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Abstract

Detection of Salient Objects in Images Using Frequency Domain and Deep

Convolutional Features

Masoumeh REZAEI ABKENAR, Ph.D.

Concordia University, 2019

In image processing and computer vision tasks such as object of interest image seg-

mentation, adaptive image compression, object-based image retrieval, seam carving, and

medical imaging, the cost of information storage and computational complexity is gener-

ally a great concern. Therefore, for these and other applications, identifying and focusing

only on the parts of the image that are visually most informative is much desirable. These

most informative parts or regions that also have more contrast with the rest of the image are

called the salient regions of the image, and the process of identifying them is referred to as

salient object detection. The main challenges in devising a salient object detection scheme

are in extracting the image features that correctly differentiate the salient objects from the

non-salient ones, and then utilizing them to detect the salient objects accurately.

Several salient object detection methods have been developed in the literature using

spatial domain image features. However, these methods generally cannot detect the salient

objects uniformly or with clear boundaries between the salient and non-salient regions.

This is due to the fact that in these methods, unnecessary frequency content of the image

get retained or the useful ones from the original image get suppressed. Frequency domain

features can address these limitations by providing a better representation of the image.

Some salient object detection schemes have been developed based on the features extracted

using the Fourier or Fourier like transforms. While these methods are more successful in
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detecting the entire salient object in images with small salient regions, in images with large

salient regions these methods have a tendency to highlight the boundaries of the salient

region rather than doing so for the entire salient region. This is due to the fact that in the

Fourier transform of an image, the global contrast is more dominant than the local ones.

Moreover, it is known that the Fourier transform cannot provide simultaneous spatial and

frequency localization.

It is known that multi-resolution feature extraction techniques can provide more accu-

rate features for different image processing tasks, since features that might not get extracted

at one resolution may be detected at another resolution. However, not much work has been

done to employ multi-resolution feature extraction techniques for salient object detection.

In view of this, the objective of this thesis is to develop schemes for image salient object

detection using multi-resolution feature extraction techniques both in the frequency domain

and the spatial domain.

The first part of this thesis is concerned with developing salient object detection meth-

ods using multi-resolution frequency domain features. The wavelet transform has the abil-

ity of performing multi-resolution simultaneous spatial and frequency localized analysis,

which makes it a better feature extraction tool compared to the Fourier or other Fourier like

transforms. In this part of the thesis, first a salient object detection scheme is developed

by extracting features from the high-pass coefficients of the wavelet decompositions of the

three color channels of images, and devising a scheme for the weighted linear combination

of the color channel features. Despite the advantages of the wavelet transform in image fea-

ture extraction, it is not very effective in capturing line discontinuities, which correspond to

directional information in the image. In order to circumvent the lack of directional flexibil-

ity of the wavelet-based features, in this part of the thesis, another salient object detection

scheme is also presented by extracting local and global features from the non-subsampled

contourlet coefficients of the image color channels. The local features are extracted from
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the local variations of the low-pass coefficients, whereas the global features are obtained

based on the distribution of the subband coefficients afforded by the directional flexibility

provided by the non-subsampled contourlet transform.

In the past few years, there has been a surge of interest in employing deep convolutional

neural networks to extract image features for different applications. These networks pro-

vide a platform for automatically extracting low-level appearance features and high-level

semantic features at different resolutions from the raw images. The second part of this

thesis is, therefore, concerned with the investigation of salient object detection using multi-

resolution deep convolutional features. The existing deep salient object detection schemes

are based on the standard convolution. However, performing the standard convolution is

computationally expensive specially when the number of channels increases through the

layers of a deep network. In this part of the thesis, using a lightweight depthwise separable

convolution, a deep salient object detection network that exploits the fusion of multi-level

and multi-resolution image features through judicious skip connections between the layers

is developed. The proposed deep salient object detection network is aimed at providing

good performance with a much reduced complexity compared to the existing deep salient

object detection methods.

Extensive experiments are conducted in order to evaluate the performance of the pro-

posed salient object detection methods by applying them to the natural images from several

datasets. It is shown that the performance of the proposed methods are superior to that of

the existing methods of salient object detection.
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Chapter 1

Introduction

1.1 General

One of the main characteristics of the human visual system (HVS) is its ability to effi-

ciently detect the visually most conspicuous region, referred to as the salient object, of an

image. The salient object is known to be conspicuous and has more contrast with respect

to the local and global surrounding regions. It is more distinctive in terms of color, edges,

boundaries, etc. Salient object detection methods aim at identifying the salient region us-

ing computational algorithms. By detecting the salient parts, any processing task such as

object of interest image segmentation [1, 2], adaptive image or video compression [3–5],

object recognition [6], object-based image retrieval [7], image retargeting [8,9], video sum-

marization [10, 11], visual tracking [12], image fusion [13], action recognition [14], object

class discovery [15], and medical imaging [16, 17], can focus on the major content of an

image or a video. In view of this, recently, researches have shown a great deal of interest

in developing saliency detection techniques.

Salient object detection methods extract various kinds of features from the image and

analyze them in order to assign a saliency value to all the pixels. Based on these values,

it is decided whether or not a pixel belongs to the salient region. The output of a saliency

detection method is a saliency map, in which each pixel has a saliency value. This value

represents the probability of the pixel belonging to the salient region. Thus, a saliency

1



Figure 1.1: (a) Sample natural images. (b) Saliency maps obtained by using the method
proposed in [19]. (c) The corresponding binary saliency maps. (d) Ground
truth for the saliency maps.

map is inherently a gray-level image. Depending on the probability value of a pixel in the

salinecy map, a decision is made whether the pixel belongs to the salient region or not, that

is, whether the pixel is assigned a value of 1 and, therefore considered to belong to salient

region or a value of 0, in which case it does not belong to the salient region. Thus, the gray-

level saliency map is converted into a binary saliency map and compared to the correspond-

ing ground truth. It should be noted that salient object detection methods segment only the

salient region from the non-salient region, that is classifying the image pixels/regions into

two classes of salient and non-salient, whereas image segmentation methods partition the

image into several regions of coherent properties [18]. Figure 1.1 shows examples of natu-

ral images, the gray-level and binary saliency maps obtained by using the method proposed

in [19], and the ground truth (which is always binary) for the saliency maps.
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1.2 A Brief Literature Review of Saliency Detection

In this section, a brief review of the different categories of the research in saliency

detection methods and some of the main advances in these categories are presented.

Early studies in salieny detection aimed at predicting human eye-attended image pix-

els [20, 21]. These methods are called eye-fixation prediction and obtain saliency maps in

which the focus is on detection of sparse eye fixation locations rather than detection of the

entire salient objects. A comprehensive survey on the eye-fixation prediction schemes can

be found in [22]. On the other hand, salient object detection methods, have been developed

with an objective to detect the entire salient objects [7, 19, 23–38]. The saliency map ob-

tained by this category of methods is dense and includes connected areas demonstrating the

most visually informative object of the image. Due to various applications of salient ob-

ject detection in image processing and computer vision, our main focus in this thesis is on

developing new salient object detection methods that can provide more accurate saliency

maps.

In the salient object detection methods, some low-level image features, such as color,

edges or texture, or high-level ones, such as semantic features related to the shape or struc-

ture of the object, are extracted and a saliency value is assigned to each pixel based on these

features. Choosing a feature that is able to provide useful information towards the local and

global characteristics of the individual pixels of the image is a challenging task.

To detect the salient objects, several methods have been developed in the spatial do-

main [7, 23, 26–29, 31–35]. Spatial domain methods first try to extract different features

from the image using its pixel values. Then, the feature maps, each using one type of

features, are computed by employing a center-surround operation [28], contrast computa-

tion [7,29], or graph-based computations [31–35,38]. Finally, the various feature maps are

normalized and linearly or non-linearly combined to obtain a saliency map. Some of the

spatial domain salient object detection methods cannot detect the salient objects from the
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background with clear boundaries [7]. This may be due to an inappropriate reduction of the

high frequency content of the original image. Some other spatial domain methods obtain

saliency maps in which the salient region boundaries are clear, but the entire salient region

is not uniformly highlighted, or the textured regions are highlighted regardless of their con-

trast with their surrounding regions [28]. Other schemes such as the one proposed in [26]

can highlight small salient regions but fails in detecting the large ones. From a frequency

domain perspective, these limitations are the consequence of retaining an inappropriate

range of frequency content from the original image [27].

In order to address the above mentioned limitations of the spatial domain methods, and

because of the characteristics of the frequency domain representations of images, several

frequency domain salient object detection methods have also been developed [19,24,25,30,

36, 37]. In frequency domain methods, the salient object is detected by following the steps

of applying the frequency transform to the input image, modulating the frequency spectrum

in order to suppress the background and enhance the salient regions, and finally generat-

ing the gray level saliency map through the inverse transform. Early studies of salient

object detection in the frequency domain have been mainly based on Fourier transform

(FT) [19, 24, 25]. While the FT-based frequency domain methods can successfully detect

small salient objects, in images with large salient objects they can only detect the boundary

between the salient and non-salient objects rather than detecting the entire salient object.

This is due to the fact that in the FT of an image the global contrast features have dominance

over the local contrast features. Moreover, it is known that the FT cannot provide simulta-

neous spatial and frequency localization, and it is not useful for analyzing non-stationary

signals such as most of the natural images. The short-time-Fourier transform (STFT) can

be utilized to perform local frequency analysis. It segments the signal into narrow spatial

intervals (i.e., narrow enough to be considered stationary) and takes the FT of each seg-

ment. However, the fixed size of the intervals is the main drawback of the STFT. For low
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frequencies, a proper frequency resolution is needed, while for high frequencies, the spatial

resolution is more important [39, 40].

It is known that extracting image feature in a multi-resolution manner can provide more

comprehensive features for different image processing tasks, since each resolution can ex-

tract some features that might not get extracted at other resolutions. A few salient object

detection methods have been proposed by employing frequency domain transforms such

as the wavelet transform (WT) and the non-subsampled contourlet transform (NSCT) that

have the capability of doing a multi-resolution feature extraction [30, 36].

In the past few years, employing deep convolutional neural networks (CNNs) to ex-

tract image features has attracted a great deal of interest in different image processing and

computer vision applications. These deep networks provide a multi-resolution platform for

automatic extraction of low-level and high-level image features pertinent to a large class of

images. The reason that such a platform can be utilized to extract both the low-level and

high-level features is that they can be trained using ground truth images that are gathered

using HVS. In order to effectively extract high-level features using neural networks, we

need networks that are deep. Recently, some salient object detection methods have been

proposed utilizing CNNs [41–51]. These methods provide substantially improved results

over that provided by the conventional schemes. The existing deep salient object detection

schemes use the standard convolution, which is a convolution over all the channels in one

step. However, performing the standard convolution is computationally expensive specially

when the number of channels is increased through the layers of a deep network.

A comprehensive review of the works in salient object detection can be found in the

survey papers [18, 52].
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1.3 Motivation

Extracting image features that can distinguish the salient regions from the non-salient

ones, and then making use of the extracted features to detect the salient regions accurately

are the main steps in developing salient object detection schemes. Although there are a

number of salient object detection methods, it is still challenging to develop more accu-

rate methods that can obtain saliency maps with uniformly highlighted salient regions and

sharp boundaries between the salient and non-salient regions. Despite to capabilities of

multi-resolution image feature extraction techniques, not much effort has been made in

developing salient object detection schemes by making use of these techniques both in

the frequency domain and the spatial domain. Frequency transforms such as the WT and

the NSCT can extract multi-resolution image features that could be beneficial in detecting

salient objects in images. Also, it has been shown that the deep learning approaches can

be used as a multi-resolution spatial domain feature extraction technique for salient object

detection. These schemes can automatically extract multi-resolution, low-level, and high-

level image features, and obtain significantly improved results compared to the non-deep

learning methods. However, the existing deep schemes suffer from the large computational

cost. Therefore, developing relatively low complexity deep salient object detection meth-

ods is a challenging task.

1.4 Objectives

The objective of this thesis is to develop new schemes for salient object detection in im-

ages by extracting multi-resolution multi-level image features using frequency and spatial

domain tools, and devising algorithms by making use of the extracted features in order to

identify the salient object.

The first part of this thesis is concerned with developing salient object detection schemes
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using multi-resolution frequency domain features. First, a salient object detection method

is proposed by making use of WT-based image features extracted from the color channels.

Also, since, in a color image different features can be extracted from each color channel, it

is desirable to investigate an efficient approach to combine the extracted channel features.

The core ideas of the proposed salient object detection scheme are recognizing the WT

based color channel textural details as suitable features to distinguish salient regions from

non-salient ones, and devising a scheme for the weighted linear combination of the color

channel features in order to detect and extract the salient objects. A new method based

on the entropy of the individual color channels within the image is proposed for determin-

ing the weights of the linear combination. Although the WT-based features are effective

in representing image features at different resolutions, they suffer from lack of directional

flexibility. In order to address this issue, in this part of the thesis another salient object

detection scheme is developed by using NSCT-based image features. It is known that this

transform is capable of providing a multiscale, multi-directional and translation invariant

decomposition of images. In addition, unlike the WT that can capture only the point dis-

continuities, the NSCT is able to capture the line discontinuities too. The proposed salient

object detection method is realized by extracting local features from the local variation of

the low-pass coefficients, and global features from the distribution of the directional sub-

band coefficients.

The second part of this thesis deals with investigating salient object detection using the

multi-resolution features extracted by a deep CNN. The proposed salient object detection

network has an encoder-decoder architecture, in which both the encoder and decoder parts

are designed based on depthwise separable convolution operations rather than the stan-

dard convolution. In the design of the proposed network a skip connection is established

between an encoder layer an a judiciously chosen decoder layer that essentially has been

aimed to improve the performance of the network by combining multi-level image features
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and controlling the gradient vanishing problem. In view of performing the lightweight

depthwise separable convolution in the proposed network, its computational complexity is

reduced to an extent that makes it possible to raise the complexity slightly up for allowing

the utilization of the skip connections.

