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Introduction

In his 1973 paper, Formes modulaires et fonctions zêta p-adiques [Ser73], J.P. Serre

showed that if a sequence of modular forms (thought of as power series expansions with

coefficients in Z(p)) converge (in the p-adic uniform topology) then so do their weights

in the group of continuous characters of Z×p . Such a p-adic limit of modular forms

was his definition for a p-adic modular form. The proof relied on certain congruence

relations for the coefficients of Eisenstein series due to Kummer and Clausen-von

Staudt. More precisely, for any prime p ≥ 5, Ep−1 ≡ 1 mod p. Hence for any m ≥ 1,

(Ep−1)p
m−1 ≡ 1 mod pm. Thus modulo pm a modular form f of weight k is equal to

the modular form f(Ep−1)p
m−1

whose weight is congruent to k mod (p− 1)pm−1. Serre

proved the converse, i.e. if two non-zero modular forms are equal mod pm, then their

weights are equal mod (p − 1)pm−1. The proof used the structure theorem of mod p

modular forms due to Swinnerton-Dyer [Swi73], and in particular the fact that the

graded algebra of mod p modular forms is integrally closed.

These results become more transparent upon studying the geometry of modular curves

classifying isomorphism classes of elliptic curves, with some level N structure prime to

p to avoid representability issues. In this optic meromorphic modular forms become

sections of a line bundle ω on the affine modular curve Y (N), and are said to be

holomorphic if they can be extended to the cusps. The line bundle in question is the

direct image of the sheaf of differential on the universal elliptic curve, which locally

on Y (N) is nothing but the sheaf of invariant differentials on the universal elliptic

curve. A global section of the k-th power of this sheaf is a modular form of weight

k. This is the approach taken by N.M. Katz in his paper p-adic properties of modular

schemes and modular forms [Kat73]. Chapter 1 of this thesis studies this approach

with a brief section on elliptic curve. We follow Katz-Mazur [KM85] for the section
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on elliptic curves, and Katz [Kat73] for the section on modular forms.

Since over Fp we have the Hasse invariant, which is a modular form of weight p−1 whose

q-expansions at the cusps are all equal to 1, in a p-adic theory of modular forms one

expects a lift of the Hasse invariant to be invertible. This is made precise by Katz by

focusing on “rigid analytic” open subsets of the modular curve obtained by removing

p-adic discs of various radii around the supersingular points. In particular one can

focus on the locus where the Hasse invariant is invertible, called the ordinary locus.

One can consider the formal scheme associated to the compatible family of Z/pmZ-

schemes corresponding to the open subscheme where any lift of the Hasse invariant is

invertible, and get the formal ordinary locus Xord. A p-adic ordinary modular form

according to Katz’s definition is a section of ωk over the formal ordinary locus. We

study this in detail in Chapter 2, closely following Katz [Kat73].

Over Z/pmZ the sheaf ω becomes trivial once the connected part of the pm-torsion

(or dually the étale quotient) of the universal elliptic curve is trivialized. That is

if we consider a cover of the ordinary locus, that classifies isomorphism classes of

elliptic curves with good ordinary reduction and a trivialization of the connected part

of the pm-torsion, then this cover is representable and the projection is étale of degree

ϕ(pm) = (p−1)pm−1. It is also a (Z/pmZ)×-torsor, with the group acting naturally on

the generators of E[pm]◦ (dually E[pm]ét). Thus a section of ωk over this cover descends

to a section over the ordinary locus iff it is invariant under the action of the Galois

group (Z/pmZ)×. This construction of the cover for varying m gives rise to the Katz

tower, at the infinite level of which, the formal group of the universal elliptic curve

has been trivialized. Ordinary p-adic modular forms are just the ring of functions on

this space, transforming via a continuous character of Z×p .

In a similar fashion one can construct the tower which simultaneously trivializes both

the connected part and the étale quotient of E[p∞] or equivalently extensions of E[p∞]

as µp∞ → E[p∞] → Qp/Zp. This is called the Igusa tower and it is an étale Galois

extension over the Katz tower. There is a natural section of the projection MIgusa →
MKatz, given by the duality of Ê[p∞] and E[p∞]ét. Over MIgusa one can consider covers

classifying splittings of E[p∞]. One can show that these covers are representable too,

but unfortunately no longer étale. In fact they are totally ramified, and the tower at

the infinite level, called the big Igusa tower is the perfection of the Igusa tower over

Fp.This is the object of study of Chapter 3. We primarily follow the article by Sean
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Howe [How18].

Nevertheless the Mbig Igusa tower has nice geometric properties. Since it classifies split-

tings of E[p∞], it also gives an isomorphism of the universal cover [SW12, Section 3.1]

of E[p∞] with µ̃p∞ × Qp. In fact while it does not classify “isomorphism” classes of

ordinary elliptic curves E with an isomorphism of Ẽ[p∞]
∼−→ µ̃p∞ × Qp, one can show

that it does classify “quasi-p-isogeny” classes of such objects.

The big Igusa tower has a group action coming from the automorphisms of µp∞ ×
Qp/Zp. The previous paragraph shows that this action can be extended to include

automorphisms of the universal cover. The natural projection Mbig Igusa → MIgusa

realizes Mbig Igusa as a fpqc Tpµp∞-torsor over MIgusa. One can consider the unipotent

subgroup µ̃p∞ of the extended group. The Xord-automorphisms of MIgusa (say M◦
p ) act

via conjugation on this unipotent group and the semi-direct product extends the semi-

direct product Tpµp∞ oM◦
p . The quotient of these two groups is exactly Ĝm, which

extends the usual action of M◦
p on MIgusa. This action no longer induces a morphism

over Xord. But one can show with some computation that the image of MKatz under the

canonical section is left invariant by this action. Hence the extended action descends

to an action over MKatz too.

In his paper Serre [Ser73] showed using p-adic Hecke operators that the Eisenstein series

E2, which is not a modular form in the classical sense, is in fact a p-adic modular form.

If one recalls the classical result that (θ− k/12E2)f is a modular form of weight k+ 2

for any f of weight k, then one sees immediately that θ is an operator of weight 2 on

the space of p-adic modular forms. Katz showed that θ is the dual derivation of the

square of the canonical differential coming from the trivialization of ω over MKatz. In

the work of Sean Howe [How18], he shows that the θ operator arises as the derivation

of the Ĝm-action on MKatz, by studying its effect on q-expansion. Chapter 4 is an

extended study of this action. We build the necessary theory of p-divisible groups

following Messing [Mes72]. For the rest we follow Sean Howe’s article [How18].
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Chapter 1

Moduli Scheme and q-Expansion

Principle

1.1 Elliptic Curves

Definition 1.1.1. An elliptic curve E over a scheme S is a proper, smooth morphism

p : E → S, whose geometric fibres are connected curves of genus 1, together with a

distinguished section e : S → E

E

S

p e

Theorem 1.1.1. (Abel) There exists a unique structure of commutative group scheme

on E/S such that for any S-scheme T , and any three points P , Q, R in E(T ) = ET (T ),

we have

P +Q = R

iff there exists an invertible sheaf L0 on T and an isomorphism of invertible sheaves

on ET

I−1(P )⊗ I−1(Q)⊗ I(0) ' I−1(R)⊗ p∗T (L0).

Proof. We recall that over an algebraically closed field k the group structure is given

by constructing an isomorphism between the set of closed points of the curve and
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Pic0(Ek/k), given by

P 7→ P − [e]

where [e] is the zero section. The general case follows by reducing it to the case of

algebraically closed fields. For a complete proof, [cf. KM85, Theorem 2.1.2].

Let us prove a general fact about the sheaf of relative differentials of a separated group

scheme p : G→ S.

Lemma 1.1.1. Suppose p : G→ S is a separated group scheme. Let e : S → G be the

zero section. Suppose I is the sheaf of ideal of the zero section (thought of as a closed

subscheme of G). Then there is a canonical isomorphism

p∗(I/I2) ' Ω1
G/S

Proof. Consider the two group scheme homomorphisms

G
∆−→ G×S G

G
(ep,id)−−−→ G×S G

Both are closed immersions since G is separated over S. If J is the ideal sheaf of ∆(G)

then Ω1
G/S = ∆∗(J /J 2). Since ∆ is a closed immersion we will henceforth drop the

pull back and simply write Ω1
G/S = J /J 2. We have a commutative fibre diagram

G S ×S G G×S G G

S G S

(p,id) (e,id)

p p′ p

e p

Hence the ideal sheaf of (ep, id)(G) is (p′)∗(I). Let ϕ : G × G → G × G be the map

which is described on points as

G×G ϕ−→ G×G
(g, h) 7→ (gh, h)

Then ϕ is an isomorphism of group schemes and we have ∆ = ϕ◦(ep, id). In particular
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we have the following commutative diagram

0 J OG×G OG 0

0 (p′)∗I OG×G OG 0

∆#

ϕ# =

(ep,id)#

Since both the vertical arrows are isomorphisms, we get an isomorphism J ∼−→ (p′)∗I.

This induces an isomorphism J /J 2 ' (p′)∗I/(p′)∗I2 ' (p′)∗(I/I2). Since I/I2 is

supported on the zero section, (p′)∗(I/I2) ' p∗(I/I2) which proves the lemma.

Fact: Serre-Grothendieck duality defines a canonical trace isomorphism R1f∗Ω
1
E/S

∼−→
OS of formation compatible with arbitrary base change.

Definition 1.1.2. Given an elliptic curve p : E → S, define

ωE/S := p∗Ω
1
E/S

Lemma 1.1.2. ωE/S is an invertible sheaf on S, whose formation commutes with

arbitrary change of base.

Proof. Note that Ω1
E/S is S-flat as it is an invertible OE-module and E is S-flat. So

we can apply the cohomology and base change formalism developed in the appendix.

Consider the base change maps induced on higher direct image sheaves by the inclusion

maps of points s ∈ S, Speck(s)→ S

ϕis : Rip∗Ω
1
E/S ⊗OS,s

k(s)→ H i(Es,Ω
1
E/Ss

)

By Remark A.0.1, we know that ϕ1
s : R1p∗Ω

1
E/S⊗OS,s

k(s)→ H1(Es,Ω
1
E/Ss

) is surjective

for all s ∈ S. In fact the canonical trace isomorphism coming from Serre-Grothendieck

duality as stated above, shows that R1p∗Ω
1
E/S is free of rank 1. Thus ϕ0

s is surjective

for all s ∈ S by Theorem A.0.1. Since ϕ−1
s is trivially surjective, this implies that ωE/S

is locally free, necessarily of rank 1 as the geometric fibres of p are connected genus

1 curves. Also, Proposition A.0.1 implies that the formation of ωE/S commutes with

arbitrary change of base.
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The natural adjunction map Ω1
E/S → e∗e

∗Ω1
E/S induces a map of invertible OS-modules

ωE/S = p∗Ω
1
E/S → p∗e∗e

∗Ω1
E/S = e∗Ω1

E/S

Lemma 1.1.3. Over any geometric fibre this map is precisely the map that assigns to

a non-vanishing 1-form its corresponding invariant differential.

Proof. Indeed, over an algebraically closed field k̄, an elliptic curve E/k̄ has the prop-

erty that the sheaf I/I2 of Lemma 1.1.1 is a one-dimensional k̄-space, by virtue of

being regular. Then Ω1
E/k̄
' OE. In particular, the global sections are just the constant

multiples of any chosen basis of the invariant differentials.

Thus ωE/S can be naturally identified Zariski locally with the invariant differentials of

E. Also, the invertible sheaf Ω1
E/S is fibrewise of degree 0.

1.1.1 The Structure of the Multiplication by N Map

We follow [KM85, (2.2)] to sketch the fact that if E/S is an elliptic curve, then Zariski

locally on S, E is given by a Weierstrass cubic in P2
S.

We have seen that Zariski locally on S, ωE/S is free. So supposing S = SpecA, over

which ωE/S admits a basis ω, we see that the formal completion Ê of E along its 0

section is of the form

Ê ' Spf (A[[T ]])

where T is a formal parameter at 0 which is adapted to ω, i.e.

ω = (1 + higher terms) dT

Let L(e) = I−1 where I is the ideal sheaf of the zero section. We see that f∗(L(ne))

is locally free of rank n on S, since by Riemann-Roch and Serre duality on the fibral

cohomology, H1(Es,L(ne)) vanishes for all n > 0. In fact since by our assumption

we have a formal parameter T at 0, these sheaves are free with (non-unique) basis as

follows

f∗(L(2e)) is free on 1, x
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where x ∼ 1/T 2(1 + higher terms), and

f∗(L(3e)) is free on 1, x, y

where y ∼ 1/T 3(1 + higher terms). The powers of x and y give basis for f∗(L(ne)) for

n ≥ 4. We see that 1, x, y, x2, xy is a basis for n = 5 and y2− x3 ∈ f∗(L(5e)) since the

poles of order 6 cancel each other. Thus we get a relation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Such an equation is called a generalized Weierstrass equation.

The affine ring of the complement of the zero section is given by Deligne’s formula

H0(E \ 0,OE) ' lim−→
n

H0(E,L(ne))

and the right side is just A[x, y]/(the Weierstrass equation).

We quote a result about regularity in ring extensions:

Theorem 1.1.2. Suppose A and B are Noetherian local rings and A → B is a local

homomorphism via which B is a finite A-module. Assume A is regular. Then B is

Cohen-Macaulay iff B is free as an A-module.

Proof. [See Ser12, Theorem 13, pg. 83].

Lemma 1.1.4. Suppose E/k is an elliptic curve over an algebraically closed field k.

If N is invertible in k, the map “multiplication by N”

[N ] : E → E

is finite étale, and the kernel is isomorphic to Z/NZ× Z/NZ.

Proof. [N ] induces a map by pull-back on the cotangent space at 0 given by

[N ]∗ : m/m2 → m/m2

x 7→ Nx

5



Since N is invertible in k this map is an isomorphism. Hence, in fact the map on the

stalks is an isomorphism as the local rings are DVR.

E[N ] Speck

E E
[N ]

Since any map between complete, non-singular curves over an algebraically closed field

is either constant or finite, this shows that [N ] is a non-constant finite morphism. Thus

E[N ] is a finite group scheme over Speck. We need to show that it is étale. If A =

Γ(E[N ],OE[N ]), and mA the augmentation ideal of A (i.e. the ideal sheaf of 0), then

AmA
= OE,0/[N ](m) = k. Thus mA/m

2
A = 0. This implies ΩA/k = A⊗k (mA/m

2
A) = 0.

Thus A is separable and E[N ] is étale.

The result about the kernel follows from basic group theory as E[N ] is a finite etale

group scheme over an algebraically closed field, and hence constant.

Theorem 1.1.3. Let S be an arbitrary scheme, E/S an elliptic curve, N ≥ 1 an

integer. Then the S-homomorphism “multiplication by N”

[N ] : E → E

is finite locally free of rank N2. If N is invertible on S, its kernel E[N ] is finite étale

over S, locally for the étale topology on S isomorphic to Z/NZ× Z/NZ.

Proof. We have seen in the beginning of the subsection that Zariski locally on S, E is

given by a Weierstrass cubic in P2
S with origin at (0 : 1 : 0). Conversely any smooth

Weierstrass cubic is an elliptic curve with origin (0 : 1 : 0). Hence by reduction to the

universal case, we may assume that S is the open set in Spec(Z[a1, a2, a3, a4, a6]) over

which the cubic

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is smooth. Note that S is regular in this case. Hence E is also regular, being smooth

over S.

We first show that [N ] : E → E is finite. This would imply by Theorem 1.1.2 that it

6



is also flat. Being proper over S, it suffices to show that the geometric fibres are finite.

If Speck is a geometric point such that char(k) does not divide N , [N ] is finite étale

over k by the above lemma. So [N ] is finite étale over S[1/N ], and over an étale cover

of S[1/N ], E[N ] is isomorphic to (Z/NZ)2.

For the general case, in order to show that [N ] is finite flat, we need to show that it is

not the zero map over geometric fibres. Take an integer M , prime to N and char(k)

where Speck is a geometric point. Then E(k) has M2 points of order M . Because

(N,M) = 1, [N ] induces an automorphism of these points. Hence [N ] is not constant.

Therefore [N ] is always finite flat. To prove that E[N ] is locally free of rank N2 it

suffices to pass to a geometric fibre (in fact any geometric fibre as S is connected and

the rank is locally constant). There it follows from the classical theory [cf. Sil09, III,

Theorem 6.2].

We saw in the above thoerem that E[N ] is étale whenever N is invertible on S. Thus

it makes sense to ask if E[N ] is in fact the constant group scheme (Z/NZ)2
S.

Definition 1.1.3. Given an elliptic curve E/S such that N is invertible on S, a level

N structure is an isomorphism

αN : (Z/NZ)2
S → E[N ]

Definition 1.1.4. Given two elliptic curves E,E ′ over S, a S-homomorphism f :

E → E ′ is called an isogeny if it is finite locally free. In this case the kernel of the

homomorphism is finite, locally free of locally constant rank. If the rank is a constant

d, we say f is of degree d.

Definition 1.1.5. Given two elliptic curves E and E ′ over a ring R, we say f : E → E ′

is a p-isogeny if it is an isogeny of elliptic curves of degree pn for some n. A global

section f of HomR(E,E ′) ⊗Z Q is called a quasi-p-isogeny if pmf is a p-isogeny for

some m.

Theorem 1.1.4. (Rigidity) Let S be an arbitrary scheme, E1 and E2 two elliptic

curves over S, and f : E1 → E2 an S-homomorphism. Then Zariski locally on S,

either f = 0 or f is an isogeny, i.e., f is finite locally free.

Proof. [See KM85, Theorem 2.4.2].

7



Theorem 1.1.5. Let E/S be an elliptic curve. The structure of an S-group scheme on

E/S as given by Theorem 1.1.1 is the unique structure of S-group scheme on E/S for

which [e] = 0 is the origin. If E and E ′ are two elliptic curves over S, any S-morphism

f : E → E ′ with f(0) = 0 is a homomorphism.

Proof. [See KM85, Theorem 2.5.1].

Theorem 1.1.6. Let f : E → E ′ be an isogeny of elliptic curves over a connected

base S. Then there exist a unique dual isogeny f t : E ′ → E such that f tf = deg(f).

Proof. We recall the construction of the dual isogeny for elliptic curves E,E ′ over a

field k. For the general case, [cf. KM85, Theorem 2.5.1, Theorem 2.6.1]. Under the

identification

E Pic0(E/k)

E ′ Pic0(E ′/k)

∼

f f∗

∼

the dual map is given by the pull-back

f ∗ : Pic0(E ′/k)→ Pic0(E/k)

If deg(f) = d, then for any point Q ∈ E ′, f ∗([Q]) = (degi f)([P1] + . . . [Ps]) where

f−1(Q) = {P1, . . . , Ps} and degi f is the inseparable degree of f , which is the same

as the ramification index for all the Pi. Here s is the separable degree degs f of f .

Similarly, f ∗([0]) = (degi f)([T1] + · · ·+ [Ts]) where f−1(0) = {T1, . . . , Ts}. Hence

f ∗([Q]− [0]) = (degi f)
s∑
i=1

([Pi]− [Ti])

By choosing one particular P ∈ f−1(Q), we see that all the Pi are the translates of

P by the Ti’s. That is, [Pi] = [P ] + [Tσ(i)]− [0] for some permutation σ of {1, . . . , s}.
Hence the equality becomes

f ∗([Q]− [0]) = (degi f)(degs f)([P ]− [0]) = (deg f)([P ]− [0])

Applying this to Q = f(P ) we get the desired map. The uniqueness of f t follows from

8



the surjectivity of f in the fppf topology.

Theorem 1.1.7. For a pair of dual isogenies f : E → E ′ and f t : E ′ → E of degree

N between elliptic curves over a base S, there is a canonical bilinear pairing of finite

locally free commutative S-group schemes called the Weil pairing.

ef : ker f × ker f t → µN

Proof. [See KM85, (2.8)].

1.1.2 Lattices and Elliptic Curves

Given a lattice L ⊂ C, we can form the quotient C/L, which is a one-dimensional com-

plex torus with an abelian group structure inherited from that of C. The Weierstrass

℘ function gives an embedding of C/L into P2 by the inhomogeneous equation

y2 = 4x3 − g2x− g3

such that the translation invariant 1-form ω = dz is the differential dx/y. The em-

bedding is given as

0 6= z ∈ C/L 7→ (℘(z;L), ℘′(z;L))

where

℘(z;L) =
1

z2
+

∑
l∈L−{0}

( 1

(z − l)2
− 1

l2

)
g2 = 60

∑
l∈L−{0}

1/l4, g3 = 140
∑

l∈L−{0}

1/l6

The inhomogeneous equation defines a non-singular, cubic curve which thus is an

elliptic curve. Conversely, given an elliptic curve E/C, together with a non-vanishing

everywhere holomorphic differential ω, it arises in the above way from the lattice of

periods of ω,

L(E,ω) =
{∫

γ

ω | γ ∈ H1(E;Z)
}
⊂ C.

Under this correspondence the effect of replacing (E,ω) by (E, λω), λ ∈ C×, is to

9



replace L by λL.

