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Abstract 

Channel Estimation in Massive Multi-User MIMO Systems Based 

on Low-Rank Matrix Approximation 

Muamer Hawej, PhD 

Concordia University, 2019 

In recent years, massive Multi-User Multi-Input Multi-Output (MU-MIMO) system has attracted 

significant research interests in mobile communication systems. It has been considered as one of 

the promising technologies for 5G mobile wireless networks. In massive MU-MIMO system,  the 

base station (BS) is equipped with a very large number of antenna elements and simultaneously 

serves a large number of single-antenna users. Compared to traditional MIMO system with fewer 

antennas, massive MU-MIMO system can offer many advantages such as significant 

improvements in both spectral and power efficiencies. However, the channel estimation in massive 

MU-MIMO system is particularly challenging due to large number of channel matrix entries to be 

estimated within a limited coherence time interval. This problem occurs in a single-cell case where 

both dimensions of the channel matrix grow large. Also, It happens in the multi-cell setting due to 

the pilot contamination effect.  

In this thesis, the problem of channel estimation in both single-cell and multi-cell time division 

duplex (TDD) massive MU-MIMO systems is studied. Thus, two-channel estimation namely 

“nuclear norm (NN)” and “iterative weighted nuclear norm (IWNN)” approximation techniques 

are proposed to solve the channel estimation problem in both systems.  
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First, channel estimation in a single-cell TDD massive MU-MIMO system is formulated as a 

convex nuclear norm optimization problem with regularization parameter 𝛾. In this study, the 

regularization parameter 𝛾 is selected based on the cross-validation (CV) curve method. The 

simulation results in terms of the normalized mean square error (NMSE) and uplink achievable 

sum-rate (ASR) are provided to show the effectiveness of the NN proposed scheme compared to 

the conventional least square (LS) estimator. Then, the IWNN approximation is proposed to 

improve the performance of the NN  method. Thus, the channel estimation in a single-cell TDD 

massive MU-MIMO system is formulated as a weighted nuclear norm optimization problem. The 

simulation results show the effectiveness of the IWNN estimation approach compared to the 

standard NN and conventional LS estimation methods in terms of the NMSE and ASR. 

Second, both previous estimation techniques are extended to apply in a multi-cell TDD 

massive MU-MIMO system to mitigate pilot contamination effect. The simulation results in terms 

of the NMSE and uplink ASR show that the IWNN scheme outperforms the NN and LS 

estimations in the presence of high pilot contamination effect. 

Finally, a novel channel estimation scheme namely “Approximate minimum mean square error 

(AMMSE)” is proposed to reduce the computational complexity of the minimum mean square 

error (MMSE) estimator which was proposed for multi-cell TDD massive MU-MIMO system. 

Furthermore, a brief analysis of the computational complexity regarding the number of 

multiplications of the proposed AMMSE estimator is provided. It has been shown that the 

complexity of the proposed AMMSE estimator is reduced compared to the conventional MMSE 

estimator. The simulation results in terms of the NMSE and the uplink ASR performances show 

the proposed AMMSE estimation performance is almost the same as the conventional MMSE 

estimator under two different scenarios: noise-limited and pilot contamination. 
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Chapter 1 

Introduction     

The demand for high-speed mobile communication service has been recently increased, and it is 

expected to continue over the years since the number of users is increasing [1]. With this growth, 

the radio spectrum has been recognized as one of the very precious resources of nature. However, 

the power available for wireless communication systems is limited due to battery life and device 

size. Therefore, many research efforts in academia and industry have been invested in increasing 

the network capacity and achieving high data rate for all users in the network.  

Recently, massive multi-input-multi-output (MIMO) technology (also known as large-scale 

antenna systems) has attracted significant research interests in wireless communication systems 

[2]. This technology was first introduced by Thomas Marzetta (2010) and considered as a 

promising technology for 5G mobile communication system [3]. Compared to the traditional 

multiuser MIMO system with a few BS antennas, massive MIMO systems have many advantages, 

such as significant improvements in both spectral and power efficiencies in the network, and low 

hardware complexity of whole system [4], [5]. 

 One of the recently proposed systems for 5G mobile communication technology is the 

massive multiuser multi-input-multi-output (MU-MIMO) system [6]. In massive MU-MIMO 

system, each base station (BS) is equipped with a very large number of antenna elements, 𝑀, and 

simultaneously serves a large number of 𝐾 single-antenna users. Moreover, the previous results 

show that as the number of BS antennas increases in this system, both spectral and power 

efficiencies are quickly improved [6]. These improvements are strongly dependent on the 

availability of the channel state information (CSI) at the BS which does not hold in a real scenario 

[7], [8]. In other words, the BS needs to perfectly know the CSI in order to detect the data received 

in the uplink data phase, and also to perform the beamforming for the downlink. In practice, 

however, the perfect CSI is not available at the BS. Therefore, it will be estimated either in the 

uplink pilot transmission phase when the time division duplex (TDD) mode is used for massive 

MIMO, or it can be obtained by feedback link when the frequency division duplex (FDD) is used 
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[9], [10]. In the TDD system, the CSI is only needed to be estimated at the BS in the uplink pilot 

phase, which will be used in the downlink as well [11].  

Generally speaking, the channel estimation problem in TDD massive MU-MIMO systems is 

particularly challenging due to a large number of the channel matrix entries to be estimated within 

a limited coherence time interval. This problem occurs in a single-cell setting where both 

dimensions of the channel matrix grow large [12]. It also happens in the multi-cell environment 

when the same orthogonal pilot sequences are reused by other users in the adjacent cells, which 

results in the so-called pilot contamination [13]. In other words, the same frequency band is used 

for all cells due to a limited coherence time interval. However, this effect is having a detrimental 

impact on the actual achievable spectral and energy efficiencies in real systems [14]. 

In general, the CSI estimation schemes can be classified as pilot-based and subspace-based 

methods [15]. In pilot-based methods, such as the least square (LS) and minimum mean-squared 

error (MMSE) approach, the CSI is estimated during the pilot transmission phase by transmitting 

pilot sequences from all users to their base stations [16], [17]. The CSI is determined during the 

uplink data phase when the subspace-based methods are used, such as blind and semi-blind channel 

estimation approaches.  

1.1 Literature Review  

Channel estimation in TDD massive MU-MIMO systems is considered as one of the exciting 

research topics, and various channel estimation methods have been proposed for single-cell and 

multi-cell environments. In multi-cell TDD massive MU-MIMO systems, several research efforts 

have been spent in the last ten years towards mitigating pilot contamination effect. In [18], an 

asynchronous time-shifted pilot protocol is proposed to reduce pilot contamination in TDD 

massive MU-MIMO system by avoiding the simultaneous transmission of pilot sequences from 

different users among all cells. The basic idea of the time-shifted pilot is to partition the number 

of cells into several groups. When the users in one group send the uplink pilot signals, the users in 

the other groups receive downlink data signals. However, the target base station simultaneously 

receives the uplink pilot signals and the interfering downlink data signals from other base stations, 
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which results in the channel estimation corruption.  Thus, this method may not provide accurate 

channel estimation due to the higher downlink transmit power compared to the uplink. Pilot 

decontamination based on the collaboration between all base stations has been proposed for TDD 

massive MU-MIMO system [19]-[21]. However, these approaches can lead to the complete 

removal of pilot contamination effect under a specific condition which is hard to implement in 

massive MIMO systems since the collaboration between all base stations is limited in real systems. 

Pilot decontamination approach based on a combination of a pilot sequence hopping scheme and 

a modified Kalman filter has been studied in [22], [23]. However, the channel estimation method 

is performed at multiple time slots. Therefore,  this channel estimation approach has considerable 

computational complexity since the processing time will be too long. 

The subspace-based (Blind and Semi-Blind) channel estimation techniques have been 

proposed to eliminate the pilot contamination effects in TDD massive MU-MIMO system [24]-

[27]. In [24], an eigenvalue decomposition (EVD) method has been proposed for channel 

estimation where the channel matrix can be correctly estimated from the eigenvectors of the 

received samples of covariance matrix based on the assumption of system parameters. In [27], the 

authors propose applying a semi-blind channel estimation method to mitigate the effect of pilot 

contamination in multi-cell multiuser massive MIMO systems. However, this method is based on 

estimating the uplink data from different users in the target cell and then obtaining the least square 

channel estimation by treating the detected uplink data users as pilot symbols. Prominent 

drawbacks of the subspace-based estimation techniques are their high computational complexity, 

which will severely limit their applications in massive MIMO systems. Other estimation 

techniques based on coordinated pilot assignment strategies to mitigate pilot contamination in the 

multi-cell scenario have been proposed in [28]. In this technique, the authors developed a Bayesian 
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channel estimator approach to minimize the pilot contamination effect in massive MIMO systems. 

This scheme works well under a specific non-overlap condition on the distributions of the 

multipath angle of arrivals (AoAs)  for the desired and interference channels. In practice, however, 

this scheme is hard to implement in the real scenario. In [29], [30], the authors have proposed 

novel estimation algorithms to reduce the pilot contamination in TDD massive MIMO systems by 

exploiting the path diversity in both angle and power domains. In these algorithms, the channel 

covariance matrices of desired and interference users have to be perfectly known at each base 

station in order to remove the pilot contamination problem. In practice, however, it is hard to 

achieve this condition, especially when the interference links are overlapping with the desired links 

in both angular and power domains. 

Unlike previous channel estimation methods, low-rank matrix approximation (LRMA) 

methods and compressive sensing (CS) techniques have been applied for various problems of 

wireless communication systems [31]-[37]. Recently, the compressive sensing technique has been 

applied as a new framework to address the channel estimation problem in a single-cell TDD 

massive MU-MIMO system [31]. In this technique, the channel estimation problem was 

formulated as a convex optimization problem and solved via a quadratic semi-define programming 

(SDP) solver. Due to the limitation of the SDP solver, this method may not be used in real massive 

MU-MIMO systems where the number of antenna elements is expected to be a large number. In 

[36], [37], the authors present a novel channel estimation approach which utilizes the sparsity and 

common support properties to estimate sparse channels and requires a small number of pilots. 

However, this approach has shown good estimation performance when it is applied for MIMO-

OFDM systems. 
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In this section, various channel estimation techniques for single-cell and multi-cell TDD 

massive MU-MIMO systems have reviewed. Also, most of recent channel estimation techniques 

were proposed to mitigate the pilot contamination problem in multi-cell setting are explained. The 

literature survey indicates that studying the design of channel estimators for single and multi-cell 

massive MIMO systems would be the most productive effort. In other words, most of the channel 

estimation methods proposed for massive MIMO systems are of considerable computational 

complexity. 

1.2 Motivation and Objectives  

In this thesis, we are motivated to develop new channel estimation schemes for single-cell and 

multi-cell TDD massive MU-MIMO systems. Since a poor propagation scattering environment is 

assumed for both systems, the CSI can be estimated based on the low-rank matrix approximation 

(LRMA) techniques. In a multi-cell setting, the largest singular values of the estimated channel 

matrix are usually represented by the desired channel power received at the target base station, 

while the smallest singular values are represented by the interference and noise terms. This 

conclusion is motived us to mitigate the pilot contamination interference problem in a multi-cell 

TDD massive MU-MIMO system. Furthermore, the low-complexity channel estimators are 

required for real massive MIMO systems. Thus, we are motivated to develop new channel 

estimation scheme with low-complexity for real massive MU-MIMO system. 

The objective of this thesis is to directly address the above practical challenges for single-cell 

and multi-cell TDD massive MU-MIMO systems. In single-cell case, it is beneficial to design a 

new channel estimator scheme with the capability to estimate the CSI with a minimum number of 

training sequences to achieve the desired latency. In a multi-cell setting, on the other hand, we 

have to develop new channel estimation techniques with the capability to cope with different pilot 
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contamination scenarios. Moreover, the previously proposed MMSE channel estimator technique 

in [28] suffers from high computational complexity due to the large dimension of the covariance 

matrix inversion, which is scaled with the number of base station antennas. Hence, we aim to 

reduce the computational complexity of the MMSE estimator by designing a new channel 

estimator with low-complexity for massive MIMO systems. 

1.3 Contributions 

The main contribution of chapter 3 is to develop a new channel estimation scheme capable of 

estimating the CSI of a single-cell TDD massive MU-MIMO system within the limited coherence 

time interval. Hence, a novel channel estimation scheme, namely “nuclear norm (NN) 

approximation based on compressive sensing technique,” is proposed. In the NN estimation 

scheme, the channel estimation is formulated as a convex nuclear norm optimization problem. The 

regularization parameter, 𝛾, of this optimization problem is selected based on the cross-validation 

(CV)-curve method. Moreover, the CV-curve method is based on minimizing the normalized mean 

square error (NMSE) at each tuning parameter value, 𝛾, for specific values of the signal-to-noise 

(SNR) ratio. The proposed NN estimation method is evaluated by using two different performance 

criterion, the NMSE, and uplink ASR. The simulation results are provided to show the 

effectiveness of the NN proposed scheme compared to the conventional least square (LS) 

estimation approach. The relevant contributions of this study are published in [38], [39]. 

The main contribution of chapter 4 is to improve the performance of the previously proposed 

NN channel estimation method for a single-cell TDD massive MU-MIMO system. Hence, a novel 

channel estimation scheme, namely “iterative weighted nuclear norm (IWNN) approximation,” is 

proposed. In IWNN estimation scheme, the channel estimation is formulated as a weighted nuclear 

norm optimization problem and solved via the proposed iterative searching algorithm. 



7 

 

Furthermore, the initial values of the regularization parameter at each SNR value are selected based 

on cross-validation curve method. Also, the computational complexity of the IWNN estimation 

technique is studied in terms of the number of iterations. The simulation results show the 

effectiveness of the iterative weighted nuclear norm (IWNN) estimation approach compared to the 

standard NN and conventional LS estimation methods in terms of the NMSE and ASR 

performances. The relevant contributions of this study are published in [38], [40]. 

The main contribution of chapter 5 is to develop a new channel estimation scheme capable of 

mitigating pilot contamination problem in a multi-cell TDD massive MU-MIMO system. Hence, 

the applications of the NN and IWNN estimation schemes are extended. Moreover, the appropriate 

setting of the weight vector of the proposed IWNN has been taken into consideration in order to 

enhance the sparsity of singular values of the channel matrix. Further, a brief analysis of the 

computational complexity of the proposed NN and IWNN estimation approaches are analyzed and 

compared to the LS estimation method. The NMSE and uplink ASR performance criterion is used 

to evaluate the proposed NN and IWNN estimation methods under different pilot contamination 

scenarios. The simulation results are provided to show the effectiveness of the proposed IWNN 

channel estimation in the presence of high pilot contamination interference problem and compared 

to the NN and LS estimations in terms of the NMSE and uplink ASR. The relevant contributions 

of this study are published in [41]. 

The main contribution of chapter 6 is to reduce the computational complexity of the minimum 

mean square error (MMSE) estimator for multi-cell TDD massive MU-MIMO system. It is 

noteworthy that, the MMSE has been previously proposed for multi-cell massive multiuser MIMO 

systems. However, it suffers from high computational complexity due to the large dimension of 

the covariance matrix inversion, which is scaled with the number of base station antennas. Hence, 
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a novel channel estimation scheme, namely “Approximate minimum mean square error 

(AMMSE)” is proposed. Moreover, the IWNN approximation based on the low-rank reduction 

theory is considered to design the proposed AMMSE estimator. A brief analysis of the 

computational complexity regarding the number of multiplications of the proposed AMMSE 

estimator is provided. It has been shown that the computational complexity of the proposed 

AMMSE estimator is reduced from 𝒪(𝑀3𝜏3) to  𝒪(𝑀𝜏𝑃𝑁) Compared to the conventional MMSE 

estimator. The simulation results show the agreements between the proposed AMMSE estimator 

and the conventional MMSE estimator in terms of the NMSE and the uplink ASR performances. 

Moreover, these estimation performances of the proposed AMMSE estimator have been 

investigated under two different scenarios: noise-limited and pilot contamination. The relevant 

contributions of this study are published in [42]. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. 

In chapter 2, the necessary background materials for an understanding of the mathematical 

tools needed for low-rank matrix approximation methods and the relevant background of massive 

MIMO systems are introduced.  

In chapter 3, a novel channel estimation method, namely “nuclear norm (NN)” for single-cell 

TDD massive MU-MIMO system is analyzed and explained. Moreover, the performance of the 

proposed NN estimation method in terms of the normalized mean square error (NMSE) and uplink 

achievable sum-rate (ASR) is simulated over different values of the system parameters.  

In chapter 4, the iterative weighted nuclear norm (IWNN)” channel estimation scheme for a 

single-cell massive MU-MIMO system is proposed to improve the previous NN estimation 
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method. Also, the computational complexity of the IWNN estimation technique in terms of the 

number of iteration is studied.  

In chapter 5, the NN and IWNN estimation techniques are applied to multi-cell TDD massive 

MU-MIMO systems to mitigate pilot contamination problem. The proposed NN and IWNN 

estimation performances in terms of the NMSE and uplink ASR are evaluated and compared to 

the conventional LS method under different pilot contamination scenarios. Moreover, a brief 

analysis of the computational complexity of the IWNN estimation scheme is analyzed and 

discussed. 

In chapter 6, low-complexity channel estimator, namely “approximate minimum mean square 

error (AMMSE)” is designed for multi-cell TDD massive multiuser MIMO systems. The 

computational complexity of the proposed AMMSE estimator regarding the number of 

multiplications is reduced compared to the conventional MMSE estimator. Also,  The performance 

of the proposed AMMSE channel estimator in terms of the NMSE and the uplink ASR is tested 

and compared to the conventional MMSE channel estimator under two different scenarios: noise-

limited and pilot contamination. 

Finally, the conclusions of this thesis and some future work areas are provided in chapter 7. 
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2 Chapter 2 

Preliminaries and Background. 

As mentioned in Chapter 1, the thesis research topics cover some areas in applied mathematics, 

signal processing, and wireless communications. In the following sections, we provide the 

necessary background materials for an understanding of the mathematical tools needed for low-

rank matrix approximation methods and the relevant background of massive MIMO systems. 

2.1 Linear and Inverse Problems 

In this section, we begin with the review of a linear system with, m, Equations and, n, unknowns. 

Suppose that we need to reconstruct an unknown signal vector 𝒙 ∈ ℝn   from the known signal 

vector   𝐲 ∈ ℝm   via known matrix 𝑨,   i.e. 

𝒚 = 𝑨𝒙  (2.1) 

where  𝑨 ∈ ℝm x n  is the sensing matrix. In  (2.1), 𝒙 is assumed to be a sparse vector. We first 

consider the case with 𝑚 ≥ 𝑛 where the number of equations is greater than or equal to the number 

of unknowns. In this case, the system of linear equations in  (2.1) is called determined system with 

a unique solution. When a signal vector 𝒚 is noise-free, and A is an 𝑚 x 𝑛 full-rank matrix, the true 

solution is given by [43], [44] as: 

𝒙̂𝐿𝑆 = (𝑨𝑇𝑨)−1 𝑨𝑇𝒚 (2.2) 

if the measurements include noise, a familiar way to cope with this problem is to rely on the method 

of least squares (LS), where the optimization problem is given by [45] as 

𝒙̂𝐿𝑆 = 𝑎𝑟𝑔  𝑚𝑖𝑛  
𝒙

‖𝑨𝒙 − 𝒚‖2
2 (2.3) 
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 The system of linear equations in  (2.1) is called underdetermined system equations with an 

infinite number of solutions when 𝑚 < 𝑛 because of there exist infinitely many vectors in the null 

space of matrix 𝑨. In other words, the number of equations in  (2.1) is less than the number of 

unknowns [46], [47].   

A common approach to solving the linear underdetermined system equations is the 

regularization approach, where the solution is chosen by minimizing the norm 𝒙 [48]-[50]. A 

typical choice of the norm is the squared 𝑙2-norm ‖𝒙‖2
2, and the regularization problem is 

formulated into two different cases as follows. In the case of a noise-free system 

𝒙̂𝑀𝑁 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ‖𝒙‖2
2    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒚 = 𝑨𝒙 (2.4) 

where 𝑀𝑁 stands for “minimum norm.”. This problem can be analytically solved by the method 

of Lagrange multipliers as follows: 

ℒ(𝒙) = ‖𝒙‖2
2 + 𝜆𝑇(𝑨𝒙 − 𝒚) (2.5) 

where  𝜆 is a regularization parameter, and the solution is given by 

𝒙̂𝑀𝑁 = (𝑨𝑻𝑨)−𝟏 𝑨𝑻𝒚 (2.6) 

In the case of a noisy system, another approach might be the utilization of the regularized LS 

method which considers the optimization problem of the form 

  𝒙̂𝑅𝐿𝑆 = 𝑎𝑟𝑔  𝑚𝑖𝑛  
𝒙

‖𝑨𝒙 − 𝒚‖2
2  + 𝜆 ‖𝒙‖2

2 (2.7) 

The solution of (2.7) is given as: 

  𝒙̂𝑅𝐿𝑆 = (𝜆𝑰 + 𝑨𝑻𝑨)−𝟏 𝑨𝑻𝒚 (2.8) 

where 𝜆 is the regularization parameter which is used to control the balance between the squared 

error and the  𝑙2–norm of the solution in (2.7).  
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2.2 Sparse Signals and 𝒍𝒑-norm 

In the analysis of algorithms for compressed sensing and low-rank matrix approximation methods, 

we encounter various norms, while we usually use the Euclidean 𝑙𝑝-norm in the conventional 

problems of communications [15], [50]-[52]. Thus, we first define some norms. 

