

Kubernetes as an Availability Manager for Microservice Based Applications

Leila Abdollahi Vayghan

A Thesis

in the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

August 2019

© Leila Abdollahi Vayghan, 2019

ii

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Leila Abdollahi Vayghan

Entitled: Kubernetes as an Availability Manager for Microservice Based Applications

and submitted in partial fulfillment of the requirements for the degree of

Master in Computer Science

complies with the regulations of the University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining committee:

__ Chair

 Dr. P. Rigby

__ Internal Examiner

 Dr. D. Goswami

__ Internal Examiner

 Dr. J. Rilling

__ Co-Supervisor

 Dr. F. Khendek

__ Co-Supervisor

 Dr. M. Toeroe

Approved by: ___________________________________

 Dr. L. Narayanan, Chair

 Department of Computer Science and Software Engineering

_______________ 2019___ __________________________________

 Dr. Amir Asif, Dean,

 Faculty of Engineering and Computer Science

iii

ABSTRACT

Kubernetes as an Availability Manager for

Microservice Based Applications

 Leila Abdollahi Vayghan

The architectural style of microservices has been gaining popularity in recent years. In this

architectural style, small and loosely coupled modules are deployed and scaled independently

to compose cloud-native applications. Microservices are maintained and tested easily and are

faster at startup time. However, to fully leverage from the benefits of the architectural style of

microservices, it is necessary to use technologies such as containerization. Therefore, in prac-

tice, microservices are containerized in order to remain isolated and lightweight and are or-

chestrated by orchestration platforms such as Kubernetes. Kubernetes is an open-source plat-

form that defines a set of building blocks which collectively provide mechanisms for orches-

trating containerized microservices. The move towards the architectural style of microservices

is well underway and carrier-grade service providers are migrating their legacy applications to

a microservice based architecture running on Kubernetes. However, service availability re-

mains a concern. Service availability is measured as the percentage of time the service is pro-

visioned. High Availability (HA) is a non-functional requirement for service availability of at

least 99.999%. Although the characteristics of microservice based architectures naturally con-

tribute to improving the availability, Kubernetes as an orchestration platform for microservices

needs to be evaluated in terms of availability. Therefore, in this thesis, we identify possible

architectures for deploying stateless and stateful microservice based applications with Kuber-

netes and evaluate Kubernetes from the perspective of availability it provides for its managed

iv

applications. Our experiment’s results show that the healing capabilities of Kubernetes are not

sufficient for providing high availability, especially for stateful applications. Therefore, we

propose a State Controller which integrates with Kubernetes and allows for state replication

and automatic service redirection to the healthy microservice instance. We conduct experi-

ments to evaluate our solution and compare the different architectures from an availability per-

spective and scaling overhead. The results of our investigations show that our solution im-

proves the recovery time of stateful microservice based applications by 55% and even up to

99% in certain cases.

v

Acknowledgments

First and foremost, I would like to thank God for giving me the strength, knowledge, and

opportunity to undertake this research study. Without his blessings, this achievement would

not have been possible.

I gratefully acknowledge my supervisors Dr. Ferhat Khendek and Dr. Maria Toeroe for

their guidance, patience, and encouragements throughout my Master’s study.

This work has been conducted within the NSERC/Ericsson Industrial Research Chair in

Model-Based Software Management, which is supported by Natural Sciences and Engineer-

ing Research Council of Canada (NSERC), Ericsson and Concordia University.

I have great pleasure in acknowledging my gratitude to my colleagues at MAGIC, espe-

cially Dr. Mohammed Aymen Saied, for all their support and friendship.

I will forever be indebted for the love and support of my parents, my greatest role models.

They have guided me towards the best possible life by teaching me to always love and always

believe. And last, but not least, I am thankful to my loving husband. My dear Abbas, you stood

beside me every step of the way. I will love and cherish you for the rest of my life.

vi

Table of Contents
List of Figures ... viii

List of Tables ... xii

1 Introduction ... 1

1.1 Research Domain .. 1

1.2 Thesis Motivation .. 3

1.3 Thesis Contributions ... 4

1.4 Thesis Organization... 5

2 Background Information and Related Work ... 6

2.1 Background Information ... 6

2.1.1 Microservices ... 6

2.1.2 Containers .. 8

2.1.3 Kubernetes ... 9

2.1.4 Service Availability ... 14

2.1.5 Availability Management Framework ... 14

2.2 Related Work... 16

3 Microservice Based Architectures with Kubernetes and their Availability 21

3.1 Architectures for Deploying Microservice Based Applications 21

3.1.1 Stateless Microservice Based Applications ... 22

3.1.2 Stateful Microservice Based Applications .. 23

3.1.3 Service Discovery .. 26

3.2 Availability of Stateless Architectures .. 30

vii

3.2.1 Availability Metrics and Failure Scenarios ... 30

3.2.2 Evaluating the Availability of Stateless Applications Deployed with Kubernetes 33

3.3 Analysis and Discussion.. 46

3.3.1 Availability of Stateless Applications ... 46

3.3.2 Challenges of Managing the Availability of Stateful Applications 54

3.4 Conclusion ... 56

4 A State Controller to Manage the Availability of Stateful Microservice Based

Applications ... 58

4.1 A State Controller for Kubernetes ... 59

4.1.1 Managing Availability with the State Controller .. 59

4.1.2 Integrating the State Controller with Kubernetes .. 65

4.1.3 Evaluating the Achievable Service Availability by Integrating the State Controller

with Kubernetes .. 71

4.1.4 Analysis and Discussion .. 83

4.1.5 Limitations of the Proposed State Controller .. 89

4.2 Handling Elasticity with the State Controller ... 90

4.2.1 Evaluating the Scaling Overhead and the Achievable Service Availability with the

Modified State Controller ... 98

4.2.2 Analysis and Discussion .. 110

4.3 Conclusion ... 115

5 Conclusion .. 118

Bibliography .. 121

viii

List of Figures

Figure 3-1. An architecture for deploying stateless microservice based applications with

Kubernetes. .. 23

Figure 3-2. An architecture for deploying stateful microservice based applications using a

StatefulSet controller. .. 24

Figure 3-3. An architecture for deploying stateful microservice based applications using a

Deployment controller. .. 25

Figure 3-4. Public cloud - exposing services via services of type “Load Balancer”. 27

Figure 3-5. Private cloud - exposing services via services of type “Node Port”. 28

Figure 3-6. Public cloud - exposing services via ingress. .. 29

Figure 3-7. Private cloud - exposing services via ingress. ... 29

Figure 3-8. Availability metrics. .. 31

Figure 3-9. Concrete architecture for experimenting with Kubernetes - Stateless microservice

based application with No-Redundancy redundancy model. ... 35

Figure 3-10. Concrete architecture for experimenting with Kubernetes - Stateless

microservice based application with N-Way Active redundancy model. 40

Figure 3-11. The architecture for availability experiments with OpenSAF (stateless VLC). . 45

Figure 3-12. Analysis of experiments with Kubernetes under the default configuration and

No-Redundancy redundancy model – evaluating the repair actions. 46

file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181774
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181774
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181775
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181775
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181776
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181776
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181777
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181778
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181779
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181780
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181781
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181782
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181782
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181783
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181783
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181784
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181785
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181785

ix

Figure 3-13. Analysis of experiments with Kubernetes under the default configuration and N-

Way Active Redundancy model – evaluating the impact of redundancy. 47

Figure 3-14. Comparing Kubernetes and OpenSAF from availability perspective for stateless

applications. a) VLC container failure scenario, b) Pod container failure scenario, c) Node

failure scenario. .. 48

Figure 3-15. Analysis of pod failure scenarios. (a) Administrative pod termination. (b) Pod

process failure. ... 51

Figure 3-16. Analysis of node failure scenarios. (a) Administrative node termination. (b)

Externally triggered node failure. .. 53

Figure 4-1. The behavior of the State Controller. .. 61

Figure 4-2. Setting the HAState label and HAState variable for pods (Step A). 62

Figure 4-3. Decision making of the entrypoint process based on the HAState variable (Step

A). .. 63

Figure 4-4. Self-cleanup watch loop of the entrypoint process (Step B). 64

Figure 4-5. Integrating the State Controller with StatefulSet controllers. 66

Figure 4-6. Integrating the State Controller with Deployment controllers. 70

Figure 4-7. Concrete architecture for experimenting with Kubernetes - Stateful microservice

based application with No-Redundancy redundancy model. ... 73

Figure 4-8. The architecture for availability experiments with OpenSAF (stateful VLC). 82

file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181786
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181786
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181787
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181787
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181787
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181788
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181788
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181789
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181789
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181790
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181791
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181792
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181792
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181793
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181794
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181795
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181796
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181796
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181797

x

Figure 4-9. Comparing Kubernetes and OpenSAF from availability perspective. a)

Application container/component failure scenario, b) Node/physical host reboot scenario. .. 84

Figure 4-10. The behavior of the State Controller enriched with elasticity. 92

Figure 4-11. Setting the HAState and Peer label and variables to pods (Step C). 93

Figure 4-12. An example architecture for the State Controller enriched with elasticity. 94

Figure 4-13. Modified State Controller integrated with StatefulSet controller - stateful

application with multiple pairs of active-standbys. ... 96

Figure 4-14. Modified State Controller integrated with Deployment controller - stateful

application with multiple pairs of active-standbys. ... 97

Figure 4-15. Concrete architecture for experimenting with Kubernetes - Stateful microservice

based application with No-Redundancy redundancy model. a) Deployed with StatefulSet

controller. b) Deployed with Deployment controller. .. 101

Figure 4-16. Example of integrating the modified State Controller with Deployment

controllers. ... 103

Figure 4-17. Scaling time results for experiments of RQ11 – Scale-out scenario. 112

Figure 4-18. HA state assignment time results for experiments of RQ11 – Scale-out scenario.

.. 112

Figure 4-19. Scaling time results for experiments of RQ11 – Scale-in scenario. 113

file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181798
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181798
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181799
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181800
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181801
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181802
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181802
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181803
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181803
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181804
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181804
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181804
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181805
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181805
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181806
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181807
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181807
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181808

xi

Figure 4-20. Results for experiments of RQ12 – StatefulSet controller (average outage time

for each failed pod). ... 114

Figure 4-21. Results for experiments of RQ12 – Deployment controller (average outage time

for each failed pod). ... 114

file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181809
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181809
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181810
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181810

xii

List of Tables

Table 3-1. Experiments with Kubernetes under Default Configuration – External Execution

Failures with No-Redundancy Redundancy Model. .. 38

Table 3-2. Experiments with Kubernetes under Default Configuration – Administrative

Failures with No-Redundancy Redundancy Model ... 38

Table 3-3. Experiments with Kubernetes under the Default Configuration – N-Way Active

Redundancy Model. ... 41

Table 3-4. Experiments with Kubernetes with changed configuration - service outage due to

pod container failure. ... 43

Table 3-5. Experiments with Kubernetes with changed configuration - service outage due to

node failure. ... 43

Table 3-6. Experiments with OpenSAF (Non-SA-Aware VLC). .. 45

Table 4-1. Kubernetes with Default Configuration - Stateful VoD deployed with a StatefulSet

controller. ... 75

Table 4-2. Kubernetes with Default Configuration - Stateful VoD deployed with a StatefulSet

controller and the State Controller. .. 78

Table 4-3. Kubernetes with Default Configuration - Stateful VoD deployed with a

Deployment Controller and the State Controller. .. 78

Table 4-4. Kubernetes with the Most Responsive Configuration – Service Outage due to

Node Failure Scenario.. 80

file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181811
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181811
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181812
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181812
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181813
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181813
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181814
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181814
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181815
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181815
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181816
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181817
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181817
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181818
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181818
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181819
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181819
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181820
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181820

xiii

Table 4-5. Experiments with OpenSAF (SA-Aware VLC). .. 82

Table 4-6. Evaluating the repair actions of Kubernetes for providing availability –

Application container failure scenario. .. 101

Table 4-7. Evaluating the modified State Controller for providing availability – Application

container failure scenario. .. 101

Table 4-8. Evaluating the provided availability by the modified State Controller when

failover and scaling overlap – Scale-out scenario. ... 104

Table 4-9. Evaluating the provided availability by the modified State Controller when

failover and scaling overlap – Scale-in scenario. ... 104

Table 4-10. Scaling overhead and HA state assignment time for the scale-out scenario. 106

Table 4-11. Scaling overhead for the scale-in scenario. ... 107

Table 4-12. Availability metrics of simultaneously failed pods – The Modified State

Controller integrated with a StatefulSet controller (Figure 4-13). ... 108

Table 4-13. Availability metrics of simultaneously failed pods – The Modified State

Controller integrated with a Deployment controller (Figure 4-14). 109

file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181821
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181822
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181822
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181823
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181823
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181824
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181824
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181825
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181825
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181826
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181827
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181828
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181828
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181829
file:///C:/Users/leila/Dropbox/MAGIC/Master%20Thesis/Leila%20Thesis%20-%20Complete%20Draft%20-%20final.docx%23_Toc19181829

1

Chapter 1

1 Introduction

This chapter introduces the research domain and the motivations for this thesis followed

by its contributions and organization.

1.1 Research Domain

With the advent of cloud computing [1], the microservices architectural style [2] has drawn

a substantial amount of attention in the software engineering community. As opposed to mon-

olithic architecture, the microservice based architecture tackles the challenges of building

cloud-native applications that leverage the opportunities given by the cloud infrastructure [3].

Microservices [4] are a realization of the service-oriented architectural style for designing

software composed of small services that can be deployed and scaled independently by fully

automated deployment machinery and with minimum centralized management [5]. Each mi-

croservice has a separate business functionality, runs in its own process, and communicates

through lightweight mechanisms often using APIs [2]. The fine granularity of this architectural

style makes the scaling more flexible and efficient as each microservice can evolve at its own

pace. Moreover, compared to monolithic applications, microservices are small and can restart

faster at the time of upgrade or failure recovery. Microservices are loosely coupled and failure

2

of one microservice will not affect other microservices of the system. Because of these charac-

teristics, adopting the architectural style of microservices can improve the service availability

of applications [2].

Service availability is a non-functional requirement defined as the percentage of time a

service is provisioned [6]. High availability is achieved when the system is available at least

99.999% of the time. Therefore, the total downtime allowed in one year for highly available

systems is around 5 minutes [7].

To leverage the benefits of microservice based architectures, one needs to use technologies

aligned with the characteristics of this architectural style. Containerization is the technology

that enables virtualization at the operating system level [8]. Containers are lightweight and

portable, therefore suitable for creating microservices. Docker [9] is the leading container plat-

form that packages code and dependencies together and ships them as one container image.

Since containers are isolated, they are not aware of each other. Thus, there is a need for an

orchestration platform to manage the deployment of containers.

Kubernetes [10] is an open-source platform that enables the automated deployment, man-

agement, and scaling for containerized applications. Kubernetes alleviates the complexity of

implementing applications’ resiliency through its mechanisms for maintenance and healing.

Therefore, it has become a popular platform for deploying containerized microservice based

applications.

3

1.2 Thesis Motivation

The move towards the microservice based architectures is well underway. Organizations

are migrating their legacy applications into cloud-native architectures by adopting the archi-

tectural style of microservices [11]. These microservice based applications are containerized

and orchestrated by orchestration platforms such as Kubernetes. However, as an important

quality attribute for carrier-grade service providers, service availability remains a concern.

Some characteristics of microservices and containers such as being small and lightweight

would naturally contribute to improving service availability [12]. Kubernetes provides healing

for its managed microservice based applications [10]. The healing capability of Kubernetes

consists of restarting the failed containers and replacing or rescheduling containers when their

hosts fail. The healing capability also means not advertising unhealthy containers until they are

ready again. These features would also improve the availability of the services provided by the

applications deployed with Kubernetes. It is, therefore, important to evaluate the level of avail-

ability that Kubernetes can provide solely through its healing capabilities.

Replication is an important means of enabling availability. Stateless microservices are the

most amenable to be replicated as they can be easily deployed as interchangeable instances.