Extensive experiments are conducted in order to evaluate the performance of the pro-

posed salient object detection schemes and to compare them with other existing works by

applying them to the natural images from several datasets.

1.5 Organization of the Thesis

The thesis is organized as follows: In Chapter 2, a brief review of different tools that

are used to extract image features in this thesis is presented. It includes an introduction to

the WT, the NCST, and the CNNs. Also, different metrics that are utilized to evaluate the

performance of the proposed salient object detection methods are described in this chapter.

In chapter 3, a salient object detection method is developed by utilizing multi-resolution

image features extracted from the WT decomposition of the three color channels. A scheme

is proposed to linearly combine the channel feature maps in which the weights for the linear

combination are determined by making use of the entropy of the channel feature maps and

a Gaussian kernel, utilizing the fact that the salient objects are generally clustered and

scene-centric. Several experiments are conducted on sets of natural images to evaluate the

performance of the proposed method.

In chapter 4, using the multi-resolution image features obtained by applying the NSCT,

a salient object detection scheme is devised by extracting local and global features from

the NSCT coefficients of the three color channels at different scales. The local features are

extracted from the local variations of the low-pass coefficients whereas the global features

are obtained based on the distribution of the directional subband coefficients. Experiments

are carried out to evaluate the effectiveness of the proposed salient object detection method.
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In chapter 5, a deep salient object detection network is designed using the lightweight

depthwise separable convolution. The proposed network is developed by extracting muli-

level and multi-scale image features in the layers of the network and exploiting the fusion

of extracted image features through judicious skip connections between the layers. The

proposed deep salient object detection network is aimed at providing a good performance

while reducing the computational cost. A number of experiments are conducted to evaluate

the proposed network and to compare it with the existing deep salient object detection

schemes in terms of performance and computational complexity.

Finally, in Chapter 6, some concluding remarks and scope for further research are pre-

sented.
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Chapter 2

Background Material

In this chapter, a brief review of the background material required for the development

of the proposed salient object detection schemes in subsequent chapters is presented.

2.1 Two Dimensional Discrete Wavelet Transform

The WT has been developed as a powerful tool for different signal processing appli-

cations [53]. It was first presented as the foundation of the multi-resolution theory which

is concerned with the signal analysis at more than one resolution [54, 55]. The main idea

behind the multi-resolution theory is that the features that can not be detected at one reso-

lution, may be easy to detect at another. Therefore, the multi-resolution analysis is capable

of detecting the local and global features of the image [56]. Moreover, unlike the FT which

is based on sinusoid basis functions with an infinite length, the WT employs basis func-

tion of varying frequency and limited duration. These functions provide space-frequency

localization [57].

In image processing applications, we deal with two-dimensional (2D) discrete wavelet

transform. It consists of scaling functions, used to generate approximations of an image

each differing by a scale of 1/2 in resolution, and wavelet functions, used to encode the

differences between successive approximations. By applying the WT, the image is rep-

resented as a linear combination of the scaling functions and the wavelets [53]. The WT
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Figure 2.1: Illustration of a 2-level WT decomposition: A, H , V , and D represent approx-
imation, horizontal, vertical and diagonal subbands, respectively.

decomposition of an image at each scale comprises the approximation or the low-pass sub-

band and the oriented details (horizontal, vertical, and diagonal) or the high-pass subbands.

Figure 2.1 shows an schematic of a 2-level WT decomposition process.

2.2 Non-subsampled Contourlet Transform

As mentioned in Chapter 1, the NSCT [58] has been proposed in order to obtain

directional flexibility in the multi-resolution representation of images. This transform

is composed of two filtering stages including non-subsampled pyramid (NSP) and non-

subsampled directional filter bank (NSDFB). Multi-resolution property is realized by us-

ing two-channel non-subsampled filter bank resulting in low- and high-frequency images

at each NSP decomposition level. Subsequently, to capture the singularities in the image,

NSP iteratively decomposes the low-frequency component. As a result, NSP provides J+1

sub-images comprising 1 low- and J high-frequency image components having the same

size as that of the original image, where J denotes the number of decomposition levels. Fi-

nally, multi-directional decomposition is achieved by applying NSDFB to high-frequency

images at each scale. NSDFB is constructed by combining the directional fan filter banks

and then used to produce flexible directional sub-images with the same size as that of the

original image. It is not only able to capture the smooth contours effectively in a flexible

number of directions, but is also invariant under translations. Figure 2.2 shows a schematic
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Figure 2.2: Illustration of the NSCT decomposition.

of the NSCT decomposition process.

2.3 Deep Convolutional Neural Networks

Neural networks provide a platform for automatically extracting both low-level and

high-level image features from the raw images. The reason that such a platform can be

utilized to extract both the low-level and high-level features is that they can be trained

using ground truth images that are gathered using HVS. In order to effectively extract

high-level features using neural networks, we need networks that are deep. Deep neural

networks remained practically infeasible in view of the requirement of large processing

power for their implementation. However, the advent of modern graphics processing units

(GPUs) paved the way for implementing deep neural networks. Consequently, training of

deep neural networks using very large image datasets to learn the ground truth images have
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become possible. With the high computational capability provided by the modern GPUs,

Krizhevsky et al. in 2012 were able to implement a deep CNN with 8 layers and millions

of parameters for the purpose of image classification [59]. They trained the network using

the ImageNet dataset [60] containing 1.2 million images. Subsequently, larger and deeper

CNNs have been proposed [61–63] and widely used for different tasks, such as semantic

segmentation [64], edge detection [65], object detection [66, 67], and pedestrian detection

[68].

Use of convolution operations in deep neural networks is motivated by three main fac-

tors [69]. First, computing the output using a CNN requires fewer parameters and opera-

tions compared to that required by the traditional neural networks. This is accomplished

by using weight matrices, called kernels, that are only a fraction of the input image size.

Second, in a CNN each element of the kernel is used at every position of the input, while

in a traditional neural network each element of the kernel is used exactly once. This char-

acteristic of the CNNs referred to as parameter sharing reduces the storage requirements of

the model. Third, the convolution operation provides the flexibility of working with images

of different sizes.

A CNN consists of an input layer, an output layer, and a number of convolutional lay-

ers. A typical convolutional layer of a CNN performs three main tasks. The first task of a

convolutional layer is a convolution of local regions (a spatial extent) of the image, called

receptive fields, with a single kernel. The use of a single kernel over all the receptive fields

of the image results in a linear activation map with only one kind of feature. Therefore, in

order to obtain activation maps of different kinds of features, different kernels are applied

resulting in a set of activation maps or a tensor of features. Adding non-linearity to the net-

work improves its ability to learn the ground truth images more accurately. Therefore, the

second task of a convolutional layer is application of a non-linear activation function, such

as the rectified linear unit (ReLU), to each of the linear activation maps. The third task is
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modification in the dimension of the non-linear activation maps in order to extract features

at different levels and modify the number of parameters. Depending on the application

of the network, the output of the layer may have to be down-sampled using a function

such as max-pooling, or up-sampled by applying a function such as deconvolution [69].

Number of the convolutional layers in a CNN depends on the application for which the

network is designed. By employing more convolutional layers, multi-level image features

are extracted.

2.4 Metrics Used to Evaluate the Performance of Salient

Object Detection Methods

In this section, we review different metrics used to evaluate the performance of a salient

object detection method.

As mentioned earlier, the output of a salient object detection method is a gray-level

saliency map, S. Salient object detection can be considered as binary classification of

salient and non-salient regions in the saliency map. Since in this problem the ground truth,

GT, is a binary image, the gray-level saliency map, S, should be converted into a binary

saliency map, Sb, using a threshold value. Two different schemes are used to convert the

gray level saliency map into a binary map; fixed and adaptive threshold binarization.

In the fixed threshold binarization, the threshold value is varied from 0 to 255 and it

is applied to the gray-level saliency map. The binary saliency map corresponding to each

threshold value is then compared to the ground truth and the precision, P , and recall, R,

values are computed. Precision, also called positive predictive value, is the fraction of

retrieved instances that are relevant, while recall, also known as sensitivity, is the fraction

of relevant instances that are retrieved. Precision and recall are computed as
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P =

∑
x

∑
y Sb(x, y)GT (x, y)∑
x

∑
y Sb(x, y)

,

R =

∑
x

∑
y Sb(x, y)GT (x, y)∑
x

∑
y GT (x, y)

,

(2.1)

where (x, y) represents a pixel’s spatial location. The average precision and recall values

for images in each dataset are shown on a precision-recall curve.

The use of the fixed thresholds is not sufficient to evaluate the performance of a method,

since it is image independent. Thus, an adaptive image dependent threshold is also utilized.

In the adaptive threshold binarization, the threshold is defined to be twice the mean of the

saliency values of all the pixels in each gray-level saliency map as given by [27]

Tadp =
2

LW

∑
x

∑
y

S(x, y). (2.2)

where L and W are, respectively, the numbers of rows and columns in the saliency map.

The adaptive threshold is then applied to the gray-level saliency map to obtain the corre-

sponding binary saliency map. For each saliency map, the precision and recall values are

then computed using (2.1). Then, as a combination of the precision and recall metrics, the

F-measure value, Fβ , defined as

Fβ =
(1 + β2)PR

(β2P ) +R
, (2.3)

where β2 is a positive parameter specifying the relative importance of the precision and

recall, is computed. In order to be consistent in comparing the performance of the proposed

method with that of the existing works in the literature, we set β2 = 0.3 as suggested in

[27].

In order to further evaluate the performance of the proposed method, the mean absolute

15



error (MAE) between the binary saliency map using the adaptive threshold binarization and

the ground truth is obtained as

MAE =
1

LW

∑
x

∑
y

|Sb(x, y)−GT (x, y)| . (2.4)

The MAE value evaluates directly how similar is the binary saliency map to the ground

truth.

2.5 Summary

In this chapter, the background material that is required for the investigation carried out

in the succeeding chapters has been described. First, an introduction to the WT has been

presented. Then, the NSCT and its properties in representing the image has been briefly

reviewed. Next, an introduction to the general structure and characteristic of the CNNs

has been presented. Finally, several metrics that are used to evaluate the performance of a

salient object detection method have been discussed.
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Chapter 3

Salient Object Detection Using

Wavelet-based Image Features

3.1 Introduction

In view of the fact that the WT is capable of performing a multi-resolution spatial and

frequency localized analysis, it could be an appropriate tool for extracting oriented details

of an image and detecting salient regions of different sizes in various images. In [30], the

WT is applied to the image and at each decomposition level a feature map is generated

by setting the low-pass coefficients of that level to 0 and applying the inverse WT. Then,

a local saliency map is computed by linear combination of the feature maps obtained at

various levels, while a global saliency map is computed based on the distribution of the

feature maps. However, since the last decomposition level consists of all the detail coeffi-

cients of the previous levels, no additional information is obtained by applying the inverse

transform after each decomposition level. Also, generating these feature maps increases

the computational complexity of the method.

In this chapter, utilizing the WT-based image features, a new salient object detection

method is proposed [70,71]. In Section 3.2, the proposed scheme is developed by devising

the various steps involved in obtaining the channel feature maps, their associated weights,

and the image feature map that lead to obtaining the final saliency map. In Section 3.3,
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experiments are carried out in order to demonstrate the effectiveness of the proposed salient

object detection scheme and compare its performance with that of some of the existing

schemes in the literature. Finally, in Section 3.4, the work of this chapter is summarized

and the significant features of the proposed scheme are highlighted.

3.2 Proposed Salient Object Detection Method

The proposed method attempts to detect salient regions of images using WT-based tex-

tural features of the three color channels and incorporates them using an efficient weight-

ing scheme. In this method, the input image is converted to the CIELAB color space,

having luminance, red/green, and blue/yellow channels, denoted by L, a, and b, respec-

tively, since, this color space is perceptually more uniform than the RGB color space.

The proposed method consists of the steps of extracting feature maps corresponding to the

three color channels using WT decomposition, linearly combining the three channel fea-

ture maps based on the concept of entropy and a border avoidance criterion, modifying

the feature map by making use of the centers of gravity of the image [72], and obtaining

the final saliency map by bilateral filtering [73] of the modified image feature map. In the

following, these four steps are described in detail.

3.2.1 Wavelet-based Feature Maps of Color Channels

In the proposed technique, the WT is utilized to extract textural details of the image at

different scales, n = 1, ..., N , where depending on the size of the input image and size of

the wavelet filter used, N is the maximum level of WT decomposition. The operation of

WT carried out individually to the L, a and b channels of the image yields,

{
Ac

N , {Hc
n,V

c
n ,D

c
n}n=1,...,N

}
= WTN(I

c), (3.1)
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where WTN(.) denotes the wavelet transform at level N , Ic, c ∈ {L, a, b}, represents the

color channels of the input image, Ac
N is the approximation coefficients at the coarsest

level, N , and Hc
n,V

c
n ,D

c
n are the matrices of appropriate sizes representing the horizontal,

vertical and diagonal sub-band coefficients of the channel c at level n, respectively.

To extract textural details from the WT decomposition of the image, the low-pass coeffi-

cients at the coarsest decomposition level, N , are set to 0, and the 2D signal is reconstructed

by applying the inverse WT as

TMAP c = IWTN

(
Ac

N = 0, {Hc
n,V

c
n ,D

c
n}n=1,...,N

)
, (3.2)

where IWTN(.) denotes the inverse wavelet transform at level N , and TMAP c is the

texture map of the channel c.

