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ABSTRACT 

In the cold northern climate of Canada, building energy consumption for space heating 

during the winter have caused huge stress on electrical grids, especially during the peak hours. 

Shifting or shaving the peak demand can avoid additional capital investment required to meet extra 

peak demand for the electrical suppliers. Consequently, in the recent years, several utility 

companies adopted time-based rates to encourage the customers to shift their consumption from 

high demand hours to those with lower demand. In this regard, the two most commonly used time-

based rates are time-of-use tariffs and critical peak pricing. Achieving peak shifting can reduce the 

heating cost under time-based rates for consumers. Overall, peak shaving is benefit not only for 

the electrical suppliers but also for the consumers. 

Most Canadian residential houses are equipped with a concrete slab in their basement 

primarily for structural integrity. Such high thermal mass concrete slab can be exploited for heat 

storage to shift the peak power consumption. To take benefit of the concrete slabs in the basement, 

in previous research works, the self-learning control system and the heat extraction system were 

proposed to achieve peak shifting in the basement and in the other floors of the buildings, 

respectively. Despite several advantages, the major limitation of these studies is that the developed 

self-learning control system focused only on peak shifting in the basement, while the heat 

extraction system concept was investigated separately from the self-learning control system.  

Accordingly, this study focused on developing an advanced controller, which can 

efficiently operate both electrically heated floor and heat extraction system with the objective of 

achieving the peak shifting, heating cost savings and guaranteeing the thermal comfort in the whole 

building. As a preliminary work of this study, the peak shifting ability and heating cost savings 

potential of the self-learning control system operated electrically heated floor under two electrical 

tariffs (i.e. time-of-use tariffs and critical peak pricing) was analyzed using a validated TRNSYS-

MATLAB model. Later, the advanced controller was developed for extending the peak shifting 

from the floor with high thermal mass to that without high thermal mass by the electrically heated 

floors integrated with the heat extraction system. In this regard, the developed TRNSYS-

MATLAB model was integrated with the heat extraction system. Consequently, the peak shifting 
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ability, heating cost savings of the advanced controller was compared with the other commonly 

used peak shifting control strategies (i.e. constant set point control and rule-based control) and the 

respective results are presented. At last, a parametric study using Taguchi method was performed 

to explore the effective parameters that significantly influence the performance of electrically 

heated floor, heat extraction system in terms of peak shifting ability, thermal comfort and capital 

cost. For this purpose, three levels were considered for five factors (A) concrete slab thickness, (B) 

insulation thickness, (C) fan flow rate, (D) indoor air temperature upper limit and (E) floor surface 

temperature upper limit. Based on the results of the parametric study, overall recommendation to 

design the optimal electrically heated floors and heat extraction system was provided.  

Regarding the results, the peak shifting, thermal comfort and heating cost saving are 

presented for two tariffs (time-of-use tariffs and critical peak pricing) considering the floor with 

concrete. The simulation results showed that the peak shifting can be achieved at 99.7% in critical 

peak pricing and 97.6% in time-of-use tariffs, respectively. On the other hand, to extend the peak 

shifting in the whole building, self-learning control integrated with a fan (heat extraction system) 

can improve the peak shifting in basement (up to 97%) and second floor (up to 88%). The cost 

saving can also increase around 35%, which can be proven financially attractive to both supplier 

and owner. At last, through parametric study, the optimal condition for efficient design and 

operation of electrically heated floor system and heat extraction system was found to be concrete 

slab thickness of 152.4 mm, an insulation thickness of 101.6 mm, a fan flow rate of 400 CFM, air 

indoor upper limit of 24.5 °C and floor surface temperature upper limit of 28 °C.  

.  
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1. INTRODUCTION 

1.1. BACKGROUND 

Building energy consumed by heating, ventilation and air-conditioning (HVAC) is over 

40% of the total energy (A. Sharma, Saxena, Sethi, & Shree, 2011). In Canada, residential 

buildings consume about 17% of the total energy, a major part of which is dedicated to space 

heating (up to 63%) ("Energy Efficiency Trends in Canada 1990 to 2013," 2016). In several 

provinces (e.g. Quebec and Ontario), electricity is the main source to maintain the thermal comfort 

in buildings. Consequently, with respect to exterior weather conditions and occupant behavior, 

electrical grids face critical issues to meet the space heating demands during the peak hours 

(Québec, Lanoue, & Mousseau, 2014). As a result, peak periods create stress on the electrical grids, 

where utility companies have to use mostly fossil fuel-based systems to meet the peak demand, 

causing a lot of CO2 emissions. Hence, investigations on peak shifting control strategies are 

worthwhile not only to decrease the CO2 emissions but also to achieve cost saving for both 

electrical suppliers as well as the customers. 

Several approaches have been studied to achieve peak shifting. One of the methods is to 

set different electricity tariffs for different hours of the day (i.e. peak, mid-peak and off-peak 

periods). Four common electricity tariffs include time-of-use (TOU) rates (Greenage, 2019), 

critical peak pricing (CPP) (Herter, 2007), peak time rebate (PTR) (Alexander, 2010) and dynamic 

pricing (DP) (Triki & Violi, 2009). The electrical tariff in TOU as the most common rule has 

different rates though-out the day. In other words, different electricity rates are set at different time 

of each day according to the stress exerted on the electrical grid. Commonly, TOU rates are set 

based on the season (e.g. Hydro One (HydroOne 2017)). CPP sets critical peak rates on specific 

critical days. In the critical peak time, the electrical rates are substantially higher than normal rates 

(e.g. Hydro Quebec ("Residential rates," 2018)). In the PTR, no extra electrical rates are set during 

the peak periods. On the other hand, the customers who consume less energy during peak hours 

are rewarded. DP also known as real-time pricing is dynamic according to supply and demand, 

and other external factors in the market. This typical electrical rate can be altered each hour 
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according to the stress on the electrical grid. In this way, electrical suppliers encourage the 

consumers to decrease their energy consumption especially during the peak periods. 

In line with the above mentioned tariffs, peak load shifting can be achieved by charging 

the thermal mass of building during off-peak periods. In other words, heat can be stored in building 

thermal mass during cheap off-peak hours so as to be use later during peak hours, meeting thermal 

comfort requirements. Most Canadian residential buildings are equipped with a thick concrete slab 

in their basement. The amount of heat storage in such slabs depends on the thickness of the 

concrete slab and its insulation. However, thicker concrete and insulation means more initial 

investment. A major issue is that the concrete and insulation thicknesses cannot be altered for 

existing buildings. Consequently, heat storage in concrete slabs requires some modifications to 

achieve peak load shifting. 

Energy must be stored during off-peak and mid-peak periods, which can be consumed 

during the peak periods to meet the demand. In this regard, control strategies can be used to achieve 

load shifting. Self-learning control (SLC) as one kind of the peak shifting control has been studied 

for typical residential buildings with thick concrete per room (Hélène Thieblemont, 2017). So far, 

building thermal mass, phase change material (PCM) and water tank have been frequently used 

for thermal energy storage (TES) (Bastani & Haghighat, 2015; Bastani, Haghighat, & Kozinski, 

2014; Nkwetta & Haghighat, 2014; Nkwetta et al., 2014). Among them, building thermal mass is 

regarded as the simple method for energy storage.  

Consequently, among these different types of TES, EHF by storing energy in concrete slab 

is applied in the residential sector during winter. EHF can adapt different charge methods (i.e. air 

duct, water pipe or electricity (Olsthoorn, Haghighat, Moreau, Joybari, & Robichaud, 2019)) in 

application. Hence, during the off-peak and mid-peak periods, EHF charges the slab and the stored 

heat can be consumed to maintain the thermal comfort during the peak period. By employing 

proper control strategies for the EHF, the peak load could be reduced. Several studies for the 

control strategies with EHF focused on peak shifting and cost saving (Hu, Xiao, Jørgensen, & Li, 

2019; Le Dréau & Heiselberg, 2016). 

As mentioned earlier, most residential buildings have thick concrete slabs only in their 

basements for structural integrity which are equipped with electrical cables for heating. As a result, 

merely using the building thermal mass to store energy is not enough for the whole building to 
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meet the peak demand. Therefore, a fan can be used to transfer the stored energy from the room 

with thick concrete to those without lower thermal mass. Such fan systems, also known as heat 

extraction systems (HES), have been studied using manual control (Ying Sun, 2018). 

Despite of several advantages, the major limitations of the previous research works (Ying 

Sun, 2018; Hélène Thieblemont, 2017) are: i) the developed SLC system focused only on the 

efficient operation of electrically heated floors (EHFs) installed in the basement and hence, the 

peak shifting is possible only in the basement of the building; ii) though HES concept is proposed 

to shift the peak in the floors without high thermal mass (by transferring the warm air from the 

basement to other floors), the operation of EHF and HES does not involved any control system, 

which means both EHF and HES were operated manually. Therefore, for the combined operation 

of both EHF and HES, an advanced controller is recommended to enhance the peak shifting ability 

of the EHF not only in the basement but also to the entire house. To increase the peak load shaving, 

this thesis focused on developing an advanced controller to achieve peak shifting, thermal comfort 

and heating cost saving in the entire house rather than the particular floor with thick concrete slab. 

Parametric study as the recommendation were also conducted to analyze the parameters for the 

combination of these components. Therefore, HES (i.e. fan flowrate), TES (i.e. thickness of 

concrete and insulation) and thermal comfort (i.e. setting upper limit values) have been 

investigated based on the peak shifting potential, thermal comfort and economic analysis. 

Moreover, comparison results of different peak shifting control strategies are presented to guide 

both the consumers and electrical suppliers.  

1.2. OBJECTIVES 

The main objectives of the research are: 

• Investigation of peak shifting, heating cost saving potential of SLC under two different 

types of time-based rates of electricity pricing. 

• Development of an advanced controller, which can control the heat storage in the EHF 

together with the heat extraction to other floor while maintaining thermal comfort and 

increasing the peak shifting potential. 
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• Conduct of parametric study using Taguchi method to explore the effective factors (fan 

flow rate, thickness of the concrete slab and insulation, upper limit for air, floor surface 

temperature) influencing the peak shifting potential of EHF system integrated with HES. 

1.3. THESIS OUTLINE 

Chapter 2 presents a literature review on control strategies applied to different types of the 

TES. Chapter 3 reports the research methodology, model development and control algorithms as 

well as parametric study by Taguchi method. Chapter 4 discusses the results obtained for different 

control strategies as well as the parametric study. Finally, conclusions of this research and 

recommendations for future studies are presented in Chapter 5. 
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2. CHAPTER 2 – LITERATURE REVIEW 

In this chapter, literature review is carried out on various types of control strategies used 

for the purpose of achieving peak shifting with different energy storage options in buildings. 

Building-integrated thermal energy storage (BITES) is used for cool and/or heat storage in order 

to cover or shave the peak load. Depending on its mechanism, BITES can be divided into active 

and passive categories. The passive BITES is operated using uncontrollable natural forces (such 

as natural convection) while active BITES includes controllable mechanical systems. The control 

strategies used for active BITES can be divided into two categories: non-predictive control (or 

local control) and predictive control (or supervisory control) (Yu, Huang, Haghighat, Li, & Zhang, 

2015). Among non-predictive control strategies, classical control (i.e. ON/OFF and PID) and rule-

based control are frequently used. On the other hand, model based predictive control (MBPC) and 

model free control (MFC) are classified as predictive control. 

Energy storage in buildings is proved to be an effective way to achieve the load shifting, 

maintain the thermal comfort and reduce temperature swings (Heier, Bales, & Martin, 2015). Three 

main types of the energy storage in buildings are: sensible heat storage (using concrete, water tank, 

etc.), latent heat storage (using PCMs) and thermochemical storage (using batteries). 

 

2.1. NON-PREDICTIVE CONTROL 

Non-predictive control includes a series of control strategies with no prediction for the 

future states. Among these control strategies, classical control is most frequently used, whose 

objectives are to guarantee the thermal comfort and decrease the swings of the temperature. In 

addition, based on the difference of the electrical tariffs in different hours of each day, the power 

consumption can be adapted using manual control. According to different rules or objectives, RBC 

can be used.  

2.1.1. CLASSICAL CONTROL 

Classical control uses Laplace transform to adapt the dynamic building energy 

consumption to maintain the indoor temperature. In general, the most commonly used classical 
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control systems are ON/OFF and proportional–integral–derivative (PID) control. Based on the 

feedback (i.e. the difference between the measured indoor air temperature and the setpoint 

temperature), ON/OFF or PID control provides the relative rate for cooling and/or heating systems. 

Consequently, ON/OFF or PID control (Bai & Zhang, 2007) can maintain the thermal comfort in 

a proper indoor air temperature range once applied in HVAC systems. 

2.1.1.1. ON/OFF control 

ON/OFF control is like operating a switch, which is widely used for temperature control. 

Figure 2.1 shows the principle of the temperature controller under ON/OFF control in a heater 

("Control," 2014). Once the feedback temperature is below (or above) the setpoint values, the 

heater is turned ON (or OFF). This kind of control normally includes a delay, hysteresis and/or a 

cycle time to reduce the cycling or "hunting" when the feedback variable is close to the setpoint. 

 

Figure 2.1: Principle of the ON/OFF controller ("Control," 2014) 

ON/OFF control can provide simple control actions. Liu et al. (L. Liu, Fu, & Jiang, 2012) 

used wireless ON/OFF control to decrease the household waste heat in China. The energy 

consumption for controlled users was 30% lower than the users without controller in the same 

place. Kattan et al. (Kattan, Ghali, & Al-Hindi, 2012) investigated an under-floor heating system 

with ON/OFF control. By setting the upper limit of floor surface temperature as 30 °C during the 

off-peak period, the under-floor heating system could save 26% of the peak demand and a 30% 

reduction in energy consumption comparing with the conventional system. However, poor thermal 

comfort was reported (i.e. PMV below -0.5 sometimes). 
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2.1.1.2. PID control 

PID control constitutes calculating the error values between the measured feedback and the 

desired values based on proportional, integral and derivative terms. The main advantage of PID 

control over ON/OFF control is achieving less discrepancy between the measured data and the 

desired value. Consequently, PID control is usually regarded as the sub-control systems in 

investigation to achieve peak load shifting as well as to guarantee the thermal comfort. Yang et al. 

(Q. Yang, Li, & Kang, 2008) studied a PID control integrated with fuzzy control to operate the 

heating system. This typical hybrid controller provided joint control from the boiler to the power 

station in the heating system. Saving energy and decreasing heating cost was achieved by giving 

the reasonable joint control signal. Lavrova et al. (Lavrova et al., 2012) studied operation of battery 

charge/discharge by PID control for load shifting. Upon testing different strategies with manual 

handling for starting charging time, 15% peak shifting was achieved by the substation-sited 

photovoltaic (PV) system and large-scale utility storage. In such cases, adding the battery system 

is the main reason for achieving the peak shifting and the control is only applied to maintain system 

operation. 

Despite its simplicity and advantages, the major drawback of PID controller is it cannot 

find satisfy answers by itself. Note that, PID control cannot achieve peak shifting on its own as it 

lacks effective control strategies for building energy management. 