⚫ The 𝑙𝑝- norm of a vector  𝐱 = [𝑥1  𝑥2 …𝑥𝑛]𝑇 ∊  ℂ ℝ𝑛  is defined for p ≥ 1 as 

‖𝒙‖𝑝 = (∑ |𝑥𝑖|
𝑝

𝑛

𝑖=1
)

1
𝑝
 (2.9) 

where  [. ]𝑇 is the transpose of the vector 𝐱 . One can use formula (2.9) to define ‖𝒙‖0 which not 

even a quasi-norm, defined as ‖𝒙‖0 = |𝑠𝑢𝑝𝑝 (𝐱)| where 𝑠𝑢𝑝𝑝 (𝐱) = {𝑖: 𝑥𝑖 ≠ 0}  is the set of 

nonzero components, and |𝑠𝑢𝑝𝑝 (𝐱)| is the cardinality of 𝑠𝑢𝑝𝑝 (𝐱).  A signal 𝐱 ∈  ℝn is said to 

be sparse (or exactly sparse) vector if most of the elements are precisely equal to zero, i.e., ‖𝐱‖0  ≪

𝑛. Some authors refer ‖𝒙‖0 to as 𝑙0- norm, and it is a useful symbol to describe how sparse the 

vector 𝐱 is. 

⚫ The Frobenius norm (F-norm) of an 𝑚 x 𝑛 matrix 𝑨 is defined as 

‖𝑨 ‖𝐹
2 = 𝑇𝑟(𝑨𝐻𝑨) = ∑𝜎𝑖

2(𝑨)

𝑟

𝑖=1

 (2.10) 

where 𝜎𝑖 is the 𝑖𝑡ℎ singular value of matrix 𝑨 and r is the rank of a matrix 𝑨. 

2.3 Low-Rank Matrix Approximation-Based Sparse Matrix Estimation 

In recent years, the recovery of low-rank matrices has seen significant activities in many areas of 

science and engineering [35], [53]-[58]. This is motivated by recent theoretical results for exact 

reconstruction guarantees and interesting practical applications where the data resides in a low-

dimensional linear subspace [56], [57]. More specifically, the low-rank matrix approximation 
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(LRMA) method has been a growing interest in reconstructing sparse signals from a small number 

of incoherent linear measurements under suitable conditions [34], [51], [53], [57], [59], [60]. 

Moreover, the LRMA is a method to obtain a unique solution from an underdetermined linear 

system taking advantage of the prior knowledge that the right solution is sparse where the most of 

elements are precisely or approximately equal to zero. 

Recently, the LRMA approach has been developed in [40], [41], [56]-[58], where it is shown 

that a data matrix can be approximating by one whose rank is less than that of the original matrix 

via convex optimization. However, it relies on the idea of a conventional compressive sensing 

technique [33], [60] by applying duality concepts between vector cardinality minimization and 

matrix rank minimization as shown in Table 2.1 [61]. 

 

Mathematically, the LRMA problems involving the estimation of low-rank matrices can be 

formulated in a common framework as follows. Suppose that we need to estimate a sparse 

unknown matrix 𝑿 ∈ ℂ𝑚×𝑛  with rank 𝑟 ≪  min(𝑚, 𝑛) from its noisy observation matrix 

𝒀 ∈ ℂ𝑚×𝑛 , i.e.,  

𝒀 =  𝑿 + 𝑵 (2.11) 

Table 2.1: Duality concepts of vector cardinality and matrix rank minimization 

Parsimony concept vector cardinality matrix rank 

Hilbert space norm Euclidean Frobenius 

Sparsity inducing 𝑙1 − 𝑛𝑜𝑟𝑚 nuclear norm 

Dual norm 𝑙∞ − 𝑛𝑜𝑟𝑚 operator norm 

Convex relaxation linear programming semi-definite programming 
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where 𝐍 is the additive white Gaussian noise (AWGN) matrix. The estimation of sparse low-rank 

matrices has been studied and used for various applications such as covariance matrix estimation, 

subspace clustering, image classification [32], [53], [59], [61], [62]. An approach for estimating 

the sparse low-rank matrix 𝐗 from its noisy observation matrix 𝐘 has been proposed in [53] by 

solving the following optimization problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑟𝑎𝑛𝑘 (𝑿)      

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒀 = 𝑿 + 𝑵 

(2.12) 

This optimization problem is NP-hard ( i.e., 𝑙0-Norm) and no known polynomial-time algorithms 

exist to solve it. Therefore, we proceed with convex relaxation based on the nuclear norm to obtain 

a sparse solution in the next subsections. 

2.3.1 Nuclear Norm Approximation 

Nuclear norm (NN) approximation technique is a particular case of the LRMA and is considered 

as the 𝑙1-Norm applied to the non-zero singular values of the low-rank matrix [56], [57]. As 

mentioned in the subsection above, the optimization problem (2.12) is NP-hard, and no known 

polynomial-time algorithms exist to solve it. Thus in [31], [61], the convex relaxation based on the 

nuclear norm has been proposed to solve the optimization problem (2.12) by replacing rank (𝐗) 

by ‖𝐗 ‖∗ as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑿 ‖∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ‖𝒀 − 𝑿‖𝑭
𝟐 < 𝜖 

(2.13) 

where ‖𝑿 ‖∗ is the nuclear norm of  𝑿, ‖. ‖𝐹
2  denotes the F-norm, and 𝜖 is the predefined noise 

threshold. The nuclear norm of  𝑿 is defined as 
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‖𝑿 ‖∗ = ∑|𝜎𝑖(𝑿)|

𝑟

𝑖=1

 (2.14) 

where 𝜎𝑖 is 𝑡ℎ𝑒 𝑖𝑡ℎ singular value of matrix 𝑿, and  𝑟 = min(𝑚, 𝑛) is the rank of the matrix 𝑿. The 

conventional approach to obtaining a unique solution to the optimization problem (2.13) is to  use 

the regularization parameter in the framework of the above optimization problem as 

𝑿̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

{
1

2
‖𝒀 − 𝑿‖𝐹

2 + 𝛾‖𝑿 ‖∗} (2.15) 

where 𝛾 ≻ 0 is a regularization parameter and is considered as the main part of the minimization 

problem. Note that the NN optimization problem in (2.15) is convex and its global minimum can 

be directly obtained using the singular value decomposition (SVD) of the input signal matrix 𝐘, 

then the solution to the NN problem is given by 

𝑿̂ = 𝑼. 𝒮𝑜𝑓𝑡(𝜮;  𝛾). 𝑽∗ (2.16) 

where 𝜮 is a diagonal matrix whose entries are the singular values of matrix 𝒀, and U and V are 

unitary matrices. In (2.16), the soft-threshold function is applied to each singular value in 𝜮 as  

𝒮𝑜𝑓𝑡(𝜎𝑖;  𝛾)  = 𝑚𝑎𝑥 (𝜎𝑖 − 𝛾, 0) (2.17) 

2.3.2 Iterative Weighted Nuclear Norm Approximation 

In the previous subsection, the NN optimization method has certain limitations because it treats all 

singular values of the channel matrix equally. In other words, it ignores the prior knowledge of the 

most significant singular values of the sparse matrix. However, this is significantly restricted in 

the NN estimation method for many practical problems, such as channel estimation in a wireless 

communication system where the most entries of the channel matrix are sparse. Therefore, the 

IWNN approximation methods have been recently applied in diverse contexts in machine learning 
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and signal processing to improve the NN channel estimation [40], [63], [64]. Moreover, it is an 

interesting topic drawing the attention of many researchers in the closely related field of sparse 

approximation. In other words, the IWNN aims to estimate the unknown data matrix by assigning 

different weights to different singular values of the known data matrix using an adaptive 

regularization parameter threshold  𝛾. Thus, the largest singular values of the data matrix shrink 

less than the smallest ones since the former represents the most significant data information. In 

[40], [41], [64], the IWNN approximation recently has been proposed to solve the optimization 

problem (2.11) by replacing rank (𝑿) in (2.12) by ‖𝑿‖𝒘,∗ as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑿‖𝒘,∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒀 = 𝑿 + 𝑵 

(2.18) 

where ‖𝑿‖𝒘,∗ is the weighted nuclear norm of a matrix 𝑿, which is defined as 

 

‖𝑿‖𝒘,∗ = ∑|𝑤𝑖𝜎𝑖(𝑿)|

𝑟

𝑖=1

 (2.19) 

where 𝑤𝑖 ≥ 0 is a non-negative weight element assigned to each singular value 𝜎𝑖 of the matrix 𝐗. 

In (2.19), the non-negative weight element brings more parameters to the system model, and 

therefore it is proposed to enhance the sparsity of the nonnegative singular value solutions of the 

IWNN estimation by adaptively tuning each weight element, 𝑤, by using the following formula: 

𝑤𝑖
𝑡+1 =

1

𝜎𝑖
𝑡(𝑿) + 𝜀

   𝑖 = 1,2……… . 𝑟 (2.20) 

where 𝜎𝑖
𝑡 is the 𝑖𝑡ℎ singular value of the approximation channel matrix 𝑿 in the 𝑡𝑡ℎ iteration, 𝑤𝑖

𝑡+1 

is its corresponding regularization parameter 𝛾 in the (𝑡 + 1)-th iteration, 𝜀 is a positive small 

number to avoid dividing by zero. The noisy version of the optimization problem (2.18) is now the 

IWNN regularization problem which is given as  
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𝑿̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑿

{
1

2
‖𝒀 − 𝑿‖𝐹

2 + 𝛾‖𝑿‖𝒘,∗} (2.21) 

where 𝛾 ≻ 0 is a regularization parameter. It should be noted that the IWNN optimization problem 

in (2.21) is convex when the weights satisfy 𝑤𝑖 ≥ 0 for 𝑖 = 1,2… . 𝑟, and it has a globally optimal 

solution 

𝑿̂ = 𝑼. 𝒮𝑜𝑓𝑡(𝜮;  𝒘) . 𝑽∗ (2.22) 

where 𝒀 = 𝑼 𝜮 𝑽∗ is the SVD of 𝒀, and 𝒮𝑜𝑓𝑡(𝜮;  𝒘)  is the generalized soft-thresholding operator 

with weight vector 𝒘 . Each weight element is assigned to each singular value in 𝚺 as  

𝒮𝑜𝑓𝑡(𝜎𝑖;  𝑤𝑖)  = 𝑚𝑎𝑥 (𝜎𝑖 − 𝑤𝑖, 0) (2.23) 

2.4 Reconstruction Algorithms 

Practical algorithms to solve the LRMA problems are singular value decomposition, pivoted QR 

decomposition, interpolative decomposition, and randomized algorithms such as sampling-based 

methods and random projection-based methods [39]-[41], [43], [56], [57], [65], [66]. Note that, to 

avoid high computational complexity, we should investigate the structure of each problem and 

choose a suitable algorithm to exploit it. In the next subsection, we illustrate the best approximation 

algorithm of a low-rank matrix called thin singular value thresholding (SVT) algorithm [67].  

2.4.1 Singular Value Thresholding Algorithm 

This subsection introduces the singular value thresholding (SVT) and discusses some of its basic 

properties. We begin with the definition of a critical building block, namely “ the singular value 

decomposition (SVD) operator.” The SVD is a powerful technique in linear algebra since it gives 

the best approximation of a low-rank matrix 𝑿 ℂ𝑚×𝑛  (where m > n) [55]. Moreover, it does not 
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require square matrices, and therefore the number of rows, m, does not have to be equal to the 

number of columns, n. 

To explain the idea behind this algorithm, we consider the singular value decomposition 

(SVD) of a complex matrix 𝑿 ℂ𝑚×𝑛  of rank n  

𝑿𝑚×𝑛 = 𝑼𝑚×𝑚𝜮𝑚×𝑛 𝑽𝑛×𝑛
∗  (2.24) 

where U and V are unitary matrices, i.e., all of the columns of U and V are orthogonal to each 

other. The matrix 𝚺 is an m × n rectangular diagonal matrix whose entries are in descending order, 

σ1 ≥ σ2 ≥ ⋯ ≥ σ𝑛 ≥ 0, along with the main diagonal. 

𝜮 =

[
 
 
 
 
 
𝜎1 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮
0
0
0

⋮
0
0
0

⋱
⋯

⋮
𝜎𝑛

⋯ 0
⋯ 0 ]

 
 
 
 
 

      (2.25) 

where the number of nonzero singular values of the matrix 𝜮 is the rank of the matrix 𝑿 ℂ𝑚×𝑛. 

Since m > n, one can represent the SVD of matrix 𝑿 ℂ𝑚×𝑛  as 

𝑿𝑚×𝑛 = 𝑼𝑚×𝑛 𝜮𝑛×𝑛 𝑽𝑛×𝑛
∗  (2.26) 

Here, 𝚺n×n = diag (σ1, σ2, …… , σ𝑛) is called thin SVD of 𝐗m×n.  

Now, suppose we need to approximate a matrix 𝐗 ℂm×n  with r = min (m, n) by using thin SVD 

as 

𝑿𝑚×𝑛 = 𝑼𝑚×𝑟 𝜮𝑟×𝑟 𝑽𝑟×𝑛
∗  (2.27) 

which can be written as: 

𝑿𝑚×𝑛 = [𝑢1𝑢2 ……… . 𝑢𝑟]    [
𝜎1 0 0
0 𝜎2 0
0 0 𝜎𝑟

]    [

𝑣1
∗

𝑣2
∗

⋮
𝑣𝑟

∗

] (2.28) 
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Then, the rank approximation of 𝐗m×n is given as 

𝑿𝑚×𝑛 = ∑𝜎𝑖

𝑟

𝑖=1

𝑢𝑖𝑣𝑖
∗ (2.29) 

where 𝑢1, 𝑢2, … , 𝑢𝑟 are columns of 𝑼𝑚×𝑟  and 𝑣1, 𝑣2, … , 𝑣𝑟 are columns of 𝑽𝑚×𝑟. It can be seen 

from (2.29) that the matrix 𝑿 can be approximated by the low-rank approximation using SVD. The 

projection of the matrix 𝑿 onto the space spanned by the top singular 𝑟 vectors of 𝑿 is called the 

rank-r approximation (also known as truncated or partial SVD) of 𝑿𝒓. The Eckart-Young theorem 

in [55] states that the above approximation technique is the best rank-r approximation in the F-

norm, and it requires only 𝒪(𝑟𝑚𝑛) floating-point operations (flops). Therefore, we will adopt the 

SVD approximation technique in our work. 

2.5 Massive MU-MIMO System 

2.5.1 Introduction 

Massive multi-input-multi-output (MIMO) technology (also known as large-scale antenna 

systems) was first introduced by Thomas L. Marzetta (2010) [3]. This technology has been 

considered as a promising technology for 5G wireless communication systems [1], [9], [68]. 

Compared to the existing MIMO systems, massive MIMO systems have many advantages, such 

as significant improvements in spectral efficiency, energy efficiency, and low-complexity of 

hardware implementation in the receiver side [2].  

One of the recently proposed systems for massive MIMO technology is a massive multiuser 

MIMO (MU-MIMO) system as shown in Figure 2.1 [6]. In massive MU-MIMO system, each base 

station (BS) is equipped with a very large number of antennas, and simultaneously serves a large 

number of single-antenna users. Information theory has demonstrated that by increasing the 
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number of BS antennas and a multiplicity of distant single-antenna users can offer vast 

improvements in spectral efficiency. 

However, these advantages can be only achieved if the channel state information (CSI) is 

perfectly known at the BS. In other words, the interference signals from adjacent cells will be 

rejected by applying a simple precoding approach under the above assumption. In practice, 

however, the base station does not know the CSI, and thus it will be estimated either in the uplink 

training phase when time division duplex (TDD) mode is used for massive MIMO system or can 

be obtained by feedback link when the frequency division duplex (FDD) mode is used. However, 

the FDD operation requires two links ( training downlink and CSI feedback link) to obtain the CSI 

at the BS, which results in increased processing time and pilot overhead. 

2.5.2 Uplink Channel Estimation 

In the TDD system, The CSI is estimated during the uplink pilot phase, where all users from all 

cells transmit their pilot sequences to their base stations. Consequently, each BS will use the 

estimated CSI to detect the data received in the uplink phase and perform the precoding for 

 

Figure 2.1: Massive MU-MIMO System [54]. 
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downlink. In existing MIMO systems, the conventional pilot-based channel estimation 

approaches, such as least square (LS) and minimum mean-squared error (MMSE) estimators are 

used to estimate the uplink CSI at the base station [16], [28]. The LS estimation technique requires 

that the length of the training sequences (𝜏) used by each user to be at least equal to the number of 

transmit antennas. On the other hand, the MMSE estimation technique requires the covariance 

matrices of both desired and interference channels to be available at each base station in each 

coherence time interval. Therefore, the channel estimation problem in TDD massive MU-MIMO 

systems is particularly challenging due to a large number of channel matrix entries to be estimated 

during the limited coherence time interval.  

Figure 2.2 shows that the large dimension of the channel matrix occurs where both the number 

of BS antennas and autonomous users in a single-cell massive MU-MIMO system grow large. This 

effect may be too restrictive in a massive MU-MIMO system, and thus both LS and MMSE 

estimation methods lead to excessive use of critical communication resources such as energy and 

spectrum. Moreover, the channel estimation problem also occurs in a multi-cell massive MU-

MIMO system when the non-orthogonal pilot sequences are reused in the adjacent cells by other 

users resulting in so-called pilot contamination effect [14]. This phenomenon has a significant 

impact on the uplink channel estimation performance, which results in a substantial reduction in 

the available rates of user terminals. The problem becomes more critical when the gains of cell-

edge users are relatively strong as compared to the direct link gains. 
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In this study, we focus only on the poor scattering propagation environment where the number 

of physical objects is limited [7]. Thus, the actual degree of freedom of the channel matrix is  

𝑃(𝑀 + 𝐾 − 𝑃),  not its number of free parameters 𝑀𝐾. Figure 2.3 shows the finite scattering 

propagation multipath channel model where the number of multipath scattering, 𝑃, appears in a 

group with similar delays and angle of arrival (AoA).  

 

Figure 2.2: Channel Matrix in Single-Cell Massive MU-MIMO System 

 

Figure 2.3: A simple illustration where the signal from all users share steering matrix A 
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2.5.3 Uplink Data Detection 

A Linear detection processing such as maximum ratio (MR), zero-forcing (ZF), and minimum 

mean square error (MMSE) combining schemes are used to detect the uplink data received at the 

BS [69]-[71]. The BS applies the linear processing combining detector to detect the desired data 

symbols from the interfering ones. The MR combing is the best solution to detect the uplink data 

users if the data received at the BS is disturbed by only additive white Gaussian noise (AWGN). 

In the case of high interference, the optimum combining detectors, such as ZF and MMSE are used 

at the receiver side. Furthermore, the MMSE detector is more robust than the ZF in the case of 

high interference. 

In this study, the linear MMSE detection scheme with equal power allocation is assumed, 

which has a detection matrix 𝑽MMSE, given as 

𝑽𝑀𝑀𝑆𝐸 = ( 𝑯̂𝐻𝑯̂ + 𝜎𝑛
2𝑰𝐾)

−1
 𝑯̂𝐻 (2.30) 

where 𝑯̂ ≜ [ 𝒉̂1, 𝒉̂2, … . .   𝒉̂𝑘] ∊ ℂ𝑀× 𝐾 is the estimated channel matrix which is assumed to be 

estimated during the uplink pilot phase, and 𝜎𝑛
2 denotes the noise variance. In a single-cell TDD 

massive MU-MIMO system, the CSI is estimated in the uplink pilot phase and used to perform the 

data detection in the uplink. To illustrate the basic idea, we consider the uplink data transmission 

phase where all users 𝐾 inside the cell simultaneously transmit data symbols, 𝓈1, 𝓈2 …… . . , 𝓈𝐾, to 

the BS. Then at the BS, the data symbol of 𝑘𝑡ℎ user  𝓈̂𝑘 is detected by multiplying the total received 

data symbols with detecting vector 𝒗𝑘 of a linear MMSE detector matrix 𝑽MMSE as 

  𝓈̂𝑘 = 𝒗𝑘 𝓨 (2.31) 

where 𝓨 ∊  ℂ𝑀× 1  is the total base-band received data symbols at the BS. Now, we consider a 

multi-cell TDD massive MU-MIMO system with 𝐿 cells where each BS-𝑙 (1 ≤ 𝑙 ≥ 𝐿) at first 
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detects the signal vector 𝓈̂𝑘 by multiplying the total received data symbols with detecting vector 

𝒗𝑗𝑘  of a linear MMSE detector matrix 𝑽MMSE at the target BS-𝑗 as 

  𝓈̂𝑘 = 𝒗𝑗𝑘  𝓨 (2.32) 

where row vector 𝒗𝑗𝑘 of matrix 𝑽MMSE can be expressed as 

𝒗𝑗𝑘 = (𝒉̂𝑗𝑘
𝐻    𝒉̂𝑗𝑘 + 𝜎𝑛

2)
−1

 𝒉̂𝑗𝑘
𝐻  (2.33) 

The uplink achievable sum-rate (ASR) of 𝐾 users is a performance metric used to evaluate 

the effectiveness of the proposed estimation method. The achievable uplink rate of 𝐾 users is 

computed by using the Shannon capacity as 

𝐴𝑆𝑅𝑢𝑝𝑙𝑖𝑛𝑘 ≤ ∑ 𝑅𝑘
𝑢𝑝𝑙𝑖𝑛𝑘

𝐾

𝑘=1

 ≤ ∑ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑘)

𝐾

𝑘=1

 (2.34) 

where 𝑆𝐼𝑁𝑅𝑘 is the signal-to-interference-noise-ratio of the 𝑘𝑡ℎ user at the MMSE detector output. 