However, the same is not true for stateful microservices. Stateful microservices are not inter-

changeable and each one may have a unique state. This means one cannot bring stateful micro-

services down at a moment’s notice and expect their services to be resumed by the other mi-

croservice instances. Deploying a replicated set of stateful microservices requires coordination

of the different replicas to keep them synchronized and the “state” aspect makes orchestration

even more complex.

4

The goals of this thesis are to evaluate Kubernetes as an availability manager for micro-

service based applications, identify weaknesses and propose solutions to improve the availa-

bility provided by Kubernetes.

1.3 Thesis Contributions

In this thesis, we identify the possible architectures for deploying microservice based ap-

plications with Kubernetes and qualitatively evaluate them from the perspective of service dis-

covery and deployment. We also conduct availability experiments to measure the availability

that Kubernetes can provide for its managed applications. Finally, we propose and evaluate a

solution to improve the availability of stateful microservice based applications deployed with

Kubernetes and we evaluate our solution from the perspective of availability and scaling over-

head. The main contributions of this thesis are summarized as follows:

o Evaluation of the architectures for deploying microservice based applications with Kuber-

netes

In this contribution we:

 Identify the architectures for deploying stateless and stateful microservice based

applications

 Qualitatively evaluate the identified architectures

 Conduct availability experiments under different failure scenarios and configura-

tions to measure the achievable availability with Kubernetes

o A solution to improve the availability of stateful microservice based applications deployed

with Kubernetes

In this contribution we:

5

 Address the identified problems in managing the availability of stateful micro-

service based applications deployed with Kubernetes by proposing an availability

architecture

 Introduce a “State Controller” component to integrate availability states with Ku-

bernetes and assign active and standby roles to microservice instances

 Implement a prototype and conduct availability experiments under different failure

scenarios and configurations to measure the achievable availability with our pro-

posed solution

 Extend the State Controller prototype to assign availability states to multiple pods

and conduct experiments to evaluate the achievable availability as well as the scal-

ing overhead

1.4 Thesis Organization

This thesis is organized into five chapters. In Chapter 2, the background knowledge related

to microservice based architectures, containerization, Kubernetes architectural components,

and availability as well as related work are discussed. In Chapter 3, the possible architectures

for deploying stateless and stateful microservice based applications with Kubernetes are iden-

tified and evaluated from the perspective of availability. In this chapter, the issues that Kuber-

netes faces in managing the availability of stateful applications are identified and discussed. In

Chapter 4, we propose an architecture where we introduce a State Controller component which

addresses the issues identified in Chapter 3. A prototype is implemented to measure, evaluate,

and analyze the availability achievable with our solution. The proposed State Controller is

modified in order to enable elasticity and evaluated in terms of availability and scaling over-

head. Finally, in Chapter 5, we summarize our contributions and discuss potential future work.

6

Chapter 2

2 Background Information and Related

Work

 In this chapter, we present the related background information in Section 2.1 followed

by the review of the literature for microservice based architectures and their availability in

Section 2.2.

2.1 Background Information

In this section, we explain about the microservice based architectures [2] and their charac-

teristics and discuss how containers can empower the usage of microservices [8]. We also in-

troduce Kubernetes [10] and its objects as a platform for orchestrating containers. Lastly, we

provide a general definition for service availability followed by an introduction to the Availa-

bility Management Framework (AMF) [13].

2.1.1 Microservices

The traditional way to create software is a monolithic approach. In this approach, the soft-

ware is built as a large and single deployable unit to fulfill all business requirements. While the

monolithic approach might be practical for small applications, a monolithic architecture for

complex projects will create barriers for scalability and high availability [14]. Components of

a monolithic application are tightly coupled which creates a “dependency hell” [15]. This leads

to extended integration time and a lack of direct traceability to the source of errors during the

7

integration cycles. Moreover, because of the dependency, one cannot scale only a portion of a

monolithic application as needed. Instead, the entire application needs to be scaled [2].

A microservice based architecture [16] is a realization of the service-oriented architectural

style for developing software composed of small services (microservices) that can be deployed

and scaled independently by fully automated deployment machinery, with minimum central-

ized management [16]. Microservices are built around separate business functionalities and a

single microservice fulfills only one business requirement. Each microservice runs in its own

process space and communicates with other microservices through lightweight mechanisms

such as APIs [2]. Microservices of an application can be written in different programming

languages and use different storage technologies and avoid “technology lock-in” [2].

Microservices’ characteristics address the issues of monolithic architectures. For example,

since each microservice implements a single business functionality, its code base will be small

[2]. Therefore, maintaining and testing a microservice will require less effort. Also, micro-

services are loosely coupled and changing one microservice of the application does not require

the whole system to be rebooted [2]. Moreover, because of the independency between micro-

services, it is possible to scale microservice based applications in a fine-grained manner. That

is, increasing the number of one microservice instance while the number of other microservice

instances of the application stays the same [2].

As we mentioned above, migrating towards a microservice based architecture has ad-

vantages. However, one needs to consider the disadvantages of this architectural style as well.

For example, using microservices’ architectural style means bringing the complexity of design-

ing distributed systems into the design process [17]. Developers need to handle requests be-

tween microservices of the application and take the latency of remote calls into consideration.

8

Moreover, having multiple databases and managing transactions will require more effort [17].

Although testing a single microservice is less complex compared to a monolithic application,

testing a microservice based application can be difficult. The reason is that all microservices

of the application and their connectivity with the underlying infrastructure needs to be con-

firmed before testing the entire application [17].

2.1.2 Containers

In Sub-section 2.1.1, we discussed how the architectural style of microservices can address

the issues of the monolithic approach. However, microservices architecture brings complexity

for the developers that requires a certain level of automation and agility to help them adapt to

this architectural style [14]. Today, containerization technologies are accelerating the use of

microservice based architectures.

Containerization technology encapsulates the application’s code and its dependencies and

enables fine-grained resource control and isolation for them [18]. Containers implement virtu-

alization at the operating system level. It is possible to run multiple containers on a single

machine. These containers will share the OS kernel and run as isolated processes in user space

[9]. On the other hand, Virtual Machines (VMs) implement virtualization at the physical hard-

ware level which makes one single server to work as a number of servers [9]. Containers take

less space (around tens of MBs) and are more lightweight compared to VMs. Because VMs

include a full copy of an operating system and its binaries which can take tens of GBs.

Docker [9] is the leading container platform that encapsulates code and its dependencies

together and ships them as a container image. Any machine that has the Docker container en-

gine running can pull this image from the Docker Hub repository [19] and run containers based

on this image. A Docker container image is a lightweight executable package of software that

9

includes the code, runtime, and system libraries to run an application. Container images be-

come containers when they run on the Docker engine. They always run the same regardless of

their infrastructure. Containers running on the same machine are isolated from each other and

the application running inside a container will not impact other containers running on that ma-

chine.

The characteristics of Docker containers are aligned with the requirements of microservice

based architectures [14]. For example, Docker containers are independently deployable units

each of them providing a service. Moreover, they can be scripted to be created and launched

and it is possible to automate their deployment and scaling. Each Docker container is an iso-

lated environment that contains the required runtime for providing a particular service. There-

fore, it is possible for each development team to use a different technology based on their needs

and avoid the “technology lock-in” we mentioned before. Containers are lightweight and start

up faster than virtual machines (VMs). Since one of the reasons microservices are designed

small is fast restart in case of failure, a technology like containers should be used to avoid a

bottleneck at start-up time. Moreover, containers running on a single machine run as isolated

processes, therefore they will not affect each other or the underlying infrastructure. The isola-

tion of containers helps to limit the failure impact of one microservice on other running micro-

services.

2.1.3 Kubernetes

In Sub-section 2.1.2, we explained how containers are a suitable solution for building mi-

croservices. We mentioned that containers isolate microservices from their environment. Be-

cause of this isolation, the containerized microservices of a microservice based application are

10

not aware of each other. Therefore, deployment of containers and their communication need to

be orchestrated.

Kubernetes [10] is an orchestration platform that automates the deployment and manage-

ment of containerized microservices. Kubernetes hides all this complexity behind its API.

Therefore, Kubernetes' users do not need to implement the required mechanisms to manage

their applications’ resilience. Kubernetes' users only have to interact with the API to specify

the desired deployment architecture and Kubernetes will be in charge of orchestration and

availability management of the application. However, users with advanced requirements such

as high availability may need to dive into Kubernetes details, since the Kubernetes architectural

components can be used in different ways to deploy applications in a Kubernetes cluster.

The Kubernetes cluster has a master-slave architecture. The nodes in a Kubernetes cluster

can be either virtual or physical machines. The master node hosts a collection of processes to

maintain the desired state of the cluster. The slave nodes, which we will refer to simply as

nodes, have the necessary processes to run the containers and also be managed by the master

node.

An important process running on every node of a Kubernetes cluster is called the Kubelet.

The Kubelet is a node agent that runs the containers assigned to its node via Docker and peri-

odically performs health checks on them and reports to the master their status as well as the

status of the node. Another node process is called the Kube-proxy that maintains network rules

on the host and performs connection forwarding to redirect traffic to a specific container.

2.1.3.1 Pods

The smallest and simplest unit that Kubernetes deploys and manages is called a pod [10].

A pod is a collection of one or more containers. A pod is a process that provides an environment

11

to run containers by providing storage (called volumes) and network for them. A pod also has

the specifications of how to run its containers. For example, it is possible to include in the pod’s

specification (called the pod template) to run a script inside the container once the pod is cre-

ated. Customized labels can be assigned to pods to group and query them in the cluster. Con-

tainers in a pod share its IP address and port space. Once pods are created, Kubernetes assigns

an IP address to them. In the pod template, it is specified which container is connected to which

port of the pod. Therefore, any traffic received at the specified port of the pod will be redirected

to its corresponding container. In practice, microservices are containerized and deployed on a

Kubernetes cluster as pods. Pods can be created manually as well as by controllers. If a pod is

created manually, Kubernetes will not monitor it for managing its lifecycle and will not recreate

it if it fails. Therefore, it is recommended to deploy pods by using controllers. In the next sub-

section, we will introduce the controllers in Kubernetes’ binary and how to deploy applications

with them.

2.1.3.2 Controllers

Kubernetes’ controllers deploy and maintain pods. A pod’s template along with its desired

number of replicas and other information such as upgrade strategy and pods’ labels are included

in a controller specification. Once the controller is deployed to the cluster, it creates the desired

number of pods based on the provided template and continuously maintains their number equal

to the desired number. For example, when a pod fails due to its container failure, the corre-

sponding controller will automatically create a new one. In other words, controllers are watch

loops that continuously work to bring the current state of the application to its desired state.

There are different types of controllers in Kubernetes and each of them is suitable for a

specific purpose. For example, DaemonSet controllers run a copy of a pod on all nodes while

12

Job controllers create a number of pods and make sure they successfully terminate after they

finish their tasks. Deployment controllers are mainly used for deploying stateless applications.

On the other hand, StatefulSet controllers are used to manage stateful applications. A State-

fulSet controller assigns a unique and persistent identity to each of its pods.

Stateful applications deployed as StatefulSet pods store their state in persistent storages.

Kubernetes abstracts the details of storage solutions by providing two API resources: the Per-

sistent Volumes (PV) and Persistent Volume Claims (PVC). A PV is a piece of storage in the

cluster whose lifecycle is independent of those of the pods using it. PVs can be provisioned

dynamically or statically. A PVC, on the other hand, is a request for storage made by a pod. A

PVC binds the pod to a PV that matches the PVC’s characteristics. A StatefulSet controller

specification contains a PVC template which defines the characteristics of the PV (capacity

and memory) that the pods need to be bound to once they are created. It is worth mentioning

that a pod deployed by a Deployment controller can also store its data in a PV. However, that

PV will be shared between all pods of the Deployment controller.

2.1.3.3 Services and Ingress

As the state of the cluster changes, a controller may delete a pod and move it in the cluster

and cause the pod’s IP address to change. Therefore, the pods’ IP addresses are not reliable for

communication. As mentioned before, Kubernetes allows to assign customizable labels to pods

and select the pods based on these labels. Kubernetes also defines an abstraction called Service

which selects pods as its endpoints list based on their labels. Services have static virtual IP

addresses. The Kube-proxy watches the Kubernetes master and detects when a service or an

endpoint is added or removed. For each service that is added, it installs iptable rules that redirect

the traffic for the service’s virtual IP and port to one of the service’s endpoints. All requests

13

received at the IP address of the service are load balanced between the service endpoints in a

random or round-robin manner. Although a pod gets a new IP address once it is deleted by a

controller and created again, it will have the same labels as before. Because it is created based

on the same pod template. Therefore, it will stay on the endpoints list of the service.

Kubernetes’ services can be of different types. The default type is called “Cluster IP”.

Services of this type are accessible only from within the cluster. The “Node Port” type of ser-

vice is built on top of a Cluster IP service and exposes the service on the same port of each

node of the cluster. Lastly, a “Load Balancer” type of service is exposed externally only when

the cluster is running in a public cloud.

Kubernetes provides another way, called ingress, to access services from outside of the

cluster [10]. An ingress is a collection of rules for inbound connections to reach certain services

in the cluster that are defined as backends for the ingress. For an ingress to work, an ingress

controller needs to run in the cluster. Ingress controllers are not part of Kubernetes. To have an

ingress controller, one should either implement it or use one that is available, e.g. Nginx [20]

or HAProxy [21].

14

2.1.4 Service Availability

Service availability is an important non-functional requirement that defines the acceptable

service outage in a period of time. Service availability is measured as the percentage of time a

service is accessible in a given period [22]. The formula for measuring service availability is

presented in Equation 2-1.

Availability =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
 (2-1)

In the Equation (2-1), MTBF is the Mean Time Between Failures which is the average

mean time between two consecutive failures of a system, and MTTR is the Mean Time to

Repair which is the average time to repair the system that has failed.

2.1.5 Availability Management Framework

The Service Availability Forum (SA Forum) [13] is a group of telecommunications and

computing companies that cooperatively have standardized the high availability solutions. The

SA Forum has defined several services and the Availability Management Framework (AMF)

[13] is one of them. The AMF is a middleware service that provides availability for services

provided by applications through coordinating redundant resources and performing recovery

and repair actions. The AMF configuration is a specific organization of application resources

that the AMF requires for managing the availability of services provided by the application.

Redundancy is an important mechanism for improving service availability. AMF defines

five different redundancy models [13]. What follows is the explanation about these redundancy

models defined by the AMF.

No-Redundancy Redundancy Model [13]: In this redundancy model, there are no

standbys that protect the state of an active service provider instance. If an active instance fails,

15

service recovery will failover on any available spare service provider instance. However, the

spare would not have the state of the failed service provider instance. If there are no spares

available, service recovery will depend on the repair of the failed service provider instance.

N-Way Active Redundancy Model [13]: In this redundancy model, all service provider

instances are considered active out of which N service provider instances can provide the same

service. This model does not support standby assignments and is primarily used for stateless

applications.

2N Redundancy Model [13]: In this redundancy model, one active service provider in-

stance exists that provides a service and has one standby. Other service provider instances

might be considered as spare (they do not have the state of the active). An active service pro-

vider instance serves the received requests while the standby service provider instance keeps

the state of the service that the active service provider instance serves and is ready to take over

if the active service provider instance fails. Note that in this model, a service provider instance

cannot be active and standby at the same time.

N+M Redundancy Model [13]: This redundancy model is considered an extension to the

2N Redundancy Model. The N+M Redundancy model allows N service provider instances to

have the active HA state and M service provider instances to have the standby HA state. Similar

to 2N redundancy model, a service provider instance cannot be active and standby at the same

time. Through using this model, it is possible to make better use of the resources. Because a

standby service provider instance can be shared between multiple active ones.

N-Way Redundancy Model [13]: This redundancy model extends the N+M Redundancy

model by allowing service provider instance to have active HA state for one service while

having standby HA state for others.

16

2.2 Related Work

The architectural style of microservices has emerged primarily from the industry [5]. It is

being adopted and investigated from different perspectives by practitioners and to a smaller

extent by researchers in academia as well. In this section, we review the related work focusing

on microservice based architectures and containers as their enabler. We also consider the re-

lated work for stateful microservices. In the end, we review other container orchestration plat-

forms similar to Kubernetes.