 

2.1.2. RULE-BASED CONTROL 

In general, two types of RBC control strategies are commonly used: night setback control 

(NSC) and setpoint control (SPC). Figure 2.2 depicts an example for the temperature setting level 

of NSC and SPC for space heating application during different periods of a given day. Note that, 

Level 2 and Level 1 means higher and lower temperature setting during space heating, respectively. 

As the figure shows, SPC enables the charging based on the electrical tariff (off-peak/peak periods), 

while NSC enables charging only during night. In other words, the higher electrical tariffs will 

lead to the lower/higher setpoint in heating/cooling system for SPC. On the other hand, NSC 

charges the building at night when the stress on the electrical grids is low. Unless thermal comfort 

is jeopardized, the control system would not charge during the day. In order to store more energy 
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at night, thermal comfort cannot be considered simultaneously. Hence, NSC is widely used in the 

commercial or office buildings since they are not normally occupied at night. Therefore, 

considering the thermal comfort during the night for residential buildings, SPC is the suitable 

option. 

 

 

 

Figure 2.2: Different RBC strategies 

Alonso and Mathisen (Alonso & Mathisen, 2017) studied the NSC for a cooling system to 

achieve load shifting. The system was simulated by IDA ICE model for an office building located 

in Norway. Their results conveyed that NSC as a simple and useful control strategy could achieve 

load shifting up to 12%. Lin et al. (Lin et al., 2005) investigated an under-floor electric heating 

system with PCM using NSC in a single zone office building. NSC was used to charge the system 

during the night (i.e. 23:00 to 8:00). Considering that there are no occupants at this period, the 
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average indoor air temperature was and floor surface temperature was maintained at 31 °C and 

45 °C, respectively. During the discharging time, the minimum average indoor air temperature was 

maintained at 19 °C. As a result, a peak shifting potential of 54% was achieved. Cheng et al. 

(Cheng, Xie, Zhang, Xu, & Xia, 2015) also studied an under-floor heating system with PCM under 

NSC in experiment and simulation. In the experiments, charging was continued for 10 hours during 

the night while the under-floor heating system was discharged during the other 14 hours of the day. 

With exterior temperature within 0-6 °C, the average room temperatures were low (within 15-

16 °C) resulting in poor thermal comfort. Thus, the inference from the literature is that, though 

NSC could achieve the peak shifting potential, the poor thermal comfort should be considered. 

Mazo et al. (Mazo, Delgado, Marin, & Zalba, 2012) investigated a floor heating system 

(FHS) integrated with PCM for peak shifting using NSC. By operating the heat pump at night to 

meet the building load, energy could be shifted (by 78%) during the peak period. Besides, heating 

cost savings of around 18% were achieved. Moreover, Li et al. (J. Li, Xue, He, Ding, & Han, 2009) 

developed an under-floor heating system using concrete and micro-encapsulated paraffin of 

various thicknesses. To achieve the peak load shifting, NSC was applied for charging between 

22:00 to 6:00, while during discharging time thermal comfort was guaranteed. The results 

indicated that 80% of energy consumption could be shaved during the peak period. Overall, NSC 

can achieve peak load shifting; however, the poor thermal comfort during the night is the barrier 

for its application in residential buildings. Meanwhile, excess energy storage during the night also 

causes energy waste in terms of heat loss. 

On the other hand, SPC strategy can be used to adapt to the time-based rates for the energy 

price and achieve peak shifting. SPC system can trigger a signal action based on temperature, time-

based rates or occupancy load based on the setpoint to control the power level for achieving load 

shifting (Péan, Salom, & Costa-Castello, 2018). For different types of energy storage, charging or 

discharging strategies have an impact on the load shifting potential. However, once the schedule 

for the SPC strategy is fixed, it can be used in most of the buildings located in the same climatic 

condition with the same energy TOU price. Several studies have been conducted, some of which 

integrated or compared the SPC with NSC in terms of peak load shifting and cost saving. 

As for integrated control strategies, Keeney and Braun (K. R. Keeney & Braun, 1997) 

developed and tested a cooling control strategy in a large office building. By precooling the fluid 
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in the chiller with different setpoint temperatures, peak load shifting could be achieved. At the 

same time, NSC was also applied to decrease the energy consumed for the chiller during 

unoccupied periods. It is reported that by adopting the proposed control strategy, the cooling cost 

savings of $25,000 per month is possible. Braun et al. (Braun, 2003) provided the optimal SPC 

considering electricity price and thermal comfort in a small commercial building. Comparing with 

NSC, SPC could reduce the peak energy in cooling load within 18-31% for the interior, east, south 

and west zones in experiment with several test zones. Moreover, the optimal control strategy for 

SPC (considering more factors including zone direction and occupied load) could achieve peak 

shifting up to 40% compared to NSC. 

Andresen and Brandemuehl (Andresen & Brandemuehl, 1992) developed an SPC 

precooling strategy based on TOU electricity rates for a single residential building. Internal air and 

thermal mass (i.e. building furnishings) were considered in energy storage using SPC, leading to 

50% peak load shifting in simulations. Moreover, for energy storage in SPC, a three-floor office 

building located in Phoenix was studied by Henze et al. (Henze, Le, & Florita, 2005). They studied 

the influence of the thickness of building structure, occupancy period temperature setpoint range, 

and weather as characterized by diurnal temperature and relative humidity swings in achieving 

peak shifting with the same control strategy. Moreover, internal gains were another influencing 

factor. Considering these factors, the running process for the chilled water setpoint was optimized 

and load shifting was enhanced within 21-28% compared to NSC. 

As for energy storage using RBC strategy, Klein et al (Klein, Herkel, Henning, & Felsmann, 

2017) studied four different types of energy storage systems (i.e. batteries, fuel switch, water tanks 

and building thermal mass) to achieve peak shifting and cost saving improvements using TOU 

prices. An RC model based on a 6-story office building was developed to perform simulations of 

the heating and cooling systems. The inference from the simulation results is that energy storage 

via batteries showed best energy saving potential (up to 10%), while the building thermal mass 

possessed an energy saving potential of 4%. Batteries stored energy directly without affecting 

heating or cooling system. However, if the RBC with batteries can balance load shifting in 

electricity grid and customers’ requirements including thermal comfort, more complex control 

strategies should be applied. The reason is that the charging and discharging time for battery as 
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well as the stress swing on the electrical grid should be considered. Consequently, building thermal 

mass as the simplest option is more suitable for RBC. 

Table 2.1 shows a summary of the investigations on SPC with energy storage regarding 

peak load shifting and cost saving. Overall, comparison of the result shows that SPC has a superior 

performance in load shifting and cost saving.
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Table 2.1: Summary of investigations on SPC with energy storage for peak load shifting and cost saving 

Ref. Building type System type Location Study type Storage type Achievement (criteria) 

(Xu, Haves, Piette, & Braun, 2004) Office building Cooling USA Simulation Building thermal mass Peak power decreasing 2.3 W/ft2 

(Xu, 2006) Commercial building Cooling USA Simulation Building thermal mass Load shifting 25% 

(Hu, Xiao, & Wang, 2017) Residential building Cooling Hong Kong Simulation Building thermal mass Load shifting 

(Zhu, Wang, Ma, & Sun, 2011) Commercial building Cooling Hong Kong Simulation PCM wall 

Load shifting 20% 

Electricity cost saving 11% 

(Péan, Salom, & Ortiz, 2017) Residential flat Heating Spain Simulation Water tank Electricity cost saving 22-26% 

(Le Dréau & Heiselberg, 2016) 

Two Single-family 

houses Heating Denmark Both Floor Heating cost saving 3-10% 

(Reynders, Diriken, & Saelens, 2015) Residential house Heating Belgium Simulation Building thermal mass Load shifting 75% 
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In summary, based on the literature review, energy storage control by RBC could achieve 

the peak shifting in the range of 25-75%. Meanwhile, since it is a simple control strategy lacking 

load prediction, achieving peak shifting is affected by the room direction, occupancy, energy 

storage type and building characteristics. Therefore, to achieve higher peak shifting, predictive 

control of energy storage should be applied.  

2.2. PREDICTIVE CONTROL 

In predictive control, based on the prediction for the future system states in the building, 

the control actions can be determined by considering increasing efficiency of the storage system 

and/or economic factors. Predictive control provides the control signal to calculate the 

preheating/precooling time and the power level required by the system. Regarding the prediction 

approaches, weather forecast (e.g. exterior temperature, solar radiation, etc.) and building 

parameters are the main inputs for the predictive based control system. The building demand can 

be determined using the weather forecast data and building energy consumption pattern. 

In the predictive control for peak shifting, MBPC and MFC are most commonly used to 

achieve peak shifting. MBPC requires development of a specific building model. Hence, accurate 

calculation is the main advantage for MBPC. On the other hand, MFC calculates the building 

demand using one unique universal model or even without model. Therefore, the exact building 

demand cannot be calculated at the beginning of the MFC operation. Based on the feedback or 

accumulation of historical data, the model can be trained to get more accurate prediction gradually. 

Hence, the main advantage for MFC is that this control can be widely used in application since a 

specific model is not mandatorily required. 

Henze et al. (Henze, Dodier, & Krarti, 1997) investigated the performance of prediction 

controller in a large 20-floor office building with ice storage technology. By optimizing the 

charging and discharging time for the energy storage in control strategies, cost saving values of 3-

60% were achieved, proving that control strategies integrated with the energy storage are important 

for achieving load shifting and cost saving.  

2.2.1. MODEL BASED PREDICTIVE CONTROL  

MBPC uses a specific model for each building to predict the future states (i.e. dynamic 

building demand and cost saving). When dealing with energy storage, other states (i.e. peak 
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shifting and pre-charging power) should also be included in the model. Accurate future states can 

be provided from the specific building model, determining the proper control actions according to 

the objectives. Consequently, MBPC can achieve several various objectives such as guaranteeing 

thermal comfort, load shifting (Robillart, Schalbart, Chaplais, & Peuportier, 2018) and cost 

function minimization (I. Sharma et al., 2016). Keeney and Braun (K. Keeney & Braun, 1996), 

using a validated model (Morris, Braun, & Treado, 1994), studied the peak load shifting potential 

using MBPC. Compared to NSC it was found that 95-97% cost saving can be achieved in cooling 

system using MBPC. Moreover, based on an RC model for a residential building, Masy et al. 

(Masy, Georges, Verhelst, Lemort, & André, 2015) compared the predictive control with SPC in 

terms of load shifting and electricity cost saving for a FHS. The results showed that MBPC could 

achieve peak load shifting up to 80%, while decreasing the electricity cost by 2-19% compared to 

the setpoint control. 

In addition, Clauß et al. (Clauß, Finck, Vogler-Finck, & Beagon, 2017) studied the specific 

energy flexibility key performance indicators (KPI) between the building performance and 

electrical grid by comparing the MBPC with RBC. According to the KPI, multiple “objective 

functions” can be considered by MBPC in system optimization by taking into account the energy 

flexibility. On the other hand, if only a single objective is pursued, RBC was reported as an 

effective control strategy. In this section, the studies which investigated MBPC in conjunction with 

energy storage are presented. 

2.2.1.1. Thermochemical energy storage with MBPC 

Thermochemical energy storage can be used for load shifting and to decrease the stress on 

the electrical grids by charging batteries during the off-peak period and using the stored electricity 

during the peak period (Lund, Lindgren, Mikkola, & Salpakari, 2015). Kuboth et al. (Kuboth, 

Heberle, König-Haagen, & Brüggemann, 2019) developed a thermal RC model for the building 

envelope of a single family residential building in Germany and used Simulink MATLAB (by 

means of the component a library CARNOT (Wemhöner, Hafner, & Schwarzer, 2000)) to describe 

the energy storage system. Photovoltaic panels as well as a battery energy storage were utilized 

while two hot water storages were applied in the space heating and domestic hot water systems. 

As for predictive control, both load shifting and cost function were considered in control strategies. 
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The energy consumption performance was improved, and the energy cost was decreased by about 

12%. 

The performance and lifetime of thermochemical storages can be significantly impacted 

by ambient temperature and the methods used for charging and discharging (Salpakari, Rasku, 

Lindgren, & Lund, 2017). Investigation of thermochemical storage is still being investigated under 

ideal conditions. Moreover, thermochemical storages face barriers in terms of economic factors 

and also environmental issues for dealing with their disposal. As the initial and operational cost of 

batteries is still high, they are not popular options for achieving peak shifting. 

2.2.1.2. Latent heat storage with MBPC 

As its name implies, the latent heat capacity of some suitable materials is exploited in this 

type of storage. To shift the peak load, latent heat storage can be used with phase change materials 

(PCMs) (Kalnæs & Jelle, 2015), where the most commonly PCM is ice (Yau & Rismanchi, 2012). 

Overall, PCMs can be used in both cooling and heating systems for energy storage. PCMs are 

proved as an effective type of energy storage for achieving peak shifting with energy management 

in different building sizes (J. Ma, Qin, Salsbury, & Xu, 2012). PCMs can be integrated within the 

building envelopes, which means no space scarification would be required within the buildings. 

Also, it can increase the energy storage capacity during the off-peak period. The higher heating 

capacity is necessary to increase peak shifting potential under proper control strategy. However, 

aside from higher initial investment, it may cause longer pre-cooling time to meet demand during 

summer (Xu et al., 2004). A method to solve this is to use PCM tanks. However, extended piping 

system would be needed to transfer the energy to the storage tank. In addition, comparing the initial 

investment, the price of the PCMs is much higher than ice applications. Table 2.2Figure 2.1 shows 

a summary of previous studies for load shifting using MBPC for latent storage.
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Table 2.2: Summary of previous studies for load shifting using MBPC in latent heat storage 

Ref. Building type System type Location Study type Model type Storage type Achievement (criteria) 

(Bastani, Haghighat, & Manzano, 2015) Bungalow Heating Canada Simulation TRNSYS model PCM wallboard Decrease the peak heating time 

(Touretzky & Baldea, 2016) Single zone building Heating USA Simulation Mathematical model PCM wall Load shifting 84%-66% 

(Barzin, Chen, Young, & Farid, 2015) Hut Heating New Zealand Experimental LabVIEW software PCM floor Heating cost saving 62.6% 

(Wang & Niu, 2009) Office room Cooling Hong Kong Experimental Mathematical model PCM slurry tank Load shifting 48.5% 

(Zhu, Hu, & Xu, 2013; Zhu, Liu, Hu, Liu, 

& Jiang, 2015) 

One room Both China Simulation RC model PCM wall Load shifting: 

3.1–3.8% (cooling); 

8.6–11.3% (heating) 

(Yau & Lee, 2010) Tropical building Cooling Malaya Simulation TRNSYS model Ice tank Energy cost saving 24% 

(Hajiah & Krarti, 2012) Commercial 

buildings 

Cooling Kuwait Experimental Mathematical model Ice tank Energy cost savings10.8% 

(Henze, Felsmann, & Knabe, 2004) Three-story office 

building 

Cooling USA Simulation EnergyPlus model 

TRNSYS model 

Ice tank Electricity cost saving 46% 

(Morgan & Moncef Krarti PhD, 2010) School building Cooling USA Simulation EnergyPlus model Ice tank Electricity costs saving 47% 

(Luo, Hong, Li, Jia, & Weng, 2017) Commercial building Cooling China Simulation MATLAB model Ice tank Energy costs saving 5.7–11.3% 
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2.2.1.3. Sensible heat storage with MBPC  

In this type of storage, the material undergoes sensible temperature increase. Existing 

building envelope and water tanks are few examples for sensible heat storage. Pedersen et al. 