The channel feature map of a location (x, y), FMAPc(x, y) for the channel c, is ob-

tained by enhancing the high-intensity values and suppressing the low-intensity values of

the channel texture map at that location, TMAPc(x, y), as

FMAPc(x, y) = (TMAPc(x, y))2 . (3.3)

In order to investigate the effect of the number of decomposition levels used on the

quality of the feature maps, we stop decomposition at different levels, m = 1, ...N , and

construct a feature map for each m by setting the low-pass coefficients of the mth level to

0 and reconstructing the 2D signal by using the detail coefficients of all the levels from 1 to

m. Figure 3.1 shows an example of the feature maps for the three channels resulting from

a 200 × 150 color image after each of the decomposition levels from m = 1 to m = 8,

which is the maximum decomposition level for the image of this size, by employing the

Daubechies wavelets (Daub.7). It is seen from this figure that, as the number of decom-

position levels is increased, the proposed method results in increasingly improved textural
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Figure 3.1: (a) Original 200× 150 color image, (b) Channel feature maps obtained after m
decomposition levels for L, a and b channels.

features for each of the channels. It is noted that for m < N the number of sub-bands used

to construct the channel feature maps is a subset of the number of sub-bands used for con-

structing these channel feature maps for m = N . Thus, a linear combination of the feature

maps for m = 1, ...N , for a given c, cannot be expected to improve the quality of the chan-

nel feature maps over that constructed by using m = N levels of decompositions. Thus, we

advocate to construct the channel feature maps only after the last level of decomposition,

i.e., m = N , which should also result in reduced computational complexity.

3.2.2 Image Feature Map

After constructing channel feature maps for each of the L, a, and b channels, an image

feature map, FMAP , is obtained through a weighted linear combination of the channel
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feature maps as follows

FMAP =
∑

c∈{L,a,b}
ωcFMAPc, (3.4)

where ωc is the weight assigned to the feature map corresponding to the channel c.

In determining the values of weights, ωc, we focus on two aspects of a desirable feature

map. A desirable feature map should have a cluster of pixels with high values of the

gray levels corresponding to the salient region and the rest of pixels with low values. The

other consideration is the fact that since salient objects are generally center biased, weights

should be determined so as to provide less importance to the borders of the channel feature

map.

In order to take into consideration the first aspect of a desirable feature map, we use

the entropy of the channel feature maps. A channel feature map having only two levels of

pixels would have an entropy value lower than that of a channel feature map having a larger

number of gray levels of the pixels. Figure 3.2 shows an example of synthetic images with

pixel values of 2 and 4 gray levels and their entropy values. Thus, the channel feature map

with a smaller entropy should be assigned a larger weight and vice-versa. However, the

problem with determining a weight based on the entropy value of the channel feature map

is that it does not take into account the spatial distribution of the pixel gray levels across

the map. Figure 3.3 shows an example of two binary images of size 20 × 20 pixels. The

number of pixels with a given gray level are the same in both the images. Despite the fact

that distribution of these two gray levels are different in the two images, they both have

the same entropy value. In order to use the entropy value for determining the weights,

we would like to increase the entropy value in a situation in which the pixel gray levels

of the channel feature map is more scattered. Therefore, we propose the channel feature

map to undergo a low-pass filtering, a process through which the number of gray levels in

the two images with different distributions will increase. Accordingly, their entropy value
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Figure 3.2: Synthetic images with (a) two gray levels of 0 and 1, and (b) four gray levels of
0, 0.25, 0.5, 1 and their entropy values.

will also increase. However, the increase in the entropy value of the image with a scattered

distribution is larger than that of the image with a clustered distribution. Figure 3.4 shows

the same two images as shown in Figure 3.3 after they are filtered using a 3 × 3 low-pass

Gaussian filter, along with their entropy values. It is noted that after low-pass filtering, the

entropy value of the image with the scattered distribution of pixels with the gray level of

unity is increased much more than that of the image in which the pixels with gray level

of unity are clustered together. Thus, the entropy value of the low-pass filtered channel

feature map can be considered as a parameter in assigning weights to the channel feature

maps. The entropy value is computed as

εc = η (FMAP c ∗G) , (3.5)

where η(.) is the entropy, G is a low-pass Gaussian filter, and ∗ represents the 2D convolu-

tion of the two associated matrices. The standard deviation of the Gaussian filter should be

large enough so as to include sufficient number of neighboring pixels around each pixel in

the filtering process.

In order to take into consideration the fact that in most of the natural images the salient

region is located close to the center rather than on or near to the borders, in the linear

combination of (3.4) a smaller weight is assigned to a channel feature map with a strong
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Figure 3.3: Synthetic images of size 20× 20 pixels, each of two images has 25 pixels with
the gray level of 1 and 375 pixels with the gray level of 0.

Figure 3.4: Images of 3.3 after low-pass filtering and their entropy values.

response at the border. In this work, utilizing the border-avoidance criterion in [19], the

strength of the channel feature map is computed with a greater emphasis given to a salient-

like region at the center rather than at the border of the image, as

αc =
∑
x

∑
y

Z(x, y).Nr(FMAPc(x, y)), (3.6)

where Z(x, y) is the (x, y)th element of a Gaussian mask Z, of the same size as that

of the channel feature map and its entries normalized to a maximum value of 1, and

Nr(FMAPc(x, y)) represents the (x, y)th element of the normalized image feature map

FMAP c/
∑

x

∑
y FMAPc(x, y).

Thus, in order to emphasize the presence of a salient region at the center and de-

emphasize any possible salient-like regions at the border of the image, we propose the

weights in (3.4) to be chosen as
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ωc = (αc/εc)4 , (3.7)

where the power 4 in the expression for this weight is empirically set. The image feature

map is then computed through the linear weighted combination of channel feature maps

given by (3.4).

3.2.3 Modification of the Image Feature Map by Considering Centers

of Gravity

The image feature map obtained as above is further refined by taking centers of gravity

into account. Centers of gravity are defined as one or several pixels about which the visual

form of the image is organized [72]. The regions surrounding the centers of gravity attract

our attention. Thus, the saliency value at the locations around the centers of gravity should

be greater than those of the locations that are far away. In view of this, first the pixels whose

intensity values in the feature map exceed a certain threshold are identified as centers of

gravity in the same way as in [74]. Then, all the other pixels are weighted according to

their Euclidean distances from the closest center of gravity in order to obtain a refined

image feature map, as

MFMAP (x, y) = (3.8)

FMAP (x, y) (1− min {‖(x, y), (x́, ý)‖ |(x́, ý) ∈ Centers of Gravity}) ,

where ‖.‖ represents the Euclidean positional distance between the pixel at location (x, y)

and the center of gravity at (x́, ý).

In order to have a smooth saliency map, in most of the existing saliency detection

methods, a low-pass Gaussian filter is applied to the saliency map in the last step [19, 30].
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It is known that in Gaussian low-pass filtering, the pixel value of filtered image at a given

location is computed as the weighted average of pixel values in a neighborhood specified

by the standard deviation of the filter. The weight decreases as the distance of a pixel from

the neighborhood center increases. Since the nearby pixels are likely to have the same

intensity values, it is appropriate to average them together. However, the idea fails at the

edges where there is an abrupt change in the intensity values of the neighboring pixels, and

it results in blurred edges. Thus, low-pass filtering of the saliency map destroys the borders

of the salient region.

In this work, in order to smooth the modified image feature map, MFMAP , while

preserving the strong edges between salient and non-salient regions, a bilateral filter [73]

is applied to it. Two pixels at an edge which are close to each other spatially could be

very different in terms of their intensity values. The basic idea of bilateral filtering is

considering both spatial closeness and intensity similarity of the pixels in assigning the

weights in the filtering process. Thus, bilateral filtering can preserve high-contrast edges

while removing low-contrast or gradual changes. A simple case of bilateral filtering is

shift-invariant filtering, in which a Gaussian closeness filter and a Gaussian similarity filter

are simultaneously used. In this work, the saliency map, S, is obtained by bilateral filtering

of the modified image feature map as

S = BF (MFMAP ) , (3.9)

where BF (.) denotes the bilateral filtering operation. The value of a pixel at location q of

the MFMAP after bilateral filtering is obtained as
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BF [MFMAPq] =

1

Wq

∑
q′∈Ω

Gσd

(∥∥∥q − q
′
∥∥∥)Gσr

(∣∣MFMAPq −MFMAPq′
∣∣)MFMAPq′ , (3.10)

where Wq is a normalization factor given by

Wq =
∑
q′∈Ω

Gσd

(∥∥∥q − q
′
∥∥∥)Gσr

(∣∣MFMAPq −MFMAPq′
∣∣) , (3.11)

where q denotes a location (x, y) in MFMAP , q′ denotes a location (x́, ý) ∈ Ω, Ω

being the set of possible positions in MFMAP , and Gσd
and Gσr are the Gaussian

closeness (domain) and similarity (range) functions with the standard deviations of σd and

σr, respectively.

The proposed wavelet-based salient object detection scheme is summarized in Algo-

rithm 3.1.

3.2.4 Evaluating the Impact of the Main Phases of the Proposed Method

In this section, the effect of each phase of the proposed method is studied. To this

end, first, the wavelet-based channel feature maps (as given in (3.3)) for a sample image

obtained by employing the proposed method. Figure 3.5 shows the three color channels and

the channel feature maps obtained. It can be seen that for this sample image the channel

feature map corresponding to the channel a can represent the salient region better than

represented by the maps corresponding to the channels L and b. It is also seen that some

details of the salient region has been captured by the b channel feature map, but not by the

L channel feature map.
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Algorithm 3.1: Salient Object Detection Using Wavelet-based Features
Input: RGB Image I

1 Convert the input image , I, from RGB color space c ∈ {R,G,B} to CIELAB
color space c ∈ {L, a, b}

2 for c ∈ {L, a, b} do

3 Perform the wavelet transform
4 Set low-pass coefficients to 0
5 Obtain channel texture map by performing the inverse wavelet transform
6 Obtain channel feature map using (3.3)
7 Calculate the weight of the channel feature map based on small entropy and

border avoidance criteria using (3.7)

8 Obtain image feature map by linearly combining the 3 channel feature maps,
obtained in Step 6, using the weights calculated in Step 7

9 Identify centers of gravity in the image feature map obtained in Step 8
10 Refine image feature map based on each pixel’s distance to the centers of gravity

using (3.8)
11 Apply bilateral filtering

Output: Saliency Map S

The effects of the succeeding steps that use the three channel feature maps given in

Figures 3.5 (d), (f) and (h) are depicted in Figure 3.6. Figure 3.6 (a) is simply the av-

erage of the three channel maps, that is, a map obtained by linearly combining the three

maps with equal weights. Figure 3.6 (b) shows the image feature map obtained through a

weighted linear combination of the three channel feature maps. A comparison of the maps

in Figures 3.6 (a) and (b) clearly shows a positive effect of the proposed weighting scheme,

as described in Section 3.2.2, on the image feature map. It is seen that after applying the

linear combination using the proposed weights given by (3.7), the non-salient regions are

suppressed effectively compared to the simple averaging of the channel feature maps. Fig-

ure 3.6 (c) shows the modified image feature map obtained by taking into consideration the

centers of gravity in the image feature map of Figure 3.6 (b). A comparison of the maps in

Figures 3.6 (b) and (c) shows that the saliency values of the salient regions have increased,

while those of the non-salient regions have decreased or remained unchanged. However,

there are still some regions in the background which have been wrongly detected as salient.
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Figure 3.5: (a) Original image. (b) Ground truth. (c) L color channel. (d) L channel feature
map. (e) a color channel. (f) a channel feature map. (g) b color channel. (h) b
channel feature map.

Finally, Figure 3.6 (d) shows the gray-level saliency map by applying the bilateral filtering

on the modified image feature map of Figure 3.6 (c). It is seen that, after the bilateral fil-

tering the wrongly detected regions in the background are further suppressed, and that the

salient region has become more uniform. It is noted that enhancement in the saliency map

has been achieved while still preserving the boundary between the salient and non-salient

regions.
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Figure 3.6: The maps obtained after the application of the proposed method. (a) Average
of the channel feature maps. (b) Weighted linear combination of the channel
feature maps. (c) Refined map by considering centers of gravity. (d) The final
saliency map after bilateral filtering.

3.3 Experimental Results

Performance of the proposed salient object detection method is evaluated on six com-

monly used datasets of natural images, namely, MSRA-1000 [27] (1,000 images), MSRA-

10K [34] (10,000 images), HKU-IS [44] (4,447 images), PASCAL-S [75] (850 images),

DUT-OMRON [31] (5,172 images), and CSSD [76] (200 images) datasets.

In the proposed method, the Daubechies wavelets (Daub.7) are used to extract the fea-

tures. The size of the filter results in a trade-off between the time complexity and promising

quality of the saliency maps. The standard deviation of the low-pass Gaussian filter, G, in

(3.5) is set to σ = 0.02 × L+W
2

, and the standard deviation of the Gaussian mask, Z, in

(3.6) is set to σ́ = 0.25× L+W
2

, where L and W are, respectively, the number of rows and

columns in the original image. The threshold to identify centers of gravity in (3.8) is cho-

sen to be 0.8. The standard deviations of the Gaussian closeness and similarity filters in the

bilateral filter given by (3.10) are set to σd =
min(L,W )

16
and σr =

max(S)−min(S)
10

, respectively.