In general, the 𝑆𝐼𝑁𝑅𝑘 can be computed by using the following formula 

𝑆𝐼𝑁𝑅𝑘 =
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑝𝑜𝑤𝑒𝑟 𝑔𝑎𝑖𝑛

𝑀𝑈𝐼 + 𝐼𝐶𝐼 + 𝑁𝑜𝑖𝑠𝑒
 (2.35) 

2.6 Computational Complexity of MMSE Channel Estimator 

In literature, the MMSE channel estimator has been previously proposed for multi-cell massive 

multiuser MIMO systems [28]. The MMSE estimator suffers from high computational complexity 

due to the large dimension of the covariance matrix inversion which is scaled with the number of 

base station antennas [72]. In other words, the total number of multiplication operations required 

to estimate the desired channel matrix by using the MMSE estimator is 𝑀3𝐾3. Another inherent 

drawback of the MMSE channel estimator is needed additional information about the statistical 
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distribution of the propagation channels at each base station. However, this information is not 

available in the real massive MIMO systems. 

2.7 Summary 

In this chapter, the necessary background materials for an understanding of the mathematical tools 

needed for low-rank matrix approximation methods have been presented. To start with, the low-

rank matrix approximation methods with mathematical representation were introduced. Next, the 

relevant background of massive MU-MIMO system was presented, and the channel estimation 

problems in a single and multi-cell TDD massive MU-MIMO systems were explained. Further, 

the uplink achievable sum-rate capacity of desired users in a single and multi-cell TDD massive 

MU-MIMO systems was presented. Also, the computational complexity of MMSE channel 

estimation for TDD massive MU-MIMO system was discussed.  
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3 Chapter 3 

Nuclear Norm Approximation-Based Channel Estimation for   

Single-Cell Massive MU-MIMO System 

3.1 Introduction  

The problem of the uplink channel estimation in a single-cell TDD massive MU-MIMO system is 

considered as one of the significant challenges due to a large number of the channel matrix entries 

to be estimated within the limited coherence time interval [1], [3], [6], [73]-[75]. This problem 

occurs when the base station (BS) antennas and serving users grow large in a given cell. In 

literature, the conventional least square (LS) and minimum mean square error (MMSE) estimation 

methods are used to estimate the channel matrix for traditional MIMO systems with a few BS 

antennas. On the other hand, the LS and MMSE channel estimators may not be directly used in 

the massive MIMO systems for the following reasons. The LS estimation requires the length of 

the pilot sequence, 𝜏, used by each user to be at least equal to the total number of users inside the 

cell, i.e., 𝜏 ≥ 𝐾 [16], [17], while the MMSE estimator has considerable computational complexity 

since a matrix inversion is scaled with the number of BS antennas [76], [77].  

Compressed sensing and low-rank matrix approximation (LRMA) are advanced techniques 

that have critical applications in many areas of science and engineering [32], [33], [52], [54], [56], 

[57]. In literature, compressive sensing technique was applied as a new framework for various 

problems of wireless communication systems, such as the sparse channel estimation problem [31], 

[33], [54], [60]. Recently, Compressive sensing has been proposed for channel estimation in a 

single-cell massive MU-MIMO system [54]. However, this estimation technique is only feasible 
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for systems with a small number of users and base station antennas. Therefore, our aim in this 

research is to develop a new channel estimation scheme capable of estimating the CSI of a single-

cell TDD massive MU-MIMO system during the limited coherence time interval. Hence, a novel 

channel estimation scheme namely “ Nuclear Norm Approximation," is proposed. Moreover, the 

NN estimation proposed method is evaluated by using two different performance criterion, 

normalized mean square error (NMSE) and uplink achievable sum-rate (ASR). 

3.2 System and Channel Models. 

3.2.1 System Model 

In this study, a single cell TDD massive MU-MIMO system with one BS as shown in Figure 3.1 

is considered. The BS is equipped with a very large number of antenna elements 𝑀 and 

simultaneously serves a large number of 𝐾 single-antenna users, i.e., 𝑀 ≫ 𝐾 [6]. 

 

Figure 3.1: Single-cell massive MU-MIMO systems with base station (BS) antennas 𝑀 and 

serving 𝐾 users 
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We consider the uplink pilot transmission phase where all 𝐾 users are simultaneously 

transmitted their signals 𝒙(𝑡) to the desired BS. Moreover, the orthogonal Bernoulli pilot 

sequences with a BPSK modulation scheme are assumed in order to avoid the inter-user 

interference at the BS, i.e.,  𝑥𝑘(𝑡) ∈  {+1,−1}. At each time 𝑡, the total transmitted signal vector 

𝒙(𝑡) ∊  ℂ𝐾  from 𝐾 users to the BS is denoted by 

𝒙(𝑡) = [  𝑥1 (𝑡),   𝑥2(𝑡)…… .   𝑥𝐾(𝑡)]𝑇 (3.1) 

and, the received baseband signal vector at the BS is then given as 

𝒚(𝑡) =  √ 𝜌𝑡𝑟  𝑯 𝒙(𝑡) + 𝒏(𝑡) (3.2) 

where 𝜌tr is the transmitted symbol power from each user, and 𝑯 ≜ [   𝒉1   𝒉2 … .   𝒉𝐾 ]  ∊ ℂ𝑀 × 𝐾  

is the complex-valued channel matrix between 𝐾 users and the BS. In (3.2), 𝒏(𝑡)  ∊  ℂ𝑀 is the 

complex-valued additive white Gaussian noise (AWGN) vector with zero mean and unit variance 

𝜎𝑛
2, i.e.  𝐶𝒩(0, 1).  

The total received pilot sequences at the BS can be combined in matrix form as 

𝒀 =  √ 𝜌𝑡𝑟  𝑯 𝑿 + 𝑵 (3.3) 

where 𝑿 ≜ [ 𝒙(1)  𝒙(2)… . 𝒙(𝜏 ) ] ∊  ℂ𝐾 × 𝜏 is the total transmit pilot sequences from 𝐾 users to 

the BS and  𝑵 ∊  ℂ𝑀× 𝜏  is the spatially and temporally white additive Gaussian noise (AWGN) 

matrix with zero-mean and element-wise variance 𝜎𝑛
2, i.e.  ~ 𝐶𝒩(0,   𝑰𝑀). 

3.2.2 Channel Model 

In this study, the realistic finite scattering multipath channel model is assumed which has been 

considered for massive MIMO systems [28], [35], [54]. The channel vector between the 𝑘𝑡ℎ user 

and the BS is given by  
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  𝒉𝑘 =
  𝛽𝑘

√𝑃
∑ 𝒂(  𝜃𝑝)  𝑔𝑘𝑝 

𝑃

𝑝=1

 (3.4) 

where   𝑔𝑘𝑝  is the fading gain coefficient between the 𝑘𝑡ℎ user and the BS associated with each 

path  𝑝 ∈ 1,2……𝑃, and 𝛽𝑘 is the path loss coefficient between the 𝑘𝑡ℎ user and the BS which is 

denoted by 

𝛽𝑘 = √
𝛼

( 𝑑𝑘)𝛾
 (3.5) 

where 𝑑𝑘 is the geographical distance between the 𝑘𝑡ℎ user and the BS, 𝛾 is the path-loss exponent, 

and 𝛼 is a constant. All path loss coefficients between 𝐾  users and the BS are assumed to be the 

same and normalized to unity. In (3.4),  𝒂(θ𝑝) is the steering vector originating from each 𝑘𝑡ℎ user 

to the BS associating with each path  𝑝 ∈ 1,2……𝑃 which is given by 

𝒂(𝜃𝑝) = [1,  𝑒−𝑗2𝜋
𝐷
𝜆

𝑐𝑜𝑠(𝜃𝑝 ). … .   𝑒−𝑗2𝜋(𝑀−1)
𝐷
𝜆

𝑐𝑜𝑠(𝜃𝑝 )]
𝑇

 (3.6) 

where 𝜆 is the signal wavelength, 𝐷 is the antenna spacing which is assumed to be fixed, 

and θ(𝑝 ) ∈ [−π/2, π/2] is a random angle of arrival (AoA) corresponding to each path 𝑝.  

With the notations above, the channel model for single-cell TDD massive MU-MIMO system 

can be collectively written in a matrix form as   

𝑯 = 𝑨 𝑮 (3.7) 

where 𝑨 ≜ [ 𝒂(𝜃1 )  𝒂(𝜃2 )… . . . 𝒂(𝜃𝑃) ] is a 𝑀 ×  𝑃 matrix containing steering vectors, 𝑮 ≜

[ 𝒈1   𝒈2 …… .   𝒈𝐾] is the 𝑃 ×  𝐾 matrix of the fading coefficients between the 𝐾  users and the 

BS. All elements in each vector 𝒈𝑘 ≜ [  𝑔𝑘1   𝑔𝑘2 … .   𝑔𝑘𝑃]𝑇 are assumed to be independent 

Rayleigh fading coefficients with zero mean and unit variance, i.e.  , g𝑘𝑝 ∼ 𝐶𝒩(0, 1).  
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3.3 LS Channel Estimation 

The conventional LS channel estimator is a pilot-based channel estimator which is used to estimate 

the CSI during the uplink pilot transmission phase by correlating the received signals at the base 

station with known orthogonal pilot sequences [16], [17]. Based on the system and channel models 

presented above, the LS estimate of 𝑯 is then given by  

𝑯̂𝐿𝑆 =
1

√ 𝜌𝑡𝑟

    𝒀 𝑿𝐻(𝑿𝑿𝐻)−1 (3.8) 

where 𝑯̂𝐿𝑆 is the least square estimated channel matrix, and 𝑿 is the orthogonal known pilot matrix, 

i.e.   𝑿𝐻𝑿 = 𝜏 𝑰𝐾. By substituting 𝑿𝐻𝑿 = 𝜏 𝑰𝐾 and (2.11) into (3.8), we rewrite (3.8) as  

𝑯̂𝐿𝑆 =   𝑯 +
1

𝜏√ 𝜌𝑡𝑟

 𝑵 𝑿𝐻 (3.9) 

and then, the optimal estimation error in terms of the F-norm is given as 

min
𝑯

𝔼 {‖ 𝑯̂𝐿𝑆 − 𝑯‖
𝐹

2
} =

𝐾𝑀

τ( 𝜌𝑡𝑟/𝜎𝑛
2)

 (3.10) 

As it appears in (3.10), the LS channel estimation performance is limited by noise contamination 

which results in the poor channel estimation performance. The noise contamination effect occurs 

when the received signal power at the BS is small. Another inherent drawback of the LS-based 

channel estimation is the spectral efficiency loss due to the bandwidth consumed by training 

sequences [4, 8]. By observing the above drawbacks of the LS-based channel estimation, we 

proceed with the application of LRMA methods to develop a new estimation technique for single-

cell TDD massive MU-MIMO systems in the next subsection. 
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3.4 Nuclear Norm (NN) Channel Estimation 

The NN estimation method is a convex optimization problem, and its global solution can be 

directly obtained using the singular value decomposition (SVD) of the input matrix [56], [57], 

[61].  Furthermore, the NN is a particular case of the LRMA method which solves the relaxation 

version of the rank minimization problem. In a real massive MU-MIMO system, the channel 

matrix model in (3.7) can be considered as a low-rank matrix since it has many sparse singular 

values. Consequently, the NN channel estimation method based on compressive sensing technique 

is proposed for TDD massive MU-MIMO system. 

Based on the LS channel estimation in (3.9), the channel estimation problem in a single-cell 

TDD massive MU-MIMO system is formulated as a nuclear norm minimization problem as 

follows: 

𝑯̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑯

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯 ‖

𝐹

2

+ 𝛾‖𝑯 ‖∗} (3.11) 

where 𝑯̃ is a complex approximate channel matrix, and 𝛾 is the regularization parameter. In (3.11), 

‖𝑯‖∗ is the nuclear norm of 𝑯, which is the sum of its singular values. The nuclear norm of 𝑯 can 

be defined as: 

‖𝑯 ‖∗ = ∑|𝜎𝑖(𝑯)|

𝑟

𝑖=1

 (3.12) 

where 𝜎𝑖(𝑯) is the 𝑖𝑡ℎ singular value of the channel matrix 𝑯 and 𝑟 ≤ min (𝑀, 𝐾, 𝑃) is the rank of 

channel matrix 𝑯. By substituting (3.12) into (3.11), we rewrite (3.11) as 

𝑯̃ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯 ‖

𝐹

2

+ 𝛾 ∑|𝜎𝑖(𝑯)|

𝑟

𝑖=1

} (3.13) 

The property of the squared Frobenius norm of a matrix (.) is defined as 
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‖. ‖𝐹
2 = 𝑇𝑟((. )𝐻(. )) = ∑𝜎𝑖

2(. )

𝑟

𝑖=1

 (3.14) 

The property in (3.14) is then applied to (3.13) as 

 𝑯̃ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯

{
1

2
 𝑇𝑟 {(𝑯̂𝐿𝑆 − 𝑯)

𝐻
 (𝑯̂𝐿𝑆 − 𝑯 )} + 𝛾 ∑|𝜎𝑖(𝑯)|

𝑟

𝑖=1

} (3.15) 

which is equivalent to: 

𝑯̃ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯

{
1

2
 (𝑇𝑟 ((𝑯̂𝐿𝑆)

𝐻
 (𝑯̂𝐿𝑆 )) − 2𝑇𝑟 ((𝑯̂𝐿𝑆)

𝐻
 (𝑯 )) + 𝑇𝑟((𝑯)𝐻 (𝑯 )))

+ 𝛾 ∑|𝜎𝑖(𝑯)|

𝑟

𝑖=1

} 

(3.16) 

In (3.16), the optimization problem achieves the upper bound  𝑇𝑟 {(𝑯̂𝐿𝑆)
𝐻
(𝑯̂𝐿𝑆)} =

∑ 𝜎𝑖( 𝑯̂𝐿𝑆)𝜎𝑖(𝑯)r
𝑖=1  if  𝑼̂𝐿𝑆

𝑯  = 𝑼 and 𝑽̂𝐿𝑆  = 𝑽𝑯. As mentioned earlier in the channel model section, 

this condition can be satisfied in a massive MU-MIMO system when all users inside the cell are 

sharing the same steering matrix A.  Based on this conclusion; we may further simplify (3.16) as: 

𝝈̃(𝑯̃) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝝈(𝑯)

{
1

2
 (∑𝜎𝑖

2(𝑯̂𝐿𝑆)

𝑟

𝑖=1

−  2 ∑𝜎𝑖(𝑯̂𝐿𝑆)𝜎𝑖(𝑯)

𝑟

𝑖=1

+ ∑𝜎𝑖
2(𝑯)

𝑟

𝑖=1

)

+ 𝛾 ∑|𝜎𝑖(𝑯)|

𝑟

𝑖=1

} 

(3.17) 

In vector form, the optimization problem in (3.17) is simplified as  

𝝈̃(𝑯̃) =𝑚𝑖𝑛
𝝈(𝑯)

{
1

2
‖𝝈(𝑯̂𝐿𝑆) − 𝝈(𝑯)‖

2

2
+ 𝛾 ∑|𝜎𝑖(𝑯)|

𝑟

𝑖=1

}     (3.18) 
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where 𝝈(𝑯̂𝐿𝑆), 𝝈̃(𝑯̃) are the singular value vectors of the LS and the channel approximation, 

respectively. The proposed NN estimation method for massive MU-MIMO channel estimation is 

summarized in Table 3.1. 

 

Table 3.1: NN Estimation Algorithm for Single-Cell Massive MU-MIMO System 

1: Apply the SVD method of  𝑯̂𝐿𝑆 as  

[𝑼̂𝐿𝑆 𝜮𝐿𝑆 𝑽̂𝐿𝑆] = 𝑆𝑉𝐷(𝑯̂𝐿𝑆) (3.19) 

where a 𝑀 × 𝐾 diagonal matrix 𝜮𝐿𝑆 whose diagonal elements are the singular values of 𝑯̂𝐿𝑆 

corresponding to the left and right eigenvectors of unitary matrices 𝑼̂𝐿𝑆 ∊ ℂ𝑀 × 𝑀 and 𝑽̂𝐿𝑆 ∊

ℂ𝐾 × 𝐾. 

2: Choose the regularization parameter γ by using Cross-Validation (CV) curve method, as 

explained above. 

3: Solve an optimization problem in (3.18) to obtain the singular values estimation matrix 

 𝜮̃, which is defined as. 

𝜮̃ = (
𝑑𝑖𝑎𝑔(𝜎̃1(𝑯̃),… . . 𝜎̃𝑟(𝑯̃), 0, … . . 𝜎̃𝐾(𝑯̃) 

𝟎𝑀−𝐾 × 𝐾

) (3.20) 

4: Finally, the estimated channel matrix is determined as  

𝑯̃ = 𝑼̂𝐿𝑆  𝜮̃   𝑽̂𝐿𝑆
𝐻  (3.21) 
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3.4.1 Complexity analysis of NN Estimation 

The main complexity of the proposed NN estimation method comes from the optimization problem 

in step 3 which has 𝐾 real variables and one linear constraint. In comparison with the channel 

estimation scheme in  [31], we have managed to reduce the number of variables from 𝑀τ complex 

variables to 𝐾 real variables and one (𝑀 + 𝐾) × (𝑀 + 𝐾) semidefinite constraint to one linear 

constraint. In contrast, the proposed NN channel estimation scheme has higher complexity 

compared to the LS estimation, but better estimation performance. 

3.4.2 Selection of the Regularization Parameter, 𝜸, 

The regularization parameter, 𝛾, in (3.18) is an essential issue for the success of the NN 

optimization problem which controls the trade-off error between the data fidelity, ‖𝑯̂𝐿𝑆 − 𝑯 ‖
𝐹

2
,  

and the prior information ‖𝑯 ‖∗. The discrepancy principle (DP), cross-validation (CV), and L-

curve are some of the empirical existing selection methods[47], [78], [79]. The regularization 

parameter in DP is selected based on the sum of squares of the weighted residuals which is equal 

to the mean of a chi-square distribution [47]. The L-curve selection method is based on a log-log 

plot of the solution norm versus the residual norm error for different values of the regularization 

parameter, 𝛾, [78], [79]. The CV criterion is based on the selection of the regularization parameter 

that minimizes the normalized mean square error (NMSE) of the optimization problem.  

In this study, it is proposed to use a CV-curve method to select the optimal values of the 

regularization parameter 𝛾. Moreover, the CV-curve method is based on minimizing the 

normalized mean square error (NMSE) at each tuning parameter value 𝛾 for specific values of the 

signal-to-noise (SNR) ratio. The following formula can be used to select the optimal value of the 

regularization parameter 𝛾 using the CV criteria  
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𝛾 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛾∈{𝛾1,𝛾2,….𝛾𝑚𝑎𝑥}

𝑁𝑀𝑆𝐸(𝛾 ) (3.22) 

where 𝛾1 ≥ 0 is the initial value of the regularization parameter and 𝛾𝑚𝑎𝑥 is the maximum value 

of the regularization parameter, which is assumed to be any integer value such that 𝛾𝑚𝑎𝑥 ≫ 𝛾1. 

3.5 Estimation Performance 

In this section, we need to study the choice of the system parameters for the proposed channel 

estimator so that it is robust to variation in the SNR and number of base station antennas. In 

practice, the estimation performance criteria used to evaluate any estimation methods are NMSE, 

ASR, and BER. In this study, the NMSE and ASR  criteria are only used to evaluate the proposed 

estimation techniques which will be explained in the following two subsections. In [27], it has 

been shown that the BER performance for massive MIMO systems are improved as the number of 

base station antenna increases which is similar to the NMSE performance. 

