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ABSTRACT

A Brief Review Of Support Vector Machines and a Proposal For
A New Kernel Via Localization Heuristics

Malik Balogoun, MA

Concordia University, 2019

This thesis deals with a particular problem of binary classification case

in the framework of support vector machine. The case displays observations

from two classes, and uniformly distributed on a space so that linear sepa-

ration by a hyperplane is only possible in tiny cubes (or rectangles) of that

space. The general approach to classification in the input space is then ex-

tended with the design of a new ad hoc kernel that is expected to perform

better in the feature space than the most common kernels found in the lit-

erature. Theoretical discussions to support the validity, the convergence to

Bayes classifier of the new designed kernel and its application to simulated

dataset will be our core contribution to one a way we can approach a classi-

fication problem.

In order to make our way to this goal and grasp the necessary mathematical

tools and concepts in support vector machine, a literature review is provided

with some applications in the first four sections of this document. The last

and fifth section brings an answer the question that motivates this research.
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1 Introduction

In machine learning, the Support Vector Machine (SVM) is a type of

supervised learning that uses algorithms to either classify or apply regres-

sion analysis on a dataset. In this thesis, we will only focus on the SVM as

a tool for classification. First we provide related concepts and second, we

provide properties of Bayes classifier of the new proposed kernel. Various

types of kernels are considered which is plausible in this contest. Formally,

the method solves a binary discrimination problem which takes a training

sample, and constructs the function f which estimates the decision boundary

by allowing an optimal margin. The SVM’s algorithm finds the best esti-

mation of the function f learned on a sample training dataset such that the

misclassification error rate on another test dataset is minimum. The SVM

learning algorithm applies on quantitative observations as well as qualitative

ones.

The SVMs theory was originally established in the works of Vapnik, and

Chervonenkis in 1963 before it became more popular in the 1990’s with many

applications in real world problems. The boundary induced by the algorithm

can be either linear or non-linear depending on the generally unknown dis-

tribution of the learned sample data. In each case, some mathematical con-

cepts will be explained to justify the chosen algorithm. The convergence of

the studied SVM’s algorithms towards the Bayes Classifier will be assessed

as well as the convergence of an ad hoc learning algorithm method towards

the Bayes classifier.
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2 Support Vector Machine as a linear classifier

2.1 The separating hyperplane

In a p - dimensional space, a affine hyperplane is (p − 1) - dimensional

subspace which is described by the set of the form:

{x = (x1, ..., xp) ∈ Rp : β0 +

p∑
j=1

βjxj = β0 + βTx = 0}, (1)

with β = (β1, ..., βp) the normal vector to the hyperplane.

The hyperplane divides the space in two half-spaces defined by the sets of

the form:

{(x1, ..., xp) ∈ Rp : β0 +

p∑
j=1

βjxj < 0} (2)

and,

{(x1, ..., xp) ∈ Rp : β0 +

p∑
j=1

βjxj > 0} (3)

hence a suitable geometric representation to perform a linear separation.

Notice that in R2, the hyperplane gives the equation of a line, and that of

a plane in R3. For example, let’s consider a sample data points (x1, ..., xn)

of size n made of two classes. If we construct such a hyperplane so that all

the observations of one class fall in the set of relation (2) and the remainder

in the set of relation (3), the separation is achieved. By convention, the

observations are labelled yi = −1 in set (2) and yi = 1 in set (3). Therefore,

any new observation xi, i = n+1, will be classify according to the hyperplane

boundary as −1 or 1 and we can write:

yi(β0 +

p∑
j=1

βjxj) > 0 (4)

However, the existence of such a hyperplane is not unique and it always

possible for example to find ε > 0 such that {(x1, ..., xp) ∈ Rp : β0 + ε +

2



∑p
j=1 βjxj = 0} is another a separating hyperplane.

2.2 Maximal margin classifier

The concept of Maximal margin classifier is now introduced to help us to find

the best hyperplane among the infinity number of choices. This specific sep-

arating hyperplane will be chosen in a way to maximize the smallest distance

between any data point and itself. Let’s digress here, and discuss the linear

algebra theory that gives us the shortest distance of a given data point to a

hyperplane in the space.

2.2.1 Distance of a point to a hyperplane

For the simplicity of the illustration, let’s consider a hyperplane in R3, i.e. a

plane. If P is a point on the hyperplane L and we want to find the distance

of any point Q (not on L) to L, given that O is the origin of the vector space

and β a normal vector to L at P .

Figure 1: Distance of a given data point Q the a hyperplane

The signed ( ”signed” because Q can be on either side of L) distance D of

Q to the hyperplane L is derived as follows:

3



if
−→
OQ = x = (x1, ..., xp), is a given point of the space not the hyperplane L,

and
−→
OP = x0 = (x10, ..., xp0), the point on the hyperplane L closest to x, we

have (x−x0) is a multiple of β, so that x−x0 = cβ, hence c = βT (x−x0)/||β||2,
therefore ||x− x0|| = |c|||β||,

Hence the signed distance of any point x to the hyperplane L is:

D =
(βTx− β0)

‖β‖
(5)

2.2.2 Finding the optimal separating plane

We can now compute the distance of any point to the hyperplane. However,

for the choice of the hyperplane to be optimal, we must find a margin M > 0

being the maximal possible such that the closest points on each side of the

hyperplane are at the signed distance M from it. In others words, we must

solve the following optimization problem:

max
β,β0,‖β‖

M

subject to
yi(x

T
i β + β0)

‖β‖
≥M ⇒ yi(x

T
i β + β0) > M‖β‖, i = 1, ..., N

with xi = (x1i, ..., xpi) and yi = {−1, 1}
The data points xi in the space Rp such that:

yi(x
T
i β + β0)

‖β‖
= M,

i.e. the closest points on each side of the hyperplane are called Support

Vectors, and the lines which support them are the boundaries.

To simplify the above problem, we can arbitrarily set ‖β‖ =
1

M
, since any

4



scaled vector of the β is also a normal vector to the hyperplane, and using

the norm of that scaled vector i.e. any positive real number(here, we choose
1

M
) doesn’t change the optimization problem.

The constraint becomes yi(x
T
i β + β0) ≥ 1 and, if we label xi− and xi+ the

supports vectors respectively below and above the classifier, we can write

that xTi−β+β0 = −1 and xTi+β+β0 = 1; moreover there exist r > 0 such that

xi+ = xi− + rβ.

Note that maximizing M = ‖xi+ − xi−‖ = ‖rβ‖ is equivalent to maximizing

M 2 = r or minimizing
1

r
.

So:

1 = xTi+β + β0

= [(xi− + rβ)β] + β0

= r‖β‖2 + xTi−β + β0

= r‖β‖2 − 1

therefore,

r =
2

‖β‖2
⇒ 1

r
=

1

2
‖β‖2

Finally, to find the maximal margin classifier, we have to solve the following

convex optimization problem:

min
β,β0

1

2
‖β‖2, subject to yi(x

T
i β + β0) ≥ 1 (6)

The Primal Lagrange function LP is:

LP =
1

2
‖β‖2 −

N∑
i=1

αi[yi(x
T
i β + β0)− ‖si‖ − 1] (7)

with αi being the Lagrange multiplier for a given data point xi.

5



Then the successive derivatives with respect to β and β0 give :

∂LP
∂β

= 0⇒
∑N

i=1 αiyixi = β

∂LP
∂‖si‖

= 0

∂LP
∂β0

= 0⇒
∑N

i=1 αiyi = 0

By replacing them in (7) and knowing that βT =
∑N

i=1 αiyix
T
i , we obtain a

new expression for the Lagrangian, LD for the Dual that we will maximize

by having with an appropriate software solve it for the values of α′is.

LD =
1

2
βTβ −

(
N∑
i=1

αiyix
T
i

)
β +

N∑
i=1

αi

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk

subject to αi ≥ 0 and
N∑
i=1

αiyi = 0

The Karush-Kuhn-Tucker suggests that:

αi[yi(x
T
i β + β0)− 1] = 0 for all i (8)

Therefore, with αi > 0:

i) if yi(x
T
i β + β0) − 1 > 0 for the data points correctly classified and not on

the boundary, then we must have αi = 0

ii) if αi > 0, we must have yi(x
T
i β + β0) − 1 = 0, thus only the points on

the boundaries, the support vectors, correspond to αi > 0. A given point xi

6



along with its value yi, we solve for β0 from (8) as follows:

β0 =
1

yi
− xTi β with

N∑
i=1

αiyixi = β

Finally, an estimation (based on the training data points) of the maximal

margin classifier is completely define, and the class y∗ ∈ {−1, 1} of any new

test data point x∗ will determined as:

Class(x∗) = sign[(x∗)Tβ + β0]

2.3 Support Vector classifier (SVC)

The maximal margin classifier can encounters two main problems:

- the non-robustness, i.e. in case the margin is not wide enough, the addition

of new data points could lead to a new maximal margin classifier as new

support vectors will be defined.

Figure 2: Non robustness of the maximal margin classifier to entry of a new data point ([2], chapter

9, pp:345)

- the non separable data, i.e. no linear hyperplane can be found to sepa-

rate the data in two distinct categories. However a maximal margin classifier

can still be obtain by allowing a few observations to be misclassified.

7



Figure 3: A case where the classes of the data points are not linearly separable [2, chapter 9,

pp:344]

These two shortcomings are overcome with the support vector classifier as

a generalization of the maximal margin classifier.

2.3.1 Construction of a SVC

In the both above cases i.e. non-robustness and or overlapping classes , let’s

define for a given data point xi a slack variable ξi which denotes:

i) the distance by which a training data point xi violates the margin distance

M without being misclassified. The maximal margin classifier constructed

with a few margin violations of such x′is fixes the non-robustness as it allows

a wider margin which guarantees a better classification for a test data point.

ii) in the situation of overlapping classes, the slack variables ξ′is are used

directly on the training data as no hyperplane separator is possible.