1.2 Modular Forms

1.2.1 Classical Complex Modular Forms

Definition 1.2.1. A complex modular form of weight k and level 1 is a holomorphic

function f(τ) defined on the upper half plane which satifies the following transforma-

tion equation

f(
aτ + b

cτ + d
) = f(τ) · (cτ + d)k ∀ ( a bc d ) ∈ SL2(Z)

Associated to such a f one can define a function of lattices. Given a lattice L =

Zω1 + Zω2 with Im(ω1/ω2) > 0 one can define F (L) = ω−k2 f(ω1/ω2). Then F is the

unique function such that f(τ) = F (Zτ +Z), and which is homogeneous of degree −k
in L, i.e. F (λL) = λ−kF (L) for a homothety λ ∈ C×.

By Weierstrass, we can thus associate to f a “holomorphic” function F of pairs (E,ω)

consisting of an elliptic curve over C together with a nowhere vanishing differential

which is homogeneous of degree −k in the second variable. F(E,ω) := F (L(E,ω)).

This leads us to the modern, algebraic definition of modular forms. But before we get

to it, we will recall the definition of the Tate curve.

1.2.2 Holomorphy at ∞ and the Tate Curve

Recall that a complex modular form f(τ) is said to be meromorphic (resp. holomor-

phic) at ∞, if the periodic function f(τ) = f(τ + 1), when viewed as a function of

q = exp(2πiτ), holomorphic for 0 < |q| < 1, in fact extends to a meromorphic (resp.

holomorphic) function of q in |q| < 1.

In terms of F we are asking about the behaviour of

F(C/2πiZ + 2πiτZ, 2πidz) = F(C×/qZ, dt/t)

10



(where t = exp(2πiz) is the parameter on C×, and qZ denotes the subgroup of C×

generated by q), as q tends to 0. By standard calculations, the curve C/L, L =

2πiZ + 2πiτZ with differential 2πidz is given as the plane cubic

Y 2 = 4X3 − E4

12
X +

E6

216
with differential dX/Y (1.1)

The coefficients are the Eisenstein series

12 · (2πi)4g2(τ) = E4 = 1 + 240
∑

σ3(n)qn

216 · (2πi)6g3(τ) = E6 = 1− 504
∑

σ5(n)qn

Thus to ask that the modular form f be meromorphic (resp. holomorphic) at ∞ is to

ask that F
(
Y 2 = 4X3−E4/12X+E6/216, dX/Y

)
lie in the ring C((q)) of finite tailed

Laurent series (resp. that it lie in C[[q]], the ring of formal power series in q).

Equation (1.1) in fact defines an elliptic curve over the ring Z[1/6]((q)). In fact, if we

let

X = x+ 1/12, Y = x+ 2y

then we can rewrite the equation in the form

y2 + xy = x3 +B(q)x+ C(q) (1.2)

with coefficients

B(q) = −5
(E4 − 1

240

)
= −5

∑
n≥1

σ3(n)qn

C(q) =
−5
(
E4−1
240

)
− 7
(
E6−1
−504

)
12

=
∑
n≥1

(−5σ3(n)− 7σ5(n)

12

)
qn

Equation (1.2) defines an elliptic curve over Z((q)) whose restriction to Z[1/6]((q))

is the above curve, and the nowhere vanishing differential dx/2y + x restricts to give

dX/Y over Z[1/6]((q)).

By definition the Tate curve Tate(q) with its canonical differential ωcan is the elliptic

curve over Z((q)) defined by equation (1.2), with differential ωcan = dx/2y+x. For each

11



integer n ≥ 1, the Tate curve Tate(qn) with its canonical differential ωcan is deduced

from (Tate(q), ωcan) by the extension of scalars Z((q))→ Z((q)) sending q 7→ qn.

Let ζn be a primitive nth root of unity. The points of order n on C×/qnZ are the

images of the n2 points

(ζ in)qj, 0 ≤ i, j ≤ n− 1

Using the explicit expressions for x and y as functions of t = exp(2πiz)

x(t) =
∑
k∈Z

qnkt

(1− qnkt)2
− 2

∑
k≥1

qnk

1− qnk

y(t) =
∑
k∈Z

(qnk)2

(1− qnkt)3
+
∑
k≥1

qnk

1− qnk
,

one sees that each of the non-zero points of order n has x and y coordinates in Z[[q]]⊗Z

Z[ζn, 1/n]. Hence all level n structures on Tate(qn) over Z((q)) are defined over Z[[q]]⊗Z

Z[ζn, 1/n] (rather than just over Z[ζn, 1/n]((q))).

1.2.3 Modular Forms of Level 1

Definition 1.2.2. A modular form of weight k ∈ Z and level 1 is a rule f which

assigns to any elliptic curve E/S a section f(E/S) of (ωE/S)⊗k over S such that the

following two conditions are satisfied:

1. f(E/S) depends only on the S-isomorphism class of the elliptic curve E/S.

2. The formation of f(E/S) commutes with arbitrary change of base g : S ′ → S;

i.e. f(ES′/S
′) = g∗f(E/S).

We denote by M(Z; 1, k) the Z-module of such forms.

Equivalently, a modular form of weight k and level 1 is a rule f which assigns to every

pair (E/R, ω) for a ring R together with a basis ω of ωE/R, an element f(E/R, ω) ∈ R,

such that the following three conditions are satisfied:

1. f(E/R, ω) depends only on the R-isomorphism class of the pair (E/R, ω).

12



2. f is homogeneous of degree −k in the“second variable”; i.e. for any λ ∈ R×,

f(E, λω) = λ−kf(E,ω)

.

3. The formation of f(E/R, ω) commutes with arbitrary extension of scalars g :

R→ R′; i.e. f(ER′/R
′, ωR′) = g(f(E/R, ω)).

The correspondence between the two notions is given by the formula

f(E/SpecR) = f(E/R, ω) · ω⊗k

(valid whenever ωE/R is a free R-module, with basis ω).

If in the preceding definitions we restricted ourselves to the category of elliptic curves

over a fixed base scheme SpecR0, we obtain the notion of a modular form of weight k

and level one defined over R0, the R0 module of which is denoted by M(R0; 1, k).

A modular form of weight k and level 1 defined over R0 can be evaluated on the pair

(Tate(q), ωcan)R0 consisting of the Tate curve and its canonical differential, viewed as

an elliptic curve with differential over Z((q))⊗Z R0.

Definition 1.2.3. The q-expansion of a modular form f is defined to be the finite

tailed Laurent series

f((Tate(q), ωcan)R0) ∈ Z((q))⊗Z R0

Definition 1.2.4. A modular form f is called holomorphic at ∞ if its q-expansion

lies in the subring Z[[q]]⊗Z R0. The module of all such is denoted by S(R0; 1, k).

Remark 1.2.1. The q-expansion of a modular form f lies in Z((q)) ⊗Z R0, i.e., it is a

finite R0-linear combination of elements of Z((q)). This implies for instance that if R0

is the field of fractions of a discrete valuation ring, then the q-expansion coefficients of

any modular form of weight k and level 1 over R0 have bounded denominators.

13



1.2.4 Modular Forms of Level N

Definition 1.2.5. Assume S is a scheme where N is invertible. A modular form of

weight k and level N is a rule which assigns to each pair (E/S, αN) consisting of an

elliptic curve together with a level N structure, a section f(E/S, αN) of (ωE/S)⊗k over

S, in a way which only depends on the S-isomorphism class of (E/S, αN), and which

commutes with arbitrary change of base g : S ′ → S.

Exactly as in the case of modular forms of level 1, one can define the notion of a mod-

ular form of weight k and level N defined over a ring R0, by restricting to the category

of elliptic curves over R0. The R0-module of all such is denoted by M(R0;N, k).

A modular form of weight k and levelN defined over R0 which contains 1/N and aN -th

root of unity ζN can be evaluated on the triples ((Tate(qN), ωcan, αN)R0) consisting of

the Tate curve Tate(qN) with its canonical differential, viewed as defined over Z((q))⊗Z

R0, together with any of its level N structures.

Definition 1.2.6. The q-expansions of the modular form f are the finitely many

finite-tailed Laurent series

f((Tate(qN), ωcan, αN)R0) ∈ Z((q))⊗Z R0

obtained by varying over all the level N structures.

Definition 1.2.7. A modular form defined over any ring R0 is said to be holomorphic

at∞ if its inverse image on R0[1/N, ζN ] has all its q-expansions in Z[[q]]⊗ZR0[1/N, ζN ].

The module of all such is denoted by S(R0;N, k).

A modular form (resp. holomorphic at ∞) of weight k and level N which does not

depend on the “last variable” αN is a modular form (resp. holomorphic at ∞) of

weight k and level 1 defined over R0[1/N ].

1.2.5 The Modular Schemes Y (N) and X(N)

In this section we are going to assume the existence of the modular scheme Y (N) which

represents the moduli problem that classifies for each integer N ≥ 3 the isomorphism
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classes of elliptic curves with level N structure over Z[1/N ]. We are going to state

some facts and properties of this scheme following Katz, [Kat73, Section 1.4] whose

proofs are beyond the scope of this work.

The modular scheme Y (N) is an affine smooth curve over Z[1/N ], finite and flat of

degree = #(GL2(Z/NZ)/±1) over the affine j-line Spec(Z[1/N, j]), and étale over the

open set of the affine j-line where j and j−1728 are invertible. We will denote the uni-

versal elliptic curve over Y (N) as E/Y (N). The normalization of the projective j-line

P1
Z[1/N ] in Y (N) is a proper and smooth curve X(N) over Z[1/N ], whose global sections

are Z[1/N, ζN ]. The curve Y (N)⊗Z[1/N ] Z[1/N, ζN ] (resp X(N)⊗Z[1/N ] Z[1/N, ζN ]) is

a disjoint union of ϕ(N) affine (resp. proper) smooth geometrically connected curves

over Z[1/N, ζN ], the partitioning into components given by the ϕ(N) primitive roots

of 1 occurring as values of the Weil pairing on the basis of E[N ] specified by the level

N structure. The scheme X(N) − Y (N) with its reduced induced structure is finite

and étale over Z[1/N ], and over Z[1/N, ζN ], it is a disjoint union of sections, called

the cusps of X(N). The completion of X(N) along any of the cusps is isomorphic

to Z[1/N, ζN ][[q]]. The cusps correspond naturally to the set of isomorphism classes

of level N structures on the Tate curve Tate(qN) viewed over Z((q)) ⊗Z Z[1/N, ζN ].

The completion of the projective j-line P1
Z[1/N,ζN ] along ∞ itself is isomorphic to

Z[1/N, ζN ][[q]], via the formula j(Tate(q)) = 1/q + 744 + . . . , and the endomorphism

of Z[1/N, ζN ][[q]] arising from the projection X(N)→ P1 is given by q 7→ qN .

1.2.6 The Invertible Sheaf ω on X(N), and Holomorphic Mod-

ular Forms

There is a Kodaira-Spencer isomorphism(
ωE/Y (N)

)⊗2 ∼−→ Ω1
Y (N)/Z[1/N ]

There is a unique invertible sheaf ω on X(N) whose restriction to Y (N) is ωE/Y (N)

and whose sections over the completion Z[1/N, ζN ][[q]] at each cusp are precisely the

Z[1/N, ζN ][[q]] multiples of the canonical differential of the Tate curve. The Kodaira-
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Spencer isomorphism extends to an isomorphism

(ω)⊗2 ∼−→ Ω1
X(N)/Z[1/N ](log(cusps))

Over Z[1/N, ζN ][[q]], the square of the canonical differential ωcan on Tate(qN) corre-

sponds to N · dq/q.

Putting together our definition of a modular form (resp. holomorphic) from before

and the existence of a universal elliptic curve over the modular scheme Y (N), we get

Definition 1.2.8. A modular form of level N and weight k defined over any ring R0

is a global section of the line bundle (ωE/Y (N))
⊗k on Y (N)⊗Z[1/N ] R0.

A modular form is called holomorphic at ∞ if such a section can be extended to a

section of (ω)⊗k on X(N)⊗Z[1/N ] R0.

1.2.7 The q-Expansion Principle

For any Z[1/N ]-module K, we define a modular form of level N and weight k, holo-

morphic at∞, with coefficients in K, to be an element of H0(X(N), (ω)⊗k⊗Z[1/N ]K).

As each cusp, such a modular form has a q-expansion in K⊗Z[1/N ]Z[1/N, ζN ]⊗ZZ[[q]].

The q-expansion principle tells us that a holomorphic modular form can be determined

by its q-expansions at the cusps.

Theorem 1.2.1. Let N ≥ 3, K a Z[1/N ]-module, and f a modular form of level N

and weight k, with coefficients in K. Suppose that on each of the ϕ(N) connected

components of X(N) ⊗Z[1/N ] Z[1/N, ζN ] there exist at least one cusp at which the q-

expansion vanishes identically. Then f = 0.

Proof. By considering the ring of dual numbers on K, D(K) = Z[1/N ] ⊕K, (where

multiplication is given by (a, k)(a′, k′) = (aa′, ak′ + a′k)) we are reduced to the case

where K is a ring over Z[1/N ]. Since the formation of cohomology of quasi-coherent

sheaves commutes with filtered colimits, we are reduced to the case where K is a

finitely generated ring over Z[1/N ]. Then by localising we assume K is a Noetherian,

local ring. By faithful flatness of completion of a Noetherian local ring, we pass to the
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completion. Using the theorem on formal functions we are reduced to the case of an

Artin local ring K. Suppose x ∈ X(N) ⊗Z[1/N ] K[ζN ] be a cusp such that f vanishes

in the completion along x. (Note that it makes sense to talk of a cusp as a point as

SpecK[ζN ] is singleton). Consider an affine neighbourhood of x, say SpecA. Assume

x is cut out by an ideal I. Then denoting the I-adic completion of A by Â, we see

that f lies in the kernel of the natural map A→ Â. By Krull’s intersection theorem,

this implies that there exists some g ∈ 1 + I such that gf = 0. Thus f vanishes

identically on D(g). Hence around each cusp there is an open neighbourhood where f

vanishes identically, which in turn implies that f vanishes on an open dense subset of

X(N)⊗K. Thus Supp(f) is a closed subset Z of X(N)⊗K which does not contain

any of the generic points of the irreducible components. Suppose z is a generic point

of Z. Then f is supported in the maximal ideal mz of Oz,X(N)⊗K . Since ω is invertible,

we can identify f (non-canonically) with an element of Oz,X(N)⊗K such that for any

h ∈ mz, h
nf = 0 for some n > 0. Thus every element of mz is a zero divisor and

hence z has depth 0. Since X(N) ⊗ K is smooth over K which is Artin local, it is

Cohen-Macaulay. Hence the only points of depth 0 are the generic points. This is a

contradiction.

Corollary 1.2.1. (The q-expansion principle) Let N ≥ 3, K a Z[1/N ]-module, L ⊂ K

a Z[1/N ] submodule. Let f be a modular form of weight k, level N , holomorphic at

∞, with coefficients in K. Suppose that on each of the ϕ(N) connected components

of X(N)⊗Z[1/N ] Z[1/N, ζN ] there is at least one cusp at which all the q-coefficients of

f lie in L⊗Z[1/N ] Z[1/N, ζN ]. Then f is a modular form with coefficients in L.

Proof. The exact sequence of Z[1/N ]-modules

0→ L→ K → K/L→ 0

induces on cohomology an exact sequence

0→ H0(X(N), L⊗ ω⊗k)→ H0(X(N), K ⊗ ω⊗k)→ H0(X(N), (K/L)⊗ ω⊗k)

The theorem then applied to the image of f in H0(X(N), (K/L) ⊗ ω⊗k) proves the

corollary.
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1.2.8 Base-change of Modular Forms of Level N ≥ 3

Theorem 1.2.2. Let N ≥ 3, and suppose either that k ≥ 2 or that k = 1 and N ≤ 11.

Then for any Z[1/N ]-module K, the canonical base-change map

K ⊗H0(X(N), ω⊗k)→ H0(X(N), K ⊗ ω⊗k)

is an isomorphism.

Proof. As stated in Corollary A.0.1, it is enough to show that H1(X(N), ωk) = 0.

The isomorphism (ω)⊗2 ' Ω1
X(N)/Z[1/N ](log(cusps)) and the fact that each connected

component of X(N)⊗Z[1/N ]Z[1/N, ζN ] contains at least one cusp shows that the degree

of ω⊗k is strictly greater than 2g − 2 where g is the (common) genus of any of these

connected components. Then Riemann-Roch shows that H1(X(N), ω⊗k) = 0. The

other cases follow by explicit calculation.

1.2.9 Base-change of Modular Forms of Level 1 and 2

Theorem 1.2.3. Let R0 be any ring in which 2 is invertible. For every integer k ≥ 1,

the canonical map S(Z; 2, k)⊗Z R0 → S(R0; 2, k) is an isomorphism.

Proof. Modular forms of level 2 and weight k, holomorphic at∞ over any ring R0 3 1/2

are precisely those modular forms of level 4 and weight k which are invariant under the

action of the subgroup of GL2(Z/4Z) consisting of those matrices which are ≡ I mod 2.

As this group has order 16, a power of 2, we apply the projector 1
16

∑
g≡I (2) g to the

base-change isomorphism of Theorem 1.2.2 to get the result.

Remark 1.2.2. There are no non-zero modular forms of level 2 and odd weight k.

The automorphism −I transforms (E,ω, α2) to (E,−ω,−α2). But α2 = −α2. Hence

f(E,ω, α2) = f(E,−ω,−α2) = (−1)kf(E,ω, α2).

Theorem 1.2.4. Let R0 be any ring in which 6 is invertible. For every integer k ≥ 1,

the canonical map

S(Z; 1; k)⊗Z R0 → S(R0; 1, k)

is an isomorphism.
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Proof. A modular form of level 1 can be viewed as a modular form of level 4 (resp.

level 3) invariant under GL2(Z/4Z) (resp. GL2(Z/3Z), defined over R0. GL2(Z/4Z)

has order 96 and GL(Z/3Z) has order 48. Their only prime factors are 2 and 3. Hence

using the projection technique as above, we see that

S(Z[1/6]; 1, k)⊗Z[1/6] R0 → S(R0; 1, k)

is an isomorphism. Now we only need to pass from Z[1/6] to Z. But for any ring R,

we have the fibre diagram

S(R; 1, k) H0(X(3)⊗R,ω⊗k)

H0(X(4)⊗R,ω⊗k) H0(X(12)⊗R,ω⊗k)

As the formation of the diagram above commutes with flat extension of scalars, the

extension Z→ Z[1/6] gives the desired result.

1.2.10 Modular Schemes of Level 1 and 2

We state some facts about moduli schemes of level 1 and 2. Interested readers can

look up [Kat73, Section 1.9] for more details. The moduli problems for level 1 and 2

are not representable. But, for each N ≥ 3, one can form the quotients

Y (N)/GL2(Z/NZ) = the affine j − line A1
Z[1/N ]

X(N)/GL2(Z/NZ) = the projective j − line P1
Z[1/N ]

which fit together for variable N to give the affine and projective j-lines over Z. We

define Y (1) = A1
Z and X(1) = P1

Z.

Similarly for N = 2 we define

Y (2) = Y (4)/the subgroup of GL2(Z/4Z) consisting of matrices ≡ I mod 2

X(2) = X(4)/the subgroup of GL2(Z/4Z) consisting of matrices ≡ I mod 2
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The scheme Y (2) is SpecZ[λ][1/2λ(1− λ)], and X(N) is the projective λ-line P1
Z[1/2].

1.2.11 Modular Forms of Level 1 and 2: q-Expansion Princi-

ple

Definition 1.2.9. For N = 1, 2, and any Z[1/N ]-module K, define a modular form

of level N and weight k, holomorphic at∞, with coefficients in K to be (i) for N = 1,

an element of the fibre product of the diagram

S(K; 1, k) H0(X(3), ω⊗k ⊗Z[1/3] (K ⊗Z Z[1/3]))

H0(X(4), ω⊗k ⊗Z[1/4] (K ⊗Z Z[1/4])) H0(X(12), ω⊗k ⊗Z[1/12] (K ⊗Z Z[1/12]))

(ii) for N = 2, an element of H0(X(4), ω⊗k⊗Z[1/4]K) invariant under the action of the

subgroup of GL2(Z/4Z) consisting of matrices ≡ I mod 2.

The module of all such is denoted S(K;N, k).

Corollary 1.2.2. (q-expansion principle) Let N = 1 or 2, K a Z[1/N ]-module, and

L ⊂ K a Z[1/N ]-module. Let f be a modular form of weight k, level N , holomorphic

at ∞, with coefficients in K. Suppose that at one of the cusps (for N = 1 there is

exactly one, j = ∞, while for N = 2 there are 3, λ = 0, 1,∞), the q-coefficients of f

all lie in L. Then f is a modular form with coefficients in L.

Proof. Follows from Theorem 1.2.1.
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Chapter 2

p-adic Modular Forms

2.1 The Hasse Invariant

Let S be an Fp-scheme and consider an elliptic curve E/S. Let us recall the Frobenius

isogeny and its dual Vershchiebung.