3.5.1 Normalized Mean Square Error (NMSE)  

The following formula for the NMSE is used to evaluate the proposed estimation which is given 

by [15], [31]as 

𝑁𝑀𝑆𝐸(𝑑𝐵) = 10𝑙𝑜𝑔10  (
𝐸‖𝑯̃ − 𝑯‖

𝐹

2

𝐸‖𝑯‖𝐹
2 ) (3.23) 

where 𝑯 and 𝑯̃ are the desired channel matrix at the BS-𝑗 and its estimate, respectively.  

3.5.2 Uplink Achievable Sum-Rate (ASR) 

The uplink ASR capacity performance of 𝐾 users is given by the Shannon capacity formula as 
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𝐴𝑆𝑅 ≤  ∑ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑘)

𝐾

𝑘=1

 (3.24) 

where SINRk is the received signal-to-interference-noise ratio of each 𝑘𝑡ℎ user at the linear 

detector processing output. In literature, the linear detector processing such as maximum ratio 

combing (MRC), zero-forcing (ZF), and minimum mean square error (MMSE) detector schemes 

are used at the BS to detect the uplink data symbol for each 𝑘𝑡ℎ user [12], [69], [70], [80]. In 

massive multiuser MIMO systems, however, the MRC detector scheme may not be the best 

solution due to the strong multiuser interference. On the other hand, at a low signal-to-noise ratio 

(SNR), ZF detector does not work well due to the noise enhancement [69]. Moreover, the MMSE 

detector scheme has the capability of excluding the disadvantages of both MCR and ZF detectors 

which will be adapted in our work.  

In this study, it is proposed to use a linear minimum mean square error (MMSE) detector at 

the BS-𝑗 to detect the uplink data symbol for each 𝑘𝑡ℎ user. Then, the MMSE detector matrix 

𝑽𝑀𝑀𝑆𝐸 ∊ ℂ𝐾× 𝑀  is given as 

𝑽𝑀𝑀𝑆𝐸 = ( 𝑯̂𝐻𝑯̂ + 𝜎𝑛
2𝑰𝐾)

−1
 𝑯̂𝐻 (3.25) 

where 𝑯̂ ≜ [ 𝒉̂1, 𝒉̂2, …   𝒉̂𝑘] ∊ ℂ𝑀× 𝐾 is the estimated channel matrix which is obtained during the 

channel estimation phase, and 𝜎𝑛
2 is the noise variance. To compute the SINRk of each 𝑘𝑡ℎ user in 

(3.24), we consider the uplink data transmission phase where all users in the cell-𝑗 are 

simultaneously transmitted their data symbols, 𝓈1, 𝓈2. . . . , 𝓈𝐾, to the BS-𝑗. During the uplink data 

transmission phase, the received data vector 𝓨(𝑛) ∊  ℂ𝑀× 1  at each time symbol, 𝑛, is given by  

𝓨(𝑛) =  √ 𝜌𝑑  ∑ 𝒉𝑘

𝐾

𝑘=1

𝓈𝑘(𝑛) + 𝔃(𝑛) (3.26) 
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where 𝜌d is the average symbol power used by each user, 𝒉𝑘 ∊  ℂ𝑀× 1 is the channel vector 

between the 𝑘𝑡ℎ user and the BS antennas, and 𝔃 is the AWGN vector with zero mean and unit 

variance, 𝜎𝑛
2. Then, the data symbol detected of each 𝑘𝑡ℎ user at the MMSE detector output is 

computed by multiplying the 𝑘𝑡ℎ row vector 𝒗𝑘 of 𝑽𝑀𝑀𝑆𝐸   in (3.25) with the received signal vector 

𝓨 in (3.26)  as 

  𝓈̂𝑘(𝑛) = 𝒗𝑘 𝓨(𝑛) (3.27) 

Then further, we extend (3.27) as 

  𝓈̂𝑘(𝑛) =  √𝜌𝑘 𝒗𝑘  𝒉𝑘 𝓈𝑘(𝑛) + ∑ √𝜌𝑖

𝐾

𝑖=1,𝑖≠𝑘
𝒗𝑘 𝒉𝑖𝓈𝑖(𝑛) + 𝒗𝑘 𝔃(𝑛) (3.28) 

In (3.28), the first term represents the received data symbol of the 𝑘𝑡ℎ user, while the second and 

third terms are representing the interference from other users and noise, respectively. The SINRk 

of each 𝑘𝑡ℎ user at the MMSE detector output can be computed as 

𝑆𝐼𝑁𝑅𝑘 =
 𝜌𝑘 |𝒗𝑘 𝒉𝑘|

2

∑ 𝜌𝑖  |𝒗𝑘 𝒉𝑖|2
𝐾
𝑖=1,𝑖≠𝑘 + |𝒗𝑘 𝔃|2

 (3.29) 

By substituting (3.29) into (3.24),  we compute the uplink ASR of 𝐾 users as  

𝐴𝑆𝑅 ≤ ∑ 𝑙𝑜𝑔2 (1 +
 𝜌𝑘 |𝒗𝑘 𝒉𝑘|

2

∑ 𝜌𝑖 |𝒗𝑘 𝒉𝑖|2
𝐾
𝑖=1,𝑖≠𝑘 + |𝒗𝑘 𝔃|2

)

𝐾

𝑘=1

 (3.30) 

where the 𝑘𝑡ℎ row vector 𝒗𝑘  of  𝑽𝑀𝑀𝑆𝐸  is defined as  

𝒗𝑘 = (  𝒉̂𝑘
𝐻
  𝒉̂𝑘 + 𝜎𝑛

2)
−𝟏

 𝒉̂𝑘
𝐻

 (3.31) 
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3.6 Simulation Results 

This section contains the simulation results of the proposed channel estimation schemes for TDD 

massive MU-MIMO system. We consider a single-cell system with the only base station (BS) 

which is located at the center of the cell. The BS is equipped with a large number of 𝑀=80 antennas 

and simultaneously serves 𝐾=40 single-antenna users. It should be noted that the following 

assumptions have been taken through all the simulation results presented in this section. The 

number of multipath originating from each user to the BS is 𝑃=20, angle of arrival θ𝑝 associated 

with each path is θ(𝑝 ) = −𝜋/2 + (𝑝 − 1)𝜋/2𝑃, and the steering vector parameters 𝐷 and 𝜆 are 

assumed to have 𝐷/𝜆 =0.5, where 𝑝=1, 2…….𝑃. In the first experiment, the regularization 

parameter 𝛾 of the proposed estimation method is selected based on the CV curve method.  

 

Figure 3.2: NMSE vs. Regularization parameter, 𝛾, over system parameters, M= 80, 

P = 20, K = 40, τ = 40, and SNR= 0dB 
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Figure 3.2 and Figure 3.3 illustrate two examples of how the optimal regularization 

parameter 𝛾 of the proposed estimation method is chosen at low and high SNR values (0 and 10 

dB) which are equal to 36 and 8, respectively 

In Figure 3.4, we display the NMSE versus the SNR values with a different length of pilot 

sequence  τ = 40, 64, for both LS and the NN estimation methods. It can be seen from Figure 3.4 

that when τ increases, both LS and NN channel estimation performance are decreased, but the 

proposed NN-based method achieves significantly better performance, as expected from the 

analysis.  Then next, the effect of increasing the number of 𝐾 users is studied under the fixed 

number of BS antennas, i.e.,  M=80. Figure 3.5 shows that the NMSE of both estimators increases 

when we increase the number of 𝐾 users. Again, the performance of the proposed NN estimation 

 

Figure 3.3: NMSE vs. Regularization parameter, 𝛾 over the system parameters  M= 80, 

P = 20, K = 40, τ = 40, and SNR= 10 dB 
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outperforms the LS method for different numbers of 𝐾 users. Furtheremore, the performance loss 

𝐾=40 to 𝐾=40 of NN is less than that of the LS. 

Finally, we evaluate the effectiveness of the NN proposed estimation method in terms of the 

uplink ASR performance. Figure 3.6 illustrates the uplink ASR performance of the proposed NN 

estimator under a different number of BS antennas 𝑀 and compared to the LS estimation method. 

For reference, the uplink ASR upper bound obtained with perfect CSI is also simulated. It can be 

seen from Figure 3.6 that as the number of BS antennas 𝑀 increases, the uplink ASR of the 

proposed NN estimation is 2 bps/Hz better than the LS estimation and about 6 bps/Hz less than 

the perfect CSI. 

 

Figure 3.4: Comparison between LS and NN estimation methods in terms of NMSE versus SNR 

over system parameters, M=80, P=20, K=40, and τ ∊ {40,64} 
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Figure 3.5: Comparison between LS and NN estimations in terms of NMSE versus SNR over 

system parameters, M=80, P=20, τ =64, and K∊ {40,64} 

 

Figure 3.6: Uplink ASR vs. Number of BS antennas, M, over the system parameters, K =40 

users, P =20, and SNR= 0 dB 
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3.7 Conclusion 

In this study, a novel channel estimation method namely “nuclear norm (NN) approximation,” has 

been proposed for a single-cell TDD massive MU-MIMO system. The main aim of the proposed 

scheme is to estimate the large channel matrix entries of single-cell TDD massive MU-MIMO 

system with a limited number of pilot sequences. Consequently, the channel estimation problem 

was formulated as a unconstrainted nuclear norm minimization problem and solved via the 

proposed algorithm. The simulation results show that the performance of the proposed scheme in 

terms of the NMSE significantly outperforms the traditional LS estimation, which ignores the 

sparsity feature of the channels. 
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4 Chapter 4 

Iterative Weighted Nuclear Norm Approximation-Based 

Channel Estimation for Single-Cell Massive MU-MIMO 

System 

4.1 Introduction  

The nuclear norm (NN) channel estimation method was proposed for a single-cell TDD massive 

MU-MIMO system in the previous chapter [39]. However, the NN estimation has certain 

limitations because it treats all singular values of the channel matrix equally. In other words, it 

ignores the prior knowledge on the largest singular values which are representing the most 

significant singular values of the channel matrix. Moreover, the regularization parameter, 𝛾, used 

in the NN estimation forces all singular values of the channel matrix equally toward zero which 

results in degradation of the channel estimation performance. However, this significantly restricts 

the NN estimation capability in dealing with many practical problems, such as massive MU-

MIMO channel estimation problem where the largest singular values have a definite meaning and 

should be treated differently [54], [56], [57], [59], [64], [81].  

In this study, iterative weighted nuclear norm (IWNN) approximation based on compressive 

sensing technique is proposed for channel estimation in TDD massive MU-MIMO system to 

improve the previously proposed NN estimation method [40]. To the best of the authors’ 

knowledge, the IWNN channel estimation method has not been used for massive MU-MIMO 

system to date.  
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4.2 Iterative Weighted Nuclear Norm (IWNN) Channel Estimation  

The main goal of the IWNN estimation approach is to improve the NN channel estimation method 

by assigning different weights to different singular values of the channel matrix. Moreover, the 

IWNN aims to estimate the channel matrix by shrinking the largest singular values of the channel 

matrix less than the smallest ones by using an adaptive regularization parameter, 𝛾, threshold [7], 

[51], [58], [82]. It should be noted that the smallest singular values of the channel matrix are 

usually represented by the noise and interference channel power when the locations of the 

interference users are assumed to be far away from the target base station [83]. More specifically, 

the IWNN estimation method ignores the smallest singular values and estimates the channel matrix 

based on the largest singular values of the channel matrix, and thus it is more accurate than the NN 

estimation method.  It is noteworthy that, the IWNN estimation method has been recently utilized 

in a different context in statistics and signal processing [58], [63], [64]. Therefore, the channel 

estimation for a single-cell massive MU-MIMO system in Equation (2.20) in the chapter (3) is 

formulated as an unconstrained weighted nuclear norm regularization problem as follows 

𝑯̃ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯 ‖

𝐹

2

+ 𝛾‖𝑯 ‖𝒘,∗} (4.1) 

where 𝛾  is the nonnegative regularization parameter, and  ‖𝑯 ‖𝒘,∗ is the weighted nuclear norm 

of 𝑯 which is denoted by [13] as 

‖𝑯 ‖𝒘,∗ = ∑|𝑤𝑖𝜎𝑖(𝑯)|

𝑟

𝑖=1

 (4.2) 

where 𝑤𝑖 is the non-negative weight element which is assigned to each singular value, 𝜎𝑖(𝑯), and 

r ≤ min (𝑀, 𝑃, 𝐾) is the rank of the channel matrix, 𝑯. By substituting the equation (4.2) into (4.1), 

we can rewrite (4.1) as 
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𝑯̃ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯 ‖

𝐹

2

+ 𝛾 ∑|𝑤𝑖𝜎𝑖(𝑯)|

𝑟

𝑖=1

} (4.3) 

where the first term in (4.3) is the F-norm, while the second term is a ℓ1-norm penalty function 

which is very important for the success of the NN estimation.  

In (4.3), the regularization parameter 𝛾 controls the relative importance between the sparsity 

of the solution (ℓ1-norm) term and the fitness to the measurements (F-norm) term. The F-norm 

property of any matrix (.) can be defined as 

‖. ‖𝐹
2 = 𝑇𝑟((. )𝐻(. )) = ∑𝜎𝑖

2(. )

𝑟

𝑖=1

 (4.4) 

By applying this property in (4.3), the Equation (4.3) can be rewritten as: 

 𝑯̃ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯

{
1

2
 𝑇𝑟 {(𝑯̂𝐿𝑆 − 𝑯)

𝐻
 (𝑯̂𝐿𝑆 − 𝑯 )} + 𝛾 ∑|𝑤𝑖𝜎𝑖(𝑯)|

𝑟

𝑖=1

} (4.5) 

which is equivalent to 

𝑯̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑯

{
1

2
 𝑇𝑟 {(𝑯̂𝐿𝑆)

𝐻
(𝑯̂𝐿𝑆)} − 𝑇𝑟 {(𝑯̂𝐿𝑆)

𝐻
(𝑯)} +

1

2
 𝑇𝑟{(𝑯)𝐻(𝑯)}

+ 𝛾 ∑|𝑤𝑖𝜎𝑖(𝑯)|

𝑟

𝑖=1

} 

(4.6) 

By applying the SVD to 𝑯̂𝐿𝑆 and 𝑯 in (4.6) as 𝑯̂𝐿𝑆 = 𝑼̂𝐿𝑆 𝜮𝐿𝑆 𝑽̂𝑳𝑺
𝐻  , and 𝑯 =  𝑼 𝜮 𝑽𝐻, where 𝑼̂𝐿𝑆,   

𝑽̂𝐿𝑆,  𝑼, and 𝑽 are unitary matrices, the second term in (4.6) becomes 𝑇𝑟{𝑯̂𝑳𝑆
𝐻  𝑯} =

𝑇𝑟{𝑽̂𝐿𝑆 𝜮
𝐻

𝐿𝑆 𝑼̂𝐿𝑆
𝐻   𝑼 𝜮 𝑽𝑯} if 𝑼̂𝐿𝑆

𝑯  𝑼= 𝑰𝑀 and 𝑽̂𝐿𝑆 𝑽
𝑯 = 𝑰𝑀 which can be rewritten as 

∑ 𝜎𝑖 (𝑯̂𝐿𝑆
(𝑗)

) 𝜎𝑖 (𝑯𝑗
(𝑗)

)r
𝑖=1 . In massive MU-MIMO system, this condition can be satisfied as long as 



46 

 

a large number of base station antennas 𝑀 is assumed [24]. Based on this assumption, the Equation 

(4.6) can be rewritten as 

𝝈̃(𝑯̃) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜎1, 𝜎2…….𝜎𝑟

{
1

2
 (∑𝜎𝑖

2(𝑯̂𝐿𝑆)

𝑟

𝑖=1

−  2 ∑𝜎𝑖(𝑯̂𝐿𝑆)𝜎𝑖(𝑯)

𝑟

𝑖=1

+ ∑𝜎𝑖
2(𝑯)

𝑟

𝑖=1

)

+ 𝛾 ∑|𝑤𝑖𝜎𝑖(𝑯)|

𝑟

𝑖=1

} 

(4.7) 

The optimization problem in (4.7) can be simplified in vector form as  

𝝈̃(𝑯̃) =𝑚𝑖𝑛
𝝈(𝑯)

{
1

2
‖𝝈(𝑯̂𝐿𝑆) − 𝝈(𝑯)‖

2

2
+ 𝛾 𝒘𝑇 𝝈(𝑯)}     (4.8) 

where the first term in (4.8) is ℓ2-norm which represents the data-fidelity term (residual error (𝑅)), 

while the second term is an ℓ1-norm penalty function. In (4.8), 𝝈(𝑯) and 𝝈̃(𝑯̃) are the singular 

value vectors of the actual and its approximation, respectively. In (4.8), 𝒘 = [𝑤1  𝑤2 ……𝑤𝑟] is a 

non-negative weight vector assigned to each singular value 𝜎𝑖 of the matrix 𝑯 ∊  ℂ𝑀× 𝐾.  

The weight vector 𝒘 brings more parameters to the system model, and therefore the 

appropriate setting of the weights plays a crucial role in the success of the proposed IWNN channel 

estimation method [64]. In this study, it is proposed to enhance the sparsity of the nonnegative 

singular value solutions of the IWNN estimation by adaptively tuning each weight element, 𝑤, by 

using the following formula: 

𝑤𝑖
𝑡+1 =

𝜇

𝜎̃𝑖
𝑡(𝑯̃) + 𝜀

     𝑖 = 1,2……… . 𝑟 (4.9) 

where 𝜎̃𝑖
𝑡 is the 𝑖𝑡ℎ singular value of the approximate channel matrix 𝑯̃ in the 𝑡𝑡ℎ iteration, 𝑤𝑖

𝑡+1 

is its corresponding regularization parameter, 𝛾, in the (𝑡 + 1)-th iteration, 𝜀 is a small positive 

number to avoid dividing by zero, and 𝜇 is the step size parameter which is used to accelerate time 
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convergence. The proposed iterative algorithm used to solve the WNN optimization problem in 

(4.8) is summarized in Table 4.1. 

4.2.1 Selection of Regularization Parameter and Weight Vector 

As mentioned in the previous sections, the regularization parameter 𝛾 and weight vector 𝒘 are 

important factors for implementing the proposed IWNN estimation method. In other words, the 

regularization parameter 𝛾 is used to control the trade-off error between the data 

fidelity, ‖𝝈(𝑯̂𝐿𝑆) − 𝝈(𝑯)‖
2

2
, and the prior information 𝝈(𝑯) in (4.8). Also, the weight vector 𝒘 is 

used to enhance the sparsity of sparse singular value solutions by adaptively tuning weights 

through the formula given in (2.20). However, the appropriate selection method of the 

regularization parameter 𝛾 and setting the weight vector 𝒘 in (4.8) are playing a crucial role in the 

success of the proposed IWNN channel estimation method. Therefore, we use the cross-validation 

(CV) curve method which is explained in the previous chapter to select the initial value of the 

regularization parameter, 𝛾, in the proposed algorithm of Table 4.1.  

Moreover, the singular values of a matrix are always sorted in non-ascending order, and 

therefore the large singular values usually correspond to the subspaces of more critical components 

of the data matrix. Thus, we would better shrink the larger singular values in the WNN estimation 

method less by assigning smaller weights. Based on this conclusion, the weight vector 𝒘 in (4.8) 

is considered to be in a non-descending order since the formula given in (4.9) is used to update the 

weight vector 𝒘. It should be noted that a vector of ones is used as the initial weight vector with 

the expectation that this selection leads to better results, and then it is updated at each iteration, 𝑡. 
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4.2.2 Computational Complexity Analysis of IWNN Estimator 

The computational complexity of the IWNN proposed method is correlated with the number of 

iterations, 𝑇, in step 2 in Table 4.1. Thus, it is beneficial to keep this complexity low. In other 

words, the trade-off between the estimation performance in terms of the residual error (𝑅) and the 

number of iterations, 𝑇, is fundamental to the success of the IWNN proposed estimation method. 

Moreover, the following formula is used to compute the residual error (𝑅) of the optimization 

problem in  (4.8) as: 

𝑅 =  ‖𝝈(𝑯̂𝐿𝑆) − 𝝈(𝑯)𝑡+1‖2

2
− ‖𝝈(𝑯̂𝐿𝑆) − 𝝈(𝑯)𝑡‖2

2
 (4.10) 

where 𝑡 is the iteration number. 

The LS-based channel estimation has a computational complexity of order 𝒪(𝑀𝐾), while the 

previously proposed NN estimation method with the total computational complexity of order 

𝒪(𝑀2𝐾𝑃). Compared to the estimation methods above, the IWNN-based channel estimation has 

the highest complexity of order 𝒪(𝑀2𝐾𝑃𝑇), where 𝑇 is the total number of iterations, but better 

estimation performance. 
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Table 4.1: IWNN Estimation Algorithm for Single-Cell Massive MU-MIMO System 

1: Apply the SVD method of  𝑯̂𝐿𝑆 as  

[𝑼̂𝐿𝑆 𝜮𝐿𝑆 𝑽̂𝐿𝑆] = 𝑆𝑉𝐷(𝑯̂𝐿𝑆) (4.11) 

where a 𝑀 × 𝐾 diagonal matrix 𝜮𝐿𝑆 whose diagonal elements are the singular values of 𝑯̂𝐿𝑆 

corresponding to the eigenvectors of unitary matrices 𝑼̂𝐿𝑆 ∊ ℂ𝑀 × 𝑀 and 𝑽̂𝐿𝑆 ∊ ℂ𝐾 × 𝐾 . 