Dragoni et al. in their work [2] propose the definition of a microservice as a small and

independent process that interacts with other microservices by messaging. They define the mi-

croservice based architecture as a distributed application composed of microservices and dis-

cuss the impact of adopting the architectural style of microservices on the quality attributes of

the application. Along with performance and maintainability, they specifically discuss availa-

bility as a quality attribute which is impacted by the microservice based architecture. Emam et

al. in [23] found that as the size of a service increases, it becomes more fault-prone. Since

microservices are small in size, in theory, they are less fault-prone. However, Dragoni et al.

argue that at integration, the system will become more fault-prone on the integration level be-

cause of the complexity of launching an increasing number of microservices [2].

Other related works compare monolithic and microservice based approaches. For example,

Villamizar et al. in [24] compare web applications deployed with a monolithic architecture and

those deployed with a microservice based architecture. In their case study, they developed an

application using the monolithic approach and one using the microservice based architecture

and deployed both in a cloud infrastructure as a service. Their experiments show that the mi-

croservice based architecture can reduce the infrastructure costs by 17%. Although it is not

17

significant, the average response time of the microservice based solution was reported higher

than that of the monolithic one. Another comparison of the monolithic approach with the mi-

croservice based architecture is done by Ueda et al. in [25]. They report 70% degradation of

throughput with the microservice based architecture. In some cases, the Docker network con-

figuration causes up to 33% degradation in performance [23].

Containers have been introduced as a technology that allows leveraging the benefits of

microservices. Jaramillo et al. discuss in [14] how each Docker container is a deployable unit

and an isolated box that contains the runtime environment and packages all dependencies

within itself. For these reasons, Docker containers are suitable for microservices and bring

automation, independency, and portability. Amaral et al. in [8] examine two different ap-

proaches where services can be developed as sets of containers: master-slave and nested con-

tainers. In the former, one container acts as parent and manages all other containers that work

as peers. The nested containers model is inspired by Kubernetes’ pod concept where the parent

is a privileged container and the child runs in the parent’s namespace. Their results show that

the time to create a nested container is longer than that of a regular container and increases as

the number of children grows.

Khazaei et al. in [26] propose a microservice platform for the cloud by using a Docker

technology that provisions containers based on the requests of microservice users. One of the

key differences between this platform and Kubernetes is that this platform has the ability to ask

for more VMs from the infrastructure when needed while Kubernetes does not. Kang et al. in

[27] propose a microservice based architecture and use containers to operate and manage the

cloud infrastructure services. In their architecture, each container is monitored by a sidekick

container and in case of failure, recovery actions are taken. They performed some experiments

and concluded that recovering from container failure is faster than recovering from VM failure.

18

In their architecture, they have both stateless and stateful microservices. Their stateful micro-

service is a MySQL database with the active-active mode. For synchronizing data between

microservices, they suggest shared storage and application level data replication. In the former,

all MySQL microservices access the same data while in the latter the database process repli-

cates the data across the cluster.

Netto et al. in [28] and [29] believe that Kubernetes is able to improve service availability

of stateless applications. However, for stateful applications, Kubernetes faces some issues. In

[28], to automate state replication between pods, all pod replicas execute the incoming requests.

However, only the one that has received the request from the client will respond. In [29], they

integrate a layer of containers between the client and the application (called Koordinator),

which orders the requests received from the client and sends them to all application containers.

They use a containerized firewall for redirecting the client requests to the Koordinator layer.

This firewall is a single point of failure, especially in case of node failure. Moreover, although

the availability is mentioned as one of the benefits in both works ([28] and [29]), it is not

measured.

Soenen et al. in [30] aim to provide high availability for the management and orchestration

(MANO) in the Network Function Virtualization (NFV) architecture by decomposing its func-

tional blocks into microservices each performing a task in a workflow and interacting through

remote calls over a network. To support availability, they deploy a redundant instance for each

microservice type and both receive requests. Redundant microservices check each other’s

health through heartbeat. Meaning that the application needs to implement the availability

logic. Moreover, each instance has the entire state and the task logs for both instances but only

performs the tasks which was assigned to it. If a microservice instance does not receive a heart-

beat, it also performs the tasks assigned to its peer. This can lead to a problem as the reason for

19

not receiving the heartbeat could be a network partition between two instances. In this case,

there will be two instances performing the same task which can lead to data inconsistency.

 [31] is an NFV specification with the goal of making virtualized network functions

(VNFs) compatible with the cloud-native approach. It defines a set of requirements to make

VNFs compatible with this approach. For example, VNF components should be containerized

and also support high availability which is an important requirement of the cloud-native ap-

proach. Thus, redundancy at the VNF component (container) level must be supported as well.

Moreover, since most telecom applications are stateful, the containers’ state should be persis-

tent and stored in external storages.

In Sub-section 2.1.5, we introduced the SA Forum [13] which defines a set of specifica-

tions to facilitate the development of carrier-grade applications. The Availability Management

Framework (AMF) is one of the services defined by the SA Forum which is a middleware

service that coordinates redundant resources and performs recovery and repair actions to pro-

vide availability for services provided by applications. The OpenSAF project [13] is an open-

source middleware which implements SA Forum specifications including AMF and focuses on

providing service availability for applications. The authors in [32] propose an elasticity engine

that reacts to the fluctuations of the workload of applications managed by the AMF by modi-

fying the AMF configuration resulting in a rearrangement of service provider resources. In

their solution, they use the OpenSAF implementation of SA Forum specifications and demon-

strate that elasticity can be managed at the application level within the AMF’s framework that

is for managing the availability of applications.

In Sub-section 2.1.3, we introduced Kubernetes as an open-source platform for orchestrat-

ing the lifecycle of containerized applications. However, there are other container orchestration

20

platforms available as well. For example, Docker Swarm [33] is a native clustering system for

Docker that uses an API proxy system to turn a number of Docker hosts into a single virtual

host. In this platform, a swarm is like a cluster in Kubernetes that is a group of virtual or phys-

ical machines with at least one master node. It is possible to use the Docker Engine command-

line interface to create a swarm of Docker Engines. In Docker Swarm, the container images

the swarm should use and the commands that need to be run in each container are defined in a

service by a swarm administrator [34]. The Docker containers that execute the commands de-

fined in the service are called tasks. When a master node assigns a task to a worker node, this

task cannot be moved to another worker node. If a task fails, the master will assign a new

version of that task to another worker node. Deploying applications with Docker Swarm is

rather simple and Swarm mode is included in Docker Engine. However, one should note that

it only supports Docker containers unlike Kubernetes that can use other container runtimes as

well to run containers in pods (e.g., CRI-O [35], Containerd [36], and frakti [37]).

Another example of container orchestration platforms is Marathon [38] on Apache Mesos

[39]. Apache Mesos is a cluster manager that simplifies resource allocation in public and pri-

vate clouds by abstracting data center resources into one single pool of resources. It is able to

scale both its underlying infrastructure and also the applications running on top of it. Apache

Mesos can manage a diverse set of workloads including containerized applications. Marathon

is the orchestration framework for managing containerized workloads that is built on top of

Apache Mesos. Unlike Kubernetes that can run on any environment, Marathon can only run on

Distributed Cloud Operating System (DC/OS) [40] and Apache Mesos. Apache Mesos has a

master/slave architecture. The master node has information about the slave nodes’ resources

and sends this information to Marathon. A unit of work by Marathon is called a “task” that is

scheduled on slave nodes based on the resource offers received from Mesos master.

21

Chapter 3

3 Microservice Based Architectures

with Kubernetes and their Availability

In this chapter, architectures for deploying stateless and stateful microservice based appli-

cations with Kubernetes are identified and evaluated. In Section 3.1, we identify and evaluate

these architectures qualitatively in terms of deployment and service discovery. In Section 3.2,

we conduct experiments to quantitatively evaluate the stateless microservice based architec-

tures from the perspective of availability and analyze the results in Section 3.3. We also address

the availability challenges of Kubernetes in managing the availability of stateful applications

in Section 3.3.

3.1 Architectures for Deploying Microservice Based Applications

There are different ways of using Kubernetes’ architectural components to deploy appli-

cations. As an example, based on the application’s characteristics, one can use a Deployment

controller or a StatefulSet controller to deploy the application. Also, exposing the application

to the world outside of the Kubernetes cluster or other services of the application inside the

Kubernetes cluster can be done in different ways. For example, an application can be exposed

either by using only services or an ingress. Moreover, the environment in which the Kubernetes

cluster is running (e.g., public or private cloud) can affect the type of services used in deploying

the application.

22

In this section, we present the possible architectures for deploying stateless and stateful

microservice based applications with Kubernetes in different environments, i.e., public and

private cloud. We also discuss service discovery and the related challenges for each case. These

architectures are based on the Kubernetes architectural components described in [1].

3.1.1 Stateless Microservice Based Applications

The main controller for deploying stateless applications with Kubernetes is the Deploy-

ment controller. A Deployment controller specification is composed of a pod’s template and

a desired number of pods. After the Deployment controller is deployed, it creates the desired

number of pod replicas and constantly works to bring the current state of the application to

the desired state which means rescheduling pods when failures happen. In Kubernetes, a

pod can store its data in a volume which is accessible by all of its containers. The volume is

ephemeral and the data are lost when the pod is rescheduled or restarted. However, since

stateless applications do not require the previously stored data for continuing their tasks, the

loss of these data will not harm the application’s functionality.

In Figure 3-1, a Deployment controller is used for deploying a stateless microservice

based application. In this architecture, we consider a Kubernetes cluster composed of a num-

ber of VMs. Kubernetes runs on all VMs and creates a unified view of the cluster. One of

the VMs is selected as the master and is in charge of managing the worker nodes. For sim-

plicity, the application in this example is composed of only one microservice. The pod tem-

plate for the containerized microservice as well as its desired number of replicas are included

in the Deployment controller specification which is deployed to the cluster. It is possible to

include customizable pod labels in a Deployment controller specification. The Deployment

controller assigns these labels to pods when it is creating them. As seen in Figure 3-1, a

23

service is created which redirects the incoming requests to the application pods. The pods

are selected as service endpoints based on the labels they have been assigned. There are

different types of services that can be used which we will discuss later in this sub-section.

3.1.2 Stateful Microservice Based Applications

In this sub-section, we bring the possible architectures for deploying stateful micro-

service based applications with Kubernetes.

For stateful microservice based applications, Kubernetes provides different solutions.

It is possible to deploy stateful microservice based applications with Deployment controllers

as well as with StatefulSet controllers. In any case, the assumption is that the application’s state

data are stored in a persistent storage outside of Kubernetes called persistent volumes (PVs).

Meaning that Kubernetes is not in charge of managing the PVs and it only consumes them.

Figure 3-1. An architecture for deploying stateless microservice based applications with Kubernetes.

VM

container engine

OS

VM

container engine

OS

Kubernetes

pod
pod

Deployment
controller

service

sends
requests to

maintains

…

24

3.1.2.1 Deploying with StatefulSet Controllers

The most common way of deploying stateful applications with Kubernetes is by a State-

fulSet controller. In a StatefulSet controller specification, a PVC template is included along

with the pod template. This PVC template describes the criteria (capacity, access mode, and

etc.) for the PVs that the pods of the StatefulSet controller can be bound to. When the State-

fulSet is deployed, a PVC is created for each pod binding it to a dedicated PV that meets these

criteria. Since the data a pod stores in its PV are not shared with other pods of the StatefulSet,

a mechanism such as sticky session is required to ensure that a client is always served by the

same pod as its state is stored in the PV only accessible by that pod.

Figure 3-2 shows the architecture for deploying stateful applications using a StatefulSet

controller. As shown in Figure 3-2 StatefulSet pods’ names are a combination of their control-

ler’s name (“MS”) and an ordinal index (MS-0, MS-1… MS-(n-1)). A difference that State-

fulSet pods have compared to pods managed by other controllers is that they have persistent

Figure 3-2. An architecture for deploying stateful microservice based applications using a StatefulSet controller.

SS

StatefulSet

name: MS

replicas: n

Master Node 1

MS-0

labels:

app: myApp

Node m

MS-(n-1)

labels:

app: myApp

service:

-name: myService
-selector:

app: myApp

PV-0 PV-(n-1)PV
C

-0

P
V

C
-(

n
-1

)

…

25

identities. Meaning that if MS-0 which stores its state data in PV0 fails, the StatefulSet con-

troller will restart the pod and will give the same identity to it. Therefore, MS-0 will be bound

to PV0 again and it will have access to its state data stored prior to its restart.

3.1.2.2 Deploying with Deployment Controllers

Although StatefulSet controllers are the most commonly used controllers for deploying

stateful applications, one can use Deployment controllers for this type of application as well.

Similar to StatefulSets, the stateful Deployment pods can store their state data in a PV. How-

ever, with Deployment controllers, all pods have to share a PV. The reason is that it is not

possible to include a PVC template in a Deployment controller specification. Therefore, one

PVC should be created before deploying the application which will be used by all pods once

they are deployed by the Deployment controller.

Figure 3-3 shows the architecture for deploying stateful applications using a Deployment

controller. In this architecture, the state data for each client are shared between all pods. There-

fore, all pods can serve a client as they have access to its data.

Figure 3-3. An architecture for deploying stateful microservice based applications using a Deployment controller.

D

Deployment

replicas: n

Master Node 1

PodA1

labels:

app: myApp

Node m

PodAn

labels:

app: myApp

service:

-name: myService
-selector:

app: myApp

PV1

PV
C

-1

…

26

3.1.3 Service Discovery

In the previous sub-section, we explained the possible architectures for deploying both

stateless and stateful microservice based applications with Kubernetes. In all discussed archi-

tectures, we see that there is a service exposing the application. Kubernetes’ services can have

different types and depending on the application and the environment in which the Kubernetes

cluster is running, a specific service type may be used. In this sub-section, we describe two

ways of exposing applications deployed with Kubernetes: services and ingress. The method of

service discovery does not depend on the type of controller used for maintaining the pods.

Therefore in all examples, we only consider the architecture with a Deployment controller for

stateless applications.

3.1.3.1 Using Services to Expose Applications

The most common way to expose applications deployed with Kubernetes to the world

outside of the cluster or other services of the application is Kubernetes’ services. Services can

be of different types and are rules that are added to the IP tables of Kubernetes’ cluster nodes.

The default service type is called the “cluster IP” which is only useful when we need to

expose a set of pods to another service inside Kubernetes’ cluster. However, exposing the ap-

plication to the outside of Kubernetes cluster can be challenging.

A Kubernetes cluster can run in a private cloud as well as a public one. For each type

of environment, a different service type should be used to expose the application to the outside

world. For applications deployed with Kubernetes running in a public cloud, a service of type

“Load Balancer” can be used as shown in Figure 3-4. In addition to a cluster IP, services of

type “Load Balancer” have an external IP address that is automatically set to the cloud pro-

vider’s load balancer IP address. Clients from outside of the cluster can access the application

27

through this public external IP address. The requests received at this address are redirected to

the cluster IP of the service and later load balanced between all pods.

Services of type “Load Balancer” are a straight forward way to expose applications as

they automatically obtain the cloud provider’s load balancer IP. However, this feature does not

exist in Kubernetes clusters running in a private cloud. Figure 3-5 depicts the architecture for

exposing the applications deployed with Kubernetes running in a private cloud to the outside

of the cluster. In this architecture, a service of type “Node Port” is used. This type of service

exposes the application on the same port on every node in the cluster. The “Node Port” service

is also built on top of a “Cluster IP” service. Meaning that all requests received at the specified

port will be redirected to the cluster IP of the service and later load balanced between all pods.

However, since it is not a good practice to expect the users to connect to the nodes directly, an

external load balancer is used which distributes the requests between the nodes and delivers

them to the port on which the “Node Port” service is exposed. The problem with this architec-

ture is that for each service of the application in the cluster that needs to be exposed externally,

we will need one external load balancer.