2.1.1 Frobenius and Verschiebung

Definition 2.1.1. For any Fp-scheme S, the absolute Frobenius is defined to be the

map Frob : S → S which is identity on the underlying topological space, and induces

the Fp-endomorphism x 7→ xp on the sheaf OS.

For a scheme X/S/Fp, the absolute Frobenius defines a scheme X(p) as the base change

of X through Frob : S → S. That is, we have the following commutative diagram

X(p) X

S SFrob
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The absolute Frobenius for both X and S gives a commutative diagram

X X

S S

Frob

Frob

This then induces a natural map by the universal property of the fibre product

X

X(p) X

S S

Frob

FX/S

Frob

Definition 2.1.2. For any scheme X/S/Fp the S-linear map FX/S defined by the

above construction is called the relative Frobenius. When there is no confusion about

the schemes, we will write F = FX/S.

If we assume both S = SpecA and X = SpecB are affine, and

B = A[x1, . . . , xn]/(f1, . . . , fm)

then X(p) = SpecB(p) with

B(p) = A[x1, . . . , xn]/(f
(p)
1 , . . . , f (p)

m )

where the polynomials f
(p)
i are obtained from fi just by raising their coefficients to the

p-th power. On R-valued points the relative Frobenius F is given by

(a1, a2, . . . ) 7→ (ap1, a
p
2, . . . )

Let us now suppose E/S is an elliptic curve and F = FE/S the relative Frobenius of

E over S.

Lemma 2.1.1. If S = Speck where k is an algebraically closed field of characteristic

p, then FE/S is an isogeny of degree p.
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Proof. The description of F on affine coordinates as

(x, y) 7→ (xp, yp)

shows that it is a non-constant surjective map. Also F (0) = 0 and thus F is an isogeny.

If K is the function field of E then the function field of E(p) is Kp. This follows from

the local description of the affine coordinate ring of E and the fact that k is perfect.

The statement about degree then follows from the fact that K is a finite extension of

k(t) for some parameter t and the multiplicativity of degrees for field extensions.

Corollary 2.1.1. If S is an Fp-scheme, and E/S an elliptic curve, then the relative

Frobenius FE/S : E → E(p) is an isogeny of degree p.

Proof. It’s enough to check over geometric fibres.

Definition 2.1.3. Given E/S an elliptic curve, the dual isogeny of FE/S is called the

Verschiebung, denoted as VE/S (or V when there is no confusion). It is of degree p and

satisfies the property V F = [p] and FV = [p].

One can also consider the iterates F n of F and V n of V and the duality of F and V

gives duality for the iterates. This gives the exact sequence for all n > 0

0→ kerF n → E[pn]→ kerV n → 0

Recall that the Weil pairing introduced in Theorem 1.1.7 gives the Cartier duality

kerV n ' (kerF n)D

Over an algebraically closed field k, F is purely inseparable of degree p and hence

kerF consists of only 1 point, i.e. [0] is a generator for kerF . This means kerF is

a connected finite flat group scheme over k of order p. Hence by the classification of

connected group schemes of order p over algebraically closed fields, it can either be µp

or αp, depending on whether kerV is étale or connected respectively.

Before proceeding to the definition of the Hasse invariant, we need to define the formal

group of an elliptic curve.
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Let S be a scheme, and X, Y with Y ↪−→ X two sheaves on S for the fppf topology.

Definition 2.1.4. Inf kY (X) is the subsheaf of X whose sections over an S-scheme

T are given as follows: Γ(T, Inf kY (X)) := {t ∈ Γ(T,X) | there is a covering {Ti →
T} and for each Ti a closed subscheme T i defined by an ideal whose k+1st power is 0

with the property that t|T i ∈ Γ(T i, Y )}

Lemma 2.1.2. If X and Y are schemes and Y ↪−→ X is a closed immersion then this

definition coincides with the usual one of [Gro67, §16].

Proof. [See Mes72, II, Lemma 1.02].

Lemma 2.1.3. Let E/S be an elliptic curve. Let Ê be its formal completion along

the zero section. Then Ê is a group object in the category of formal schemes.

Proof. It is enough to show that Ê is closed under addition. So if f, g ∈ Γ(T, Inf k(E)),

where Inf k(E) is the k-th infinitesimal neighborhood of the zero section, we need to

show that there is k′ ≥ k such that f + g ∈ Γ(T, Inf k
′
(E)). Choose a covering family

Ti → T and nilpotent immersions of order k T i ↪−→ Ti such that f |T i
= 0. Choose

covering Tj → T and nilpotent immersions of order k T j ↪−→ Tj similarly for g. Then

Ti × Tj → T is a covering such that T i × T j ↪−→ Ti × Tj are nilpotent immersions of

order 2k. f + g|T i×T j
= 0 and hence f + g ∈ Γ(T, Inf 2k(E)).

Let X be a sheaf on S and eX : S → X be a section. Let Inf k(X) be Inf kY (X) where

Y is the subsheaf defined by eX .

Definition 2.1.5. A pointed sheaf (X, eX) is ind-infinitesimal if X = lim−→ Inf k(X).

Definition 2.1.6. A pointed sheaf (X, eX) on S is said to be a formal Lie variety if

the following conditions are satisfied:

1. X is ind-infinitesimal and Inf k(X) is representable for all k ≥ 0.

2. ωX = e∗X(Ω1
Inf k(X)/S

) is locally free of finite type. (Note that for any k > 0 the

sheaf on the right side is the same).
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3. Let gr inf(X) be the unique graded OS-algebra, such that gr inf
i (X) = gri(Inf i(X))

holds for all i ≥ 0. Then we have an isomorphism Sym (ωX)
∼−→ gr inf(X) induced

by the canonical mapping ωX
∼−→ gr inf

1 (X).

Definition 2.1.7. A formal Lie group over S, (G, eG) is a group object in the category

of formal Lie varieties.

Proposition 2.1.1. With the definitions as above, the formal completion of an elliptic

curve E/S along its zero section, denoted by Ê, is a formal Lie group.

Proof. Ê is by definition ind-infinitesimal, and Inf k(E) is clearly representable. We

have seen that the sheaf of invariant differentials ωE/S is locally free of rank 1 and

ωE/S ' I/I2 where I is the ideal sheaf of the zero section. These two facts imply that

Ê satisfies the last two conditions of Definition 2.1.6.

Remark 2.1.1. Locally on S, a formal Lie group (G, eG) is represented by the formal

spectrum of a power series ring. Indeed, one only needs to have a trivialization of ωG
to get such a representation.

2.1.2 The Hasse Invariant

Definition 2.1.8. The Hasse invariant A is a modular form of weight p− 1 and level

1 defined as the tangent of the Verschiebung map V : E(p) → E

tg(V ) ∈ HomS(Lie(E(p)/S),Lie(E/S))

= HomS((Lie(E/S)⊗p,Lie(E/S))

= H0(S, (ω)
⊗(p−1)
E/S )

The fact that Lie(E(p)/S) = (Lie(E/S))⊗p follows from the base-change theorem ap-

plied to the base-change map Frob : S → S.

There are a bunch of ways to compute the Hasse invariant, listed in [KM85, (12.4)].

Here we mention one of them.
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First we assume by localising that S = SpecR is affine and ωE/R is free of rank 1.

Choose an R-basis of ωE/R, say ω ∈ H0(E,Ω1
E/R). Choose a local coordinate X for

the formal group Ê/R which is adapted to the invariant differential ω, i.e.

ω = (1 + higher terms)dX

In terms of the basis ω we have A = A(E,ω)ω⊗p−1 where A(E,ω) ∈ R.

Calculating A: In the formal group expression of “multiplication by p” on Ê as a

power series in X,

[p](X) = V (F (X)) = V (Xp)

Hence we see that A(E,ω) = tg(V ) = coefficient of Xp in [p](X).

Theorem 2.1.1. Over any Fp-algebra R, the value of the Hasse invariant on the Tate

curve Tate(q)/R((q)) is given by

A(Tate(q), ωcan) = 1

Proof. Let φcan : T̂ate(q)
∼−→ Ĝm be the unique isomorphism of formal Lie groups

under which ωcan = φ∗can(dX/X). Computing the coefficient of Xp in the power series

expression of “multiplication by p” on Ĝm we see that

[p](X) = (1 +X)p − 1 = Xp

Thus A(Tate(q), ωcan) = 1.

This theorem proves that the zeroes of the Hasse invariant lie away from the cusps.

The next theorem, due to Igusa shows that the zeroes are actually simple.

Theorem 2.1.2. (Igusa) If k is a perfect field of characteristic p, and (R,m) an Artin

local k-algebra with residue field k, then for any elliptic curve E/R, the following

conditions are equivalent:

1. The Verschiebung V : E(p) → E has tg(V ) = 0

2. There exists a supersingular elliptic curve E0/k and an R-isomorphism E0⊗kR '
E.
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Proof. (2) =⇒ (1) is clear. Let us prove the converse. If tg(V ) = 0, ker(V ) which is

finite flat of rank p, and a subgroup of E(p)[p] must coincide with the connected part

of E(p)[p], having non-zero sheaf of differentials. Thus it is a subgroup of the formal

group of E(p).

Being formal groups over characteristic p, Ê and Ê(p) has an action of Zp, given by

taking limit of the endomorphisms induced by truncated p-adic expansions. (The

limit exists as [p](X) ⊂ (Xp)). Choose a coordinate X for Ê which linearizes the

action of µp−1 ⊂ Z×p , and use the pullback of X on Ê(p). For any R-homomorphism

f : Ê(p) → Ê, given by

f(X) =
∑
n≥1

a(n)Xn,

the formulas

f([ζ](X)) = [ζ](f(X))

f(ζX) = ζf(X)

for a primitive (p− 1)th root of unity ζ, implies that

ζa(n) = ζna(n)

for all n. This implies that a(n) = 0 unless n ≡ 1 mod (p− 1) and a(1) = tg(f).

Therefore if tg(V ) = 0,

V (X) = a(p)Xp + higher order terms.

a(p) ∈ R× because modulo m, E is a supersingular elliptic curve over a field where we

know the result by classical theory. Also ker(V ) = ker(F ) with both coinciding with

the connected part of E(p)[p], and is more explicitly given by Xp = 0.

Thus we have an isomorphism

E(p)/ ker(V ) E(p)/ ker(F )

E E(p2)

=

V F

∼
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Iterating this isomorphism, we get

E ' E(p2) ' E(p4) ' · · · ' E(p2n) ' . . .

Since R is Artin local, Frob2n : R→ R factors through k for sufficiently large n. Thus

E ' E(p2n) ' ((E ⊗R k)(p2n))⊗k R

Corollary 2.1.2. Let k be an algebraically closed field of characteristic p, (p,N) = 1,

Y (N)k the affine modular curve over k (which is regular). The Hasse invariant A has

only simple zeroes on Y (N)k.

Proof. We have seen the Hasse invariant is non-zero at the cusps. Hence it vanishes

only at closed points of Y (N)k. Suppose y ∈ Y (N)k is such a point. Denote the

local ring at y by (OY,y,my). This is a DVR by regularity and we need to show that

(A) = my. Suppose not. Then (A) = mn
y for some n > 1. Let R = OY,y/mn

y . Then

the natural map ψ : SpecR → Y (N)k determines an elliptic curve E/R with a level

N structure. For any basis ωE of the invariant differentials of E, A(E,ωE) = 0. But

then by Igusa’s theorem E comes from some E0/k. Since N is coprime to p, the level

N structure descends to a level N structure on E0 by étaleness, and hence defines a

point ϕ : Speck → Y (N)k such that ψ factors through ϕ. Also the thickening map

R = OY,y/mn
y → OY,y/my = k defines a k-valued point which must be the same as ϕ.

Hence A(E0, ωE0) = 0 which contradicts the assumption that ordy(A) > 1.

2.2 Deligne’s Congruence A ≡ Ep−1 mod p

Recall from the classical theory that for all even integer k ≥ 4, the Eisenstein series

Ek is a modular form of weight k and level 1 over C whose q-expansion is

Ek = 1− 2k/Bk

∑
n≥1

σk−1(n)qn
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where Bk is the k-th Bernoulli number and

σk−1(n) =
∑
d|n
d≥1

dk−1

As its q-expansion coefficients lie in Q, Ek is defined over Q by the q-expansion prin-

ciple.

Lemma 2.2.1. Let k ∈ N.

1. (Kummer’s congruence) p− 1 - k iff Bk/2k ∈ Zp. Moreover,

Bk/2k ≡ Bk′/2k
′ mod p if k ≡ k′ 6≡ 0 mod p− 1

2. (Clausen-von Staudt congruence) If p−1|k, then pBk ∈ Zp and pBk ≡ −1 mod p.

In particular, vp(Bk) = −1.

Proof. [See BS86, Section 5.8, Theorem 4, Theorem 5].

The lemma shows that for k = p − 1, p ≥ 5, the coefficients of Ep−1 lie in Z(p) (the

localization of Z at the prime (p)) and moreover, Ep−1 ≡ 1 mod p. We have already

seen a modular form of level 1 and weight p− 1 over Fp whose q-expansion is 1 – the

Hasse invariant. Thus we conclude by the q-expansion principle that Ep−1 ≡ A mod p.

For p = 2, 3 it is not possible to lift A to a modular form of level 1, holomorphic at

∞, over Z(p). However, for p = 2 and 3 ≤ N ≤ 11, 2 - N we can lift A to a modular

form of level N and weight 1, holomorphic at ∞, over Z[1/N ] using the base-change

theorem (Theorem 1.2.2). For p = 3 and any N ≥ 3, 3 - N , we can lift A to a

holomorphic modular form of level N and weight 2, over Z[1/N ] again by the same

theorem. Anyway, for each of these cases we choose a lift of A of level N (as described

above) and call it Ep−1.
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2.3 p-adic Modular Forms with Growth Conditions

In this section we will give a definition of a p-adic modular form as functions of elliptic

curves over Zp whose Hasse invariant (or rather its lift) has p-adic absolute value

greater than some chosen constant. So we will be removing p-adic discs of various

radii around the supersingular points and consider the sections of ω⊗k restricted to

the remaining “rigid analytic” open subsets.

Definition 2.3.1. Let R0 be a p-adically complete ring. Choose r ∈ R0. For any

integer N ≥ 1, prime to p (resp. 3 ≤ N ≤ 11 for p = 2, and N ≥ 2 for p = 3) we

define a p-adic modular form over R0 of growth r, level N and weight k as a rule which

assigns to any triple (E/S, αN , Y ) consisting of:

1. an elliptic curve E/S, where S is a R0-scheme where p is nilpotent

2. a level N structure αN

3. a section Y of ω
⊗(1−p)
E/S satisfying Y · Ep−1 = r

a section f(E/S, αN , Y ) of ω⊗kE/S over S, which depends only on the isomorphism class

of the triple, and whose formation commutes with abitrary base change of R0-schemes.

The module of all such is denoted by M(R0; r,N, k).

Equivalently, choosing a basis ω of ωE/R, one can define f to be the rule that attaches

to each quadruple (E/R, ω, αN , Y ) an element of R whose formation depends only on

the isomorphism class of the quadruple, commutes with base extensions, and satisfies

f(E/R, λω, αN , λ
p−1Y ) = λ−kf(E/R, ω, αN , Y )

for λ ∈ R×. By passing to the limit, we can allow R to be a p-adically complete ring

in the above definition.

f is said to be homlomorphic at ∞ if for any integer n ≥ 1, its value on

(Tate(qN), ωcan, αN , r(Ep−1(Tate(qN), ωcan))−1), lies in Z[[q]]⊗ (R0/p
nR0)[ζN ], for each

level N structure αN . We denote by S(R0; r,N, k) the submodule of M(R0; r,N, k)

consisting of forms holomorphic at ∞.
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Clearly,

M(R0; r,N, k) = lim←−M(R0/p
nR0; r,N, k)

S(R0; r,N, k) = lim←−S(R0/p
nR0; r,N, k).

2.3.1 The Ordinary Locus Y (N)ord

We assume that p is nilpotent in R0. In this section we will show that the moduli

problem classifying isomorphism classes of triples (E/S, αN , Y ) over R0-schemes S is

representable for any N ≥ 3.

Define the moduli problem

Sch/R0

PR0,r−−−→ Sets

S 7→ S-isomorphism classes of triples (E/S, αN , Y )

where everything is defined as above. The data of a triple (E/S, αN , Y ) is the same

as the data of

1. A R0-morphism g : S → Y (N)⊗R0

2. A section Y of g∗(ω⊗(1−p)) satisfying Y · g∗(Ep−1) = r.

Theorem 2.3.1. PR0,r is representable.

Proof. Denote ω⊗1−p by L for notational convenience. Clearly PR0,r is a subfunctor of

the functor

Sch/R0
P ′−→ Sets

S 7→ {R0-morphisms g : S → Y (N), plus a section Y of g∗(L)}

P ′ is clearly representable by the geometric vector bundle V(L )̌ on Y (N)⊗R0 asso-

ciated to Lˇwhich is the relative affine spectrum of the symmetric algebra on the line

bundle Lˇ [see Har13, II, exercise 5.18]. Then the subfunctor PR0,r is represented by

the closed subscheme of V(L )̌ defined by the vanishing of Ep−1 − r. The universal

elliptic curve with level N structure is just the pullback of the universal elliptic curve
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E/(Y (N)⊗R0) under the natural projection

V(L )̌

Y (N)⊗R0

Remark 2.3.1. The scheme representing PR0,r is in fact affine.

Having seen that PR0,r is representable it’s now obvious that the module M(R0; r,N, k)

is the global sections of the pullback of ω on this scheme. But before we get to a good

description of this module, let us say a few more things about the representing scheme.

Although we defined p-adic modular forms of growth r for any r ∈ R0, the case of

most importance to us will be when r = 1. Now further assume that R0 = Fp. Let us

also denote by PR0,r, the scheme representing the functor.

Note firstly, that Ep−1 = A as we are over Fp. Following the construction of the

scheme PFp,1, we see that it is exactly the open subscheme of Y (N)Fp where the Hasse

invariant is invertible. This open subscheme is obtained by removing the finitely many

closed points on Y (N)Fp corresponding to the supersingular elliptic curves.

We see that PFp,1 is a closed subscheme of PZ/pmZ,1 defined by the vanishing of p which

is nilpotent. Hence the underlying topological spaces of both these schemes are the

same. Thus we are in a situation where we have

1. a directed system of affine schemes {PZ/pmZ,1}m∈N,

2. thickenings PZ/pmZ,1 ↪−→ PZ/pnZ,1 for every m < n.

Then we can take the colimit of this system and get an affine formal scheme which we

denote by Xord.

Definition 2.3.2. The formal ordinary locus is defined to be Xord. It is an affine

formal scheme over Spf Zp.

This definition also solves the problem of choice involved in a lift of A for p = 2, 3.

Since the underlying topological space depends only on A, we can define the ordinary
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locus in that case to be the formal completion of the structure sheaf of Y (N) restricted

to the non-vanishing locus of A, along p = 0.

For r 6= 1, one can still consider the compatible system of Z/pmZ family of schemes

PZ/pmZ,r, only this time it is not guaranteed that the underlying topological space can

be viewed as an open subspace of Y (N). Nevertheless one can consider the formal

scheme associated to this compatible family, and call it Y (N)(R0, r).

2.3.2 M(R0; r,N, k) and S(R0; r,N, k) when p is Nilpotent in R0

Proposition 2.3.1. When p is nilpotent in R0, and N ≥ 3 is prime to p, there is a

canonical isomorphism

M(R0; r,N, k) = H0(PR0,r, ω
⊗k)

= H0
(
Y (N)⊗R0,⊕j≥0(ω)⊗(k+j(p−1))/(Ep−1 − r)

)
(because Y (N) is affine) = H0

(
Y (N)⊗R0,⊕j≥0(ω)⊗(k+j(p−1))

)
/(Ep−1 − r)

= ⊕j≥0M(R0;N, k + j(p− 1))/(Ep−1 − r).

Proposition 2.3.2. Let N ≥ 3, p - N . Under the isomorphism of Proposition 2.3.1

the submodule S(R0; r,N, k) ⊂M(R0; r,N, k) is

S(R0; r,N, k) = H0
(
X(N)⊗R0,⊕j≥0 ω

⊗k+j(p−1)/(Ep−1 − r)
)

.

Proof. It suffices to treat the case R0 3 ζN . The completion of X(N) along any of its

cusps is isomorphic to R0[[q]]. Just as in the proof of Theorem 2.3.1, we can consider

the geometric vector bundle over X(N)⊗R0 associated to L .̌ Call it V(L )̌. Denote by

PR0,r the closed subscheme of V(L )̌ defined by Ep−1− r. Then the ring of completion

of PR0.r along the inverse image of any cusp is isomorphic to

R0[[q]][Y ]/(Y · Ep−1(Tate(qN), ωcan, αN)− r) ' R0[[q]]
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as Ep−1 is invertible at the cusps. Thus a p-adic modular form f seen as a section

of ω⊗k over PR0,r is holomorphic at ∞ iff it extends to PR0,r. The description of the

module is then obvious.