(Pedersen, Hedegaard, & Petersen, 2017) investigated MBPC to achieve load shifting and cost 

saving. For an apartment located in Denmark, a model was developed in EnergyPlus. By 

preheating and storing the energy in building structure, up to 6% cost saving could be achieved by 

this MBPC. Ma et al. (Y. Ma, Kelman, Daly, & Borrelli, 2012) investigated an MBPC system 

integrated with a water tank for heating and cooling applications. For simulation, an RC model 

was developed for a university building in USA. The MBPC could effectively shift the load by 

precooling/preheating of the water tank. Hot water tank can be used for space heating (Haines, 

Kyriakopoulou, & Lawton, 2019), which is an accepted option for existing buildings (Gupta & 

Irving, 2013). Finck et al. (Finck, Li, & Zeiler, 2016) developed an MBPC for a heating system 

equipped with a water tank. An RC model was used for the simulation to test the load shifting. The 

daily electricity peak load of a small-scale office building was found to be reduced by 72%. 

Patteeuw et al. (Patteeuw, Henze, & Helsen, 2016) also studied MBPC to achieve load shifting by 

storing energy in a water tank. An individual building with heat pumps was used to develop the 

RC model. Heat pumps were used for preheating and 60-90% cost saving could be achieved. 

Building envelop has also been used for sensible storage (Balaras, 1996). Table 2.3 shows 

a summary of previous studies for load shifting using MBPC in the building envelop. According 

to the table, building thermal mass is the main energy storage for achieving peak shifting. 

Compared with public buildings (e.g. office or commercial buildings), residential buildings can 

get better performance in terms of peak shifting. The reason is that smaller areas have lesser 

demand during the peak period since the building thermal mass cannot store more energy. Note 

that floor was the main storage for heating using MBPC; however, its lower heat capacity 

(compared to latent storage) is the main limit. Nevertheless compared to the latent storage, sensible 

storage is simpler and easier to implement in application. Besides, model development is also 

easier for sensible storages, which leads to promote its application.

https://www.sciencedirect.com/science/article/pii/S0306261916300162#!
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Table 2.3: Summary of previous studies for load shifting using MBPC in the building envelop storage 

Ref. Building type System type Location Study type Model type Storage type Achievement (criteria) 

(Perez, Baldea, & Edgar, 

2016) 

Individual house Cooling USA Simulation Linear autoregressive 

with exogenous model 

Building thermal mass  Load shifting: 25.5% (18.2 kW) 

(Turner, Walker, & Roux, 

2015) 

Residential building Cooling USA Simulation REGCAP model Building thermal mass Load shifting 75% 

(Salsbury, Mhaskar, & Qin, 

2013) 

Single story 

commercial building 

Cooling USA Simulation EnergyPlus model Building thermal mass Cost saving 25.52% 

(X. Li & Malkawi, 2016) Small office building Cooling USA Simulation EnergyPlus model Building thermal mass Energy costs saving 20-60% 

(Pavlak, Henze, & Cushing, 

2015) 

Office building Cooling USA Experimental RC model Building thermal mass Load shifting 1.2-18.1% 

(Avci, Erkoc, Rahmani, & 

Asfour, 2013) 

Typical house Cooling USA Experimental Mathematical model Building thermal mass Load shifting:44.2% 

Cost saving: 43.3% 

(Fadejev, Simson, Kurnitski, 

& Bomberg, 2017) 

Single-family house Cooling Poland Simulation IDA ICE model Floor and wall Load shifting 16% 

(Schmelas, Feldmann, & 

Bollin, 2015) 

Office building Both Germany Both RC model Slab Load shifting: 2-9% (cooling); 

1-5% (heating); 

(Klein, Kalz, & Herkel, 

2015) 

Office building Heating Germany Simulation Modelica building 

library model 

Floor Shifting peak power: 28kW to 2kW 

(Favre & Peuportier, 2014) Single-family house Heating France Simulation Mathematical model Floor Weekly cost saving 12% 

(Halvgaard, Poulsen, 

Madsen, & Jørgensen, 2012) 

House Heating Denmark Simulation Mathematical model Floor Electricity cost saving 25-30% 

(Hu et al., 2019) Residential building Heating Denmark Simulation TRNSYS model Floor Daily electricity costs saving: 1.82-18.65% 

(Masy et al., 2015) Residential building Heating Belgium Simulation RC model Floor Electricity cost saving 8-13% 

(Georges, Masy, Verhelst, 

Andre, & Lemort, 2014) 
Residential building Heating Belgium Simulation RC model Floor Electricity cost saving 2-14% 
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Overall, these studies illustrate that MBPC can be utilized for accurate prediction, load 

shifting and decreasing energy cost. However, since MBPC requires a unique model for any 

specific building/application, it is inherently limited to that case. As such, MFC has been presented 

in the following part to overcome this shortcoming.  

2.2.2. MODEL FREE CONTROL 

MFC does not need a specific building model (Spall & Cristion, 1998) for prediction. 

Instead, a universal building model or historical data can be used for load prediction (Hélène 

Thieblemont, Haghighat, Ooka, & Moreau, 2017). Therefore, MFC can predict the load to control 

indoor environment for instance based on weather forecast, time schedule of the electricity prices, 

energy storage potential, etc. Since a specific building model is not required, accurate load 

prediction cannot be achieved at the beginning of the MFC implementation. Historical data 

prediction (HDP) can be used based on the accumulated data of building energy consumption over 

time for instance according to the exterior conditions. This typical load prediction for the MFC is 

regarded as a simple prediction method. Besides, two main learning methods (reinforce learning 

control and self-learning control) can be applied for load prediction in MFC to update the database 

or training coefficients of the system. The MFC can adapt the parameters of the universal model 

or update the database according to the feedback from measurements such as indoor air 

temperature or building energy consumption (Spall & Cristion, 1993). Comparing among these 

three methods (i.e. HDP, reinforce learning and self-learning), HDP lacks the updating and 

learning process. The simpler calculation process results in lower prediction accuracy than the 

other two learning methods. By this approach, (unlike MBPC) MFC can be utilized for various 

buildings/applications. As such, MFC can be implemented more simply and cheaply than MBPC 

(Hélène Thieblemont, 2017). 

In terms of improving the predictive accuracy for MFC, because of using the universal 

building model or historical load values in prediction, reinforce learning control (RLC) would face 

difficulties. Moreover, there is still a research gap for investigating accurate prediction of RLC 

during the training period. On the other hand, SLC can achieve high prediction accuracy. For 

instance, Omar et al. (Omar, Bushby, & Williams, 2017) developed an SLC system for a single-

family residence, comparing the prediction results from the SLC system with the actual data in 

362 days. An RMSE value of lower than 4% was achieved, indicating a well-trained SLC. 
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RLC is regarded as an effective cost saving method in the building energy consumption. 

Yang et al. (L. Yang, Nagy, Goffin, & Schlueter, 2015) compared the RLC with RBC in the annual 

output power for the PV/T panels. RLC strategy got gradually better performance in terms of 

generating total higher net power output than RBC at 5.73%, 9.78%, and 11.47% for the first three 

years. Chen et al. (Chen, Norford, Samuelson, & Malkawi, 2018) developed an RLC as a black-

box building model to save energy. The energy saving from 13-23% could be implemented in 

different buildings located in two areas (Miami and Los Angeles). As for achieving the task (i.e. 

peak shifting), RLC mostly can be used for demand response (DR) (Vázquez-Canteli & Nagy, 

2019), which means not only considering the building energy consumption from the HVAC system 

but also considering other influencing factors of the electrical grid (such as domestic hot water, 

solar PV, electrical vehicle, etc.). In addition, RLC can achieve the load shifting with energy 

storage, which leaded to around 8-25% cost saving. The details of the studies are presented in 

Table 2.4. 

SLC is another learning process for energy and cost savings in buildings. As for load 

shifting, Zhang et al. (Zhang, Pipattanasomporn, & Rahman, 2017) developed an SLC system for 

small and medium size commercial buildings to reduce the peak demand of the electricity grid. An 

office building was tested to develop and optimize peak load reduction by training data, validation 

and improvement algorithms for SLC. Table 2.4 shows the summary performance of the MFC for 

achieving the load shifting with various kinds of energy storage. 

According to Table 2.4, MFC could achieve peak shifting with different types of energy 

storage. HDP and RLC were the main training methods for commercial buildings under MFC, 

while SLC was mainly used for residential buildings. Regarding the SLC, compared to the HDP, 

the database update can provide more accurate prediction, which improves the energy pre-charging. 

A proper and sufficient energy storage can lead to higher peak shifting potential. On the other hand, 

SLC as a simpler typical MFC than other learning methods, is widely accepted in application 

(Hélène Thieblemont, 2017). 
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Table 2.4: Performance of the MFC for achieving the load shifting with different kinds of energy storage 

Ref. Building type System type Location Study type Prediction Storage type Achievement (criteria) 

(Yongjun Sun, Wang, & Huang, 2010) Commercial building Cooling Hong Kong Experimental HDP Chilled water storage Monthly cost saving 8.51% 

(Henze, Kalz, Felsmann, & Knabe, 

2004) 
Office building Cooling USA Simulation HDP Chilled water storage Cost saving 11-24% 

(Braun, Montgomery, & Chaturvedi, 

2001) 
Commercial building Cooling USA Simulation HDP Building thermal mass Cost saving 40% 

(Yin, Xu, Piette, & Kiliccote, 2010) Commercial building Cooling USA Simulation HDP Building thermal mass Load shifting 15-30% 

(Henze & Schoenmann, 2003) Commercial building Cooling USA Simulation RLC Ice tank Annual cost saving 25% 

(S. Liu & Henze, 2007) Commercial building Cooling USA Simulation RLC Chilled water storage Cost saving 12.3% 

(S. Liu & Henze, 2006a, 2006b) Commercial building Heating USA Simulation RLC Building thermal mass Cost saving 8.3% 

(Huang & Liu, 2011, 2013) Residential house Electricity USA Simulation SLC Battery Weekly cost saving 30.5% 

(Massie, 2002) Laboratory Heating USA Simulation SLC Water tank Load shifting 60% 

(H Thieblemont, Moreau, Lacroix, & 

Haghighat, 2017) 
Residential building Heating Canada Simulation SLC Floor Load shifting 98% 

(Hélène Thieblemont, Haghighat, 

Moreau, & Lacroix, 2018) 
Residential building Heating Canada Simulation SLC Floor 

Weekly cost saving 10% 

Load shifting 55-97% 
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2.3. SUMMARY AND LIMITATIONS OF PREVIOUS STUDIES 

According to the literature, the achieved peak shifting potential depends upon the 

implemented control strategy and the type of energy storage. A few studies reported satisfactory 

results for achieving peak shifting and cost saving while guaranteeing thermal comfort. Several 

types of non-predictive control (i.e. RBC system) can meet the requirements. As for the simple 

control strategy, it is mostly investigated for building thermal mass, which has low peak shifting 

potential because of the small heating/cooling capacity. Instead, the predictive control has been 

investigated to calculate the proper pre-charging values to achieve peak shifting. MBPC with 

complex model can obtain accurate predictions. However, the main limitation of the MBPC is that 

a specific model is required for each building to be able to provide accurate predictions. 

Considering the residential buildings, the number is more than 1.6 million in (Canada., 2017) 

therefore, MBPC requires too much time for model development. Consequently, MBPC is not a 

reasonable selection for this type of buildings. On the other hand, MFC uses a universal model or 

historical data for effective load management in buildings. Compared to the classical control, MFC 

can predict the peak load, which can give effective predictions for charging and discharging 

duration of energy storage systems. Consequently, promising performance can be achieved in 

terms of peak load shifting and cost saving. 

In addition, using the energy storage in each room to shift its load can be achieved by SLC 

(Hélène Thieblemont et al., 2018; H Thieblemont et al., 2017). However, it is only fucus on the 

EHF in the floor with thick concrete floor. Sun et al. (Ying Sun et al., 2018) investigated a heat 

extraction system (HES) with manual control. The HES can transfer warm air from the floor with 

energy storage (thicker concrete floor) to the floor without energy storage. However, there is still 

a research gap in terms of extending the energy storage of the floors using more advanced control 

strategies. Therefore, considering above mentioned limitations of previous studies, the present 

study focuses on a universal smart controller for the floors with energy storage and those without 

energy storage. The integration of the EHFs with HES in MFC has been conducted in this work.  
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3. CHAPTER 3 – BUILDING AND SIMULATION MODEL DESCRIPTION 

3.1. BUILDING AND FAN INFORMATION 

3.1.1. BUILDING DESCRIPTION  

A residential single detached house (shown in) located in Boischatel, Quebec, Canada was 

considered for this study. It has one semi-underground floor (basement) and two floors (ground 

floor and the second floor) above the ground. There are three types of space heating systems in the 

house (1) buried EHF system (in which the electrical heating wires are buried inside a 152 mm 

concrete slab), (2) surface EHF system (with electrical heating wires directly installed below the 

floor cover and over a 0.6 cm layer of concrete), and (3) convective heating system (electrical 

baseboard heaters). Note that only buried EHFs can be applied for peak load shifting. All the 

heating devices are controlled by thermostats as shown by red blocks in  

Figure 3.2. The mentioned heating systems are distributed in the house as shown in Table 

3.1. Note that under normal operation conditions, a constant set-point indoor air temperature (i.e. 

21.5 °C (Hélène Thieblemont et al., 2018)) is used in the house to meet the thermal comfort 

requirements, representing a typical residential building application. 

 

Figure 3.1: The photograph of the investigation house considering in the study 
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Figure 3.2: Floor plan of the house (a) basement, (b) ground floor and (c) second floor 

Table 3.1.The distribution of heating systems in the building 

Basement Ground floor Second floor 

Room Functionality Equipment Room Functionality Equipment Room Functionality Equipment 

B1 Living room CHS, BEHF GF1 Kitchen SEHF SF1 Bedroom CHS 

B2 Bedroom BEHF GF2 Living room CHS SF2 Bedroom CHS 

B3 Bedroom BEHF GF3 Garage BEHF SF3 Bedroom CHS 

B4 Bathroom BEHF    SF4 Hallway CHS 

B5 Laundry room BEHF    SF5 Office room CHS 

      SF6 Bathroom CHS 

      SF7 Bathroom CHS 
CHS: Conventional heating system BEHF: Buried electrically heated floor SEHF: Surface electrically heated floor 
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3.1.2. HEAT EXTRACTION SYSTEM INSTALLING THE BUILDING  

As mentioned earlier, the floors above the ground have lower thermal mass. To be able to 

exploit the heat stored in the concrete slab of the basement, the HES has been introduced (Ying 

Sun et al., 2018). The system transfers the warm air from the basement to the other floors by 

operating a fan during peak hours. The HES installed in the house is shown in Figure 3.3. The fan 

can transfer the warm air to the second floor using a duct. Table 3.2 shows the fan performance 

based on the measurement data. This fan information has been used to develop a model to test the 

control system. 