Figure 3-4. Public cloud - exposing services via services of type “Load Balancer”.

28

3.1.3.2 Using Ingress to Expose Applications

Applications can have more than one service that need to be exposed externally and

with the methods explained in the previous sub-section, we need one load balancer for each

service. On the other hand, Kubernetes’ ingress resource can have multiple services as

backends and minimize the number of load balancers utilized. With an ingress resource, each

service in the cluster can be given an externally reachable URL. An ingress controller should

be deployed in the cluster in order to redirect the incoming requests to the backend services

based on the rules defined in the ingress resource. The ingress controller is deployed as one

pod using a Deployment controller.

In a Kubernetes cluster running in a public cloud, the ingress controller is deployed by

a Deployment controller and exposed by a service of type “Load Balancer” (Figure 3-6). There-

fore, requests for all services that are sent to the cloud provider’s load balancer are received by

the ingress controller and redirected to the appropriate service based on the rules defined in the

Figure 3-5. Private cloud - exposing services via services of type “Node Port”.

29

ingress resource. In a Kubernetes cluster running in a private cloud, the ingress controller is

also deployed by a Deployment controller but exposed by a service of type “Node Port” (Figure

3-7).

Figure 3-7. Private cloud - exposing services via ingress.

container engine
OS

VM
port

container engine
OS

VM
port

Private Cloud

Kubernetes

deployment
controller 2

service
type: Cluster IP

…

deployment
controller 1

service
type: Node Port

ingress

pod
pod

ingress
controller

pod
maintains

maintains

sends requests to

sends requests to

Load
Balancer

Figure 3-6. Public cloud - exposing services via ingress.

container engine
OS

VM

container engine
OS

VM

Public Cloud

Kubernetes

deployment
controller 2

service
type: Cluster IP

…

deployment
controller 1

service
type: Load
Balancer

ingress

pod
pod

ingress
controller

pod
maintains

maintains

sends requests to

sends requests to

Load
Balancer

30

3.2 Availability of Stateless Architectures

For carrier-grade service providers, availability is an important non-functional require-

ment measured as the total outage time over a given period [6]. As these service providers are

migrating towards the microservice based architecture, it is important to evaluate Kubernetes

from the perspective of availability it can provide for its managed applications. In this section,

we evaluate the architectures presented in Sub-section 3.1.1 for stateless microservice based

applications from the perspective of availability by addressing the following research questions

(RQ):

RQ1: What is the level of availability that Kubernetes can provide for its managed micro-

services solely through its repair actions?

RQ2: What is the impact of adding redundancy on the availability achievable with Kuber-

netes?

RQ3: What is the availability achievable with Kubernetes under its most responsive con-

figuration?

RQ4: How does the availability achievable with Kubernetes compare to existing solu-

tions?

To address these research questions, we conducted some availability experiments cover-

ing a number of failure scenarios and measured the defined availability metrics. These failure

scenarios and the availability metrics are explained in the next sub-section.

3.2.1 Availability Metrics and Failure Scenarios

The availability metrics and failure scenarios for our experiments are as follows.

31

3.2.1.1 Availability Metrics

The metrics we use to evaluate Kubernetes from availability perspective are defined

below. In Figure 3-8, we summarize the relations between these metrics.

Reaction Time: The time between the failure event we introduce and the first reaction

of Kubernetes that reflects that the failure event was detected.

Repair Time: The time between the first reaction of Kubernetes to the failure event and

when the pod failed due to the failure event is repaired.

Recovery Time: The time between the first reaction of Kubernetes to the failure event

and when the service is available again.

Outage Time: The duration for which the service was not available. It represents the

sum of the reaction time and the recovery time as shown in Figure 3-8.

3.2.1.2 Failure Scenarios

Kubernetes offers three levels of health check and repair action for managing the avail-

ability of the deployed applications. First, at the application level, Kubernetes ensures that the

Figure 3-8. Availability metrics.

reaction time recovery time

repair time

outage time

first reaction
of Kubernetes

failed unit
is repaired

service is
available again

failure

32

software components executing inside a container are healthy either through process health

check or predefined probes. In both cases, if the Kubelet discovers a failure, it will react ac-

cording to the defined restart policy. Second, at the pod level, Kubernetes monitors the pod

process failures. That is, monitoring the pod process that is the environment provided for run-

ning application containers by providing shared storage and network for them. Finally, at the

node level, Kubernetes monitors the status of the cluster nodes through its node controller com-

ponent. If the node hosting a pod fails, the pod is rescheduled on another healthy node. With

respect to these levels of health check, we defined three failure scenarios which are explained

as follows.

Service Outage Due to Application Container Failure: In this scenario, the failure is

simulated by killing the application container process from the OS.

Service Outage Due to Pod Process Failure: When a pod is deployed, along with the

application containers specified in its template, one extra container is created which is the pod

process. Since the pod itself is a process in the OS, it is possible that it crashes. In this scenario,

the failure is simulated by killing the pod process from the OS.

Service Outage Due to Node Failure: In this scenario, a node that is hosting a pod

fails. For some experiments, this scenario is simulated by Linux’s reboot command and for

others is simulated by shutting down the node.

In the following Sub-sections, we address the previously posed research questions for

stateless microservice based applications deployed with Kubernetes as well as stateful ones.

33

In this Sub-section, we present the concrete architectures, the experiments, the results

and the analysis for answering the research questions we brought before for stateless micro-

service based applications deployed with Kubernetes.

For these experiments, we set up a Kubernetes cluster in a private cloud (Figure 3-7).

This cluster is composed of three VMs running on an OpenStack cloud. Ubuntu 16.04 is the

OS running on all VMs. Kubernetes 1.8.2 runs on all VMs and the container engine is Docker

17.09. The Network Time Protocol (NTP) [41] is used for time synchronization between the

nodes. The deployed application is VideoLan Client (VLC) [42]. There is one container image

in the pod template, in which VLC is installed. Once a pod is deployed, an application container

will be created based on this image and will start streaming from a file. The application is

stateless and if the container is restarted, it will start streaming from the beginning of the file.

3.2.2 Evaluating the Availability of Stateless Applications Deployed with Ku-

bernetes

In this sub-section, we evaluate the availability that Kubernetes can provide for the

stateless applications under different scenarios and address the research questions posed earlier

in this section.

3.2.2.1 Evaluating the Repair Actions with the Default Configuration of Kubernetes

(RQ1)

The common practice to evaluate Kubernetes’ repair actions is to simulate failures

through administrative operations (e.g. delete the pod or the node) using the Kubernetes com-

mand-line interface (CLI) and then observe how fast a new pod replaces the failed one [43].

Due to the use of Kubernetes’ administrative operations, such a failure is not a spontaneous

34

event that Kubernetes needs to detect and react to. Instead, the operation is executed by Kuber-

netes in due order often in a graceful manner. Therefore, these operations cannot reflect com-

mon execution failure scenarios, which are anything but graceful and happen spontaneously

maybe as a result of external failure events (e.g., process or physical node crash). Drawing

conclusions based on such administrative operations would not be accurate. Hence, it is im-

portant to identify and simulate execution failure scenarios due to external events properly and

measure the availability in these cases before making conclusions.

In this sub-section, we first bring the experiments where service outage is due to exter-

nal events causing execution failures. Then, we repeat the failure scenarios where the failure is

injected by administrative commands. We analyze the results and compare the measured avail-

ability of experiments with failure events due to administrative Kubernetes operations to those

with external execution failure events.

Figure 3-9 shows the architecture for these experiments. For this research question, we

are interested in measuring the availability that Kubernetes can provide only through its repair

actions. Therefore, the redundancy model in this case is No-Redundancy without spare [13]

which means the number of pods in the Deployment controller specification is only one. The

measurements of the experiments with external execution failure events are shown in Table 3-

1 and those with administrative failure events are shown in Table 3-2. What follows is the

detailed explanation for each failure scenario in these experiments.

35

Service Outage Due to External Execution Failure Events

We conducted availability experiments where the failures are external execution fail-

ures resulting in service outage which can reflect the real-life failure events.

Service Outage due to VLC Container Process Failure: In this scenario, the failure

is simulated by killing the VLC container process from the OS. When the VLC container

crashes, the Kubelet detects the crash and brings the pod to a state where it will not receive

new requests. At this time, that is the reaction time, the pod is removed from the endpoints list.

Later, the Kubelet restarts the VLC container and the video will start from the beginning of the

file. This time marks the repair time. Recovery time is when the pod is in the endpoints list

again and is ready to receive requests.

Figure 3-9. Concrete architecture for experimenting with Kubernetes - Stateless microservice based application

with No-Redundancy redundancy model.

Node 2

Docker
Ubuntu

port
Node 1

Docker
Ubuntu

port
Master

Docker
Ubuntu

port
OpenStack Cloud

Kubernetes

deployment
controller 2

service
type: Cluster IP

deployment
controller 1

service
type: Node Port

ingress

VLC pod

ingress
controller

pod

36

Service Outage due to Pod Process Failure: In this scenario, the failure is simulated

by killing the pod process from the OS. When the pod process is killed, the Kubelet detects

that the pod process is no longer present and this marks the reaction time. When the new pod

is created and its VLC container is started, the video will start streaming from the beginning of

the file and we consider the pod as repaired. After, the Kubelet will add the new pod to the

endpoints list and it will be ready to receive new requests. This marks the recovery time.

Service Outage due to Node Failure: In this scenario, node failure is simulated by the

Linux’s reboot command on a VM hosting the pod. As mentioned before, the Kubelet is re-

sponsible to report the status of the node to the master, and it is the node controller of the master

who detects the failure of the node. With the default configuration of Kubernetes, when a node

hosting a pod fails, it stops sending status updates to the master and the master will mark the

node as not ready after the fourth missed status update. This time is the reaction time. When

the node is marked as not ready, the VLC pod on the node is scheduled for termination and

after it is completely terminated a new one will be created. The repair time is when the new

VLC pod is started and streaming the video. Recovery time is when the pod is added to the

endpoints list of the service.

Service Outage Due to Administrative Failure Events

As explained before, the common practice to evaluate Kubernetes’ repair actions is by

injecting “failure” events from Kubernetes’ CLI. In order to compare with external execution

failures, we conducted experiments that cover two failure scenarios. In the first scenario, the

failure is simulated by deleting the pod administratively. In the second scenario, the failure is

simulated by administrative deletion of the node. Note that since there are no commands in

Kubernetes that can terminate the application container, we do not have the scenario where

service outage is due to administrative application container failure.

37

Service Outage due to Administrative Pod Termination: In this scenario, the pod is

ordered to terminate by a command and will consequently be removed from the endpoints list

of the service and this is when we consider that the pod has failed. By default, pods have 30

seconds of graceful termination period. During this time, the pod will not receive new requests

but will keep serving the requests previously assigned to it. This gives ample time to Kuber-

netes to schedule a new pod and deal with incoming requests. Since it is the responsibility of

the deployment controller to always maintain one replica of this pod, it will bring up a new one

and this event marks the reaction time. The repair time is when the new pod is started. Although

at this time, the pod has started and is streaming the video, it will not be available to users

unless it is added to the endpoints list of the service. Therefore, we consider the streaming

service as recovered when the new pod is added to the endpoints list of the service and starts

streaming.

Service Outage due to an Administrative Deletion of the Node: In this scenario, a

node hosting a pod is deleted using a Kubernetes’ CLI command. As a result, the cleanup of

all containers and processes related to Kubernetes on this node is initiated. Any pod running

on the node that is to be deleted enters a state that it does not receive new requests. Hence, this

is what we consider the moment of failure. However, the behavior in this scenario is different

from that of the administrative pod failure scenario. Here, the pod will serve the previously

assigned requests for only around one second (not the default 30 seconds of graceful termina-

tion period). Shortly after, the pod is completely deleted and this time marks the reaction time.

When the pod is completely deleted, the deployment controller will attempt to add a new pod

38

on another node. Repair time is when the new pod is started. Recovery time is marked later

when the new pod is added to the endpoints list of the service and starts streaming.

Table 3-1. Experiments with Kubernetes under Default Configuration – External Execution Failures with No-Re-

dundancy Redundancy Model.

failure trigger

(unit: seconds)

reaction

time

repair

time

recovery

time

outage

time

VLC Container

Failure
0.716 0.472 1.050 1.766

Pod Process Failure 0.496 32.570 31.523 32.019

Node Failure 38.187 262.542 262.665 300.852

Table 3-2. Experiments with Kubernetes under Default Configuration – Administrative Failures with No-Redun-

dancy Redundancy Model

failure trigger

(unit: seconds)

reaction

time

repair

time

recovery

time

outage

time

Administrative Pod

Termination
0.041 0.982 1.547 1.588

Adiministrative Node

Deletion
0.031 1.009 1.500 1.531

39

3.2.2.2 Evaluating the Impact of Redundancy on the Availability (RQ2)

In the previous sub-section, we evaluated the repair actions of Kubernetes in providing

availability for its applications. However, an important mechanism for improving availability

is adding redundant instances. In this sub-section, we investigate the impact of adding redun-

dancy on the availability provided by Kubernetes. We consider the architecture of Figure 3-10

where the number of pod replicas that the Deployment controller maintains is increased to two.

In this architecture, we have an N-Way Active redundancy model [13]. In this redundancy

model, a number of microservice instances are deployed and since they are stateless, all of

them are capable of providing the same service. We evaluate the availability metrics for each

of the failure scenarios under the default configuration of Kubernetes with an N-Way Active

redundancy model. We compare the results to the previous experiments (Sub-section 3.2.2.1).

The measurements for this set of experiments are shown in Table 3-3. What follows is

the detailed explanation for each failure scenario in these experiments.

Service Outage due to the VLC Container Process Failure: In this scenario, similar

to the No-Redundancy redundancy model, the reaction time is when the Kubelet detects the

VLC container has crashed and removes the pod from the endpoints list. By just removing the

unhealthy Pod1 from endpoints list, the service is recovered. This is because another healthy

pod is still on the endpoints list and ready to serve the requests. Therefore, the reaction time

for this scenario is the same as the recovery time. The repair time is when the Kubelet has

restarted the crashed VLC container and the video has started streaming again.

40

Service Outage due to Pod Process Failure: In this scenario, the same as for the No-

Redundancy redundancy model architecture, the reaction time is when the Kubelet detects that

the pod is no longer there. Similarly to the previous scenarios, the recovery time is when the

unhealthy pod is removed from the endpoints list making the healthy pod the only endpoint of

the service. The repair time is when a new pod is created and its VLC container is started and

streaming the video.

Service Outage due to Node Failure: In this scenario, node failure is simulated by the

Linux’s reboot command on a VM hosting the pod. The reaction time in this scenario is the

same as for the No-Redundancy redundancy model architecture, i.e. the time the master marks

the node as not ready and schedules the pod for termination. The recovery time is when the IP

Figure 3-10. Concrete architecture for experimenting with Kubernetes - Stateless microservice based applica-

tion with N-Way Active redundancy model.

Node 2

Docker
Ubuntu

port
Node 1

Docker
Ubuntu

port
Master

Docker
Ubuntu

port
OpenStack Cloud

Kubernetes

deployment
controller 2

service
type: Cluster IP

deployment
controller 1

service
type: Node Port

ingress
ingress

controller
pod

VLC pod 1 VLC pod 2

41

of the failed pod is removed from the endpoints list. The repair time is when the failed pod is

terminated and another one is created.

Table 3-3. Experiments with Kubernetes under the Default Configuration – N-Way Active Redundancy Model.

failure trigger

(unit: seconds)

reaction

time

repair

time

recovery

time

outage

time

VLC Container

Failure
0.579 0.499 0 0.579

Pod Process Failure 0.696 30.986 0.034 0.730

Node Failure 38.554 262.178 0.028 38.582

42

3.2.2.3 Evaluating the Repair Actions with the Most Responsive Configuration of

Kubernetes for Supporting Availability (RQ3)

As observed in Sub-sections 3.2.2.1 and 3.2.2.2, the default configuration of Kuber-

netes has a significant impact on the service outage. Our analysis for the different failure sce-

narios has led to the identification of the aspects that need to be modified to reduce the observed

outage. One aspect affecting the service outage is the graceful termination signal sent to the

application container in the scenario of pod process failure which takes at least 30 seconds. For

the node failure scenario, the frequency of node status posting by the Kubelet to the master is

10 seconds and the number of allowed missed status updates before marking a node as un-

healthy is four which makes the reaction time between 30 to 40 seconds. Moreover, Kubernetes

waits around 260 seconds to delete the failed pod and recreate a new one. All these factors

hinder the availability of the application and therefore, we change them to measure the highest

achievable availability with Kubernetes.

