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Abstract 

This thesis explores the applicability of neural networks in stock return forecasts by designing a 

hybrid LSTM (long short-term memory) network, and compares its forecasting ability with both a 

static LSTM network and an ARIMA hybrid model. The S&P100 stock set is employed as the 

prediction sample. The hybrid models use the neural network approach and frequentist method 

respectively to estimate Fama-French risk factors, then predict stock returns based on factor 

estimations that benefit from the prediction ability and computational power of the LSTM network 

and the ARIMA model as well as the Fama-French model’s explanatory power of returns. Better 

factor predictions are made by the LSTM network with a 31% reduction of Mean Squared Error 

(MSE) and broader ranges of estimation than the ARIMA model. Hybrid models demonstrate a 

better fit, resulting in more accurate predictions compared to the static LSTM network by an 

average of 4.6% (LSTM-FF) and 3.1% (ARIMA-FF). However, I find that the slight 

outperformance of the LSTM-FF hybrid model over the ARIMA-FF hybrid model is not 

statistically significant.  
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1. Introduction 

Financial practitioners and academics are concerned with producing good stock return forecasts; 

the former because they hope to earn higher returns and the latter as they seek to understand what 

governs markets. Traditionally, frequentist methods have been used for forecasting but have 

encountered limited success. However, recent advances in both computing power and neural net 

designs have spawned a second wave of applying machine learning to the task of stock price 

prediction. As there are some limits to the universal applicability of neural nets and still some 

discussion on which designs are best, I explore the effectiveness of some of the more recent model 

designs in this thesis. To do so, I propose a novel neural network hybrid model and compare it 

with a sole static neural network model and a traditional time series forecasting hybrid model.   

One of the most popular and widely accepted traditional statistical models for time series 

forecasting is the Autoregressive Integrated Moving Average (ARIMA) model. The acronym 

presents three components of the model: AR(p), I(d), and MA(q), and each of these three 

components can be flexibly adjusted to best fit a variety of time series distributions (Cochrane, 

2005). However, this model’s linear structure can limit both its suitability and accuracy. 

Researchers have tried to resolve some of the defects of such linear models by moving to non-

linear models, including deep learning algorithms. 

One possible non-linear approach, which has enjoyed renewed interest in the past few years, is 

neural network (NN) architecture. These structures have been  studied and applied to a wide range 

of fields where they have brought improvements (Zhang et al., 1998) over prior model designs. 

The non-linear structure and great flexibility of neural networks holds potential for its forecasting 

ability in finance and economics (Kaastra & Boyd, 1996). In this thesis, a particular neural network, 

long short-term memory (LSTM) net, is employed as the representative of a neural network vehicle.  

The selection of LSTM networks is based on their special structures which have demonstrated 

their remarkable forecasting ability, particularly using time series data (Hochreiter and 

Schmidhuber, 1997). 

However, the outperformance of neural networks has not persuaded scholars to employ them 

regularly within the fields of finance or economics. One possible reason is that it is hard to interpret 

how the model generates predictions or to interpret the results using a financial intuition. Empirical 
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studies and linear regression models, in contrast, are more widely accepted. For instance, the 

Fama-French risk factor models have been widely tested and have proven to have explanatory 

power for stock returns. Thus, in this thesis, the Fama-French factors are essential to the hybrid 

models. 

The hybridization process is conducted in two steps. First, the LSTM network is employed to 

predict Fama-French risk factors. Then the stock returns are computed using the aforementioned 

estimates. There are multiple reasons for creating a hybrid model. First, it addresses the defects of 

linear models by using the neural network’s non-linear structure. Second, it may benefit from the 

combination of two main return prediction approaches; historical data-based models and 

explanatory regression-based models. Finally, building on Newton (2018) who finds that applying 

a universal prediction model is inflexible, hybrid models accomplish the prediction process by 

introducing the risk factors as forecasting proxies. Since the prediction is made using the Fama-

French risk factors, this reduces computing time and increases model flexibility by well-fitting 

only five risk factors instead of every single stock.  

For comparison purposes, I also employ an ARIMA model as the benchmark of a classical time 

series forecasting model. To be consistent with the LSTM hybrid model, the ARIMA model is also 

hybridized with the Fama-French model. As a test of robustness, a sole static LSTM model without 

hybridization is used to compare the flexibility of the static and hybrid models. 

Thus, the goal of this research is two-fold. First, to test whether the LSTM networks are better 

suited than traditional models in terms of financial time series data forecasting. Second, to use the 

Fama-French five factor model as a proxy to find a well hybridized model with superior fitness, in 

order to determine if better fitness will give higher forecasting accuracy and better efficiency which 

would be useful for portfolio managers. 

I find that static LSTMs, those which directly attempt to forecast stock prices, have restricted 

modeling flexibility and therefore have poorer performance as compared to the hybrid models.  

This is true particularly regarding the stock price moving direction (increase/decrease), whereas 

the change in the mean MSE is insignificantly different when compared to those of the hybrid 

models. However, a comparison between the hybrid models reveals that the differences between 

the predictions of the two models are not statistically significant, failing to support the hypothesis 

of neural networks' efficiency in forecasting stock returns. 
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The remainder of the thesis is organized as follows: Section 2 introduces the return and risk 

predictions. Section 3 develops the hypotheses. Section 4 describes the data, software and 

methodology. Section 5 presents and discusses the results. Section 6 addresses the limitations of 

this thesis. Section 7 concludes. 

2. Return and Risk Predictability 

Accurate predictions on returns and risks are always a primary goal for both researchers and 

practitioners. The two main approaches to forecasting returns are using historical returns and using 

explanatory regression models. Goyal and Welch (2007) argue that historical average excess stock 

returns generate better predictions of excess stock returns when compared to using regressions of 

predictor variables. Contrarily, Campbell and Thompson (2007) show that many explanatory 

regressions of excess returns outperform the predictions based on historical returns. In this thesis, 

I attempt to determine which process produces superior forecasts, a stand-alone neural net or the 

hybridized mixture of classic frequentist and neural net modeling. 

Another important way to categorize research is the forecasting horizon of the returns. Fama and 

French (1988) and Poterba and Summers (1988) support the mean-reversion theory and find that 

stock returns are negatively auto-correlated over a long horizon, indicating that stock prices tend 

to move back to an average price in the long run. Investors can apply this concept to adjust their 

long-term investment strategies. However more recent studies show that return predictions are 

only effective over the short-term. Moskowitz, Ooi and Pedersen (2012) introduce the “time series 

momentum” finding strong predictabilities using a 12-month horizon in different types of assets 

and markets. Consistent with Newton (2018), the prediction period is set to half a year of 125 

trading days, which is a relatively short-horizon. This should also be consistent with the time frame 

of some active fund managers. 