So we can rewrite the constraint of the classical optimization problem as

follow:

yi(x
T
i β + β0) ≥M − ξi, i = 1, ..., N (9)

8



However, although the previous relation is established naturally by construc-

tion, it does lead to a convex optimization problem.

Therefore, it is more convenient to replace it with its equivalent:

yi(x
T
i β + β0) ≥M(1− ξi), i = 1, ..., N (10)

where ξi is now expressed as the proportion of M by which xi violates the

margin.

So ξi = 0 occurs when xi is correctly classified, and ξi = 1 occurs when xi

violated the margin by a distance M and is location on the separating hyper-

plane. ξ1 > 1 is a clear misclassification Thus, if we want a maximum of K

training data points to be misclassified while finding the support vector clas-

sifier, we should set a budget
∑N

i=1 ξi 6 K. Notice here that if
∑N

i=1 ξi = K,

we might have no point misclassified but rather several points only violating

the margin.

2.3.2 Mathematical definition of a SVC

Let’s C be the the cost that we pay for every single data point xi that violates

the margin or that is misclassified, i.e. ξi > 0. Then, the optimization

problem whose solution gives the SVC, is expressed as follow:

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, ..., N

(11)

If we want the cost C = ∞, for the optimization problem will remain valid

only if we have ξi = 0 i.e. all the xi are correctly classified and none of them

has violated the margin, hence the Support Vector Classifier becomes exactly

the maximal margin classifier.

9



From (10), the primal Lagrangian LP is derived and it follows that:

LP =
1

2
‖β‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi (12)

The α′is and µ′is are the Lagrange multipliers.

By differentiating successively with respect to β, β0 and ξi we obtain:

∂LP
∂β

= 0⇒ β =
N∑
i=1

αiyixi

∂LP
∂β0

= 0⇒ 0 =
N∑
i=1

αiyi

∂LP
∂ξi

= 0⇒
N∑
i=1

αi = CN −
N∑
i=1

µi ⇒ αi = C − µi ∀i

(13)

Re-expressing (11) with the results in (12) give the Dual function LD as

follows:

LD = inf(LP ) =
1

2
βTβ −

(
N∑
i=1

αiyix
T
i

)
β +

N∑
i=1

Cξi + (C − µi)(1− ξi)− µiξi︸ ︷︷ ︸
=
∑N

i=1 C−µi=
∑N

i=1 αi

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk(

by noticing that βT =
N∑
i=1

αiyix
T
i

)
(14)

LD is a concave function, as it is the point-wise infimum of LP which can

be viewed as a family of affine functions. So,with an appropriate quadratic

programming software, we maximize the Dual obtained in (13) subject to the

constraints only in terms of α′is i.e. : 0 6 αi 6 C (since αi = C − µi and

10



µi > 0), and
∑N

i=1 αiyi.

Figure 4: On the left is shown a maximal margin classifier in the linearly separable case, on the

right, the maximal margin classifier has a soft margin to guarantee robustness [1, chapter 12,

pp:418]

i) For αi = C, we identify the data points xi that violate the margin by a

distance ξi > 0

ii) For αi = 0, we can identifies the data points correctly classified and not

on the boundaries. They correspond to ξi = 0 as well

iii) For 0 < αi < C, we identify the data points on the boundary which are

at a distance M from the support vector classifier.

In fact, these conclusions can be drawn simply by considering a Karush-

Kuhn-Tucker condition which states that:

αi[yi(x
T
i β + β0)− (1− ξi)] = 0 (15)

Finally, any support vectors (data points on the boundaries or those which

violates the margin) xi can be used to deduce β0 from (15), and given β =∑N
i=1 αiyixi, an estimation of the Soft-Margin separating hyperplane is ex-

11



pressed as:

f̂(x) = xTβ + β0

Consequently, a new test data point x∗ whose class y∗ ∈ {−1, 1} is classify

as:

Class(x∗) = sign[(x∗)Tβ + β0]

3 Support Vector Machine as a non-linear classifier

So far, the algorithm for the optimal linear classifier is only suitable for sim-

plistic data classification. In practice, many data points are just impossible

to separate with a hyperplane, even if we allow a soft-margin with a budget

for misclassification as we discuss in the previous section.

Figure 5: Non adaptiveness of a linear classifier in some cases [2, chapter 9, pp:349]

Therefore, a non-linear classifier is required, and the goal is to find a rule,

generally expressed by a (number of) function(s) learned from the training

data, that we will be as efficient as possible to determine the class of a new

test data point.

12



3.1 Vapnik Chervonenkis (VC) dimension

The function space or the set of functions that will express the rule for classi-

fication is characterized by its capacity i.e. complexity, expressive power, or

flexibility depending on how the class of the training data points are mixed

and overlapped.

The cardinality of the largest training data points that can be classified by

the set of functions is defined as the VC dimension.

Given a classification model i.e. a choice of a set of function space with a

VC dimension D, a well known result in statistical learning theory stipulate

that:

Pr

{
test error 6 training error +

√
1

N
[D(ln(

2N

D
) + 1)− ln(

η

4
)]

}
= 1− η

(16)

∀ 0 6 η 6 1 and with the condition that D � N such that over-fitting is

avoided. Otherwise the classifier function space will be too flexible and the

test error will consequently become very high.

Overall, the goal is to find a rule that helps to classify. In the case of the

Support Vector Classifier, we came up with a function:

f̂(x) = xTβ + β0 =
N∑
i=1

αiyi x
Txi︸︷︷︸
〈x,xi〉

+β0 (17)

We must then find a similar approach with the function space that defines

such a classifying rule.

13



3.2 Classical approach with Kernels

In the Kernel approach, each data point xi in the in the p-dimensional space

is transformed into h(xi) in a enlarged M -dimensional space such that:

h(xi) = (h1(xi), h2(xi), ..., hM(xi))

with M > p and the basis functions h1, h2, ...and hM suitably chosen so that

we ensure linear class separation in the new feature space induced by the

transformations. By similarity with (17), we could therefore define a Support

Vector Classifier f̂ based on the training data as follows:

f̂(x) = h(x)Tβ + β0 =
N∑
i=1

αiyi h(x)Th(xi)︸ ︷︷ ︸
〈h(x),h(xi)〉

+β0 (18)

The function K(x, xi) = 〈h(x), h(xi)〉 ∀i is called the Kernel, and has the

particularity to be defined every time that the training data are linearly sep-

arable with soft-margin in the new feature space. Moreover, the kernel is

required to be positive semi-definite.

The approach with kernels displays a computational advantage. In fact, the

Lagrange Dual whose solution gives the classifier function f̂ can be defined by

computing with a fixed number of the kernel K(xi, xj) = 〈h(xi), h(xj)〉
computations computations i.e.

(
N
2

)
with i, j = 1, ..., N , but not on the

dimension size M of the new feature space. This advantage is very appre-

ciated when M → ∞ (very high). Depending on the mixture of the classes

on the training data points, a specific kernel is designed to achieve to lowest

training and test errors.

Some commonly used Kernels are:

i) the dth degree polynomial Kernel: K(xi, xj) = (1+〈xi, xj〉)d which basically

uses polynomial functions to find a support vector classifier in the enlarged

feature space. Taking d = 2, and for two data points xi = (xi1, xi2), and

xj = (xj1, xj2) we have:
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K(xi, xj) = (1 + 〈xi, xj〉)2

= (1 + xi1xj1 + xi2xj2)
2

= 1 + (xi1xj1)
2 + 2xi1xj1 + (xi2xj2)

2 + 2xi2xj2 + 2xi1xj1xi2xj2

= 〈h(xi), h(xj)〉

We can then clearly recognize that M = 6 and the set of functions h1, ..., h6

such that:

h(xk) =

(
h1(xk) = 1, h2(xk) = (xk1)

2, h3(xk) =
√

2xk1,

h4(xk) = (xk2)
2, h5(xk) =

√
2xk2, h6(xk) =

√
2xk1xk2

)
, k = i, j

ii) The radial basis function (RBF) Kernel:

K(xi, xj) = exp(−γ‖xi − xj‖2) with γ =
1

2σ2
> 0, and σ a free parameter.

Replacing this kernel expression in relation (18) above, we see clearly that

only the data points that are very close in distance to the new test obser-

vation x will essentially determine its class, as the exponential function with

the minus sign systematically guarantees very low weight to sensibly far data

points in the summation calculation in (18).

The classifier function using the radial basis has therefore a very local be-

haviour although it doesn’t have an explicit graphical function. This has the

advantage to deal with complicated cases where no function space could be

found due to the clustered, mixed, or overlapped characteristics of the data

points classes. Since very enlarged new feature space always achieves separa-

bility when the transformation set of functions are correctly defined, the RBF

kernel can then be viewed as a method that leads to infinite dimensional for

new feature space.
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Figure 6: On the left,the use of the polynomial kernel performs poorly in separating the class.