To answer this research question, we perform two sets of experiments where Kuber-

netes has the most responsive configuration. In the first set, for the pod process failure, the

configuration parameter for the graceful termination of pods is set to zero seconds. In the sec-

ond set, for the node failure, the configuration parameters related to handling node failure are

set to the lowest value possible (one second). We are aware of the network overhead and po-

tential false-positive node failure reports for the most responsive configuration. However, our

goal in this experiment is to measure the best achievable availability when deploying applica-

tions with Kubernetes. These experiments were conducted with both No-Redundancy and N-

Way Active redundancy model architectures (Figure 3-9 and Figure 3-10). The results of these

experiments are presented in Table 3-4 and Table 3-5. What follows is the detailed explanation

for each reconfiguration.

43

Reconfiguring the Graceful Termination Period of Pods: As it was mentioned, when

a pod process fails, a graceful termination signal is sent to Docker to terminate the application

container which delays the repair of the pod for 30 seconds. In the No-Redundancy redundancy

model, this grace period affects the recovery time, because a new pod will not be created unless

the failed one completely terminates. To reduce this grace period, we updated the pod template

and set the grace period to zero. We repeated the experiments for the pod process failure

scenario and evaluated the impact of this change on service outage.

Reconfiguring Node Failure Handling Parameters: To have the most responsive

Kubernetes configuration, we reconfigured the Kubelet of each node to post the node’s status

every second to the master. The node controller of the master was also reconfigured to read the

updated statuses every second and allow no missed status updates for each node. We repeated

the experiments for the node failure scenario in order to evaluate the impact of this

reconfiguration on service outage.

Table 3-4. Experiments with Kubernetes with changed configuration - service outage due to pod container failure.

redundancy model

(unit: seconds)
reaction time

repair

time

recovery

time

outage

time

No-Redundancy 0.708 3.039 3.337 4.045

N-Way Active 0.521 3.008 0.032 0.554

Table 3-5. Experiments with Kubernetes with changed configuration - service outage due to node failure.

redundancy model

(unit: seconds)
reaction time

repair

time

recovery

time

outage

time

No-Redundancy 0.976 2.791 2.998 3.974

N-Way Active 0.849 2.173 0.022 0.872

44

3.2.2.4 Comparing Kubernetes with Existing Solutions for Availability Management

(RQ4)

To better position the availability results obtained with Kubernetes, we address RQ4.

AMF [13] is a standard middleware service for managing the availability of components based

applications. It has been implemented, with other middleware services, in the OpenSAF mid-

dleware [13], a proven solution for availability management. In a previous work [44], a set of

experiments for different failure scenarios with the same application (VLC) was conducted

with OpenSAF. The architecture for the experiments with OpenSAF is shown in Figure 3-11.

In AMF, a component is the smallest service provider entity and the resources represented by

the component encapsulate specific application functionality. In the architecture of Figure 3-

11, a VLC component and an IP component are used. Components are either SA-Aware or

Non-SA-Aware. SA-Aware components implement AMF API and register with AMF to man-

age service availability [13]. SA-Aware components are primarily used for stateful applica-

tions. The Non-SA-Aware components do not interact with AMF directly and AMF is only in

charge of managing their lifecycles. In these experiments, the VLC component that is used is

not modified and it is a Non-SA-Aware component.

Moreover, in this architecture, the SU stands for service unit which is a cooperation of

components combining their individual functionalities to provide a higher level service. The

SU in AMF is the unit of redundancy. Also, CSI stands for component service instance and is

an abstraction of a service provided by a component that is assigned to the component by AMF

at runtime. The SI (service instance) is an aggregation of CSIs. The SI is a single workload

assigned to a SU. It is possible to assign a single SI to a number of SUs.

45

We considered the following failure scenarios of VLC process failure, VM failure, and

physical host failure, corresponding to VLC container failure, pod process failure and node

failure, respectively. In the experiments with OpenSAF, a No-redundancy redundancy model

with two VLC components are considered. One component is running and providing service

and the other one is a spare to be instantiated and take over in case of failure of the active. The

results of the experiments with OpenSAF and the comparison with Kubernetes are shown in

Table 3-6.

Table 3-6. Experiments with OpenSAF (Non-SA-Aware VLC).

failure trigger

(unit: seconds)

reaction

time
repair time

recovery

time

outage

time

VLC Process Failure 0.650 - 0.145 0.795

VM Failure 3.233 - 0.123 3.351

Physical Host Failure 3.229 - 0.118 3.346

Figure 3-11. The architecture for availability experiments with OpenSAF (stateless VLC).

VM 1

KVM

Physical Host 1

VM 2

KVM

Physical Host 2

OpenStack Cloud

OpenSAF

SG

SI

active

CSI 1

VLC component
(Non-SA-Aware)

SU

IP component

CSI 2
active

VLC component
(Non-SA-Aware)

SU

IP component

46

3.3 Analysis and Discussion

In this section, we analyze the results of the availability experiments of Section 3.2 in

order to answer the research questions we asked earlier and also discuss the availability chal-

lenges for stateful microservice based applications.

3.3.1 Availability of Stateless Applications

We analyze the results of the availability experiments of Section 3.2 separately for each

failure scenario. First, we analyze the results of the scenarios where service outage is due to

external execution failures and later compare with the results of the experiments where the

service outage is due to administrative failure events.

Analysis of Service Outage due to Application Container Failure Scenario: In this

failure scenario, after killing the application container, the service becomes unavailable. How-

ever, since Kubernetes has not detected the failure yet, the IP address of the failed pod stays in

the endpoints list. The reaction time is when Kubernetes detects the failure and removes the

pod’s IP from the endpoints list. As it is observed in Table 3-1 and Table 3-3, for the architec-

tures of Figure 3-9 and Figure 3-10, the measured reaction times are close (0.716 and 0.579

seconds). The total service outage, however, is different. Service outage for the architecture

Figure 3-12. Analysis of experiments with Kubernetes under the default configuration and No-Redundancy re-

dundancy model – evaluating the repair actions.

Pod1

{p1} {p1} {} {p1}

failure reaction recovery

Endpoints list:

Service State: available availableunavailable unavailable

repair

unavailable

{}

47

with No-Redundancy redundancy model was measured 1.766 seconds while for the architec-

ture with N-Way Active redundancy model was only measured 0.579 seconds. Because for the

former, we rely on the failed pod to be repaired in order to have service recovery (Figure 3-

12). However, for the latter, the service is recovered by only removing the unhealthy Pod1

from the endpoints list (Figure 3-13). This is because another healthy pod is still on the end-

points list and ready to serve the requests.

In Figure 3-14, we compare the results of the experiments in Sub-section 3.2.2.1 with

those of the experiments with OpenSAF (Sub-section 3.2.2.4) as a proven reference for avail-

ability management. As it is observed in Table 3-1 and Table 3-6, the measured service outage

for the experiments with Kubernetes with No-Redundancy redundancy model is higher than

that of the experiments with OpenSAF (1.766 and 0.795 seconds). The recovery time of the

experiments with OpenSAF is lower because there is a spare which is ready to be instantiated

when a failure happens.

Figure 3-13. Analysis of experiments with Kubernetes under the default configuration and N-Way Active Redun-

dancy model – evaluating the impact of redundancy.

Pod2

{p1,p2} {p1,p2} {p2} {p1,p2}

Pod1

Endpoints list:

available available availabledegradedService State:

failure reaction recovery repair

degraded

{p1,p2}

48

Figure 3-14. Comparing Kubernetes and OpenSAF from availability perspective for stateless applications. a) VLC

container failure scenario, b) Pod container failure scenario, c) Node failure scenario.

Default configuration
Most responsive configuration
OpenSAF

0.554

Kubernetes
(N-Way Active)

>

Service Outage
(Seconds)

Kubernetes
(No-Redundancy)

OpenSAF

1
2
3
4

30

3.351
4.045

0.730

32.019

Service Outage
(Seconds)

>
> 38.582

1
2
3
4

35

300

Kubernetes
(No-Redundancy)

Kubernetes
(N-Way Active)

OpenSAF

0.872

3.346
3.974

300.852

Service Outage
(Seconds)

1
2

Kubernetes
(N-Way Active)

OpenSAF

0.579

Kubernetes
(No-Redundancy)

0.795
1.766

a)

b)

c)

49

Analysis of Service Outage due to Pod Process Failure: In this failure scenario, the

service becomes unavailable when the pod process fails. In Table 3-1 and Table 3-3, we ob-

serve that the reaction time for the architectures of Figure 3-9 and Figure 3-10 are relatively

close while their total service outage significantly differ (32.019 and 0.730 seconds). The rea-

son for this difference is the repair time which takes 30 seconds on average and in the archi-

tecture with No-Redundancy redundancy model, recovery depends on the repair of the failed

pod. In the architecture of Figure 3-10, however, recovery happens shortly after reaction time

when Kubernetes removes the IP of the failed pod from the endpoints list. The reason for the

long repair time is that when the pod process fails, a graceful termination signal is sent to the

VLC container and Docker waits 30 seconds before terminating it forcefully and the repair

process will not start unless the VLC container is terminated.

In Sub-section 3.2.2.3, we reconfigured the graceful termination period of the pod to

decrease the aforementioned long repair time. The results of these experiments are presented

in Table 3-4. As it was expected, Table 3-4 shows a significant decrease in repair time which

affects the service outage of experiments done with No-Redundancy redundancy model. The

service outage of experiments with the N-Way Active redundancy model has not changed, as

the repair time does not play a role in the service outage in this case. We observed that with the

new configuration when the pod process crashes, the time Docker gives to the application con-

tainer before forcefully killing it is reduced to 2 seconds. However, this drastic change of the

graceful termination period might cause unnecessary pod restarts when there are false-positive

reports about the application container failure.

For the architecture of Figure 3-9, we can compare the results of the pod failure scenario

with the results of the experiments with OpenSAF where service outage is due to VM failure.

We observe in Figure 3-14 that with the default graceful termination period, the outage time

50

with Kubernetes is significantly higher compared to that of the experiments with OpenSAF.

However, the service outage with Kubernetes and OpenSAF became comparable by reconfig-

uring the graceful termination period to its lowest value.

Analysis of Service Outage due to Node Failure Scenario: In this failure scenario, as

it is observed in Table 3-1 and Table 3-3, with the default configuration of Kubernetes, it takes

between 30 to 40 seconds for Kubernetes to consider the node as lost and remove the IP of its

pods from the endpoints list and the repair time also takes around 260 seconds. While the ser-

vice outage for the architecture with No-Redundancy redundancy model was measured

300.852 seconds, this metric was measured 38.582 seconds for the architecture with N-Way

Active redundancy model. Because as mentioned before, for the architecture of Figure 3-10,

recovery does not depend on the repair of the failed pod.

In Sub-section 3.2.2.3, we reconfigured the node failure handling parameters to their

most responsive configuration. Table 3-1, Table 3-3, and Table 3-5 show that reconfiguring

Kubernetes reduced the outage time from 300.852 seconds to 3.974 seconds for the architecture

of Figure 3-9 and from 38.582 seconds to 0.897 seconds for the architecture of Figure 3-10.

Moreover, in comparison with OpenSAF (Figure 3-14), we observe that in the cases of

No-Redundancy redundancy model, the OpenSAF solution shows a lower outage time. More-

over, although the N-Way Active redundancy model should render a higher level of availability

compared to the No-Redundancy redundancy [45], the outage time for the node failure scenario

of Kubernetes with N-Way Active is still significantly higher than for OpenSAF with the No-

Redundancy redundancy model. The reason for the long outage time with Kubernetes is the

default configuration of Kubernetes that leads to late reaction time. However, with the changed

configuration of Kubernetes, the outage times in Kubernetes experiments with No-Redundancy

architecture are comparable to those of the OpenSAF solution.

51

Administrative Failure Events vs Execution Failure Events: Now we compare the

results of external execution failure scenarios with those of the administrative failure scenarios.

In the administrative pod termination scenario, the reaction time is 0.041 seconds which is

significantly lower than the 0.496 seconds of the externally triggered pod process failure. The

reason is that in the former, the termination is triggered from inside of Kubernetes, which then

reacts according to the termination procedure, while in the latter it is up to the Kubelet’s health

check to detect first that the pod is no longer present and this depends on how close to the next

health check the failure happens.

An important observation of these experiments is shown in Figure 3-15. Although the

pod process is failed forcefully (Figure 3-15 (b)), the orphaned application container of the pod

PodA is running

PodA is deleted via CLI

PodA is running
but not getting
new requests

PodA is terminated

PodB is running

a)

b)

PodA is running

PodA is terminated

PodA process is crashed
and graceful termination signal
is sent to application container

Application container
is terminated

PodB is running

time

time

Figure 3-15. Analysis of pod failure scenarios. (a) Administrative pod termination. (b) Pod process failure.

52

receives a graceful termination signal. Thus, the pod process failure is detected by the Kubelet,

which waits for Docker and will not start the repair process before it makes sure that the appli-

cation container of the pod is terminated as well. This means graceful termination of the appli-

cation container whose duration depends on Docker’s configuration, impacts and delays the

service recovery time. However, this may also allow for fault propagation should the pod pro-

cess fail due to real fault or bug. Fault isolation principles would require immediate forceful

cleanup of the application containers once their pod’s process failure is detected. This grace

period is the reason why the repair time for the pod process failure scenario is 32.570 seconds.

This is significantly longer than that of the administrative pod termination scenario which is

0.982 seconds. In the latter (Figure 3-15 (a)), Kubernetes performs the graceful termination

and repair procedures in parallel. The ordering is guaranteed for certain actions of these proce-

dures. For example, the removal of the terminating pod from the endpoints list precedes the

start of the repair procedure, and the completion of pod termination follows the addition of the

new pod. This parallelization is possible due to the assumption that there is no fault in the

system. This emphasizes the point made earlier about the correct simulation of failures with

respect to availability metrics. As it is observed, the administrative pod termination scenario

reports an outage time of 1.588 seconds while for the pod process failure scenario it is 32.019

seconds.

For the node failure scenarios, we observed similar differences in all measured availa-

bility metrics. For the administrative node deletion scenario, since the failure is triggered from

inside of Kubernetes, the reaction time is 0.031 and it is significantly faster than the reaction

time of externally triggered node failure which is 38.187 seconds. As explained before and

shown in Figure 3-16 (b), it depends on the period of the Kubelet’s status update (default 10

seconds) and the allowed number of misses (default 4 seconds).

53

Another important observation of the administrative node deletion scenario is shown in

Figure 3-16 (a). Although the failure is triggered from inside of Kubernetes, the new pod is

started after the old one is terminated. It was expected to behave similarly to the administrative

pod termination shown in Figure 3-15 (a) where the new pod is started before the old one is

terminated.

PodA is running

PodA is running
but not getting
new requests

PodA is terminated

a)

b)

PodA is running

PodA is terminated

PodB is running

Node of PodA is deleted via CLI

PodB is running

Node of PodA is
shut down

Master detects the
node is failed

time

time

Figure 3-16. Analysis of node failure scenarios. (a) Administrative node termination. (b) Externally triggered

node failure.

54

3.3.2 Challenges of Managing the Availability of Stateful Applications

As mentioned before, to manage the availability of applications, Kubernetes provides

healing for its managed microservices [46] that is restarting the failed containers and replacing

or rescheduling them when their hosts fail. Although these repair actions can improve the avail-

ability of the applications deployed with Kubernetes, redundancy remains the most important

feature to enable high availability (HA).

