

<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE>

<anameB> Bipin C. DESAI, ~~ ~~Rajjan SHINGHAL <anameE>

<aorgB> <aorgE>

<aaddressB> Department of Computer Science, Concordia University, Montreal,

H3G 1M8, CANADA <aaddressE>

<aphoneB> <aphoneE>

<afaxB> <afaxE>

<aemailB> <aemailE>

<authorE>
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<keywordB> Information retrieval , Modelling , meta-data , cataloguing

searching , discovery , information resources , WWW , Internet ,

resource discovery <keywordE>

<identifierB>

<domain3B> <domain3E>

<value3B> <value3E>

<identifierE>

<datesB>

<createdB> 1998/4/18 <createdE>

<expiryB> <expiryE>

<datesE>

<versionB> <versionE>

<spversionB> <spversionE>

<classificationB>

<domain4B> <domain4E>

<value4B> <value4E>

<classificationE>

<coverageB>

<domain5B> <domain5E>

<value5B> <value5E>

<coverageE>

<system-requirementsB>

<componentB> <componentE>

<exiganceB> <exiganceE>

<system-requirementsE>

<genreB>

<formB> <formE>

<sizeB> 42301 <sizeE>

<genreE>

<source-referenceB>

<relationB> <relationE>

<domain-identifierB> <domain-identifierE>

<source-referenceE>

<costB> <costE>

<abstractB>

Existing search systems exhibit uneven selectivity when used in seeking

information resources on the Internet. This problem has prompted a number of

researchers to turn their attention to the development and implementation of

meta-data models for use in indexing and searching on the WWW and Internet.

In this paper, we present our re-sults of a simple query on a number of

existing search systems and then discuss a pro-posed meta-data structure.

Modelling the expertise of librarians for cataloguing, user entry and search

using a rule-based system is also discussed.

<abstractE>

<annotationB>

<annotationE>

<semhdrE>

<EOF>

7 Conclusion

In this paper, we constructed CINDI's three level subject hierarchy for Computer Science

and Electrical Engineering. CINDI's computer science subject hierarchy was based on ACM
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and CINDI's electrical engineering subject hierarchy was based on INSPEC. LCSH was used

to augment both subject hierarchies. We also derived control terms from CINDI's subject

headings. These control terms were associated with their subjects in CINDI's thesaurus.

In addition, we presented a method of generating a Semantic Header, called ASHG. This

scheme automatically extracts and generates an index or meta-information.

ASHG exploits the �le naming conventions and the data within a document to determine

the document's �le type. ASHG exploits the semantics of the document's types in extracting

the meta-information. It also applies automatic abstracting proposed by Luhn in generating

document's abstract. It also assigns weights for terms depending on their location in the

document. Both term weight and occurrence frequency were used in assigning terms for a

document. These extracted terms were used to classify a document using the association

between CINDI's controlled term and their subject headings in the thesaurus.

Finally, we applied ASHG to a collection of test documents and compared the results to

the actual assignments made by INSPEC. We also consulted the papers' authors on ASHG's

subject classi�cation results. The results showed hundred percent accuracy in extracting the

explicitly stated �elds such as the title, abstract, author and keywords. They also showed

some level of accuracy in generating the abstract.

Since our controlled terms were composed of terms found in CINDI's subject headings,

ASHG's results showed a low degree of accuracy in classifying a document. The main reason

was that some of the extracted terms were misleading. For example, the term wire should

not be extracted unless it is followed by another term such as wire grid. The classi�cation

scheme used by ASHG showed some ine�ectiveness, because it was based on term frequency

and location information. For example, term-based retrieval cannot handle the following

properties:

1. Di�erent words may be used to convey the same meaning.

2. The same words may be used but they can have di�erent meanings.

3. Di�erent people may have di�erent perspectives on the same single concept.

4. The same words may have di�erent meanings in di�erent domains.

Another weakness with ASHG is that it has not considered the issue of synonymity between

words or between the subject headings.

In conclusion, we believe that resolving word senses and determining the relationships

that those words have to one another will have the greatest impact on re�ning the ASHG's

subject classi�cation scheme. Therefore, the semantic level language processing should be

handled by ASHG in the future.
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8 Contribution of this Paper

The contributions made by this paper to the CINDI project are listed below:

� An automatic subject hierarchy database builder was designed and built. The input

to this builder is a subject headings of multiple levels. It produces a hierarchy of three

levels. In addition, the subject hierarchy for both Computer science and Electrical

engineering were constructed and derived from previously existing hierarchies such as

ACM and INSPEC.

� A controlled term subject heading association was engineered. The paper used an

existing spell program and built on it a stemming process that was used in relating the

subject headings with their corresponding control terms.

� An automatic semantic header generator was designed and implemented. It extracted

both implicit and explicit meta-information from the primary resource and it classi�es

it under a subject hierarchy. It handled HTML, Latex and Text documents.

9 Future Work

Some of the system's re�nements should include:

� Terms, which are not signi�cant alone, but are signi�cant if they appear adjacent to

another term should be extracted as signi�cant terms. ASHG's keyword extraction

process should handle more than single controlled terms. Future work should explore

the e�ect of extracting noun phrases and compound controlled terms.

� Word senses and determining the relationships that those words have to each other

should be resolved. The semantic level language processing should be handled by

ASHG.

� The controlled terms and their synonyms should belong to the same control term and

they should be associated with the same subject headings.

� The domain of the stop-word list should be explored, and more signi�cant terms should

be associated with the subject headings.

� Build more subject hierarchies such as Civil Engineering, Mechanical Engineering...

Extend the type of documents that ASHG can extract meta-information from, such as

RTF, SGML...
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