3.3.1 Performance Comparison

Performance of the proposed salient object detection method is evaluated both sub-

jectively and objectively and compared to that of the six other frequency domain salient

object detection methods, namely, superpixel-based wavelet method (SW) [70], weighted
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Figure 3.7: Saliency maps obtained by applying the proposed and other methods on sample
images from the datasets in [27, 34, 76, 77]. (a) Original image. (b) Ground
truth. (c) Spectral residual method (SR) [27]. (d) Frequency-tuned method
(FTU) [19]. (e) Hyper-complex Fourier-base method (HFT) [19]. (f) Wavelet-
based method (WAV) [30]. (g) Weighted quaternion-based method (WQ) [78].
(h) Superpixel-based wavelet method (SW) [70]. (i) Proposed method [71] .
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quaternion-based method (WQ) [78], wavelet-based method (WAV) [30], hyper-complex

Fourier-based method (HFT) [19], frequency-tuned method (FTU) [27], and spectral resid-

ual method (SR) [24].

Figure 3.7, shows the saliency maps obtained by utilizing the proposed method as well

as the other methods for some sample images. It is seen form this figure that the saliency

maps obtained using the proposed method are more similar to the ground truth in com-

parison to the other methods. Also, in the saliency maps obtained, the salient regions are

uniformly highlighted with a sharp boundary. It is seen from Figure 3.7 that some other

methods are not able to detect the entire salient object. For instance SR [24] detects edges

of the salient object. In the saliency maps obtained by FTU [19], the non-salient regions

are not clean. Some other methods such as HFT [19] are not successful in detecting salient

regions of large size (see sample images in rows 7, 11 and 12 of Figure 3.7). The saliency

maps obtained by the method WAV [30] are very blurred and the salient region is not de-

tected accurately.

Figure 3.8-3.10 depict the average precision-recall curves obtained by applying the

proposed and the other schemes with the fixed thresholds. It is seen from this figure that

the proposed scheme outperforms all the other schemes in terms of the precision-recall

performance. For the entire range of the fixed thresholds on each of the six datasets, the

proposed method obtains the largest values of precision and recall compared to the other

methods. There are two other wavelet-based methods amongst the methods considered

for comparison, namely SW [70] and WAV [30], which have smaller precision and recall

values compared to those of the proposed method.

Figure 3.11 and 3.12 show the average precision, recall and Fβ values obtained using

the adaptive threshold given by (2.2). It is seen from this figure that the proposed method

provides the largest values for the precision metric amongst all the methods regardless of

the datasets on which the methods are applied. In terms of the recall metric, the proposed
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(a)

(b)

Figure 3.8: Precision-recall curves obtained by applying the proposed and other salient
object detection methods on images in (a) MSRA-1000 and (b) MSRA-10K
datasets.
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(a)

(b)

Figure 3.9: Precision-recall curves obtained by applying the proposed and other salient ob-
ject detection methods on images in (a) HKU-IS and (b) PASCAL-S datasets.
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(a)

(b)

Figure 3.10: Precision-recall curves obtained by applying the proposed and other salient
object detection methods on images in (a) DUT-OMRON and (b) CSSD
datasets.
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scheme is second only to SW scheme in the cases of the HKU-IS, PASCAL-S and DUT-

OMRON datasets. However, the SW scheme has provided larger values for the recall

metric in comparison to that of the proposed method at the expense of smaller values for the

precision metric. Since, both of the precision and recall values are considered in computing

the Fβ metric, the overall performance of a salient object detection method can be evaluated

using the Fβ metric. It is seen from Figures 3.11 and 3.12 that for all the six datasets, the

proposed method provides the largest value for the Fβ metric amongst all the methods. To

make the comparison simpler, the Fβ values obtained by applying different methods are

also given in Table 3.1.

The MAE values obtained using the proposed method as well as by using the other

methods are also given in Table 3.1. It is seen from this table that the proposed method

provides the lowest value for the MAE metric amongst all the methods, irrespective of the

datasets used in our experiments, indicating a strong similarity between the saliency maps

obtained by applying the proposed method and the ground truth.

As seen from Figure 3.7, the saliency maps obtained using the proposed method are

more similar to the ground truth in comparison to those obtained using the other methods,

thus indicating the superiority of the proposed method. In addition, as seen from Fig-

ures 3.8-3.12, and Table 3.1, the proposed salient object detection method outperforms the

other methods in terms of precision-recall performance for the fixed thresholds, and Fβ and

MAE values for the adaptive threshold. This performance improvement can be attributed

to the incorporation of the wavelet-based textural feature maps that are able to represent the

saliency-related information of each color channel, and their efficient linear combination

using the proposed weighting scheme.

Using features that cannot suitably distinguish the salient regions from the non-salient

ones, such as the spectral residual in the SR method [24], has resulted in inaccurate saliency

maps (as seen from Figure 3.7 (c) rows 3, 5 and 7, for some test images), small precision
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(a)

(b)

(c)

Figure 3.11: Precision, recall, and Fβ obtained by applying the proposed and other salient
object detection methods on images in (a) MSRA-1000, (b) MSRA-10K, and
(c) HKU-IS datasets.
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(a)

(b)

(c)

Figure 3.12: Precision, recall, and Fβ obtained by applying the proposed and other salient
object detection methods on images in (a) PASCAL-S, (b) DUT-OMRON, and
(c) CSSD datasets.
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and recall values, and large MAE values (as seen from Figures 3.8-3.12, and Table 3.1).

In the FTU method [27], the use of only the color components as features, while ignoring

other effective features such as textures, has led to the detection of the non-salient regions

incorrectly as the salient regions (Figure 3.7 (d) rows 3, 5-7, 9, and 11). In the HFT

method [19], the features have been extracted using the hyper-complex Fourier transform,

which is more suitable for extracting global irregularities. As a result, this method has

detected only the borders of the salient region and has failed in detecting the entire salient

object in images with large salient regions (see rows 7, 11, and 12 of Figure 3.7 (e)). In

the SW [70] and the WAV [30] methods, the wavelet-based features have been used. The

wavelet transform is particularly suitable in representing the image details. However, since

all the details employed in these methods are not related to the salient regions, they have

failed in detecting the salient regions in some of the test images (see Figures 3.7 (f) and

(h), rows 3, 11, and 12). As seen from Figures 3.8-3.12, and Table 3.1, these two methods

have yielded smaller precision and recall values and larger MAE values compared to the

proposed method. In the WT decomposition, the first decomposition levels extract edges

rather than textures, while the coarsest decomposition level consists of all the saliency-

related textural details of the image. In the proposed method, the extraction of a feature

map only after the wavelet decomposition at the coarsest level has resulted in more accurate

saliency maps, larger precision and recall values, and smaller MAE values as seen from

Figures 3.7 (i), 3.8-3.12, and Table 3.1, respectively.

The way the extracted features are utilized has a significant impact on the salient object

detection. In the HFT method [19], the maps have been generated at different levels but

only one of them has been selected as the final saliency map, resulting in not necessarily

an accurate detection of the salient objects (see Figure 3.7 (e), rows 4 and 9). In the WQ

method [78], using a set of pre-specified weights to linearly combine the features has led

to an inaccurate detection of the salient regions in some images (see Figure 3.7 (g), rows
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Table 3.1: Fβ and MAE values obtained by applying the proposed and the other methods
on images in the six datasets

Dataset MSRA-1000 MSRA10K HKU-IS

Metric Fβ MAE Fβ MAE Fβ MAE

Proposed [71] 0.8487 0.0785 0.7755 0.1213 0.6284 0.1458

SW [70] 0.7061 0.1238 0.6091 0.1701 0.5482 0.1692
WQ [78] 0.6846 0.1346 0.6505 0.1625 0.5480 0.1672
WAV [30] 0.6606 0.1442 0.6166 0.1716 0.5119 0.1703
HFT [19] 0.6610 0.1413 0.6357 0.1657 0.5338 0.1722
FTU [27] 0.5940 0.1622 0.5741 0.1885 0.4018 0.2155
SR [24] 0.4982 0.1887 0.5260 0.1990 0.4428 0.1946

Dataset PASCAL-S DUT-OMRON CSSD

Metric Fβ MAE Fβ MAE Fβ MAE

Proposed [71] 0.5432 0.2170 0.5274 0.1362 0.7376 0.1516

SW [70] 0.4773 0.2410 0.4506 0.1627 0.6168 0.1903
WQ [78] 0.4806 0.2363 0.4291 0.1635 0.6076 0.1922
WAV [30] 0.4286 0.2411 0.4329 0.1513 0.5313 0.2071
HFT [19] 0.4787 0.2397 0.4119 0.1689 0.5958 0.1938
FTU [27] 0.3662 0.2766 0.3160 0.2047 0.4752 0.2334
SR [24] 0.4355 0.2530 0.3303 0.1921 0.4500 0.2262

3-5). In the proposed method, the channel feature maps have been combined by applying

a weighting scheme, in which a larger weight is assigned to a channel feature map that can

represent the salient region more efficiently.

3.4 Summary

In this chapter, a salient object detection method has been proposed by using a new

weighted linear combination of the wavelet-based feature maps. The textural features of

the image have been extracted using the wavelet coefficients of the three color channels,

and an effective feature map fusion scheme based on the concept of entropy and border
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avoidance criterion has been proposed. In order to take into consideration both the spatial

and intensity information of the pixels, in this scheme, the entropy value of the low-pass

filtered map has been utilized. The map thus obtained has been further refined based on

the image centers of gravity. Finally, unlike most of the existing methods, a bilateral filter

has been applied to the resulting map in order to smooth it while preserving the sharp

boundaries between salient and non-salient regions.

Several experiments have been carried out by applying the proposed scheme on the im-

ages from several datasets in order to evaluate its performance and to compare it to other

existing methods. It has been shown that the saliency maps obtained using the proposed

method is more similar to the salient regions detected by HVS. The proposed method pro-

vides the values of precision, recall and Fβ higher than those provided by the other methods.
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Chapter 4

Salient Object Detection Using Feature

Extraction in the Non-subsampled

Contourlet Domain

4.1 Introduction

Despite the advantages of the WT, it is known that the wavelets are optimal only in

representing point discontinuities, but not very effective in capturing line discontinuities

corresponding to the directional details in the image [79]. In order to circumvent the lack

of directional selectivity of the wavelet, other multi-resolution and multi-directional repre-

sentations, such as the NSCT [58], have been developed. A salient object detection method

has been proposed in [36] by fusing local and global information from the NSCT coef-

ficients of the images. However, it has not fully taken into account the effective visual

features, such as texture and structure, since these attributes provide significant informa-

tion towards the local and global characteristics of the image and are known to be of great

importance in salient object detection.

In this chapter, a salient object detection method is proposed utilizing the non-subsampled

contourlet coefficients of the three color channels of the CIELAB color space [80, 81].

The proposed method is realized by extracting local and global features from the non-

subsampled contourlet coefficients of the color channels. A saliency map is obtained based
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on a linear combination of the local features and the distribution of the global features. In

order to provide a better preservation of the structure and boundary of the objects and to

obtain a more uniformly highlighted salient region, the saliency map is abstracted using an

optimization framework.

Section 4.2 presents the details of developing the proposed salient object detection

method using the NSCT domain features. Simulation results are provided in Section 4.3.

Finally, Section 4.4 concludes the work presented in this chapter.

4.2 Proposed Salient Object Detection Method

In this section, the various steps of the proposed salient object detection method are

presented.

The proposed scheme involves generating local and global feature maps. The local

feature maps are generated in order to detect pixels that are salient in a limited neighbor-

hood, while the global feature maps detect pixels that are salient in the entire image. The

local features are extracted from the local variations of the low-pass coefficients whereas

the global features are obtained based on the distribution of the directional subband coef-

ficients. To extract the image visual features effectively, the saliency map thus obtained is

finally abstracted into meaningful regions by applying an optimization framework.

The input image is first converted to the CIELAB color space. Then, the NSCT of

different decomposition levels, m = 1, ..., N , is applied to each color channel in order to

extract local and global features from the non-subsampled contourlet coefficients. At each

decomposition level, each channel is decomposed into a low-pass subband and a number

of bandpass directional subbands as

{
Ac

m,D
c
n,d

}
= NCSTm (Ic) , (4.1)
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where NSCTm(.) denotes the non-subsampled contourlet transform at level m, Ic, c ∈
{L, a, b}, represents the color channels of the input image, Ac

m denotes the low-pass sub-

band, Dn,d denotes set of bandpass directional subbands corresponding to the level n =

1, ...,m and the direction d = 1, ..., q of color channel c.

By taking advantage of such multi-scale and directional decomposition, in the proposed

method, two feature maps are generated, namely, a local feature map based on the statistical

parameters of the low-pass coefficients and a global feature map by utilizing the directional

subband coefficients.

4.2.1 Local Saliency Map Using Textural Features

In this section, the local saliency map generation algorithm used in the proposed method

is described. Our approach to this end is first applying m = 1, ..., N level decomposition

to each color channel. Then, after each level of decomposition the low-pass subband is

divided into blocks of b×b pixels, and the local variance of each block, Var(.), is considered

as the local feature map value of the block as given by

Lmapc
m(x, y) = Var {Ac

m(x+ i, y + j)}{i,j=±3,±2,±1,0} . (4.2)

Figure 4.1 shows the local feature maps for the color channels of a sample image after the

mth decomposition level. It is seen from this figure that the local feature maps represent

various textural details of the image at different levels.