2.1 The ARIMA Model 

Before the more widespread usage of neural networks, many researchers employed the classical 

forecasting model, the ARIMA model, using historical data. The ARIMA model is itself a 

generalization of an earlier and simpler ARMA model and generally takes the structural form of: 
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𝑥𝑡 = 𝜙1𝑥𝑡−1 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 ,    (1) 

where, 𝜙𝑖 is the parameter of the autoregressive term, 𝜃𝑖 is the parameter of the moving average 

term, 𝜀𝑡 is the error term, and 𝑝 and 𝑞 are the model orders, indicating the units for model time 

lags and the units of residuals. ARMA models require stationary data in which the mean and 

autocorrelation are constant over time, thus an integration part (the I in the ARIMA) is added by 

defining another order 𝑑 which is the degree of differencing that rules the transformation of data 

into a stationary time series. 

Similar to other traditional models, the ARMA model given by equation (1) is built on the 

assumption that time series are persistently related in a linear way (Zhang et al., 1998), although 

linear systems are very rarely encountered in the real world (Granger and Terävirta, 1993). 

Traditional statistical prediction models have confined information due to their simple linear 

structure and limited number of commonly used economic parameters. 

2.2 Neural Network Models 

The application of neural networks to forecasting became popular and became more widely 

employed following the adoption of an important algorithm – backpropagation (Werbos, 1974, 

1982). This algorithm can more effectively update the weights in the network to realize 

optimization by calculation and feeding back the gradient of the loss function.  

In the early 1990s, neural networks were found to be well-suited for financial classification and 

prediction, such as decision making, risk identification and replacing some classical statistic 

models to carry out fundamental analysis (Hawley et al., 1990). Odom and Sharda (1990) test the 

prediction ability of neural networks for bankruptcy. Kryzanowski, Galler, and Wright (1993) 

apply the Boltzmann Machine (BM)1 to predict positive or negative stock returns, showing that 

the BM predictions significantly outperform the random selection probability. Kaastra and Boyd 

(1995) find that neural networks can forecast trading volumes of certain types of products traded 

in the Winnipeg Commodity Exchange for up to nine months. Those studies shed light on the 

future applicability of neural network s to the finance and economics fields. 

                                                 
1 A Boltzmann Machine is a type of recurrent neural network (RNN) with symmetrical connection structures. BM 

units generate stochastic results with two stats that are 1 (on) or 0 (off). 
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Many studies have compared neural networks with traditional forecasting methods, showing that 

neural networks outperform simple linear structures. Cao, Leggio, and Schniederjans (2005) find 

that ANN beats traditional models for stock returns using both univariate and multivariate 

structures. Kuremoto, Kimura, Kobayashi, and Obayashi (2014) apply a deep belief network with 

Restricted Boltzmann Machines to predict the CATS benchmark, and obtain results that exceed 

those from an ARIMA model. Possible reasons for the superiority of NN are: (1) Neural networks 

have non-linear structures which are more flexible and more aligned with the real world (Granger 

and Terävirta, 1993); (2) Neural networks are able to find the unseen information that is buried in 

a large number of data and noise, and thus bypass the omitted variable problem using classical 

methods. 

Amongst the types of neural networks, the recurrent neural network (RNN), first introduced by 

Rumelhart (1986), is one with a “memory” which allows it to better process time sequences. The 

structure of the neural net enables the current cell to be calculated based on the input information 

of the current status, as well as that of previous cells. This is very meaningful for time series whose 

current information reveals what happened in previous periods. Theoretically, useful information 

from previous time nodes would be undamaged and transmitted to current nodes. However, in 

practice, the normal RNNs are somewhat simple due to their limited “memory” length which is 

caused by the problems associated with error gradients vanishing and exploding2 (Hochreiter et 

al., 2001). To address the memory length issue, we introduce LSTM networks in this study. 

An LSTM net is a particular type of RNN that replaces the core unit with a memory cell that is 

called an LSTM unit. An LSTM network applies a gradient based algorithm which enforces 

constant loss flow through internal states, efficiently preventing both gradient vanishing and 

exploding problems, while simultaneously keeping the learning ability of the architecture on both 

long and short time lags using noisy input data. This improvement is achieved by having not only 

the input and output gates but also a forget gate. These gates regulate the amount of “memory” 

                                                 
2 In a backpropagation procedure, loss is fed backwards by its derivative (gradient) to adjust the weight of each node.  

The gradient tends to reduce to zero after iterations for some activations, such as Sigmoid activation, which is referred 

to as a gradient vanishing problem. In contrast to the gradient vanishing problem, the gradient can increase 

exponentially and reach a very high value, so that a slight change in inputs may result in significant variations in the 

outputs and errors, which is referred to as the gradient exploding problem. Designing the right network structure and 

choosing the proper activation functions can help resolve these gradient problems. 
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inflows and outflows by weight adjustment, resulting in an effective truncation of errors and 

useless information (Hochreiter and Schmidhuber, 1997).  

In an LSTM net structure, the forget gate is one of its most significant components (Greff et al., 

2016). Gers, Schmidhuber and Cummins (2000) note that the internal state values grow 

indefinitely and explode when processing continual input streams. However, when a forget gate is 

added to the LSTM network, the LSTM cell is able to reset its own state which appropriately 

releases internal resources. By overcoming the prediction length and gradient problems, an LSTM 

can better retain efficient information from relatively early events, which may make the model 

more suitable for processing and predicting time series data. 

The structure of LSTM neural networks consists of one input layer, one output layer and one or 

more hidden layers. Each layer consists of multiple neurons (nodes), depending on the structure of 

inputs and outputs, plus the design of the model’s algorithm. Data observations are usually 

separated into a training set, a validation set and a test set, where the training and validation sets 

are used to train the network, and the test set is used to generate training results and test how well 

the neural network has been trained.  

The question of how to structure a neural net and select the optimal model ensemble, such as the 

number of layers, the number of neurons and the validation ratio (also called the split ratio, or the 

ratio of the training set to the validation set) has been addressed by many earlier research papers, 

such as Hansen and Salamon (1990) and Krogh and Vedelsby (1995), who have provided specific 

suggestions on the most fitted ensembles of neural network models. However, tests are still needed 

to find the best fitted structures for specific datasets even if one follows the rules provided in those 

studies. Furthermore, during the training process, neural networks are required to be effectively 

trained with sufficient observations to enable fully learning (but not overlearning) on the 

connections of the dataset. Thus, settings such as the learning rate3 , activation function and 

iterations of the training process are crucial to the model’s performance.  

These aforementioned network structural settings are a type of parameters that are called hyper-

parameters which are used to optimize the neural net model. Different from normal parameters, 

                                                 
3 Learning rate is a measure of how fast the neural network updates its weights based on the estimated errors. The 

optimal learning rate is the largest learning rate that does not end with training divergence (Bengio, 2009). 
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the hyper-parameters are external to the data characteristics and cannot be estimated by the data. 

The hyper-parameters are essential to the optimization and prediction accuracy of a neural network 

model and are usually configured by the training process and tuned for given modeling problems. 

Manual selection is the most common and useful approach for the hyper-parameter search, 

especially when dealing with a model with fairly low-dimensional configuration (Hinton, 2012). 

Bergstra and Bengio (2012) also prove that randomly chosen trials are practical and efficient in 

hyper-parameters’ optimization.  