2: Choose the number of iterations   𝑇𝑠𝑡𝑒𝑝, and then set 𝑡=0, 𝜇=0.5, 𝜀 = 10−5  and initial 

weights   𝒘 = [1, 1, … . 𝑟]. 

3: Choose the initial value of the regularization parameter γ by using Cross Validation (CV) 

curve method as it is explained in the previous chapter. 

4: Solve the optimization problem in (4.8) to obtain the singular values estimation matrix 

𝜮𝑡̃ as. 

𝜮𝑡̃ = (
𝑑𝑖𝑎𝑔(𝜎̃1(𝑯̃),… . . 𝜎̃𝑟(𝑯̃), 0, … . . 𝜎̃𝐾(𝑯̃) 

𝟎𝑀−𝐾 × 𝐾

) (4.12) 

5: t=t+1. 

6: Update the weight vector 𝐰̂ by using the formula in (4.9). 

7: Repeat steps from 4-6 until convergence to a predefined residual(R) is obtained or when 

the chosen number of iterations is reached. 

8: Finally, the estimated channel matrix is determined as  

𝑯̃ = 𝑼̂𝐿𝑆  𝜮𝑡̃   𝑽̂𝐿𝑆
𝐻  (4.13) 
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4.3 Simulation Results 

This section contains the simulation results of the IWNN proposed channel estimation method for 

TDD massive MU-MIMO system. The same system and channel models presented in the previous 

chapter for a single-cell TDD massive MU-MIMO system have been considered in this study as 

well. The initial values of the regularization parameter, 𝛾, of the proposed IWNN estimation 

method are selected based on the CV curve method which is explained in the previous chapter. 

Moreover, a vector of ones is used as the initial weight vector of the proposed IWNN estimation 

method. In this study, two estimation performance criteria namely normalized mean square error 

(NMSE) and uplink achievable sum-rate (ASR) are used to evaluate the proposed estimation 

method.  

 

Figure 4.1: Comparison between IWNN, NN, and LS estimations over the system parameters, 

M= 80, P = 20, K = 40, τ = 40. 
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In the first experiment, the comparison between the IWNN, NN, and LS estimation methods 

in terms of the NMSE estimation performance is investigated under different values of the SNR. 

Figure 4.1 shows that the IWNN estimation has substantial improvement compared to the NN and 

LS estimations with the cost of the number of iterations, i.e.,  𝑙 < 10.  

In the second experiment, the NMSE performance of the IWNN proposed method versus the 

number of BS antennas, 𝑀. is studied and compared to the NN and LS estimations. Figure 4.2 

shows that, as the number of antennas increases, the IWNN proposed estimation method is 

improved and outperforms both NN and LS estimations in terms of the NMSE. Moreover, the LS 

estimation method does not show any improvement as expected from the theoretical analysis.  

 

 

Figure 4.2: Normalized estimation error versus Number of Antennas, M, over system parameters, 

P = 20, K = 40, τ = 40, and SNR= 0 dB 
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In the third experiment, we evaluate the effectiveness of the NN previously proposed 

estimation method in terms of the ASR performance criterion for TDD single-cell massive MU-

MIMO system. To consider the worst-case scenario, the 𝐾 users are assumed to be distributed on 

the cell-edge and have the same distance from the BS, i.e., 𝛽𝑘=1. Figure 4.3 shows the uplink ASR 

performance obtained by different estimation methods under a different number of antennas, 𝑀. 

For reference, the upper bound on uplink ASR is also simulated by designing the MMSE detector 

matrix with perfect CSI. It can be seen from Figure 4.3 that as the number of antennas, 𝑀, increases, 

the uplink ASR obtained by IWNN estimation method is improved by 4.5 bps/Hz and by 3 bps/Hz 

compared to the LS and NN estimations, respectively. However, it is about 6 bps/Hz less than the 

perfect CSI, which is reasonable for uplink massive MU-MIMO system. 

 

Figure 4.3: Uplink ASR vs. Number of BS antennas, 𝑀, for a single-cell system with parameters, 

K =40 users and P =20, and SNR= 0 dB 
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Finally, the computational complexity of the IWNN estimation technique is studied. However, 

this complexity is related to the number of iterations and therefore, the residual error (𝑅) versus 

the number of iterations, 𝑡, is plotted based on the formula in (4.10). Figure 4.4 shows the residual 

error versus the number of iterations at SNR= 0dB. It is clear that the residual error depends on 

the selection of step size 𝜇. Choosing 𝜇 too small results in a large number of iterations, but better 

estimation performance, whereas choosing 𝜇 too large results in poor estimation performance. We 

conclude that the suitable value of the step size 𝜇 is 0.5 for the number of iteration, 𝑙 < 10.  

 

 

 

 

 

Figure 4.4: The speed of convergence of the IWNN algorithm for single-cell system with 

parameters M=80, P = 20, τ = 40, K = 40  at  SNR = 0 dB. 
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4.4 Conclusion 

In this study, a novel channel estimation algorithm exploiting the sparsity of the channel matrix is 

proposed for a single-cell massive MU-MIMO system. The main goal of this estimation approach 

is to improve the standard nuclear norm (NN) estimation method. Hence, the channel estimation 

problem was formulated as a weighted nuclear norm (WNN) minimization problem and solved via 

the proposed iterative algorithm. Furthermore, the initial values of the regularization parameter at 

each SNR value are selected based on cross-validation curve method. Moreover, the computational 

complexity of the IWNN estimation technique is also studied in terms of the number of iterations. 

The simulation results show that the proposed IWNN method with the cost of having a few 

iterations (i.e.,  𝑙 < 10 ) achieves better estimation performance compared to the standard NN and 

conventional LS estimation methods in terms of the NMSE and ASR performances. 
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5 Chapter 5 

Pilot Decontamination in Massive Multiuser MIMO Systems 

Based on Low-Rank Matrix Approximation 

5.1 Introduction 

The channel estimation in multi-cell massive MU-MIMO systems is considered one of the 

significant challenges due to the pilot contamination problem [2], [6], [11], [14]. This problem 

occurs during the uplink pilot transmission phase when the non-orthogonal pilot sequences are 

used by other users in the adjacent cells. Moreover, due to the limited coherence time interval, the 

same frequency band is used for all cells which results in the inter-cell interference at each base 

station. This interference problem is called pilot contamination, which degrades the channel 

estimation performance [14]. 

In literature, several research efforts have been done in the last ten years towards mitigating 

the pilot contamination in TDD multi-cell massive MIMO systems. In [14], [18], the asynchronous 

time-shifted pilot protocol is proposed to reduce pilot contamination in TDD massive MU-MIMO 

system by avoiding the simultaneous transmission of pilot sequences from different users among 

all cells. However, this method may not provide accurate channel estimation due to the higher 

downlink transmit power compared to the uplink. Blind and Semi-Blind-based channel estimation 

approaches are proposed to eliminate the pilot contamination effects in TDD massive MU-MIMO 

system [24]-[27]. These techniques are based on estimating the channel matrix in the uplink data 

phase and use it for beamforming at the downlink. In these techniques, the pilot contamination 

effect is reduced as the length of an uplink received data increases. However, the length of the 
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uplink received data in massive MIMO systems is limited, and therefore it may become difficult 

to implement in real scenarios. Pilot decontamination based on the collaboration between all base 

stations has been proposed for TDD massive MU-MIMO system [19]-[21], [28], [73], [75], [84]. 

However, these approaches can lead to the complete removal of pilot contamination effect under 

a certain condition which is hard to implement in massive MIMO systems since the collaboration 

between all base stations is limited in real systems. 

In [29], [30], the authors have proposed novel estimation algorithms to reduce the pilot 

contamination in TDD massive MIMO systems by exploiting the path diversity in both angle and 

power domains. Under the condition that the channel covariance matrices of desired and 

interference users are perfectly known at each base stations, the pilot contamination problem is 

reduced. However, this specific condition may not be achieved in a real scenario since both channel 

covariance matrices are not available at the base stations. Pilot decontamination approach based 

on a combination of a pilot sequence hopping scheme and a modified Kalman filter has been 

studied in [22], [23]. However, the channel estimation method is performed at multiple time slots. 

Therefore,  this channel estimation approach is of a considerable computational complexity since 

the processing time will be too long.    

Unlike previous channel estimation methods, low-rank matrix approximation (LRMA) 

methods and compressive sensing (CS) techniques have been applied as a new framework for 

various problems of wireless communication systems such as the sparse channel estimation 

problem [32]-[35], [39], [40], [52], [54], [60]. For example, compressive sensing has been 

proposed for the channel estimation problem in TDD multi-cell massive MU-MIMO systems [54]. 

However, such a method is only feasible for systems with a small number of users and base station 

antennas.  
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In our previous work, the NN channel estimation scheme was proposed for a single-cell 

massive MU-MIMO system in chapter 3. It has been shown that the NN with less number of pilot 

sequences significantly outperforms the conventional LS estimation. In chapter 4, the channel 

estimation performance of the NN method has been improved by proposing the IWNN estimation. 

However,  both proposed estimation schemes have shown significant improvements in the channel 

estimation performance in terms of the NMSE and uplink ASR capacity compared to the 

conventional LS estimation. 

In this work, we propose to extend the applications of the LRMA in multi-cell massive MU-

MIMO channel estimation to mitigate pilot contamination problem. Consequently, the nuclear 

norm (NN) and iterative weighted nuclear norm (IWNN) estimation methods are proposed to deal 

with the pilot contamination problem in such systems. The main contributions in this work are 

summarized as follows: 

• The NN estimation method is proposed for channel estimation in multi-cell massive MU-

MIMO systems to mitigate pilot contamination problem 

• Regularization parameter of the NN estimation method is selected based on the cross-

validation (CV) curve method [47]. 

• In the presence of high pilot contamination problem in multi-cell massive MU-MIMO 

systems, the IWNN estimation method is proposed to improve the NN estimation 

performance.  

• To enhance the sparsity of singular values of channel matrix solutions, the appropriate 

setting of the weight vector of the iterative algorithm has been taken into consideration. 

• The simulation results show the efficiencies of both proposed algorithms compared with 

the conventional LS method in terms of the NMSE performance. 
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5.2 System and Channel Models. 

5.2.1 System Model 

We consider a TDD multi-cell massive MU-MIMO system with 𝐿 cells where each cell contains 

one BS which is equipped with a very large number of antennas, 𝑀, and simultaneously serves a 

large number of, 𝐾, single-antenna users [6]. In this study, the channel estimation problem is 

studied when the non-orthogonal pilot sequences are reused by other users in the adjacent cells, 

giving rise to pilot contamination problem as shown in Figure 5.1.  

We consider the uplink pilot transmission phase, where all users from all cells simultaneously 

transmit their pilot signal 𝒙(𝑡) to their desired BSs. The orthogonal pilot sequences with a BPSK 

modulation scheme are assumed to avoid intra-cell interference among K users in a given cell, i.e., 

𝑥𝑘(𝑡) ∈  {+1,−1}. However, the same orthogonal pilot signals are reused by other users in the 

adjacent cells which results in pilot contamination problem. To illustrate this idea, we suppose that 

 

Figure 5.1: Pilot contamination in multi-cell massive MU-MIMO systems 
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the BS-𝑗 in the cell-𝑗 is the target base station unless otherwise specified. The total transmitted 

signal vector 𝒙(𝑡) ∊  ℂ𝐾  from all 𝐾 users to the BS-𝑗 is given as 

𝒙(𝑡) = [  𝑥1 (𝑡),   𝑥2(𝑡)…… .   𝑥𝐾(𝑡)]𝑇 (5.1) 

At each time, 𝑡, the received pilot signal 𝒚𝑗(t) ∊  ℂ𝑀  at the BS-𝑗 in vector form is denoted by 

𝒚𝑗(𝑡) = √ 𝜌𝑡𝑟 𝑯𝑗  𝒙(𝑡) + √ 𝝆𝒕𝒓 ∑𝑯𝑙 𝒙(𝑡)

𝐿

𝑙≠𝑗

+ 𝒏𝑗(𝑡) (5.2) 

where 𝜌tr is the transmitted symbol power from each user, and 𝒏𝑗(t) ∊  ℂ𝑀 is the complex-valued 

additive white Gaussian noise (AWGN) vector with zero mean and unit variance 𝜎𝑛
2, i.e., 

𝐶𝒩(0, 1). In (5.2), 𝑯𝑗 ∊ ℂ𝑀 × 𝐾𝑑  is the channel matrix between the desired users 𝐾𝑑 and the BS-

𝑗 in the cell-𝑗 which is defined as 

𝑯𝑗  ≜ [𝒉𝑗1  𝒉𝑗2  ………𝒉𝑗𝐾𝑑
 ] (5.3) 

and 𝑯𝑙 ∊ ℂ𝑀 × 𝐾𝑐  is the channel matrix between the contaminated 𝐾𝑐 users in the adjacent cells 

𝑙 ≠ 𝑗 and the BS-𝑗 which is defined as 

𝑯𝑙 ≜ [𝒉𝑙1  𝒉𝑙2  ………𝒉𝑙𝐾𝑐
] (5.4) 

In each coherence time interval, the total pilot sequences received at the BS-𝑗 in matrix form 

can be expressed as  

𝒀𝑗 = √𝜌𝑡𝑟  ∑𝑯𝑙  𝑿

𝐿

𝑙=𝑗

+ 𝑵𝑗 (5.5) 

where 𝑿 ≜ [ 𝒙(1)  𝒙(2)… . 𝒙(𝜏 ) ] ∊  ℂ𝐾 × 𝜏 is the total transmit pilot sequences from 𝐾 users to 

the BS, and  𝑵𝑗 ∊  ℂ𝑀× 𝜏  is the spatially and temporally white additive Gaussian noise (AWGN) 

matrix with zero-mean and element-wise variance 𝜎𝑛
2, i.e., ~ 𝐶𝒩(0, 𝑰𝑀). 
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5.2.2 Channel Model 

In this study, the realistic finite-dimensional multipath channel model is considered for all channel 

users (desired and interfering users) which is studied for massive MIMO systems [6], [28], [29], 

[31], [34], [35], [41], [73]. The channel vector between the 𝑘𝑡ℎ user and the BS-𝑗 in the cell-𝑙 is 

given as   

𝒉𝑙𝑘 =
𝛽𝑙𝑘

√𝑃
∑ 𝒂(𝜃𝑝 )

𝑃

𝑝=1

𝑔𝑙𝑘𝑝 
 (5.6) 

where 𝑔𝑙𝑘𝑝 is the fading coefficient between the 𝑘𝑡ℎ user and the BS-𝑗 in the cell-𝑙 associated with 

each path 𝑝 ∈ 1,2……𝑃, and  𝛽𝑙𝑘 is the path loss coefficient between the 𝑘𝑡ℎ user and the BS-𝑗 in 

cell-𝑙 which is denoted by 

𝛽𝑙𝑘 = √
𝛼

(𝑑𝑙𝑘)𝛿
 (5.7) 

where 𝑑𝑙𝑘 is the geographical distance between the 𝑘𝑡ℎ 𝑢ser in cell-𝑙 and the BS-𝑗, 𝛿 is the path-

loss exponent, and 𝛼 is a constant dependent on the prescribed average signal to noise ratio (SNR) 

at the cell edge. In (5.6), 𝒂(𝜃𝑝 ) ∊  ℂ𝑀  is the steering vector originating from each 𝑘𝑡ℎ user to the 

BS 𝑗 associated with each path, 𝑝, which is given as 

𝒂(𝜃𝑝 ) = [1, 𝑒−𝑗2𝜋
𝐷
𝜆

𝑐𝑜𝑠(𝜃𝑝 ) ………… . . . , 𝑒−𝑗2𝜋(𝑀−1)
𝐷
𝜆

𝑐𝑜𝑠(𝜃𝑝 )]
𝑇

 (5.8) 

where 𝜆 is the signal wavelength, 𝐷 is the antenna spacing which is assumed to be fixed, and 𝜃𝑝
(𝑗)

∈

[−π/2, π/2] is the random angle of arrival (AoA) corresponding to each path 𝑝.  

The total channel model including the steering matrix, flat fading matrix and geometric 

attenuation matrix for all users can be collectively written in a matrix form as   
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𝑯𝑙  = 𝑨 𝑮𝑙  𝑫𝑙
1/2

 (5.9) 

where 𝑨 ≜ [ 𝒂(𝜃1 )  𝒂(𝜃2 )…… . 𝒂(𝜃𝑃 ) ] ∊ ℂ𝑀 × 𝑃  is a full-rank steering matrix, and 𝑮𝑙 ≜

[ 𝒈𝑙1  𝒈𝑙2 ……… . . 𝒈𝑙𝑘 ]  ∊ ℂ𝑃 × 𝐾  is a Rayleigh flat fading channel matrix between the 𝐾  users 

and the BS-𝑗. The entries in each vector 𝒈𝑙𝑘 ≜ [𝑔𝑙𝑘1   𝑔𝑙𝑘2 ……𝑔𝑙𝑘𝑝]
𝑇
 are assumed to be 

independently identically distributed (𝑖. 𝑖. 𝑑) symmetrical complex Gaussian random variable with 

zero mean and unit variance, i.e., g𝑙𝑘𝑝 ∼ 𝐶𝒩(0, 1). In (5.9), 𝑫𝑙 ∊ ℂ𝐾× 𝐾 is a diagonal matrix 

whose diagonal elements are  [𝑫𝑙]𝑘𝑘 = 𝛽𝑙𝑘. 

5.3 Pilot Contamination Effect on LS Channel Estimation. 

In this section, we study the impact of the pilot contamination problem in multi-cell massive MU-

MIMO systems when the LS estimation method is used. In general, the LS method relies on 

correlating the total received signal 𝒀(𝑗) in (5.5) with known orthogonal pilot sequences 𝑿 [16], 

[17]. Hence, the LS estimation matrix at the BS-𝑗 is given by  

𝑯̂𝐿𝑆 =
1

√ 𝜌𝑡𝑟

  𝒀𝑗  𝑿
𝐻(𝑿𝑿𝐻)−𝟏 (5.10) 

where 𝑯̂𝐿𝑆 is the LS estimation matrix, and 𝑿 is the pilot matrix which is assumed to be orthogonal 

and known at each base station, i.e., 𝑿𝑿𝐻 = 𝜏 𝑰𝐾. By substituting (5.5) and 𝑿𝑿𝐻 = 𝜏 𝑰𝐾 into 

(5.10), we can rewrite (5.10) as  

𝑯̂𝐿𝑆 = 𝑯𝑗 + ∑𝑯𝑙 

𝐿

𝑙≠j

+
1

τ√ 𝜌𝑡𝑟

𝑵𝑗  𝐗
H 

 

(5.11) 

According to the channel model in (5.9), the normalized mean square error (NMSE) of (5.11) is 

given as 
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𝑁𝑀𝑆𝐸 =
1

∑ 𝛽𝑗𝑘
𝐾𝑑
𝑘=1

 (∑ ∑ 𝛽𝑙𝑘

𝐾𝑐

𝑘=1

+
𝐾𝑑 𝜎𝑛 

2

𝜏  𝜌𝑡𝑟

𝐿

𝑙≠𝑗

)  (5.12) 

As it appears in (5.12), the NMSE performance of the LS estimation is limited by pilot and 

noise contamination problems.  Pilot contamination in the first term of (5.12) is caused by the 

interference from other users in the adjacent cells, while the noise contamination in the second 

term in (5.12) occurs when the transmit power from each user inside each cell is small [24]. 

However, noise contamination can be reduced by increasing the length of the pilot sequence,  while 

pilot contamination cannot [16], [17], [69]. Therefore, in the next two sections, we propose to 

apply the applications of the LRMA methods to deal with the pilot contamination effect in multi-

cell massive MU-MIMO system. 