The local saliency map, SLocal, is then obtained by linearly combining the local feature

maps Lmapc
m as

SLocal =
∑
c,m

ωc
mLmapc

m. (4.3)

As explained earlier in Chapter 3, the weights are assigned according to the entropy

values of the local feature map and pixel intensity values around the center of the map, in

43



Figure 4.1: (a) A sample image, (b) the corresponding ground truth, and (c) local feature
maps obtained after m = 1, 2, 3, 4 level of NSCT decomposition for the L, a
and b color channels.
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Algorithm 4.1: Determination of Local Saliency Map
Input: Image Color Channels in CIELAB color space Ic, c ∈ {L, a, b}

1 for c ∈ {L, a, b} do

2 for m = 1, ..., N do

3 Perform an m level non-subsampled contourlet decomposition
4 Obtain local feature map based on the variance of b× b blocks in the

low-pass subband
5 Calculate the weight of the local feature map based on small entropy and

border avoidance criteria using (4.4)

6 Obtain local saliency map by linearly combining the local feature maps
corresponding to different decomposition levels of the 3 color channels,
obtained in Step 4, using the weights calculated in Step 5

Output: Local Saliency Map SLocal

such a way that a larger weight is assigned to a local feature map having small value of

entropy and large values around the center of the map. Therefore, using (3.5) and (3.6), the

weights in (4.3) are calculated as

ωc
m = (αc

m/ε
c
m) . (4.4)

The algorithm to obtain the local saliency map is summarized in Algorithm 4.1 .

4.2.2 Global Saliency Map Using Bandpass Directional Subbands

In this section, the global saliency map generation algorithm used in the proposed

method is described. In order to generate the global feature map, after each decompo-

sition level, we set the low-pass coefficients to 0 for each color channel, and apply the

inverse non-subsampled contourlet transform, INSCT(.), to the bandpass coefficients as

Gmapc
m = INSCTm

(
Ac

m = 0,Dc
n,d

)
. (4.5)
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Figure 4.2: Global feature maps obtained after m = 1, 2, 3, 4 level of NSCT decomposition
for the L, a and b color channels.

The resulting inverse transform are the global feature maps. The global feature maps

corresponding to the different levels of decomposition and each channel for the image in

Figure 4.1 are shown in Figure 4.2.

The elements of the global feature maps are then used to form global feature vectors,

each corresponding to one pixel of the image. For each pixel, a global feature vector,

fg(x, y), with a length of l = 3X (X being the number of the global feature maps for each

channel) is constructed. If a particular vector is less similar to the others, the corresponding

pixel is different from the other pixels and thus it can be considered to be more salient.

In view of this, the distribution of the global feature vectors are modeled by a Gaussian

distribution [82] and the global saliency of each pixel is defined as the likelihood of finding

its global feature vector amongst all the vectors, as

p (fg(x, y)) =
1√

(2π)l |Σ|
exp

{−1

2
(fg(x, y)− μ)T Σ−1 (fg(x, y)− μ)

}
, (4.6)

where μ is a vector containing the means of the global feature maps, Σ is an l×l covariance
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Algorithm 4.2: Determination of Global Saliency Map
Input: Image Color Channels in CIELAB color space Ic, c ∈ {L, a, b}

1 for c ∈ {L, a, b} do

2 for m = 1, ..., N do

3 Perform an m level non-subsampled contourlet decomposition
4 Set low-pass coefficients to 0
5 Obtain global feature map by performing the inverse non-subsampled

contourlet transform

6 Construct a global feature vector for each image pixel using the global feature
maps corresponding to different decomposition levels of different color channels

7 Model the distribution of the global feature vectors by a Gaussian distribution
8 Obtain global saliency map value at each pixel location from the likelihood of

finding its global feature vector using (4.7)
Output: Global Saliency Map SGlobal

matrix, (.)T is the transpose operator, and |.| denotes the determinant of a matrix. Using

(4.6), the global saliency map, SGlobal, is computed as

SGlobal(x, y) = log
(
p (fg(x, y))

−1)0.5 . (4.7)

The algorithm to obtain the global saliency map is summarized in Algorithm 4.2 .

The local and global saliency maps obtained for the sample image in Figure 4.1 are

shown in Figures 4.3 (a)-(b). It is seen from this figure that the global saliency map provides

some meaningful information, especially around the edges of the salient object, which

cannot be detected well only by using the local saliency map. This is due to the fact that

global saliency map comprises of the statistical relation among the global feature maps. An

image region is salient if it is different from its surrounding regions and also it stands out

in the entire image. In view of this, after computing the local and global saliency maps, the

pixels which are both locally and globally salient are considered as the final salient pixels.

Thus, the local and global saliency maps are merged using a fusion algorithm that involves

a Hadamard product followed by a process that normalizes the pixels in this last map in the

range [0,1]. The purpose of the fusion algorithm is to give prominence to the pixels that
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Figure 4.3: (a) Local and (b) global saliency maps, (c) map obtained by fusion of local and
global saliency maps, (d) saliency map averaged over superpixels, (e) saliency
map after abstraction.

have large values both in the local and global saliency maps, whereas to assign small values

to pixels that have small values in either of the local and global maps or in both. The fused

map SM is given by

SM = Nr(SLocal ◦ SGlobal), (4.8)

where Nr(.) represents the normalization process of the pixels of the associated map

in the range [0,1] and ◦ denotes the Hadamard matrix product. The fused map obtained is

shown in Figure 4.3 (c).

4.2.3 Image Saliency Map Abstraction

It is known that a salient object detection technique aims at detecting the most distinc-

tive regions or objects rather than indivisual pixels. In view of this, the saliency map is

further abstracted into perceptually meaningful regions. More specifically, the input image

is segmented into k superpixels using the simple linear iterative clustering (SLIC) algo-

rithm [83], and the saliency value of each superpixel, is replaced by the average of the
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saliency values of all the pixels belonging to that superpixel.

Figure 4.3 (d) shows the saliency map averaged over superpixel for the sample image in

Figure 4.1. The saliency map abstraction is implemented using the optimization technique

of [32] in which the saliency values of superpixels are used as the foreground weights. In

this optimization problem, the cost function given by

k∑
i=1

wbi S
2
i +

k∑
i=1

wfi (Si − 1)2 +
∑
i,j

wsij (Si − Sj)
2 , (4.9)

where Si is the optimized saliency value of the superpixel i, and wfi, wbi, and wsij denote

the foreground, background and smoothness weights, respectively, is minimized. The cost

function contains three terms corresponding to the pixels in the foreground and background,

and the smoothness of the pixels within the two regions. The foreground term tries to assign

a saliency value of 1 to the superpixels with a larger value in the saliency map. On the other

hand, the background term aims at assigning a saliency value of 0 to the superpixels with

a strong boundary connectivity. Boundary connectivity is measured in terms of the spatial

distance and the CIELAB color distance between a superpixel and the superpixels located

around the image boundary. The smoothness term tries to assign the same saliency values

to the superpixels within the foreground region or the background region that are spatially

close to each other.

Since in most of the images, image boundary pixels belong to the background, the

degree of contrast of a pixel from the boundary pixels, provides a measure of its belong-

ing to the salient region. Therefore, we generate a boundary contrast map by computing

each pixel’s distance to the mean color and covariance matrix of the boundary pixels. The

abstracted saliency map and the boundary contrast map are then pixel-wise added.

The saliency maps are finally refined employing a post-processing algorithm. First,

to smooth the saliency map while keeping the details of object boundaries, a morpho-

logical smoothing step, composed of a reconstruction-by-dilation operation followed by
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Algorithm 4.3: NSCT-based Salient Object Detection Using Local and Global
Features

Input: RGB Image I
1 Convert the input image , I, from RGB color space c ∈ {R,G,B} to CIELAB

color space c ∈ {L, a, b}
2 Obtain local saleincy map using Algorithm 4.1
3 Obtain global saliency map using Algorithm 4.2
4 Fuse the local and global saliency maps using (4.8)
5 Perform abstraction on the fused map using (4.9)
6 Obtain boundary contrast map by computing each pixel’s distance to the mean

color and covariance matrix of the boundary pixels
7 Obtain the saliency map by pixel-wise adding the abstracted saliency map obtained

in Step 5 and the boundary contrast map obtained in Step 6
Output: Slainecy Map S

a reconstruction-by-erosion [84] is employed. The contrast between the salient and non-

salient regions is then enhanced using a sigmoid function.

Figure 4.3 (e) shows the saliency map after the abstraction for the sample image in

Figure 4.1. It is seen from this figure that the salient region is detected more precisely and

more uniformly after the abstraction.

The proposed NSCT-based salient object detection scheme is summerized in Algorithm

4.3 .

4.3 Experimental Results

In this section, performance of the proposed salient object detection method using the

NSCT-based features is compared with that of the some of the more recent salient object

detection schemes.

In the proposed scheme, the image is decomposed into 4 scales and 4 directional sub-

bands in each scale by using NSCT. It should be noted that the larger the number of di-

rectional subbands used, the greater is the number of features available. However, after
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a certain number of decomposition levels, the improvement in the performance becomes

insignificant. Hence, a further increase in the number of the decompositions used only adds

to the computational complexity. In the proposed scheme, both the number of decompo-

sition levels and the number of directional subbands are empirically set to 4 in order to

provide the best performance. The block size in local feature extraction, b, is set to 7, and

the number of superpixels in the saliency map abstarction, k, is set to 200.

4.3.1 Performance Comparison

Performance of the proposed method is compared to six more recent schemes for salient

object detection, namely, saliency filters method (SF) [29], manifold ranking method (MR)

[31], saliency optimization method (SO) [32], region-based contrast method (RC) [34],

minimum barrier distance method (MBD+) [33], and minimum spanning tree method

(MST) [35].

The saliency maps obtained using the proposed method as well as that of the other

methods for some test images are shown in Figure 4.4. It can be seen from this figure that

in general the saliency maps obtained by the proposed method is more similar to the ground

truth as compared to that provided by the other methods. It is seen that the SF scheme can

not detect the entire salient object (Figure 4.4 (c)) and the MR method can not detect the

salient object uniformly (rows 2, 4, and 6 of Figure 4.4 (d)). In the saliency maps obtained

by the SO and RC schemes some non-salient regions are incorrectly detected as salient

(row 10 of Figure 4.4 (e) and row 6 of Figure 4.4 (f)). The MBD+ and MST schemes

provide more accurate saliency maps but they still fail to detect the salient objects in some

images such as the image in the row 4 of Figures 4.4 (g)-(h).

Figures 4.5-4.7 depict the average precision-recall curves obtained by applying the

proposed salient object detection method and the other methods to the images in the six

datasets when the threshold is fixed. It is seen from this figure that the proposed method
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Figure 4.4: Saliency maps obtained by applying the proposed method and the other meth-
ods on test images from the datasets in [27, 31, 34, 44, 75]. (a) Original image.
(b) Ground truth. (c) SF [29]. (d) MR [31]. (e) SO [32]. (f) RC [34]. (g)
MBD+ [33]. (h) MST [35]. (i) Proposed method [81].
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generally outperforms all the other methods in terms of precision-recall performance when

applied on the images in all but the PASCAL-S dataset, where the MBD+ method pro-

vides the best performance and MST, SO, and MR schemes each provides almost the same

performance as that of the proposed method.

The average precision, recall and Fβ values obtained using the proposed method with

the adaptive threshold as well as that of the other methods are calculated and shown in

Figures 4.8 and 4.9. It is seen from these figures that the proposed method provides the

largest values of precision and Fβ for all the datasets except for the PASCAL-S, where

its Fβ value is lower by 1.75% in comparison to that of the best value provided by the

MBD+ scheme. The recall values provided by the proposed method are the largest for the

MSRA-1000 and MSRA-10K datasets and competitive to the largest values for the other

datasets.

The Fβ and MAE values obtained using the proposed method as well as that of the other

methods are also presented in Table 4.1. It is seen from this table that the proposed method

yields the smallest MAE values when applied to images in all but the PASCAL-S dataset.

For images in the PASCAL-S dataset, MBD+ is the leading method while the proposed

method provides MAE value that is 1.63% larger than that provided by the MBD+ scheme.

Overall the proposed scheme provides the best performance for most of the datasets on

which the various schemes have been experimented.

4.4 Summary

In this chapter, a salient object detection method has been proposed using multi-scale

and directional selectivity properties of the NSCT. The local features have been extracted

from the local variations of the low-pass coefficients whereas the global features have been

obtained based on the distribution of the directional subband coefficients. The final saliency

map has been obtained by combining the local and global features and shown to efficiently
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(a)

(b)

Figure 4.5: Precision-recall curves obtained by applying the proposed and other salient
object detection methods on images in (a) MSRA-1000 and (b) MSRA-10K
datasets.
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(a)

(b)

Figure 4.6: Precision-recall curves obtained by applying the proposed and other salient ob-
ject detection methods on images in (a) HKU-IS and (b) PASCAL-S datasets.
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(a)

(b)

Figure 4.7: Precision-recall curves obtained by applying the proposed and other salient ob-
ject detection methods on images in (a) DUT-OMRON and (b) CSSD datasets.
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(a)

(b)

(c)

Figure 4.8: Precision, recall, and Fβ obtained by applying the proposed and other salient
object detection methods on images in (a) MSRA-1000, (b) MSRA-10K, and
(c) HKU-IS datasets.
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(a)

(b)

(c)

Figure 4.9: Precision, recall, and Fβ obtained by applying the proposed and other salient
object detection methods on images in (a) PASCAL-S, (b) DUT-OMRON, and
(c) CSSD datasets.
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Table 4.1: Fβ and MAE values obtained by applying the proposed and the other methods
on images in the six datasets

Dataset MSRA-1000 MSRA10K HKU-IS

Metric Fβ MAE Fβ MAE Fβ MAE

Proposed [81] 0.9182 0.0332 0.8729 0.0718 0.7354 0.1117

MST [35] 0.8664 0.0562 0.8400 0.0893 0.7117 0.1216
MBD+ [33] 0.8750 0.0517 0.8446 0.0828 0.6957 0.1235
RC [34] 0.8723 0.0517 0.8365 0.0845 0.6933 0.1233
SO [32] 0.8930 0.0415 0.8505 0.0775 0.7046 0.1168
MR [31] 0.8990 0.0450 0.8454 0.0835 0.6967 0.1238
SF [29] 0.8260 0.0822 0.7365 0.1322 0.5697 0.1618

Dataset PASCAL-S DUT-OMRON CSSD

Metric Fβ MAE Fβ MAE Fβ MAE

Proposed [81] 0.6976 0.1872 0.6082 0.1218 0.8321 0.1053

MST [35] 0.7053 0.1858 0.5759 0.1435 0.8005 0.1174
MBD+ [33] 0.7100 0.1842 0.5580 0.1449 0.7911 0.1161
RC [34] 0.6674 0.2000 0.5404 0.1463 0.8114 0.1090
SO [32] 0.6920 0.1895 0.5619 0.1345 0.8054 0.1126
MR [31] 0.6886 0.1868 0.5670 0.1314 0.8199 0.1116
SF [29] 0.5080 0.2442 0.4733 0.1537 0.6631 0.1775

represent the pixels that are locally and globally distinctive. In addition, the structure and

boundary of the image objects have been preserved by abstracting the saliency maps into

meaningful image regions.