2.3.3 Determination of S(R0; r,N,K) in the Limit

Theorem 2.3.2. Let N ≥ 3 and suppose either that k ≥ 2 or that k = 1 and n ≤ 11,

or that k = 0 and p 6= 2, or that k = 0, p = 2 and n ≤ 11. Let R0 be a p-adically

complete ring and suppose r ∈ R0 is not a zero-divisor in R0. Then the homomorphism

lim←−H
0(X(N),⊕j≥0 ω

⊗k+j(p−1))⊗Z[1/N ] (R0/p
nR0)/(Ep−1 − r)

S(R0; r,N, k) = lim←−S(R0/p
nR0; r,N, k)

is an isomorphism.

Proof. Denote by F the quasi-coherent sheaf ⊕j≥0 ω
k+j(p−1) on X(N) and put Fn =

F⊗R0/p
nR0. The inverse system of short exact sequences

0→ Fn
Ep−1−r−−−−→ Fn → Fn/(Ep−1 − r)→ 0

induces an inverse system of long exact sequence in cohomology

0 H0(X(N),Fn) H0(X(N),Fn) H0(X(N),Fn/(Ep−1 − r))

H1(X(N),Fn) H1(X(N),Fn) H1(X(N),Fn/(Ep−1 − r)) 0

Suppose first that k > 0. Then under our hypothesis the base-change theorem (1.2.2)

applies and we see thatH0(X(N),Fn) = H0(X(N),F)⊗R0/p
nR0, andH1(X(N),Fn) =

0. Thus the H0 terms form a short exact sequence of inverse systems, the first of which

has surjective transition morphisms. Hence the inverse limit forms the desired short

exact sequence.

For k = 0 and p 6= 2 or k = 0, p = 2 and n ≤ 11, we have H1(X(N), ω⊗k) = 0 for
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all k ≥ 2. Hence H1(X(N),F) = H1(X(N),O) and then again by cohomology and

base change we get H0(X(N),Fn) = H0(X(N),F) ⊗ R0/p
nR0. The sequence on H1

becomes

H1(X(N),O)⊗R0/p
nR0

−r−→ H1(X(N),O)⊗R0/p
nR0 → H1(X(N),O)⊗R0/(p

n, r)

For variable n they form a six-term exact sequence of inverse systems. If their

inverse limit was exact the theorem would follow because multiplication by r on

H0(X(N),O)⊗R0 is injective.

The proof for the exactness follows using spectral sequences of hypercohomology for

the functor lim←− which the author is not familiar with. Interested readers can look up

[Kat73, Lemma 2.5.2].

Remark 2.3.2. In terms of the formal scheme (Section 2.3.1) one can interpret p-adic

modular forms over a p-adically complete ring R0 as H0
(
Y (N)(R0, r), ω

⊗k
)

. One can

also consider the formal completion along p = 0 of the vector bundle above X(N).

Denoting it by X(N)(R0, r) we see that p-adic modular forms which are holomorphic

at the cusps are exactly H0
(
X(N)(R0, r), ω

⊗k
)

. That is

M(R0; r,N, k) = H0
(
Y (N)(R0, r), ω

⊗k
)

S(R0; r,N, k) = H0
(
X(N)(R0, r), ω

⊗k
)

When r = 1 this means that p-adic modular forms of weight k are global section of

ω⊗k over the ordinary locus Xord. This will be our definition of p-adic modular forms

in the next chapter.

2.4 A “Basis” of S(R0; r,N, k) in the Limit

Lemma 2.4.1. Under the numerical hypotheses of Theorem 2.3.2, for each j ≥ 0 the

injective homomorphism

H0(X(N)⊗ Zp, ω⊗k+j(p−1))
Ep−1−−−→ H0(X(N)⊗ Zp, ω⊗k+(j+1)(p−1)) (2.1)
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admits a section.

Proof. It is necessary and sufficient to show that the cokernel of (2.1) is a finite, free

Zp module. First consider the exact sequence of sheaves on X(N)⊗ Zp

0→ OX(N)
Ep−1−−−→ ω⊗p−1 → ω⊗p−1/Ep−1 → 0 (2.2)

We claim that ω⊗p−1/Ep−1 is a flat Zp sheaf. Denote this sheaf by F. Choose a

point x ∈ Supp(F) and assume without loss of generality that x lies over the closed

point of SpecZp. Choosing a trivialization of ω, suppose Fx ' OX,x/(f) for some

f ∈ mx. We need to show that OX,x is a flat Zp-algebra, or in other words p is not

a zero-divisor in this ring. From the Tor exact sequence it is sufficient to show that

Tor1
Zp

(OX,x/(f),Fp) = 0. Since OX,x is a domain we have an exact sequence

0→ OX,x
f−→ OX,x → OX,x/(f)→ 0

Over Fp this sequence is exact as the Hasse invariant has simple zeros by Igusa’s

theorem (Corollary 2.1.2). Thus Tor1
Zp

vanishes. This proves our claim.

Thus we can apply the cohomology and base-change formalism to (2.2) twisted by

ω⊗k+j(p−1) and get an exact sequence of finite free Zp-modules whose formation com-

mutes with arbitrary change of base.

0 H0
(
X(N)⊗ Zp, ω⊗k+j(p−1)

)
H0
(
X(N)⊗ Zp, ω⊗k+(j+1)(p−1)

)

H0
(
X(N)⊗ Zp, ω⊗k+j(p−1) ⊗ F

)
H1
(
X(N)⊗ Zp, ω⊗k+j(p−1)

)
0

Ep−1

Note that H1
(
X(N)⊗Zp,F⊗ω⊗k+j(p−1)

)
vanishes because F is a skycraper sheaf over

Fp, again by Igusa’s theorem.

From this exact sequence we see that the cokernel of (2.1) is the kernel of a surjective

map of finite free Zp-modules, and hence is itself finite free.

For each N, k satisfying the conditions of Theorem 2.3.2, and each j ≥ 0 choose once
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and for all a section of the “multiplication by Ep−1” map in (2.1), and denote its kernel

by B(N, k, j + 1). Thus for j ≥ 0, we have a direct sum decomposition

H0
(
X(N), ω⊗k+(j+1)(p−1)

)
' Ep−1 ·H0(X(N), ω⊗k+j(p−1))⊕B(N, k, j + 1)

Definition 2.4.1. H0(X(N), ω⊗k) = B(N, k, 0).

Definition 2.4.2. B(R0, N, k, j) = B(N, k, j) ⊗ R0 for any p-adically complete ring

R0.

The R0 analogue of the direct sum decomposition above gives

j⊕
a=0

B(R0, N, k, a)
∼−→ S(R0;N, k + j(p− 1)) (2.3)∑

ba 7→
∑

Ej−a
p−1ba

Definition 2.4.3. Define Brigid(R0; r,N, k) to be the R0-module consisting of all for-

mal sums
∞∑
a=0

ba, ba ∈ B(R0, N, k, a)

whose terms tend to 0 in the p-adic topology, i.e. for any n ∈ N, ba ∈ pnB(R0, N, k, a)

for all a� 0.

Proposition 2.4.1. Hypotheses as in Theorem 2.3.2, the inclusion of Brigid(R0; r,N, k)

in the p-adic completion of H0
(
X(N),⊕j≥0 ω

⊗k+j(p−1)
)

induces via (2.3) an isomor-

phism

Brigid(R0; r,N, k)
∼−→ S(R0; r,N, k) (2.4)∑

ba 7→
∑
a≥0

ra · ba/(Ep−1)a

where
∑

a≥0 r
a · ba/(Ep−1)a =

∑
a≥0 ba(E/S, αN) · Y a on (E/S, αN , Y ).

Proof. For injectivity, we need to show that if
∑

a≥0 ba ∈ Brigid(R0; r,N, k) can be

written as (Ep−1 − r)
∑

a≥0 sa with sa ∈ S(R0;N, k + a(p − 1)), and sa tending to 0
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as a → ∞, then all ba = 0. It suffices to prove that for any n > 0, ba ≡ 0 mod pn.

But modulo pn both ba and sa are finite sums. Suppose ba ≡ sa ≡ 0 mod pn for all

a > M . Let us show the congruence for a = M and use descending induction. As

0 ≡ bM+1 ≡ Ep−1sM mod pn, sM ≡ 0 mod pn. Hence bM ≡ Ep−1sM−1 mod pn, hence

bM ≡ 0 mod pn by (2.3).

For surjectivity, we use (2.3) again. Given
∑
sa with sa ∈ S(R0;N, k + a(p − 1))

tending to 0, we can decompose sa =
∑

i+j=a

(Ep−1)ibj(a), with bj(a) ∈ B(R0, N, k, j)

and bj(a) tends to 0 as a→∞, uniformly on j. Then∑
a

sa =
∑
a

∑
i+j=a

(Ep−1)ibj(a)

=
∑
a

∑
i+j=a

ribj(a) + (Ep−1 − r)
∑
a

∑
i+j=a

bj(a)
∑

u+v=i−1

(Ep−1)u · rv

Hence
∑
sa and

∑
a

∑
i+j=a

ribj(a) have the same image in S(R0; r,N, k). But for each j,∑
i

ribj(i+ j) converges to an element b′j ∈ B(R0, N, k, j), and b′j tends to 0 as j →∞.

Thus
∑
j≥0

b′j have the same image in S(R0; r,N, k) as
∑
a≥0

sa.

Corollary 2.4.1. With hypotheses as above, there is a natural transformation of func-

tors

PR0,1 → PR0,r

(E/S, αN , Y ) 7→ (E/S, αN , rY )

for any R0 where p is nilpotent. For any p-adically complete R0 we see that the

transformations for R0/p
nR0 for varying n are compatible. This then induces a map

between the associated formal schemes Y (N)(R0, 1) → Y (N)(R0, r) under which p-

adic modular forms of growth r pull back to p-adic modular forms of growth 1. This

map restricts to a map S(R0; r,N, k) → S(R0; 1, N, k) between p-adic modular forms

holomorphic at ∞. The corresponding map in terms of the bases is given by

Brigid(R0; r,N, k)→ Brigid(R0; 1, N, k)∑
ba 7→

∑
raba.
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2.4.1 Banach Norm and q-Expansion for r = 1

Proposition 2.4.2. Hypothesis as in Theorem 2.3.2, let x ∈ R0 be any element which

divides a power of p. Then the following conditions on an element f ∈ S(R0; 1, N, k)

are equivalent for k ≥ 0:

1. f ∈ x · S(R0; 1, N, k)

2. the q-expansion of f all lie in x ·R0[ζN ][[q]]

3. on each of the ϕ(n) connected components of X(N) ⊗Z[1/N ] Z[1/N, ζN ], there is

at least one cusp where the q-expansion of f lies in x ·R0[ζN ][[q]].

Proof. (1) =⇒ (2) =⇒ (3) is clear. We will prove (3) =⇒ (1). Firstly, we have

S(R0/xR0; 1, N, k) ' Brigid(R0/xR0; 1, N, k) ' Brigid(R0; 1, N, k)/x ·Brigid(R0; 1, N, k)

Replacing R0 by R0/xR0 we are reduced to the case where p is nilpotent. Hence f ∈
Brigid(R0; 1, N, k) is a finite sum

∑n
a=1 ba, with ba ∈ B(R0, N, k, a). It’s q-expansion at(

Tate(qN), ωcan, αN , (Ep−1)−1
)

is

n∑
a=0

ba · (Ep−1)−a =

∑n
a=0 ba · (Ep−1)n−a

(Ep−1)n

By hypothesis,
∑n

a=0 ba(Ep−1)n−a has q-expansion 0 at one or more cusps on each

geometric component of X(N). Hence by the q-expansion principle (Corollary 1.2.1)∑n
a=0 ba(Ep−1)n−a = 0. By (2.3) each ba = 0.

Proposition 2.4.3. Let N, k,R0 satisfy the hypothesis of Theorem 2.3.2. Suppose

given for each cusp α of X(N) a power series fα(q) ∈ R0[ζN ][[q]]. The following are

equivalent:

1. The fα are the q-expansion of an (necessarily unique) element f ∈ S(R0; 1, N, k).

2. For every power pn of p, there exists a positive integer M ≡ 0 mod pn−1 and a

true modular form gn ∈ S(R0;n, k+M(p−1)) whose q-expansions are congruent

mod pn to the given fα.
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Proof. (1) =⇒ (2). Replace R0 by R0/p
nR0. As we saw in the proof of Proposition

2.4.2, f has the same q-expansion as g/(Ep−1)M where g is a true modular form of

weight k+M(p−1). Multiplying numerator and denominator by a suitable power of p,

assume M ≡ 0 mod pn−1. Now Ep−1 ≡ 1 mod p implies that (Ep−1)p
n−1 ≡ 1 mod pn.

Thus f mod pn has the same q-expansion as g.

(2) =⇒ (1). Multiplying gn by a power of (Ep−1)p
n−1

, we can assume that the weights

k + Mn(p − 1) of gn are strictly increasing with n. Let ∆n = Mn+1 −Mn. Then the

q-expansions of gn+1 − gn(Ep−1)∆n are divisible by pn. Hence the difference lies in

pnS(R0;N, k + Mn+1(p − 1)) by the q-expansion principle (Corollary 1.2.1). Hence∑
n(gn+1 − gn(Ep−1)∆n converges to an element of S(R0; 1, N, k) whose q-expansion

coefficients are congruent to those of gn modulo pn.
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Chapter 3

The Katz, Igusa and Big Igusa

Moduli Problems

3.1 The Moduli Problem MKatz,N,n

We briefly make a summary of the important results that we saw in the last two

chapters and will need in this one. Henceforth always assume that p and N are

coprime. For N ≥ 3, the moduli problem classifying isomorphism classes of elliptic

curves with tame level N structure is represented by an affine smooth curve over

Z[1/N ] denoted by Y (N) which is finite and flat over the affine j-line Z[1/N, j]. There

is a universal elliptic curve p : E → Y (N). Denote the invariant differentials p∗Ω
1
E/Y (N)

by ωE/Y (N). The normalization of the projective j-line in Y (N) is a proper and smooth

curve X(N). There is a unique invertible sheaf ω on X(N) whose restriction to Y (N) is

ω and whose sections over the completion Z[1/N, ζN ][[q]] at each cusp are precisely the

Z[1/N, ζN ][[q]] multiples of the canonical differential of the Tate curve. The Kodaira-

Spencer style isomorphism

ω2
E/Y (N) ' Ω1

Y (N)/Z[1/N ]

extends to an isomorphism

ω2 ' Ω1
X(N)/Z[1/N ](log(cusps))
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Modular forms of weight k and level N are global sections of ωE/Y (N)
k. Modular forms

which are holomorphic at ∞ are sections of ωk.

Over Fp, the Verchiebung V : E (p) → E induces a map on the Lie algebra

tg(V ) ∈ HomY (N)

(
(Lie(E))⊗p → Lie(E)

)
= H0(Y (N), ωp−1)

which we call the Hasse invariant A. The locus in Y (N) where A generates the stalk

of ωp−1 is called the ordinary locus Y (N)ord
Fp

. This is an open subscheme of Y (N)Fp
.

Over Z/pmZ for some m ≥ 1, the underlying topological space of Y (N)Z/pmZ is the

same as Y (N)Fp
. Denote by Y (N)ord

Z/pmZ the open subscheme of Y (N)Z/pmZ whose

underlying topological space is the same as Y (N)ord
Fp

. When there is no confusion

about the base scheme we will simply write Y (N)ord. The formal scheme associated

to these compatible system of affine schemes is denoted by Xord.

Recall from Section 2.1.1 we had a short exact sequence of finite locally free group

schemes over any Fp-scheme S and for all n > 0

0→ kerF n → E[pn]→ kerV n → 0

kerF n and kerV n are locally free of rank pn. Over the ordinary locus Y (N)ord, V

induces an isomorphism of invariant differentials of E and E(p). Hence V is an étale

morphism and kerV n is étale for all n > 0. Over an algebraically closed field k, kerF n

consists of a single point and hence is represented by the affine spectrum of an Artin

local ring over k. Since V n is étale, and hence isomorphic to Z/pnZ over k, kerF n is

isomorphic to µpn by Cartier duality coming from the Weil pairing.

A sequence as above is an instance of connected-étale sequence for finite group schemes.

One can prove that such a sequence always exists for any finite group scheme over a

perfect field [cf. Wat12, pg. 52]. But over arbitrary basis, we need to make precise the

notion of the connected part of a finite group scheme. The correct notion is that of a

scheme which is radiciel over the base. The next proposition and the corollary following

it shows that any finite locally free group scheme can be written as an extension of a

finite locally free étale group scheme by a finite locally free radiciel group scheme if

the separable rank of its fibres is locally constant.
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Proposition 3.1.1. Let f : X → S be finite and locally free. Then the separable rank

of the fibres of f is locally constant iff there are morphisms i : X → X ′ and f ′ : X ′ → S

which are finite locally free with i radiciel and surjective, f ′ etale and f = f ′ ◦ i. The

factorisation is unique upto unique isomorphism and functorial in X/S.

Proof. We sketch a proof of this proposition omitting some details. For a complete

proof, [cf. Mes72, II, Lemma 4.8].

Because of the uniqueness assertion, it suffices to prove the proposition locally on S.

So assume S = SpecR and the (separable rank (Xs)) is constant. The if part is trivial.

Since X is finite locally free, and in particular finitely presented and flat over S, we

can assume that S is Noetherian. The proof is accomplished in several steps:

1. existence and uniqueness when S is a field.

2. existence and uniqueness when S is a complete (Noetherian) local ring.

3. uniqueness for arbitrary S = SpecA, A Noetherian.

4. existence of f ′ : X ′ → S when S is a local ring.

5. existence of i : X → X ′ when S is a local ring.

6. existence for arbitrary S = SpecA, A Noetherian.

7. functoriality.

1) If S = Speck and X = SpecB, X ′ is the affine spectrum of the unique maximal

separable subalgebra of B. Write B as a product of Artin local rings B = B1× ...×Br.

If k′i is the maximal separable extension of k in the residue field of Bi, there is a unique

lift of the natural inclusion k → Bi to k′i → Bi since Bi is Artin.

2) Since complete Noetherian local rings are Henselian, and any finite local algebra

over a Henselian local ring is also Henselian, we see that there is a unique solution to

the problem by Hensel’s lemma.

3) Let X
i−→ X ′

f ′−→ S and X
i′−→ X ′′

f ′′−→ S be two solutions. To construct a unique

isomorphism between them it suffices to do so for localisation at any point s ∈ S,

because our rings are Noetherian and thus any such isomorphism extends to a neigh-

borhood of s, and on intersections two such extensions agree by uniqueness. Hence
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we assume S = SpecA where A is a Noetherian local ring. Let S ′ = SpecÂ and

S ′′ = Spec(Â ⊗A Â). The morphism S ′ → S is faithfully flat and quasi-compact and

hence we apply fpqc descent. By 2) we have a commutative diagram

X ′S′ X ′′S′

XS′

η

iS′

i′
S′

η is an isomorphism by 2). We need to show that η is a morphism of objects with

descent data. To see this, let τX (resp. τX′ , τX′′) denote the canonical isomorphism

p∗1(XS′)
∼−→ p∗2(XS′) (resp. ...). we need to show

τX′′ ◦ p∗1(η) = p∗2(η) ◦ τX′

We know

p∗2(η) ◦ τX′ ◦ p∗1(iS′) = p∗2(η) ◦ p∗2iS′ ◦ τX
= p∗2(i′S′) ◦ τX
= τX′′ ◦ p∗1(i′S′)

= τX′′ ◦ p∗1(η) ◦ p∗1(iS′)

But i : X → X ′ is faithfully flat and hence so is p∗1(iS′). Hence it is an epimorphism

of schemes and this completes the proof.

4) To show f ′ : X → S exists, we will show that, using the notation of 3) above, the

X ′ which we know from 2) to exists over S ′ descends to S. Thus we have the standard

situation S ′′ S ′ S and we have a solution of our problem for XS′ . Call

this solution Y . We want to descend Y to S. By the uniqueness proved in 3) we see

there is an isomorphism p∗1(Y )
∼−→ p∗2(Y ). But using the uniqueness of isomorphisms

between solutions we see the isomorphism p∗1(Y )
∼−→ p∗2(Y ) must satisfy the cocycle

condition and hence Y can be descended to an X ′ étale and finite over S.

5) From 2) and 4) we know that over S ′ we have a morphism iS′ : XS′ → X ′S′ . We

want to show that this morphism descends to a similar morphism i : X → X ′ over S.
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Pulling back to S ′′, we get a commutative diagram

XS′′

X ′S′′ X ′S′′

p∗1(iS′ ) p∗2(iS′ )

∼
µ

While µ might not be identity, it is an isomorphism by the uniqueness assertion of

part 3). Also by the same reason, it satisfies the cocycle condition p∗1,3(µ) = p∗2,3(µ) ◦
p∗1,2(µ). Hence there exist a scheme T , finite and étale over S, and an isomorphism

ϕ : X ′S′
∼−→ TS′ , such that X ′ with descent datum µ is isomorphic to TS′ with its

canonical descent datum via ϕ. A computation reveals that ϕ ◦ i : XS′ → TS′ is a

morphism between objects with descent data and hence can be descended. We omit

showing the computation. Readers can look up [Mes72, II, Lemma 4.8].