Table 3.2: Fan flow rate levels and its power consumption 

Level Flow rate (CFM) Power (W) 

1 247 158 

2 550 297 

3 804 410 

 

  

(a) (b) 

Figure 3.3: The photographs of the HES installed in the house 
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3.2.  RESEARCH METHODOLOGY 

Figure 3.4 shows the overview of the research tasks carried out in the study. Three tasks 

with the research procedures are presented. 

   

(a) (b) (c) 

Figure 3.4: Overview of research works carried out in this study 
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3.3.  TASK A: INVESTIGATION ON THE PEAK SHIFTING POTENTIAL OF SLC 

IN THE BASEMENT UNDER DIFFERENT TIME SCHEDULE 

3.3.1. TASK A.1: MODEL DEVELOPMENT (TRNSYS-MATLAB MODEL) 

In this section, a brief description on the model development was presented. Different 

components of the model have be presented. As a result, a TRNSYS-MATLAB model was 

developed as presented in the following section.  

3.3.1.1. TRNSYS-MATLAB model 

To simulate the SLC system, the previous TRNSYS model was connected to MATLAB 

using Type 155 (as shown in Figure 3.5 with red box). Previous TRNSYS model (Ying Sun et al., 

2018) using the controller (Type 108) as setpoint control strategy, which only can maintain the 

thermal comfort. Consequently, SLC only can be implemented by controller in MATLAB. In other 

words, Type 155 (MATLAB) replaced the TRNSYS model’s controller (Type 108) to control the 

building energy consumption and indoor temperature. Therefore, in the TRNSYS-MATLAB 

model, control strategies are generated in MATLAB while the indoor conditions are simulated in 

TRNSYS. Type 155 acted as a bridge to convey the building information (i.e. indoor air and floor 

surface temperatures as well as the building energy consumption). 

The weather data (e.g. exterior dry bulb temperature, solar radiation, humidity and wind 

velocity) was obtained from the closest weather station (i.e. Jean Lesage International Airport, 

Quebec City, Canada). Based on the weather data, the exterior soil temperature were calculated. 

Three main factors such as exterior air temperature, rainfall and snowfall were considered for soil 

temperature calculation at different ground depths (Qian, Gregorich, Gameda, Hopkins, & Wang, 

2011). The exterior soil was divided into two parts below the ground (Ying Sun et al., 2018) (1) 

from 0 m to 1 m and (2) from 1 m to 2 m. In this model, the former was calculated as functions of 

exterior air temperature and the latter was assumed based on the contact parts with the exterior 

walls and insulated floors. Multi-zone building was developed using Type 56 based on the 

characteristics of the experimental house. Basic information of the building was imported (from 

an external file) to Type 56 including its zones, room volumes, envelopes and materials as well as 
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their properties. Within a building, the air flows due to the pressure difference among the zones. 

This inter-zonal air flow should be considered in the model. To do so, Type 97 (CONTAM model) 

was used to account the dynamic inter-zonal heat air airflow as well as the infiltration. Note that, 

the building infiltration was calculated using the experimentally measured leakage area values 

(Olsthoorn, 2018), which is used in this type (Type 97) to calculated the dynamic infiltration. 

Consequently, the dynamic internal temperatures were provided by the multi-zone building (Type 

56), while Type 97 returned the dynamic pressure difference and the resulting air flows as well as 

the infiltration of each zone. 

 

Figure 3.5: Schematic representation of the TRNSYS-MATLAB model 

3.3.1.2. Model validation 

For the validation of the developed TRNSYS-MATLAB model, two mathematical criteria 

were considered: Normalized Mean Bias Error (NMBE) and Coefficient of Variance of the Root 

Mean Square Error (CVRMSE). The NMBE and CVRMSE are calculated using Equations1 and 

2, respectively.  
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where mt and st denote the measured and simulated values at time t. N is the number of measured 

data points, m̅ is the average value of the measurement and p is the number of adjustable model 

parameters. Table 3.3 shows the requirements of ASHRAE (ASHRAE, 2014) and FEMP (Webster 

et al., 2015) standards for these statistical criteria. The standards assign a limit for the NMBE and 

CVRMSE values for hourly and monthly levels. 

Table 3.3: Acceptance criteria (in %) for energy model validation 

Index 
Standard 

ASHRAE (ASHRAE, 2014) FEMP (Webster et al., 2015) 

NMBEhourly ±10 ±10 

NMBEmonthly ±5 ±5 

CVRMSEhourly ±30 ±30 

CVRMSEmonthly ±15 ±15 

  

3.3.2. TASK A.2: COMPARISON OF THE CONTROLLERS WITH TWO DIFFERENT 

SCHEDULES 

3.3.2.1. Two different schedules  

Peak shifting, thermal comfort and cost saving potential of SLC were investigated for two 

tariff settings of CPP and TOU (i.e. for the provinces of Quebec and Ontario, respectively). The 

time schedule for the tariffs in Quebec and Ontario are shown in Figure 3.6(a) and (b), respectively. 

During the off-peak (or non-critical) hours (shown by black portions in Figure 3.6), the SLC 

system can operate the EHF at any capacity (i.e. from 0% to 100%). The white portions illustrate 

the peak (or critical) hours where preferably no consumption should occur. Note that the TOU 

tariff in Ontario includes mid-peak hours (the gray portion) in Figure 3.6b, which means that the 

SLC system can operate the heaters during the mid-peak hours, but at a lower capacity. 
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(a) (b) 

Figure 3.6: Time schedule based on (a) the CPP tariff in Quebec and (b) the TOU tariff in Ontario 

Note that, residential customers in Quebec can select from two options (1) FRP tariff (also 

known as Rate D ("Residential rates," 2018)) which is a flat rate throughout the year irrespective 

of critical hours and (2) CPP tariff which is a two-level rate where during non-critical hours the 

electricity cost would be lower than FRP tariff; however, during critical hours (maximum 100 

hours annually) it would cost more. In other words, the customers who opt into CPP tariff might 

be financially penalized should their consumption occur during critical hours. The CPP tariff is 

only effective during the winter (from Dec. 1 to Mar 31) and for the rest of the year it is the same 

as the FRP. 

3.3.2.2. Comparison of the controllers 

To achieve peak shifting, the self-learning algorithm was implemented to predict the half-

daily heating load (based on building energy consumption data) (Hélène Thieblemont et al., 2018). 

The SLC system considered the two most influencing outdoor parameters namely exterior 

temperature and solar radiation. Therefore, during the SLC system operation, weather forecast was 

obtained from Environment Canada ("Québec, QC - Hourly Forecast," 2018). This information is 

used to predict the required heating load for the next day. During the normal operation (i.e. the 

reference case), a constant set point was considered for the indoor air temperature, representing a 

typical residential building application. Consequently, for the reference case, the thermostats 

maintained the indoor air temperature at 21.5°C. In this study, the self-learning algorithm proposed 

by Thieblemont et al. (Hélène Thieblemont et al., 2018) was adopted with some modifications. 

The modifications are related to the characteristics of the CPP tariff. Such a temperature 

categorization is suitable for Ontario, where the TOU tariff applicable for the entire winter. 

However, for Quebec, where CPP is adopted only during the days with critical hours (i.e. days 
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with extreme cold temperatures (> -15° C), a similar profiling of temperature category is not 

suitable for CPP time-based tariff (i.e. for Quebec) since the SLC system can operate only during 

the critical days. In the SLC system developed by Thieblemont et al. (Hélène Thieblemont et al., 

2018), for accurate prediction and to account for the temperature variation within a day, each day 

is divided into two half days. Subsequently, for predicting the heating demand, the temperature 

categories were categorized in the intervals of 10°C (i.e., [-40°C -30°C], [-30°C -20°C], [-20°C -

10°C] and [20°C 30°C]), where the category is determined by considering the minimum 

temperature recorded for each half day. For instance, if the half day hourly exterior temperature is 

from -9° C to -21° C, the lowest temperature is -16° C, which is belongs to category [-20°C -10°C].  

However, a similar profiling of temperature category is not suitable for CPP time-based 

tariff (i.e. for Quebec) since the SLC system can operate only during the critical days. In the rest 

of the year, when an FRP tariff is imposed there would be no need to activate the SLC system. 

Overall, it is expected that the critical hours occur during lower exterior temperature (creating a 

huge stress on the grid). According to Figure 3.6a, in Quebec, there are two peak periods 6:00 – 

9:00 and 16:00 – 20:00; therefore, approximately 14 days can be considered as critical days. Hence, 

in Quebec, if the temperature category for predicting the heating load was categorized with 10°C 

interval (as proposed by Thieblemont et al. (Hélène Thieblemont et al., 2018)), only three 

temperature categories would be available during the entire winter (i.e. [-40°C -30°C], [-30°C -

20°C] and [-20°C -10°C]).  

For instance, if the forecast coldest hourly exterior temperatures are -29°C and -22°C (i.e. 

7°C difference) for the two half days, using the 10°C intervals would result in the same temperature 

category (i.e. [-20°C -30°C]). Consequently, the historical energy consumption value of the two 

half days would be stored in the same category to be used for heating load prediction. Considering 

the number of days the SLC system is operated in Quebec (i.e. 14 days) and to accurately predict 

the heating load, in this study, the outdoor temperature is categorized into 5°C intervals (i.e. [-

40°C -35°C], [-35°C -30°C], [-30°C -25°C] and [-15°C -10°C]). If 5°C intervals are used in the 

previous example the two half days would belong to two different temperature categories (i.e. [-
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25°C -30°C] and [-20°C -25°C], respectively). This temperature categorization is examined in this 

study to investigate if it improves load prediction accuracy. 

The investigated cases are presented in Table 3.4. For each case, the first alphabetic 

indicator represents the first letter of the corresponding province while the second indicator shows 

the characteristic of the case. For instance, Case Q-SLC-5°C is for the case with SLC system 

according to the Quebec’s TBR schedule with the prediction of 5°C interval temperature category. 

Case Q-Ref considers a constant set-point temperature of 21.5°C throughout the day. It represents 

a customer who selects to stick with the existing FRP tariff. Case Q-NoSLC shows a customer 

who selected the CPP tariff but continues to operate the heaters the same as Case Q-Ref. In other 

words, Case Q-NoSLC aims to illustrate whether a household would be financially penalized if it 

fails to meet the requirements of peak shifting in the CPP tariff. Case Q-SLC-5°C and Case Q-

SLC-10°C represent a household which implemented the SLC system to shift its load and benefit 

from lower heating cost. For these cases the SLC system was activated only during the critical 

days and for the rest (i.e. non-critical days) a constant set-point temperature of 21.5°C was used. 

In Ontario, the majority of residential customers use the mandatory TOU pricing 

("Electricity pricing and costs," 2018). Therefore, only two cases were investigated for this 

province. For Case O-SLC, the SLC system was used all the days (only during winter), whereas 

Case O-NoSLC shows how much it would cost for the customers using a constant set-point 

temperature. 

Table 3.4: Description of the investigated cases 

Province Case Controller characteristic Electricity price 

Quebec 

Case Q-Ref Constant set-point (21.5°C) FRP tariff of Quebec 

Case Q-NoSLC Constant set-point (21.5°C) CPP tariff of Quebec 

Case Q-SLC-5°C SLC system (Quebec schedule) CPP tariff of Quebec 

Case Q-SLC-10°C SLC system (Quebec schedule) CPP tariff of Quebec 

Ontario Case O-NoSLC Constant set-point (21.5°C) TOU tariff of Ontario 

Case O-SLC SLC system (Ontario schedule) TOU tariff of Ontario 
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3.4. TASK B: EXTEND PEAK SHIFTING INVESTIGATION FOR THE ENTIRE 

HOUSE WITH DIFFERENT CONTROL STRATEGIES 

3.4.1. TASK B.1: CONTROLLER DEVELOPMENT 

In order to exploit the stored heat (within the concrete slab) and use it in other floors, the 

HES was used. To do so, a fan was installed to transfer the warm air from the rooms with thicker 

concrete (i.e. from the basement) to the other rooms without energy storage. In this way, the peak 

load for the rooms without energy storage can also be reduced. 

In this task, the fan was located in the basement laundry room (B5 in Figure 3.2), 

transferring the hot air to the second floor. With the three outlets, the hot air was uniformly 

distributed in the office room (SF5 in Figure 3.2) and two bathrooms (SF6 and SF7 in Figure 3.2). 

Note that the number and the location of the outlets were selected based on the results from Sun et 

al (Ying Sun et al., 2018). 

3.4.1.1. Extending the peak shifting 

Note that, existing SLC strategies only focused on the floor with energy storage (i.e. the 

basement with thicker concrete) (Hélène Thieblemont, 2017). Moreover, the HES proposed by 

Sun et al. (Ying Sun et al., 2018) was operated only during the peak hours using manual control. 

Hence, there is still a research gap in terms of automation for the heat storage system when 

combining peak shifting control strategies (SLC) and the HES.  

This study develops an advanced controller to integrate the HES with the SLC system, with 

the aim of increasing the potential of peak shifting (not only in the basement, to the whole house) 

and at the same time guaranteeing thermal comfort. The operation of HES during the off-peak 

hours can be controlled by the SLC in the low-level controller. By operation the fan, the overshoot 

caused by the heat delay can be eased, which is an effective approach to guarantee the thermal 

comfort. Overall, the developed advanced controller not only can achieve peak shifting for the 

floors with and without high thermal mass but also can provide a control strategy for the operation 
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of HES during the off-peak periods to ease the temperature overshoot and also guarantee complete 

charging. 

Low-level controller 

Low-level controller plays a vital role on ensuring thermal comfort in control system. 

Based on the measured values (i.e. indoor air temperatures or floor surface temperatures) from the 

thermostats, low-level controller can give the control actions to switch the heating system and HES 

controller, which can achieve the timely supervision in application. 

Figure 3.7 depict the principle of the low-level controller and the fan working schedule 

during different periods with two different approaches to ease overshoot. During the peak periods, 

the fan would operate with the maximum flow rate to transfer the energy from the basement to the 

second floor as highlighted in green box in both Figure 3.7a and Figure 3.7b, respectively. 

  

(a) (b) 

Figure 3.7: Low-level controller operation principle in two scenarios for easing overshoot: setting upper 

limit (a) and fan method (b) 

 

Temperature overshoot in the basement while charging the EHF 
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As the SLC system operates the EHF while learning from historical values, there is a 

chance for poor thermal comfort. In the basement, sometimes the temperature overshoot might 

occur as there is a time delay from when the heaters are turned OFF until the time the indoor 

temperature responds. To guarantee thermal comfort and ease the overshoot during the charging 

period, an upper limit can be set in the low-level controller in Figure 3.7a for blue box as scenario 

one. During the off-peak period, Figure 3.7a shows how the upper limit of the floor surface 

temperature is set in the low-level controller. The floor surface temperature is monitored and if it 

exceeds the maximum floor surface temperature Tmax, the EHF will turn OFF immediately as 

illustrated in Figure 3.7a (with the blue boundary). Upper limit as a common method in controller 

based on the setpoint rules (i.e. floor surface temperature) can control (using ON/OFF) the EHF 

during the charging period. In such cases, if the indoor air temperature exceeds the upper limit, a 

control action signal would be sent to switch the EHF OFF immediately. However, a disadvantage 

of setting an upper limit to ease overshoot during the charging period is that complete charging 

cannot be guaranteed. In other words, energy storage might be insufficient to cover the entire peak 

load due to the interruption of charging by the upper limit. In such conditions, insufficient energy 

storage not only decreases the peak shifting potential but also can cause poor thermal comfort 

during the peak periods. Consequently, a novel approach should be investigated satisfying both 

the thermal comfort as well as complete charging. 