Experimental results have shown that the proposed method outperforms a number of

more recent schemes in terms of precision, recall, Fβ and MAE metrics.
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Chapter 5

Salient Object Detection Using Deep

Convolutional Features

5.1 Introduction

Recently, some salient object detection schemes have been proposed by taking advan-

tage of the CNNs. In these schemes, a salient object detection model is automatically

learned based on low level and high level image features extracted by the different layers

of a deep CNN. However, the existing deep salient object detection schemes suffer from

high computational cost. In view of this, in this chapter a low complexity deep salient

object detection network is proposed by making use of the depthwise separable convolu-

tion [85]. The chapter is organized as follows. In Section 5.2 a brief literate review of the

existing deep salient object detection networks is presented. In Section 5.3, the proposed

deep salient object detection method is developed by devising the various steps involved in

designing the architecture of the network. The network training process and the hardware

and software platforms for its implementation are also described in this section. In Section

5.4, several experiments are conducted in order to study the impact of using the depthwise

separable convolution and that of the skip connections on the performance of the proposed

network. In this section, the performance of the proposed scheme is also compared with

that of some of the state-of-the-art schemes. Finally, in Section 5.5, the work of this chapter
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is summarized and the significant features of the proposed method are highlighted.

5.2 A brief Literature Review of Salient Object Detection

Schemes Using Deep Convolutional Neural Networks

The initial deep salient object detection schemes [41–45] have employed the same net-

works as the ones originally proposed for the image classification problem, in which a fully

connected dense layer was used as the last layer of the network to produce a class score

value for the classification of the input image. Such a network when used for salient ob-

ject detection, this last fully connected layer has then been used to provide a single saliency

value for each image segment (e.g., patch, superpixel, or object proposal). As such, in these

methods [41–45], the image is first partitioned into segments and the training/prediction

process is repeated for each image segment, which is a computationally expensive over-

head in these methods. Also, the performance of the network is affected by the accuracy

of the segmentation algorithm and its parameters such as the number of segments. More-

over, due to the segment-level prediction, the saliency maps obtained by these methods are

spatially non-uniform and contain undesired abrupt changes around the boundary of the

segments.

More recent CNN-based approaches for salient object detection have developed schemes

that generate a saliency map for the entire image rather than for individual image seg-

ments [46–51]. In these methods, an end-to-end mapping is employed for which a fully

convolutional network (FCN) [64] is well-suited. Thus, in these schemes, the output layer

that makes predictions of the pixel saliency values of the input image is also a convolutional

layer. Even though in these schemes, the saliency maps are obtained for the entire image,

they still make use of an over-segmented version of the input image. The architectures used

in these schemes have two parts to carry out the downsampling and upsampling operations,
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respectively. In [46–48], the first part of the network is a FCN that obtains a saliency map

at a reduced resolution level. The second part of the network, using this low-dimension

saliency map, obtains a saliency map with a resolution which is the same as that of the

input image. Also, it is in this part that the over-segmented version of the input image is

used to refine the saliency map further. In the scheme of [49], the operations of both down-

sampling and upsampling are done using a FCN, but both the input image and a saliency

prior map of its over-segmented version are fed to the first part of the network from the

very beginning using, respectively, two different convolutional filters. A combination of

the outputs from the two filters then flows through the rest of the layers of the first part as

well as through all the layers of the second part of the network to produce the final saliency

map. It is to be noted that the schemes of [46–49] still suffer from the overhead of addi-

tional computational complexity, as the schemes of [41–45] do, due to the segmentation

operation. It is also to be noted that in the schemes of [46–49], the effect of the gradient

vanishing problem associated with deep networks is only partially compensated in view of

making use of an over-segmented version of the input image.

It is known that skip connections are effective in handling the gradient vanishing prob-

lem, which is a very important issue during the training process of deep networks. These

connections facilitate an efficient flow of information through the network, which results

in a better training and an improved performance of the network. In a deep salient object

detection network, the shallower layers are capable of extracting low level appearance fea-

tures of the image, whereas the deeper layers extract high level semantic features. Fusing

the features from different levels using skip connections has been used to improve the per-

formance of deep salient object detection methods [50, 51]. These connections feed the

features extracted by the layers at different levels of a deep network in order to prevent loss

of information during sub sampling and to provide the receiving convolutional layers with

lower level features that otherwise are not directly available to them. However, adding skip
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connections increases the complexity of the network. The above methods employ these

connections without due regard to the increase in the complexity of the network relative to

the resulting improvement in the performance. In general, having more features available

by employing skip connections seems to be useful in improving the performance but they

may not necessarily improve the performance in a salient object detection problem in the

same proportion as the increase in the network complexity. Therefore, a judicious choice

of the pairs of layers to be involved in the skip connections could be useful in determining

the trade off between the performance and complexity of a network used for salient object

detection.

The existing deep salient object detection schemes use the standard convolution, which

is a convolution over all the channels in one step. However, performing the standard con-

volution in a deep network is computationally expensive specially when the number of

channels is increased as more number of filters are used in a layer of the network. This

problem gets even worse if the two sets of channels are concatenated through a skip con-

nection. A factorized form of convolution called depthwise separable convolution [86]

has been recently shown to be effective in designing deep networks for different appli-

cations [87, 88]. A depthwise separable convolution consists of a standard convolution

performed independently over each input channel followed by a 1 × 1 convolution. This

type of convolution has been shown to provide almost the same performance as that pro-

vided by the standard convolution for image classification, object detection, and semantic

segmentation applications [88] with a significantly lower computational complexity. Thus,

utilizing this convolution could be beneficial in reducing the number of parameters and the

computational complexity in a deep salient object detection network, thereby making the

use of the skip connections affordable. In addition, performing the depthwise separable

convolution in two separate steps, the depthwise and pointwise convolutions, provides an

opportunity for inserting a non-linearity in a way that allows some of the negative-valued

63



features to go through the network.

5.3 Proposed Deep Salient Object Detection

Network Using Depthwise Separable Convolution

In order to address the limitations of the existing deep salient object detection schemes,

in this section, using the lightweight depthwise separable convolution, an end-to-end deep

salient object detection network is developed by exploiting the fusion of multi-level and

multi-scale image features through judicious skip connections between the layers. The

proposed deep salient object detection network is aimed at providing good performance

with a much reduced complexity. The proposed salient object detection network follows

the framework of a general encoder-decoder architecture, in which both the encoder and

decoder parts are designed based on the depthwise separable convolutional blocks. In the

encoder part, an efficient lightweight network [88], including strided convolutional layers

with short skip connections is adopted to extract image features of different levels. In the

decoder part, a number of transposed convolutional layers are used to extract features at

levels that are even higher than those extracted by the encoder. At the same time, these

decoder layers progressively increase the resolutions of the extracted features to that of the

input image. A long skip connection is made between a layer in the encoder part and the

layer having the same resolution in the decoder part of the network. Such a skip connection

compensates the effect of the sparsity in the map of the decoder layer, which is created due

to the upsampling operation, by combining such a layer with the corresponding map in the

encoder part, which obviously does not have the sparsity problem of the same intensity.

Since the proposed network employs the depthwise separable convolution, the network

complexity is reduced to an extent that makes it possible to raise the network complexity

slightly up for allowing the skip connections to be made between an encoder layer and

64



a decoder layer in order to improve the performance of the method. Moreover, the use

of the depthwise separable convolution allows the placement of the non-linear activation

unit immediately after the first part of the operation rather than following the complete

convolution operation, as is done in the case of the standard convolution. This allows the

passage of at least some of the negative-valued features through the network, which is not

possible with use of the standard convolution.

In the following, first, the depthwise separable convolution is briefly discussed as the

backbone of the proposed method. Then, the architecture of the proposed deep salient

object detection network comprising its encoder-decoder structure and skip connections is

presented. Afterward, the training and implementation details of the network are explained.

5.3.1 Depthwise Separable Convolution

The basic idea of the depthwise separable convolution is to split the standard con-

volution, which operates on all the channels in one step, into two convolutions, namely

depthwise convolution and pointwise convolution. The depthwise separable convolution

is capable of reducing the computational complexity of a deep network over that of us-

ing the standard convolution. Assume that a convoltional layer takes an input map of size

L ×W ×M and generates an output feature map of size L ×W × N (assuming a unity

stride, s = 1, and padding of the border pixels). Thus, the number of channels changes

from M to N between the input and the output of the convolutional layer. If the standard

convolution is performed in this layer, N convolutional kernels each of size K ×K ×M

are applied to the input map to generate the output map. Therefore, the computational

cost of a single layer using the standard convolution is K2 × M × N × L × W . If the

convolutional layer performs a depthwise separable convolution, then in its first part (the

depthwise convolution), M convolutional kernels each of size K × K are applied to the

M input channels individually, and the M outputs each of size L×W are generated. The
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(a) Standard Convolution (b) Depthwise Convolution (c) Pointwise Convolution

Figure 5.1: Kernel structures involved in implementing (a) the standard, and (b-c) depth-
wise separable convolutions.

computational cost of this part would be K2×M ×L×W . In the second convolution (the

pointwise convolution), the outputs of the depthwise convolution are linearly combined

and a new channel space is generated. More specifically, N convolutional kernels each of

size 1× 1×M are applied to the outputs of the depthwise convolution and an output map

of size L ×W × N is generated. The computational cost of the pointwise convolution is

N ×M × L×W . Therefore, the computational cost of a single layer using the depthwise

separable convolution is M × L×W × (K2 +N). Thus, by splitting the convolution into

two steps of channel-wise filtering and linear combining, the computational cost of a single

layer is reduced by the factor of K2N/(K2 + N) over that of the standard convolution.

Figure 5.1 shows the kernel structures involved in implementing the standard convolution

and the depthwise separable convolution.

5.3.2 Encoder-Decoder Structure of the Proposed Network

The proposed network consists of an encoder part, a decoder part, and a number of skip

connections each between a layer in the encoder and the layer having the same resolution

in the decoder. Figure 5.2 shows the general architecture of the proposed network.
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Recently, a network called MobileNetV2 [88] has been proposed and its effectiveness

has been evaluated in the applications of image classification, object detection, and seman-

tic segmentation. In view of its very lightweight character resulting from the use of the

depthwise separable convolution, we adopt a part of this network as the encoder part of our

proposed network for salient object detection.

As seen from Figure 5.2, the encoder part consists of 8 blocks, Eblocks 1 to Eblock 8.

Moving from Eblock 1 to Eblock 8, the spatial resolution of the feature maps is decreased

by a factor of 5. Eblock 1 performs a standard convolution with a kernel of size 3 × 3,

while all the other blocks of the encoder consist of one, two, three, or four bottleneck units.

The encoder employs two types of bottlenecks, referred to as Bottleneck 1 and Bottleneck

2, shown as in Figures 5.3 (a) and (b), respectively. Either of these types of bottleneck

units consists of a 1 × 1 convolution with a non-linear activation functions (ReLU) to

increase the number of input channels, a depthwise convolution with a 3 × 3 kernel and

a non-linear activation function, and a pointwise convolution that reduces the number of

channels back to that of the input to the bottleneck. The difference between the two types

of bottlenecks is that Bottleneck 1 uses a residual connection between the output of the

pointwise convolution layer and the input to the unit, which cannot be done in Bottleneck

2 because of spatial incompatibility resulting from the convolution operation with stride 2,

s = 2, or from changing the number of channels.

The output of the encoder, that is, that of Eblock 8, which is a feature map of size

7 × 7 × 320, is first filtered using a convolutional layer performing a depthwise separable

convolution. The output resulting from this convolution is then used as the input to the

decoder part of the proposed salient object detection network.

The decoder part of the proposed salient object detection network consists of 5 decoder

blocks, Dblock 1 to Dblock 5, in which image features of levels that are higher than those

that are yielded by the encoder are extracted while the spatial resolution of the feature maps
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Figure 5.2: Architecture
of the pro-
posed low
complexity
network for
salient object
detection
(Size of
a block’s
output is
indicated
next to it.).
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(a) (b)

Figure 5.3: (a) Bottleneck 1, and (b) Bottleneck 2 units [88] for the architecture in Figure
5.2.

is progressively increased.

Each of the first four decoder blocks, Dblocks 1 to Dblock 4, consists of a transposed

convolutional layer with the kernel size of 3 × 3 and a stride value of 2, s = 2, a concate-

nation operation, and a depthwise separable convolutional layer consisting of a depthwise

convolution with a stride value of 1 , s = 1, and a pointwise convolution. In each decoder

block, first, the spatial resolution of the feature maps is increased by a factor of 2 through

the transposed convolution. The upsampled feature maps are then concatenated with the

feature maps of the same spatial resolution from the encoder. Finally, features of higher

levels compared to those extracted by the encoder layers are extracted using the depthwise

separable convolution. The last decoder block, Dblock 5, consists of only a transposed

convolutional layer with the kernel size of 3× 3 and a stride value of 2, s = 2.