However, the graph on the right shows how the use of the RBF kernel is well adapted for the

purpose ([2], chapter 9, pp:353)

3.3 Classification with probabilistic kernel Bayes rule

Let DN = {(xi, yi), i = 1, ..., N} be the training dataset of N observations

with xi being a vector (or observation)in a n-dimensional vector space, and

yi ∈ {−1, 1}. We define ŷi as the predicted class for the observation i by

any classification rule ϕ. The empirical risk on a test data set as an estimate

of the error rate defined as R(ϕ) =
1

K

∑K
1 I(ŷi 6=yi) quantify the proportion

of mistake made the classification rule on the test data containing K new

observations.

we’ll now prove that the Bayes classifier defined as:

ŷi = argmaxyi∈{−1,1}P[Y = yi|X = xi] (19)

is the a minimizer for both the test error rate and the expected error rate.
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3.3.1 Optimality of Bayes classifier and lower boundary feature of Bayes error rate

For a given observation xi in a test dataset, the test error rate is:

P[ŷi 6= yi|X = xi] = 1− P[ŷi = yi|X = xi]

We can clearly see that only the Bayes classifier defined in (19) minimizes the

latter quantity to its smallest value. In this case, it’s assume that the distri-

bution of X is known but not specified.We can then conclude that for any

classifier suitable to classify the test data set generated form the distribution

of X, the optimality of Bayes classifier is verified. Consequently, in practice:

if P[ŷi = 1|X = xi] ≥ P[ŷi = −1|X = xi] or equivalently,

if P[ŷi = 1|X = xi] ≥ 0.5

Then ŷi = 1

Figure 7: Exemple of Bayes optimal classifier along: the black line in the picture. The ”+1” data

points are represented in brown whereas the ”-1” ones are represented in blue[1, chapter 2, pp:21]

On the other hand, the Bayes error rate does not take into consideration

one observation to be tested, but rather all the observations generated by the
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distribution of X. Its expression is then given by:

P[ŷi 6= yi] = E
[
P[ŷi 6= yi|X]

]
= E

[
1− max

y∈{−1,1}
P[ŷi 6= y|X]

]
= 1− E

[
max

y∈{−1,1}
P[ŷi 6= y|X]

]
Since the optimal Bayes classifier makes the Bayes error irreducible for

any distribution of X, the Bayes error is then viewed as the lowest boundary

of the expected error rate of any classifier.

3.3.2 Dealing with unavailability of Bayes classifier, and convergence of other ap-

proaches

As discussed above, the Bayes classifier displays two main characteristics:

i) It requires the knowledge of the conditional distribution given X (true

parameters of the distribution must be known)

ii)It functions as an unattainable gold standard (lowest boundary of the ex-

pected error rate ) to which other classification methods are compared to

judge their efficiency.

To overcome these two problematic features, the two following approaches

are developed:

a) The Quadratic Discriminant Analysis: assumption of a normal dis-

tribution with overlapping classes (the distributions have at least different

means).

Recall that we are interested in:

P[yi = y|X = xi] =
f(x|y)P[Y = y]

P[X = xi]
by Bayes rule and with y ∈ {−1, 1}

∝ f(x|y)P[Y = y] , since P[X = xi] doesn’t depend on y.
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It’s assumed that f(x|y) =

exp

[
− 1

2
(xi − µy)TΣ−1

y (xi − µy)
]

√
(2Π)n|Σy|

, which is the

multivariate normal distribution of x given y ∈ {−1, 1} in the n-dimensional

space. µy and Σy are respectively the mean and the covariance matrix within

the class y.

Let Πy = P[Y = y].Then:

P[yi = y|X = xi] ∝ f(x|y)Πy

Thus,

ŷi = argmax
y∈{−1,1}

f(x|y)Πy

= argmax
y∈{−1,1}

ln[f(x|y)Πy] , since ln is an increasing function

= argmax
y∈{−1,1}

− ln
(√

(2Π)n|Σy|
)
− 1

2
(xi − µy)TΣ−1

y (xi − µy) + ln(Πy)

argmax
y∈{−1,1}

ln(Πy)−
1

2
(xi − µy)TΣ−1

y (xi − µy)−
1

2
ln(|Σy|) (20)

(
since −n

2
ln(2Π)⊥y

)
By setting:

ay = −1

2
Σ−1
y , by = µTy Σ−1

y , and cy = ln(Πy)−
1

2
ln(|Σy|)−

1

2
µTy Σ−1

y µy

Relation (20) it rewritten as follows:

ŷi = argmax
y∈{−1,1}

xTi ayxi + byxi + cy (21)

Defining Fy(xi) := xTi ayxi + byxi + cy leads to the conclusion that the

decision boundary (the Quadradic Discriminant classifier) is made of the
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observations xi such that F(−1)(xi) = F(+1)(xi)

Remark:

- Let Sy =

{
xi : yi = y

}
with y ∈ {−1, 1} .

In this case where the multivariate normal distribution N (µy,Σy) is assumed,

if its parameters and Πy are not known, they can be estimated by:

Π̂y =
card(Sy)

N
, N being the total number observations for the two classes +1 and -1

µ̂y =
1

card(Sy)
∑
i∈Sy

xi,

and the estimated covariance matrix,

Σ̂y =
1

card(Sy − 1)

∑
i∈Sy

(
xi − µ̂y

)(
xi − µ̂y

)T

b) The K-Nearest Neighbour (KNN): no assumption about the dis-

tribution of the x′is, and no overlapping classes.

This probabilistic approach determines the class of a new observation x0 by

choosing the class that predominates among its K-nearest observations in the

training set.

Mathematically, it mimics the Bayes classifier rule as follows:

if P̂[y0 = y|X = x0] =
1

K

∑
i∈N0

Iyi=y ≥ 0.5 then ŷ0 = y

with y ∈ {−1, 1} and N0 = {xi : 1 ≤ i ≤ K}

Remark:

The class of a test observation x0 is determined by choosing the class of its

closest observations (which are given higher weights by construction of the

exponential function).

- Notice also that, in the implementation of the RBF kernel, the smaller the
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tuning parameter γ is, the greater is the number of observations x′is whose

classes substantially influence the determination of the class for x0.

4 Application

4.1 The k-fold cross-validation algorithm implementation

In implementing the various SVM algorithms for this application section, the

k-fold cross validation will be applied to determine the best parameters of the

model that insure the best Bias-variance trade-off for the classifier boundary.

The k-fold cross-validation involves splitting the dataset into k subsets. For

each i = 1, ..., k the following steps are repeated:

i) The model is trained on all training data except those in from the ith sub-

set.

ii) Using the latter trained model, predictions are performed for each obser-

vation from the ith subset.

iii) Prediction errors (out-of-sample errors) for each observation of the ith

subset are recorded.

Then, the set of all out-of-sample errors (from all k subsets) are jointly con-

sidered to calculate a goodness-of-fit statistics e.g. the out-of-sample MSE

obtained by taking the sample average of all squared out-of-sample predic-

tion errors. The model retained is the one yielding the best out-of-sample

goodness-of-fit.

4.2 SVM on observations with overlapping classes

Linear Kernel

we will first implement the classical SVM with linearly separable case along

with a soft margin.

Let’s generate N = 100 = N1 + N2 observations from two bivariate normal

distributions, N1 i.i.d observations from N (µ1,Σ1), and N2 i.i.d observa-
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tions from N (µ2,Σ2) with N1 and N2 unknown, µ1 =

(
0

0

)
, µ2 =

(
1

1

)
, and

Σ1 = Σ2 =

(
1 0

0 1

)
.

Let’s check if classes are linearly separable in 100 randomly chosen obser-

vations:

Figure 8: Plot of training dataset for overlapping classes

The plot shows that the two groups are NOT linearly separable (except

with soft margin). First, we implement the linear kernel with soft margin.

For k = 10, the cross validation algorithm gives that the cost = 0.1 resulted

in the lowest cross validation error rate, thus the best model.
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Figure 9: SVM classification plot for the linear kernel best model: The support vectors are marked

with a cross

The best model displays 63 support vectors, 32 for the class ”-1” and 31

for the class ”1”. Let’s now use the best model function to predict on a

test data generated exactly as the training dataset, i.e. with N1 + N2 = N ,

N1 and N2 are unknown and are generated from the same bivariate normal

distributions as described previously.

Figure 10: Performance of the best linear kernel model on the test dataset

Among 100 test observations, 86 are classified correctly, thus an error rate

of 14%.
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Polynomial Kernel

Let’s now learn the same training dataset with the polynomial kernel and

check its performance on the same test dataset. The 10-fold cross validation

gives that d = 1 as resulted in the lowest cross validation error rate, thus the

best model.

Figure 11: SVM classification plot for the polynomial kernel best model: The support vectors are

marked with a cross

The best model displays 52 support vectors, 26 for the class ”-1” and 26

for the class ”1”. Let’s now use the best model function to predict on a test

dataset.
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Figure 12: Performance of the best Polynomial kernel model on the test dataset

Among the 100 observations, 86 are classified correctly, thus an error rate

of 14% , similar to the Linear kernel case. When a larger training and test

datasets (N = 200) are considered, the error rate in the best model for the

linear kernel is 21.5%, whereas it amounts up to 24% for the polynomial

kernel.

See table below:

Figure 13: Performance of the best linear and polynomial kernel models on the test dataset with

N = 200 (larger dataset)

We noticed that by increasing to N = 200, the error rate for both the

linear and the polynomial kernels are higher although they have been given

a larger training sample. So as N goes to infinity, neither of them converges

to the Bayes classifier. Since cross validation has already chosen the opti-

mal parameter for the best model, any attempt to increase these would lead

to over-fitting, low error rate in the training sample, but NOT convergence

to Bayes classifier as the resulting model would perform poorly on the test

dataset.
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Radial Basis Function kernel

Let’s now learn the same training dataset with the Radial Basis Function

kernel and check its performance on the same test dataset. The 10-fold cross

validation gives that gamma = 0.5 as resulted in the lowest cross validation

error rate, thus the best model.

Figure 14: SVM classification plot for the Radial Basis Function kernel best model: The support

vectors are marked with a cross

The best model displays 50 support vectors, 25 for the class ”-1” and 25

for the class ”1”. Let’s now use the best model function to predict on the

test dataset.
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Figure 15: Performance of the best RBF kernel model on the test dataset

Among the 100 observations, 76 are classified correctly, thus an error rate

of 24%. This error rate is higher than what we got from the Linear and the

polynomial kernels. This poorer performance shows that the radial kernel

seems not to be adaptive to classify more efficiently the observations from

two overlapping classes.