Kubernetes enables replication of the pods with the aim of improving applications’ avail-

ability. Stateless pods can be easily replicated as they can be deployed as interchangeable in-

stances. However, the same is not true for stateful pods. Deploying a replicated set of stateful

pods requires coordination of the different replicas to keep them synchronized and the “state”

aspect makes orchestration more complex than what the initial Kubernetes features and con-

trollers were built for.

For example, if the application is deployed by a StatefulSet controller as shown in Figure

3-2, if one pod fails, other pods cannot resume the service instead of the failed pod. One reason

is that the state data for each pod are stored separately and other pods do not have access to

them so they cannot resume the service. The other reason is that pods are isolated and are not

aware of each other’s failure and therefore cannot resume the service instead of the failed pod.

Therefore, we can only rely on the failed pod to be restarted with the same identity so it can

restore the state that was stored before failure from its own PV. This means that the service can

be recovered, but the clients need to wait for the failed pod to be restarted, which may be too

slow for some applications or impossible for some failure scenarios. For example, with the

architecture in Figure 3-2, if the service outage is due to node shutdown, the pod will not be

restarted and the service will not be recovered unless the node rejoins the cluster.

55

Moreover, as shown in Figure 3-3, when a stateful microservice based application is de-

ployed by a Deployment controller, all microservice instances have access to the same state

data. Because it is not possible to define separate PVs for each pod of a Deployment controller.

However, if a pod fails, other pods will not be able to resume the service that was provided by

the failed pod. Because although every pod has access to the state data, they do not know about

the failure and the need for the service to be recovered. Moreover, they are not aware of the

location where the failed pod’s state data is stored. Therefore, they cannot recover the service

that was provided by the failed pod. Since the identity of a restarted pod also changes, we

cannot rely on the restart procedure for recovering the stored service state.

56

3.4 Conclusion

In this chapter, we presented and compared architectures for deploying stateless and state-

ful microservice based applications in Kubernetes clusters hosted in public and private clouds.

Through our investigations, we learned that although it is not stated in Kubernetes’ documen-

tation [10], Kubernetes is more tailored for public clouds than it is for private clouds. We also

conducted experiments in a private cloud environment, considering different failure scenarios,

configurations, and redundancy models to evaluate Kubernetes from the perspective of availa-

bility it can provide for its applications.

In our experiments, we found that the failure scenarios due to external execution failure

events show significantly longer outage times compared to failure scenarios due to internal

administrative operations that are more commonly used to demonstrate Kubernetes’ support

for availability. We also found that the repair actions of Kubernetes are not sufficient for

providing availability, especially high availability. For instance, the default configuration of

Kubernetes results in a significant outage in the case of node failure. The outage time for this

scenario was measured around 5 minutes, which is equivalent to the amount of downtime al-

lowed in a one-year period for a highly available system. Kubernetes can be reconfigured to

avoid this significant outage and under its most responsive configuration, outage times in Ku-

bernetes experiments are comparable to those of OpenSAF, a proven solution for availability

management. However, the impact of this reconfiguration on network overhead and false-pos-

itive node failure reports should be investigated. Moreover, the results of our experiments are

compared with the experiments with OpenSAF where the VLC component is not modified.

However, if the VLC component is modified and implement the AMF API, higher service

availability will be achieved.

57

We acknowledge that there are some threats to the validity of our results. For example, all

experiments were conducted in a small cluster consisting of only a master and two worker

nodes. Kubernetes may behave differently in larger clusters which may impact the availability

measurements presented in our experiments. Also, the availability measurements may also vary

depending on the application’s complexity and the collocated applications managed by Kuber-

netes. In our experiments, we considered a simple case of only one microservice. We under-

stand that these factors may impact the results of our study. The mapping of the metrics to the

concrete events is the biggest threat and requires more investigation as one can map them dif-

ferently, in which case all the measurements could be different. However, we believe that even

with a different mapping what would change is the split between reaction and repair times and

reaction and recovery times, thus, resulting still in the same outage time. We may observe a

decrease in the reaction time which adds to the recovery time, or inversely but the total outage

time would be the same since it represents the duration in which the service was not available.

For stateless applications, we observed that adding redundancy can significantly decrease

the downtime since the service is recovered as soon as Kubernetes detects the failure and it

does not depend on the repair of the faulty unit. For the stateful applications, however, adding

redundancy cannot improve the availability of the application. Because if one pod fails, the

redundant pod neither knows about the failure nor has the state data and therefore cannot take

over and resume the service that was previously provided by the failed pod. Therefore, we rely

on the failed pod to be repaired so it can resume the service. In chapter 4, we will propose a

solution to address the challenges that Kubernetes has in providing availability for stateful mi-

croservice based applications.

The contents provided in this chapter are published in [47] and [48].

58

Chapter 4

4 A State Controller to Manage the

Availability of Stateful Microservice

Based Applications

In Section 3.3, we explained the issues that Kubernetes has in managing the availability of

stateful applications. In this chapter, we address these issues and propose a solution which is

integrated with Kubernetes and improves the availability of stateful microservice based appli-

cations. This solution, which is explained in Section 4.1, consists of a State Controller that

allows for the automatic service redirection to the healthy pods through the usage and manage-

ment of secondary pod labels. We have implemented a prototype for the State Controller and

conducted availability experiments to evaluate the availability provided by our solution and

compare with the availability of the architectures without our solution. Moreover, in Section

4.2, we enrich the State Controller so it can handle the cases where the application is scaled in

or scaled out and provide availability for the stateful microservice based applications whose

number of microservice instances change. We also implemented a prototype of the State Con-

troller enriched with elasticity and conducted experiments to evaluate the modified State Con-

troller in terms of scaling overhead and availability.

59

4.1 A State Controller for Kubernetes

We explained the challenges of managing the availability of stateful microservice based

applications with Kubernetes in Section 3.3. The main problem is that when a pod instance

fails, other pods do not know about this failure and cannot recover the service that was provided

by the failed pod. One solution is to have a standby pod that would take over and resume the

service when the active pod fails. Moreover, there needs to be a third party that notifies the

standby pod about the active pod’s failure so it can resume the service. However in Kubernetes,

the concept of standby does not exist and once a pod is deployed and added to the endpoints

list of the service that exposes the application, it will be active and will serve once it receives

a request.

4.1.1 Managing Availability with the State Controller

To address the issues mentioned at the beginning of this section, we propose a solution

that integrates the concept of high availability states, i.e., active and standby, with Kubernetes

to improve the availability of stateful microservice based applications. In this solution, a com-

ponent named the State Controller is added to Kubernetes per service. The State Controller

communicates with the API server and assigns a secondary label (HAState label) with the value

of active or standby to the pods.

To expose the application, a service which we call the application service should be cre-

ated that uses the HAState label and only targets the pod whose HAState label has the active

value. In addition to the service exposing the application, another service called the state rep-

lication service should be created which only targets the pod whose HAState label has the

standby value. Through the state replication service, the checkpointing process of the active

60

pod which has the IP address of the state replication service sends the state data to the standby

pod every time it checkpoints its state data to its PV.

What follows are the steps the State Controller takes to manage the availability of stateful

applications (Figure 4-1):

A. Assigns HAStates to pods (active and standby)

1) The active pod becomes the endpoint of the service exposing the application (ap-

plication service)

2) The standby pod becomes the endpoint of the state replication service

B. Monitors for the events related to pods and if it identifies a failure, it will take action

accordingly

1) If the failed pod had the active HAState, it assigns standby HAState to the failed

pod and active HAState to the standby pod. The new active pod becomes the

endpoint of the application service and restores the last state from its storage area

in the PV and resumes the service.

2) If the failed pod had the standby HAState, it ensures that the failed pod is assigned

the standby HAState after it is repaired.

This solution enables availability management of stateful microservice based applica-

tions deployed by a Deployment controller and speeds up the service recovery for the ones that

are deployed by a StatefulSet controller. Because service recovery no longer depends on the

repair of the failed pod.

61

As mentioned above, one role of the State Controller is to assign an active label to one

pod and standby label to another pod after they are deployed (Figure 4-2). In Figure 4-2, “x”

can be either active or standby. It is important to note that pods are not aware of their HAState

Figure 4-1. The behavior of the State Controller.

pod state
ready?

monitor pods (B)

assign HAState to pods (A)

assign active HA state to
current standby pod (B.1)

yes

no

activestandby
HAState of the
pod with “not
ready” state?

the active pod is the endpoint
of the application service (A.1)

the standby pod is the
endpoint of the state

replication service (A.2)

assign standby HA state
to failed pod

assign standby HAState
when pod is repaired (B.2)

62

labels assigned by the State Controller. Therefore, to make the pods aware of their HA states,

the State Controller manipulates an environment variable in each pods’ environment called the

HAState variable which is also shown in Figure 4-2.

As the State Controller makes changes in the HAState variable of the pod, there needs to

be an agent inside each pod that coordinates the pod’s actions with respect to these changes.

Therefore, a script is included in the container image of pods that is executed as the entrypoint

process of the pod and runs in the background once the pod is deployed. The entrypoint process

has two tasks which are explained in Figure 4-3 and Figure 4-4.

A. The first task of the entrypoint process explained in Figure 4-3 is to monitor the

HAState variable of the pod and make decisions accordingly:

1) Before the HAState variable is set by the State Controller, its value is

“not set”. The entrypoint process keeps checking until the HAState variable is set to

active or standby. To check for changes made to the HAState variable, the entrypoint

Figure 4-2. Setting the HAState label and HAState variable for pods (Step A).

Add “HAState”
label with “x”
value to pod

set HAState
variable of pod to

“x”

63

process keeps the current HA state of the pod and periodically compares the HAState

variable and the current HA state.

2) If the HAState variable is active, and it is changed by the State

Controller to standby, the entrypoint process initiates a self-cleanup process that

terminates all processes running in the pod’s environment, except the entrypoint

process itself. The reason for the self-cleanup is to ensure that if an active is changed

into standby by mistake, it keeps serving and changing the data.

Figure 4-3. Decision making of the entrypoint process based on the HAState variable (Step A).

standby

active

Not Set

no

resume service from the
last state

yes

current HA state
=

HAState variable

current
HA state (A)

HAState
variable

=
Active
(A.2)

terminate all processes,
except entrypoint and

cleanup

no

yesyes

no

HAState
variable

=
Active
(A.3)

HAState
variable

=
not set
(A.1)

64

3) When the HAState variable is standby, and it is changed by the State

Controller to active, it restores the last state stored by the failed pod from the PV and

resumes the service and starts checkpointing the state in its own storage area in the PV.

B. The other task of the entrypoint process which is explained in Figure 4-4 is to

run a watch loop to enable initiating a self-cleanup process when the pod is no longer controlled

by Kubernetes (e.g., a network partition has happened between the pod and the master) to avoid

data loss or data inconsistency. In this watch loop, the master is periodically pinged and if it is

unreachable for three tries, a self-cleanup procedure will be initiated that will terminate all

processes except the entrypoint process itself. In the self-cleanup procedure, all processes ex-

cept for the entrypoint process are forcefully terminated.

Figure 4-4. Self-cleanup watch loop of the entrypoint process (Step B).

no

is the master
node

reachable?

HA state
=

active

terminate all processes,
except the entrypoint and

cleanup

no

yes

yes

set HAState = Not Set

65

The proposed State Controller has been implemented as a proof of concept. The State

Controller has been developed using the Go programming language [49]. For the implementa-

tion, we used the client-go library [50] of Kubernetes which consumes the REST interface

exposed by Kubernetes API server in order to access and manipulate objects deployed with

Kubernetes (pods, services, and etc.). In our implementation, we retrieve the configuration of

the Kubernetes cluster and create a client that communicates with the API server and monitors

the events related to pod objects exposed by Kubernetes and stores them in a message queue.

Our proposed State Controller reads this message queue and performs the tasks explained at

the beginning of this section.

Our solution can be used to manage the availability of applications deployed with State-

fulSet controllers and with Deployment controllers. In the following sub-sections, we bring the

architectures where we integrate the State Controller with StatefulSet controllers as well as the

ones deployed with Deployment controllers and evaluate them. In any case, for recovering the

failed pods the State Controller relies on the Deployment or StatefulSet controller without any

modifications.

4.1.2 Integrating the State Controller with Kubernetes

In this sub-section, we present the architectures where the proposed State Controller is inte-

grated with Kubernetes.

66

4.1.2.1 Integrating the State Controller with StatefulSet Controllers

Figure 4-5 shows the architecture where the proposed State Controller is integrated with

Kubernetes to manage the availability of a stateful application deployed with a StatefulSet con-

troller (named “VoD”). In this architecture, the StatefulSet controller is deployed and creates

two pod replicas. Each pod has a separate PV where it can store its state data. In this architec-

ture, two services should be created by the user:

i. The application service which exposes the active pod to the clients. This service

only targets the pods that have both labels of “app: VoD” and “HAState: Active”.

ii. The state replication service which has a static IP address that does not change

and is known to the active pod as an endpoint where it should replicate its state data to. This

Figure 4-5. Integrating the State Controller with StatefulSet controllers.

SS

StatefulSet

Application Service:

Selects pods with labels:

app: VoD

API Server SC

HAState: Active HAState: Standby

r/w

State Replication Service:

Selects pods with labels:

app: VoD

HAState: Standby

w

Labels:

app: VoD

PV0

Labels:

app: VoD

PV1

VoD-0

HAState: Active

VoD-1

67

service only targets the pods who have both labels of “app: VoD” and “HAState: Standby”. In

the checkpointing process included in the container image of the pods, when a pod is active, it

periodically stores its state in its own PV and also replicates it to the IP address of the state

replication service. The state replication service receives the state data and sends it to the

standby pod through an HTTP request. The standby pod that is listening will store the state

data in its own PV when it receives it. Through the state replication service, the active pod does

not need to keep track of the changes in the location of the standby pod.

As mentioned before, the State Controller monitors the events related to pods and if a

failure happens to the active pod, it changes the HAState label value of the standby pod from

standby into active, making it the new endpoint to the application service. Consequently, the

entrypoint process of the new active pod will initiate the service resume process where the last

stored state is retrieved from the associated PV and the service is resumed. The new active pod

has the state data of the failed active pod because the failed active pod had been replicating its

state to the standby pod through the state replication service. The HAState label of the failed

pod is also changed from active to standby once it is repaired.

As mentioned before, StatefulSet controllers do not recreate pods if the pods’ hosts fail

and it is not possible to recover the service unless the host is repaired and rejoins the cluster.

However, integrating the State Controller with StatefulSet controllers enables service recovery

for this failure scenario. Because regardless of the cause of a failure, the State Controller

changes the HAState label of the standby pod into active and because of the change in the label,

the application service is redirected to the new active pod. It is important to mention that alt-

hough the service is recovered because of changing HAState labels by the State Controller, the

failed pod will still not be repaired by the StatefulSet controller unless the node becomes re-

sponsive again. Meaning that with this architecture, it is only possible to recover from only one

68

node failure. Because after each node failure, one pod will be lost, unless its node becomes

responsive again.

If the node failure was due to a network partition, the entrypoint process of the active

pod whose host had left the cluster would detect that the master is out of reach. Therefore, it

would automatically set its HAState variable to “not set” and terminate all running processes

except for the entrypoint process itself. This way, we ensure that the former active pod will not

keep serving the clients.

Since Deployment controllers do not have limitations in recovering from node failures,

we also bring an architecture where we integrate the State Controller with a Deployment con-

troller in the next sub-section.

69

4.1.2.2 Integrating the State Controller with Deployment Controllers

Figure 4-6 shows the architecture where the State Controller is integrated with a De-

ployment controller to manage the availability of a stateful application. Similar to the architec-

ture of Figure 4-5, two pod replicas are deployed. We have the application service to expose

the application and the state replication service for the active pod to replicate its state to the

standby pod. The difference is that with Deployment controllers, the same PV is shared be-

tween all pods. However, we create a separate storage area for each pod to distinguish between

the state data of each pod that is stored for each client.