2.3 Fama-French Models 

While neural nets have proven to be quite useful in the past, they are neither the most popular nor 

the earliest method for forecasting stock returns. The traditional capital asset pricing model 

(CAPM) derives analytically that the excess returns of financial assets originate from a 

compensation for market risk (Sharpe, 1964). However, Fama and French contend that there are 

other variables affecting stock returns given the relatively poor performance of the CAPM to 

describe cross-sectional asset returns. They first proposed that two specific types of stock 

characteristics drive returns, namely: small company stocks and stocks with higher equity book-

to-market ratios. This implies that the risk caused by company size and book-to-market equity can 

also help explain stock returns (Fama and French, 1992). Thus, Fama and French added two more 

factors, SMB and HML, to the market factor, to obtain a three-factor model which can explain 

over 90% of the returns of portfolios of stocks.  

Many scholars have conducted empirical tests of the three-factor model. Their findings reveal that 

some stocks have significant non-zero alphas, which indicates that the three risk factors still cannot 

fully explain excess returns (Novy-Marx, 2013; Titman et al., 2004).  Fama and French (2015) 

find that the risks associated with a company’s profit level and investment level can also help to 

explain excess returns. Thus, they added profitability and investment factors to their original three-

factor model to obtain: 

𝑅𝑖𝑡 − 𝑅𝐹𝑡 = 𝛼𝑖 + 𝑏𝑖(𝑅𝑀𝑡 − 𝑅𝐹𝑡) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝑒𝑖𝑡, (2) 

where 𝑅𝑖𝑡 is the return of stock or portfolio 𝑖 at time 𝑡, 𝑅𝐹𝑡 is the risk-free return rate, 𝑅𝑀𝑡 is the 

market portfolio return rate, 𝑅𝑀𝑡 − 𝑅𝐹𝑡 is the excess return on the market, 𝑆𝑀𝐵𝑡 is the average 

return on nine diversified portfolio of small capital stocks minus the average return on nine 
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diversified portfolio of big capital stocks, 𝐻𝑀𝐿𝑡  is the spread in the average returns of two 

portfolio of value stocks (high B/M) and two portfolio of growth stocks (low B/M), 𝑅𝑀𝑊𝑡 is the 

difference between the average return on two robust profitability portfolios and two weak 

profitability portfolios, 𝐶𝑊𝐴𝑡 is the difference between the average return on two conservative 

investment portfolios and two aggressive investment portfolios, 𝑒𝑖𝑡 is a zero-mean residual, 𝑏𝑖, 𝑠𝑖, 

ℎ𝑖 , 𝑟𝑖 , and 𝑐𝑖  are the exposures to the five risk factors, and 𝛼𝑖  is the intercept of the equation. 

Assuming that the Fama-French five factor model can capture all the risks driving the returns of a 

portfolio, and the market is informationally efficient, the intercept 𝛼𝑖  is expected to be zero. 

However, considering Roll’s statement that the market portfolio is incomplete unless every single 

asset is included (Roll, 1977), it is almost an impossible mission to find a perfect explanation of 

returns. As Fama and French (2015) estimate, their five-factor model can explain around 71% - 

94% of the cross-section variance of expected returns for portfolios of securities, and as such is 

presently the standard empirical model for asset pricing.  

Besides the five-factor model introduced by Fama and French (2015), many more recent studies 

emerged with many different factor models based on the Fama-French three-factor model, 

including Hou et al.’s (2015) four-factor 𝑞 model, Hou et al.’s (2018) five-factor 𝑞5 model, and 

Fama and French’s (2018) six-factor model. It is found that many of the novel factors can be 

categorized into the existing five factors proposed by Fama and French (2015) (Hou et al., 2018). 

Thus, for the purpose of this study, we employ the five-factor model as a baseline, using its 

explanatory power of exogenous risk factors which measure the weights of risk factors that 

contribute to the excess returns. In this thesis, we hybridize the AI learning and frequentist 

approaches to take advantage of both the empirical discoveries of twenty years of asset pricing 

research while maintaining the non-linear and highly flexible structure of a neural net. 

2.4 Hybrid Models 

It has already been shown in some studies that hybrid models combining neural networks with 

linear models can improve forecasting accuracy. Zhang (2003) introduces a hybrid time series 

forecasting model that incorporates an ARIMA model with an ANN by taking the residuals of the 

linear model and feeding them into a non-linear network. The hybrid model significantly reduces 

forecasting error and surpasses the simple ANN or ARIMA model in terms of forecasting accuracy. 
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Khashei and Bijari (2010) find that an improved version of the Zhang (2003) model has even better 

forecasting power over its competitors. In this paper, we propose a hybrid model from a 

combination of the LSTM and Fama-French five factor (FF5) model (Fama and French, 2015). 

We use the LSTM networks to forecast factors which are employed to estimate stock returns. The 

hybridization is expected to increase the forecasting accuracy over its competitors, such as the 

standard LSTM model and a hybrid model consisting of an ARIMA and FF5. 

Another reason for applying a hybrid model is explained by Newton (2018) who finds that accurate 

factor forecasts when coupled with historical model conditioning could produce sizable expected 

portfolio profits. The author contends that selecting models by their average cross-sectional fitness 

may unintentionally result in discarding information that, while not universally useful in 

forecasting an entire market, might still be useful on a subset of stocks. Likewise, our hybrid 

approach attempts to retain the apparent effectiveness of factor models, seeking not to dismiss the 

findings of decades of asset-pricing research, while at the same time applying a neural net for its 

non-linear flexibility in factor estimations. Thus, in our hybridized model, the neural network non-

linear process is applied on the FF5 model which has only five essential elements to be estimated. 

Since this model only needs to fit five factors instead of hundreds or thousands of stocks, the 

computing time and resources required to implement the model are dramatically reduced making 

the hybrid approach more practical than a pure NN. 

3. Hypotheses 

3.1 Comparisons Between the Hybrid Models and the Static LSTM Model 

As mentioned previously, the static LSTM model is designed to be compared with hybrid models 

in order to test whether better fitness results in improvements in prediction accuracy. The structure 

and hyper-parameters of the static LSTM network are not allowed to be adjusted by different stock 

data, thus its fitness is reduced significantly. In contrast, the flexibility and fitness of hybrid models 

are increased by fitting five universal factors rather than a wide range of specific stocks. Thus, I 

hypothesize that hybrid models have superior forecasting accuracy and efficiency which will result 

in better predictions than those produced by a static model. 
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3.2 Accuracy of Risk Factor Estimations 

It is crucial to have high-quality predictions of the Fama-French risk factors in order to generate 

valid stock return predictions. Taking advantage of its structure and algorithm, the LSTM model 

is expected to generate better results predicting risk factors than an ARIMA model. 

3.3 Comparison Between the LSTM-FF model and the ARIMA-FF model 

The last comparison between the LSTM-FF and ARIMA-FF hybrid models is of primary interest 

in this thesis as we aim to determine whether the application of an LSTM neural network can 

advance stock return predictions and upgrade financial study methodologies. If the LSTM neural 

network works successfully for the risk factor estimations, then the corresponding hybrid models 

have a better likelihood of outperforming the ARIMA-FF models in terms of subsequent return 

predictions. 