6) The solution from 4) and 5) can be extended to a neighborhood of s for all s ∈ S
[cf. Mes72, II, Lemma 4.8]. By the uniqueness proved in part 3) they can be patched

together to give a solution over all of S.

7) Functoriality is obvious for the case of a base field. Also the fact that there is an

equivalence of categories between finite étale algebras over a Henselian ring (R,m, k)

and the category of finite étale algebras over k gives functoriality for the case when

S = SpecA for a complete Noetherian local ring A. To know we can descend the

morphism from S ′ to S, we consider the following diagram

p∗1(X) p∗1(Y )

p∗2(X) p∗2(Y )

p∗1(X ′) p∗1(Y ′)

p∗2(X ′) p∗2(Y ′)

All the faces except possibly the bottom one are commutative. Moreover p∗1(i) is an

epimorphism. This gives functoriality when S is the spectrum of a local ring. Now
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extend this first to a neighborhood of any point and finally to all of S.

Corollary 3.1.1. If f : G → S is a finite locally free group scheme whose fibres have

locally constant separable rank, there is a canonical factorization

0→ G◦ → G→ Gét → 0

where Gét is a finite locally free étale group scheme and G◦ is a finite locally free

radiciel group scheme.

Proof. Proposition 3.1.1 gives an epimorphism i : G → Gét where Gét is a finite

locally free étale scheme. The functoriality assertion and the fact that the construction

commutes with fibre products imply that Gét is a group and i is a homomorphism. G0

is then defined to be ker i. It is radiciel because i is radiciel.

Let’s now return to the case of elliptic curves. Assume that E/S is an ordinary elliptic

curve, such that p is locally nilpotent on S. Localizing, we may assume that p is

nilpotent and S is a Z/pmZ-algebra. From Corollary 3.1.1 we get an exact sequence,

0→ E[pn]◦ → E[pn]→ E[pn]ét → 0

owing to the fact E is ordinary, and hence the separable rank of E[pn] over fibres is

constant and equal to pn. Over the special fibre of Z/pmZ we have seen the exact

sequence

0→ kerF n → E[pn]→ kerV n → 0

The first sequence restricts to the second over Fp by the uniqueness of the factorization.

The morphisms E
f−→ E ′ = E/E[p]◦ and E ′

v−→ E = E ′/E[p]ét are dual isogenies of

degree p which lift the relative Frobenius F and the Verschiebung V respectively.

Let’s recall that in Section 2.1 we constructed the formal group Ê of an elliptic curve

E/S. Let us now assume that E/S/Fp is an elliptic curve. We want to relate Ê with

the connected part of the pn-torsion for all n.

Lemma 3.1.1. Let E/S/Fp be an elliptic curve. Then Ê ' lim−→n
kerF n.
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Proof. Since the question is local on S, we may assume S = SpecR such that ωE/S
has a basis. In that case Ê ' SpfR[[T ]] for a formal parameter T adapted to ωE/S.

Now the isomorphism is obvious.

Remark 3.1.1. The proof didn’t use any particular property of the elliptic curve other

than the fact that Ê is a formal Lie group. Hence the statement holds for any formal

Lie group. Moreover we have the following stronger result concerning formal Lie groups

over characteristic p.

Proposition 3.1.2. Let S be a Fp-scheme. A sheaf of groups G on S is a formal Lie

group iff the following three conditions hold:

1. G is F -torsion, i.e. G = lim−→G(n) where G(n) = kerF n.

2. G is F -divisible, i.e. F : G→ G(p) is an epimorphism.

3. G(n) are finite and locally free group schemes.

Proof. The necessity of the conditions is immediate from the fact that locally on S, G

is represented by the formal spectrum of a power series ring. For the sufficiency [cf.

Mes72, II, Theorem 2.1.7] or [Tat67, Proposition 1].

Lemma 3.1.2. Let E/S/Fp be an ordinary elliptic curve. Then

Ê[pn] ' kerF n = E[pn]◦

Proof. Follows from the fact that V : Ê(p) → Ê is an isomorphism and [pn] = V nF n.

This shows that for ordinary elliptic curves over Fp-schemes the connected part of the

pn-torsion is the same as the pn-torsion of its formal group. We would like to have

a similar result even for base schemes where p is locally nilpotent. First a few words

about the p-divisible group of an elliptic curve.

Definition 3.1.1. Let S be a scheme where p is locally nilpotent. Let E/S be an

elliptic curve. Consider its p-divisible group E[p∞]. Define the formal group of E[p∞]
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to be

Ê[p∞] := lim−→
k

Inf k(E[p∞])

Lemma 3.1.3. Let S be a scheme where p is locally nilpotent. Let E/S be an elliptic

curve. Then the natural inclusion Ê[p∞] −→ Ê is an isomorphism.

Proof. We need to prove that for any k, there is N � 0 such that Inf k(E) ↪−→ E[pN ].

Since the question is local on S, assume Ê = SpfR[[T ]], where S = SpecR, p nilpotent

on R and T is a formal parameter adapted to ωE/S. Then [p]#(I) ⊂ (pI, I2). Since

Inf k(E) = SpecR[T ]/(T k) and p is nilpotent, we get the result.

Next we state a result that links the formal group of a p-divisible group with its

connected part, over a scheme where p is locally nilpotent. The proof of the statement

is technical and we postpone it to the next Chapter, where we devote a section to

p-divisible groups.

Theorem 3.1.1. Let p be locally nilpotent on S and G be a p-divisible group on S. Sup-

pose G[pn] has locally constant separable rank over fibres and (separable rank G[pn]s) =

(separable rank G[p]s)
n. For each n > 0 denote the connected part of G[pn] by G[pn]◦

and the étale part by G[pn]ét. Then {G[pn]◦}n and {G[pn]ét}n are p-divisible groups

and Ĝ = lim−→n
G[pn]◦.

Proof. See Chapter 4, Theorem 4.1.3.

Corollary 3.1.2. Let p be locally nilpotent on S. Let E/S be an ordinary elliptic curve.

Then Ê[pn] ' E[pn]◦

Proof. The separable rank of E[pn] is constant and is equal to pn. Since the formal

group of the p-divisible group is the same as the formal group of E by Lemma 3.1.3,

we get the result by Theorem 3.1.1.

3.1.1 Representability of MKatz,N,n

Definition 3.1.2. Over Z/pmZ, the moduli problem MKatz,N,n classifies for any scheme

S, the isomorphism classes of tuples (E, ϕ̂, αN) where E is an elliptic curve over S,
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ϕ̂ : Ê[pn]
∼−→ µpn and αN : (Z/NZ)2 ∼−→ E[N ].

In this section we will show that this problem is represented by a curve which has a

natural map to the ordinary locus Y (N)ord simply by forgetting ϕ̂. We can also define a

problem which classifies for schemes S, the isomorphism classes of tuples (E,ϕét, αN)

where ϕét : Z/pnZ ∼−→ E[pn]/Ê[pn]. Since Ê[pn] and E[pn]/Ê[pn] are dual to each

other and so are µpn and Z/pnZ, we see that this problem is naturally isomorphic to

MKatz,N,n. We will show that the natural map from MKatz,N,n to Y (N)ord is finite, étale

and Galois for the action of the group (Z/pnZ)×.

We first point to a proof that is found in the book of Katz-Mazur [KM85]. It uses the

notion of full sets of sections and while we are not going to provide the details of the

proof, we mention it because it might be a useful strategy for proving more general

results.

Full sets of sections :

We define full sets of sections following Katz-Mazur [KM85, Section (1.8)]. Let S be

a scheme, and Z/S a finite, locally free S-scheme of rank N ≥ 1. For every affine S-

scheme SpecR→ S, the R-scheme ZR/R obtained by base change is of the form SpecB

where B is a finite, locally free R-algebra of rank N . Since B is locally free of rank N

over R, we can speak of the characteristic polynomial of the R-linear endomorphism

f : B → B for any f ∈ B. Indeed, we can choose an open set in SpecR over which

B is free and note that the characteristic polynomial is independent of the choice of a

basis.

Definition 3.1.3. We say that a set of N not-necessarily distinct points P1, . . . , PN in

Z(S) is a “full set of sections” if for every affine S-scheme SpecR and for every f ∈ B
as above, we have

det(T − f) =
N∏
i=1

(T − f(Pi))

For any scheme S, the constant group scheme Z/NZ for any N ∈ N is given by the

relative affine spectrum of the algebra

OSe0 ×OSe1 × · · · × OSeN−1

where the OS-algebra structure is given by the diagonal embedding. It is a finite free
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group scheme of rank N . For any T/S, Z/NZT ' T0 t · · · t TN where each Ti = T .

Definition 3.1.4. Suppose E/S is a finite flat group scheme. Define the functor

Hom(Z/NZ, E) := Hom(Z/NZ, E)(T ) = HomT -gp(Z/NZT , ET )

for any S-scheme T .

Suppose we have a T -group scheme homomorphism φ : Z/NZT → ET . Let φ1 = φ|T1

the restriction. This is a T point of ET [N ]. Conversely given any T point of ET [N ]

(say P ), we will show that there is a T -gp homomorphism Z/NZT
φP−→ ET such that

φ1 = P .

Lemma 3.1.4. Hom(Z/NZ, E)(T ) = Homgp(Z/NZ, E(T )) = E[N ](T )

Proof. Given P ∈ ET [N ](T ) define φi : Ti → ET as φi = [i] ◦ P . Since [N ] kills P , the

φi’s together give a T -gp homomorphism Z/NZT
φP−→ ET . The assignments

φ 7→ φ1 P 7→ φP

are both natural transformations and are inverse to each other by construction. Thus

Hom(Z/NZ, E) ' E[N ].

This says that the T point φ1 uniquely determines the map φ. Intuitively, the image of

“1” determines φ. Conversely, given any T point P ∈ E[N ](T ), we get a well defined

map by declaring the image of “1” to be P . Thus we see that for any S-scheme T ,

Hom(Z/NZ, E)(T ) = Homgp(Z/NZ, E(T )) = E[N ](T )

Let’s fix a base scheme Spec(Z/pmZ). Denote by Y (N)ord the ordinary locus of the

modular scheme over Z/pmZ. Suppose E/Y (N)ord is the universal elliptic curve. Let

E [pn]ét be the étale quotient of the pn-torsion of E . E [pn]ét is a finite flat, étale group

scheme of order pn over Y (N)ord.

Proposition 3.1.3. MKatz,N,n is representable.
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Proof. As we saw above, the scheme E [pn]ét represents the functor Hom(Z/pnZ, E [pn]ét).

Let us denote the subfunctor of Hom(Z/pnZ, E [pn]ét) classifying those φ which are in

fact isomorphisms, by Isom(Z/pnZ, E [pn]ét). Then it is clear that Isom(Z/pnZ, E [pn]ét)

is precisely MKatz,N,n.

Consider the universal homomorphism φuniv. Under the identification

Hom(Z/pnZ, E [pn]ét)(T ) = Homgp(Z/pnZ, E [pn]ét(T ))

consider the sections φuniv(0), . . . , φuniv(pn−1). Define the functor (Z/pnZ)-Gen(E [pn]ét)

as

T 7→
{
φ : Z/pnZ→ E [pn]ét(T ) group homomorphisms, such that φ(0), . . . , φ(pn − 1)

are a full set of sections
}

Katz-Mazur [KM85] show in Proposition 1.10.12 (pg 47) that since E [pn]ét is finite

étale,

(Z/pnZ)-Gen(E [pn]ét) ' Isom(Z/pnZ, E [pn]ét)

In [KM85, Proposition 1.10.13] they show that (Z/pnZ)-Gen(E [pn]ét) is given by the

closed subscheme Z of Hom(Z/pnZ, E [pn]ét) which is universal for the relation

“φuniv(0), . . . , φuniv(pn − 1) are a full set of sections”.

Having provided a reference to the proof in the literature, we describe another way to

prove representability of MKatz,N,n.

Alternate proof :

Proposition 3.1.4. For n = 1 this subscheme is the complement of the zero section

of E [p]ét. The complement is open and closed and thus it is finite, locally free and étale

over Y (N)ord of degree ϕ(p) = p−1. Over a scheme S → Y (N)ord where E [p]ét admits
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a generator P , this subscheme is given by the Cartier divisor∑
1≤n≤p−1

[nP ]

Proof. To prove this, note that Y (N)ord (resp. E [p]ét) are affine, represented by say R

(resp. A). A is a Hopf algebra and denoting the augmentation ideal by I we have a

decomposition of R-modules A = R⊕ I. Since I/I2 = 0, by Nakayama’s lemma there

exists an element f ≡ 1 mod I such that fI = 0. Then f(1 − f) = 0 and hence f

is an idempotent such that Af = R and A(1 − f) = I. Thus A = Af × A(1 − f) '
A/(1 − f) × A/(f). Suppose P : A → B is an R-algebra homomorphism. This

determines a SpecB point of E [p]ét and hence a B-Hopf algebra homomorphism

A⊗R B
φP−→ Be0 × · · · ×Bep−1

where A⊗RB
P◦[i]−−→ Bei and e0, e1, ..., ep−1 are the obvious idempotents corresponding

to the points “0”, “1”, ..., “p− 1” of (Z/pZ)B resprectively. We will show that φP is an

isomorphism iff P factors through A/(f) ' A(1− f) = I.

Suppose first that φP is an isomorphism. Localising, assume B is local. Then since B

is connected, either Pf = 0 or P (1 − f) = 0. If P (1 − f) = 0, P ◦ [i](1 − f) = 0 for

all i and hence P factors through ε : A ⊗R B → B and is trivial. Thus P cannot be

an isomorphism in this case.

To prove the converse, it is enough to show that the map induced by the projection

A→ A/(f), is an isomorphism

A⊗R A/(f)
∼−→ A/(f)× · · · × A/(f)

It is enough to show this is an isomorphism over any geometric point of A/(f) because

both the modules are finite locally free. To show isomorphism over a geometric point

Spec k̄ of A/(f) it is enough to show that the projection A→ A/(f)→ k̄ is a non-zero

point of E [p]ét(k̄), because then it generates the group of order p. But this is obvious

because it cannot factor through the zero section A/(1− f).

The other assertions follow by construction.
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Proposition 3.1.5. For n > 1 MKatz,N,n is given by the inverse image of MKatz,N,1

under the projection

E [pn]ét [p]n−1

−−−→ E [p]ét

Proof. Indeed, P ∈ E[pn]ét(S) generates the group iff [p]n−1(P ) generates E[p]ét(S).

Thus MKatz,N,n is finite, flat and étale over Y (N)ord. If E [pn]ét admits a generator P

over some S, MKatz,N,nS is given by ∑
(a,p)=1
0<a<pn

[aP ]

This also shows that MKatz,N,n is of degree ϕ(pn) over Y (N)ord.

3.2 p-adic Modular Forms

Varying n over N, we get an inverse system of affine schemes MKatz,N,n over Y (N)ord

where our base scheme is still fixed as Spec(Z/pmZ). The universal elliptic curve E over

MKatz,N,n comes with an universal isomorphism upto an action of Aut(µpn) = (Z/pnZ)×

ϕ̂n : E [pn]◦ ' Ê [pn]
∼−→ µpn

such that the diagram commutes

Ê [pn+1] µpn+1

Ê [pn] µpn

[p]

ϕ̂n+1

[p]

ϕ̂n

We will now vary the base scheme and to keep track of it introduce new notation. Let

MKatz,N,n = Tm,n = SpecVm,n, where the index m denotes that we are working over

Spec(Z/pmZ). Take the limit of these schemes

SpecVm,∞ = Tm,∞ = lim←−
n

Tm,n = Spec(lim−→
n

Vm,n)
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Tm,0 = Y (N)ord over Z/pmZ. We have natural projections Tm,n′
πm
n′,n−−−→ Tm,n for all

n′ ≥ n and closed immersions Tm,n ↪−→ Tm+1,n. We have Vm+1,∞/p
mVm+1,∞ ' Vm,∞.

Denote by V∞,∞ = lim←−
m

Vm,∞.

Let us simply write πmn for πmn,0. Let ω be the invariant differentials for E/Tm,0. The

invariant differentials of E over Tm,n is (πmn )∗ω. These are the same as the invariant

differentials of its formal group Ê . For any n ∈ N we have the exact sequence

0→ Ê [pn]→ Ê [p]n−−→ Ê

Lemma 3.2.1. The invariant differentials of Ê is isomorphic to the invariant differ-

entials on Ê [pn] ' E [pn]◦ for all n ≥ m.

Proof. Let I be the ideal sheaf of the zero section of E . Since [p]#(I) ⊂ (pI, I2) and

pn = 0 for all n ≥ m, we see that [pn]#(I) ⊂ Ip for all n ≥ m. Hence the statement

follows.

Lemma 3.2.2. The invariant differentials for µpn over a Z/pmZ-algebra R has a

canonical basis given by dT/T , where µpn = SpecR[T ]/(T p
n − 1) for all n ≥ m.

Proof. Let A = R[T ]/(T p
n − 1). Let f = T p

n − 1. Then df = 0 and hence Ω1
A/R is

free of rank 1 over A. Let ∆ : A→ A⊗R A be the comultiplication map. Then

d(∆T )/(∆T ) = d(T ⊗ T )/(T ⊗ T ) = d(1⊗ T )/(1⊗ T ) + d(T ⊗ 1)/(T ⊗ 1)

shows that dT/T is an invariant differential. It is a basis of the invariant differentials

because it is a basis of Ω1
A/R.

The invariant differentials for Ê [pn] has a canonical basis given by ϕ̂∗n(dT/T ) where

µpn = Spec(Vm,n[T ]/(T p
n − 1))

Thus it is free. Hence,

(πmn )∗ωk = OTm,n(ϕ̂∗n(dT/T ))k

for all k ∈ Z, n ≥ m. In particular, ω is free over Tm,∞ for all m.
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Let Xord be the formal scheme over Spf Zp given by the compatible family of Z/pmZ
schemes Y (N)ord. Let MKatz be the formal scheme over Xord given by the family of

Tm,∞. MKatz classifies isomorphism classes of tuples (E/R, ϕ̂, αN) where R is a p-

adically complete Zp algebra, αN a level N structure and ϕ̂ : E[p∞]◦ = Ê[p∞]
∼−→ µp∞

is an isomorphism. Let π : MKatz → Xord be the projection. For each n, π factors

through the formal completion of Tm,n.

The trivializations of ω over Tm,∞ for all m > 0 show that π∗ω is trivial over MKatz.

Aut(Tm,∞/Tm,0) = lim←−
n

Aut(Tm,n/Tm,0) = lim←−
n

(Z/pnZ)× = Z×p

Again any automorphism over Z/pmZ extends uniquely to an automorphism over

Z/pm+1Z, and thus MKatz is Galois over Xord with Galois group G = Z×p .

Action of G:

The action of g ∈ G on OMKatz
is given by the map induced by pullback via the action

of g−1 on MKatz.

Remark 3.2.1. g ∈ G acts on MKatz by sending (E/R, ϕ̂, αN) 7→ (E/R, gϕ̂, αN). So

one might also define the action of g ∈ G on OMKatz
as induced by pullback via the

action of g on MKatz. But we chose the other convention because it gives a natural

left action on the structure sheaf. Note, this is also the definition in [Kat75, A.1.5,

pg. 356].

Lemma 3.2.3. For any k ∈ Z,

ωk ' (π∗(π
∗ωk))G

Proof. It’s enough to prove over Z/pmZ for all m and for k = 1. As ω is invertible,

locally on Tm,0

(π∗(π
∗ω))G = ω ⊗ (π∗OTm,∞)G

As Tm,∞ is Galois over Tm,0 with group G, (π∗OTm,∞)G = OY (N)ord . Hence the right

hand side is precisely ω.
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Let ϕ̂univ : Ê → µp∞ be the universal trivialization of Ê over MKatz. Then

π∗ω = OMKatz
· ϕ̂∗univ(dT/T )

Since the action of g ∈ G on π∗ω is given by pullback via the action of g−1 on MKatz,

π∗ωk ' OMKatz
⊗ z−k

for all k ∈ Z, where z is the identity character of G. By the lemma above we thus get

that p-adic modular forms of integral weight k is the subspace of H0(Xord,OMKatz
) =

V∞,∞ where G acts via the character zk.

Generalizing this, we get to Katz’ definition of p-adic modular forms:

Definition 3.2.1. Suppose R is a p-adically complete, separated algebra, and k :

Z×p → R× is a continuous character. Then we define p-adic modular forms of naive

level Γ(N) of weight k over R as the R module

M(Γ(N), R, k) =

{
f ∈ H0

(
Xord
R ,OMKatzR

)
| ∀ g ∈ Z×p , g · f = k(g)f

}

Henceforth we will slightly abuse notation to write π∗ω = OMKatz
dT/T .

3.2.1 θ Operator

Consider the universal derivation

M(Γ(N), R, k) ⊂ H0
(
MKatzR,OMKatzR

)
d−→ H0

(
MKatzR,Ω

1
MKatz/R

)
f 7→ df

Since g induces a R automorphism of MKatzR, the action commutes with the universal
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derivation. Thus we have the following diagram

M(Γ(N), R, k) H0
(
MKatzR,Ω

1
MKatz/R

)

M(Γ(N), R, k) H0
(
MKatzR,Ω

1
MKatz/R

)
d

g g

d

Now by the Kodaira-Spencer isomorphism π∗ω2 ' Ω1
MKatz/R

. Thus

H0
(
MKatzR,Ω

1
MKatz/R

)
' H0

(
MKatzR,OMKatzR

)
(dT/T )2

Definition 3.2.2. Suppose f is a p-adic modular form of weight k. Define the θ

operator to be θ(f) = h such that df = h(dT/T )2.