5.4 NN Channel Estimation Method 

The NN estimation method is an optimization problem which aims to estimate the non-zero 

singular values of the low-rank matrix. In this section, the NN channel estimation method is 

proposed to mitigate pilot contamination problem in multi-cell massive MU-MIMO systems. It 

should be noted that the NN estimation method was utilized in a different context in statistics and 

signal processing [32], [35], [51], [53], [59], [61], [67], [81], [83]. However, we have adopted that 

in our work. As such, the channel estimation problem in (5.11) is formulated as the nuclear norm 

regularization problem as, 

𝑯̃𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯𝑗

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯𝑗‖

𝐹

2

+ 𝛾‖𝑯𝑗‖∗
} (5.13) 
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where 𝑯̃𝑗 is the approximation of the desired channel matrix 𝑯𝑗, and 𝛾 is a regularization parameter 

of this optimization problem. In (5.13), ‖𝑯𝑗‖∗
 denotes the nuclear norm of the channel matrix 𝑯𝑗 

which is defined as  

‖𝑯𝑗‖∗
 = ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

 (5.14) 

where 𝜎𝑖(𝑯𝑗) denotes the 𝑖𝑡ℎ singular value of the desired channel matrix 𝑯𝑗 , and r is the rank of 

𝑯𝑗. The number of multipath, 𝑃, originated from each user to the base station is assumed to be 

small compared to the number of base station antennas, 𝑀, and desired users, 𝐾𝑑, and therefore the 

rank of the desired channel matrix 𝑯𝑗  is 𝑟 ≤ min (𝑀,  𝐾𝑑, 𝑃) which will be 𝑟 = 𝑃. Hence, this 

channel can be approximated by using LRMA methods. By substituting (5.14) into (5.13), we can 

rewrite (5.13) as  

𝑯̃𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯𝑗

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯𝑗‖

𝐹

2

+ 𝛾 ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} (5.15) 

The property of the Frobenius norm of any matrix (.) can be defined as 

‖. ‖𝐹
2 = 𝑇𝑟((. )𝐻(. )) = ∑𝜎𝑖

2(. )

𝑟

𝑖=1

 (5.16) 

By applying this property into (5.15), we can rewrite (5.15) as 

𝑯̃𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑯𝑗

{
1

2
 𝑇𝑟 {(𝑯̂𝐿𝑆 − 𝑯𝑗)

𝐻
(𝑯̂𝐿𝑆 − 𝑯𝑗  )} + 𝛾 ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} (5.17) 

Moreover, we extend (5.17) to: 
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𝑯̃𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯𝑗

{
1

2
 (𝑇𝑟 {(𝑯̂𝐿𝑆)

𝐻
(𝑯̂𝐿𝑆)} − 2𝑇𝑟 {(𝑯̂𝐿𝑆)

𝐻
(𝑯𝑗)} + 𝑇𝑟 {(𝑯𝑗)

𝐻
(𝑯𝑗)})

+ 𝛾 ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} 

(5.18) 

In (5.18), we apply the SVD into 𝑯̂𝐿𝑆 and 𝑯𝑗 as 𝑯̂𝐿𝑆 = 𝑼̂𝐿𝑆 𝜮𝐿𝑆 𝑽̂𝐿𝑆
𝐻 , and 𝑯𝑗 =  𝑼 𝜮 𝑽𝐻, where 

𝑼̂𝐿𝑆,   𝑽̂𝐿𝑆,  𝑼, and 𝑽 are unitary matrices, i.e., 𝑼̂𝐿𝑆
𝐻  𝑼= 𝑰 and 𝑽̂𝐿𝑆 𝑽

𝐻 = 𝑰. Then, the second term in 

(5.18) can be written as 𝑇𝑟 {𝑯̂𝐿𝑆
𝐻
𝑯𝑗} = 𝑇𝑟{𝑽̂𝐿𝑆 𝜮

𝐻
𝐿𝑆 𝑼̂𝐿𝑆

𝐻   𝑼 𝜮 𝑽𝐻} which is equivalent to: 

𝑇𝑟{𝑯̂𝐿𝑆 𝑯𝑗} =  ∑ 𝜎𝑖(𝑯̂𝐿𝑆)𝜎𝑖(𝑯𝑗)
r
𝑖=1 . Thus, we rewrite (5.18) as 

𝝈̃(𝑯̃𝑗) =𝑎𝑟𝑔𝑚𝑖𝑛
𝝈(𝑯𝑗)

{
1

2
 (∑𝜎𝑖

2(𝑯̂𝐿𝑆)

𝑟

𝑖=1

− 2 ∑𝜎𝑖(𝑯̂𝐿𝑆)𝜎𝑖(𝑯𝑗)

𝑟

𝑖=1

+ ∑𝜎𝑖
2(𝑯𝑗)

𝑟

𝑖=1

)

+ 𝛾 ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} 

(5.19) 

Equation (5.19) can be written as 

𝝈̃(𝑯̃𝑗) = 𝑚𝑖𝑛
𝝈(𝑯𝑗)

{
1

2
∑ (𝜎𝑖

2(𝑯̂𝐿𝑆) − 2 𝜎𝑖(𝑯̂𝐿𝑆)𝜎𝑖(𝑯𝑗) + 𝜎𝑖
2(𝑯𝑗))

𝑟

𝑖=1

+ 𝛾 ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} (5.20) 

Moreover, we simplify (5.20) as 

𝝈̃(𝑯̃𝑗) = 𝑚𝑖𝑛
𝝈(𝑯𝑗)

{
1

2
∑  (𝜎𝑖(𝑯̂𝐿𝑆) − 𝜎𝑖(𝑯𝑗))

2
𝑟

𝑖=1

+ 𝛾 ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} (5.21) 

which is equivalent to  

𝝈̃(𝑯̃𝑗) = 𝑚𝑖𝑛
𝝈(𝑯𝑗)

{
1

2
‖𝝈(𝑯̂𝐿𝑆) − 𝝈(𝑯𝑗)‖2

2
+ 𝛾 ∑|𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

}   (5.22) 
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where 𝝈(𝑯̂𝐿𝑆) and 𝝈(𝑯𝑗) are the singular value vectors of matrices 𝑯̂𝐿𝑆 and 𝑯𝑗, respectively. In 

(5.22), 𝝈̃(𝑯̃𝑗) is the approximate singular value vector of the matrix 𝑯̃𝑗, and 𝛾 is the regularization 

parameter. The proposed NN estimation method for multi-cell massive MU-MIMO channel 

estimation is summarized in Table 5.1. 

 

 

Table 5.1: NN Estimation Algorithm for Multi-Cell Massive MU-MIMO System 

1: Apply the SVD method of  𝑯̂𝐿𝑆 as  

𝑆𝑉𝐷(𝑯̂𝐿𝑆) = [𝑼̂𝐿𝑆 𝜮𝐿𝑆 𝑽̂𝐿𝑆] (5.23) 

where a 𝑀 × 𝐾 diagonal matrix 𝜮𝐿𝑆 whose diagonal elements are the singular values of 𝑯̂𝐿𝑆 

corresponding to the eigenvectors of unitary matrices 𝑼̂𝐿𝑆 ∊ ℂ𝑀 × 𝑀 and 𝑽̂𝐿𝑆 ∊ ℂ𝐾 × 𝐾. 

2: Choose the regularization parameter γ by using Cross-Validation (CV) curve method which 

is explained in the previous chapter. 

3: Solve the optimization problem in (5.22) to obtain the singular values estimation matrix 𝜮̃, 

which is defined as 

𝜮̃ = (
𝑑𝑖𝑎𝑔(𝜎̃1(𝑯̃𝑗), … . . 𝜎̃𝑟(𝑯̃𝑗), 0, … . . 𝜎̃𝐾(𝑯̃𝑗) 

𝟎𝑀−𝐾 × 𝐾

) (5.24) 

4: Finally, the estimated channel matrix is determined as  

𝑯̃𝑗 = 𝑼̂𝐿𝑆  𝜮̃   𝑽̂𝐿𝑆
𝐻  (5.25) 
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5.5 IWNN Channel Estimation Method 

The NN estimation method has a fundamental limitation because it treats all singular values of the 

channel matrix equally with the same threshold. Therefore, it ignores the prior knowledge of the 

larger singular values of 𝑯𝑗 which are more important than the smaller ones since they represent 

the major energy components of the desired channel matrix. On the other hand, the IWNN 

estimation method treats all singular values of 𝑯𝑗  with a different threshold. Moreover, the IWNN 

shrinks less the largest singular values (desired channels), while shrinking more the smallest ones 

(interference channels) [40], [56]-[58], [62]. Based on this idea, the IWNN-based channel 

estimation for multi-cell massive MU-MIMO systems is proposed in this chapter. The IWNN 

method aims to improve the NN estimation performance by reducing the pilot contamination 

effect. It should be noted that the IWNN estimation method was utilized in our previous work [28]. 

However, we have adopted that in this work. Hence, the channel estimation problem in (5.11) can 

be reformulated as the weighted nuclear norm regularization problem as follows: 

𝑯̃𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯𝑗

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯𝑗‖

𝐹

2

+ 𝛾‖𝑯𝑗‖𝒘,∗
} (5.26) 

where ‖𝑯𝑗‖𝐰,∗
 denotes the weighted nuclear norm of 𝑯𝑗 which is defined as  

‖𝑯𝑗‖𝒘,∗
= ∑|𝑤𝑖𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

 (5.27) 

where 𝑤𝑖 is the non-negative weight element which is assigned to each singular value 𝜎𝑖 of 𝑯𝑗. 

The weight vector itself brings more parameters in the system model, and therefore the appropriate 

setting of the weights plays a crucial role in the success of the proposed IWNN method for channel 

estimation [64]. We propose to enhance the sparsity of singular value solutions by adaptively 

tuning weights through the following formula which is given as: 
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𝑤𝑖
𝑡+1 =

𝜇

𝜎̃𝑖
𝑡(𝑯̃𝑗) + 𝜀

   𝑖 = 1,2……… . 𝑟 (5.28) 

where 𝜎̃𝑖
𝑡 is the 𝑖𝑡ℎ singular value of the approximate channel matrix 𝑯̃𝑗

𝑗
 in 𝑡𝑡ℎ iteration and 𝜀 is a 

small positive number to avoid dividing by zero. In (5.28), 𝜇 is the step size which is utilized to 

speed up the time convergence of the proposed searching algorithm at each iteration. By 

substituting (5.27) into (5.26), we can rewrite (5.26) as: 

𝑯̃𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑯𝑗

{
1

2
‖𝑯̂𝐿𝑆 − 𝑯𝑗‖

𝐹

2

+ 𝛾 ∑|𝑤𝑖𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} (5.29) 

To simplify (5.29), the same steps in section 5.4 are followed by applying the Frobenius norm 

property given in (5.16) into (5.29). Then, we obtain the following WNN optimization problem in 

a vector form as 

𝝈̃(𝑯̃𝑗) = 𝑚𝑖𝑛
𝝈(𝑯𝑗)

{
1

2
∑  (𝜎𝑖(𝑯̂𝐿𝑆) − 𝜎𝑖(𝑯𝑗))

2
𝑟

𝑖=1

+ 𝛾 ∑|𝑤𝑖𝜎𝑖(𝑯𝑗)|

𝑟

𝑖=1

} (5.30) 

which is equivalent to: 

𝝈̃(𝑯̃𝑗) = 𝑚𝑖𝑛
𝝈(𝑯𝑗)

{
1

2
‖𝝈(𝑯̂𝐿𝑆) − 𝝈(𝑯𝑗)‖2

2
+ 𝛾 𝒘 𝝈(𝑯𝑗) }   (5.31) 

where 𝒘 = [𝑤1  𝑤2 … .…𝑤𝑟]
𝑇 is the non-negative weight vector with elements of 𝑤𝑖 ≥ 0, 𝑖 =

1… . . 𝑟, where each weight element is assigned to each 𝜎𝑖(𝐇j). The proposed IWNN estimation 

method for multi-cell massive MU-MIMO channel estimation is summarized in Table 5.2. 



68 

 

 

Table 5.2: IWNN Estimation Algorithm for Multi-Cell Massive MU-MIMO System 

1: Apply the SVD method of  𝑯̂𝐿𝑆 as  

𝑆𝑉𝐷(𝑯̂𝐿𝑆) = [𝑼̂𝐿𝑆 𝜮𝐿𝑆 𝑽̂𝐿𝑆] (5.32) 

where a 𝑀 × 𝐾 diagonal matrix 𝜮𝐿𝑆 whose diagonal elements are the singular values of 𝑯̂𝐿𝑆 

corresponding to the eigenvectors of unitary matrices 𝑼̂𝐿𝑆 ∊ ℂ𝑀 × 𝑀 and 𝑽̂𝐿𝑆 ∊ ℂ𝐾 × 𝐾. 

2: Choose the number of iterations   𝑇𝑠𝑡𝑒𝑝, and then set 𝑡=0, 𝜇=0.5, 𝜀 = 10−5  and initial 

weights   𝒘 = [1, 1, … . 𝑟]. 

3: Choose the initial value of the regularization parameter γ by using Cross-Validation (CV) 

curve method as it is explained in the previous chapter. 

4: Solve the optimization problem in (5.31) to obtain the singular values estimation matrix 𝜮𝑡̃ 

as 

𝜮𝑡̃ = (
𝑑𝑖𝑎𝑔(𝜎̃1(𝑯̃𝑗), … . . 𝜎̃𝑟(𝑯̃𝑗), 0, … . . 𝜎̃𝐾(𝑯̃𝑗) 

𝟎𝑀−𝐾 × 𝐾

) (5.33) 

5: t=t+1. 

6: Update each weight element 𝑤𝑖 for the weight vector, 𝒘, in the optimization problem  

(5.31) by using (5.28). 

7: Repeat steps from 4-6 until convergence to a predefined residual(R) is obtained or when 

the chosen number of iterations is reached. 

8: Finally, the estimated channel matrix is determined as  

𝑯̃𝑗 = 𝑼̂𝐿𝑆  𝜮𝑡̃   𝑽̂𝐿𝑆
𝐻  (5.34) 
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5.6 Complexity Analysis of different Estimators  

The computational complexity of the LS estimation method comes from multiplying 𝑿𝑯 by 𝐘j in 

(8), which has a complexity order 𝒪(𝑀𝐾). The main complexity of the NN estimation method 

comes from step 1 and step 3 in Table 5.1. In step 1, the SVD of matrix 𝑯̂𝐿𝑆 has a complexity 

order 𝒪(𝑀𝐾2), and the optimization problem in step 3 has 𝑟 real variables and one linear constraint 

which has a complexity order of 𝒪(𝑟2).  Therefore, the NN method has higher computational 

complexity than the LS method but better estimation performance. On the other hand, the main 

complexity of the IWNN estimation method in Table 5.2 comes from increasing the number of 

iterations in step 3, and therefore it has a complexity order of 𝒪(𝑇𝑟2), where 𝑇 is the total number 

of iterations. Thus, the IWNN has the highest computational complexity compared to the NN and 

LS estimation methods, but better estimation performance.  

One way to reduce the complexity order of the IWNN method is to decrease the number of 

iterations in by choosing the appropriate value of the step size parameter 𝜇 in (21). Note that, 

selecting the step size parameter μ too large can result in poor estimation performance, where the 

range of the step size parameter μ is 0 < 𝜇 ≤ 1. 

5.7 Estimation Performances 

In this section, we study the choice of the system parameters for the proposed channel estimator 

which are robust to variations in the SNR and number of base station antennas. Thus, the following 

two estimation performance criteria are used to evaluate the proposed estimation method for multi-

cell massive MU-MIMO systems in the presence of the pilot contamination problem. 
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5.7.1  Normalized Mean Square Error (NMSE)  

The following formula of the NMSE performance metric is used to evaluate the proposed channel 

estimation which is given as 

𝑁𝑀𝑆𝐸 (𝑑𝐵) = 10𝑙𝑜𝑔10 (
𝐸‖𝑯̃𝑗 − 𝑯𝑗‖𝐹

2

𝐸‖𝑯𝑗‖𝐹

2 ) (5.35) 

where 𝑯𝑗and 𝑯̃𝑗 are the desired channel matrix at the BS-𝑗 and its approximation, respectively.  

5.7.2 Uplink Achievable Sum-Rate (ASR) 

The second performance metric used to evaluate the proposed channel estimation per cell in multi-

cell TDD massive MU-MIMO system is the uplink ASR capacity. To show how this formula is 

derived, we consider the uplink data transmission phase where all users from all cells 

simultaneously transmit their data symbols, 𝓈1, 𝓈2. . . . , 𝓈𝐾 to their base stations. However, the same 

system parameters used in the channel estimation phase are assumed to be used for the uplink data 

transmission phase as well. To illustrate this idea, we suppose that BS-𝑗 is the target BS, 𝐾𝑑 is the 

desired users in the cell-𝑗, and 𝐾𝑐 is the interfering users from adjacent cells, i.e., 𝑙 ≠ j. The 

received data vector φ𝐣(n) ∊  ℂ𝑀× 1  at the target, BS-𝑗 is given by 

𝝋𝑗(𝑛) = √ 𝜌𝑑  ∑ 𝒉𝑗𝑘𝓈𝑗𝑘(𝑛)

𝐾𝑑

𝑘=1

+ √ 𝜌𝑑 ∑  ∑ 𝒉𝑙𝑘𝓈𝑙𝑘(𝑛)

𝐾𝑐

𝑘=1

𝐿

𝑙=1,𝑙≠𝑗

  + 𝒛𝑗(𝑛) (5.36) 

where √𝜌d 𝓈𝑗𝑘  is the transmitted data symbol by the 𝑘𝑡ℎ user in the cell-𝑗 to the BS-𝑗, and 𝜌d is the 

average power used by the 𝑘𝑡ℎ user. In (5.36), 𝐳j(n) ∊ ℂ𝑀 × 1 is the AWGN vector with zero mean 

and element-wise variance, 𝜎𝑛
2, i.e., 𝐶𝒩(0, 𝜎𝑛

2), and 𝒉𝑗𝑘 ∊ ℂ𝑀 × 1  is the desired channel vector 

between the 𝑘𝑡ℎ user in cell-𝑗 and the target BS-𝑗, while 𝒉𝑙𝑘 ∊ ℂ𝑀 × 1, ∀  𝑙 ≠ j is the interference 
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channel vectors between the 𝑘𝑡ℎ user in cell-𝑙 and the BS-𝑗. It should be noted that the channel 

model in (5.9) is now reused for the uplink data phase as well since we assume all user’s locations 

in all cells are fixed in each coherence time interval. 

In general, the uplink ASR performance of 𝐾 users per cell is given by the Shannon capacity 

formula [12] as 

𝐴𝑆𝑅 ≤  ∑ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑘)

𝐾

𝑘=1

 (5.37) 

where SINRk is the received signal-to-interference-noise ratio of each 𝑘𝑡ℎ user at the linear 

detector processing output. To compute the SINRk for each 𝑘𝑡ℎ user in (5.37), a linear minimum 

mean square error (MMSE) detector scheme is assumed to be used at each base station where the 

𝑘𝑡ℎ row vector 𝒗𝑗𝑘 of the MMSE detector is given by [70] as 

𝒗𝑗𝑘 = ( (𝒉̂𝑗𝑘)
𝐻 𝒉̂𝑗𝑘 + 𝜎𝑛

2)
−𝟏

(𝒉̂𝑗𝑘)
𝐻 (5.38) 

where 𝒉̂𝑗𝑘 ∊ ℂ𝑀× 1 is the estimated channel vector between the 𝑘𝑡ℎ user in cell-𝑗 and the BS-𝑗, and 

𝜎𝑛
2 is the noise variance. By multiplying each 𝑘𝑡ℎ row vector 𝒗𝑗𝑘 in (5.38) by the received signal 

vector φ𝐣(n) in (5.36), we can detect each data user as 

𝓈̂𝑗𝑘(𝑛) = 𝒗𝑗𝑘 𝝋𝑗(𝑛) (5.39) 

By substituting (5.36) and (5.38) into (5.39), we rewrite (5.39) as 

𝓈̂𝑗𝑘(𝑛) =  √𝜌𝑑  𝒗𝑗𝑘  𝒉𝑗𝑘𝓈𝑗𝑘(𝑛) + ∑ √ 𝜌𝑑  𝒗𝑗𝑘 𝒉𝑗𝑖𝓈𝑗𝑖(𝑛)
𝐾

𝑖=1,𝑖≠𝑘
  

+ √ 𝜌𝑑 ∑  ∑ 𝒗𝑗𝑘  𝒉𝑙𝑘𝓈𝑙𝑘(𝑛)

𝐾

𝑘=1

𝐿

𝑙=1,𝑙≠𝑗

+ 𝒗𝑗𝑘𝒛𝑗(𝑛) 

(5.40) 
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In (3.28), the first term represents the received data symbol of the 𝑘𝑡ℎ user in the cell-𝑗 at the BS-

𝑗, and the second term represents the multiuser interference (MUI) in the cell-𝑗. The third and 

fourth terms represent inter-cell interference (ICI) from the adjacent cells, and the noise term, 

respectively. Now, the SINRk for each 𝑘𝑡ℎ user in (5.37) can be calculated as 

𝑆𝐼𝑁𝑅𝑘 =
𝜌𝑑  |𝒗𝑗𝑘  𝒉𝑗𝑘|

𝟐

∑ 𝜌𝑑  |𝒗𝑗𝑘 𝒉𝑗𝑘|
2
+ 𝜌𝑑 ∑  ∑ | 𝒗𝑗𝑘 𝒉𝑙𝑘|

2
 𝐾

𝑘=1
𝐿
𝑙=1,𝑙≠𝑗 +𝐾

𝑖=1,𝑖≠𝑘 |𝒗𝑗𝑘 𝒛𝑗|
𝟐 (5.41) 

By substituting (3.29) into (3.24), we compute the total uplink ASR capacity of 𝐾 users as  

𝐴𝑆𝑅 ≤ ∑ 𝑙𝑜𝑔2 (1 +
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑝𝑜𝑤𝑒𝑟 𝑔𝑎𝑖𝑛

𝑀𝑈𝐼 + 𝐼𝐶𝐼 + 𝑁𝑜𝑖𝑠𝑒
)

𝐾

𝑘=1

 (5.42) 

where the channel power gain=𝜌𝑑 |𝒗𝑗𝑘𝒉𝑗𝑘|
2
, MUI=∑ 𝜌𝑑  |𝒗𝑗𝑘 𝒉𝑗𝑖|

2𝐾
𝑖=1,𝑖≠𝑘 , 

ICI= 𝜌d ∑  ∑ | 𝒗𝑗𝑘 𝒉𝑙𝑘|
2
 𝐾

𝑘=1
𝐿
𝑙=1,𝑙≠j , and the noise term = |𝒗𝑗𝑘 𝒛𝑗|

2
. 