4. Data and Methodology 

4.1. Data and Software 

I use the daily Fama/French five Research Factors (2x3) from Kenneth R. French Data Library, 

starting from 1963 up until June 2018. To test my hypotheses, I selected 99 S&P100 stocks and 

use CRSP daily returns concurrent with the Fama-French factors4.  

4.1.1 Data Preparation  

A total of 13,865 days with Fama-French factors are available for the studied time period. The first 

6 months (125 days) of 2018 are reserved for the out-of-sample test set. All the remaining 

observations are used for the purpose of training the models.  

For the ARIMA model, following the analyses by Thomakos and Guerard (2004) and Guerard 

(1985) 5 , I adopt a size of 376 observations starting from January 1st 2017, including the 

                                                 
4 There are a total of 101 stocks in the S&P 100 stock set, with two of them having insufficient historical data for 

estimation and prediction purposes. 
5 They provide analyses of the lengths of data and model parameters in ARIMA model applications based on different 

data types and sample periodicities. 
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observations over a one-year horizon (251 trading days6) as the training set and the last 125 out-

of-sample observations as the test set. To avoid the spreading of error after a long period, we make 

one-step-ahead predictions with sliding windows (Ntungo and Boyd, 1998). A historical sequence 

of the first 251 observations is used to forecast the value of day 252. For subsequent predictions, 

the head observation of the prior historical sequence is removed and a new observation is added at 

the tail of the sequence as depicted in Figure 1. For example, in the second iteration, the 

observation on day 252 is included and the observation of the first day is removed when predicting 

the risk factor on day 253. Thus, a total of 125 factor estimation sets with a size of 251 observations 

in each set are generated. The process is applied to all five factors individually. 

For the LSTM model, the data is first transformed into sequences which are able to be fed into the 

network. One sequence is comprised of two parts, raw training data which is a certain length of 

continuous historical data and raw target data which is the prediction target of the corresponding 

training data. More formally, let 𝑥𝑖 denote the training data vector for sequence 𝑖, and 𝑦𝑖 denote 

the target data of the sequence 𝑖. I opt for an 𝑥 length of 100 observations and 𝑦 is the one-day-

ahead data.7 For example, 𝑥1 is a vector with observations from 𝑑𝑎𝑦1 to 𝑑𝑎𝑦100, thus 𝑦1 is the 

observation on 𝑑𝑎𝑦101 which is the forecasted target of 𝑥1. I generate overlapping sequences for 

the whole dataset, thus sequence 𝑖 consist of observations from 𝑑𝑎𝑦𝑖  to 𝑑𝑎𝑦𝑖+99 as 𝑥𝑖  and the 

observation of 𝑑𝑎𝑦𝑖+100 as 𝑦𝑖 as depicted in Figure 2. 

Then the transformed sequences are split into two parts which are the in-sample set that is the 

training database used to train a neural network into a “predictor” and the out-of-sample set that is 

called the test set. The out-of-sample set consists of 125 sequences which are in line with the 

ARIMA model’s test set. The in-sample set is separated into a training set and a validation set with 

                                                 
6 As a robustness check, the predictions of risk factors using 100 historical observations are conducted. Diebold-

Mariano tests on the predictions made from 251 observations (ARIMA-251) and 100 observations (ARIMA-100) 

shows that, for the HML factor, the MSE of the ARIMA-251 predictions is significantly lower than the ARIMA-100 

predictions by 0.094, while for the other factors, MSEs of the ARIMA-251 predictions are insignificantly (at 5% level) 

lower than the ARIMA-100 predictions. 
7 The sequence of 100 observations is selected by trials. The sequence of 20, 30, 50, 80, 100, 150, 200, 300, 500 and 

1000 observations were tested in the first round. Fischer and Krauss (2018) chose the sequence of 240 observations 

which is approximately one trading year. Thus the sequence of 240 and 250 observations were tested in the second 

round. Finally, the sequence of 100 observations is selected as it generates the lowest loss.  
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a split ratio that varies from 1:1 to 4:18. The split ratio is manually searched by observing the 

smallest training error and the validation loss graphs in the following training steps. 

4.1.2 Software and Libraries 

The realizations from the LSTM and ARIMA models are conducted using Python 3.6 and a 

combination of its libraries. Pandas (McKinney, 2010) and Numpy (Van Der Walt et al., 2011) are 

used mainly for data preparation. The Statsmodels package is used for the ARIMA model 

forecasting. The main library for the LSTM network estimation is Keras (Gulli, 2017) with 

backend running Google TensorFlow. Also, several other packages are used to generate results 

graphs and figures, including Matplotlib and Seaborn. 

4. 2 Methodology 

To predict the returns of S&P 100 stocks, we use three models: a static LSTM network model, a 

hybrid ARIMA and Fama-French five factor model (ARIMA-FF) and a hybrid LSTM network 

and Fama-French five factor model (LSTM-FF). Our methodology consists of two main steps. At 

the first stage, returns of the 99 stocks are predicted using each of the three models. The ARIMA-

FF model and the LSTM-FF model are known to have better practicability than the static LSTM 

model, thus we assume that all the sample stocks can be predicted using the two hybrid models, 

and only a portion of stocks will be trained by the static LSTM model. In the second step, pairwise 

comparisons are carried out among the three models. The comparisons between the static LSTM 

and the two hybrid models are confined to the sample of stocks that are successfully trained using 

the static LSTM. Additionally, the predictions of the whole stock set are involved in the 

comparison between the ARIMA-FF model and LSTM-FF model. 

4.2.1 The Sole Static LSTM Model 

As previously explained, neural network models need fine adjustments based on specific data sets. 

Thus, an LSTM model’s learning proficiency will be greatly reduced if the structure and 

                                                 
8 There is no rule of thumb for deciding on the split ratio between the training and validation sets. Usually the split is 

tuned by trials starting from a given ratio. Granger (1993) suggests holding back 20 percent of the training database 

as a validation set. And Larsen et al. (1996) propose to start with a balanced split of 50 percent for both the training 

and validation sets considering the learning objective, scheme and curve.  
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parameters remain unchanged when it is applied on different data sets. Therefore, the static LSTM 

model is designed as a general structure that will exhibit failure or inefficient training on some of 

the 99 stocks using the criteria subsequently discussed. 

The static LSTM model used herein has 4 layers: one input layer, two hidden layers and one output 

layer. There are no strict rules to frame an optimal neural network but some cautions need to be 

considered in the modeling process. A basic three-layer (one input layer, one hidden layer, and 

one output layer) neural network can be advanced to conduct deeper learning by adding hidden 

layers into it. With deeper structures, the neural network can perform better by capturing more 

statistical regularities (Hinton, 2006). However, the computational cost is very expensive when it 

comes to training a very deep network. Despite the computational cost, most of the problems can 

be solved using a one-hidden-layer network (Heaton, 2008). Thus, this thesis adopts two hidden 

layers where only one LSTM layer is structured and the other (a dense layer) is used as a transition 

to the output layer. The specific structure is as follows: 

1) The input data are separated into a training set and a validation set with a ratio of 2:1. 

2) The input layer has 100 nodes, receiving transformed return sequences. 