It is known that when a standard convolution is performed in layers of a deep network,

ReLUs are introduced following the convolution operation for injecting non-linearity in the

network in order to improve its end-to-end mapping capability. This, however, is achieved
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at the expense of loosing information contained in the negative features discarded through

the non-linear operation of ReLU. Use of the depthwise separable convolution provides

an opportunity to rectify this problem partially. In this case, the ReLU unit is placed in

between the depthwise and pointwise convolutions rather than introducing it following the

complete depthwise separable convolution operation.

The last part of the network is a 1×1 convolutional layer that reduces the dimensionality

of the set of feature maps obtained by Dblock 5 and generates a single saliency map. A

sigmoid activation function is employed in this layer.

5.3.3 Skip Connections between the Encoder and Decoder Layers

Use of the skip connections in deep networks improve their performance by providing

them with a capability to curtail the gradient vanishing problem. Our objective is to do

this in such a way as not to adversely affect the computational complexity of the proposed

network. As seen in the previous section, the proposed network already has short residual

skip connections in the Bottleneck 1 units of the encoder part of the network. However,

having additional skip connections between a layer from the encoder and that from the

decoder should further improve the network’s capability in handling the gradient vanishing

problem.

The upsampling operation in the layers of the decoder part of the network causes in-

creasingly more sparsity in the feature maps as we go through the deeper layers of the

decoder. On the other hand, the feature maps in the layers of the encoder are not sparse.

Therefore, a skip connection between a layer from the encoder part to a layer in the de-

coder part should remedy this problem of sparsity in the feature maps of the decoder lay-

ers through the concatenation of the sets of channels of the two layers involved in a skip

connection. However, each skip connection would increase the depthwise dimensionality

(i.e., the number of channels) of the decoder layer involved in the connection, and hence,
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inevitably the complexity of the convolution operation of that layer. Consequently, we

should next consider as to which pairs should be employed for the skip connections so as

to curtail unnecessary growth in the complexity resulting from the increase in the number

of channels in the decoder layer.

If the spatial dimensions of the features maps of the two layers involved in a skip con-

nection are not matched, a dimensionality adjustment is needed before carrying out the

concatenation operation. This dimensionality adjustment adds to the computational com-

plexity of the method. In addition, if the spatial dimension of the two sets of feature maps

from the layers participating in a concatenation are made compatible by resizing the spa-

tial dimension of the feature maps with lower dimensionality, such maps will become even

more sparse, and hence, concatenation would not be helpful in reducing the sparsity of

the maps in the decoder layers. Therefore, in the proposed network, the best solution is

achieved by having a skip connection between a layer in the decoder and a layer from the

encoder having the same spatial dimension. By doing so, the sparsity problem in the de-

coder feature maps are reduced while avoiding the computational cost involved in adjusting

the dimensionality of the concatenating layers.

It should be noted that the convolutional layer of the last decoder block, namely Dblock

5, is not made to participate in a skip connection. The reason for this is the fact that such

a skip connection will hinder with the purpose of this block, which is to extract high level

semantic features.

Impact of employing the skip connections on the performance of the network is studied

in more details in Section 5.4.

5.3.4 Loss Function

The proposed network is trained using a binary cross entropy loss function. For a

predicted saliency map, S, and its corresponding pixel-level annotated ground truth, GT,
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the binary cross entropy loss function, LBCE , is calculated as

LBCE(S,GT) =
∑
x

∑
y

[GT (x, y) log[S(x, y)] + [1−GT (x, y)] log[1− S(x, y)]] ,
(5.1)

where (x, y) represents a pixel’s spatial location.

5.3.5 Implementation Details

The proposed network is implemented in Python on the publicly available Keras library

[89] with Tensorflow backend [90]. The network is trained using the Adam optimizer [91].

The learning rate is set to 10−4 and is reduced by a factor of 10 if no improvement is

observed in the validation performance for 5 consecutive epochs. Dropout [92] and batch

normalization [93] are used during the training process. The weights of encoder layers are

initialized with those of the MobileNetV2 network [88] that was trained using the images

in ImageNet dataset [59], while the weights of all the other layers are randomly initialized.

The MSRA-B dataset [28] containing 5, 000 images and their corresponding pixel-level

ground truths is used in the training phase, where 80% of the images are used for training

and 20% for validation. Data augmentation techniques has been shown to be effective in

training deep networks. In this work, we apply random shift-scale-rotate and horizontal flip

to all the training images, thus effectively utilizing resulting 12, 000 images for the training

of the network. All the images are resized to 224 × 224 pixels. The network is trained for

100 epochs with an early stopping method, while a mini batch of 10 images are utilized in

each training iteration.

The network is trained on a machine equipped with an i7-8750H 2.21 GHz CPU and

an NVIDIA GeForce GTX 1060 GPU.
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5.4 Experimental Results

In order to evaluate the performance of the proposed method, several experiments are

conducted on images in four challenging and widely used datasets, namely, HKU-IS [44],

PASCAL-S [75], DUT-OMRON [31], and CSSD dataset [76]. It should be mentioned

that since some images are in common between the MSRA-B dataset, which is used for

training, and the two datasets of MSRA-1000 and MSRA-10K, the proposed network is

not evaluated on images from these two datasets.

5.4.1 Impact of Employing Skip Connections between the Encoder

and Decoder Layers on the Performance of the Proposed

Network

In this section, the effect of employing the skip connections between the encoder and

decoder layers on the performance of the proposed salient object network is studied. To this

end, the backbone network, i.e., the encoder and decoder parts without any skip connec-

tion, is trained and then applied to the images of the four datasets. The Fβ and MAE values

obtained from the proposed network with and without the skip connection, are given in Ta-

ble 5.1. Also, in order to study the computational cost, for each version of the network, the

number of parameters and the number of multiplication-accumulation (MAC) operations

required to generate a saliency map for an image of size 224× 224× 3 are calculated and

presented in Table 5.2. It is seen from Tables 5.1 and 5.2 that employing the skip con-

nections results in a significantly improved performance of the network. For instance, for

images in the HKU-IS dataset, the Fβ value is increased by 4.18% and the MAE value is

decreased by 20.74% through the use of the skip connections. The performance improve-

ment by employing the skip connections in the proposed scheme is achieved at the expense

of a slight increase in the computational cost. Specifically, the number of parameters and

73



Table 5.1: Comparison of the proposed salient object detection network with and without
the skip connections between the encoder and decoder layers when applied to
the images of the different datasets

Dataset HKU-IS PASCAL-S

Performance Metric Fβ MAE Fβ MAE

Backbone Network 0.8345 0.0569 0.7824 0.1124
(without skip connections)

Proposed Network 0.8694 0.0451 0.8050 0.1042
(with skip connections)

Dataset DUT-OMRON CSSD

Performance Metric Fβ MAE Fβ MAE

Backbone Network 0.6994 0.0744 0.8904 0.0636
(without skip connections)

Proposed Network 0.7260 0.0681 0.9152 0.0527
(with skip connections)

Table 5.2: Comparison of the number of parameters and the number of MACs for the pro-
posed salient object detection network with and without the skip connections
between the encoder and decoder layers

Method No. of Parameters No. of MACs

(×106) (×109)

Backbone Network 2.97 0.609
(without skip connections)

Proposed Network 3.01 0.630
(with skip connections)

that of the MAC operations are increased only by 1.35% and 3.45%, respectively. The

impact of employing the skip connections is also evaluated in terms of the precision-recall

curves which are shown in Figures 5.4 and 5.5. It is seen from these figures that employing

the skip connections results in a better precision-recall performance for the images of all

the four datasets.
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5.4.2 Impact of Employing the Depthwise Separable Convolution

In order to investigate the impact of using the depthwise separable convolution on the

computational complexity and performance of the proposed network, we implement the

same network architecture as that of the proposed network by using the standard convolu-

tion operation, and then compare its performance with the proposed network.

It should be pointed out that for the architecture performing the standard convolution,

the pre-trained encoder layers are not available for initialization. Therefore, to make a

fair comparison, in this section, both versions of the network are trained using random

initialization. In order to avoid the overfitting problem in training the networks with random

initialization, a larger training dataset is required. To make the training set larger, in this

section, the images of the HKU-IS and DUT-OMRON datasets, that were previously used

only as test datasets, are also used for training, and the performance of the two architectures

are evaluated only on images from the CSSD and PASCAL-S datasets. In addition, training

of the two networks are stopped when they reach the same validation performances. This is

due to the fact that even if the training continues, the overfitting problem cannot completely

avoided and thus, we cannot obtain an appropriately trained network for both cases. This is

worse for the network performing the standard convolution, since it has more parameters.

The Fβ and MAE values for images in the CSSD and PASCAL-S datasets obtained by

the two versions of the network are given in Table 5.3. It is seen from this table that

for images in the both datasets the proposed network performing the depthwise separable

convolution provides better Fβ and MAE values compared to the network performing the

standard convolution.

Numbers of parameters and MAC operations for such the two networks are calculated

and given in Table 5.4. It is seen that using the depthwise separable convolution for the

same network results in 75.4% and 70.7% reductions in the numbers of parameters and

MAC operations, respectively.
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Table 5.3: Comparison of the two networks using the standard and depthwise separable
convolutions when applied to the images of the CSSD and PASCAL-S datasets

Dataset CSSD PASCAL-S

Performance Metric Fβ MAE Fβ MAE

Network with Standard Convolution 0.8830 0.0729 0.7340 0.1415
Proposed Network with 0.8907 0.0617 0.7406 0.1355

Depthwise Separable Convolution

Table 5.4: Comparison of the number of parameters and the number of MACs between the
two networks using the standard and depthwise separable convolutions

Method No. of Parameters No. of MACs

(×106) (×109)

Network with Standard Convolution 12.22 2.152
Proposed Network with 3.01 0.630
Depthwise Separable Convolution

5.4.3 Performance Comparison of the Proposed Deep Salient Object

Detection Scheme with Algorithms 3.1 and 4.3

In this section, performance of the proposed deep salient object detection scheme is

compared with that of the WT-based scheme proposed in Algorithm 3.1 Chapter 3, and the

NSCT-based scheme proposed in Algorithm 4.3 Chapter 4.

The precision-recall curves obtained by the three proposed methods in this thesis for

images of the four datasets are shown in Figures 5.6 and 5.7. Also, the Fβ and MAE values

obtained by these methods on images of the four datasets are given in Table 5.5. It is seen

from Figures 5.6 and 5.7, and Table 5.5 that using the deep convolutional features results

in a substantially improved performance compared to the other two schemes. However,

it should be noted that the improved performance of the deep method is obtained at the

expense of the computational cost required for the training process. Also, it is seen that the

scheme using NSCT-based features provides a better performance compared to the WT-

based scheme.
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Table 5.5: Fβ and MAE values obtained by applying the three WT-based, NSCT-based,
and deep salient object detection methods proposed in Chapters 3, 4, and 5,
respectively, on the images in the four datasets

Dataset HKU-IS PASCAL-S

Performance Metric Fβ MAE Fβ MAE

Proposed Deep Method 0.8694 0.0451 0.8050 0.1042

Proposed NSCT-based Method 0.7354 0.1117 0.6976 0.1872
Proposed WT-based Method 0.6284 0.1458 0.5432 0.2170

Dataset DUT-OMRON CSSD

Performance Metric Fβ MAE Fβ MAE

Proposed Deep Method 0.7260 0.0681 0.9152 0.0527

Proposed NSCT-based Method 0.6082 0.1218 0.8321 0.1053
Proposed WT-based Method 0.5274 0.1362 0.7376 0.1516

5.4.4 Performance Comparison with the State-of-the-art Schemes

In this section, the performance of the proposed method is compared with that of a

number of state-of-the-art deep schemes for salient object detection, namely, Aggregat-

ing multi-level convolutional features method (AMULET) [51], deep hierarchical saliency

method (DHS) [50], deep contrast learning method (DCL) [47], deep saliency method

(DS) [46], recurrent fully convolutional network (RFCN) [49], encoded low level distance

map method (ELD) [45], and multi-scale deep features method (MDF) [44]. It should be

pointed out that, since the images in the DUT-OMRON dataset have been used in training

the DHS method [50], it is evaluated on all the images except those from the DUT-OMRON

dataset.

The saliency maps obtained using the proposed method as well as those from using

the other methods for couple of images from each of the four datasets are shown in Figure

5.8. It is seen from this figure that the saliency maps obtained by the proposed method is

more similar to the ground truth compared to those obtained by the other methods. For

instance, in the saliency map generated by the proposed method for the image in the first

row (Figure 5.8 (j)), the salient object is detected uniformly and with precise edges, whereas
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the other methods either cannot detect the entire salient object (Figuers 5.8 (d) and (e)), or

incorrectly detect some non-salient regions as the salient region (Figures 5.8 (c)-(d), and

(f)-(i)). In the saliency maps obtained by the MDF and ELD methods (Figures 5.8 (c)

and (d)), although the salient regions are detected uniformly, many non-salient regions are

incorrectly detected as the salient regions as well. This can be due to the employment of

image segments rather than image pixels in these two methods. As it is seen from the

images in row 4 of Figure 5.8 (f), the DS method fails in differentiating the uniform non-

salient region from the salient region. Also, in the saliency maps obtained by this method

the boundary between the salient and non-salient region is not sharp (row 1 of Figure 5.8

(f)). As seen from the images in row 7 of Figure 5.8 (g), the DCL method incorrectly

detects some of the uniform non-salient regions as salient ones. The AMULET, DHS, and

RFCN schemes provide more accurate saliency maps compared to the other four schemes.