Regarding the second scenario in Figure 3.7b, using fan to ease the overshoot is developed. 

Note that in Figure 3.7b the term “level” denotes fan flow rate. To ease overshoot during the off-

peak periods, the fan is operated to transfer the excess warm air to the second floor with different 

levels according to the indoor air temperature as shown in Figure 3.7b (with the red boundary). 

For instance, if the indoor air temperature reached 24.3 °C at 5:30 am (i.e. during the first off-peak 

period), the fan would operate at its flow rate level 1. As a result, the EHF would continue heating 

while the fan running at the lowest flow rate. In this way, the thermal comfort can be guarantee 

while the incomplete charging can be avoided. At the same time, the partial energy (resulting in 

overshoot) has been transferred to preheat the second floor, which can avoid energy wasting as 
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well. According to recording the fan operation time and flow rates in off-peak periods, the record 

as the feedback can be calculated by the SLC in advanced controller. 

3.4.1.2. Proposed control strategy 

Regarding the SLC strategy, the EHF in the basement can be operated by the approach 

presented by Thieblemont et al. (Hélène Thieblemont et al., 2018). A brief representation of the 

strategy is shown in Figure 3.8 without the pink boundary. First, according to the weather forecast 

downloaded from Environment Canada ("Québec, QC - Hourly Forecast," 2018), exterior 

temperature and solar radiation can be identified. This is the input to the historical database which 

has been classified by temperature-solar categories. Then, the EHFs are operated normally by 

output values from the database. 

The existing SLC system (Hélène Thieblemont et al., 2018) can adjust the daily energy 

consumption at the end of the day. Nevertheless, discomfort is an existing issue during the 

operation, especially at its beginning, regarded as the training time. At the end of each day, the 

daily maximum and minimum indoor air temperature as well as energy consumption during 

different hours are used in the SLC. For each period, if the maximum indoor air temperature is 

higher than 25 °C (or minimum indoor air temperature lower than 22 °C), the corresponding energy 

consumption of the period will decrease (or increase). Although the training can eventually tend 

the daily energy consumption to a proper range, the temperature overshoot remains a concern. 

To guarantee the thermal comfort by easing the overshoot and at the same time guarantee 

complete charging, fan operation can be applied during off-peak periods instead of setting any 

upper limit. In such conditions, the low-level controller as the supervisory control provides 

different action signals (fan as well as EHF operation) based on the building feedback (i.e. indoor 

air temperature) during different daily periods. This novel approach has been presented by the pink 

boundary in Figure 3.8. 

The low-level controller can record the fan operation time and fan flow rate level. 

According to the recorded results, the amount of energy transferred from the basement to the 

second floor during the off-peak periods can be calculated which will be used by the learning 
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process. In the learning process, these values are used as the reference to judge the energy value 

(denoted by E_fan_Mod in Figure 3.8) to increase or decrease. Finally, E_fan_Mod values are 

stored in the historical database to adjust the energy consumption prediction values (E_Mod) 

accordingly. 

 
Figure 3.8: Working principle of the proposed advanced controller 

In this task, the matrix E_fan can be calculated by Equation (3) based on the fan flow rate 

and operation time. The objectives of transferring the air in the off-peak period are (1) to guarantee 

thermal comfort, (2) to improve the incomplete charging during the off-peak period and (3) to 

preheat the second floor avoiding energy waste. 
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where E_fan (kW) is the real applied energy consumption of the previous day, Ti,out ( °C) is the 

outlet air temperature and Ti,in is the inlet air temperature in the laundry room (B5) where the fan 
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is installed. C (kJ/(kg°C)) is the specific heat capacity of the air and 𝜌 is the air density. Moreover, 

Vi (m3/s) is the volumetric flowrate in the simulation and n is the total step. 

According to Equation (3), the amount of the transferring energy in off-peak period can be 

calculated at the end of each day. If keep this part of energy in the basement, the indoor air 

temperature in the basement would be high than the proper range caused overshoot. This part of 

the energy is reduced from the total energy consumption implemented by EHF next time by 

learning process. In this way, the database is updated for training of the SLC system. Once the 

SLC finds the same exterior weather forecast, the updated value from the database can provide the 

energy consumption prediction to control the indoor air temperature and floor surface temperature 

as well as the energy storage in the concrete. 

3.4.2. TASK B.2: DEVELOPMENT OF TRNSYS-MATLAB MODEL INTEGRATED WITH 

HES 

The TRNSYS-MATLAB model (explained in Section 3.3.1) was modified to include the 

HES. As shown in Figure 3.9 all main components were the same except for addition of a fan 

(Type 111a). The fan transferred the warm air from the basement laundry room (B5) to the second 

floor (three outlets). 

 

Figure 3.9: Schematic of the TRNSYS-MATLAB model integrated with the HES 
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The electricity tariff plans adopted in Quebec is shown in Figure 3.6a. The electricity 

pricing is a two-level rate where during non-critical hours (shown by black portions in Figure 3.6a) 

the electricity cost would be normal; however, during critical hours (maximum 100 hours annually) 

it would cost more. Overall, it is expected that the critical hours occur when the outdoor 

temperature is extremely cold (creating a huge stress on the grid). Therefore, in this task, the 

coldest winter days were selected to cover the 100 critical hours. According to Figure 3.6a, the 

critical period last for 14 days. Consequently, during the off-peak hours (shown by black portions 

in Figure 3.6a), the SLC system can operate the heaters at any capacity. The white portions 

illustrate the peak (or critical) hours where preferably no consumption should occur. 

3.4.3. TASK B.3: COMPARISON OF THE PEAK SHIFTING POTENTIAL OF DIFFERENT 

CONTROL STRATEGIES  

In this task, several control strategies were investigated for the basement and the second 

floor. Taking into account the feasibility of the experiment in practice, maintain thermal comfort 

of the ground floor is utilized by CSPC (21.5 °C) in all the cases. Briefly, Reference case was 

operated under constant setpoint control (the same as the experimental house). Several control 

strategy combinations were investigated in the basement and second floor by six combinations 

(see Table 3.5) of three different control strategies (i.e. constant setpoint temperature, self-learning 

control and rule-based control), some resulting in hybrid control strategies. In this section, the 

cases are described individually. 
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Table 3.5: Summary of various cases and their control strategies 

Case Control strategies Setpoint 

Reference case 
Basement 

Constant setpoint control 21.5 °C 
Second floor 

Case 1 
Basement 

Rule-based control 
Peak: 21.5 °C; Off-peak: 23.5 °C 

Second floor Peak: 21.5 °C; Off-peak: 23.5 °C  

Case 2 
Basement Self-learning control with upper limit 21-25 °C 

Second floor Constant setpoint control 21.5 °C 

Case 3 
Basement Self-learning control with upper limit 21-25 °C 

Second floor Rule-based control Peak: 21.5 °C; Off-peak: 23.5 °C 

Case 4 

Basement Self-learning control with upper limit 21-25 °C 

Second floor Constant setpoint control 21.5 °C 

Fan control ON/OFF control N/A 

Case 5 

Basement Self-learning control with upper limit 21-25 °C 

Second floor Constant setpoint control 21.5 °C 

Fan control Self-learning control N/A 

Case 6 

Basement Self-learning control without upper limit 21-25 °C 

Second floor Constant setpoint control 21.5 °C 

Fan control Self-learning control N/A 

 

3.4.3.1. Reference case 

Using the constant setpoint control (CSPC) is one of the most common control strategies 

in the residual applications. This simple control strategy can maintain the thermal comfort; 

however, it cannot meet the requirements of the peak shifting. In this case, electrical baseboard 

heaters and EHF system (in the basements) was used to meet the space heating demand of the 

considered house throughout the day. 

3.4.3.2. Rule-based control 

Rule-based control (RBC) is regarded as a typical simplified control strategy considering 

both thermal comfort and peak shifting. Without load prediction and specific building model, the 

setpoint for indoor air temperature is adjusted based on the electricity price schedule. Therefore, 

RBC strategy is one of the most simple, but effective methods to achieve peak shifting while 

maintaining thermal comfort. Case 1 (see Table 3.5) uses RBC in both the basement and second 

floor. 



  

55 | P a g e  

 

 

 

The setpoint temperatures in different periods have a significant impact on the peak shifting 

potential and thermal comfort. Considering the building thermal mass and the variation of external 

temperatures, an indoor air temperature span of ±2 °C is recommended to prevent discomfort (Le 

Dréau & Heiselberg, 2016). Consequently, peak and off-peak setpoint of RBC can be defined at 

21.5 °C and 23.5 °C, respectively. According to the schedule of the CPP in Figure 3.6a, Table 3.6 

shows the changes of the setpoint temperature based on different electricity prices. Note that, this 

is my assumption. 

Table 3.6: Setpoint temperature schedule based on CPP 

Time period Setpoint temperature (°C) 

0:00-6:00 23.5 

6:00-9:00 21.5 

9:00-16:00 23.5 

16:00-20:00 21.5 

20:00-24:00 23.5 

 

3.4.3.3. Self-learning control 

SLC, as one typical MFC, can be used to control the heating systems within concrete slab 

for energy storage. Case 2 mentioned in Table 3.5 is similar to the investigation carried out by 

(Hélène Thieblemont, 2017) on an SLC system which only considered the heat storage in the 

basement while the other floors continued to operate using the setpoint control. Case 3 used RBC 

for energy management in second floor while SLC would be used in the basement. Cases 4-6 also 

used the SLC system in the basement while a fan system was used to cover the peak demand in 

the second floor. In Case 4, a simple ON/OFF control was implemented for the fan and the fan is 

operated only during the peak hours to transfer the warm air from the basement to the second floor. 

To guarantee the thermal comfort, an upper limit for easing overshoot during the charging time 

has been set in the SLC system. In Case 5, the fan control was integrated in the SLC system itself 

while keeping the upper limit. In Case 6, the SLC system itself is used to operate both the heaters 

and the fan. During the learning process, no upper limit was set letting the controller operate the 

fan according to the requirements. Note that in Cases 4-6, a setpoint of 21 °C was set during peak 

period in the second floor to guarantee the thermal comfort. 
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3.5. TASK C: A PARAMETRIC STUDY  

3.5.1. TASK C.1: MINITAB MODEL 

Figure 4.10 shows the schematic of the procedure followed in this study with regards to 

the software used. First, the parameters and their levels were fed to Minitab ("Minitab 18 Statistical 

Software (2010)," 2014.2.14) which then produced an orthogonal array for simulations. Then, 

simulations were conducted using the TRNSYS-MATLAB model whose results were returned to 

Minitab. Note that, the simulation results were analyzed in Minitab using the Taguchi method. 

Taguchi method provides not only standard sets of orthogonal arrays, but also a method to analyze 

the results according to signal-to-noise (S/N) ratio (Peace). The identification of significant factors 

and their ranking was performed. Finally, the proper combination of parameters was identified. 

 

Figure 3.10: Schematic representation of the parametric studies with combinations of the software box in 

TRNSYS and MATLAB 

The ultimate purpose to use the heat storage system is to achieve peak shifting and benefit 

from the lower electricity cost. However, thermal comfort might be compromised, and capital cost 

might be affected accordingly. Therefore, in this study, three responses were selected (1) average 

peak power consumption, (2) thermal comfort potential and (3) capital cost. Thermal comfort 

potential (TCP) is defined as: 
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(4) 

where ‘t’ is the duration of poor thermal comfort (indoor air temperature higher than 25 °C or 

lower than 21 °C (ASHRAE, 2013; Schiavon, Hoyt, & Piccioli, 2014)), ‘k’ is the number of the 

room, ‘w’ is the volumetric weight ratio of the rooms and ‘D’ is the total duration of critical days 

(i.e. 336 hours). 

According to the results of earlier simulations (Ying Sun et al., 2018) and experimental 

campaigns (Olsthoorn et al., 2019), five main factors influencing the performance of the system 

are identified and considered in this study as shown in Table 3.7. Commercially, concrete slab and 

insulation material are available in 51 mm increments (Olsthoorn, 2018) and their levels have been 

selected accordingly. Among these factors, the floor and air temperature upper limits can be 

handled at no cost (with being defined in the controller). On the other hand, concrete slab and 

insulation thicknesses as well as fan flow rate affect the capital cost. To consider this, cost 

functions were used where for the concrete and insulation, they are functions of their volumes. For 

the concrete slab (Varaee & Ahmadi-Nedushan, 2011): 

,1c f c cC A T C=  (5) 

where ‘Cc’ is the concrete slab cost where ‘Tc’ and ‘Af’ are the concrete slab thickness and floor 

area while ‘Cc,1’ is the cost of concrete slab per unit volume ($/m3). A similar functionality was 

used for the insulation. 

The fan cost function is obtained from (Mosaffa, Farshi, Ferreira, & Rosen, 2016): 

𝐶𝑓 = 155(𝑉̇ + 1.43) (6) 

where ‘𝑉̇’ is the fan volumetric flow rate in m3/s. 
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Table 3.7: The considered factors in parametric study and their levels 

Code Factor Unit Level 1 Level 2 Level 3 Ref. 

A Concrete slab thickness mm 101.6 152.4 203.2 (Olsthoorn, 2018; Olsthoorn et al., 2019) 

B Insulation thickness mm 50.8 101.6 152.4 (Olsthoorn, 2018; Olsthoorn et al., 2019) 

C Fan flow rate CFM 400 600 800 (Ying Sun, 2018; Ying Sun et al., 2018) 

D Upper limit for air temperature °C 23.5 24 24.5 
(ASHRAE, 2013; De Dear & Brager, 

2002; Schiavon et al., 2014) 

E Upper limit for floor surface temperature °C 26 27 28 (Olesen & Brager, 2004) 

 

3.5.2. TASK C.2: SIMULATION DESIGN BY TAGUCHI METHOD 

Based on the described parameters and their levels, an L27 orthogonal array (shown in 

Table 3.8) was generated by the Minitab software tool and accordingly. Therefore, a total of 27 

simulations were conducted in TRNSYS – MATLAB model with HES. 

Table 3.8: The L27 orthogonal array indicating the factors and their levels according to Table 3.7 

# A B C D E # A B C D E # A B C D E 

1 1 1 1 1 1 10 2 1 2 3 1 19 3 1 3 2 1 

2 1 1 1 1 2 11 2 1 2 3 2 20 3 1 3 2 2 

3 1 1 1 1 3 12 2 1 2 3 3 21 3 1 3 2 3 

4 1 2 2 2 1 13 2 2 3 1 1 22 3 2 1 3 1 

5 1 2 2 2 2 14 2 2 3 1 2 23 3 2 1 3 2 

6 1 2 2 2 3 15 2 2 3 1 3 24 3 2 1 3 3 

7 1 3 3 3 1 16 2 3 1 2 1 25 3 3 2 1 1 

8 1 3 3 3 2 17 2 3 1 2 2 26 3 3 2 1 2 

9 1 3 3 3 3 18 2 3 1 2 3 27 3 3 2 1 3 

 

Consequently, the S/N ratio is defined based on Equation (7) with two conditions. S/N ratio as 

the evaluation criteria is used in Taguchi method. When the objective should be maximized the 

top one will be used according to Equation (7). Otherwise, the below one is used according to 

Equation (7). Note that thermal comfort potential should be maximized, whereas the other outputs 

should be minimized. 