3) The first hidden layer is the LSTM layer which is the key structure of the model. Following 

Boger and Guterman (1997) who conclude that the suitable number of neurons in the 

hidden layer is around 2/3 of the size of the input layers, the LSTM hidden layer is designed 

with 64 neurons. Since the time sequence cannot be shuffled, the dropout ratio and 

recurrent dropout ratio are set to zero. The learning rate is 0.019. 

4) The second hidden layer is a dense10 layer that contains 32 nodes, used as a connection 

layer between the LSTM layer and output layer to prevent overfitting caused by large node 

size gaps  during the training process. 

5) The output layer is a dense layer that has only one node which is consistent with the one-

day prediction target. 

6) The activation function, which is the converter in the neural network that transforms the 

given inputs into outputs, plays a very important role in realizing the non-linear properties 

                                                 
9 0.01 is a typical default value of initial learning rate (Bengio, 2012). 
10 A dense layer is a fully connected layer that every node in the prior (preceding) layer is densely connected to the 

dense layer neurons (keras. io, 2015). A fully connected layer can capture all combinations of features but is very 

computationally expensive. 
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of neural networks. The exponential linear unit (ELU) (Clevert, 2015) is chosen as the 

activation function in the two hidden layers. The special feature of the ELU function is its 

ability to fully identify and take the input values when the inputs are positive, while 

exponentially shrinking down the negative inputs. This feature enables the high calculation 

efficiency as well as the capability to deal with the gradient vanishing problem. 

7) To prevent overfitting and to increase training efficiency, a callback of EarlyStopping11 is 

added in the training process. The EarlyStopping has come to be used as a monitor for the 

training process. Once the validation loss is no longer decreasing by over 1 bps for more 

than 20 iterations12, the training process halts itself.  

Using the above model, 99 stocks are trained and training failures are identified if any of the 

following conditions are met: (1) If the training process stops because of the gradient exploding 

problem; (2) If the estimated returns are unchangeable during the full time period, the model fails 

the training on that stock; (3) If the signs of the estimated returns are unchangeable (all positive or 

all negative), the training is seen as failure; and (4) If the range of estimated returns is smaller than 

5% of the range of real returns, the stock is also considered as failed training. This step is used to 

categorize stocks into two sets: the static LSTM trained set which includes stocks only successfully 

trained by the static LSTM model and the full stock set containing all 99 stocks. 

4.2.2 Hybrid LSTM and Fama-French Five Factor Model 

The second model is a hybrid model with two prediction cores: the LSTM part as the main 

forecasting tool and the Fama-French five factor model as the proxy to account for the systematic 

risks captured in stock returns. The main difference between the above two vehicles in terms of 

their prediction ability is associated with a difference in the underlying methodology, where the 

LSTM tries to find the relationship between inputs and outputs based on historical information, 

while the Fama-French model uses its explanatory power for predicting stock returns by breaking 

down returns into financial factors. Considering the fact that the neural network calculation process 

                                                 
11 Earlystopping is a callback used to monitor the training process in order to end the training once the specific 

performance measures are triggered. The loss and accuracy of validation datasets are usually used as the target for 

monitoring. Adopting the EarlyStopping is an efficient way to considerably prevent model overfitting (Bengio, 2012). 
12 The number of training iterations is done by setting the patience argument. The exact patience numbers vary among 

models and datasets. By reviewing performance plots, it can be analyzed how noisy the optimization process is, 

thereby the patience can be fine tuned. In this static LSTM model, settings are designed to be constant among different 

stocks data, thus the patience is arbitrarily selected as 20. 
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is often regarded as a “black box”, the disadvantage of applying the LSTM model is the difficulty 

of interpreting the predictions (Horel et al., 2018), whereas the hybridization can benefit from the 

financial implications of the Fama-French model.  

In the first step, LSTM models are built for each risk factor to make predictions using historical 

data. The design of the LSTM model is similar to the sole LSTM model: 

1) The split ratios of the input data for different risk factors are initialized to be around 4:113. 

2) The model has the same four-layer structure as the static LSTM model with one 100-neuron 

input layer, one LSTM hidden layer, one dense hidden layer and a single neuron output 

layer. 

3) ELU is the activation function for all models’ hidden layers. 

4) EarlyStopping callbacks are added to monitor the training process. The monitored 

parameter of validation loss and the changing level of 1 bps are the same for all five factors, 

but the number of iterations (patience) before training stops differs based on the training 

properties of factors as certain factors’ trainings are easier to trigger the gradient explosion 

problem or overfitting. 

As mentioned in the data preparation phase, predictions of 125 days (𝑡1-𝑡125) are produced by the 

LSTM models for each risk factor. Next, the predicted risk factors are fed into the Fama-French 

model to compute the predictions of stock returns.  The betas of the risk factors for a stock are 

generated by regressing its returns in 2017 (251 trading days) on the cotemporaneous real risk 

factors. The estimated betas and intercepts are then used to forecast the returns of 𝑡1 to 𝑡125 with 

the factor values estimated by the LSTM models. The above procedures are repeated for all 99 

stocks and all the predictions are kept for the further comparisons. 

                                                 
13 The split ratio varies when it comes to different datasets. The specific ratio that is applied for each factor is chosen 

by trials, where the selected rate is the one causes the lowest training error. The static LSTM model adopts an arbitrary 

ratio of 2:1 as the design of static model is aiming to show that the LSTM networks are limited when the model 

adjustments are restricted as applied to different data sets. 



16 

 

4.2.3 Hybrid ARIMA and Fama-French Five Factor Model 

The ARIMA-FF model takes advantage of the ARIMA model’s prediction power using time series 

data and the explanatory power of the Fama-French model to make stock return predictions. To 

build the ARIMA model, the following pre-tests are needed: 

1) As previously mentioned, ARIMA models require the time series to be stationary for them 

to be effective. The Augmented Dickey-Fuller (ADF) test is used to test unit roots in the 

time series, where the null hypothesis is that the time series is non-stationary. In this thesis, 

ADF tests are implemented by Adfuller tests from Python’s Statsmodel library. Table 1 

shows the ADF test results where all the test statistics are significant at the 1% level, 

indicating that the five FF factors are stationary.  Thus, the differencing parameters (d) are 

set to 0 in all risk factor ARIMA models.  

2) To decide the units of the time lags (p) and residuals (q), ACF and PACF plots in addition 

to BIC values are used, and are also validated by examining model residual distributions 

using Python’s Statsmodel library.  

Consistent with the LSTM model, predictions for risk factors are also made as one-day ahead for 

125 days (𝑡1-𝑡125). The process of combining the ARIMA model with the Fama-French model is 

same as that for the LSTM-FF model. The same betas and ARIMA estimated risk factors are used 

in generating the predictions of all 99 stocks. 