4.3 SVM on observations with mixed and non-overlapping classes

Let’s consider a training set of size N = N1 +N2 +N3 = 100 where N1, N2,

and N3 are unknown and i.i.d observations respectively generated from the

bivariate normal distributions N (µ1,Σ1), N (µ2,Σ2) and N (µ3,Σ3),

µ1 =

(
−2

−2

)
, µ2 =

(
2

2

)
, µ3 =

(
0

0

)
, with Σ1 = Σ2 = Σ3 =

(
1 0

0 1

)
.

N1 and N3 have the same group, and constitute together one sample. We

obtain the following plot:
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Figure 16: Plot of training dataset for mixed and non-overlapping classes

The plot shows clearly that the two groups are NOT linearly separable,

and neither the linear nor the polynomial kernel are suitable to implement

the SVM algorithm. The implementation of the SVM with RBF kernel and

the choice of the 10-fold cross validation algorithm gives that gamma = 2

resulted in the lowest cross validation error rate, thus the best model.
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Figure 17: SVM classification plot for the RBF kernel best model: The support vectors are marked

with a cross

The best model displays 47 support vectors, 17 for the class ”-1” and 26 for

the class ”1”. Let’s now use the best model function to predict on a test data

generated exactly as the training dataset, i.e. with N1 +N2 = N3 = N = 100,

N1, N2 andN3 are unknown and are generated from the same bivariate normal

distributions as described previously.

Figure 18: Performance of the best linear kernel model on the test dataset

Among 100 test observations, 90 are classified correctly, thus an error rate

of 10%.
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5 Discussion on two ad hoc learning classification algorithms based

on the linear kernel and RBF kernel

5.1 Ad hoc learning classification algorithm based solely on linear kernel

In this part, we’ll first prove that it can be found a universal consistent kernel

generated as the sum of inner product kernels from each split made on the

training dataset. Secondly, we will empirically verify it convergence towards

the Bayes classifier with simulated data as the area of splits are getting smaller

(towards 0).

5.1.1 Constuction of the Ad hoc kernel K:

Let’s split the training dataset in K splits for linear SVM implementation in

each of them and let’s consider the following classifier for any test observation

x:

f̂(x) =
K∑
j=1

hj

(
β0j +

Nj∑
i=1

αijyij x
Txi︸︷︷︸
〈x,xi〉

)
Ix,x′∈Sj (22)

with Sj being the set of all the data observations in the jth split and Nj, the

number of the training observations in the jth split.

We now have to justify that the following kernel is well defined:

K =
K∑
j=1

hj〈x, x
′〉Ix,x′∈Sj

with hj the weight of Sj the set of training observations in the jth split, and∑K
j=1 hj = 1.

The verification will involve to check if the constructed kernel is positive

definite, and universally consistent.

- Positive definiteness:

Let’s Xj be a Nj × p matrix for each split j. We need to check if the p × p
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XT
j Xj is positive definite. Let u be an arbitrary p× 1 matrix.

uT (XT
j Xj)u = (Xju)TXju, setting Xju = (v1, .., vNj

) which is a matrix Nj × 1

we obtain that:

uT (XT
j Xj)u = (Xju)TXju =

Nj∑
i=1

v2
i > 0

Thus the positive definiteness is proved.

Then the resulting linear combination kernel K =
∑K

j=1 hj〈x, x
′〉Ix,x′∈Sj is

also positive definite, i.e. K ≥ 0 [8, chapter 13. pp 408].

5.1.2 Creation of a dataset to check for convergence to Bayes Classifier

Description of dataset :( where the two classes have their observations

mixed without any pattern)

Let’s generate N4 = 250 observations from a bivariate uniform distribution

U
[
(0, 10), (0, 10)

]
.

For any observation X = (x1, x2), Y = 1 if sin(xx21 ) > 0,

else Y = −1
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Figure 19: Plot of the two classes from the uniform distribution

We first implement the Radial Basis Function kernel (RBF) with soft mar-

gin. For k = 10, the cross validation algorithm gives that the cost = 0.001

resulted in the lowest cross validation error rate, thus the best model.

Figure 20: SVM classification plot for the RBF kernel best model : The support vectors are marked

with a cross

Let’s now use the best model function to predict on a test data generated

exactly as the training dataset, i.e. with N4 = 250 observations generated
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from the same bivariate uniform distribution as described previously.

Figure 21: Performance of the best linear kernel model on the test dataset

Among 250 test observations, 111 are misclassified thus an error rate of

44.4%.

We then implement the linear kernel with soft margin. For k = 10, the

cross validation algorithm gives that the cost = 0.001 resulted in the lowest

cross validation error rate, thus the best model.

Figure 22: SVM classification plot for the linear kernel best model : The support vectors are marked

with a cross

Let’s now use the best model function to predict on a test data generated

exactly as the training dataset, i.e. with N4 = 250 observations generated

from the same bivariate uniform distribution as described previously.
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Figure 23: Performance of the best linear kernel model on the test dataset

Among 250 test observations, 128 are misclassified thus an error rate of

51.2% higher than the RBF error rate.

5.1.3 Splitting the dataset in subsets and checking for its convergence to Bayes clas-

sifier

Let’s split the the training dataset into 16 (subsets) sub-quadrants of equal

area (2.5×2.5). For the uniformly distributed dataset for the two classes, we

will implement linear SVM in each sub-quadrant of same weight (area)

hj, j = 1, ..., 16 to check whether their overall error rate is lower than that

of its test dataset(generated as the training dataset).

We obtain the following results in each subsets SS1,SS2,...,SS16:
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Result:

Overall mean error rate =

=
total number of misclassified observations in each test subset

total number of observations in the test dataset

= 50.4%

51.2% and 44.4% are respectively the linear and RBF kernels error rate from

the whole test dataset.

Performing the Ad Hod algorithm has led us to a lower error rate when

compared to the linear kernel. However this error is higher when compared

to the RBF kernel. This is explained by the arbitrary splits operated in the

construction of kernel K. This abnormality will be resolved with a refined

version of kernel K discussed in the following subsection, and which will give

the lower error rate(than the RBF kernel) we were aiming for in order to get

closer to the the Bayes Classifier error rate as expected. The kernel K was

just a motivating idea.
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5.2 Ad hoc learning classification algorithm based on both linear kernel and

RBF kernel

Similarly to the previous, we’ll prove here that it can be found a universal

consistent kernel generated as the the product of inner product kernel and

the Radial Basis Function kernel on the whole training dataset.

The motivation for such a kernel comes from the fact that the splits previously

operated led us to 〈x, x′〉Ix,x′∈Sj . While the splits arbitrarily causes a loss of

data, this inconvenience is corrected by replacing Ix,x′∈Sj by exp(−γ‖x−x′‖2)

for some γ > 0. In other words, instead of entirely discarding points x′ that

are too far away from x, we are down-weighting them according to their dis-

tance from x. This leads us to the product kernel 〈x, x′〉exp(−γ‖x− x′‖2)

5.2.1 Constuction of the ad hoc kernel Q:

Let’s take the whole training dataset and let’s consider the following classifier

for any test observation x:

f̂(x) =
N∑
i=1

αiyi 〈xT , xi〉exp(−γ‖x− xi‖2)︸ ︷︷ ︸
〈Φ(x),Φ(xi)〉

(23)

Here, the constructed kernel Q is positive definite, and universally

consistent.

- Positive definiteness:

Firstly, let’s show that the RBF kernel k′(x, x′) = exp(−γ‖x− x′‖2).

Since this kernel assumes a map Φ′ from the input space X to a hilbert feature

spaceH such that: k′(x, x′) = 〈Φ′(x),Φ′(x′)〉Where Φ′(x)T = (h1(x), h2(x), ....) =

(h1(x), h2(x), ....hM(x)) with M →∞
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Let’s X be a N ×M matrix such that:

X =


h1(x1) h2(x1) h3(x1) . . . hM(x1)

h1(x2) h2(x2) h3(x2) . . . hM(x2)
...

...
... . . . ...

h1(xN) h2(xN) h3(xN) . . . hM(xN)

 =


Φ′(x1)

Φ′(x2)
...

Φ′(xN)


We need to check if the M × M infinite matrix K′ = XTX is positive

definite. Let u be an arbitrary M × 1 matrix.

uT (XTX)u = (Xu)TXu, knowing that k(xj, xk) = 〈Φ′(xj),Φ′(xk)〉 = Φ′(xj)
TΦ′(xk)

j, k = 1, 2, ..., N, there exist αj, αk such that:

uT (XTX)u = (Xu)TXu =
N∑

j,k=1

αjαkk(xi, xj)

Let k(xj, xk) = exp(−γ‖xj − xk‖2) = f(
√

2γ IT (xj − xk))

with f(t) = exp(−t
2

2
) = E[eitZ ] which is the characteristic function of ran-

dom variable Z with N (0, 1) distribution where I is the unit matrix and i is

a complex number.

uT (XTX)u = (Xu)TXu =
N∑

j,k=1

αjαkk(xj, xk)

=
N∑

j,k=1

αjαkE[ei
√

2γ IT (xj−xk)Z ]

= E

[ N∑
j,k=1

αje
i
√

2γ ITxjαke
−i
√

2γ ITxk
]

= E

[∣∣∣∣ N∑
j=1

αje
i
√

2γ ITxj
∣∣∣∣2] > 0

Thus the positive definiteness of the RBF kernel K′ is proved.
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Since we proved earlier that the linear kernel K is positive definite then

Q = K.K′ is also positive definite.[8, chapter 13. pp 408]

- Universal Consistency:

Recall from Section 3.2 that in the kernel approach, each data point xi in

the p-dimensional space is transformed via a feature map h(xi) in a enlarged

higher-dimensional space such that:

h(xi) = (h1(xi), h2(xi), ...) i = 1, ..., N

and the expression of the kernel is k(xi, xj) = 〈h(xi), h(xj)〉.
Let’s assume that span{h(xi) : i ≥ 1} forms a sub-algebra of C(X) where

C(X) is the subspace of complex-valued continuous functions on X, the orig-

inal input space for the training observations x′is.