However, they still fail in some images such as those in rows 5 and 7 of Figures 5.8 (e), (h)

and (i).

Figures 5.9 and 5.10 illustrate the precision-recall curves averaged over all the images

in each of the datasets obtained by using the various methods. It is seen from these fig-

ures that for the images in the HKU-IS, DUT-OMRON and CSSD datasets, the proposed

method provides larger precision values for a wide range of recall values as compared to

that provide by the other methods, whereas for the PASCAL-S dataset, each of the DS,

AMULET, and RFCN schemes provides a slightly better performance.

In order to study the precision-recall performance of the various schemes, the Fβ values

corresponding to each point on the precision-recall curves shown in Figures 5.9 and 5.10

are calculated for images in each dataset. The maximum value for Fβ resulting from the

various methods for images in each of the four datasets are listed in Table 5.6. It is seen

from this table that the proposed scheme provides the largest maximum value for Fβ for all

but the PASCAL-S dataset. For images in the PASCAL-S dataset, the DS method provides
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Table 5.6: Maximum Fβ values when applying the fixed thresholds, obtained by applying
the proposed and other methods on images in the four datasets

Dataset HKU-IS PASCAL-S DUT-OMRON CSSD

Performance Metric Max Fβ Max Fβ Max Fβ Max Fβ

Proposed [85] 0.8904 0.7920 0.7527 0.9176

AMULET [51] 0.8845 0.8055 0.7154 0.9121
DHS [50] 0.8756 0.7943 - 0.9027
DCL [47] 0.8582 0.7712 0.6576 0.8938
DS [46] 0.8489 0.8086 0.7488 0.9004
RFCN [49] 0.8783 0.8037 0.7034 0.8982
ELD [45] 0.8178 0.7336 0.6778 0.8751
MDF [44] 0.8395 0.7045 0.6433 0.8473

the largest maximum value for Fβ and the proposed scheme provides a value for this metric

that is 2.1% lower than the largest maximum.

The average precision, recall and Fβ values obtained using the proposed and the other

methods when applying the adaptive threshold are calculated and shown in Figures 5.11 and

5.12. It is seen from these figures that the proposed scheme provides the largest Fβ value

for images in the HKU-IS, DUT-OMRON and CSSD datasets and the largest precision

value for images in the DUT-OMRON and CSSD datasets.

The Fβ and MAE values obtained using the proposed and all the other methods are

given in Table 5.7. It is seen from this table that the proposed salient object detection

method provides the best values for Fβ and MAE when applied to the images in the HKU-

IS, DUT-OMRON and CSSD datasets. Only for the images in the PASCAL-S dataset,

the RFCN method provides the best Fβ and MAE values and the proposed method is the

second best providing a value for Fβ that is 1.02% lower than that provided by the RFCN

and a value for MAE that is 0.3% larger than the best MAE value.

In order to evaluate the computational complexity of the proposed method, number of

parameters and that of MAC operations to generate a single saliency map for an image of

size 224 × 224 × 3 are computed and given in Table 5.8. In calculating the number of
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Table 5.7: Fβ and MAE values obtained by applying the proposed method and the other
methods on images in the four datasets. The best and second best results are
shown in red and blue fonts, respectively

Dataset HKU-IS PASCAL-S DUT-OMRON CSSD

Metric Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Proposed [85] 0.8694 0.0451 0.8050 0.1042 0.7260 0.0681 0.9152 0.0527

AMULET [51] 0.8525 0.0484 0.7952 0.1046 0.6740 0.0928 0.8983 0.0590

DHS [50] 0.8664 0.0496 0.8004 0.1065 − − 0.8988 0.0626
DCL [47] 0.8452 0.0516 0.7729 0.1143 0.6693 0.0922 0.8919 0.0619
DS [46] 0.8040 0.0644 0.7748 0.1165 0.6697 0.0818 0.8629 0.0718
RFCN [49] 0.8695 0.0531 0.8133 0.1039 0.7004 0.0890 0.8945 0.0715
ELD [45] 0.7882 0.0723 0.7486 0.1249 0.6408 0.0965 0.8558 0.0713
MDF [44] 0.8141 0.0744 0.7615 0.1403 0.6820 0.0895 0.8702 0.0788

parameters and the number of MAC operations for the methods compared, only the net-

work part of the methods are considered. More specifically, the computational complexity

involved with the oversegmentation steps in the DCL, DS, RFCN, ELD, and MDF schemes

is ignored. It is seen from this table that the proposed method is significantly lower in com-

putational complexity, both in terms of the number of parameters and the number of MAC

operations, than the other methods are. More specifically, the proposed network has only

3.01 millions parameters whereas the other methods have the number of parameters rang-

ing from 28.37 to 134.67 millions parameters. Also, the proposed network requires only

0.63 billion MAC operations to generate a saliency map for an image of size 224×224×3,

whereas the other methods need between 7.23 to 123.15 billions operations to generate a

saliency map for the same image.

Overall by considering the computational complexity and different performance metrics

for the various schemes when applied to the images of the four datasets, the proposed

scheme outperforms the other ones, whereas the AMULET and DHS methods stand as the

second and third best methods, respectively. It should be noted that, the AMULET and

DHS schemes are computationally more expensive compared to the proposed method. In

the AMULET method, the number of MAC operations and the number of parameters are,
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Table 5.8: Comparison of the Number of parameters and the number of MACs in the pro-
posed and the other schemes

Method No. of Parameters No. of MACs

(×106) (×109)

Proposed [85] 3.01 0.63
AMULET [51] 33.16 27.35
DHS [50] 93.9 15.81
DCL [47] 66.25 123.15
DS [46] 134.27 62.67
RFCN [49] 134.67 62.88
ELD [45] 28.37 15.39
MDF [44] 60.97 7.23

respectively, 43.4 and 11.02 times more than that of the proposed method. Compared to

the DHS scheme, in the proposed method the number of MAC operations and the number

of parameters are reduced by factors of 25.1 and 31.2, respectively.

5.5 Summary

Deep convolutional neural networks have been shown to be effective in extracting

multi-level and multi-resolution image features required in salient object detection. Com-

bining the features extracted at different layers of the network by employing skip connec-

tions between the layers can improve the performance of the network. However, the ex-

isting deep salient object detection schemes suffer from high computational complexity in

view of their employing the standard convolution for feature extraction. This problem gets

even worse when the number of channels in the network layers is increased by employing

the skip connections.

In this chapter a salient object detection scheme has been developed by proposing a

deep convolutional neural network in which features are extracted by performing lightweight

depthwise separable convolution operations. The proposed network has been designed to

have an encoder part and a decoder part. The encoder layers extract features at increasingly
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lower resolutions through the strided and normal depthwise separable convolution opera-

tions. The decoder layers, on other hand, extract features that are even of higher levels

again by employing depthwise separable convolution. The spatial resolutions of the de-

coder feature maps are progressively increased to finally that of the input image by using

the transposed convolutions. In the design of the proposed network a skip connection is es-

tablished between an encoder layer and a judiciously chosen decoder layer that essentially

aims to control the sparsity problem in the feature maps of the decoder resulting from rais-

ing the spatial resolution of its feature maps and to curtail the gradient vanishing problem

of the network. In order to avoid the computational cost involved with the adjustment of

the spatial resolution of the feature maps from the encoder and decoder before the concate-

nation of the maps, each pair of the layers participating in concatenation are chosen to have

the same resolution. However, increasing the number of channels in a concatenating de-

coder layer affects the network’s complexity. In the proposed network, this slight increase

in the complexity has been made affordable in view of the drastic reduction of the net-

work complexity by exploiting the depthwise separable convolution operation throughout

the network.

The proposed method has been evaluated on images from different datasets, and com-

pared with a number of existing deep salient object detection methods. Experimental results

have shown that the performance of the proposed method is generally superior to that of the

other methods by providing higher precision, recall and Fβ values and lower MAE values,

while at the same time having a significantly smaller computational complexity. In com-

parison to the other existing networks, in the proposed network the number of parameters

is reduced by a factor that ranges from 9.43 to 44.7, and the number of MAC operations is

reduced by a factor ranging from 11.5 to 195.5. Specifically, in the proposed network the

number of parameters and the number of MAC operations are reduced by factors of 11.02

and 43.4, respectively, compared to the second best performing network (the AMULET
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method). Finally, it needs to be emphasized that the proposed network has succeeded in

outperforming the other state-of-the-art deep salient object detection networks in spite of

its much lower complexity in terms of the number of parameters and the number of MAC

operations. This superiority in the performance of the proposed network can be attributed

to, among the characteristics of the proposed scheme, the use of the depthwise separable

convolution that has allowed in some instances the passage of negatively valued features as

well in training the network.

83



(a)

(b)

Figure 5.4: Precision-recall curves obtained the proposed salient object detection network
with and without the skip connections between the encoder and decoder layers
for images in (a) HKU-IS and (b) PASCAL-S datasets.
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(a)

(b)

Figure 5.5: Precision-recall curves obtained the proposed salient object detection network
with and without the skip connections between the encoder and decoder layers
for images in (a) DUT-OMRON and (b) CSSD datasets.
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(a)

(b)

Figure 5.6: Precision-recall curves obtained by applying the three WT-based, NSCT-based,
and deep salient object detection methods proposed in Chapters 3, 4, and 5,
respectively, on the images in (a) HKU-IS and (b) PASCAL-S datasets.
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(a)

(b)

Figure 5.7: Precision-recall curves obtained by applying the three WT-based, NSCT-based,
and deep salient object detection methods proposed in Chapters 3, 4, and 5,
respectively, on the images in (a) DUT-OMRON and (b) CSSD datasets.
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Figure 5.8: Saliency maps obtained by applying the proposed method and the other meth-
ods on images from the datasets in [31, 44, 75, 76]. (a) Original image. (b)
Ground truth. (c) MDF [44]. (d) ELD [45]. (e) RFCN [49]. (f) DS [46]. (g)
DCL [47]. (h) DHS [50]. (i) AMULET [51]. (j) Proposed method [85] .
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(a)

(b)

Figure 5.9: Precision-recall curves obtained by applying the proposed and the other meth-
ods for images in (a) HKU-IS, and (b) PASCAL-S datasets.
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(a)

(b)

Figure 5.10: Precision-recall curves obtained by applying the proposed and the other meth-
ods for images in (a) DUT-OMRON, and (b) CSSD datasets.
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(a)

(b)

Figure 5.11: Precision, recall, and Fβ obtained by applying the proposed and other salient
object detection methods on images in (a) HKU (b) PASCAL-S datasets.
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(a)

(b)

Figure 5.12: Precision, recall, and Fβ obtained by applying the proposed and other salient
object detection methods on images in (a) DUT-OMRON and (b) CSSD
datasets.
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Chapter 6

Conclusion

6.1 Concluding Remarks

Salient object detection is an active research topic due to its various applications in

image processing and computer vision tasks. This thesis has been concerned with the

problem of salient object detection in images by devising schemes for multi-resolution

multi-level features extraction. A number of algorithms have been developed for extracting

features in the wavelet and non-subsampled contourlet transform domains as well as in

deep convolutional domain and for their efficient utilization in salient object detection.

In the first part of this thesis, multi-resolution frequency domain feature extraction al-

gorithms have been used to detect the salient objects in images. In view of the capabilities

of the WT in extracting multi-resolution image features, a salient object detection method

has been proposed by making use of the WT-based features. The multi-resolution features

of the image have been extracted using the wavelet coefficients of the three color channels.

To combine the features of different color channels, the extracted features have then been

fused based on the concept of entropy and border avoidance criterion. In order to evalu-

ate the performance of the proposed method, experiments have been conducted on images

from a number of datasets, and it has been shown that the proposed scheme is superior to
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that of the other frequency domain schemes in being able to detect the salient object pre-

cisely. In addition, to circumvent lack of directional selectivity in the features extracted by

the WT, another salient object detection scheme has also been proposed based on image

features extracted by the NSCT. The local and global features have been extracted from the

local variations of the low-pass coefficients and the distribution of the directional subband

coefficients, respectively. Experimental results have shown the superiority of the proposed

method to that of the more recent salient object detection schemes.

The second part of this thesis has been concerned with developing a low complexity

salient object detection scheme utilizing deep convolutional features. In this part, a deep

salient object detection network with an encoder-decoder architecture has been developed

where the features are extracted by performing the depthwise separable convolution. Per-

forming the lightweight depthwise separabale convolution in the layers of the proposed

network has been resulted in an extremely low complexity compared to the existing deep

salient object detection schemes. Such a low complexity has made the use of skip con-

nections affordable in order to improve the performance of the network. In addition, the

decomposition of convolution into two separate parts of depthwise and poitwise convolu-

tions, has provided an opportunity to place the non-linear activation unit in between the

two parts and thus has made the passage of some negative-valued features as well through

the network possible. Experimental results on images from different datasets have shown

that the proposed network generally outperforms the other deep salient object detection

schemes in terms of precision, recall, Fβ and MAE values, while at the same time having a

drastically smaller computational complexity.

6.2 Scope for Future Work

There are a number of additional studies that can be undertaken along the research work

presented in this thesis. Some of the possible studies are as follows:
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• Image features could be extracted using a different image representation such as a

weighted graph representing the relations among the pixels or regions of an image.

• In this thesis the depthwise separabale convolution has been used in a deep network

with an encoder-decoder architecture. Other deep architectures for salient object de-

tection can be investigated by making use of the lightweight depthwise separable

convolution. Moreover, the deep salient object detection network presented in this

thesis is developed in a supervised deep learning approach. Developing salient ob-

ject detection networks using a deep reinforcement learning approach could also be

investigated.

• The proposed salient object detection schemes for images can be extended to videos

in order to detect the most visually informative region of video scenes.
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