The steps that the State Controller takes for managing the availability of the applica-

tions deployed with Deployment controllers are the same as described in the previous sub-

section. The difference is in how the Deployment controller behaves when a node failure is

detected. As Deployment controllers are primarily used for stateless applications, they do not

consider the risk of data inconsistency in case of a network partition and recreate pods when

their hosts become unresponsive. For example, if the node hosting PodA in Figure 4-6 becomes

unresponsive, whether it is due to a network partition or a system reboot, the Deployment con-

troller will delete the failed pod from the list of pods and recreate another pod on a healthy

node after the pod eviction timeout which is defined in the configuration. Therefore, with this

architecture, the number of pod replicas do not change with node failures.

70

Figure 4-6. Integrating the State Controller with Deployment controllers.

Application Service:

Selects pods with labels:

app: vod

HAState: Active

r/w

State Replication Service:

Selects pods with labels:

app: vod

HAState: Standby

w

D

Deployment

API Server SC

Labels:

app: vod

PV1

PodA PodB

PodA

storage area

PodB

storage area

HAState: Active

Labels:

app: vod
HAState: Standby

71

4.1.3 Evaluating the Achievable Service Availability by Integrating the State

Controller with Kubernetes

In Section 3.3, we explained the issues that Kubernetes has in managing the availability

of stateful microservice based applications and in Section 4.1, we proposed a solution in order

to enrich Kubernetes with a State Controller so it can achieve a higher level of availability

through managing redundant stateful microservices. In this sub-section, we evaluate the achiev-

able service availability with the architectures presented in Section 4.1 where we integrate the

State Controller with a StatefulSet controller (Figure 4-5) and with a Deployment controller

(Figure 4-6). We evaluate these architectures by addressing the following research questions

(RQ):

RQ5: What is the level of availability that Kubernetes can provide for stateful micro-

services solely through its repair actions?

RQ6: What is the impact of enriching Kubernetes with the proposed State Controller for

state management on the availability of stateful microservice based applications?

RQ7: What is the availability achievable with the State Controller for stateful micro-

service based applications under the most responsive configuration of Kubernetes?

RQ8: How does the availability achievable with the State Controller for stateful micro-

service based applications compare to non-Kubernetes based solutions?

To address these research questions, we conducted a set of availability experiments under

the failure scenarios introduced in Sub-section 3.2.1.2 and measured the availability metrics

defined in Sub-section 3.2.1.1.

72

In these experiments, we have a Kubernetes cluster composed of four VMs running on

OpenStack cloud. Ubuntu 16.04 is the OS running on all VMs. Kubernetes 1.12.1 runs on all

VMs and the container engine is Docker 18.06. NTP is used for time synchronization between

VMs. The application deployed is stateful Video on Demand (VoD) where each client can

request a video to be streamed for them. The same pod template is used for all experiments that

has one container image in which VLC is installed as the video streaming application. The

container image also has the Apache HTTP server [51] hosting a webpage that allows the cli-

ents to request for a video stream. To ensure service continuity, the container image has a

checkpointing process which checkpoints the elapsed time of the video to the location where

its PV is mounted when the pod receives requests from clients to stream a video. The streaming

position, which is the state data, is stored for each client separately. The state data is also sent

to the IP address of the state replication service so it will be stored by the standby pod. The

State Controller used in these experiments is the initial version which handles one active and

one standby HA state assignment.

73

4.1.3.1 Evaluating the Repair Actions with the Default Configuration of Kubernetes

(RQ5)

In Sub-section 3.1.2, we presented two possible architectures for deploying stateful mi-

croservice based applications with Kubernetes. One with StatefulSet controller (Figure 3-2)

and the other with Deployment controller (Figure 3-3). In the latter, all microservice instances

have access to the same state data. However, if a pod fails, other pods do not know about the

failure, nor are aware of the location its data are stored. Therefore, they cannot recover the

service that was provided by the failed pod. Since the identity of a restarted pod also changes

in node failure scenarios, we cannot rely even on the restart procedure for recovering the stored

service state. Therefore in this sub-section, we only evaluate the architecture where the appli-

cation is deployed with a StatefulSet controller. Figure 4-7 shows the concrete architecture for

the experiments where we evaluate Kubernetes in terms of the availability it provides for state-

ful applications only through its repair actions.

Figure 4-7. Concrete architecture for experimenting with Kubernetes - Stateful microservice based application

with No-Redundancy redundancy model.

SS

StatefulSet

Service:

Selects pods with labels:

app: VoD

r/w

Labels:

app: VoD

PV0

VoD-0

74

To answer this research question, we evaluate the availability metrics for each of the

failure scenarios under the default configuration of Kubernetes through a set of availability

experiments. The measurements of this set of experiments are shown in Table 4-1. What fol-

lows is the detailed explanation for each failure scenario in these experiments.

Service Outage due to Application Container Failure: In this scenario, the failure is

simulated by killing the application container process from the OS. When the application con-

tainer crashes, the Kubelet detects the crash and brings the pod to the “not ready” state where

it will not receive new requests. At this time, that is the reaction time, the pod is removed from

the endpoints list. Later, the Kubelet restarts the failed container and the pod is in the endpoints

list of the service again and is ready to receive requests. This time marks the repair time. Since

the application container was checkpointing its state to its PV before the failure, when the

container is restarted, it can restore the last state from its PV and the video will start from the

point of failure. This time marks the recovery time.

Service Outage due to Pod Process Failure: In this scenario, the pod process is killed

from the OS which is detected and reported by the Kubelet. However, the Kubelet does not

bring the pod to the “not ready” state and therefore the service is not interrupted. To repair the

pod process, the Kubelet first terminates the application container which will cause service

outage, and then starts the pod process and application container again. In this scenario, the

failure event and reaction are considered at the same time which is when the application con-

tainer is terminated. We consider the pod as repaired when the restart of both application con-

tainer and pod process are finished. After restart, the application container restores the last

stored state from its PV and the video will continue from this point, which marks the recovery

time.

75

Service Outage due to Node Failure: In this scenario, node failure is simulated by

shutting down the VM hosting the pod from OpenStack. As mentioned before, the Kubelet is

responsible to report the status of the node to the master, and it is the node controller of the

master who detects the failure of the node. When a node hosting a pod fails or is partitioned

from the master, it stops sending status updates to the master and the master will mark the node

as not ready after the fourth missed status update. This time is the reaction time. However,

unlike Deployment controllers, StatefulSet controllers do not recreate pods if their hosts die,

unless the node becomes responsive again. Therefore with this architecture, the pod will not be

repaired in this scenario and the service cannot be recovered. We also simulated node failure

by rebooting the VM hosting the pod using the Linux’s reboot command so it becomes respon-

sive again.

Table 4-1. Kubernetes with Default Configuration - Stateful VoD deployed with a StatefulSet controller.

failure trigger

(unit: seconds)
reaction time

repair

time

recovery

time

outage

time

Application Container Failure 0.679 1.029 1.480 2.159

Pod Process Failure 0 0.943 2.133 2.133

Node Shutdown NA NA NA NA

Node Reboot 37.127 126.400 127.380 164.507

76

4.1.3.2 Evaluating the Impact of Enriching Kubernetes with the State Controller for

State Management on the Availability of Stateful Microservice Based Appli-

cations (RQ6)

To answer this research question, we conduct experiments to evaluate the achievable

service availability when our proposed State Controller is integrated with StatefulSet control-

lers (Figure 4-5) as well as Deployment controllers (Figure 4-6). We evaluate the availability

metrics for each of the failure scenarios under the default configuration of Kubernetes to later

compare with the results of the experiments in Sub-section 4.1.3.1. The measurements of these

experiments for the architectures of Figure 4-5 and Figure 4-6 are shown in Table 4-2 and Table

4-3, respectively. What follows is the detailed explanation for each failure scenario in these

experiments.

Service Outage due to Application Container Process Failure: In this scenario for

both architectures of Figure 4-5 and Figure 4-6, the failure happens when the application con-

tainer process of the active pod is killed from the OS. When the active pod’s applications con-

tainer is killed, the Kubelet detects it and brings the active pod to the “not ready” state and

removes it from the endpoints list of the application service which marks the reaction time. The

State Controller reacts to the change made to the service state of the active pod and changes

the HAState label and HAState variable of the standby pod to active. The entrypoint process

of the new active pod detects the HAState variable’s change and orders the pod to read the last

stored state and resumes the service by executing the resume script present on the container

image. Recovery time is when the new active pod has started the video stream from the last

stored state. In the meantime, the failed pod is restarted by the Kubelet and gets the standby

HAState label and HAState variable.

77

Service Outage due to Pod Process Failure: In this scenario, the pod process is killed

from the OS and the Kubelet detects and reports that the pod process no longer exists but it

does not bring the pod to the “not ready” state. The State Controller detects the event reported

by the Kubelet and, since there is a healthy standby pod available, the State Controller initiates

a failover to this standby pod by changing the HA state of the active pod to standby and termi-

nating all its active processes. This results in a service outage and we consider this event as the

failure event but also as the reaction to the failure. The reason that we consider this event also

as the failure event is that prior to this event, although the pod process had crashed, the service

was still available and based on our definition, the failure event is the start of service outage.

Next, the State Controller assigns the active HA state to the healthy pod. The recovery time is

when the new active pod starts streaming the video. As it was mentioned before, the repair time

is when the restart of the pod with the failed pod process is completed.

Service Outage due to Node Failure: In this scenario for both architectures of Figure

4-5 and Figure 4-6, failure of the node hosting the active pod is simulated in two ways. One is

by shutting down the node from OpenStack while the other is using Linux’s reboot command

on that node. After the node is considered as not ready (after four missed status updates in the

default configuration), Kubernetes brings the active pod to the “not ready” state (reaction time).

Therefore, the State Controller detects the failure and initiates the failover process. That is, the

standby pod is assigned the active HAState label and variable and its entrypoint process will

order the pod to resume the service by executing the resume script present on the container

marking the recovery time. In the case of VM shutdown for the architecture shown in Figure

4-5, since the application is deployed by a StatefulSet controller, the failed pod will not be

repaired. However, when the VM is rebooted, the StatefulSet controller will recreate the pod

and therefore we have repair time. The repair time depends on how fast the node can reboot.

78

In both cases of VM shutdown and VM reboot for the architecture of Figure 4-6, since the

application is deployed with a Deployment controller, the failed pod will be repaired. In all

cases, if the pod is repaired, it will be assigned standby HAState.

Table 4-2. Kubernetes with Default Configuration - Stateful VoD deployed with a StatefulSet controller and the State

Controller.

failure trigger

(unit: seconds)
reaction time

repair

time

recovery

time

outage

time

App Container Failure 0.739 1.052 0.661 1.400

Pod Process Failure 0 31.527 0.637 0.637

Node Shutdown 37.236 NA 0.710 37.946

Node Reboot 37.660 126.738 0.800 38.460

Table 4-3. Kubernetes with Default Configuration - Stateful VoD deployed with a Deployment Controller and the State

Controller.

failure trigger

(unit: seconds)
reaction time

repair

time

recovery

time

outage

time

App Container Failure 0.549 1.027 0.656 1.205

Pod Process Failure 0 31.841 0.656 0.656

Node Shutdown 37.902 262.932 0.760 38.662

Node Reboot 36.128 123.974 0.827 36.955

79

4.1.3.3 Evaluating the Availability Achievable with the State Controller for Stateful

Microservice Based Applications under the Most Responsive Configuration

of Kubernetes (RQ7)

In the node failure scenarios, the default configuration of Kubernetes significantly delays

both reaction and repair time. The configuration parameters are the frequency of posting the

node status by the Kubelet to the master, the number of allowed missed status updates before

marking a node as unresponsive, and pod eviction timeout. Therefore to answer RQ7, we con-

ducted the experiments for the architectures of Figure 4-7, Figure 4-5, and Figure 4-6 under

the most responsive configuration. Note that unlike what we discussed in Sub-section 3.2.2.3,

the default graceful termination period for pods does not impact service outage in the newer

versions of Kubernetes. Since in these experiments we used Kubernetes 1.12.1, we do not con-

sider the case where we change the default graceful termination period parameter.

To have the most responsive configuration, we reconfigured the Kubelets of all nodes to

post the status of the node to the master every one second. We also reconfigured the Controller

Manager so the master checks the posted node statuses every second and allow one missed

status update for each node. The pod eviction timeout is also set to one second. Since these

parameters only affect responding to node failures, we only consider the node failure scenario

for our experiments where we simulate node failure by shutting down the node from OpenStack

as well as Linux’s reboot command on the VM that is hosting the pod which is streaming the

video. The measurements of this set of experiments for the architectures of Figure 4-7, Figure

4-5, and Figure 4-6 are shown in Table 4-4.

80

Table 4-4. Kubernetes with the Most Responsive Configuration – Service Outage due to Node Failure Scenario.

architecture
failure trigger

(unit: seconds)

reaction

time
repair time

recovery

time

outage

time

StatefulSet controller

(Figure 4-7)

Node Shutdown NA NA NA NA

Node Reboot 1.738 124.078 126.155 127.893

State Controller

integrated with

StatefulSet controller

(Figure 4-5)

Node Shutdown 2.209 NA 0.727 2.936

Node Reboot 1.970 128.201 0.883 2.853

State Controller

integrated with

Deployment controller

(Figure 4-6)

Node Shutdown 2.033 3.825 0.780 2.813

Node Reboot 2.050 4.513 0.918 2.968

81

4.1.3.4 Evaluating the Availability Achievable with the State Controller for Stateful

Microservice Based Applications Compared to Non-Kubernetes Based Solu-

tions (RQ8)

We address RQ8 to better position the availability results obtained with our solution.

As mentioned in Sub-section 3.2.2.4, we consider the OpenSAF middleware as a proven solu-

tion for providing availability. In a previous work [44], a set of availability experiments with

OpenSAF were conducted. These experiments covered different failure scenarios with the

same video streaming application (VLC). For comparison, we consider the failure scenario of

VLC component failure and physical host failure, corresponding to VLC container failure and

node reboot in Kubernetes, respectively. In the experiments with OpenSAF, the application is

stateful and the redundancy model is 2N [13]. The architecture for these experiments are shown

in Figure 4-8. The application has two VLC components, one active and the other one as an

instantiated standby to take over in case of failure of the active. The configuration with regards

to node failure detection used is the default configuration of OpenSAF. The results of the ex-

periments with OpenSAF are shown in Table 4-5.

82

Table 4-5. Experiments with OpenSAF (SA-Aware VLC).

failure trigger

(unit: seconds)

reaction

time

repair

time

recovery

time

outage

time

VLC Component Failure 0.089 0.181 0.140 0.229

VM Failure 3.233 21.074 0.116 3.344

Physical Host Failure 3.229 37.795 0.101 3.329

Figure 4-8. The architecture for availability experiments with OpenSAF (stateful VLC).

VM 1

KVM

Physical Host 1

VM 2

KVM

Physical Host 2

OpenStack Cloud

OpenSAF
SG

SI

active

CSI 1

VLC component
(SA-Aware)

SU

IP component

CSI 2
active

VLC component
(SA-Aware)

SU

IP component

standby

standby

83

4.1.4 Analysis and Discussion

In this sub-section, we analyze the results of the experiments of Sub-section 4.1.3 in

order to answer the research questions we brought earlier. We analyze the results for each fail-

ure scenario separately.

Analysis of Service Outage due to Application Container Failure Scenario: In this

failure scenario, before killing the application container, the IP address of the pod was in the

endpoints list and the service was available. After the failure, the service becomes unavailable.