Let k be kernel on X and h : X → H. A function f : X → R is induced by

k if there exists an element in w ∈ H such that f = 〈w, h(.)〉. [10, sec.3, pp

71].

In [8,Definition 2] A continuous kernel k : K ×K −→ R is called universal

if the set of all induced functions is dense in C(X) i.e., for all g ∈ C(X) and

all ε > 0 there exist a function f induced by k with ‖f − g‖∞ 6 ε.

Let’s prove universality of kernel Q. We know that:

f(x) =
1

σ2
x(ex)2 =

1

σ2
xe2x = x

∞∑
n=0

(2x)n

n!

=
∞∑
n=1

2n

σ2(n− 1)!
xn

=
∞∑
n=1

anx
n with an =

2n

σ2(n− 1)!

We obtain f as a C∞- function that can be expanded into a Taylor series
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in 0, hence by [10, Corollary 10], f(〈σx, σy〉) =
1

σ2
〈σx, σy〉

(
e〈σx,σy〉

)2

is an

universal kernel.

Consequently, by taking γ = σ2 in the expression of Q(x, y), we have:

Q(x, y) = 〈x, y〉e−σ2‖x−y‖2 =
1

σ2
〈σx, σy〉e−σ2(〈x,x〉+〈y,y〉−2〈x,y〉)

=
1

σ2

〈σx, σy〉(e〈σx,σy〉)2

e〈σx,σx〉e〈σy,σy〉

We have already proved above that the numerator is an universal kernel.

By [10,Proposition 8], we can conclude that Q is also an universal kernel.

To prove the consistency, let’s states a few definitions and results :

• In [3, Lemma 1], if k : X × X → R is a universal kernel on a compact

subset X of Rp and Φ : X → H is a feature map on k, then Φ is continuous

and

dk(x, x
′) := ‖Φ(x)− Φ(x′)‖

defines a metric on X such that id : (X, |.|)→ (X, dk) is continuous.

• The above metric can always be used in our context to define a finite

covering number defined as:

N(X, dk) := inf{n ∈ N : ∃x1, x2, ..., xn with X ⊂ ∪ni=1Bdk(xi, ε)}

for all ε > 0, so (X, dk) is precompact.

By assuming that the metric space (X, dk) is also complete (if every Cauchy

sequence of points in X has a limit that is also in X ), we conclude that

(X, dk) is compact (precompact and complete).

• Finally, let’s fT be the measurable decision function constructed on

the training set T = ((x1, y1), ..., (xN , yN)) ∈ (X, Y )N generated from the
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distribution P such that fT : X −→ Y with Y = {−1, 1}.
Let’s define RP (fT ) = P ({(x, y) : fT (x) 6= y}) as the risk of fT .

The Bayes Risk is then defined as follows:

RP = inf{RP (f) : f : X −→ Y } where f is a measurable function. Notice

that the Bayes risk is does not depend on the training set T .

The new kernel we have constructed Q is consistent if it induces a func-

tion fT in the feature space such that : RP (fT ) −→ RP as T gets large

enough.

• So, with an universal kernel on a compact metric space, the following

theorem establishes its almost consistency as follows:

THOEREM:[3, Theorem 1] Let X ⊂ Rp be compact and Q : X ×X −→ R
be a universal kernel. Then for all Borel probability measures P on X × Y
and all ε > 0 there exist a constant c∗ > 0 and some constant M > 0 such

that for all c ≥ c∗ and N ≥ 1 we have:

Pr∗({T ∈ (X × Y )N : RP (f
Q,c/N
T ) ≤ RP + ε}) ≥ 1− 2Me−(ε6/229M2)N ,

where Pr∗ is the outer probability of PN and M :=
64

ε
N

(
(X, dk),

ε

32
√
c

)
and f

Q,c/N
T is the function in the feature space induced by the kernel Q,

depending on N and the constant c .

5.2.2 Expression for the metric dk on the feature space where Q is implemented

We defined q(x, x′) = 〈x, x′〉exp(−γ‖x − x′‖2) as the expression for the Ad

hoc kernel Q.

Recall that Q assumes a map ΦQ from the input space X to a hilbert feature

space H such that:
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q(x, x′) = 〈ΦQ(x),ΦQ(x′)〉 Where ΦQ(x)T = (Φ1(x),Φ2(x),Φ3(x)....)

The metric dQ can then be expressed as:

(dQ(x, x′))2 = ‖ΦQ(x)− ΦQ(x′)‖2

= 〈ΦQ(x)− ΦQ(x′),ΦQ(x)− ΦQ(x′)〉

= 〈ΦQ(x)− ΦQ(x)〉 − 2〈ΦQ(x)− ΦQ(x′)〉+ 〈ΦQ(x′)− ΦQ(x′)〉

= q(x, x)− 2q(x, x′) + q(x′, x′)

= 〈x, x〉 − 2〈x, x′〉exp(−γ‖x− x′‖2) + 〈x′, x′〉

(by using the above expression of q(x, x′))

= 〈x, x〉+ 〈x′, x′〉 − 2〈x, x′〉+ 2〈x, x′〉 − 2〈x, x′〉exp(−γ‖x− x′‖2)

= ‖x− x′‖2 + 2〈x, x′〉(1− exp(−γ‖x− x′‖2))

= ‖x− x′‖2

(
1 + 2〈x, x′〉1− exp(−γ‖x− x

′‖2)

‖x− x′‖2

)
→ ‖x− x′‖2

(
1− 2γ〈x, x′〉

)
as x→ x′ i.e. γ‖x− x′‖ → 0

and since
1− ex

x
→ −1 as x→ 0

5.2.3 Implementation of the ad hoc kernel Q:

We use the the same dataset as previously in implementing ad hoc kernel K:

we generated N4 = 250 observations from a bivariate uniform distribution

U
[
(0, 10), (0, 10)

]
.
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Figure 24: Plot of the two classes from the uniform distribution

The kernel trick allows to replace the inner product by the expression

the kernel Q and find the Lagrange multipliers by solving (maximazing the

resulting Dual or minimizing its opposite):

min
α

1

2

N∑
i,j=1

αiαjyiyjQ(xi, xj)−
N∑
i=1

αi

subject to 0 ≤ αi ≤ C where C is the cost,

and
N∑
i=1

αiyi = 0

With the Quadratic Programming (QP ) library(quadprog) in R, the fol-

lowing matrix expression is used instead:

min
α
αTD − dTα

subject to Aα ≥ β0

where D = yyTQ, d = e (all ones vectors), A is the matrix defining the con-

straints under which we want to minimizing the quadratic function.
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Once the αi are obtained, the prediction of an observation x in the test

dataset is given by sign(f(x)) with:

f(x) =

Ntrain∑
i=1

αiyiQ(xi, x) + β0,xi

where by using training dataset, we compute for each obseservation xi

β0,xi = yi −
Ntrain∑
j=1

αjyjQ(xi, xj)

Result: The error rate has given us a percentage of 42.72% after

using cross validation to find the best values for the parameters γ and C.

The intuition that motivated the construction of the kernel Q is then well

verified: we got a performance is better than that of the linear and the RBF

kernel which are respectively 51.2% and 44.4%
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6 Conclusion

The geometric polynomial kernel approach (K(xi, xj) = (1 + 〈xi, xj〉)d) is

somehow comparable with the probabilistic Quadratic Discriminant Analysis

approach as they both lead to a polynomial classifier. However, in the case of

normal distribution, while the QDA approach converges to the Bayes classifier

(is the Bayes classifier when true parameters of the distributions are used),

the geometric approach does not. Rather, the polynomial kernel performs

better on distributions which are not Gaussian (e.g. with overlapping classes),

as the parameter d can be adjusted to lead to a performance closer to the

Bayes classifier’s performance, but no convergence happens for the polynomial

kernel. The choice of d should then be chosen adequately to avoid over-fitting

i.e. avoid a performance better than Bayes classifier.

Likewise, and similarly to the KNN probabilistic approach and the Gaussian

Radial Basis Function kernel geometrical approach are somehow comparable

as they both have a local and cluster based separation. However the Gaussian

RBF kernel exp(−γ‖xi−xj‖2) uses all the training observations by computing

the euclidean distance between them and by classifying a defined cluster as

one class, and every other observations as the other class. This is the reason

explaining the poorer performance of RBF kernel on overlapping classes, as

compared to polynomial kernel, or linear kernel (with soft margin). On the

other hand, the KNN approach does not converge to the Bayes classifier. In

fact the KNN method doesn’t encompass all the training when it mimics

the Bayes classifier, whereas the RBF kernel learning rate decreases as the

training sample size increases.