I employ two measures in order to compare the prediction accuracy of the models: Mean Squared 

Error (MSE) and moving direction index (D). The MSE generates the statistical results of the 

models’ predictions, while the moving direction index provides a more intuitive comparison of the 

models. The MSE is defined as: 

𝑀𝑆𝐸𝑖 =  
1

𝑁
∑(𝑦𝑖,𝑡 − 𝑦̂𝑖,𝑡

𝑁

𝑡=1

)2 , (3) 

where N equals 125, denoting the total number of observations of stock 𝑖 and 𝑦𝑖,𝑗 and 𝑦̂𝑖,𝑗 are the 

historical data and estimated data of stock 𝑖 at time 𝑡 respectively. 

Let 𝑑𝑖,𝑡 denote the moving direction index for stock 𝑖 at time 𝑡, which takes on the value of one if 

the sign of the estimated return is the same as that of the real return, and zero otherwise.. Thus 𝐷𝑖 
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presents the ratio of estimates with correctly identified moving directions. The prediction is of 

value only when the ratio is above 50% (Kryzanowski et al., 1993). 

𝐷𝑖 =  
1

𝑁
∑ 𝑑𝑖,𝑡

𝑁

𝑡=1

 (4) 

Therefore, for each stock 𝑖 , the LSTM-FF and ARIMA-FF models produce MSEs and price 

moving directions for the 99 stocks and the static LSTM model generates the two measures for the 

successfully trained stocks. 

Difference in means tests are carried out to examine whether a model statistically outperforms the 

others in terms of the return predictions for the selected stocks.  

5. Results 

5.1 Fama-French Risk Factors Predictions 

In the first stage of the model building process, the Fama-French risk factors are predicted by the 

LSTM and ARIMA models. Table 2 describes the summary statistics of the raw risk factors and 

the LSTM and ARIMA predicted risk factors. Compared to the ARIMA predicted results, the 

means of the LSTM predicted risk factors are closer to those of the raw factors with a MSE of 

0.00082 which is lower than the 0.00119 obtained from the ARIMA predictions. 

One of the biggest concerns in forecasting is that both the LSTM and the ARIMA predicted factors 

fail to reach as broad ranges as the actual raw data. It is likely that the factor predictions of the 

ARIMA models are not realistically volatile. To demonstrate this problem, we compute the 

estimation range broadness as a ratio of the estimated range of a factor over its raw range. As 

reported in Table 2, the LSTM predicted HML has the largest range percentage at a very modest 

34%, while the smallest range comes from the ARIMA predicted RMW with a meager percentage 

of 7.3%. The estimation ranges for all the risk factors in the LSTM model are above 20%, while 

the Mkt-RF prediction range of 25% for the ARIMA model is the only one above 20%. Figure 3 

plots the time-series of the estimated risk factors and raw data which visually shows that the LSTM 

estimates have broader ranges than the ARIMA predictions. The variations of the ARIMA model 

predictions are insignificant and with very narrow ranges for SMB and RMW. This result could 
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be caused by two possible reasons. First, the selected ARIMA model might not be very suitable 

for the SMB and RMW factors. Second, the data length might not be adequate for efficient model 

training.14 

5.2 Stock Return Prediction and Comparison 

We are able to test 99 of the 101 S&P 100 stocks using our three models. Table 3 shows the training 

success and each model’s fit rate, defined as the ratio of the number of successfully trained stocks 

over the total number of stocks in the sample. While two hybrid models are able to fit the full 

sample set, the static LSTM model only fits 62% of the sample (61 out of 99 stocks) demonstrating 

at least the broad applicability of the hybrid models if not helping to establish their superior 

accuracy. These results are consistent with the hypothesis 3.1 which argues that the LSTM model 

has a poorer prediction capacity when the model is restricted from structural adjustments. 

Table 4 presents the summary performance of the models’ predictions for a subset consisting of 

the stocks that were successfully trained by the static LSTM model and the full stock sample of 99 

stocks. As previously defined, 𝐷𝑖 is the moving direction ratio of stock 𝑖. 45.9% (28 out of 61) of 

stocks predictions produced by the static LSTM model are seen as valuable with the criteria of a 

𝐷𝑖 above 50%. In contrast, within the static LSTM trained set (61 stocks), 44 (72.1%) and 34 

(55.7%) stock predictions outperform the random selected probability generated by the LTSM-FF 

and the ARIMA-FF models respectively. These rates drop to 62.6% for the LSTM-FF model and 

52.5% for the ARIMA-FF model when applied to the full stock set. In other words, the LSTM-FF 

model generates more effective predictions than the remaining two models, with the poorest 

performing model being the static LSTM model.  

5.2.1 The Static LSTM vs. The Hybrid Models 

Panel A of Table 5.1 presents the results of the difference in means tests for the static LSTM and 

LSTM-FF predictions using 61 stocks. The mean MSE for the static LSTM is 1.9% higher than 

that of the LSTM-FF model. However, this difference is not statistically significant. In contrast, 

                                                 
14 A robust test is conducted using a full period data set (from the year of 1963). The predictions using the full period 

data slightly outperformed any shorter periods in terms of MSE and prediction result ranges. However, most of the 

studies adopt a relatively short horizon. (Particularly, some studies on idiosyncratic risk use data for long periods) 

This could be pursued in further investigation.  
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the mean of the directional indicator 𝐷𝑖  for the LSTM-FF predictions reported in Panel B of Table 

5.1 is significantly higher than that of the static LSTM predictions by 4.6%.  

We find similar results for the comparison between the static LSTM and ARIMA-FF predictions 

reported in Table 5.2. The means of the MSEs between two models are slightly different and fail 

to provide evidence for the conjecture that the hybrid model generates lesser prediction errors. Not 

surprisingly, the mean of the ARIMA-FF 𝐷𝑖 is significantly higher than the mean of static LSTM 

𝐷𝑖 by 3.1%.  

5.2.2 LSTM-FF vs. ARIMA-FF 

The comparison of the two hybrid models is conducted using both the static trained set and the full 

stock set. Based on the results reported in Panel A of Tables 5.3 and 5.4, there is no statistically 

significant difference in the mean MSEs of the LSTM-FF model and the ARIMA-FF model for 

both data sets. Contrary to the results reported in Section 5.2.1, Panel B of Tables 5.3 and Table 

5.4 reveal there is no statistically significant change in the mean differences in the moving 

directions of both models. Therefore, these results do not support the hypothesis 3.3 which argues 

that the LSTM hybrid model is a better predictor of stock returns than the ARIMA hybrid model. 

6. Limitations 

Although some slight differences are found between the static LSTM model and the hybrid models, 

we fail to find strong support of the main research question of the difference in forecasting ability 

between the neural network hybrid model and the ARIMA hybrid model. There are some aspects 

that might lead to the limitations of the methodology of this thesis. Namely, selecting the S&P100 

stocks as the sample might confine the research’s generalizability due to the small number of 

stocks in the bucket and the bias of the company size. The reason for not adopting a larger and 

more diversified stock sample set is the constraints of computing ability and the relatively lengthy 

training process.  

As shown in the results, both the LSTM-FF model and the ARIMA-FF model generate better 

predictions on the static LSTM trained set than on the full stock set. The causes have not been 

investigated in this thesis and could be examined in future studies. Knowing the reasons why the 
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models show varied fitness on different stocks, it is possible to test the predictability with certain 

conditions and to construct corresponding investment strategies. 