Proposition 3.2.1. The θ operator is an operator of weight 2.

Proof. If f is a p-adic modular form of weight k ∈ Cont(Z×p , R×), then by definition

g · f = k(g)f . Then by the above diagram,

d(g · f) = g · (h(dT/T )2)

This gives k(g) df = (g · h)g−2(dT/T )2 which shows g · h = k(g)g2h. Thus θ is a map

between M(Γ(N), R, k)
θ−→M(Γ(N), R, k + 2).

In order to understand the effect of θ on q-expansions of p-adic modular forms at a

cusp, note that dT/T is the canonical differential ωcan. We then recall from Section

1.2.6 that over Z[1/N, ζN ][[q]], ω2
can ↔ N ·dq/q. Since θ is dual to (dT/T )2, this implies

that

θ =
1

N
q

d

dq
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3.3 The Moduli Problems MIgusa and Mbig Igusa

3.3.1 MIg,N,n

Fix base scheme Z/pmZ. The moduli problem MIg,N,n is defined as the functor clas-

sifying isomorphism classes of tuples (E, ϕ̂, ϕét, αN) where αN is a level N structure

and

ϕ̂ : Ê[pn]
∼−→ µpn ϕét : Z/pnZ ∼−→ E[pn]ét

MIg,N,n is represented by MKatz,N,n×Y (N)ord MKatz,N,n where the first projection forgets

ϕét and the second projection forgets ϕ̂. Thus MIg,N,n is finite, etale and Galois over

MKatz,N,n of order ϕ(pn).

3.3.2 Msplit,N,n

The moduli problem Msplit,N,n classifies isomorphism classes of tuples (E,ϕ, αN) where

ϕ : E[pn]
∼−→ µpn × Z/pnZ is a splitting of the pn-torsion. This functor has an obvious

projection to MIg,N,n.

Proposition 3.3.1. Msplit,N,n is representable.

Proof. We claim that Msplit,N,n is represented by the following fibre product

X MIg,N,n

E [pn] (Z/pnZ)MIg,N,n

“1”

where the lower arrow is the projection followed by the universal isomorphism of the

etale quotient with Z/pnZ. Indeed, given any (E,ϕ, αN) a tuple over a ring R, there

is a unique map f : SpecR→MIg,N,n corresponding to the tuple (E, ϕ̂, ϕét, αN) where

ϕ̂ and ϕét are defined from ϕ in the obvious way. We will show that X satisfies the

universal property of Msplit,N,n. We have the following diagram.
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E[pn] E [pn]

E[pn]ét E [pn]ét

SpecR MIg,N,n

(Z/pnZ)R (Z/pnZ)MIg,N,n

“1”

f

“1”

All the squares except the right square is commutative. We also have a section ϕ−1(1) :

SpecR→ E[pn] of the projection E[pn]→ SpecR which commutes with all the arrows

of the left square. We need to show that the following two compositions are the same.

SpecR
f−→MIg,N,n

“1”−−→ (Z/pnZ)MIg,N,n

SpecR
ϕ−1(1)−−−−→ E[pn]→ E [pn]→ E ét[pn]

∼−→ (Z/pnZ)MIg,N,n

But this follows from the commutativity of the other squares. Thus there is a unique

map from SpecR to X.

Conversely, the fibre product has the property that the following diagram commutes

X E [pn]

(Z/pnZ)X (Z/pnZ)MIg,N,n

“1”

Hence this gives a splitting of the pn-torsion of the universal elliptic curve over X.

Hence X represents Msplit,N,n.

Let’s try to understand the projection Msplit,N,n →MIg,N,n.

Proposition 3.3.2. Msplit,N,n → MIg,N,n is finite flat of rank pn. Moreover it is a

µpn-torsor.
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Proof. E [pn]→ E [pn]ét ' (Z/pnZ)MIg,N,n
is an epimorphism of finite locally free group

schemes. Hence it is finite locally free. Hence Msplit,N,n →MIg,N,n is finite locally free.

To show it is a µpn-torsor, we will show that E [pn] → (Z/pnZ)MIg,N,n
is a µpn-torsor.

That is, we need to show the following map is an isomorphism(
(µpn)Z/pnZ ×Z/pnZ E [pn] ' µpn ×MIg,N,n

E [pn]
)
−→ E [pn]×Z/pnZ E [pn]

(a, x) 7→ (a · x, x)

where a · x is the multiplication in E [pn]. But the isomorphism is clear on points as

E [pn]ét ' E [pn]/µpn . Hence by Yoneda’s lemma, the map of schemes is an isomorphism.

Thus Msplit,N,n →MIg,N,n is a µpn-torsor, since it is the base change of a µpn-torsor.

Over any ring R, such that Msplit,N,n(R) is non-empty, suppose two points project to

the same point of MIg,N,n(R). Suppose the two points are (E,ϕ, αN) and (E,ϕ′, αN).

Then ϕ and ϕ′ are related by an R-group automorphism of (µpn ×Z/pnZ)R. Consider

the ring functor (
Hom(µpn , µpn) Hom(Z/pnZ, µpn)

Hom(µpn ,Z/pnZ) Hom(Z/pnZ,Z/pnZ)

)
Lemma 3.3.1. Assume p is locally nilpotent on S. Then Hom(µpn ,Z/pnZ) = 0 on

Sch/S.

Proof. Fix any base scheme, which we can assume to be affine, say SpecR, and such

that p is nilpotent in R. Then any homomorphism of R-group schemes µpn → Z/pnZ
is given by a R-Hopf-algebra homomorphism R[Z/pnZ]→ R[T ]/(T p

n−1). Denote the

obvious idempotents of R[Z/pnZ] by e0, e1, . . . , epn−1. Suppose f is a R Hopf-algebra

homomorphism. Let fi = f(ei) for all i.

Since both the algebras are finite, free modules over R we can assume that R is local.

Since p is nilpotent in R, specialising at p doesn’t collapse connected components. If

p = 0 in R, then R[T ]/(T p
n − 1) is a local ring and hence connected. Thus µpn is

connected over any local ring R. Hence fi = 0 for all i 6= 0 and f0 = 1, which shows

that the only homomorphism is the trivial one. Thus we have proved the lemma.

The lemma shows that the lower left entry of the matrix above is 0. Aut(µpn×Z/pnZ)
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is a subfunctor (as multiplicative monoids) of the matrix above, and is given by(
Aut(µpn) Hom(Z/pnZ, µpn)

0 Aut(Z/pnZ)

)
=

(
(Z/pnZ)× µpn

0 (Z/pnZ)×

)

Going back to our discussion about the fibre of the projection Msplit,N,n →MIg,N,n, we

see that (E,ϕ, αN) and (E,ϕ′, αN) project to the same point iff ϕ and ϕ′ are related

by an unipotent matrix. Thus the subgroup functor of Aut(µpn × Z/pnZ), consisting

of the unipotent matrices, which is exactly µpn acts simply transitively on Msplit,N,n.

This also shows that Msplit,N,n is a µpn-torsor over MIg,N,n.

3.3.3 The Frobenius

Proposition 3.3.3. There exists a natural isomorphism Msplit,N,n
∼−→ MIg,N,n over Fp

such that the following diagram commutes

Msplit,N,n MIg,N,n

MIg,N,n

∼−→

Frobn

Proof. For any elliptic curve E/R where R is an Fp-algebra, denote as usual by E(pn)

the base change of E by the Frobenius morphism of R.

E(pn) E

SpecR SpecRFrobn

The relative Frobenius F n
E/R : E → E(pn) is the product of the structure morphism

E → SpecR and the absolute Frobenius F n
abs : E → E induced by the map on structure

sheaf x 7→ xp
n
. The relative Frobenius is an isogeny of degree pn whose kernel is a

connected subgroup of E[pn]. Whenever there is an inclusion

µpn ↪−→ E[pn]
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F n
E/R vanishes on the image of µpn and hence it is exactly the kernel.

The natural transformationMIg,N,n
Frobn

−−−→MIg,N,n sends aR-valued point (E, ϕ̂, ϕét, αN)

to the R-valued point (E(pn), ϕ̂(pn), ϕét(pn)
, αN

(pn)), where the isomorphisms are ob-

tained by change of base R
Frobn

−−−→ R.

The isomorphism ϕét : Z/pnZ ∼−→ E[pn]ét ' E[pn]/µpn ↪−→ E/(µpn)[pn] = E(pn)[pn] gives

a splitting of E(pn)[pn]

ϕ : E(pn)[pn]
∼−→ µpn × Z/pnZ

where

ϕ−1|µpn = (ϕ̂(pn))−1 and ϕ−1|Z/pnZ = ϕét

Define a natural transformation MIg,N,n
f−→Msplit,N,n by sending

MIg,N,n(R)
f−→Msplit,N,n(R)

(E, ϕ̂, ϕét, αN) 7→ (E(pn), ϕ, αN
(pn))

Upon composing f with the projection onMIg,N,n we get the point (E(pn), ϕ̂(pn), ϕét
0 , αN

(pn))

where ϕét
0 is the composition Z/pnZ

ϕét

↪−→ E(pn)[pn]
F
E(pn)/R−−−−−→ E(pn)[pn]

ét
.

The commutativity of the following diagram shows that ϕét(pn) ◦ F(Z/pnZ)/R = ϕét
0

Z/pnZ E(pn)[pn]

Z/pnZ E(pn)[pn]
ét

ϕét

F(Z/pnZ)/R
F
E(pn)/R

ϕét(pn)

∼

(3.1)

But relative Frobenius on the constant group scheme Z/pnZ is just identity. Thus

ϕét
0 = ϕét(pn)

.

Thus we have proved that

MIg,N,n Msplit,N,n MIg,N,n
f

Frobn
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We need to construct the inverse map of f . Given a point (E,ϕ, αN) ∈ Msplit,N,n(R),

let E ′ = E/(Z/pnZ) and denote the projection by π : E → E ′. Define (ϕ̂′)−1 to be the

inclusion µpn
ϕ̂−1

↪−−→ E[pn]
π−→ E ′[pn]. Then

E ′(p
n) ' E ′/µpn ' E/E[pn] ' E

Now, E ′[pn]ét ↪−→ E ′(p
n)[pn] = E[pn]. Define ϕét

0 : Z/pnZ ∼−→ E ′[pn]ét to be the restriction

ϕ−1|Z/pnZ. Since

E E ′ Eπ

[pn]

FE′/R

FE′/R : E ′ → E induces an isomorphism of the N -torsion. Define α′N to be the unique

level N structure such that the following diagram commutes

E ′[N ] E[N ]

(Z/NZ)2

FE′/R

α′N αN

Under the base change R
Frobn

−−−→ R, the map π becomes V n
E/R : E(pn) → E, which is

the dual of F n
E/R. The dual of diagram (3.1) shows that ϕ̂ ◦ V n

E/R = ϕ̂(pn). It’s obvious

from the definition that ϕét
0

(pn)
= ϕét. Also by construction α′N

(pn) = αN . Therefore

we can define the map g to be

Msplit,N,n
g−→MIg,N,n

(E,ϕ, αN) 7→ (E ′, ϕ̂′, ϕét
0 , α

′
N)

Then by construction g followed by the projection is Frobn. It’s easy to check that f

and g are inverses of each other. This gives the required natural isomorphism.

Remark 3.3.1. We showed that over Z/pmZ both MIg,N,n and Msplit,N,n are repre-

sentable. One can consider the tower of {MIg,N,n}n∈N or {Msplit,N,n}n∈N just as we did

for MKatz. One can then take the limit. In the first case we define MIgusa = lim←−nMIg,N,n

and in the second case, Mbig Igusa = lim←−nMsplit,N,n. We note that in both cases the in-

verse system consists of affine schemes with the transition maps affine. Hence the
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limits are representable and represented by the direct limit of the respective direct

system of rings.

One can also vary the base scheme and doing so get a system of thickenings of MIgusa

and Mbig Igusa which define affine formal schemes over Xord.

We will study Mbig Igusa in more detail in the next chapter. This functor classifies

isomorphism classes of tuples (E/R,ϕ, αN) where E/R is an elliptic curve over R ∈
NilpZp

, ϕ : E[p∞]
∼−→ µp∞ ×Qp/Zp and αN : (Z/NZ)2 ∼−→ E[N ].
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Chapter 4

The Ĝm Action

4.1 p-divisible Groups

Definition 4.1.1. Let R be a ring. A p-divisible group over R is a sequence {Gn}n∈N
of finite, locally free group schemes over R, equipped with closed immersions in : Gn ↪−→
Gn+1 such that

1. Gn is pn-torsion

2. in identifies Gn with Gn+1[pn]

3. Multiplication by p is a fppf surjection Gn+1 → Gn

Each Gn defines a fppf sheaf of abelian groups on Algop
R . The transition maps are

all injective. Since every object of Algop
R is quasi-compact in the fppf topology, this

implies that the direct limit presheaf G := lim−→n
Gn is already a sheaf, i.e. for any

SpecA ∈ Algop
R , (lim−→Gn)(A) = lim−→Gn(A).

To say that each Gn is finite, locally free over R it is enough to demand that G1 is so,

because each Gn is a multiple extension of group schemes isomorphic to G1. The data

that G1 is p-torsion then implies from the theory of finite group schemes over fields,

that the fibres of G1 are of rank ph for a locally constant function h on SpecR. This

leads us to the equivalent definition of a p-divisible group due to Tate [Tat67, section

2.1].
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Definition 4.1.2. A p-divisible group on R is a direct system of finite, locally free

group schemes (Gn, in)n∈N such that

1. The rank of a fibre of Gn is pnh where h is a locally constant function on SpecR

2. in identifies Gn with Gn+1[pn]

Example 4.1.1. 1. µp∞ = lim−→µpn .

2. Qp/Zp = lim−→Z/pnZ.

3. For any elliptic curve E/R the p∞ torsion E[p∞] is a p-divisible group of height

2.

Definition 4.1.3. For G a p-divisible group on R, we define the formal neighborhood

of the identity Ĝ by

Ĝ := lim−→
k

Inf k(G)

Definition 4.1.4. For a p-divisible group G on Nilpop
R , we define the universal cover

following [SW12, section 3.1] as the sheaf on Nilpop
R

G̃ := lim←− G
p←− G

p←− G
p←− . . .

Definition 4.1.5. We define the Tate module of G as a subsheaf of G̃

TpG := lim←− 0
p←− G[p]

p←− G[p2] . . .

For A ∈ Nilpop
R , write an element of G̃(A) as a sequence (x0, x1, ...) such that pxi+1 = xi

for all i ≥ 0. Then we have an exact sequence

0→ TpG→ G̃→ G

by projecting onto the first coordinate.

Lemma 4.1.1. TpG is representable by an affine scheme.

Proof. This is because each Gn is affine and the transition maps are all affine.
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Lemma 4.1.2. If G is a p-divisible group

0→ TpG→ G̃→ G→ 0

is an exact sequence in the fpqc topology.

Proof. If Gn = SpecRn then G̃ ×G G[pn] is represented by Spec(lim−→i≥nRi). The

inclusion Rn ↪−→ lim−→i≥nRi is an fpqc cover. This proves the lemma because any A-

point of G, SpecA→ G factors through some G[pn].

A homomorphism of p-divisible groups in Tate’s terminology [Tat67] is a morphism of

direct system of group schemes.

Definition 4.1.6. Let G and G′ be two p-divisible groups over R. A homomorphism

f : G → G′ is called an isogeny if it is an fppf epimorphism of sheaves with finite,

locally free kernel. A quasi-isogeny is a global section f of HomR(G,G′) ⊗Z Q such

that pnf is an isogeny for some n ≥ 0.

Example 4.1.2. A p-isogeny of two elliptic curves f : E → E ′ over R induces an isogeny

of their p-divisible groups. An isogeny of E and E ′ of degree coprime to p induces

an isomorphism of their p-divisible groups. Similarly quasi-isogenies of elliptic curves

induce quasi-isogenies of their p-divisible groups.

One can extend our definition of p-divisible groups over arbitrary base scheme S. We

have the following proposition.

Proposition 4.1.1. Suppose S is connected or quasi-compact (eg. affine). A mor-

phism f : G→ G′ of p-divisible groups over S is an isogeny iff there exist a morphism

g : G′ → G and an integer N ≥ 0 such that g ◦ f = pN idG and f ◦ g = pN idG′.

Proof. Suppose f is an isogeny. Since f is an epimorphism there is an isomorphism

G/ ker f
∼−→ G′

Suppose N be such that ker f ⊂ G[pN ]. Then the map pN : G/ ker f → G/ ker f lifts
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through G

G/ ker f G/ ker f

G

pN

pN

Then g : G′ ' G/ ker f
pN−→ G is the morphism we are looking for. Clearly, g ◦ f =

pN idG. Also, f ◦ g ◦ f = pN idG′ ◦ f . Since f is an epimorphism, f ◦ g = pN idG′ .

Conversely, suppose f ◦ g = pN and g ◦ f = pN . Then

G[pN ]
f

�
g
G′[pN ]

show that ker f |G[pN ] = im g|G′[pN ]. The inclusion im g|G′[pN ] ⊂ ker f |G[pN ] is clear. If

x ∈ ker f ∩G[pN ] then fppf locally x = pNy = g(f(y)) for some y. Then f(g(f(y))) =

f(x) = 0 implies f(y) ∈ G′[pN ].

Now ker f = ker f |G[pN ] is finite over S of finite presentation. Also since g|G′[pN ] is an

epimorphism, it is flat over S.

Lemma 4.1.3. A quasi-isogeny of p-divisible groups induce an isomorphism of uni-

versal covers.

Proof. This is trivial as p is invertible in the universal cover.

Theorem 4.1.1. If S ∈ Nilpop
R and G is a p-divisible group over S, then G is formally

smooth.

Proof. [See Mes72, II, Theorem 3.3.13].

Lemma 4.1.4. Let G be a p-torsion group on S, (i.e. G = lim−→n
G[pn]), with all G[pn]

representable. Assume X ′ is an S-scheme and X ↪−→ X ′ is a subscheme defined by

an ideal I such that Ik+1 = 0 and pNI/I2 = 0. Then if f ′ : X ′ → G is such that

f = f ′|X′ : X ′ → G[pn], we have f ′ : X ′ → G[pn+kN ].

Proof. The problem is local on X ′ and S and hence we can assume both X ′ = SpecB

and S = SpecR are affine and so quasi-compact. But then f ′ ∈ Γ(X ′, G[pn
′
]) for some
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n′. Therefore we assume that G is representable, say by SpecA. We use induction

on k. If we could show that f ′|V (Ik) : V (Ik) → G[pn+(k−1)N ], then by the case k = 1

we would know f ′ : X ′ → G[pn+kN ]. Thus it suffices to show for k = 1, i.e. I2 = 0.

Since f : X → G[pn] we have [pn]f = 0. So [pn]f ′ : X → G is a map whose restriction

to X is zero. Since I2 = 0 and G is representable, the X ′ valued points of G whose

restriction to X is zero are in bijection with the R derivations A → I. In particular,

if g : A → R → B is the zero of the group G(X ′) then [pn]f ′ − g ∈ DerR(A, I) and

conversely, for any δ ∈ DerR(A, I), g+ δ is a map whose restriction to X is zero. Since

pN kills I, we have [pN ][pn]f ′ = 0 which proves the lemma.

Corollary 4.1.1. Let pN = 0 on S and let G be as in Lemma 4.1.4. Then the k-th

infinitesimal neighborhood of G[pn] in G is the same as that of G[pn] in G[pn+kN ]. In

particular Inf k(G) = Inf k(G[pkN ]) and is therefore representable.

Proof. If f : T ′ → G belongs to the k-th infinitesimal neighborhood of G[pn] in G,

then there is a covering family {T ′i → T ′} and schemes Ti such that Ti ↪−→ T ′i is a

nilpotent immersion of order k and f |Ti : Ti → G[pn]. But then by Lemma 4.1.4

f |T ′i : T ′i → G[pn+kN ] and hence f ∈ Γ(T ′, G[pn+kN ]).

Corollary 4.1.2. If pN = 0 on S and if k < pn we have Inf k(G) ⊂ G[pn+N−1] and hence

Inf k(G) = Inf k(G[pn+N−1]).

Proof. Let X ′ be an S-scheme and X ↪−→ X ′ be a nilpotent immersion of order k.

Denote with the subscript “◦” the object obtained by reducing a given object modulo

p. Given f ′ : X ′ → G whose restriction to X is zero, then we have f ′◦ : X ′◦ → G◦

belongs to Inf k(G◦). Since k < pn, Inf k(G◦) ⊂ G◦[p
n]. But this means that the

restriction of f ′ ∈ G(X ′) to G(X ′◦) = G◦(X
′
◦) lies in G[pn](X ′◦).