Finally, we also acknowledge the fact that the splits of the dataset with ad

hoc kernel K and its approximation with ad hoc kernel Q decrease the error

rate, and bring closer to the Bayes classifier error rate, as theoretically proved

beforehand with the universal consistency criteria.
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FILE 1: ############################ Implementation of Linear, Polynomial 
and RBF kernels ############################### 
 
#Support vector machine: 
n=200   #intial: n=200 
 
 
##-I- we will first implement the classical SVM with linearly separable 
case along with a soft margin 
 
###-Creation of 2 samples of bivariate normal distribution of size 100 
each. The first sample is i.i.d from N(1,sigma)  
###-and the second is i.i.d N(0,sigma) 
set.seed(1) 
 
x=matrix(rnorm(2*n),ncol=2) # 200 observations 
x[1:n/2,]=x[1:n/2,]+1       # 100 first observations with mean "1" 
                            # 100 folllowing observations with mean "0"  
(standard normal) 
y=c(rep(-1,n/2), rep(1,n/2))  # labelling the 100 first observations(that 
are shifted) by the same class (say "-1") 
                            # and the remaining are labelled another 
class ( say "1") 
 
# The first n/2 obsevations with y=-1 are painted in Blue, and the last 
100 in Red 
 
###- Let's check if classes are linearly separable in 100 randomly chosen 
observations 
train=sample(n,n/2) # choose randomly n/2 indexes (observations) among 
the n 
 
dat=data.frame(x=x,y=as.factor(y)) 
dat_LT=dat[train,] 
x_LT=x[train,] 
y_LT=y[train] 
 
plot(x_LT,col=(3-y_LT))#col=2 means Blue, col=4 means Red 
 
 
#Comment# The plot shows that the two groups are NOT linearly separable 
(except with soft margin)  
###-We use the following package to implement svm 
 
install.packages("e1071") 
 
###-and we call this library... 



library(e1071) 
 
###Cross validation using "tune" to select the best model among the cost 
values  of our range 
set.seed(1) 
tune.out=tune(svm,y~.,data=dat_LT, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.1 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_L=tune.out$best.model 
plot(bestmodel_L, dat_LT) 
summary(bestmodel_L) 
 
#Comment# The summary of the best model displays 63 support vectors, 32 
for the class "-1" and 31 for the class "1" 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
test=-train 
dat_Lt=dat[test,]  # Lt= Linear test 
ypred=predict(bestmodel_L, dat_Lt) 
table(predict=ypred, true=dat_Lt$y) 
 
 
 
#Comment# Among n/2=100 observations, 86 are classified correctly, thus 
an error rate of 0.14 % 
 
#########################################################################
###################################################### 
#########################################################################
######################################################         
 
###- Let's then try the polynomial kernel and check its performance on 
the same dataset 
dat_PT=dat_LT # LT= Linear Training, PT=Polynomial Training 
 
tune.out=tune(svm,y~.,data=dat_PT, 
kernel="polynomial",ranges=list(cost=c(0.001, 0.01, 0.1, 1, 5, 10, 100), 
degree=c(1,2,3,4,5))) 
summary(tune.out) 
#Comment# cost=5, and degree=1 resulted in the lowest cross validation 
error rate, thus the best model 
 
bestmodel_P=tune.out$best.model 
plot(bestmodel_P, dat_PT) 
summary(bestmodel_P) 
 
#Comment# The summary of the best model displays 52 support vectors, 26 
for the class "-1" and 26 for the class "1" 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
 
dat_Pt=dat[test,]  # Pt= Polynomial test 
ypred=predict(bestmodel_P, dat_Pt) 
table(predict=ypred, true=dat_Pt$y) 
 



#Comment# Among n/2=100 observations, 86 are classified correctly, thus 
an error rate of 0.14 %, similar to the Linear kernel case 
 
#########################################################################
###################################################### 
#########################################################################
######################################################         
 
###- Let's then try the radial kernel and check its performance on the 
same dataset 
dat_RT=dat_LT # LT= Linear Training, RT=Radial Training 
 
tune.out=tune(svm, y~., data=dat[train,], 
kernel="radial",ranges=list(cost=c(0.1, 1, 10, 100, 1000),gamma=c(0.5, 1, 
2, 3, 4))) 
summary(tune.out) 
#Comment# cost=0.1, and gamma=0.1 resulted in the lowest cross validation 
error rate, thus the best model 
 
bestmodel_R=tune.out$best.model 
plot(bestmodel_R, dat_RT) 
summary(bestmodel_R) 
 
#Comment# The summary of the best model displays 50 support vectors, 25 
for the class "-1" and 25 for the class "1" 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
 
dat_Rt=dat[test,]  # Rt= Radial test 
ypred=predict(bestmodel_R, dat_Rt) 
table(predict=ypred, true=dat_Rt$y) 
 
#Comment# Among n/2=100 observations, 76 are classified correctly, thus 
an error rate of 0.24 %, higher than what we got from 
        #  the Linear and the polynomial kernels. So the radial kernel 
seeems not to be adaptive the classifier better the  
        # observations from two overlapping classes. 
 
 
##############################Discuss the case comparing linear and 
polynomial when n increases############################ 
#We noticed that by increasing to n=400, the error rate for both the 
linearr and the polynomial kernels are higher although 
#they have been given a larger training sample.So as n goes to infinity, 
neither of them converge to the bayes classifier. 
# Since cross validation has already chosen the optimal parameter for the 
best model, any attempt to change these would lead 
# to overfitting, low error rate in the training sample, but NOT 
convergence to Bayes classifier as the resulting model  
# would perform poorly on the test dataset. 
#########################################################################
################################################## 
  
 
#########################################################################
######### 
#########################################################################
############## 
#Using Radial kernel and playing with gamma and cost 



#Kernel="radial"->Uses radial kernel, we need to set gamma 
set.seed(1) 
 
 
x=matrix(rnorm(n*2),ncol=2) # n observations 
x[1:n/2,]=x[1:n/2,]+2       # 100 first observations with mean "2" 
x[((n/2)+1):((n/2)+(n/2)/2),]=x[((n/2)+1):((n/2)+(n/2)/2),]-2   # 50 
folllowing observations with mean "-2" and the 50 remaining have mean "0" 
(standard normal) 
y=c(rep(1,(n/2)+(n/2)/2), rep(2,(n/2)/2))  # labelling the 150 first 
observations(that are shifted) by the same class (say "-1") 
                                          # and the remaining are 
labelled another class ( say "1", or "2" for convinience) 
 
 
 
###- Let's check if classes are linearly separable in n/2=100 randomly 
chosen observations 
# train=sample(n,n/2) # choose randomly n/2 indexes (observations) among 
the n 
 
dat=data.frame(x=x,y=as.factor(y)) 
dat_R=dat[train,]  # R= Radial 
x_R=x[train,] 
y_R=y[train] 
plot(x,col=y) 
 
 
#Comment# The plot shows that the two groups are NOT linearly separable, 
and neither the linear nor the polynomial kernel are suitable 
        # to implement the svm algorithm  
 
###Cross validation using "tune" to select the best model among the cost 
values  of our range 
set.seed(1) 
tune.out=tune(svm,y~.,data=dat_R, kernel="radial",ranges=list(cost=c(0.1, 
1, 10, 100, 1000),gamma=c(0.5, 1, 2, 3, 4))) 
summary(tune.out) 
 
#Comment# cost=1 and gamma=2 resulted for the lowest cross validation 
error rate, thus the best model 
bestmodel_R=tune.out$best.model 
plot(bestmodel_R, dat_R) 
summary(bestmodel_R) 
 
#Comment# The summary of the best model displays 43 support vectors, 17 
for the class "-1" and 26 for the class "1" 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
test=-train 
dat_Rtest=dat[test,]  # Rtest= Radial test 
ypred=predict(bestmodel_R, dat_Rtest) 
table(predict=ypred, true=dat_Rtest$y) 
 
#Comment# Among n/2=100 observations, 90 are classified correctly, thus 
an error rate of 0.10 % 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FILE 2:########################## Implementing kernel K (linear svm in 
each of 16 splits)############################ 
 
mysamp=function(n, m, s, lwr, upr, rounding) { 
samp = round(rnorm(n, m, s), rounding) 
samp[samp < lwr]= lwr 
samp[samp > upr] = upr 
samp 
} 
 
install.packages("e1071") 
 
###-and we call this library... 
library(e1071) 
 
 
 
 
 
set.seed(1) 
n4=500 
 
x41= matrix(runif(n4,0,10), ncol=1) 
 
x42= matrix(runif(n4,0,10), ncol=1) 
 
 
 x4= cbind(x41,x42) 
 
y4=sample(c(-1,1),n4,rep=TRUE) 
for (i in 1:n4){ 
#if (tan(x41[i]+x42[i])/sin(x41[i]^x42[i])>0){y4[i]=1} 
if (sin(x41[i]^x42[i])>0){y4[i]=1} 
else {y4[i]=-1} 
} 
y4 
 
###- Let's check if classes  



 
train=sample(n4,n4/2) # choose randomly n4/2 indexes (observations) among 
the n 
 
dat=data.frame(x4=x4,y4=as.factor(y4)) 
dat_LT4=dat[train,]  # no= no pattern 
x_LT4=x4[train,] 
y_LT4=y4[train] 
plot(x_LT4,col=3-y_LT4) 
 
######################################################SVM4(Radial) 
 
 
tune.out=tune(svm,y4~.,data=dat_LT4, 
kernel="radial",ranges=list(cost=c(0.001, 0.01, 0.1, 1, 5, 10, 
100,1000),gamma=c(0.5, 1, 2, 3, 4))) 
summary(tune.out) 
 
#Comment# cost=0.001 and gamma=0.5 resulted for the lowest cross 
validation error rate, thus the best model 
bestmodel_L4=tune.out$best.model 
plot(bestmodel_L4, dat_LT4) 
summary(bestmodel_L4) 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
test=-train 
dat_Lt4=dat[test,]  # Lt4= Linear test 4th sample 
ypred=predict(bestmodel_L4, dat_Lt4) 
table(predict=ypred, true=dat_Lt4$y4) 
 
#Comment# Among n4/2=250 observations, 111 are misclassified , thus an 
error rate of 44.4 % 
 
 
 
 
######################################################SVM4 (Linear) 
 
 
tune.out=tune(svm,y4~.,data=dat_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 
100,1000)))) 
summary(tune.out) 
 