  

59 | P a g e  

 

 

 

2

1
10logS N

y

 
= −  

 
 Objective: maximization 

(7) 

( )210logS N y= −  Objective: Minimization 

where ‘y’ is the response. 
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4. CHAPTER 4: RESULTS  

4.1.  TASK A: INVESTIGATION ON THE PEAK SHIFTING POTENTIAL OF SLC 

IN THE BASEMENT UNDER DIFFERENT TARIFFS 

In this task, an SLC system based on the Ontario’s TOU schedule was developed and 

implemented in the experimental house (mentioned in Section 3.1). The SLC system was activated 

during two stages in winter 2018 (the first stage: Jan. 1- Jan 14 and the second stage: Feb. 1- Feb. 

15). In this section, validation results are presented for these two stages using the TRNSYS-

MATLAB model. 

4.1.1. TASK A.1: MODEL VALIDATION (TRNSYS-MATLAB MODEL) 

4.1.1.1. Energy consumption validation 

The two experimental stages (which is lesser than a month) were not long enough to focus 

on monthly criteria. Moreover, in this investigation, hourly NMBE and CVRMSE cannot be 

compared between the simulation and measurement results. Because, the heaters implemented in 

the experimental house cannot be assigned (by the SLC) to exact percentages of total heater 

capacity. For instance, if the SLC system assigns a heating level of 50% capacity for 10 minutes, 

the heater turns ON in full power (i.e. 100% capacity) for instance during the first five minutes; 

therefore, it would have a 0% capacity during the next five minutes. The real time energy 

consumption follows a seismic instant power profile, whereas in simulations, the exact heating 

level can be smoothly achieved. As an example, Figure 4.1 compares the energy consumption 

between measurement data and simulation results for 4 hours. Note that despite fluctuations in 

instantaneous measurement results (dash orange line), the average measured energy consumption 

(dash gray line) is very close to the simulation (solid blue line). 
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Figure 4.1: Exemplary comparison of energy consumption profile between measurement data and 

simulation results 

This fundamental mechanism difference between simulation and experiments inhibits 

reasonable comparison of data in terms of hourly energy consumption. Besides, the SLC system 

goes through day-by-day learning; thus, it functions on a daily basis. Therefore, it is reasonable to 

regard the overall daily energy consumption as a cycle to validate the TRNSYS-MATLAB model. 

A closer look at Table 3.3 can be helpful to better evaluate these criteria at the daily level. 

The requirement values are lower for monthly level as compared to hourly ones. The reason is that 

sudden changes of values can be smoothened over the course of a month. Overall, for validation, 

it is expected that the daily values at least fall between hourly and monthly requirements. Table 

4.1 shows the NMBE and CVRMSE values for both stages at the daily level. The NMBE values 

of these two stages are desirably lower than the monthly criteria of the standards, indicating the 

validity of the model based on this criterion. Moreover, the CVRMSE values suitably lie between 

monthly and hourly requirements. Therefore, the model can be considered as validated in terms of 

both NMBE and CVRMSE criteria. 
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Table 4.1: Energy validation results 

Time stage NMBEdaily (%) CVRMSEdaily (%) 

First stage (Jan. 1 – Jan. 14) 1.02 20.80 

Second stage (Feb. 1 – Feb. 15) 3.34 12.95 

Table 4.2 compares the total energy consumption between measurement and simulation. 

Overall, there is an acceptable agreement between the measurement data and simulation results in 

both stages. According to the deviation values in Table 4.2, the prediction accuracy of the 

TRNSYS-MATLAB model can be validated in terms of accumulated energy consumption. 

Table 4.2: Total energy consumption and deviations for the two stages 

Items First stage Second stage 

Measurement (kWh) 1,276 1,292 

Simulation (kWh) 1,261 1,305 

Deviation (%) 1.02 1.01 

 

4.1.1.2. Temperature validation 

To the best of the authors’ knowledge, there is no standard criterion for temperature 

validation. Nevertheless, Table 4.3 tabulates the values of the two criteria for both stages. For the 

first stage, the values of NMBE and CVRMSE for B4 (i.e. the bathroom) are 6.6% and 14.6%, 

respectively. The reason is that in the bathroom, the occupancy behaviors (such as showers) cannot 

be considered in the TRNSYS-MATLAB model. Aside from this room, the average values of 

NMBE and CVRMSE for both stages are lower than 10%; therefore, the model can be considered 

to be validated in terms of temperature. 

Table 4.3: Temperature validation results 

 First stage Second stage 

Room NMBEdaily (%) CVRMSEdaily (%) NMBEdaily (%) CVRMSEdaily (%) 

B1 (living room) 4.35 7.26 3.17 3.68 

B2 (bed room) 4.87 8.45 0.44 2.76 

B3 (bed room) 4.54 7.58 1.46 2.87 

B4 (bathroom) 6.60 14.61 -5.29 4.59 

B5 (laundry room) 4.39 7.06 -4.87 4.00 

Average 4.27 6.92 -0.53 2.44 
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4.1.2. TASK A.2: STUDY OF THE PEAK SHIFTING POTENTIAL, THERMAL COMFORT AND 

COST SAVING FOR THE BASEMENT 

4.1.2.1.  Electricity price: CPP 

To simulate the energy consumption of the reference case (without the SLC system), the 

TRNSYS model was used with a constant set-point temperature of 21.5°C. For the SLC system, 

the validated TRNSYS-MATLAB model was used. The energy consumption and the heating costs 

are compared to show how much saving in the critical days as well as the whole winter (i.e. Dec. 

1, 2017 to Mar. 31, 2018) could be achieved. 

Energy consumption and peak shifting potential in Quebec 

Figure 4.2a compares the energy consumption in different periods among the cases during 

the critical days. Note that Case Q-Ref and Case Q-NoSLC have the same energy consumption 

profile as they both use a constant set-point temperature. Consequently, their difference is in terms 

of pricing which would be discussed later in this section (cost analysis part). According to the 

figure, Case Q-SLC consumed about 6% more energy compared with Case Q-Ref. The reason 

why these cases consumed more energy than the reference case would be presented in this section 

(indoor temperature part). Note that despite higher energy consumption, case Q-SLC-10°C and 

Case Q-SLC-5°C achieved a peak shifting potential of 98.1% and 99.8%, respectively. 

From the energy supplier point of view, the peak shave potential (PSP) in terms of power can be 

defined as (Olsthoorn et al., 2019): 

( ),

1

N

Ref,n SLC n

n

P P

PSP
N

=

−

=


 
(8) 

where Pref,n and PSLC,n are the basement power consumption of the reference case and the case with 

SLC system (see Figure 4.2b) at time n, respectively and 𝑁 is the total number of time steps in the 

peak period. Therefore, PSP is the average peak load shave, which for both Case Q-SLC-5°C and 

Case Q-SLC-10°C, the PSP during first and second peak periods were approximately 5 kW and 

4kW, respectively. 
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Further inference from Figure 4.2a and b is that the energy consumed by EHF when 

operated under Case Q-SLC-5°C is lesser during the first off-peak period (20:00 – 06:00) and 

relatively higher in the second off-peak period (9:00 – 16:00) compared to Case Q-SLC-10°C. 

This is because, the latter estimated the load by considering the wider temperature range (10°C 

interval), while in the former, 5°C intervals were considered for the temperature category. For 

clear explanation, the following example is presented. Consider two days with half-daily forecast 

minimum exterior temperature as -27°C/-18°C for the first day and -23°C/-18°C for the second. 

In these two days, -27°C and -23°C belong to the same temperature category (i.e. [-30° -20°]) in 

Case Q-SLC-10°C. In this case, to maintain the thermal comfort, more/excess energy is stored 

during the first off peak period compared to the second off peak period. However, in Case Q-

SLC-5°C, -27°C and -23°C belong to different temperature categories. Hence more specific load 

values (i.e. relatively lesser energy will be stored for -23°C than - 27°C) are predicted for these 

two temperatures. Since, the energy storage in the first off peak period depends strongly on the 

temperature category (elaborated further in Section 4.1.2.2) and no excess amount of energy is 

stored in the Case Q-SLC-5°C, the additionally required energy to maintain the thermal comfort 

during the second peak period is stored during the second off-peak period for Case Q-SLC-5°C 

resulting in higher energy consumption compared to Case Q-SLC-10°C.  



  

65 | P a g e  

 

 

 

 

 

Figure 4.2: Comparison of (a) energy consumption and (b) average power consumption among the cases 

for Quebec during critical days 

Indoor temperature 

Figure 4.3 compares the average basement indoor temperature during the critical days 

among the considered cases. Note that a constant set-point temperature (i.e. 21.5°C) was used in 

non-critical days. Again, Case Q-Ref and Case Q-NoSLC have the same profile due to similar 

energy consumption characteristics. It can be seen from the figure that the indoor air temperature 

swing of Case Q-SLC-10°C and Case Q-SLC-5°C were within the range of 21.5 – 23°C and 22.5 
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- 23.5°C, respectively, which means the SLC system could maintain thermal comfort all the time. 

The average indoor air temperature of Case Q-Ref was almost the same as its set-point temperature 

(i.e. 21.5°C), which indicates meeting thermal comfort. According to the figure, the temperature 

of Case Q-SLC-10°C and Case Q-SLC-5°C are generally higher than Case Q-Ref, which is the 

main reason why the total energy consumption of the SLC system was higher than the reference 

case. 

 
 

  

Figure 4.3: Comparison of the average indoor air temperature among the cases for Quebec during critical 

days (a) real variation and (b) box plot 

To guarantee the thermal comfort, the frequency of poor thermal comfort (PTC) occasions 

by the SLC system was evaluated using: 

( )% 100
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t w
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(9) 

where t is the duration of poor thermal comfort (indoor air temperature lower than 21°C or higher 

than 25°C (Schiavon et al., 2014)), k is the number of the room, w is the volumetric weight ratio 

of the rooms and D is the total duration of critical days (i.e. 336 hours).  
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Based on Equation (9), the frequency of PTC is 0%, 0% and 4.9% for Case Q-Ref, Case 

Q-SLC-5°C and Case Q-SLC-10°C, respectively. This indicates the SLC system can maintain 

the thermal comfort where Case Q-SLC-5°C had a better performance. 

Cost analysis 

Table 4.4 shows the details of electricity pricing in Quebec. Note that according to Table 

3.4, the heating cost of Case Q-Ref is evaluated based on the FRP tariff (i.e. Rate D), while for 

the other cases the CPP tariff (i.e. Rate DPC) was used. Figure 4.4 compares the heating cost 

among the cases during the critical days. According to the figure, the total heating cost for Case 

Q-SLC-5°C and Case Q-SLC-10°C are lower than Case Q-Ref, which means a saving of 23.4% 

and 18.9%, respectively. However, compared to Case Q-NoSLC, the SLC system can save heating 

cost by 64.3% and 62.1%, respectively. Moreover, Case Q-SLC-5°C could additionally save 5.99% 

more than Case Q-SLC-10°C. 

Table 4.4: Electricity pricing in Quebec ("Residential rates," 2018) 

  CPP tariff (Rate DPC) FRP tariff (Rate D) 

Period Condition Peak Off-peak Constant rating 

Electricity price (¢/kWh) < 40 kWh/per day 50 3.98 6.07 

Electricity price (¢/kWh) > 40 kWh/per day 50 7.03 9.38 

Subscription fee (¢/day) * - 40.64 
* Charged per day irrespective of the actual energy consumption 
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Figure 4.4: Comparison of the heating cost among the cases for Quebec during critical days 

For the entire winter (Dec. 1, 2017 to Mar. 31, 2018), Figure 4.5 compares the heating cost 

among the considered cases. For Case Q-SLC-5°C and Case Q-SLC-10°C, the total heating cost 

is lower than Case Q-Ref, achieving savings of 23.6% and 22.8%, respectively. Moreover, 

compared to Case Q-NoSLC, they can also save 21.4% and 20.8%, respectively in the heating 

cost. Overall, Case Q-SLC-5°C is the best option to decrease the heating costs in CPP. 

 

Figure 4.5: Comparison of the total heating cost among the cases for Quebec during the entire winter 
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For the CPP tariff of Quebec, two prediction methods with different temperature categories 

have been compared in terms of peak shifting potential, thermal comfort and heating cost saving 

with a reference case and also without SLC. It was found that during the critical days, although 

the SLC strategy (i.e. Case Q-SLC-5°C) required about 5.5% more heating than the other cases, 

the heating cost could still be reduced. The comparison results show that the peak shifting potential, 

thermal comfort and heating cost saving potential is better for Case Q-SLC-5°C as the temperature 

category. For this case, heating cost saving of 64.3% (i.e. $12.9 per day) and 23.4% (i.e. $2.20 per 

day) was achieved compared to Case Q-NoSLC and Case Q-Ref, respectively. 

4.1.2.2. Electricity price: TOU 

The peak shifting potential and economic advantages of the SLC system are investigated 

for the TOU tariff setting in Ontario. The simulation period was from Jan. 1 to Apr. 30, 2018. 

Energy consumption and peak shifting potential in Ontario 

Figure 4.6a depicts the comparison of the energy consumption between the cases for 

Ontario. The inference from the figure is that Case O-SLC consumed about 12% more energy 

compared with Case O-NoSLC (for the same reasons as mentioned for Quebec cases). 

Nevertheless, Case O-SLC achieved a peak shifting of 97.6%. Figure 4.6b depicts that the peak 

shifting potential of Case O-SLC during the first and second peak periods compared to Case O-

NoSLC are 3.0 kW and 2.9 kW, respectively. 
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Figure 4.6: Comparison of (a) energy consumption and (b) average power consumption between the cases 

for Ontario during the entire winter 

Indoor air temperature 

Figure 4.7 depicts the indoor air temperature in different rooms for Case O-SLC during 

the simulated 120 days. The indoor room air temperatures are close, fluctuating within a proper 

temperature range (21 – 25°C) for most of the time (Schiavon et al., 2014). Based on Equation (9), 
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the frequency of PTC is 4.3% for the total simulation time (i.e. 2880 hours), which means the SLC 

could main the thermal comfort. 

 

 

  

Figure 4.7: Indoor air temperature in different rooms using Case O-SLC for Ontario during the entire 

winter 

Cost saving 

Details of the TOU electricity pricing in Ontario are shown in Table 4.5. Figure 4.8 shows 

the comparison of the total heating cost between Case O-SLC and Case O-NoSLC from Jan. 1 to 

Apr. 30, 2018. Compared to Case O-NoSLC, Case O-SLC can save about 16.9%. Overall, the 

cost saving of the SLC system under Ontario TOU pricing is lower than Quebec (i.e. Case Q-

SLC-10°C). The reason is that the TOU electricity pricing includes a mid-peak period (the gray 

portion in Figure 3.6b) having higher electricity price than the off-peak period in Quebec (the black 

portion in Figure 3.6a). 