5.8 Simulation Results 

This section contains the simulation results of the IWNN proposed channel estimation method for 

TDD massive MU-MIMO system with 𝐿 = 3 cells. Each cell has one BS with 𝑀 = 80 antennas 

and simultaneously serves 𝐾𝑑 = 40 desired users. We address the channel estimation problem 

where the strongest received signals at the target BS-𝑗 are significant, and the rest are small and 

can be neglected. In all experiments presented in this section, we assume that the desired channel 

is estimated for more than 1000 exact channel realizations, and the steering vector has the 

following parameters, θ(𝑝 ) = −𝜋/2 + (𝑝 − 1)𝜋/2𝑃, and 𝐷/𝜆 =0.5 where 𝑝=1, 2……20. Also, 

the length of each pilot sequence is assumed to be τ =40 symbols, and the total number of arbitrary 

multipath is considered to be 𝑃 = 20. With the assumptions above, the desired channel matrix 𝑯𝑗
(𝑗)
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has asymptotically low-rank as long as 𝑃 is small relative to 𝑀 and 𝑃, i.e., 𝑟 ≤ min(𝑀, 𝐾𝑑, 𝑃)= 

20. Two different number of contaminated users are assumed, i.e. 𝐾𝑐 ∊  {4,10} in order to study 

the effect of increasing the number of interfering users at each adjacent cell-edge. We set the path 

loss coefficients 𝛽𝑙𝑘= 0.8 for all 𝐾𝑐 users in all adjacent cells 𝑙 ≠ j, and 𝛽𝑗𝑘=1 for all 𝐾𝑑 users in 

the cell-𝑗.  

The regularization parameter, γ, in (5.22) and (5.31) is selected based on the cross-validation 

(CV) curve method [47].  The CV criterion is based on the selection of the optimal value of the 

regularization parameter that minimizes the NMSE for each particular value of the signal-to-noise 

ratio (SNR). By using the following formula, we plot the NMSE versus the regularization 

parameter γ at each specific value of SNR.  

 

Figure 5.2: NMSE vs. Regularization parameter 𝛾 for system parameters, 𝑀 =80, 𝑃=20, 

𝜏=40, 𝐾𝑑 = 40 with 𝛽𝑗𝑘=1, SNR=0 dB, and 𝐾𝑐 ∊ {0, 4,10} with 𝛽𝑙𝑘= 0.8 ∀𝑙 ≠ 𝑗 
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𝛾 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛾∈{𝛾1,𝛾2,….𝛾𝑚𝑎𝑥}

𝑁𝑀𝑆𝐸(𝛾 ) (5.43) 

Then, the optimal value of the regularization parameter is selected at the minimum value of the 

NMSE. Figure 5.2 shows an illustrative example, how the optimal regularization parameter γ is 

selected at SNR= 0 dB for three different contaminated users scenarios, i.e., 𝐾𝑐 ∊ {0, 4,10}. Then, 

the experiment is repeated for each value of the SNR with the same scenario. 

Next, we study the computational complexity of the proposed IWNN algorithm in terms of 

the number of iterations, 𝑇, and the residual error, 𝑅. It is noteworthy that, noise and pilot 

contamination problems produce the residual error. Thus, the residual error versus the number of 

iterations is simulated over the system parameters 𝑀=80, 𝑃 = 20, 𝐾𝑑 = 40, τ = 40 and 𝐾𝑐= 4 at 

different values of large-scale fading coefficients 𝛽𝑙𝑘= 0, 0.2, 0.4, and 0.8. Figure 5.3 shows the 

 

Figure 5.3: Speed convergence of IWNN algorithm in multi-cell system with parameters M = 80, 

𝑃 = 20, 𝜏 = 40, 𝐾𝑑 =40 with 𝛽𝑗𝑘=1, SNR=0dB, and  𝐾𝑐 =4 with different values of 𝛽𝑙𝑘 ∀ 𝑙 ≠ 𝑗 
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residual error versus the number of iterations for different cases of the pilot contamination 

problem. It is clear that the residual estimation error is quickly decreased to zero with the cost of 

the number of iteration 𝑡 <10 and 𝑡 <25 for the low and high pilot contamination problem, 

respectively. 

In Figure 5.4, the NMSE versus SNR for the proposed estimation approaches under the 

different number of contaminated users, i.e., 𝐾𝑐 ∊  {4,10} is investigated and compared to the 

conventional LS estimation. As we can see from Figure 5.4, the LS estimator has poor estimation 

performance due to the pilot contamination problem, while the NN and IWNN proposed methods 

have better estimation performance. Moreover, the IWNN estimation method has shown 

substantial improvement over the NN estimation method. 

 

Figure 5.4: NMSE vs. SNR over system parameters, M = 80, 𝑃 =20, 𝜏 = 40,  𝐾𝑑 = 40 with 

𝛽𝑗𝑘=1, and 𝐾𝑐 ∊ {4,10} with 𝛽𝑙𝑘=0.8  ∀  𝑙 ≠ 𝑗 . 
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In Figure 5.5, the effect of pilot contamination in terms of the large-scale fading 

coefficient 𝛽𝑙𝑘 of the interfering users in the adjacent cells is studied. Figure 5.5 demonstrates the 

NMSE performance versus large-scale fading coefficients 𝛽𝑙𝑘 of two different number of 

contaminated users, i.e., 𝐾𝑐 ∊  {4,10}. It can be seen from Figure 5.5 that, the NMSE performances 

of the LS, NN, and IWNN estimation methods are degraded as 𝛽𝑙𝑘 increases. However, both 

proposed estimation approaches exhibit a better estimation performance compared to the LS 

method in the presence of low and high pilot contamination problem. In other words, the IWNN 

estimation demonstrated its ability to estimate the desired channel matrix under high pilot 

contamination problem originated from 𝐾𝑐=10 cell-edge users.  

 

 

Figure 5.5: NMSE vs. large-scale fading coefficient, 𝛽𝑙𝑘 for 𝐾𝑐 ∊  {4,10}  over system 

parameters, 𝑀 =80, 𝑃=20, 𝜏=40, 𝐾𝑑=40, with 𝛽𝑗𝑘=1, and SNR = 0 dB 
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In Figure 5.6, the effect of increasing the number of contaminated  𝐾𝑐 users with 𝛽𝑙𝑘= 0.9 for 

𝑙 ≠ j on the channel estimation performance is investigated. It can be seen from Figure 5.6 that as 

the number of contaminated users increases, the estimation error is also increased in both LS and 

NN estimations. On the other hand, the IWNN estimation is not changed with 𝐾𝑐, which means 

that it can mitigate the high pilot contamination problem. 

 

 

 

 

 

Figure 5.6: NMSE vs. Number of contaminated  𝐾𝑐  users with 𝛽𝑙𝑘= 0.9 each over system 

parameters,  M = 80, 𝑃 = 20, 𝜏 = 40,  𝐾𝑑  = 40, and SNR = 0 dB 
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In Figure 5.7, the effect of increasing the number of antennas on the NMSE and ASR 

estimation performances of the proposed estimations is studied. In Figure 5.7, we display the 

NMSE versus the number of BS antennas with and without interference for the LS, proposed NN, 

and IWNN estimation methods. It can be seen from Figure 5.7 that as the number of antennas 𝑀 

increases, the performance of the LS estimator is quickly saturated (due to pilot contamination 

effect), while the performances of our proposed NN and IWNN estimation methods are improved. 

Compared to the LS and NN estimation methods, the IWNN estimation method provides the 

highest estimation performance with the cost of a small number of iterations. 

 

 

 

Figure 5.7: NMSE  vs. Number of BS antennas 𝑀 over systems parameters, 𝑃=20, 𝜏=40, 𝐾𝑑=40 

with 𝛽𝑗𝑘=1 each, 𝐾𝑐=10 with 𝛽𝑙𝑘=0.8 each ∀ 𝑙 ≠ 𝑗 and SNR = 0 dB 
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Figure 5.8 illustrates the uplink ASR performance obtained by LS, NN, and IWNN estimation 

methods under a different number of antennas, 𝑀. It can be seen in Figure 5.8 that as the number 

of antennas, 𝑀 increases, the uplink ASR performances obtained by LS and NN estimation 

methods are quickly saturated. On the other hand, as the number of antennas, 𝑀, increases, the 

uplink ASR obtained by IWNN estimation method is improved. 

 

Figure 5.8: Uplink ASR vs. Number of BS antennas, 𝑀, for a multi-cell system parameters, 𝐿=3 

cells, P =20, 𝐾𝑑= 40 with 𝛽𝑗𝑘=1 each, 𝐾𝑐=4 with 𝛽𝑙𝑘=0.8 each ∀ 𝑙 ≠ 𝑗 and SNR=0 dB 
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Based on the fact that the effect of pilot contamination problem increases as the large-scale 

factor𝛽𝑙𝑘∀ 𝑙 ≠ j increases, we are interested in studying this effect on the uplink ASR performance. 

Figure 5.9 demonstrates the uplink ASR performance obtained with different channel estimation 

methods under different values of the factor𝛽𝑙𝑘. It can be seen from Figure 5.9 that the uplink ASR 

obtained by IWNN estimation method outperforms the ASR obtained by NN and LS estimation 

methods. 

 

 

 

 

 

 

Figure 5.9: Uplink ASR vs. large-scale factor 𝛽𝑙𝑘 for 𝐾𝑐 = 4 users for multi-cell system with 

parameters, 𝐿=3, 𝑀 = 200, P = 20, 𝐾𝑑 = 40 with 𝛽𝑗𝑘  = 1, SNR = 0 dB 
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Finally, we examine the impact of increasing the number of contaminated users 𝐾𝑐 in the 

adjacent cells on the uplink ASR performance. It can be observed from Figure 5.10 that as 𝐾𝑐 

increases the uplink ASR performances obtained by LS and NN estimation methods degrade. For 

example, when 𝐾𝑐 ≥ 25, the uplink ASR performances obtained by NN and LS are almost the 

same. In contrast, the uplink ASR obtained by IWNN estimation method has less degradation 

compared to the one obtained by NN and LS methods (due to the iterative searching algorithm 

proposed for WNN estimation method). 

 

 

 

 

 

Figure 5.10: Uplink ASR vs. number of 𝐾𝑐 with 𝛽𝑙𝑘= 0.8 ∀  𝑙 ≠ 𝑗 for system parameters, 𝐿=3 

cells, 𝑀 =200, P =20, 𝐾𝑑= 40 with 𝛽𝑗𝑘=1, and SNR = 0 dB 
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5.9 Conclusion 

In this chapter, two-channel estimation algorithms exploiting the sparsity of the channel matrix 

have been proposed for multi-cell massive MU-MIMO systems. The main goal of these estimation 

approaches is to mitigate pilot contamination problem. In the first method, the channel estimation 

problem is formulated as the nuclear norm (NN) minimization problem. Furthermore, the iterative 

weighted nuclear norm (IWNN) estimation method is proposed to improve the NN estimation 

performance. The regularization parameter of both NN and IWNN optimization methods is 

selected based on the cross-validation (CV) curve method. Then further, a brief analysis of the 

computational complexity of the proposed NN and IWNN estimation approaches are analyzed and 

compared to the LS estimation method. It is shown that the conventional LS estimation has the 

lowest complexity with poor estimation performance, while the IWNN has the highest complexity 

with more estimation performance accuracy. 

Moreover, two estimation performance metrics namely normalized mean square error 

(NMSE) and uplink achievable sum-rate (ASR)” are used to evaluate the proposed NN and IWNN 

estimation methods under different pilot contamination scenarios. The simulation results show that 

as the number of base station antennas increases, the NMSE and uplink ASR performances of our 

proposed NN and IWNN channel estimation approaches are improved compared to the 

conventional LS method. Furthermore, the IWNN estimation method demonstrates substantial 

improvement over the NN method in the presence of high pilot contamination problem with the 

cost of having a small number of iterations.  
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6 Chapter 6 

Low-Complexity Channel Estimator for TDD Massive 

Multiuser MIMO Systems 

6.1 Introduction  

This chapter addresses the problem of minimum mean square error (MMSE) channel estimator in 

time division duplex (TDD) massive multiuser multi-input multi-output (MIMO) systems. It is 

noteworthy that, the MMSE channel estimator has been previously proposed for multi-cell massive 

multiuser MIMO systems [28]. The MMSE estimator suffers from high computational complexity 

due to the large dimension of the covariance matrix inversion which is scaled with the number of 

base station antennas [72]. Another inherent drawback of the MMSE channel estimator is the need 

for additional information about the statistical distribution of the propagation channels ( i.e., 

covariance matrices of the desired and interfering channel users) at each base station. However, 

this information is not available in the real massive MIMO systems. 

Consequently, we propose an alternative scheme namely "Approximate minimum mean 

square error (AMMSE)" channel estimator by using the low-rank matrix approximation technique 

to reduce the computational complexity of the MMSE estimator. Our contributions in this work 

are summarized as: 

• Iterative weighted nuclear norm (IWNN) approximation method is proposed to design a novel 

AMMSE channel estimator for multi-cell TDD massive multiuser MIMO system.  

• The computational complexity of the proposed AMMSE estimator is analyzed and compared 

to the conventional LS and MMSE estimators. 
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• Normalized mean square error (NMSE) and uplink achievable-sum rate (ASR) performance 

metrics are used to evaluate the proposed AMMSE estimator under the noise and pilot 

contamination scenarios. 

• Finally, the simulation results show the agreements between the proposed AMMSE and 

conventional MMSE channel estimators in terms of the NMSE and ASR performances. 

6.2 Pilot-based Channel Estimation 

First, the MMSE-based channel estimation for a multi-cell TDD massive multiuser MIMO system 

is explained. Second, the low-complexity AMMSE proposed channel estimator is presented and 

analyzed. Finally, we investigate the performance of the AMMSE proposed channel estimator in 

a multi-cell TDD massive multiuser MIMO system with and without pilot contamination problem. 

6.2.1 MMSE Channel Estimator 

A linear MMSE technique is considered as one of the optimal channel estimators for massive 

MIMO systems to reduce the pilot contamination effect. Therefore, it has been perversely proposed 

for a multi-cell TDD massive MU-MIMO system [28], [29]. Moreover, a linear MMSE channel 

estimator relies on two key ideas to complete removal of pilot contamination effects in the multi-

cell massive MIMO systems. The first one is the exploitation of the channel covariance 

information of both desired and interfering users under a specific condition on the covariance 

matrices. The second key idea is the use of a covariance-aware pilot assignment strategy within 

the channel estimation phase to satisfy the requirement in the first one.   

To explain above, we consider a multi-cell TDD massive multiuser MIMO system and 

channel models in the previous chapter. In [28], the expression of a linear MMSE channel 

estimator for the desired channel matrix at the target BS-𝑗 is given as 
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𝑯̂𝑀𝑀𝑆𝐸 = 𝑹𝑗  (𝑹𝑗 + ∑𝑹𝑙  

𝐿

𝑙≠𝑗

+
𝜎𝑛

2

𝜏 𝜌𝑡𝑟
𝑰𝑀)

−1

𝑯̂𝐿𝑆 (6.1) 

where 𝑯̂𝐿𝑆 ∊ ℂ𝑀 × 𝐾𝑑 is the least square (LS) estimation of the channel matrix, 𝜌tr is the average 

signal power used by each 𝐾 users in all cells, 𝜏 is the length of the pilot sequence, and 𝜎𝑛
2 is the 

noise variance. In (6.1), 𝑹𝑗 ∊ ℂ𝑀 × 𝑀 is the covariance matrix of the desired channel users, while 

𝑹𝑙 ∊ ℂ𝑀 × 𝑀 is the covariance matrices of the interfering channels from all adjacent cells 𝑙 ≠ j. 

As it appears in (6.1), a linear MMSE estimator suffers from high computational complexity 

due to the large dimension of the covariance matrix inversion which is scaled with the number of 

base station antennas. Another inherent drawback of the MMSE channel estimator is the need for 

additional information about the covariance matrices 𝑹𝑗  and 𝑹𝑙 ∀ 𝑙 ≠ 𝑗 at each BS which are not 

available in the real massive MIMO systems. Therefore, we further proceed with the iterative 

nuclear norm approximation method to design an alternative channel estimator scheme namely 

"Approximate minimum mean square error (AMMSE)" to reduce the computational complexity 

of the conventional MMSE channel estimator.  

6.2.2 Proposed AMMSE Channel Estimator 

The eigenvalue decomposition (EVD) method and low-rank reduction theory are applied to design 

low-complexity AMMSE channel estimator for multi-cell massive MU-MIMO system. The EVD 

in [24] is applied to the covariance matrices 𝑹𝑗 and 𝑹𝑙 in the MMSE channel estimator in (6.1) as 

𝑯̂𝑀𝑀𝑆𝐸 = 𝑼𝑗   𝜮𝑗  (𝑼𝑗)
𝐻 (𝑼𝑗   𝜮𝑗  (𝑼𝑗)

𝐻 + ∑𝑼𝑙  𝜮𝑙 (𝑼𝑙)
𝐻

𝐿

𝑙≠𝑗

+  
𝜎𝑛

2

𝜏 𝜌𝑡𝑟
𝑰𝑀)

−1

𝑯̂𝐿𝑆 (6.2) 
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where 𝜮𝑗  is a diagonal matrix containing the eigenvalues 𝜎𝑗1 ≥ 𝜎𝑗2 ≥ ⋯ ≥ 𝜎𝑗𝑀 of the desired 

channels and 𝜮𝑙 ∀  𝑙 ≠ j  is a diagonal matrix containing the eigenvalues 𝜎𝑙1 ≥ 𝜎𝑙2 ≥ ⋯ ≥ 𝜎𝑙𝑀 of 

the interference channels. In (6.2), 𝑼𝑗 ∊ ℂ𝑀× 𝑀 and 𝑼𝑙 ∊ ℂ𝑀× 𝑀  are unitary eigenvector matrices 

of desired and interference channels, respectively. For the worst-case scenario, we assume that all 

channel users from all cells share the same angle of arrivals. Under this assumption, the correlation 

among these channels is increased. Therefore, all channel users will have the same steering matrix 

with𝑼𝑗 = 𝑼𝑙 and different eigenvalues. Thus, the Equation in (6.2) is simplified as 

𝑯̂𝑀𝑀𝑆𝐸 = 𝑼𝑗   𝜮𝑗 𝑼𝑗
𝐻 (𝑼𝑗 (𝜮𝑗  + ∑  𝜮𝑙 

𝐿

𝑙≠𝑗

  )𝑼𝑗
𝐻 +  

𝜎𝑛
2

𝜏 𝜌𝑡𝑟
𝑰𝑀)

−1

𝑯̂𝐿𝑆 (6.3) 

By using the matrix inversion identity 𝑨(𝑩𝑨 + 𝑰)−𝟏=(𝑨𝑩 + 𝑰)−𝟏𝑨, the Equation (6.3) can be 

written as 

𝑯̂𝑀𝑀𝑆𝐸 = 𝑼𝑗   𝜮𝑗  (𝑼𝑗
𝐻𝑼𝑗 (𝜮𝑗  + ∑   𝜮𝑙 

𝐿

𝑙≠𝑗

  ) +  
𝜎𝑛

2

𝜏 𝜌𝑡𝑟
𝑰𝑀)

−1

𝑼𝑗
𝐻  𝑯̂𝐿𝑆 (6.4) 

In a massive MIMO system with a very large number of base station antennas, 𝑀, we have  

𝑼𝑗
𝐻𝑼𝑗 = 𝑰𝑀 (6.5) 

By substituting (6.5) into (6.4), we rewrite (6.4) as 

𝑯̂𝑀𝑀𝑆𝐸 = 𝑼𝑗   𝜮𝑗  (𝜮𝑗 + ∑ 𝜮𝑙 

𝐿

𝑙≠𝑗

+
𝜎𝑛

2

𝜏 𝜌𝑡𝑟
𝑰𝑀)

−1

𝑼𝑗
𝐻  𝑯̂𝐿𝑆 (6.6) 

which is equivalent to 

𝑯̂𝑀𝑀𝑆𝐸 = 𝑼𝑗   𝜮𝑗  (𝜮𝐿𝑆)
−1 𝑼𝑗

𝐻  𝑯̂𝐿𝑆 (6.7) 



87 

 

where 𝜮𝐿𝑆 is an LS diagonal matrix containing the eigenvalues  σ̂𝑗1 ≥ σ̂𝑗2 ≥ ⋯ ≥ σ̂𝑗𝑀 on its 

diagonal which is defined as  

𝜮𝐿𝑆 = 𝜮𝑗  + ∑   𝜮𝑙 

𝐿

𝑙≠𝑗

+  
𝜎𝑛

2

𝜏 𝜌𝑡𝑟
𝑰𝑀 (6.8) 

Next, equation (6.7) can be simplified as 

𝑯̂𝑀𝑀𝑆𝐸 = 𝑼𝑗   ∆  𝑼𝑗
𝐻   𝑯̂𝐿𝑆 (6.9) 

where ∆ is a diagonal matrix which can be expressed as   

                       ∆ = 𝜮𝑗  (𝜮𝑗 + ∑𝜮𝑙

𝐿

𝑙≠𝑗

+
𝜎𝑛

2

𝜏 𝜌𝑡𝑟
𝑰𝑀)

−1

   

= 𝑑𝑖𝑎𝑔 (
𝜎𝑗1

𝜎𝑗1 + ∑ 𝜎𝑙1 
𝐿
𝑙≠𝑗 +

𝜎𝑛
2

𝜏 𝜌𝑡𝑟

, … . … ,
𝜎𝑗𝑀

𝜎𝑗𝑀 + ∑ 𝜎𝑙𝑀 𝐿
𝑙≠𝑗 +

𝜎𝑛
2

𝜏 𝜌𝑡𝑟

 ) 

(6.10) 

To reduce the computational complexity of the MMSE in (6.9) and introduce the AMMSE 

proposed channel estimator, the theory of low-rank reduction in [15] is applied to (6.9) as 

𝑯̂𝑀𝑀𝑆𝐸 = 𝑼𝑗   [
∆𝑟 0
0 0

] (𝑼𝑗)
𝐻  𝑯̂𝐿𝑆 (6.11) 

where ∆𝑟 is the  r × 𝑟 upper left corner of the matrix ∆ with entries   

𝛿𝑖 = {

𝜎𝑗𝑖

𝜎𝑗𝑖 + ∑   𝜎𝑙𝑖 
𝐿
𝑙≠𝑗 +

𝜎𝑛
2

𝜏 𝜌𝑡𝑟

,   𝑖 = 1,2, …… . , 𝑟

      0,                                     𝑖 = 𝑟 + 1,… ,𝑀

 (6.12) 

where 𝑟 is the rank of the desired channel covariance matrix.  