#Comment# cost=0.001 and gamma=0.5 resulted for the lowest cross 
validation error rate, thus the best model 
bestmodel_L4=tune.out$best.model 
plot(bestmodel_L4, dat_LT4) 
summary(bestmodel_L4) 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
#test=-train 
dat_Lt4=dat[test,]  # Lt4= Linear test 4th sample 
ypred=predict(bestmodel_L4, dat_Lt4) 



table(predict=ypred, true=dat_Lt4$y4) 
 
#Comment# Among n4/2=250 observations, 128 are misclassified , thus an 
error rate of 51.2 % 
 
 
 
###########################################################( 
SS1:)############################################################ 
set.seed(1) 
 
 
dat_SS1_LT4=subset(dat_LT4, x4.1<=2.5 & x4.2<=2.5) 
 
 
 
######################################################SVM4_SS1 
 
tune.out=tune(svm,y4~.,data=dat_SS1_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 5 resulted in the lowest cross validation error rate, thus 
the best model 
bestmodel_SS1_L4=tune.out$best.model 
plot(bestmodel_SS1_L4, dat_SS1_LT4) 
summary(bestmodel_SS1_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS1_Lt4=subset(dat_Lt4,x4.1<=2.5 & x4.2<=2.5)  # Lt4= Linear test 4rd 
sample 
ypred=predict(bestmodel_SS1_L4, dat_SS1_Lt4) 
table(predict=ypred, true=dat_SS1_Lt4$y4) 
 
#Comment# Among 14 observations, 6 are misclassified, thus an error rate 
of 42.857 % 
 
 
###########################################################( SS2 
)############################################################ 
set.seed(1) 
 
 
dat_SS2_LT4=subset(dat_LT4, x4.1>2.5 & x4.1<=5 & x4.2<=2.5) 
 
 
 
######################################################SVM4_SS2 
 
tune.out=tune(svm,y4~.,data=dat_SS2_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS2_L4=tune.out$best.model 



plot(bestmodel_SS2_L4, dat_SS2_LT4) 
summary(bestmodel_SS2_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS2_Lt4=subset(dat_Lt4,x4.1>2.5 & x4.1<=5 & x4.2<=2.5)   
ypred=predict(bestmodel_SS2_L4, dat_SS2_Lt4) 
table(predict=ypred, true=dat_SS2_Lt4$y4) 
 
#Comment# Among 20 observations, 13 are misclassified, thus an error rate 
of 65 % 
 
 
 
###########################################################( SS3: 
)############################################################ 
set.seed(1) 
 
 
dat_SS3_LT4=subset(dat_LT4, x4.1>5 & x4.1<=7.5 & x4.2<=2.5) 
 
 
 
######################################################SVM4_SS3 
 
tune.out=tune(svm,y4~.,data=dat_SS3_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost=5 resulted in the lowest cross validation error rate, thus 
the best model 
bestmodel_SS3_L4=tune.out$best.model 
plot(bestmodel_SS3_L4, dat_SS3_LT4) 
summary(bestmodel_SS3_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS3_Lt4=subset(dat_Lt4,x4.1>5 & x4.1<=7.5 & x4.2<=2.5)  
ypred=predict(bestmodel_SS3_L4, dat_SS3_Lt4) 
table(predict=ypred, true=dat_SS3_Lt4$y4) 
 
#Comment# Among 13 observations, 4 are misclassified, thus an error rate 
of 30.769 % 
 
 
 
###########################################################( SS4: 
)############################################################ 
set.seed(1) 
 
 
dat_SS4_LT4=subset(dat_LT4, x4.1>7.5 & x4.1<=10 & x4.2<=2.5) 
 
 



 
######################################################SVM4_SS4) 
 
tune.out=tune(svm,y4~.,data=dat_SS4_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS4_L4=tune.out$best.model 
plot(bestmodel_SS4_L4, dat_SS4_LT4) 
summary(bestmodel_SS4_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS4_Lt4=subset(dat_Lt4,x4.1>7.5 & x4.1<=10 & x4.2<=2.5)  
ypred=predict(bestmodel_SS4_L4, dat_SS4_Lt4) 
table(predict=ypred, true=dat_SS4_Lt4$y4) 
 
#Comment# Among 12 observations, 5 are misclassified, thus an error rate 
of 41.67 % 
 
 
 
###########################################################( 
SS5:)############################################################ 
set.seed(1) 
 
 
dat_SS5_LT4=subset(dat_LT4, x4.1<=2.5 & x4.2>2.5 & x4.2<=5) 
 
 
 
######################################################SVM4_SS5 
 
tune.out=tune(svm,y4~.,data=dat_SS5_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS5_L4=tune.out$best.model 
plot(bestmodel_SS5_L4, dat_SS5_LT4) 
summary(bestmodel_SS5_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS5_Lt4=subset(dat_Lt4,x4.1<=2.5 & x4.2>2.5 & x4.2<=5)  # Lt4= Linear 
test 4rd sample 
ypred=predict(bestmodel_SS5_L4, dat_SS5_Lt4) 
table(predict=ypred, true=dat_SS5_Lt4$y4) 
 
#Comment# Among 19 observations, 15 are misclassified, thus an error rate 
of 78.947 % 



 
 
###########################################################( SS6: 
)############################################################ 
set.seed(1) 
 
 
dat_SS6_LT4=subset(dat_LT4, x4.1>2.5 & x4.1<=5 & x4.2>2.5 & x4.2<=5) 
 
 
 
######################################################SVM4_SS6 
 
tune.out=tune(svm,y4~.,data=dat_SS6_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS6_L4=tune.out$best.model 
plot(bestmodel_SS6_L4, dat_SS6_LT4) 
summary(bestmodel_SS6_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS6_Lt4=subset(dat_Lt4,x4.1>2.5 & x4.1<=5 & x4.2>2.5 & x4.2<=5)   
ypred=predict(bestmodel_SS6_L4, dat_SS6_Lt4) 
table(predict=ypred, true=dat_SS6_Lt4$y4) 
 
#Comment# Among 14 observations, 8 are misclassified, thus an error rate 
of 57.14 % 
 
###########################################################( SS7: 
)############################################################ 
set.seed(1) 
 
 
dat_SS7_LT4=subset(dat_LT4, x4.1>5 & x4.1<=7.5 & x4.2>2.5 & x4.2<=5) 
 
 
 
######################################################SVM4_SS7 
 
tune.out=tune(svm,y4~.,data=dat_SS7_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost=0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS7_L4=tune.out$best.model 
plot(bestmodel_SS7_L4, dat_SS7_LT4) 
summary(bestmodel_SS7_L4) 
 
 
 
 



### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS7_Lt4=subset(dat_Lt4,x4.1>5 & x4.1<=7.5 & x4.2>2.5 & x4.2<=5)  
ypred=predict(bestmodel_SS7_L4, dat_SS7_Lt4) 
table(predict=ypred, true=dat_SS7_Lt4$y4) 
 
#Comment# Among 15 observations, 8 are misclassified, thus an error rate 
of 53.33 % 
 
 
###########################################################( 
SS8:)############################################################ 
set.seed(1) 
 
 
dat_SS8_LT4=subset(dat_LT4, x4.1>7.5 & x4.1<=10 & x4.2>2.5 & x4.2<=5) 
 
 
 
######################################################SVM4_SS8 
 
tune.out=tune(svm,y4~.,data=dat_SS8_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost=0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS8_L4=tune.out$best.model 
plot(bestmodel_SS8_L4, dat_SS8_LT4) 
summary(bestmodel_SS8_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS8_Lt4=subset(dat_Lt4,x4.1>7.5 & x4.1<=10 & x4.2>2.5 & x4.2<=5)  
ypred=predict(bestmodel_SS8_L4, dat_SS8_Lt4) 
table(predict=ypred, true=dat_SS8_Lt4$y4) 
 
#Comment# Among 11 observations, 8 are misclassified, thus an error rate 
of 72.73 % 
 
 
###########################################################( SS9: 
)############################################################ 
set.seed(1) 
 
 
dat_SS9_LT4=subset(dat_LT4, x4.1<=2.5 & x4.2>5 & x4.2<=7.5) 
 
 
 
######################################################SVM4_SS9 
 
tune.out=tune(svm,y4~.,data=dat_SS9_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 



#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS9_L4=tune.out$best.model 
plot(bestmodel_SS9_L4, dat_SS9_LT4) 
summary(bestmodel_SS9_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS9_Lt4=subset(dat_Lt4,x4.1<=2.5 & x4.2>5 & x4.2<=7.5)  # Lt4= Linear 
test 4rd sample 
ypred=predict(bestmodel_SS9_L4, dat_SS9_Lt4) 
table(predict=ypred, true=dat_SS9_Lt4$y4) 
 
#Comment# Among 16 observations, 7 are misclassified, thus an error rate 
of 43.75 % 
 
 
 
###########################################################( SS10: 
)############################################################ 
set.seed(1) 
 
 
dat_SS10_LT4=subset(dat_LT4, x4.1>2.5 & x4.1<=5 & x4.2>5 & x4.2<=7.5) 
 
 
 
######################################################SVM4_SS10 
 
tune.out=tune(svm,y4~.,data=dat_SS10_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS10_L4=tune.out$best.model 
plot(bestmodel_SS10_L4, dat_SS10_LT4) 
summary(bestmodel_SS10_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS10_Lt4=subset(dat_Lt4,x4.1>2.5 & x4.1<=5 & x4.2>5 & x4.2<=7.5)   
ypred=predict(bestmodel_SS10_L4, dat_SS10_Lt4) 
table(predict=ypred, true=dat_SS10_Lt4$y4) 
 
#Comment# Among 21 observations, 10 are misclassified, thus an error rate 
of 47.6 % 
 