Table 4.5: TOU electricity pricing in Ontario (HydroOne 2017) 

Price Peak period Mid-peak period Off-peak period 

During weekdays (¢/kWh) 18 13.2 8.7 

During weekends (¢/kWh) 8.7 8.7 8.7 
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Figure 4.8: Comparison of the total heating cost between the cases for Ontario during the entire winter 

SLC performance analysis 

Unlike CPP, the SLC system with TOU setting is always in operation during the entire 

winter. Consequently, it covers a wide range of outdoor temperatures. For the period from Jan. 1 

to Apr. 30, 2018, the outdoor temperature varied in the range of [-30, 10°C]. Note that the SLC 

system operates based on half-daily outdoor temperature categories in 10°C intervals. 

Consequently, a total of 16 combinations are possible for the half-daily temperature categories; 

however, some combinations never occurred. Figure 4.9 shows the energy consumption results 

and peak load shaving for the 120 days (i.e. Jan. 1 to Apr. 30, 2018) according to the half-daily 

outdoor temperature categories. For each first half-daily (noted by morning) temperature category, 

the x-axis shows the second half-daily (noted by evening) temperature category, the y-axis shows 

the peak load shaving and the bubble size (values indicated at the center of each bubble) 

demonstrates the energy consumption (in kWh). The figure shows that as the exterior temperature 

increases, the bubble size (i.e. the energy consumption) decreases, which is expected. Another 

inference from the figure is that for the extreme cold outdoor temperature, the peak shifting 

potential is lesser compared to the higher exterior temperatures. The main reason is that as exterior 

temperature increases, the heat loss from the storage decreases and subsequently, the storage can 

cover more load (store more thermal energy) during the peak hours.  
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Figure 4.9: Energy consumption and peak energy shaving potential of the SLC system under different 

temperature categories 

Figure 4.10 shows the heating cost saving potential of Case O-SLC compared with Case 

O-NoSLC. The x-axis of the figure is the same as Figure 4.9 while the y-axis is the heating cost 

saving potential and the size of each bubble is the average daily heating cost in CAD (values are 

shown at the center of each bubble) using the SLC system. According to the figure, for each 

morning category, as the evening temperature categories get warmer, the bubble size (i.e. total 

heating cost) becomes smaller, while lower heating cost saving is achieved. The reason is that for 

Case O-NoSLC (i.e. the basis for heating cost saving calculation) energy consumption continues 

during peak periods (see Figure 4.6); however, for higher exterior temperatures, the energy 

consumption reduces, resulting in a decreasing heating cost saving potential (from about 30% 

down to 5%). The trend in this figure can be simply understood when considering two factors. 

First, the number of occurrences for each temperature category, which helps the learning process 

in the SLC system towards better control. This can be seen in Figure 4.11 where the y-axis is the 

power consumption during peak (solid bubbles) and mid peak (dashed bubbles) periods and the 

bubble sizes indicate the number of occurrences. Second, the performance of thermal energy 
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storage system depends on outdoor air temperature. For very cold outdoor air temperatures though 

heat energy is stored during the off-peak periods, the stored heat would not be sufficient to meet 

the entire heating demand during the peak period. On the other hand, as the exterior temperature 

increases, the peak shifting potential can be achieved at almost 100%, however the heating cost 

saving potential is lesser during these days. In overall, the best performance in Figure 4.10 is 

achieved for the lowest temperature categories, indirectly indicating more cost efficiency under 

CPP tariff of Quebec. 

 

Figure 4.10: Heating cost saving potential of Case O-SLC compared to Case O-NoSLC 
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Figure 4.11: Peak power consumption for each temperature category depending on the occurrence 

4.2. TASK B: EXTEND PEAK SHIFTING INVESTIGATION FOR THE WHOLE 

HOUSE WITH DIFFERENT CONTROL STRATEGIES 

4.2.1. TASK B.1 PARAMETRIC STUDY OF THE FLOOR SURFACE UPPER LIMIT 

TEMPERATURE 

An upper limit for floor surface temperature can be set to guarantee the thermal comfort 

by easing the overshoot for the EHF charging time. Regarding the upper limit for floor surface 

temperature, five various setpoints from 26 to 28 °C were selected (Olesen, 2002; Olesen & Brager, 

2004) (as shown in the x axis of Figure 4.12). Due to the delay in thermal response of the concrete, 

28 °C was the highest setting value for the upper limit. Figure 4.12 presents the average discomfort 

hours for indoor air temperature (i.e. in the range of 21-25 °C (Schiavon et al., 2014; Standard, 

2013)) for these five upper limits for floor surface temperature. Note that the acceptable thermal 

comfort temperature range for floor surface temperature could be selected as 19-29 °C (Standard, 

2004). The inference from the figure is that the lower upper limit floor surface temperatures acted 

as a barrier, limiting the amount of energy storage, which in turn caused poor thermal comfort. On 

the other hand, higher upper limit floor surface temperatures lead to the overshoot in the indoor 
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air temperature after the charging period, which also caused the poor thermal comfort. 

Consequently, in this study, 27 °C was selected as the floor surface upper limit temperature due to 

the frequency of the PTC by Equation (9). 

 

Figure 4.12: Frequency of the PTC for different floor surface upper limit temperatures 

4.2.2. TASK B.3 COMPARISON RESULTS AMONG THESE CASES 

Since the building’s ground floor was not affected in the considered cases, its control 

strategy was maintained at the CSP, while the peak shifting control strategies were investigated in 

the basement and second floor. Consequently, the ground floor was set at 21.5 °C throughout the 

day in all simulations. 

4.2.2.1. Peak shifting potential 

Figure 4.13 compares the cases in terms of the average power consumption during each 

period per day. Regarding the peak power, peak shifting control strategies (i.e. Cases 1-6) can 

decrease the power by about 4.5 kW (which were about 9.7 kW and 8.4 kW during two peak 
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sufficient to meet the demand. Meanwhile, to achieve better peak shifting using SLC, higher 

amounts of energy were stored during the first off-peak (i.e. above 14 kW). Furthermore, 

comparing Case 6 with other cases under peak shifting control strategies, less energy has been 

consumed in both peak periods. Without upper limit setting, more energy can be stored during the 

first off-peak period, which leads to lower energy consumption during the peak periods. 

 

Figure 4.13: Comparison of average demand per period per day for the different cases 

Figure 4.14 presents the peak shifting of the basement and second floor among the cases 

compared with Reference case. Note that in Case 2, the peak shifting was considered only in the 

basement, which leads to zero percentage for peak shifting in the second floor. In the basement, 

the RBC (i.e. Case 1) could achieve performance levels in peak shifting as great as the SLC (i.e. 

Case 2-6), both above 97%. Case 1 and Case 3 had preheating using RBC to store energy in the 

building thermal mass to extend the peak shifting in the second floor, achieving around 45% peak 

shifting. 
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Figure 4.14: Peak shifting potential (%) of different cases in the second floor and basement 

In Cases 4-6, better peak shifting results (i.e. more than 86%) were obtained. Meanwhile, 

for Case 6, the peak shifting potential can increase at 1.87% in the basement and 1.92% in the 

second floor compared to Cases 4 and 5. Guaranteeing the complete charging is the vital reason. 

Among the cases with the SLC system with upper limit (Cases 2-5), setting the upper limit 

influenced the peak shifting. The reason is that when the floor surface temperature gets higher than 

27 °C during the charging period, the EHF is turned OFF immediately. Hence, during the peak 

period the stored energy is not sufficient to maintain the thermal comfort and the EHF would have 

to operate during the peak period. 

In CPP, the electricity price of the second off-peak is the same as the first off-peak period 

(see Figure 3.6a); however, load shifting from the second off-peak is beneficial. The reason is that 

the stress on the grid (from the supply side viewpoint) is higher during the second off -peak period, 

meaning it is prone to become a new peak if peak shifting is not conducted with caution. Figure 

4.15 shows the energy shifting potential during the second off-peak period for all the cases 

compared to Reference case. Case 1 (using RBC) not only cannot decrease the energy consumption 

during this period, but also consumed 1.5 time higher than Reference case. Case 3 used the RBC 

in the second floor, which also decreased the second off-peak shifting (7% lower than the SLC 
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cases). Hence, RBC may cause creating a new peak within the second off-peak period. Indeed, 

Cases 1 and 3 cannot be considered as reasonable options. Case 2 has the second better 

performance in terms of load shifting potential during the second off-peak period, but it only 

focused on the basement. On the other hand, if these two scenarios (i.e. setting upper limit and fan 

easing overshoot) are used to guarantee the thermal comfort (Case 5), the energy shaved in peak 

period (Figure 4.14) and 2nd off-peak period (Figure 4.15) cannot get the good performance. 

Overall, Case 6 is regarded as a proper control strategy in minimizing energy consumption during 

this period. This could be achieved by fan operation in the proper time during the off-peak period, 

storing sufficient energy in the basement. 

 

Figure 4.15: Energy shifting potential (%) of different cases during 2nd off-peak period (10:00-16:00) 

4.2.2.2. Thermal comfort 

Figure 4.16a and Figure 4.16b show the variation of average temperature based on the 

volumetric weight ratio of the rooms for the basement and second floor, respectively. Regarding 

RBC, Figure 4.16a shows that Case 1 had lesser temperature swing than the other cases in the 

basement. Since the RBC required preheating in the second floor, Cases 1 and 3 had wider 

temperature range than the SLC cases in Figure 4.16b. On the other hand, among SLC cases, Case 

6 was the only one to guarantee the thermal comfort without setting upper limit. The reason is that 
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in Case 6 warm air was transferred to the second floor during the off peak hours for preheating. 

Hence, indoor air temperature in Case 6 was a little higher than other SLC with fan cases (Cases 

4 and 5) in Figure 4.16b. This partial energy did not cause thermal discomfort in the basement, but 

it was desirably used to preheat the second floor, increasing the peak shifting potential (by 1-2% 

in Figure 4.14). 

  

(a) (b) 

Figure 4.16: Average indoor air temperature for different cases in (a) the basement and (b) the second 

floor 

Figure 4.17 shows the thermal comfort potential among the cases according to Equation 

(9). Even for the worst case, the thermal comfort percentage is higher than 97.5%, which can 

indicate that peak shifting control could maintain the thermal comfort. Overall, Case 6 is the best 

option with lower poor thermal comfort percentages. 



  

81 | P a g e  

 

 

 

 

Figure 4.17: Comparison of thermal comfort potential among the cases 

4.2.2.3. Cost saving 

Table 4.4 shows the details of electricity pricing in Quebec. Figure 4.18shows the 

comparison of the total heating cost among the cases. Note that, heating cost saving of all these 

cases has been calculated by comparing to Reference case. According to the figure, Case 2 which 

used SLC only for peak shifting in the basement, could save lesser (around 8-14%) than the other 

cases. Cases 4-6 used a fan, achieving better performance than Case 1 (under RBC) and Case 3 

(under HCS). Hence, SLC can get better performance in cost saving (i.e. higher around 2-4%) than 

other cases. Comparing the cases of SLC with fan controller (i.e. Cases 4-6), Case 6 is regarded as 

the best options with higher cost saving (i.e. higher around 2%) than Cases 4 and 5. In Case 6, 

complete charging is the most important factor to have lower heating cost saving than other SLC 

cases. 
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Figure 4.18: Comparison of the total heating cost savings for different these cases 
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effect plots as shown in Figure 4.19. Figure 4.19 shows S/N ratio main effect plots from the level 

1 to level 3 among these five factors. 

Table 4.6: The responses and their corresponding signal-to-noise ratio for each simulation in Table 3.6 

# 
Factors 

Peak power 

consumption (R1) 

Thermal comfort  

potential (R2) 
Capital cost (R3) 

A B C D E Response 1 (kW) S/N 1 Response 2 (%) S/N 2 Response 3 ($) S/N 3 

1 1 1 1 1 1 0.79 2.08 89.04 38.99 10,452 -80.38 

2 1 1 1 1 2 0.75 2.46 90.57 39.14 10,452 -80.38 

3 1 1 1 1 3 0.74 2.60 91.31 39.21 10,452 -80.38 

4 1 2 2 2 1 0.71 2.99 97.91 39.82 15,012 -83.53 

5 1 2 2 2 2 0.68 3.37 98.51 39.87 15,012 -83.53 

6 1 2 2 2 3 0.68 3.41 98.86 39.90 15,012 -83.53 

7 1 3 3 3 1 0.85 1.38 98.00 39.82 19,483 -85.79 

8 1 3 3 3 2 0.83 1.58 99.36 39.94 19,483 -85.79 

9 1 3 3 3 3 0.83 1.67 98.37 39.86 19,483 -85.79 

10 2 1 2 3 1 0.79 2.05 94.19 39.48 13,238 -82.44 

11 2 1 2 3 2 0.70 3.15 96.85 39.72 13,238 -82.44 

12 2 1 2 3 3 0.69 3.17 97.39 39.77 13,238 -82.44 

13 2 2 3 1 1 0.84 1.55 99.22 39.93 17,799 -85.01 

14 2 2 3 1 2 0.83 1.58 99.43 39.95 17,799 -85.01 

15 2 2 3 1 3 0.83 1.58 99.43 39.95 17,799 -85.01 

16 2 3 1 2 1 0.58 4.66 99.87 39.99 22,226 -86.94 

17 2 3 1 2 2 0.55 5.12 99.92 39.99 22,226 -86.94 

18 2 3 1 2 3 0.55 5.25 99.89 39.99 22,226 -86.94 

19 3 1 3 2 1 0.93 0.66 92.35 39.31 16,080 -84.13 

20 3 1 3 2 2 0.89 0.99 95.22 39.57 16,080 -84.13 

21 3 1 3 2 3 0.89 1.04 95.61 39.61 16,080 -84.13 

22 3 2 1 3 1 0.58 4.71 99.60 39.97 20,597 -86.28 

23 3 2 1 3 2 0.54 5.34 100.00 40.00 20,597 -86.28 

24 3 2 1 3 3 0.52 5.69 100.00 40.00 20,597 -86.28 

25 3 3 2 1 1 0.66 3.56 99.89 39.99 25,068 -87.98 

26 3 3 2 1 2 0.66 3.64 99.89 39.99 25,068 -87.98 

27 3 3 2 1 3 0.66 3.64 99.89 39.99 25,068 -87.98 

 

Table 4.6 summarizes all the output values as well as their corresponding S/N ratios. For 

instance, in the first run (i.e. the first row), the five factors were at their lowest level (i.e. level 1). 
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Compared to the other runs in Table 4.6, the peak power consumption (R1) is relatively higher, 

while the thermal comfort potential (R2) and the capital cost (R3) are relatively lower. The reason 

is that despite costing lower, the least thickness of insulation and concrete slab cannot achieve high 

peak shifting and maintain the thermal comfort. 