Another limitation is the data horizon of the ARIMA model. In this thesis, I take one-year length 

of historical Fama-French factors data to make one-ahead predictions. However, it is found that 

using the full length of historical data to make the out-of-sample forecasting gives the best output 

of FF risk factors. The tuning of the ARIMA model is beyond the research goal of this thesis, but 

can be deployed as a further test. 

7. Conclusion 

Neural networks are widely applied to forecasting in various fields. The introduction of LSTM 

networks enlightens time series’ predictions due to their superior algorithm as well as their high 

adaptability. However, being difficult to fit finance intuition has limited their acceptance to the 

finance and economics. This situation encourages us to utilize LSTM networks in an interpretable 

way where we come up with the return forecasting LSTM-FF hybrid model, taking advantage of 

both LSTM networks’ time series forecasting intelligence and the Fama-French model’s 

explanatory ability. A static LSTM model and an ARIMA-FF model are designed in order to 

compare the LSTM-FF prediction accuracy with that of normal LSTM networks and traditional 

frequentist models.  

The benefit of using hybrid models is that they have broader applicability since not every stock 

needs to have a complete time series of returns. Usually, neural networks provide good predictions 

but they are time-consuming due to the need for them to be trained on every individual stock. 

Additionally, in the case of newly introduced securities such as carve-outs or IPOs15, a neural net 

cannot be applied. The use of a static LSTM network reveals that not changing the network’s 

structure or hyper-parameters will reduce its goodness of fit and restrict its predictability. The 

results reveal that amongst 99 S&P100 stocks, 61 can be predicted by the same structured LSTM 

network, while hybrid models can be applied to all stocks. Also, in terms of their prediction 

accuracy, two hybrid models significantly outperform the static LSTM model when focusing on 

the price movement direction. However, the comparison of the LSTM-FF and the ARIMA-FF 

                                                 
15 For the factor models, this challenge can be solved by estimating betas from competitors or parent companies. 
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models reveals no statistically significant difference between their predictions. Our findings fail to 

support the assumption that the LSTM-FF models are able to generate better predictions than the 

ARIMA-FF models. 

Further investigation into this topic could be addressed by the work of future researchers. One of 

the possible improvements of this study is embedded in the LSTM network’s design. Given the 

adjustability and flexibility of LSTM networks, several modifications to the networks’ structure 

and hyper-parameters could be made. On the other hand, increasing the model’s complexity or 

tuning the model’s settings might result in better prediction accuracy.  
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Figures 

 

Figure 1. ARIMA Model Data Sequences Structure 

 

 

H1 to H251 indicate the 251 historical risk factor observations in an iteration and the prediction is 

made on the following day after H251. Pred1 to Pred125 are the out-of-sample predicted factors 

generated in 125 iterations.  

 

 

 

 

Figure 2. LSTM networks Data Sequences Structure 

 

 

LSTM networks ask for input data as sequences which are combined by X as the training vectors 

and Y as the targets. All sequences are of the same length containing 101 days of historical values. 

Y is the one-day-ahead observation of corresponding X.  
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Figure 3. Fama-French Risk Factors – Historical Values and Predictions 
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Tables 

 

Table 1. Augmented Dickey-Fuller Test Results 

The Augmented Dickey-Fuller (ADF) results are presented for the excess returns on the market 

(𝑀𝐾𝑇𝑅𝐹), size (𝑆𝑀𝐵), value (𝐻𝑀𝐿), profitability(𝑅𝑀𝑊), and investment (𝐶𝑀𝐴) risk factors 

(Fama and French, 2015). ADF tests are accomplished by the Adfuller tests from python 

Statsmodel library. Significance for the test statistics are at the 1%, 5%, and 10% levels (based on 

MacKinnon 2010). 

 Mkt-RF SMB HML RMW CMA 

DF Test Statistic -7.396 -19.716 -6.406 -19.386 -19.062 

p-value 7.76E-11 0 1.94E-08 0 0 

1% -3.448 -3.448 -3.448 -3.448 -3.448 

5% -2.869 -2.869 -2.870 -2.869 -2.869 

10% -2.571 -2.571 -2.571 -2.571 -2.571 
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Table 2. Summary Statistics of Risk Factor Historical Values and Predicted Values  

Summary statistics for Fama-French risk factors historical values, LSTM networks predicted values and ARIMA models predicted 

values respectively.  

 

  
Risk 

Factors Mean Median 

Standard 

Deviation Range Minimum Maximum Kurtosis Skewness 

FF 

Historical 

Mkt-RF 0.02672 0.1 1.029452 6.7 -4.03 2.67 2.604802 -1.01727 

SMB 0.05792 0.04 0.471027 2.25 -1 1.25 -0.29295 0.35065 

HML -0.06024 -0.12 0.401301 2.26 -1.18 1.08 0.316347 0.150195 

RMW -0.03096 -0.02 0.378955 2.09 -1.07 1.02 0.079455 -0.09339 

CMA -0.02424 -0.02 0.30166 1.81 -0.95 0.86 0.662462 0.201539 

LSTM 

predicted 

Mkt-RF 0.025764 0.051227 0.281375 1.76041 -0.9895 0.77091 2.247226 -0.80895 

SMB 0.058162 0.051476 0.126262 0.535835 -0.16975 0.36609 -0.17973 0.480781 

HML 0.002803 -0.01115 0.12868 0.768987 -0.31352 0.455465 0.778339 0.407362 

RMW -0.02262 -0.00441 0.091944 0.468287 -0.33555 0.132734 0.83884 -0.9321 

CMA -0.01789 -0.01957 0.073229 0.40686 -0.21949 0.187369 0.250473 0.376458 

ARIMA 

predicted 

Mkt-RF 0.058662 0.068273 0.270621 1.672981 -0.75733 0.915649 1.630016 -0.28929 

SMB 0.004193 0.002369 0.028361 0.17104 -0.07526 0.095784 1.222997 0.402452 

HML -0.03334 -0.04485 0.056297 0.35226 -0.20567 0.146585 0.732455 0.410375 

RMW 0.003997 0.00413 0.033007 0.153594 -0.08429 0.069303 -0.34921 -0.29348 

CMA -0.03356 -0.03341 0.028358 0.155389 -0.10216 0.053225 0.960389 0.267561 
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Table 3. Descriptive Statistics for Models Fitness 

There are total 99 S&P100 stocks trained by static LSTM models, the long short-term memory 

network and Fama-French hybrid models (LSTM-FF) and the ARIMA and Fama-French hybrid 

model (ARIMA-FF). The stocks that are successfully trained by models are considered as fit stocks 

and are counted in the table. The fit rate is calculated by the number of fit stocks over the number 

of total stocks. Higher fit rates indicate the better fitness of the certain models. 