It should be noted that the subspace eigenvector matrix 𝑼𝑗 in (6.11) can be approximated by 

using a subset of discrete Fourier transform (DFT) basis [30], [34]. This DFT basis can be selected 
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based on a small number of channel observations. However, the diagonal matrix ∆𝑟 is only 

required to be known at the target BS-𝑗 to complete the AMMSE proposed estimator design. Thus, 

the IWNN approximation based on the low-rank reduction theory is applied in this work. It is 

noteworthy that, the IWNN approximation has been recently proposed for massive MU-MIMO 

channel estimation in our previous work [40], [41], [58]. Hence, the LS eigenvalue estimation 

problem in (6.8) is formulated as an unconstrained weighted nuclear norm (WNN) optimization 

problem as follows 

∆̃𝑟= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜮

𝑗
𝑗

{
1

2
‖𝜮𝐿𝑆 − 𝜮𝑗  ‖

𝐹

2

+ 𝛾 ∑|𝑤𝑖 𝜎𝑗𝑖|

𝑟

𝑖=1

} (6.13) 

where ∆̃𝑟 is the diagonal matrix with approximate eigenvalues σ̃𝑗1 ≥ σ̃𝑗2 ≥. . . … ≥ σ̃𝑗𝑟  at the main 

diagonal, and 𝛾 is the regularization parameter which is used to control the trade-off between the 

data fidelity,  
1

2
‖𝜮𝐿𝑆 − 𝜮𝑗  ‖

𝐹

2
, and the penalty function, ∑ |𝑤𝑖 σ𝑗𝑖|

r
𝑖=1 .  Moreover, the regularization 

parameter 𝛾 can be computed by using the formula [54] which is given as 

𝛾 = √2(𝑀 + 𝐿𝐾)𝜏 𝜌𝑡𝑟𝜎𝑛
2 (6.14) 

In (6.13), 𝑤𝑖 is the weight element which can be obtained by using the formula in [64] which is 

given as: 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 +
𝜇

𝜎̃𝑖
𝑡 + 𝜀

   𝑖 = 1,2… . 𝑟 (6.15) 

where σ̃𝑖
𝑡  is the estimated eigenvalue of ∆̃𝑟 in the 𝑡𝑡ℎ iteration, 𝜇 is the step-size parameter which 

is used to accelerate time convergence. To avoid dividing (6.15) by zero, a small positive number 

𝜀 is added. The proposed IWNN approximation method used to design the AMMSE channel 

estimator is summarized in Table 6.1.  
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Table 6.1: IWNN Approximation Algorithm for MMSE Channel Estimator 

1: Choose the number of iterations, 𝑇, 𝜇 = 0.5, 𝜀=10−5, and then set 𝑡=0. 

2: Using the LS channel estimation approach which is explained in the previous chapter, 

compute the LS covariance matrix as  

𝑹̂𝐿𝑆 = 𝐸{(𝑯̂𝐿𝑆)(𝑯̂𝐿𝑆)
𝐻} 

 

(6.16) 

3: Apply the EVD of  𝐑̂𝐿𝑆, to obtain the LS diagonal matrix 𝜮𝐿𝑆, as 

𝑹̂𝐿𝑆 = 𝑼𝐿𝑆  𝜮𝐿𝑆 𝑼𝐿𝑆
𝐻 

 

(6.17) 

4: Select the initial weight elements as 

𝑤𝑖
0 =

1

𝜎̂𝑗𝑖
𝐿𝑆   ,   𝑤ℎ𝑒𝑟𝑒  𝑖 = 1, 2, ………… ,𝑀   

 

(6.18) 

5: Using the formula in (6.14), compute the regularization parameter, γ. 

6: To obtain, ∆̃𝑟, solve the optimization problem in (6.13). 

7: 𝑡 = 𝑡 + 1 

8: Update the weight elements by using the formula in (6.15). 

9: Repeat steps from 6-8 until the selected 𝑇 is reached. 

10: Finally, compute the desired channel matrix by substituting (6.13) into (6.11). 
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6.3 Estimator Complexity Analysis 

The main complexity of the MMSE channel estimator comes from a significant dimension of 

matrix inversion in (6.1) [72], [77]. It is scaled with the length of the pilot sequence, 𝜏, and the 

number of BS antennas, 𝑀. In other words, the total number of multiplications required to estimate 

the desired channel matrix by using the MMSE estimator is 𝑀3𝜏3. Compared to the MMSE 

channel estimator, the total number of multiplications needed to estimate the desired channel 

matrix by using the proposed AMMSE channel estimator is only 𝑀𝜏𝑃𝑇, where 𝑇 is the total 

number of iterations. As a result, we have managed to reduce the number of multiplications using 

the proposed AMMSE channel estimator from 𝑀3𝜏3 to 𝑀𝜏𝑃𝑇. However, the proposed AMMSE 

estimator can only be considered as low-complexity channel estimator if 𝑇 ≤ 100. As such, the 

computational complexity in terms of the total number of iterations is studied. The asymptotic 

complexities and the estimation performances of the conventional LS, MMSE, and the proposed 

AMMSE estimators are summarized in Table 6.2.  

Table 6.2: Asymptotic Complexities of Different Estimators 

Channel Estimators Computational Complexity Estimation Performance 

LS 
𝒪(𝑀𝜏) Low 

AMMSE 
𝒪(𝑀𝜏𝑃𝑇) Moderate 

MMSE 
𝒪(𝑀3𝜏3) High 
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6.4 Simulation Results 

This section contains the simulation results of the proposed AMMSE channel estimator for multi-

cell TDD massive MU-MIMO system. However, these simulation results are compared to the 

conventional LS and MMSE estimators under two different scenarios: noise-limited and pilot 

contamination. To investigate above, we consider the same system and channel models for multi-

cell massive MU-MIMO system with 𝐿= 3 cells as explained in the previous chapter. In this study, 

we assume each cell containing the total number of 𝐾 = 20 users, and one BS with 𝑀 = 100 

antennas. We assume the length of the pilot sequence is 𝜏 = 20, and the number of multipath is 

𝑃=10. The SNR is set to 0 dB, and the steering vector parameters are selected to be 𝐷/𝜆  = 0.5, 

and θ𝑝 = −𝜋/2 + (𝑝 − 1)𝜋/2𝑃, where 𝑝=1, 2…...𝑃. The two following performance criteria are 

used to evaluate the proposed AMMSE channel estimator in different interference scenarios. The 

first criteria is a normalized mean square error (NMSE) which is given by [28] as 

𝑁𝑀𝑆𝐸(𝑑𝐵) = 10𝑙𝑜𝑔10  (
𝐸‖𝑯̂𝑀𝑀𝑆𝐸 − 𝑯𝑗‖𝐹

2

𝐸‖𝑯𝑗‖𝐹

2 ) (6.19) 

where 𝐇𝑗 and 𝑯̂𝑀𝑀𝑆𝐸  are the desired channel and its estimate by using the conventional MMSE or 

AMMSE estimator, respectively. The second criteria is the uplink achievable sum-rate (ASR) of 

𝐾 users which is given as 

𝐴𝑆𝑅 ≤ ∑ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑘)

𝐾

𝑘=1

 (6.20) 

where SINRk is the received signal-to-interference-plus-noise ratio of the 𝑘𝑡ℎ user at the linear 

detector output. When the linear maximum ratio combing (MRC) detector is assumed at the BS-𝑗, 
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the weight vector of MRC is defined as 𝒗𝑗𝑘 = 𝒉̂𝑗𝑘. It should be noted that the SINRk of each 

𝑘𝑡ℎ user in (6.20) can be calculated by using Equation (3.41) in the previous chapter.  

6.4.1 Noise-limited Scenario 

In this scenario, we study the behaviors of the proposed AMMSE estimator for multi-cell massive 

MU-MIMO system under a noisy setting. The noise-limited scenario is given by setting 𝛽𝑙𝑘= 0 for 

all interfering channel users in the adjacent cells, while 𝛽𝑗𝑘=1 for all desired channel users in the 

target cell-𝑗. 

 In Figure 6.1, the NMSE performance of the proposed AMMSE estimator is evaluated under a 

different number of BS antennas 𝑀, and compared to the conventional LS and MMSE estimators. 

It can be seen from Figure 6.1 that the NMSEs of the AMMSE and MMSE estimators are 

 

Figure 6.1: NMSE performance comparison between different estimators under different, 𝑀, in 

the noise-limited scenario (𝛽𝑙𝑘= 0) 
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converged to zero as 𝑀 increases, while the LS estimator does not show any change. Moreover, 

the NMSE of the proposed AMMSE estimator is only about 0.5 dB less than the MMSE estimator 

when 𝑀 ≥ 100.  

In Figure 6.2, the ASR performance of the proposed AMMSE estimator is investigated under a 

different number of BS antennas 𝑀, and compared to the conventional LS and MMSE estimators. 

It can be seen from this figure that as 𝑀 increases, the uplink ASRs of the proposed AMMSE and 

MMSE estimators are almost the same and improved compared to the LS estimation performance. 

On the other hand, the uplink ASR of the LS estimator is quickly saturated as 𝑀 ≥ 100. 

 As mentioned earlier in section 6.3, the main computational complexity of the proposed 

estimator comes from the number of iterations, 𝑇. Thus, we now turn our attention to study the 

computational complexity of the proposed AMMSE estimator. It can be seen from Figure 6.1 and 

 

Figure 6.2: ASR performance comparison between different estimators under different, 𝑀, in the 

noise-limited scenario (𝛽𝑙𝑘= 0). 
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Figure 6.2 that after only 𝑁=5 iterations, the AMMSE estimator is quickly converged to the MMSE 

estimator which means that the AMMSE estimator has low complexity. 

6.4.2 Pilot Contamination Scenario  

In this scenario, we study the behavior of the proposed AMMSE estimator under the weak and 

strong pilot contamination effects. The weak pilot contamination is given by setting 𝛽𝑙𝑘= 0.1 for 

all interfering channel users in the adjacent cells, while 𝛽𝑙𝑘= 0.9 for the strong pilot contamination 

case. For all desired channel users in the target cell-𝑗, 𝛽𝑗𝑘=1 and SNR = 0 dB have remained the 

same as in the noise-limited scenario. First, the impact of the weak pilot contamination on the 

proposed AMMSE estimator is studied and compared to various estimation performances under a 

different number of BS antennas, 𝑀. 

 

Figure 6.3: NMSE performance comparison between different estimators under different, 𝑀, in 

the weak pilot contamination scenario (𝛽𝑙𝑘= 0.1). 
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Figure 6.3 displays the comparison between the conventional LS, MMSE, and the proposed 

AMMSE estimators in terms of the NMSE. It can be seen from this figure that as 𝑀 increases, the 

performance of the AMMSE estimator is about 3 bps/Hz less than the MMSE and about 12 bps/Hz 

better than the LS estimator when 𝑇 = 1 iteration. By increasing the number of iterations from 𝑇 = 

1 to 𝑇 = 10 in the proposed algorithm, the performance of the proposed AMMSE estimator is 

improved by 2 bps/Hz compared to the algorithm with 𝑇 = 1. 

Moreover, the uplink ASR performance of the proposed AMMSE is investigated in the 

presence of weak pilot contamination and compared to the LS and MMSE estimation 

performances. It can be seen from Figure 6.4 that as 𝑀 increases, the uplink ASR of the proposed 

AMMSE is almost the same as MMSE estimation performance even with a small number of 

 

Figure 6.4: ASR performance comparison between different estimators under different, 𝑀, in the 

weak pilot contamination scenario (𝛽𝑙𝑘= 0.1). 
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iterations, 𝑇. On the other hand,  the uplink ASR of the proposed AMMSE achieves significantly 

better performance compared to the LS estimator.  

Finally, the impact of strong pilot contamination on the proposed AMMSE estimator under a 

different number of BS antennas, 𝑀 is studied. Figure 6.5 shows the NMSE performance of 

different estimators versus the number of base station antennas, 𝑀. It can be seen from this figure 

that when 𝑇=1 iteration and 𝑀 increases, the NMSE of the proposed AMMSE estimator is about 

3 dB less than the MMSE estimator and 11 dB better than the LS estimator. Moreover, when 𝑀 ≤

100 and 𝑇 ≥ 10, the NMSE performance of the proposed estimator is converged to the MMSE 

estimator, while it diverges as 𝑀 increases. 

 

 

Figure 6.5: NMSE performance comparison between different estimators under different, 𝑀, in 

the strong pilot contamination scenario (𝛽𝑙𝑘=0.9). 
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Figure 6.6 illustrates the ASR performance of different estimators versus the number of base 

station antennas, 𝑀. It can be seen from this figure that when 𝑀 ≤ 100 and 𝑁 ≥ 10 iterations, the 

ASR performance of the proposed AMMSE estimator is only about 2 bps/Hz less than the MMSE 

estimator. However, as 𝑀 increases, the ASR performance of the proposed AMMSE estimator is 

improved by 5 bps/Hz compared to the MMSE estimator with a small number of iterations. In 

contrast, the uplink ASR obtained by the LS channel estimation is quickly saturated for 𝑀 ≥100.  

 

 

 

 

 

Figure 6.6:  ASR performance comparison between different estimators under different, 𝑀, in the 

strong pilot contamination scenario (𝛽𝑙𝑘=0.9). 
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6.5 Conclusion 

In this work, a novel low-complexity channel estimator namely “approximate minimum mean 

square error (AMMSE)” for multi-cell TDD massive MU-MIMO systems has been proposed.  The 

IWNN approximation based on the low-rank reduction theory is proposed to design the proposed 

AMMSE estimator. Compared to the conventional MMSE estimator, the computational 

complexity of the proposed AMMSE estimator regarding the number of multiplications is reduced 

from 𝒪(𝑀3𝜏3) to  𝒪(𝑀𝜏𝑃𝑁). The simulation results show that the proposed estimator and the 

conventional MMSE estimator have almost the same performance in terms of the NMSE and 

uplink ASR performances. These estimation performances of the proposed AMMSE estimator 

have been investigated under two different scenarios: noise-limited and pilot contamination. 

Moreover, the AMMSE channel estimation performance outperforms the LS estimation in terms 

of the NMSE and the uplink ASR. 
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7 Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

This thesis has been concerned with the development of new channel estimation techniques for 

single-cell and multi-cell TDD massive MU-MIMO networks. More specifically, the proposed 

estimation schemes are based on the applications of low-rank matrix approximation (LRMA) 

techniques. We have also provided analysis and simulation results to show the performance 

improvements of the proposed channel estimation schemes in both single-cell and multi-cell 

systems. Two performance criteria namely “ normalized mean square error ( NMSE) and uplink 

achievable sum-rate (ASR)” are used to evaluate the proposed estimation schemes under different 

interference scenarios. A brief analysis of the complexities of the proposed schemes regarding the 

number of iterations is provided to confirm the reduction of the computational complexity of the 

proposed systems. 

In Chapter 3, a novel channel estimation approach namely “nuclear norm (NN) 

approximation,” has been proposed for a single-cell TDD massive MU-MIMO system. The main 

aim of the proposed scheme is to estimate the channel matrix entries with a limited number of pilot 

sequences. Hence, the channel estimation problem is formulated as a unconstrainted nuclear norm 

minimization problem and solved via the proposed algorithm. The simulation results show that the 

performance of the proposed scheme in terms of the NMSE and uplink ASR significantly 

outperforms the traditional LS estimation, which ignores the sparsity feature of the channels. 
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In Chapter 4, the proposed iterative weighted nuclear norm (IWNN) approximation scheme 

has been proposed to improve the previously proposed nuclear norm (NN) estimation method. The 

accuracy of the proposed iterative algorithm has been controlled by an appropriate setting of the 

weight element which is assigned to each singular value of the channel matrix. The simulation 

results show that the proposed IWNN method with the cost of having a few iterations results in 

significant improvements regarding the NMSE and uplink ASR over the LS and NN estimation 

schemes. Furthermore, the computational complexity of the IWNN estimation technique is also 

studied in terms of the number of iterations. 

Chapter 5 has extended the applications of the LRMA to reduce the pilot contamination 

problem in a multi-cell massive MU-MIMO system. Hence, the NN and IWNN estimation 

schemes exploiting the sparsity of the channel matrix have been proposed. The simulation results 

show that both the performances of the proposed NN and IWNN in terms of the NMSE and uplink 

ASR are improved compared to the conventional LS method. Furthermore, the IWNN estimation 

scheme demonstrates substantial improvement over the NN estimation under different pilot 

contamination scenarios. 

In Chapter 6, a low-complexity channel estimator namely “approximate minimum mean 

square error (AMMSE)” for multi-cell TDD massive MU-MIMO systems has been proposed. The 

computational complexity of the proposed AMMSE estimator regarding the number of 

multiplications has been reduced by using IWNN reduction scheme, which is based on the low-

rank reduction theory. The simulation results show the performance agreements between the 

proposed estimator and the conventional MMSE estimator in terms of the NMSE and the uplink 

ASR performances under two different scenarios: noise-limited and pilot contamination. The 

AMMSE channel estimation performance outperforms the LS estimation. 
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7.2 Future Work 

Based on our study of massive MU-MIMO channel estimation, a few potential research topics can 

be identified. 

▪ Our work only deals with the flat fading channel estimation for single-carrier massive TDD 

MU-MIMO systems. However, in practice, it is natural to consider the same scenarios in a 

multi-carrier system, i.e., the OFDM-based scheme [85]. 

▪ In this thesis, the proposed IWNN estimation scheme for both single-cell and multi-cell 

massive TDD MU-MIMO systems is amplitude-based projection. An interesting topic now 

is to develop a robust channel estimation scheme that effectively combines projections in 

both angular and amplitude domains. Specifically, it is reasonable to consider the channel 

estimation based on the joint angle of arrival (AoA) estimation scheme and singular value 

decompensation (SVD) method.  

▪ The channel estimation problems for both single-cell and multi-cell massive TDD MU-

MIMO systems are formulated as a convex regularization problem with one penalty 

function each. The recent results show that the better estimation performances of a sparse 

low-rank matrix can be obtained by using the non-regularization estimation scheme. Some 

works have recently considered this approach to estimate a sparse low-rank matrix from its 

noisy observation in matrix completion problems [56], [57], which can be applied in the 

proposed estimation methods of this thesis. 

▪ A low-complexity alternative channel estimator (AMMSE) is proposed in this thesis for 

only a single-carrier multi-cell TDD massive MU-MIMO system. However, in practice, it 

is natural to consider the same channel estimator in a multi-carrier system, i.e., AMMSE-

OFDM-based channel estimator scheme. 
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