Factor Peak power consumption (R1) Thermal comfort potential (R2) Capital cost (R3) 
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Figure 4.19: S/N ratio main effect plots of different factors and levels 

Figure 4.19 can be used to analyze the effect of each factor on each response. For peak 

power consumption, fan flow rate (C) had the highest effect due to the highest S/N ratio. In addition, 

concrete slab thickness (A) and insulation thickness (B) show a small effect on average peak power 

consumption when they go from their second level to the third. This is an important issue which 

shows the capital cost should be considered. The reason is that the small effect on (i.e. reduction 

of) average peak power consumption is not sufficient to justify the capital cost for using thicker 

concrete slab and insulation. In addition, regarding the effect of concrete slab thickness on thermal 

comfort potential, Figure 4.19 shows that the mid value had the best performance. All these results 

should be considered simultaneously to be able to obtain the best condition. 

4.3.1.2. Ranking of factors 

The results obtained from conducting the data analysis based on Taguchi method are shown 
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followed by concrete thickness. Note that, factors D and E (see Table 3.5 for details) were both 

ranked 4 as they were found insignificant compared to the other factors. The reason is that they 

could be achieved with no cost. As the table shows, the insulation thickness (i.e. factor B) was the 

most significant factor ranking highest in almost all the cases. Aside from this, a universal 

conclusion cannot be drawn when considering all the outputs as for instance higher peak shifting 

(desirable) results in higher capital cost (undesirable). 

Table 4.7: S/N for factorial effects and contribution ratio 

Parameter 
Peak power consumption (R1) Thermal comfort potential (R2) Capital cost (R3) 

A B C D E A B C D E A B C D E 

S/N ratio – Level 1 2.36 1.98 4.11 2.48 2.52 39.62 39.43 39.71 39.69 39.71 -83.51 -82.45 -84.99 -85.00 -85.00 

S/N ratio – Level 2 3.00 3.23 3.21 2.89 2.91 39.87 39.93 39.84 39.79 39.80 -84.99 -85.01 -85.00 -85.00 -85.00 

S/N ratio – Level 3 3.06 3.27 1.33 3.05 2.99 39.83 39.95 39.77 39.84 39.81 -86.27 -86.95 -85.00 -85.00 -85.00 

Delta (max – min) 0.7 1.29 2.78 0.57 0.47 0.25 0.52 0.13 0.15 0.1 2.76 4.5 0.01 0.00 0.00 

Rank 3 2 1 4 5 2 1 4 3 5 2 1 3 4 4 

 

4.3.2.  TASK C.2: ANOVA METHODS FOR ANALYSIS OUTPUT RESULTS 

4.3.2.1. Regression 

ANOVA (analysis of variance) is a mathematical tool for analyzing the results to find 

variation of each effective factor and their contribution (Capozzoli, Gorrino, & Corrado, 2013; 

Mechri, Capozzoli, & Corrado, 2010). ANOVA results are presented in Table 4.8 using the 

confidence level and significance level of 95% and 5%, respectively. Note that ANOVA cannot 

be conducted for capital cost (R3) since it would be saturated (insufficient degree of freedom for 

error). The reason is that two factors of upper limit for indoor air temperature (D) and upper limit 

for floor surface temperature (E) did not affect the capital cost. 

F-value of each factor determines its variability between and within groups. The 

significance of each factor can be realized by checking its F-value as indicated in Table 4.8 where 

a higher F-value indicates more significance. Therefore, it can be construed that for the peak power 

consumption (R1), fan flow rate (C) followed by insulation thickness (B) and concrete slab 
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thickness (A) has the highest significance. This result is in good agreement with the results showed 

in Table 4.7. 

Table 4.8: ANOVA results based on the data in Table 4.6 

Average peak power consumption (R1) 

Code Factor name 
Degree of 

freedom (DOF) 

Sum of 

squares (SS) 

Mean 

square (MS) 

F-ratio 

(F) 

A Concrete slab thickness 2 0.019 0.010 37.560 

B Insulation thickness 2 0.070 0.035 137.760 

C Fan flow rate 2 0.263 0.131 514.300 

D Upper limit for air temperature 2 0.011 0.005 21.510 

E Upper limit for floor surface temperature 2 0.008 0.004 15.530 

 Error 16 0.004 0.000  –  

 Total 26 0.376  –  – 

Thermal comfort potential (R2) 

A Concrete slab thickness 2 37.913 18.957 34.720 

B Insulation thickness 2 196.591 98.295 180.030 

C Fan flow rate 2 9.665 4.832 8.850 

D Upper limit for air temperature 2 12.930 6.465 11.840 

E Upper limit for floor surface temperature 2 7.724 3.862 7.070 

 Error 16 8.736 0.546 – 

 Total 26 273.559  – – 

 

Regression analysis is used to develop functions for the responses (i.e. dependent variables) 

in terms of independent variables. The functions can be used later for result prediction or 

conducting optimization. In order to be more comprehensive, interactions among the independent 

variables were considered and stepwise regression using backward elimination method (with alpha 

value of 0.1) was used to eliminate insignificant factors. 

For average peak power consumption (R1), the regression results are: 

3 4 3

1

1 1 5

6 6 2

11.2 1.6 10 4.73 10 1.75 10

5.42 10 5.01 10 3.14 10

8.41 10 8.36 10 2.17 10

R A B C

D E A B

A C B C D E

− − −

− − −

− − −

= − −  −  −  +

 +  −   +

  +   −  

 2 98.18%R =  (10) 

where four interactions (i.e. A×B, A×C, B×C, D×E) were found significant. 
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Regression results for thermal comfort potential (R2) are: 

1 1 1

2

4 4

4 2

21.34 2.13 10 4.76 10 1.2 10

1.51 1.98 7.46 10 5.04 10

3.55 10 1.37 10

R A B C

D E A B A C

B C B E

− − −

− −

− −

= +  +  +  −

+ +   −  

−   −  

 2 96.81%R =  (11) 

where four interactions (i.e. A×B, A×C, B×C, B×E) were significant. 

Finally, for capital cost (R3): 

1

3

3

184.66 56.17 88.43 3.41 10

1.75 10

R A B C

A C

−

−

= + + +  −

 
 2 100%R =  (12) 

where only one interaction (i.e. A×C) (concrete slab thickness× fan flow rate) was found 

significant which was also included for the other responses in Equations (10) and (11), indicating 

its importance. 

The regression model provided the correlation for the data scatter according to comparison 

of the simulation results and the regression predictions prediction by the Taguchi-ANOVA method 

in Figure 4.20. According to the figure, an acceptable agreement exists between predictions and 

simulation results. Quantitatively, the R2 values of the regression models were above 96%. For 

instance, as for average peak power consumption (R1) in Figure 4.20, the range of the peak power 

is from the 0.5-1 kW, the regression prediction can meet the accuracy in this range, which can 

indicate the regression model can replace the simulation results in mathematical to do the 

parametric studies. 
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Average peak power consumption (R1) Thermal comfort potential (R2) 

 

Capital cost (R3) 

Figure 4.20: Comparison of regression models with simulation results 

4.3.2.2. Optimal condition 

According to ANOVA results, optimal condition values for each response are identified 

and are shown in Table 4.9. Moreover, the table shows the overall optimal condition considering 

equal weight for all the responses. Note that Optimal 3 is not affected by factors D and E as they 

can be implemented at no cost. Therefore, their levels have been selected according to Optimal 1 

and 2. Since none of the optimal conditions have been considered in Table 3.6, verification is 

required to check whether the optimal conditions (at least) outperform the existing results. 

Table 4.9: Optimal condition for each response as well as overall (equal weight) 

Factor Value 

Code Name Optimal 1* Optimal 2* Optimal 3* Overall 

A Concrete slab thickness (mm) Level 3: 203.2 Level 2: 152.4 Level 1: 101.6 Level 2: 152.4 

B Insulation thickness (mm) Level 3: 152.4 Level 3: 152.4 Level 1: 50.8 Level 2: 101.6 

C Fan flow rate (CFM) Level 1: 400 Level 2: 600 Level 1: 400 Level 1: 400 

D Upper limit for air temperature (°C) Level 3: 24.5 Level 3: 24.5 Level 3: 24.5 Level 3: 24.5 

E Upper limit for floor surface temperature (°C) Level 3: 28 Level 3: 28 Level 3: 28 Level 3: 28 

Already investigated in Taguchi design (see 错误!未

找到引用源。) 
No No No No 

* Optimal 1, 2 and 3 correspond to Response 1, 2 and 3, respectively. 
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Simulations were conducted for each optimal condition in Table 4.9 to verify their 

optimized condition. Table 4.10 shows all the results, which confirm the optimal conditions when 

compared to the output values in Table 4.6. 

Table 4.10: Verification of optimal conditions for each output parameter 

Response Optimal 1 Optimal 2 Optimal 3 Overall 

Peak power consumption (kW) 0.52 0.65 0.69 0.55 

Thermal comfort potential (%) 100.00 100.00 94.14 99.82 

Capital cost ($) 20,597 22,241 10,452 17,769 

 

Compared to the results in Table 4.6, Optimal 1 (in Table 4.10) has the lowest value of 

average peak power consumption, indicating the highest peak load shifting. The reason can be 

attributed to the thick concrete (level 3: 203 mm) which can store more energy during off-peak 

hours. Consequently, lower energy would be needed to meet the demand during the peak hours. 

Besides, Optimal 2 guarantees the thermal comfort by achieving 100% potential. Note that Optimal 

2 possesses the mid value for concrete slab thickness (level 2: 152.4 mm). This indicates that if 

the thickness is too high (or low) it would store excess (or insufficient) amount of heat, resulting 

in discomfort. The thicker insulation (level 3: 152 mm) is another effective factor to prevent the 

heat loss from the concrete slab. In addition, capital cost would be higher for thicker concrete or 

insulation. Therefore, Optimal 3 provides results with lower capital cost, whereas the peak shifting 

potential and thermal comfort have undesired values (i.e. 0.69 kW and 94.14%, respectively). 

Consequently, an overall optimal condition is considered as the trade-off among these three 

optimal conditions. It has a low peak power consumption (almost the same as the Optimal 1) while 

guaranteeing thermal comfort (almost 100%) and at the same time having lower capital cost than 

Optimal 1 or 2. 
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5. CONCLUSION 

5.1.  SUMMARY AND CONCLUSION 

The main objective of this study is to develop an advanced controller to enhance the peak 

shifting potential of EHF system in residential buildings located in cold climate. The inference 

from the literature review is that various peak shifting control strategies with various TES have 

been proposed. According to the prediction for storing, control strategies are classified in non-

predictive and predictive control strategies. In terms of TES, three main types (thermochemical 

storage, latent storage and sensible storage) are analyzed integrated with control strategies. The 

strengths and weaknesses are presented in various peak shifting control strategies with various 

TES. Consequently, SLC system with sensible heat storage (i.e. basement concrete slab) is selected 

as the suitable control strategy to operate EHF system in residential buildings located in Quebec. 

To investigate the performance of the SLC system for peak shifting and heating cost saving 

potentials, a TRNSYS-MATLAB model was developed and validated using field measured data. 

The statistical criteria were in line with the requirements of ASHRAE and FEMP, indicating the 

validation of the model. Using the validated model, the performance of the SLC system was 

evaluated for two types of tariff schedules. For the CPP tariff of Quebec, two prediction methods 

with different temperature categories have been compared in terms of peak shifting potential, 

thermal comfort and heating cost saving with a reference case and also without SLC. It was found 

that during the critical days, although the SLC strategy (i.e. Case Q-SLC-5°C) required about 5.5% 

more heating than the other cases, the heating cost could still be reduced. The comparison results 

show that the peak shifting potential, thermal comfort and heating cost saving potential is better 

for Case Q-SLC-5°C. For this case (Case Q-SLC-5°C), heating cost saving of 23.6% was 

achieved compared to Case Q-Ref in the entire winter. For Ontario, the peak energy shaving of 

80-100% is achieved, while the heating cost saving potential is 5-30% (i.e. $0.16 per day on 

average). Analysis of the results in terms of temperature category indicated that the SLC system 

is more efficient under CPP tariff settings. These findings can help not only the house owners but 
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also the utility companies and decision makers in terms of exploiting the existing potential for the 

heat storage for peak shifting applications in residential sector. 

In order to extend the peak shifting, the advanced controller, i.e., SLC system integrated 

with HES was developed using TRNSYS-MATLAB model to achieve the peak shifting not only 

in the floor with TES but also in the floor without heat storage facility. Using a fan with different 

flow rates to ease the overshoot could solve the existing limitation of the SLC (i.e. uncompleted 

charging) and guarantee the thermal comfort instead of setting the upper limit. Meanwhile, 

different peak shifting control strategies (RBC and SLC) have been investigated and the respective 

results were compared. The inference from the result is that both RBC and SLC strategies could 

guarantee the thermal comfort and at the same time achieve peak shifting and cost saving for the 

whole building. In RBC, regarded as a simpler control strategy, better performance in thermal 

comfort was achieved. However, as for peak shifting potential and cost saving, the results of the 

RBC were worse than the SLC. Advanced controller (SLC with EHF + HES) can provide the 

solution for completed charging in SLC to extend the peak shifting potential for the whole building 

(second floor up to 88%) while the RBC can achieve the peak shifting around 45% for the second 

floor. Meanwhile, advanced controller can avoid to create the new peak in the second off-peak 

period (shifting 45.92%) and get higher cost saving 35.23%.  

In addition, parametric studies for the advanced controller has been investigated using the 

Taguchi method to provide recommendations on the appropriate design of EHF system and HES. 

Five parameters were considered (A) concrete slab thickness, (B) insulation thickness, (C) fan 

flow rate, (D) upper limit for indoor air temperature and (E) upper limit for floor surface 

temperature. Considering three levels for each parameter an L27 orthogonal array was selected 

according to Taguchi method. The outputs were (1) average peak power consumption, (2) thermal 

comfort potential and (3) capital cost. The results indicated that the insulation thickness was the 

most effective parameter for all individual outputs. Moreover, an overall optimum condition was 

investigated with equal weight for the outputs, which can provide the reference and guidance for 

the consumers and supplier. The optimal condition of the advanced controller was found to be a 
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concrete slab thickness of 152.4 mm, an insulation thickness of 101.6 mm, a fan flow rate of 400 

CFM, air indoor upper limit of 24.5 °C and floor surface upper limit of 28 °C.  

The overall contributions of this research are summarized here with: 

• Peak shifting potential and cost saving for the floor with EHF have been investigated 

with different electrical tariffs. 

• Advanced controller for the SLC together with HES is investigated to extend peak 

shifting and provide the solution for completed charging in SLC to improve the thermal 

comfort and peak shifting potential. 

• Taguchi-ANOVA method is used in parametric study on peak shifting, thermal comfort 

and capital cost for the SLC integrated with HES system. 

Based on (Canada., 2017), around 1.6 million typical detached houses exist in Quebec with 

similar characteristics to this investigation. Therefore, this technology is an effective method to 

decrease the stress of the electrical grid during the peak period once it is implemented. 

5.2. FUTURE WORK AND RECOMMENDATIONS 

Regarding the limitations of this present study, future work on the proposed SLC with HES 

to extend the peak shifting potential of EHF is recommended as followings: 

• Experimental studies are to be conducted to validate the TRNSYS-MATLAB model 

with HES in peak shifting performance; 

• In terms of the HES, different types of the fans (i.e. flowrate, power and efficiency) 

should be investigated in influence on peak shifting in simulations/experiments; 

• Experiments should be conducted in different residential buildings to test the peak 

shifting potential and thermal comfort in application. 
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