  Total Stocks 

Successfully 

Trained Fit Rate 

Static LSTM 99 61 0.62 

LSTM-FF 99 99 1.00 

ARIMA-FF 99 99 1.00 
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Table 4. Descriptive Statistics for Training Results 

This table describes the summary results of trained stocks by different proposed models. Static LSTM models successfully trained 61 

out of total 99 S&P100 stocks, based on which the stocks are classified into two sets: the static LSTM trained set (61 stocks) and the 

full stock set (99 stocks). The moving direction index 𝐷𝑖  indicates the rate of return estimates that are of same directions as real returns 

over the total number of estimates (125) of the stock 𝑖. The mean and median of two prediction accuracy indicators: MSE and 𝐷𝑖 are 

provided. 50% of the 𝐷𝑖 is the criteria of random selection, over which the estimation is considered as valuable (Kryzanowski et al., 

1993). The rate of stocks with 𝐷𝑖 > 50% is presented as well for different stock sets and models, among which the LSTM-FF prediction 

on the static LSTM trained set has the highest 𝐷𝑖 (72.1%) indicating the best efficiency of model application. 

    Total Stock 𝐷𝑖   > 50%  Mean   Median 

   Number Number Rate   MSE 𝐷𝑖     MSE 𝐷𝑖 

Static LSTM 61 28 0.459   0.000247 0.492   0.000233 0.496 

Static LSTM 

trained set 

LSTM-FF 61 44 0.721   0.000243 0.514   0.000227 0.512 

ARIMA-FF 61 34 0.557   0.000245 0.507   0.000232 0.512 

Full stock set 
LSTM-FF 99 62 0.626  0.000248 0.510  0.000229 0.504 

ARIMA-FF 99 52 0.525   0.000251 0.507   0.000234 0.504 
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Table 5. 1 Results of the Difference in Mean Test between the Static LSTM and the LSTM-FF 

Model 

Panel A and Panel B show the difference in mean test results between the predicted returns of the 

static LSTM model and the LSTM-FF model on the static LSTM trained stock set regarding the 

prediction indicators, MSE and moving direction index (𝐷𝑖) respectively. The mean MSE and 𝐷𝑖 

of stock returns are presented by training models and are hypothesized as no difference. The test 

statistics is determined by a two-tailed t-test at 5% significance level.  

 

Panel A   

MSE  Static LSTM LSTM-FF 

Mean 0.000247112 0.000242572 

Variance 9.03096E-09 8.21499E-09 

Observations 61 61 

Hypothesized Mean Difference 0  

df 120  

t Stat 0.270049089  

P(T<=t) one-tail 0.393793178  

t Critical one-tail 1.657650899  

P(T<=t) two-tail 0.787586355  

t Critical two-tail 1.979930405   

 

Panel B   

𝐷𝑖 Static LSTM LSTM-FF 

Mean 0.491803279 0.514360656 

Variance 0.002228494 0.001338334 

Observations 61 61 

Hypothesized Mean Difference 0  

df 113  

t Stat -2.949934734  

P(T<=t) one-tail 0.001932129  

t Critical one-tail 1.658450216  

P(T<=t) two-tail 0.003864258  

t Critical two-tail 1.981180359   
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Table 5. 2 Results of the Difference in Mean Test between the Static LSTM and the ARIMA-FF 

Model 

Panel A and Panel B show the difference in mean test results between the predicted returns of the 

static LSTM model and the ARIMA-FF model on the static LSTM trained stock set regarding the 

prediction indicators, MSE and moving direction index (𝐷𝑖) respectively. The mean MSE and 𝐷𝑖 

of stock returns are presented by training models and are hypothesized as no difference. The test 

statistics is determined by a two-tailed t-test at 5% significance level.  

 

Panel A   

MSE  Static LSTM ARIMA-FF 

Mean 0.000247112 0.000244803 

Variance 9.03096E-09 8.48108E-09 

Observations 61 61 

Hypothesized Mean Difference 0  

df 120  

t Stat 0.136273627  

P(T<=t) one-tail 0.445916663  

t Critical one-tail 1.657650899  

P(T<=t) two-tail 0.891833325  

t Critical two-tail 1.979930405   

 

Panel B   

𝐷𝑖 Static LSTM ARIMA-FF 

Mean 0.491803279 0.507016393 

Variance 0.002228494 0.001470216 

Observations 61 61 

Hypothesized Mean Difference 0  

df 115  

t Stat -1.953700086  

P(T<=t) one-tail 0.026582547  

t Critical one-tail 1.65821183  

P(T<=t) two-tail 0.053165093  

t Critical two-tail 1.980807541   
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Table 5. 3 Results of the Difference in Mean Test between the LSTM-FF Model and the ARIMA-

FF Model (on the Static LSTM Trained Stock Set) 

Panel A and Panel B show the difference in mean test results between the predicted returns of the 

LSTM-FF model and the ARIMA-FF model on the static LSTM trained stock set regarding the 

prediction indicators, MSE and moving direction index (𝐷𝑖) respectively. The mean MSE and 𝐷𝑖 

of stock returns are presented by training models and are hypothesized as no difference. The test 

statistics is determined by a two-tailed t-test at 5% significance level.  

 

Panel A   

MSE  LSTM-FF ARIMA-FF 

Mean 0.000242572 0.000244803 

Variance 8.21499E-09 8.48108E-09 

Observations 61 61 

Hypothesized Mean Difference 0  

df 120  

t Stat -0.13489613  

P(T<=t) one-tail 0.44646  

t Critical one-tail 1.657650899  

P(T<=t) two-tail 0.892920001  

t Critical two-tail 1.979930405   

 

Panel B   

𝐷𝑖 LSTM-FF ARIMA-FF 

Mean 0.514360656 0.507016393 

Variance 0.001338334 0.001470216 

Observations 61 61 

Hypothesized Mean Difference 0  

df 120  

t Stat 1.082360546  

P(T<=t) one-tail 0.14063126  

t Critical one-tail 1.657650899  

P(T<=t) two-tail 0.28126252  

t Critical two-tail 1.979930405   
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Table 5. 4 Results of the Difference in Mean Test between the Static LSTM and the LSTM-FF 

Model (on the Full Stock Set) 

Panel A and Panel B show the difference in mean test results between the predicted returns of the 

LSTM-FF model and the ARIMA-FF model on the full stock set regarding the prediction 

indicators, MSE and moving direction index (𝐷𝑖) respectively. The mean MSE and 𝐷𝑖 of stock 

returns are presented by training models and are hypothesized as no difference. The test statistics 

is determined by a two-tailed t-test at 5% significance level.  

Panel A   

MSE  LSTM-FF ARIMA-FF 

Mean 0.000248526 0.000250998 

Variance 9.55624E-09 9.71003E-09 

Observations 99 99 

Hypothesized Mean Difference 0  

df 196  

t Stat -0.17721315  

P(T<=t) one-tail 0.429761981  

t Critical one-tail 1.652665059  

P(T<=t) two-tail 0.859523963  

t Critical two-tail 1.972141222   

 

Panel B   

𝐷𝑖 LSTM-FF ARIMA-FF 

Mean 0.509979798 0.507636364 

Variance 0.001241265 0.001602968 

Observations 99 99 

Hypothesized Mean Difference 0  

df 193  

t Stat 0.437207673  

P(T<=t) one-tail 0.331224777  

t Critical one-tail 1.652787068  

P(T<=t) two-tail 0.662449553  

t Critical two-tail 1.972331676   

 

 