Theorem 4.1.2. Let S ∈ Nilpop
R and G a p-divisible group on S. Then Ĝ (Definition

4.1.3) is a formal Lie group.

Proof. By Lemma 2.1.3 we know Ĝ is a subgroup of G. We need to show that it is

a formal Lie group. By Corollary 4.1.1 Inf k(G) is, locally on S, representable and

therefore is globally representable by the sheaf property and gluing lemma.
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By Theorem 4.1.1 we know G is formally smooth and this implies that Ĝ is formally

smooth. This tells us that Inf k(G) satisfies the lifting condition on points. Since

locally on S, Inf k(G) = Inf k(G[pm]) for appropriate m, and G[pm] is finite locally free,

(and hence of finite presentation) over S it follows from general facts about smooth

algebras [cf. Mes72, II, Theorem 3.1.1] imply that locally on S, Inf k(G) is isomorphic

to a pointed scheme (i.e. a scheme over S with a section to the structure morphism)

of the form

SpecOS[T1, . . . , Tn]/(T1, . . . , Tn)k+1

This shows that Ĝ satisfies condition 2 and 3 of Definition 2.1.6 and hence it is a

formal Lie group.

Lemma 4.1.5. If S ∈ Nilpop
R and Ĝ is a formal Lie group, then Ĝ is of p-torsion.

Proof. We must show Ĝ = lim−→n
Ĝ[pn]. We can assume that S = SpecA with p

nilpotent on A and Ĝ is given by a power series ring A[[X1, . . . , XN ]]. If T is any affine

S-scheme, say T = SpecB, then an element of Ĝ(T ) will be an N -tuple (b1, . . . , dN)

with each bi nilpotent. Let I be the ideal generated by {b1, . . . , bN}. Then each

component of [p]#(b1, . . . , bN) belongs to pI+ I2. Since p and I are both nilpotent, we

see that Ĝ is p-torsion.

Proposition 4.1.2. Let S ∈ Nilpop
R and G a p-divisible group on S. Then Ĝ = 0 iff

G is ind-étale.

Proof. If G is ind-étale, then locally a point of Inf k(G) with values in an S-scheme T

which we can assume to be affine, must be a point of G[pn] for some n, and hence is

0 since G[pn] is étale. Conversely, if Ĝ = 0, then for any s ∈ S, Ĝs = 0, which implies

G[pn]s has no connected part for all n and all s and hence is étale. But G[pn] is flat

over S and has étale fibres. Hence it is étale.

Lemma 4.1.6. Let 0 → G → H → K → 0 be a complex of finite locally free groups

on S. The sequence is exact iff for all s ∈ S, the sequence 0 → Gs → Hs → Ks → 0

is exact.

Proof. ( =⇒ ) is clear.
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(⇐= ) By the fibrewise criterion of flatness, we know that H → K is an epimorphism

if all maps Hs → Ks are epimorphisms. Thus it remains to prove the map G→ keru

is an isomorphism. This can be checked locally on S. Hence we assume S = SpecA,

G = SpecC, keru = SpecB where B and C are finite projective A-modules. To

show B → C is an isomorphism, it suffices to prove this at each point. Hence we can

assume A is a local ring with maximal ideal m. By hypothesis B/mB → C/mC is an

isomorphism. By Nakayama B → C is surjective, and it is injective since C is flat.

Lemma 4.1.7. Let S ∈ Nilpop
R and let 0→ G1 → G2 → G3 → 0 be an exact sequence

of p-divisible groups on S. Then 0→ Ĝ1 → Ĝ2 → Ĝ3 → 0 is also exact.

Proof. The sequence for the formal Lie groups is left exact as they are subgroups of

the corresponding p-divisible groups. We need to prove Ĝ2 → Ĝ3 is an epimorphism.

Let T be an S-scheme and y ∈ Ĝ3(T ). Since G2 → G3 is surjective, there is a covering

{Ti → T} such that for each i, there is an xi ∈ G2(Ti) whose image is y|Ti . By

passing to a covering of each Ti we can assume y|Ti has the property that y|T i
= 0

where T i ↪−→ Ti is a nilpotent immersion and Ti is affine. But then xi|T i
∈ G1(T i).

Since G1 is formally smooth, we know there is an x′i ∈ G1(Ti) which lifts xi|T i
. Then

xi − x′i 7→ y|Ti and has its restriction to T i equal to 0. Hence xi − x′i ∈ Ĝ2(Ti) and

hence the map Ĝ2 → Ĝ3 is an epimorphism.

With all the above preparations, we come to the proof of the Theorem promised in

Section 3.1 (Theorem 3.1.1). We state the result in more generality than in Theorem

3.1.1.

Theorem 4.1.3. Let p be locally nilpotent on S and G a p-divisible group on S. The

following conditions are equivalent:

1. Ĝ is a p-divisible group.

2. G is an extension of an ind-étale p-divisible group G′′ by an ind-infinitesimal

p-divisible group G′.

3. G is an extension of an ind-étale p-divisible group by a p-divisible formal Lie

group.
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4. For all n, G[pn] is an extension of a finite étale group scheme by a finite locally

free radiciel group scheme.

5. G[p] is an extension of a finite étale group by a finite locally free radiciel group.

6. Separable rank of the fibres of G[p] over S is a locally constant function.

Proof. (6) =⇒ (5) follows from Corollary 3.1.1.

(5) =⇒ (6) is clear.

(4) =⇒ (5) is clear.

(5) =⇒ (4) follows from the fact that

separable rank of G[pn]s = (separable rank of G[p]s)
n

This follows from the exact sequences

0→ G[pn−1]→ G[pn]→ G[p]→ 0

(4) =⇒ (2) For each n we have an exact sequence

0→ G′[pn]→ G[pn]→ G′′[pn]→ 0

with G′[pn] finite locally free and radiciel, and G′′[pn] finite and étale. We will show

that the systems {G′[pn]}n and {G′′[pn]}n give us p-divisible groups. To do this it

suffices to see that if 0 → G → H → K → 0 is an exact sequence of finite locally

free groups satisfying the condition of the lemma, then the corresponding sequences

of étale quotients or radiciel kernels are exact. By Lemma 4.1.6 it suffices to prove

this statement over geometric fibres. But in that case it is obvious because any finite

group H has a splitting H = H◦ ×H ét.

Therefore by applying the above discussion to the sequences 0 → G[pi] → G[pn]
pi−→

G[pn−i] → 0 we see that G′ = lim−→G′[pn] and G′′ = lim−→G′′[pn] are p-divisible groups.

Furthermore, G′ is ind-infinitesimal and G′′ is ind-étale.

(2) =⇒ (4) follows from the observation that an exact sequence 0 → G′ → G →
G′′ → 0 induces by snake lemma an exact sequence 0→ G′[pn]→ G[pn]→ G′′[pn]→ 0.
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Note that till now we didn’t use the assumption that p is nilpotent on S. We will use

it now.

(2) =⇒ (3) G′ being ind-infinitesimal, we have G′ = Ĝ′ and it is therefore a formal

Lie group, by Theorem 4.1.2.

(3) =⇒ (2) Let 0 → G′ → G → G′′ → 0 be an exact sequence with G′ a p-divisible

formal Lie group and G′′ an ind-étale p-divisible group. We need to show G′ is a p-

divisible group, i.e. it is p-torsion and G′[p] is finite locally free. Lemma 4.1.5 implies

G′ is p-torsion. To show G′[p] is finite locally free we apply snake lemma again to the

exact sequence, with vertical arrows being multiplication by p, and this gives an exact

sequence 0→ G′[p]→ G[p]→ G′′[p]→ 0. This proves the implication.

(2) =⇒ (1) Lemma 4.1.7 and Proposition 4.1.2 imply that G′ = Ĝ and hence Ĝ is a

p-divisible group.

(1) =⇒ (2) If Ĝ is a p-divisible group then we can form the sequence 0→ Ĝ→ G→
G/Ĝ→ 0. It is a fact that quotient of two p-divisible groups is a p-divisible group [cf.

Mes72, pp. I, 2.4.3]. But Lemma 4.1.7 implies Ĝ/Ĝ = 0. Hence by Proposition 4.1.2

it is ind-étale. This completes the proof.

Theorem 4.1.4. Let R be a ring where p is nilpotent. Assume G is a p-divisible group

that is isogenous to an extension of an ind-étale p-divisible group by a connected p-

divisible group. Then the functor G is representable by a formal scheme, which locally

admits a finitely generated ideal of definition.

Proof. First assume G is ind-étale. Since G[pn+1] is étale, the zero section is an open

(and closed) immersion. Hence every inclusion in,n+1 : G[pn] ↪−→ G[pn+1] is an open

immersion, being the base change of the zero section by the map pn : G[pn+1]→ G[pn].

Then the representability follows from the gluing lemma for schemes.

For the general case, since the question is local on SpecR, assume R is such that Ĝ

is the formal spectrum of a power series ring. We want to show that G×Gét Gét[pn] is

representable by a formal scheme for all n. This will imply that G = lim−→n
G×GétG[pn]ét

is representable because the transition maps are open immersions.

Over an étale cover S ′ = SpecR′ → SpecR = S where Gét[pn] splits into sections,

G×Gét Gét[pn] is the disjoint union of copies of Ĝ. Suppose (G×Gét Gét[pn])S′ = SpfA
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where A is a ring complete w.r.t. a finitely generated ideal I. We get a descent datum

ϕ : SpfA ×S S ′
∼−→ S ′ ×S SpfA by the sheaf property. Set X equal to the coequalizer

in the following diagram

SpfA×S S ′ SpfA X
pr1

pr2◦ϕ

Since SpfA = lim−→k
SpecA/Ik, the coequalizer exists and is equal to lim−→k

Xk where Xk

is the descent of SpecA/Ik to S [Stacks, Lemma 0245]. The Xk are affine and the

transition maps Xk → Xk+1 satisfy the property that they are nilpotent thickenings

over the étale cover S ′ of S. Hence they are nilpotent thickenings themselves. Thus X is

an affine formal scheme with finitely generated ideal of definition because the property

of a morphism being of finite presentation is local on the target for the étale topology.

Finally X represents G×Gét G[pn]ét by the sheaf property [Stacks, Tag 02W4].

Theorem 4.1.5. Let R be as above. Assume that G is isogenous to an extension of an

ind-étale by a connected p-divisible group. Then G̃ is representable by a formal scheme

which locally admits a finitely generated ideal of definition.

Proof. Since the question is local on R, assume by Theorem 4.1.4, G is represented

by the formal spectrum of a R-algebra A which is complete w.r.t. a finitely generated

ideal I. Since the maps G
p−→ G are finite locally free, and in particular affine, G̃ is

represented by Spf B̂ where B = lim−→p
A, the ideal of definition being the ideal generated

by the image of I under the inclusion of the first component and the completion being

w.r.t the ideal of definition.

Theorem 4.1.6. If R is perfect of characteristic p, G is connected and Lie(G) is free

of dimension d, then

G̃ ' SpfR[[x
1/p∞

1 , . . . , x
1/p∞

d ]]

Proof. Let G(pn) = G ×Frob
R R. Consider the relative Frobenius isogeny F : G(pn) →

G(pn+1) and its dual, Verschiebung V : G(pn+1) → G(pn). V F = p · idG(pn) and FV =

p · idGpn+1 . There is a natural transformation of functors V : lim←−pG → lim←−F G
(p−n),
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given by

G G G . . .

G G(p−1) G(p−2) . . .

=

p

V

p

V 2

F F

We claim that V is an isomorphism. Since G is connected, there exists m ≥ 1 such

that G[p] ⊂ kerFm. Then Fm = pu for some isogeny u : G(p−m) → G. Use the symbol

u to denote the base change to G(p−mn) → G(p−m(n−1)), for any n ∈ Z so that un is an

isogenyG(p−mn) → G. Denote by U the natural transformation lim←−Fm
G(p−mn) → lim←−pG

induced by the un. We will show that U and V are inverses of each other upto the

isomorphism lim←−F G
(p−n) ' lim←−Fm

G(p−mn). This last isomorphism comes from the fact

that the later inverse system is cofinal in the former. Explicitly, the isomorphism

(denoted by ϕ) is given on points by

(a0, a1, . . . )
ϕ−→ (a0, am, . . . )

Let us check that U ◦ ϕ ◦ V = id on points.

(a0, a1, ...)
V−→ (a0, V a1, ...)

ϕ−→ (a0, V
mam, ...)

U−→ (a0, uV
mam, ...)

Now, uV mp = puV m = FmV m = pm. This implies that uV m = pm−1 since p is an

epimorphism. Thus uV mam = pm−1am = a1. Similarly one can check for the higher

indices.

Conversely, let us check that V ◦ U ◦ ϕ = id.

(a0, a1, ...)
ϕ−→ (a0, am, ...)

U−→ (a0, uam, ...)
V−→ (a0, V uam, ...)

Now, V up = V Fm = pFm−1 = Fm−1p. Hence V u = Fm−1, again using the fact that

p is surjective. Thus V uam = Fm−1am = a1. The check for higher indices is similar.

Finally, it is clear that G̃ is represented by the formal spectrum of the completion of

lim−→F
R[[x1, . . . , xd]].

Theorem 4.1.7. Let S → R be a surjection with nilpotent kernel J and p nilpotent in

S. Assume G is a p-divisible group over R which has a lift GS to S. Then G̃S(S) =
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G̃(R).

Proof.

G̃(R) = TpG(R)[1/p] = HomR(Qp/Zp, G)[1/p]

The natural map G̃S(S) → G̃(R) is surjective by formal smoothness of G (Theorem

4.1.1). We need to show that the map is injective. Suppose f 7→ 0. Since p is invertible

on G̃S it is enough to show that pnf = 0 ∈ G̃S(S) for some n > 0. We can even assume

that GS is connected, i.e. a formal group. Suppose I is the augmentation ideal of the

formal group.

Denoting by f# : OG → OQp/Zp the induced map on sheaves we see that f#(I) ⊂
JOQp/Zp . Since modulo p, the isogeny [p] factors through F , we have [p]I ⊂ (pI, Ip).

Thus f#[p](I) ⊂ (pJ, Jp)OQp/Zp . Since both p and J are nilpotent, f#([pN ]J) = 0 for

N � 0.

4.1.1 An Equivalent Definition of Mbig Igusa

Recall that we defined Mbig Igusa over Z/pmZ as classifying splittings of the p-divisible

group of ordinary elliptic curves with level N structure. More generally we can assume

the base ring to be a ring R where p is nilpotent.

In this section, we will define another functor F to Sets on Algop
R and show that

Mbig Igusa is naturally isomorphic to F .

Definition 4.1.7. Let F be the functor on Algop
R defined as follows:

S 7→
{

(E/S, ϕ̃, αN)
}
/ ∼

where ϕ̃ : Ẽ[p∞]
∼−→ µ̃p∞ ×Qp and two such tuples are equivalent if they are related by

a quasi-p-isogeny of elliptic curves.

Remark 4.1.1. Given any two tuples representing the same point they are related by

a necessarily unique quasi-p-isogeny, as any p-isogeny of an elliptic curve inducing

identity on the universal cover of its p-divisible group must be the identity itself.
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We see that there is a natural map Mbig Igusa → F sending the isomorphism class of

(E,ϕ, αN) to the quasi-p-isogeny class of (E, ϕ̃, αN) where ϕ̃ is induced by ϕ in the

obvious way. We will show that this map is a natural isomorphism.

Theorem 4.1.8. With definitions as above, Mbig Igusa is naturally isomorphic to F .

Proof. We need to produce an inverse to this natural map. Thus we need to show that

given any (E/S, ϕ̃, αN) there is an E ′/S, a splitting ϕ′ : E ′[p∞]
∼−→ µp∞ × Qp/Zp and

a quasi-p-isogeny f : E → E ′ such that

Ẽ[p∞] Ẽ ′[p∞]

µ̃p∞ ×Qp

f̃

ϕ̃ ϕ̃′

where ϕ̃′ is induced by ϕ′.

Let’s denote µp∞ × Qp/Zp by G to simplify notation. Consider Ẽ[p∞]
ϕ̃−→ G̃

π0−→ G

where π0 is the projection onto the first coordinate as in Lemma 4.1.2. Restricting

this map to TpE := TpE[p∞] we get a TpE valued point of G. Note that by Lemma

4.1.1, TpE is represented by an affine scheme. Since G(TpE) = lim−→Gn(TpE) this

implies that π0 ◦ ϕ̃|TpE factors through some Gn for n big enough. This implies that

π0 ◦ ϕ̃|pnTpE = 0. Thus π0 ◦ ϕ̃ factors as follows

Ẽ[p∞] G̃

E[p∞] G

ϕ̃

πn π0

γ

where πn is the projection onto the (n+ 1)st coordinate. Reasoning similarly for ϕ̃−1

we get an m such that π0 ◦ ϕ̃−1 factors through πm. Choosing N ≥ max(n,m) we get

the following commutative diagram

Ẽ[p∞] µ̃p∞ ×Qp Ẽ[p∞]

E[p∞] µp∞ ×Qp/Zp E[p∞]

ϕ̃

π2N

ϕ̃−1

πN π0

g h
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Note also that πN = π0 ◦ pN implies the commutativity of

Ẽ[p∞] µ̃p∞ ×Qp

E[p∞] µp∞ ×Qp/Zp

ϕ̃

πN π0

g

Thus h ◦ g = p2N idE[p∞] and g ◦ h = p2N idG. In particular g and h are isogenies. Let

H be the kernel of g. Then H is a finite, locally free group scheme over S which is a

subgroup of E[p2N ]. Let E ′ = E/H. The natural projection induces an isomorphism

E ′[p∞]
ϕ′−→ µp∞ × Qp/Zp. Denoting the projection E → E ′ by q it’s easy to see that

f = p−Nq is the quasi-p-isogeny we are looking for. This proves the theorem.

Definition 4.1.8. Given x ∈ F (S) we will call (E,ϕ, αN) ∈ Mbig Igusa(S) a distin-

guished representative for x if it represents x under the natural isomorphism described

above. Any two distinguished representatives are related by a unique isomorphism.

4.2 Group Actions

Let’s revisit some of the Galois groups and their actions we have seen so far. Let us

assume our base ring is R where p is nilpotent. We have seen that MKatz is Galois

over Xord with Galois group Z×p . For a R-algebra S, g ∈ Z×p (S) acts as follows

MKatz(S)→MKatz(S)

(E, ϕ̂, αN) 7→ (E, gϕ̂, αN)

MIgusa is Galois over Xord with Galois group M◦
p := Z×p × Z×p . For a R-algebra S,

g = (ĝ, gét) ∈ Z×p × Z×p (S) the action is given as follows

MIgusa(S)→MIgusa(S)

(E, ϕ̂, ϕét, αN) 7→ (E, ĝϕ̂, ϕétgét−1
, αN)
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4.2.1 Projection From MIgusa to MKatz

The natural projection MIgusa to MKatz by forgetting ϕét is equivariant w.r.t. the action

of Z×p . We remarked in Section 3.1.1 that the problem of classifying tuples (E, ϕ̂, αN)

is equivalent to the problem of classifying tuples (E,ϕét, αN) by duality and used this

later to prove the representability of MIgusa. Let’s try to understand this duality more

carefully.

Weil Pairing : Given a pair of dual isogenies E
π−→ E ′ and E ′

π̌−→ E of degree n there

is a canonical perfect alternating bilinear pairing called the Weil pairing.

eπ : kerπ × ker π̌ → µn ⊂ Gm

Thus we have a Weil pairing Ê[pn] × E[pn]ét → µpn which identifies one as a Cartier

dual of the other. Under this duality, given an isomorphism ϕ̂ : Ê[pn]→ µpn we obtain

a dual isomorphism ϕét : Z/pnZ → E[pn]ét which sends “1” to the unique element x

such that

〈ϕ̂−1(.), x〉 : µpn → µpn

is the identity. Thus we have a natural isomorphism

MKatz(S)
TS−→ ˇMKatz(S)

(E, ϕ̂, αN) 7→ (E,ϕét, αN)

where ϕét is defined as above, for any R-algebra S. We will sometimes loosely write

T (ϕ̂) = ϕét. This natural isomorphism has the property that for any g ∈ Z×p (S)

TS(E, gϕ̂, αN) = (E,ϕétg, αN)

In Section 3.3.1, we said that MIg,N,n = MKatz,N,n×Y (N)ordMKatz,N,n where we identified

the second component with ˇMKatz,N,n using this natural isomorphism.

There is a natural section of the projection MIgusa → MKatz which is given by the

diagonal embedding MKatz
∆−→MIgusa. On points this is given as

(E, ϕ̂, αN)
∆−→ (E, ϕ̂, T (ϕ̂), αN)
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Let us understand how this section commutes with Z×p action.

(E, gϕ̂, αN)
∆−→ (E, gϕ̂, T (gϕ̂), αN) = (E, gϕ̂, T (ϕ̂)g, αN)

This suggests that if we consider the embedding of Z×p in M◦
p as a 7→ (a, a−1), the

canonical section commutes with the Z×p action.

4.2.2 Projection from Mbig Igusa to MIgusa

We have discussed this in detail in Section 3.3.2. Let’s just recall the results from that

section.