 
 
###########################################################( SS11: 
)############################################################ 
set.seed(1) 
 



 
dat_SS11_LT4=subset(dat_LT4, x4.1>5 & x4.1<=7.5 & x4.2>5 & x4.2<=7.5) 
 
 
 
######################################################SVM4_SS11 
 
tune.out=tune(svm,y4~.,data=dat_SS11_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost=0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS11_L4=tune.out$best.model 
plot(bestmodel_SS11_L4, dat_SS11_LT4) 
summary(bestmodel_SS11_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS11_Lt4=subset(dat_Lt4,x4.1>5 & x4.1<=7.5 & x4.2>5 & x4.2<=7.5)  
ypred=predict(bestmodel_SS11_L4, dat_SS11_Lt4) 
table(predict=ypred, true=dat_SS11_Lt4$y4) 
 
#Comment# Among 12 observations, 8 are misclassified, thus an error rate 
of 66.67 % 
 
 
 
###########################################################( SS12: 
)############################################################ 
set.seed(1) 
 
 
dat_SS12_LT4=subset(dat_LT4, x4.1>7.5 & x4.1<=10 & x4.2>5 & x4.2<=7.5) 
 
 
 
######################################################SVM4_SS12 
 
tune.out=tune(svm,y4~.,data=dat_SS12_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost=1 resulted in the lowest cross validation error rate, thus 
the best model 
bestmodel_SS12_L4=tune.out$best.model 
plot(bestmodel_SS12_L4, dat_SS12_LT4) 
summary(bestmodel_SS12_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS12_Lt4=subset(dat_Lt4,x4.1>7.5 & x4.1<=10 & x4.2>5 & x4.2<=7.5)  
ypred=predict(bestmodel_SS12_L4, dat_SS12_Lt4) 
table(predict=ypred, true=dat_SS12_Lt4$y4) 



 
#Comment# Among 17 observations, 7 are misclassified, thus an error rate 
of  41.176 % 
 
 
###########################################################( SS13: 
)############################################################ 
set.seed(1) 
 
 
dat_SS13_LT4=subset(dat_LT4, x4.1<=2.5 & x4.2>7.5 & x4.2<=10) 
 
 
 
######################################################SVM4_SS13 
 
tune.out=tune(svm,y4~.,data=dat_SS13_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS13_L4=tune.out$best.model 
plot(bestmodel_SS13_L4, dat_SS13_LT4) 
summary(bestmodel_SS13_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS13_Lt4=subset(dat_Lt4,x4.1<=2.5 & x4.2>7.5 & x4.2<=10)  # Lt4= 
Linear test 4rd sample 
ypred=predict(bestmodel_SS13_L4, dat_SS13_Lt4) 
table(predict=ypred, true=dat_SS13_Lt4$y4) 
 
#Comment# Among 13 observations, 3 are misclassified, thus an error rate 
of 23.0769 % 
 
 
###########################################################( SS14: 
)############################################################ 
set.seed(1) 
 
 
dat_SS14_LT4=subset(dat_LT4, x4.1>2.5 & x4.1<=5 & x4.2>7.5 & x4.2<=10) 
 
 
 
######################################################SVM4_SS14 
 
tune.out=tune(svm,y4~.,data=dat_SS14_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost 0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS14_L4=tune.out$best.model 
plot(bestmodel_SS14_L4, dat_SS14_LT4) 
summary(bestmodel_SS14_L4) 



 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS14_Lt4=subset(dat_Lt4,x4.1>2.5 & x4.1<=5 & x4.2>7.5 & x4.2<=10)   
ypred=predict(bestmodel_SS14_L4, dat_SS14_Lt4) 
table(predict=ypred, true=dat_SS14_Lt4$y4) 
 
#Comment# Among 15 observations, 6 are misclassified, thus an error rate 
of 40 % 
 
 
 
###########################################################( SS15: 
)############################################################ 
set.seed(1) 
 
 
dat_SS15_LT4=subset(dat_LT4, x4.1>5 & x4.1<=7.5 & x4.2>7.5 & x4.2<=10) 
 
 
 
######################################################SVM4_SS15 
 
tune.out=tune(svm,y4~.,data=dat_SS11_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost=0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS15_L4=tune.out$best.model 
plot(bestmodel_SS15_L4, dat_SS15_LT4) 
summary(bestmodel_SS15_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS15_Lt4=subset(dat_Lt4,x4.1>5 & x4.1<=7.5 & x4.2>7.5 & x4.2<=10)  
ypred=predict(bestmodel_SS15_L4, dat_SS15_Lt4) 
table(predict=ypred, true=dat_SS15_Lt4$y4) 
 
#Comment# Among 22 observations, 10 are misclassified, thus an error rate 
of 45.45 % 
 
 
###########################################################( 
SS16:)############################################################ 
set.seed(1) 
 
 
dat_SS16_LT4=subset(dat_LT4, x4.1>7.5 & x4.1<=10 & x4.2>7.5 & x4.2<=10) 
 
 
 
######################################################SVM4_SS16 
 



tune.out=tune(svm,y4~.,data=dat_SS16_LT4, 
kernel="linear",ranges=list(cost=(c(0.001, 0.01, 0.1, 1, 5, 10, 100)))) 
summary(tune.out) 
 
#Comment# cost=0.001 resulted in the lowest cross validation error rate, 
thus the best model 
bestmodel_SS16_L4=tune.out$best.model 
plot(bestmodel_SS16_L4, dat_SS16_LT4) 
summary(bestmodel_SS16_L4) 
 
 
 
 
### using the best model function to predict on a test data made of the 
remaining observations in the dataset  
dat_SS16_Lt4=subset(dat_Lt4,x4.1>7.5 & x4.1<=10 & x4.2>7.5 & x4.2<=10)  
ypred=predict(bestmodel_SS16_L4, dat_SS16_Lt4) 
table(predict=ypred, true=dat_SS16_Lt4$y4) 
 
#Comment# Among 16 observations, 8 are misclassified, thus an error rate 
of 50 % 
 
 
######## Over 16 splits error mean is 50.4 %  
################################# 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FILE 3: ######################### Implementation of kernel Q 
(Approximation of kernel K)############################# 
  
 library(quadprog) 
library(Matrix) 
gamma=0.5 
new.kernel <- function(x1, x2) { 
return(x1%*%x2)*exp(-gamma*(x1-x2)%*%(x1-x2)) 
 } 
 
svm.fit <- function(X, y, FUN=new.kernel, C=NULL) { 
 n.samples <<- nrow(X) 
 n.features <<- ncol(X) 
 # Gram matrix 
   K <- matrix(rep(0, n.samples*n.samples), nrow=n.samples) 
 for (i in 1:n.samples){ 
  for (j in 1:n.samples){ 
   K[i,j] <- FUN(X[i,], X[j,]) 
  } 
K<<-K 
 } 
 Dmat <- outer(y,y) * K 
 Dmat <- as.matrix(nearPD(Dmat)$mat) # convert Dmat to nearest pd matrix 
 dvec <- rep(1, n.samples)  
 if (!is.null(C)) { # soft-margin 
  Amat <- rbind(y, diag(n.samples), -1*diag(n.samples)) 
  bvec <- c(0, rep(0, n.samples), rep(-C, n.samples))      
 } else {           # hard-margin 
  Amat <- rbind(y, diag(n.samples)) 
  bvec <- c(0, rep(0, n.samples)) 
 } 
Bvec<<-bvec 
 res <- solve.QP(Dmat,dvec,t(Amat),bvec=bvec, meq=1) 
 a = res$solution # Lagrange multipliers 
 # Support vectors have non-zero Lagrange multipliers 
 # ... 
for(i in 1:length(a)){ 
if(abs(a[i])<10^-10){a[i]=0} 



} 
#sum<<-sum 
a<<-a 
# return(a) 
} 
########################## 
 
## Creation of data set  
set.seed(1) 
n4=500 
 
x41= matrix(runif(n4,0,10), ncol=1) 
 
x42= matrix(runif(n4,0,10), ncol=1) 
 
 
 x4= cbind(x41,x42) 
y4=sample(c(-1,1),n4,rep=TRUE) 
for (i in 1:n4){ 
#if (tan(x41[i]+x42[i])/sin(x41[i]^x42[i])>0){y4[i]=1} 
if (sin(x41[i]^x42[i])>0){y4[i]=1} 
else {y4[i]=-1} 
} 
y4 
 
train=sample(n4,n4/2)  
 
 ## Extacting observations for training dataset 
 
x_train=x4[train,] 
y_train=y4[train] 
 
 
## Implementing the Kernel Q (new.kernel) 
 
svm.fit(x_train,y_train,FUN=new.kernel, C=0.1) 
 
test=-train 
 ## Extacting observations for test dataset 
x_test=x4[test,] 
y_test=y4[test] 
 
 
predict=c(0,rep(length(x_test[,1]))) ## Vector that holds predictions for 
test dataset 
 
u=c(0,rep(length(x_train[,1]))) 
 
##  
 
for (i in 1:length(x_test[,1])){ 
for(j in 1:length(a)){ 
u[j]=a[j]*y_train[j]*x_train[j,]%*%x_test[i,]*exp(-gamma*(x_train[j,]-
x_test[i,])%*%(x_train[j,]-x_test[i,])) + Bvec[j] 
} 
predict[i]=sum(u) 
} 
 
## Computing the error rate 
 



mean((predict/abs(predict)-y_test)*(predict/abs(predict)-y_test)/4) 
 
 
######### Kernel Q error mean is 45.2% < Kernel K error mean of 42.72 % < 
Radial Basis error mean of 46.4% < Linear SVM error mean of 48.8% 
########################################################## 
 
 
 
 
 
 
 