Let B◦p := Aut(µp∞ ×Qp). As matrices

B◦p =

(
Aut(µp∞) Hom(Qp/Zp, µp∞)

0 Aut(Qp/Zp)

)
=

(
Zp× Tpµp∞

0 Zp×

)

Let N◦p := Hom(Qp/Zp, µp∞) = Tpµp∞ There are natural inclusions of M◦
p ↪−→ B◦p and

N◦p ↪−→ B◦p which realizes B◦p as a semi-direct product B◦p = N◦p oM◦
p .

The projection Mbig Igusa → MIgusa is equivariant for the M◦
p action and realizes

Mbig Igusa as an fpqc N◦p torsor over MIgusa.

Note that so far the actions described for all the groups above give Xord-morphisms.

We will now describe a group and its action on Mbig Igusa in the light of Section 4.1.1

that will not be a Xord-morphism.

Let

Bp := Aut(µ̃p∞ ×Qp)

Mp := Aut(µ̃p∞)× Aut(Qp) = Q×p ×Q×p
Np := Hom(Qp, µ̃p∞) = µ̃p∞

We saw in Section 4.1.1 that Mbig Igusa can be interpreted as classifying quasi-p-isogeny
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classes of tuples (E, ϕ̃, αN). This gives a Bp action on Mbig Igusa described on points as

Mbig Igusa(S)→Mbig Igusa(S)

(E, ϕ̃, αN) 7→ (E, gϕ̃, αN)

for g ∈ Bp(S) for any R-algebra S.

4.3 The Ĝm Action

4.3.1 Extending the Action on MIgusa

We have seen MIgusa admits a natural action of M◦
p and MIgusa = N◦p\Mbig Igusa.

Let B′p = Np oM◦
p ⊂ Bp. As matrices

B′p =

(
Z×p µ̃p∞

0 Z×p

)

Then N◦p is a normal subgroup in B′p. The conjugation action is given as(
a1 y

0 a2

)
·

(
1 x

0 1

)
·

(
a1 y

0 a2

)−1

=

(
1 xa1a

−1
2

0 1

)

Using Lemma 4.1.2, we see that there is a fpqc quotient

B′p/N
◦
p = Bp := Ĝm oM◦

p

coming from

1→ Tpµp◦ → µ̃p∞ → Ĝm → 1

Using the action of Bp on Mbig Igusa, we see that the action of B′p descends to an action

of Bp on MIgusa and the equivariance of the projection w.r.t. the M◦
p action shows that

the Bp action extends the M◦
p action on MIgusa. The new part of the action is that of

Ĝm = Np/N
◦
p .
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4.3.2 Extending the Action on MKatz

We have a canonical embedding of MKatz inside MIgusa as described in Section 4.2.1. We

want to show that the closed subscheme of MIgusa defined by the diagonal embedding

is invariant under the extended action of Ĝm. Then this will give us an extension of

the Z×p action on MKatz. But before proving that we need some more preparation.

For an elliptic curve E/R recall that since pn : E → E is self dual the pn-Weil pairing

is a perfect, bilinear, antisymmetric pairing

E[pn]× E[pn]→ µpn

Lemma 4.3.1. Given E
π1−→ E ′

π2−→ E. Then for any P ∈ kerπ1(S) for an R-algebra

S and Q ∈ ker(π2 ◦ π1)(S)

eπ2◦π1〈P,Q〉 = eπ1〈P, π̌2(Q)〉

Proof. [See KM85, (2.8.4.1)].

Suppose we have a splitting ϕ : E[pn]
∼−→ µpn × 1/pnZ/Z. Let π : E → E/Ê[pn]. Then

π̌ ◦ π = pn. Applying the above lemma to this situation, we see that

ϕét = π ◦ ϕ−1 : 1/pnZ/Z ∼−→ E[pn]ét

is T (ϕ̂) iff

epn〈ϕ−1(.), ϕ−1(1/pn)〉 : µpn → µpn (4.1)

is the identity.

Remark 4.3.1.

epn〈ϕ−1(.), ϕ−1(.)〉 : µpn × µpn → µpn

is trivial by Lemma 4.3.1.

The pn-Weil pairings for varying n induce an antisymmetric Qp-bilinear pairing

ẽ : Ẽ[p∞]× Ẽ[p∞]→ µ̃p∞

((ai), (bj)) 7→ (ck)
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where

ck = 〈ai, bj〉p
s

pt

for i+ j = k + t+ s and t large enough for the right-hand side to make sense. It can

be checked easily that ẽ is well-defined.

A point x ∈MIgusa(S) lies in ∆(MKatz)(S) iff equation (4.1) holds.

Lemma 4.3.2. Equation (4.1) holds iff

ẽ〈ϕ̃−1(a), ϕ̃−1(b)〉 = ab

for any a ∈ µ̃p∞(S) and b ∈ Qp(S) for any R-algebra S.

Proof. Obvious.

Now we can prove that the extended group action stabilizes the canonical section.

Indeed, suppose (E,ϕ, αN) ∈Mbig Igusa(S) be a distinguished representative for a point

x. Let g ∈ Bp(S). Suppose (E ′, ϕ′, α′N) be a distinguished representative for the point

gx.

Proposition 4.3.1. Suppose (det g)p−vp(det g) = 1. Then equation (4.1) holds for ϕ iff

it holds for ϕ′.

Proof. Write detp g = (det g)p−vp(det g).

By definition of a distinguished representative, there exists a unique quasi-p-isogeny

f : E → E ′ such that

Ẽ[p∞] µ̃p∞ ×Qp

Ẽ ′[p∞] µ̃p∞ ×Qp

ϕ̃

f̃ g

ϕ̃′

From this diagram we see that deg f = pvp(det g). It is enough to show that equation

(4.1) holds for ϕ implies that it holds for ϕ′. So assume (2) for ϕ. Suppose

g =

(
a z

0 a′

)
∈

(
Q×p µ̃p∞

0 Q×p

)
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Then

g−1 =

(
a−1 z−(aa′)−1

0 a′−1

)

For x ∈ µ̃p∞(S) and y ∈ Qp(S),

ẽ〈ϕ̃′−1
(x), ϕ̃′

−1
(y)〉 = 〈fϕ̃−1(g−1x), f ϕ̃−1(g−1y)〉

= 〈ϕ̃−1(xa
−1

), ϕ̃−1(z−(aa′)−1y, a′
−1
y)〉deg f

= 〈ϕ̃−1(x), ϕ̃−1(y)〉detp g−1

where we use bilinearity and Remark 4.3.1 in the last step. This proves the proposition.

Corollary 4.3.1. Let Z×p ↪−→ M◦
p by a 7→

(
a 0
0 a−1

)
. Then the action of Ĝm o Z×p ⊂

Ĝm oM◦
p stabilizes the canonical section.

Proof. Given (E, ϕ̂, ϕét, αN) ∈ ∆(MKatz)(S) choose a fpqc cover of S where the exten-

sion

µp∞
ϕ̂−1

−−→ E[p∞]
ϕét

−−→ Qp/Zp

splits and the given element of Ĝm lifts to an element of µ̃p∞ . Then apply Proposition

4.3.1.

Thus we have extended the action of Z×p to an action of Ĝm o Z×p on MKatz.

4.4 Kummer p-divisible Groups

For any ring R and q ∈ R× we will construct an extension of p-divisible groups over

SpecR,

Eq : µp∞ → Gq → Qp/Zp

We will call the Gq arising from such extensions Kummer p-divisible groups. Our

construction will be modeled on the p-divisible group of the Tate curve.
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Consider the fppf sheaf in groups

Rootsq ⊂ Gm × Z[1/p]

consisting of pairs (x,m) such that for k sufficiently large, xp
k

= qp
km.

Projection to the second component gives a natural map Rootsq → Z[1/p] whose kernel

is µp∞ . The projection admits a canonical section over Z given by 1 7→ (q, 1). Let

Gq := Rootsq/Z

be the quotient by the image of this section.

Lemma 4.4.1. Gq is a p-divisible group, and the maps

µp∞ → Rootsq and Rootsq → Z[1/p]

induce the structure of an extension

Eq : µp∞ → Gq → Qp/Zp

Proof. Let Roots′q be the subsheaf of sets of Rootsq of elements (x,m) with m ∈ Z[1/p]

for 0 ≤ m < 1. The group law induces an isomorphism

Roots′q × Z→ Rootsq

Thus Roots′q as a sheaf of sets is isomorphic to Rootsq/Z. For any R-algebra A with

SpecA connected

Gq(A) = Rootsq/(q, 1)Z

Any element of Gq(A) has a unique representative of the form (x,m) ∈ Rootsq(A)

with 0 ≤ m < 1. Such an element is pk-torsion iff m ∈ 1/pkZ and xp
k

= qp
km. In

particular Gq = lim−→k
Gq[p

k]. Moreover multiplication by p is an epimorphism in the

fppf topology. Thus to see that Gq is a p-divisible group we nee to show Gq[p
k] is
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finite, locally free over R. But this is obvious as Gq[p
k] is represented by

pk−1∏
a=0

R[x]/(xp
k − qa)

with multiplication given by carrying, i.e. for x1 a root of qa1 and x2 a root of qa2 , in

the group structure

x1 · x2 =

x1x2 as a root of qa1+a2 if a1 + a2 < pk

x1x2/q as a root of qa1+a2−pk if a1 + a2 ≥ pk

This is clearly a finite, flat group scheme.

Example 4.4.1. As noted in the beginning, for the Tate curve over Z((q)), Tate(q)[p∞] =

Gq.

4.5 Serre-Tate Lifting

For R a ring in which p is nilpotent, and R0 = R/I for I a nilpotent ideal, let

Def(R,R0)

be the category of triples

(E0, G, ε)

where E0/R0 is an elliptic curve, G is a p-divisible group, and ε : G|R0

∼−→ E0[p∞] is an

isomorphism.

For the category Ell/R of elliptic curves over R, there is a natural functor

Ell/R −→ Def(R,R0) (4.2)

E 7→ (ER0 , E[p∞], εE)

where εE : E[p∞]R0

∼−→ ER0 [p∞] is the canonical isomorphism.

Theorem 4.5.1. (Serre-Tate) The functor (3) is an equivalence of categories.
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Proof. [See Kat81, Theorem 1.2.1].

Here we list two immediate corollaries of Theorem 4.5.1 whose proofs are obvious.

Corollary 4.5.1. For R ∈ NilpZp
, and π nilpotent in R, the natural reduction map

Mbig Igusa(R)→Mbig Igusa(R/π)

is a bijection.

Let A be a p-adically complete ring and let π ∈ A be a topologically nilpotent element

for its p-adic topology. Consider the moduli problem MIgusa-π which classifies for

SpecR ∈ Nilpop
A , the isomorphism classes of quadruples

(E0,E, ψ, αN)

where E0 is an elliptic curve over R/π, αN is a level N structure on E0, E is an

extension of p-divisible groups over R

E : µp∞ → GE → Qp/Zp

and ψ : E0[p∞]
∼−→ GE|R/π.

There is a natural map MIgusa,A →MIgusa-π given by sending

(E/R, ϕ̂, ϕét, αN) 7→ (E(R/π),EE[p∞],ϕ̂,ϕét , ψcan, α|R/π)

where EE[p∞],ϕ̂,ϕét is the extension defined by ϕ̂ and ϕét and ψcan : ER/π[p∞] ' E[p∞]R/π

is the canonical isomorphism.

Corollary 4.5.2. The map MIgusa,A →MIgusa-π described above is an isomorphism.
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4.6 Computing the Ĝm Action

4.6.1 Action of the Unipotent Subgroup on the Distinguished

Representatives

In order to describe the Ĝm action on MKatz it will be useful to understand the action of

the unipotent subgroup Np = µ̃p∞ (Section 4.2.2) on the distinguished representatives

of Mbig Igusa.

Suppose R ∈ NilpZp
, n = (ζk) ∈ Np(R) and let I be a nilpotent ideal of R containing

ζ0 − 1. Then

n mod I = (1, ζ1 mod I, . . . )

is an element of N◦p (R/I) = Tpµp∞(R/I). Now if x = (E, ϕ̃, αN) ∈ Mbig Igusa(R) is a

distinguished representative for x such that ϕ̃ comes from an isomorphism

ϕ : E[p∞]
∼−→ µp∞ ×Qp/Zp

then

n · x = (E ′, ϕ̃′, α′N)

where E ′ is the Serre-Tate lift from R/I to R of ER/I determined by the isomorphism

(n mod I) ◦ ϕR/I : ER/I [p
∞]

∼−→ (µp∞ ×Qp/Zp)R/I ,

ϕ′ is the natural isomorphism E ′[p∞]
∼−→ (µp∞ × Qp/Zp) and α′N is the unique lift of

αN |R/I .

Theorem 4.6.1. Let R be a p-adically complete ring. Suppose ζ ∈ Ĝm(R) and π ∈ R
is such that ζ ≡ 1 mod π, and (E0,Eq, ψ, αN) ∈ MIgusa-π(R) where Eq is the Kummer

extension of Section 4.4 and q ∈ Gm(R). Then

ζ · (E0,Eq, ψ, αN) = (E0,Eζ−1q, ψ
′, αN)
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where ψ′ is the composition of ψ with the canonical identification

Eq|R/π = Eζ−1q|R/π

coming from q ≡ ζ−1q mod π.

Proof. If we write x1 for the point (E0,Eq, ψ, αN) and x2 for the point ζ ·x1, it suffices

to show that over the cover R[q1/p∞ , ζ1/p∞ ], these points lift to points x̃1 and x̃2 in

Mbig Igusa, and there is a lift ζ̃ of ζ in Np = µ̃p∞ such that ζ̃ x̃1 = x̃2. The desired lifts

are given by the splittings

1/pn 7→ (q1/pn , 1/pn) and 1/pn 7→ (ζ−1/pnq1/pn , 1/pn)

of Eq and Eζ−1q respectively, and ζ̃ = (ζ1/pn)n. That ζ̃ · x̃1 = x̃2 follows from the

commutativity of the following diagram mod π

Gq Gζ−1q

Ĝm ×Qp/Zp Ĝm ×Qp/Zp

=

1/pn 7→(q1/pn ,1/pn)

(
1 ζ̃
0 1

)
1/pn 7→(ζ−1/pnq1/pn ,1/pn)

4.6.2 Action on the Tate Curve and q-Expansions

Definition 4.6.1. A cusp for MKatz,R for a p-adically complete ring R is a R((q)) val-

ued point of MKatz,R which corresponds to the Tate curve Tate(qN) with the canonical

trivialization of its formal group and any level N structure.

Let R = Zp[ζN ]((q)) and consider the Tate curve Tate(qN) over R. We have the

canonical trivialization

ϕcan : ̂Tate(qN)
∼−→ Ĝm

We have a basis (ζN , q) for the N -torsion. The Tate curve (Tate(qN), ϕcan, αN) corre-

sponds to one of the cusps c (say).
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Corollary 4.6.1. Suppose g ∈ M(Γ1(N), A, k), with A p-adically complete. For the

cusp c of MKatz, suppose the q-expansion of g is given by∑
k≥M
M∈Z

akq
k ∈ A⊗̂R

Then for any ζ ∈ Ĝm(R)

ζ · g := (ζ−1)∗ · g

has q-expansion at c ∑
k≥M

ak(ζ
1/Nq)k =

∑
k≥M

ζk/Nakq
k

Proof. It follows from Theorem 4.6.1 that

ζ−1 ·
(

Tate(qN), ϕ̂can, (ζN , q)
)

=
(

Tate(ζqN), ϕ̂can, (ζN , ζ
1/Nq)

)
This is the base change of Tate(qN) through q 7→ ζ1/Nq. Hence the corollary follows.

To differentiate the action of Ĝm is to compose the action with the canonical tangent

vector to Ĝm at the identity. This corresponds to the R[ε] valued point given by

R[[x]]→ R[ε]

x 7→ ε

where ε2 = 0 and 1 + x is the multiplicative coordinate on Ĝm. Applying this to

Corollary 4.6.1, we get

Corollary 4.6.2. For ζ = 1 + ε ∈ Ĝm(R[ε]), the effect on q-expansions induced by

pullback through the action on MKatzR[ε], (ζ)∗ · g = ζ−1 · g is

∑
akq

k 7→
∑

(1− ε)k/Nakqk =
(

id− ε 1

N
q

d

dq

)∑
akq

k

Thus, differentiating the Ĝm action on MKatz we get back −θ.
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Appendix A

Cohomology and Base Change

In this appendix we recall some results about cohomology and base change for proper,

smooth morphisms. We follow a handout by [Con].

Theorem A.0.1. (Grothendieck) Let f : X → S be a proper morphism of schemes

with S locally Noetherian, and let F be a S-flat coherent sheaf on X. Let s be a point

in S. Assume for all i ≥ 0, the natural base change morphism ϕis : Rif∗(F) ⊗OS,s

k(s) → H i(Xs,Fs) is surjective. Then ϕis′ is an isomorphism for all s′ in a suitable

neighbourhood of s. Moreover, the following are equivalent:

1. ϕi−1
s is surjective

2. Rif∗(F)s is finite free.

Proof. The theorem is proved in [Har13, III, Theorem 12.11] for the case when X/S

is projective. The more general result for proper morphisms is proved in [Gro61,

Proposition 4.6.1].

Corollary A.0.1. If H i(Xs,Fs) = 0 for some s ∈ S, then

1. ϕis′ is an isomorphism for all s′ near s

2. Rif∗(F) vanishes near s

3. ϕi−1
s′ is an isomorphism for all s′ near s.
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In the case i = 1, f∗F is locally free near s and ϕ0
s′ : f∗Fs′ ⊗OS,s′

k(s′) → H0(Xs′ ,Fs′)

is an isomorphism for all s′ near s.

Proof. (1) follows from Theorem A.0.1. (2) follows from (1) using Nakayama’s lemma.

(3) follows from (2) using Theorem A.0.1.

Corollary A.0.2. Let f : X → S be a proper, surjective, flat map whose geometric

fibres are reduced and connected. Then the natural map OS → f∗OX is an isomor-

phism.

Proof. For any s ∈ S the k(s)-algebra of global sections of Xs is non-zero and finite-

dimensional since Xs is proper and non-empty. Its formation commutes with any

extension on k(s). After passing to the geometric fibre, we get a reduced, proper,

connected scheme over an algebraically closed field whose global sections thus will

be equal to k(s). Thus H0(Xs,OXs) is one-dimensional and hence the natural map

k(s)→ H0(Xs,OXs) is an isomorphism.

Since X is flat over S, we can apply Theorem A.0.1 to OX . The natural map

ϕ0
s : f∗(OX)⊗OS,s

k(s)→ H0(Xs,OXs) ' k(s)

is surjective as 1 7→ 1. Thus it is an isomorphism. Since ϕ−1
s is trivially surjective,

f∗OX is free near s, necessarily of rank 1 as it is so over the fibre. Thus f∗OX is a line

bundle. The structure morphism OS → f∗OX is an isomorphism as it is so modulo

the maximal ideal of OS,s.

Remark A.0.1. A special case of Corollary A.0.1 is i = d + 1 when f is a morphism

whose fibres have dimension ≤ d. In that case Hd+1(Xs,Fs) vanishes for all s ∈ S by

Grothendieck vanishing. This implies that ϕds is a surjection (hence an isomorphism)

for all s ∈ S by the corollary.

Now consider the general setup of Theorem A.0.1. We will use the fibral base change

morphisms ϕis to study more general base change morphisms.

Proposition A.0.1. Assume ϕis is an isomorphism for all s ∈ S, and that ϕi−1
s is

also an isomorphism for all s ∈ S (or equivalently, that Rif∗(F) is locally free on S).
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Consider a locally Noetherian S-scheme S ′, the resulting Cartesian diagram

X ′ X

S ′ S

q

f ′ f

p

and the S ′-flat coherent coherent sheaf F′ = q∗F on X ′. The natural base change

morphism p∗(Rif∗F)→ Rif ′∗(F
′) is an isomorphism.

Proof. We recall that the formation of coherent cohomology commutes with flat base

change (because flat base change of a Čech complex is a Čech complex). Hence in

particular for any s′ ∈ S ′ lying over s ∈ S, the natural base change map

k(s′)⊗k(s) H
i(Xs,Fs)→ H i(X ′s′ ,F

′
s′) (A.1)

is an isomorphism.

The natural pullback map Rif∗(Fs)⊗OS,s
OS′,s′ → Rif ′∗(F

′)s′ induces the commutative

diagram

Rif∗(Fs)⊗OS,s
k(s′) Rif ′∗(F

′)s′ ⊗OS′,s′
k(s′)

H i(Xs,Fs)⊗k(s) k(s′) H i(Xs′ ,F
′
s′)

ϕi
s ϕi

s′

'

Hence the surjectivity of ϕis implies the surjectivity of ϕis′ . Thus the hypothesis implies

that both ϕis′ and ϕi−1
s′ are surjective for all s′ ∈ S ′. Thus Rif ′∗(F

′) is finite locally

free on S ′. Thus to prove that the natural base change map is an isomorphism (at the

stalk at s′ ∈ S ′) it is enough to prove it modulo the maximal ideal ms′ of OS′,s′ which

is exactly the isomorphism of (A.1).
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