However, since Kubernetes has not detected the failure yet, the IP address of the pod stays in

the endpoints list. The reaction time is when Kubernetes detects the failure and removes the

pod’s IP from the endpoints list. As it is observed in Table 4-1, Table 4-2, and Table 4-3, the

reaction times of all architectures are measured between 0.549 and 0.739 seconds. The increase

of reaction time from 0.679 seconds to 0.739 seconds shown in Table 4-1 and Table 4-2 can be

considered as the overhead of integrating the State Controller with StatefulSet controllers on

the reaction time. Also, the average repair time of the failed pod was measured between 1.027

to 1.052 seconds for all architectures. However, it is only the architecture in Figure 4-7 (State-

fulSet controller without the State Controller) whose service recovery depends on the repair

time and therefore, has the longest service recovery which is 1.480 seconds making the average

service outage time 2.159 seconds with the standard deviation of 0.24 seconds. In the other

architectures where the proposed State Controller is integrated with the StatefulSet controller

and Deployment controller (Figure 4-5 and Figure 4-6), the service recovery does not depend

on the repair time. The reason is that after the failure is detected by Kubernetes, that is, when

it marks the pod’s state “not ready”, the State Controller fails over the service to the standby

pod which already has the last stored state by only changing the HAState labels and there is no

need to wait for the failed pod to be restarted. Therefore, the average service outage time for

84

the architecture of Figure 4-5 is less and is 1.400 seconds with the standard deviation of 0.42

seconds. The average service outage time for the architecture of Figure 4-6 is 1.205 seconds

with the standard deviation of 0.30 seconds. In average, we observe a 55% improvement in

recovery time when the proposed State Controller is integrated with Kubernetes.

To better position the impact of integrating the State Controller with Kubernetes on

availability, we compare our results with those of the experiments conducted with OpenSAF.

As shown in Figure 4-9, the OpenSAF solution shows a lower outage – only 0.229 seconds.

Table 4-5 shows that the difference is in both reaction time and recovery time. The reason is

Figure 4-9. Comparing Kubernetes and OpenSAF from availability perspective. a) Application container/compo-

nent failure scenario, b) Node/physical host reboot scenario.

Default configuration
Most responsive configuration
OpenSAF

Service Outage
(Seconds)

>
38.662

1
2
3
4

35

2.968 3.329

Service Outage
(Seconds)

1
2

OpenSAF

1.205
0.229

a)

b)

Kubernetes
(SC+ StatefulSet)

Kubernetes
(SC+ Deployment)

1.4

OpenSAFKubernetes
(SC+ StatefulSet)

Kubernetes
(SC+ Deployment)

37.974

2.853

85

that in the experiments with OpenSAF, the VLC component is modified and implements the

AMF API and therefore its failure can be detected faster by the AMF.

Analysis of Service Outage due to Pod Process Failure Scenario: The pod process

is an environment for managing a group of application containers. Although the containers of

a pod communicate and share volumes through this environment, in the newer versions of Ku-

bernetes, the failure of the pod process itself does not result in their failure. After the pod pro-

cess failure, Kubernetes gives the application container 30 seconds to terminate. During this

grace period, the service is available for incoming requests as well as for ongoing ones. After

the 30 seconds, the application container is terminated and restarted along with the pod process.

For the architecture of Figure 4-7, the failure event is when the application container is termi-

nated which is the same as the reaction time. Therefore, it is zero seconds. Later, the Kubelet

restarts the pod process and the application container and the pod is considered repaired when

the restart procedure is finished which takes 0.943 seconds. Subsequently, the service is re-

sumed 2.133 seconds after the failure making the average service outage 2.133 seconds with

the standard deviation of 0.21 seconds. For the architectures of Figure 4-5 and Figure 4-6, the

measurements correspond to different events. For these architectures, the failure event is in-

duced by the State Controller and happens before the application container is terminated by the

Kubelet. That is, when the State Controller detects that the Kubelet has reported a pod process

failure and it assigns the standby HA state to the failed active pod and terminates all its active

processes. The reaction for these architectures is the same as the failure time making the reac-

tion time zero seconds. Recovery time is when the healthy pod has been assigned the active

HA state and the video is resumed, which was measured between 0.656 seconds with the stand-

ard deviation of 0.14 seconds and 0.637 seconds with the standard deviation of 0.15 seconds

for these architectures. However, the repair time depends on the graceful termination period

86

of the pod. The results show that integrating the State Controller reduced the outage time by

around 70%.

Analysis of Service Outage due to Node Failure Scenario: In this failure scenario, as

it is observed in Table 4-1, Table 4-2, and Table 4-3, with the default configuration of Kuber-

netes, it takes between 30 to 40 seconds for Kubernetes to consider the node as lost and remove

the IP of its pods from the endpoints list. In the architectures where the application is deployed

by a StatefulSet controller (Figure 4-7 and Figure 4-5), if the failed node does not become

responsive and does not rejoin the cluster, Kubernetes will not recreate the pods of the failed

node on other nodes; therefore there will be no repair time. This means that the service will not

be recovered in the node shutdown scenario for the architecture of Figure 4-7. For the archi-

tecture in Figure 4-5, however, the State Controller will failover the service to the standby pod

which is able to resume the service in 0.710 seconds on average with the average service outage

of 37.946 seconds with the standard deviation of 2.72 seconds. For the architecture of Figure

4-6 with the same scenario, the measured recovery times is 0.760 seconds making the average

service outage time 38.662 seconds with the standard deviation of 3.41 seconds which is close

to that of the architecture in Figure 4-5. However, with this architecture, after the default pod

eviction timeout, a new pod is recreated on another node making the repair time 262.932 sec-

onds on average. We observe that in the scenario where service recovery was not possible when

only using StatefulSet controllers, integrating the State Controller has enabled service recovery

measured as 0.710 seconds.

When service outage is due to node reboot, that is, the node becomes responsive again

as it rejoins the cluster, Kubernetes will be able to recreate the pod in all architectures. This

means that repair time depends on how fast the node can become responsive again. As it is

observed in Table 4-1, for the architecture in Figure 4-7, the repair time affects the recovery

87

time which was measured as 127.380 seconds resulting in the average service outage of

164.507 seconds and standard deviation of 6.86 seconds. However, for the architectures of

Figure 4-5 and Figure 4-6, since the State Controller reassigns the active HAState to the

standby pod and since service recovery does not need the failed pod to be repaired, the recovery

time will not depend on the node reboot. Therefore, the average service outage time is reduced

and is 38.460 seconds with a standard deviation of 4.460 seconds for the architecture of Figure

4-5. The average service outage time for the architecture of Figure 4-6 is 36.955 seconds with

the standard deviation of 3.11 seconds. In the node reboot scenario, we observe a 99% im-

provement in the recovery time when the State Controller is integrated with Kubernetes.

We also reconfigured Kubernetes to its most responsive configuration and repeated the

node reboot scenario for all three architectures. The measurements of Table 4-4 show that the

new configuration has decreased service outage by 22% for the architecture of Figure 4-7 and

by 92% for the architectures of Figure 4-5 and Figure 4-6. For the architecture of Figure 4-7,

the new configuration only affects the reaction time. The repair time remains the same and

depends on how fast the node is able to reboot. For the architecture in Figure 4-6, the new

configuration changes both reaction and repair time. However, since in this architecture recov-

ery does depend on the repair time, only the change in the reaction time affects the outage.

As shown in Figure 4-9, the service outage of the physical host failure scenario of the

OpenSAF solution is significantly lower compared to that of the node reboot scenario with our

proposed State Controller under the default configuration. The main contributing factor to the

higher outage with Kubernetes is the node failure handling configuration parameters. Therefore

with the most responsive configuration, the results of our solution integrated with Kubernetes

are comparable with those of the OpenSAF solution.

88

In Section 2.2, it was mentioned that authors of [27] have considered a database as a

microservice and proposed that the state replication between microservice instances can be

done by the database process. However, one cannot guarantee service recovery and continuity

only by replicating the state data between microservice instances. For service recovery, a mi-

croservice instance needs to be notified and ordered to access the replicated data and continue

the service. Also, it should be clear where the state data of each microservice instance is stored.

In our solution, a state replication mechanism is provided through which the active pod repli-

cates its state data to the standby pod and a third party (the State Controller) notifies the standby

pod if its corresponding active pod fails. Moreover, each pod stores its data separately and is

aware of the location of its data.

89

4.1.5 Limitations of the Proposed State Controller

In the previous sub-section, we proposed a State Controller which improves the availa-

bility of stateful applications deployed with Kubernetes by integrating the concept of high-

availability states, i.e., active and standby. However, there are some limitations to this solution

in terms of handling elasticity. In the proposed solution, the State Controller only assigns one

active HA state and one standby HA state. Meaning that if due to the increase in load, the

StatefulSet (or Deployment) controller scaled out the application, the newly added pods will

not be assigned any HA states. Even if the State Controller was able to assign HA states to the

new pods, replicating the state data was not possible. Because the state replication service that

is created before running the State Controller would have multiple standby pods as its endpoints

and would send the state data of an active pod to several standby pods which makes it impos-

sible for a standby pod to have all the state data of its active pod. The next section explains

how the State Controller is modified to handle elasticity.

90

4.2 Handling Elasticity with the State Controller

In this section, we address the issue of the proposed State Controller in handling availa-

bility where the application is scaled in or out.

To address the problem mentioned in Sub-section 4.1.3, we modified our proposed

State Controller so it can handle multiple HA state assignments when the application is scaled

in or out. In this solution, the application can be deployed by a StatefulSet controller as well as

a Deployment controller. Moreover, a service called the application service should be created

that uses the HAState label and targets all pods with the active label. However, unlike the initial

State Controller introduced in Section 4.1, we have more than one state replication service

which are automatically created by the State Controller. In this solution, the State Controller

holds pairs of active and standby pods and identifies a pair by adding a “peer” label to each

pod which gets its corresponding active or standby pod’s name. Below are the steps that the

modified State Controller (i.e., the State Controller enriched with elasticity) takes to manage

the availability of stateful applications (Figure 4-10). Note that the entrypoint process of pods

introduced in Section 4.1 remains the same.

A. Sorts running pods based on their creation time

B. Picks first two pods

C. Assigns HA state and peer labels to pods (Figure 4-11)

1) The first pod named “X” is assigned the active HA state and becomes an end-

point to the application service

2) The second pod named “Y” is assigned the standby HA state

3) Assigns peer label to pod “X” with the value of “Y” and to pod “Y” with the

value of “X”

91

4) For the active pod named “X”, creates a service named “replicate-X” that

selects a pod with HAState label equal to standby and peer label equal to “X”.

Pod “X” periodically replicates its state data to a service named “replicate-X”

D. If there are more pods remaining, picks the next two pods and goes to step 3

E. Monitors the events of the API server

1) If the event corresponds to the service state of a pod changing into “not ready”

i. If the failed pod had the active HA state

 It assigns active HA state to the standby pod which was the peer

of the failed active pod. The new active pod becomes the endpoint

of the application service and restores the last state from its storage

area in the PV and resumes the service.

 It assigns standby HAState to the failed pod and deletes the state

replication service of the failed active pod

 Creates the replication service for the new active pod

ii. If the failed pod had the standby HAState, it ensures that the failed pod is

assigned the standby HAState after it is repaired

2) If the event corresponds to a scale-out, then goes to step 3

3) If the event corresponds to a scale-in, it deletes the state replication service

for a deleted active-standby pair

92

Figure 4-10. The behavior of the State Controller enriched with elasticity.

run the State Controller

assign active HA state to
corresponding standby pod

(E.1.i)

activestandby

HAState of the
pod with “not
ready” state?

assign standby HA state to
failed pod and delete the
corresponding replication

service

assign standby HAState
when pod is repaired

(E.1.ii)

sort pods based on their creation time (A)

pick first two pods (B)

pick next two pods (D)
more pods
remaining?

HAState and peer assignment (C)

yes

no

new event?
(E)

no

yes

[pod state changed to not ready (E.1)] [scaling event]

[scaled out (E.2)]

delete the corresponding
state replication service

[scaled in (E.3)]

93

The modified State Controller has been implemented as a proof of concept and devel-

oped using the Go programming language [49] and the client-go library [50] of Kubernetes. It

is important to mention that we assume that an external elasticity engine is present and makes

the scaling decisions. We also assume that in the scale-out events, the number of pods is in-

creased by two, and in scale-in events, it is decreased by two as well.

Figure 4-12 shows an example architecture where we integrate the modified State Con-

troller with Kubernetes. In this architecture, the application is video-on-demand (VoD) stream-

ing and is deployed by a StatefulSet controller. As it is shown in this architecture, a service

called the application service should be created which only selects the pods with HAState label

equal to active and app label equal to VoD and the State controller should be running.

Figure 4-11. Setting the HAState and Peer label and variables to pods (Step C).

assign active HAState to first pod named “X”
(pod “X” is the endpoint of the application service)

(C.1)

create a state replication service named “replicate-X”
(pod “Y” is the endpoint of the replicate-X service)

(C.4)

assign peer label with the value of “X” to pod “Y”
(C.3)

assign standby HAState to second pod named “Y”
(C.2)

assign peer label with the value of “Y” to pod “X”
(C.3)

94

In the architecture of Figure 4-12, when the StatefulSet controller is deployed, it creates

two pod replicas named VoD-0 and VoD-1. In the beginning, there are no pods in the endpoints

list of the application service. After the pods are deployed, the State Controller assigns the

active HA state to VoD-0 which makes it an endpoint to the application service. Once VoD-0

receives a request from a client for streaming a video, it periodically checkpoints its streaming

position to its PV. In the checkpointing process, in addition to storing the state in PV0, VoD-0

also replicates its state data to a service called “replicate-VoD-0”. This service is created by

the State Controller after it assigns the standby HA state to VoD-1 as well as the peer label

with the value of “VoD-0”. Note that the “replicate-VoD-0” service selects a pod with HAState

label equal to standby, app label equal to VoD, and peer label equal to VoD-0. This way, VoD-

0 and VoD-1 are paired, and VoD-1 stores the state data of its active pod (VoD-0) in its PV.

Figure 4-12. An example architecture for the State Controller enriched with elasticity.

Application Service:
Selects pods with label:

app: VoD
HAState: Active

Replication Service:
name: replicate-VoD-0
Selects pods with labels:

app: VoD
HAState: Standby
Peer: VoD-0

SC

PV0

replicates

r/w

SS

API Server

app: VoD
HAState: Active

VoD-0

PV1

w

app: VoD
HAState: Standby
Peer: VoD-0

VoD-1

Replicas= 2

95

Let us assume that the demand for service increases and the StatefulSet is ordered to

add n-2 more pods (Figure 4-13). The State Controller detects that pods VoD-2, VoD-3... VoD-

(n-1) are added. It assigns the active HA state to VoD-2 making it the second endpoint to the

application service. Moreover, it assigns the standby HA state to VoD-3 and adds a peer label

with the value of VoD-2. This will be done until all pods are assigned an HA state. In the next

step, for each pair of active-standby, the State Controller creates a service named “replicate-

{active pod’s name}” which selects the standby pod as its endpoint. Through the “replicate-

{active pod’s name}” service, the active pod replicates its state data to its corresponding

standby pod. Note that the modified State Controller can integrate with Deployment controllers

as well and maintain multiple pairs of active-standbys (Figure 4-14).

Now let us assume that the active pod VoD-(n-2) fails due to application container fail-

ure. The first step for the State Controller after detecting that there was a failure is to find the

peer of VoD-(n-2). The State Controller holds the pairs of pods in an array and finds that the

corresponding standby pod for VoD-(n-2) is VoD-(n-1). Therefore, it fails over the service to

VoD-(n-1) by changing its HAState label and variable into active. It also changes the HAState

label and variable of VoD-(n-2) into standby after it is repaired. Moreover, it deletes the “rep-

licate-VoD-(n-2)” service and instead, creates a service named “replicate-VoD-(n-1)” through

which the new active pod (VoD-(n-1)) can replicate its state data to the new standby pod (VoD-

(n-2)) after it is repaired.

96

Figure 4-13. Modified State Controller integrated with StatefulSet controller - stateful application with multiple pairs of

active-standbys.

Application Service:
Selects pods with label:

app: VoD
HAState: Active

Replication Service:
name: replicate-VoD-0
Selects pods with labels:

app: VoD
HAState: Standby
Peer: VoD-0

SC

PV0

replicates

r/w

SS

API Server

app: VoD
HAState: Active

VoD-0

PV1

w

app: VoD
HAState: Standby
Peer: VoD-0

VoD-1

Replication Service:
name: replicate-VoD-(n-2)
Selects pods with labels:

app: VoD
HAState: Standby
Peer: VoD-(n-2)

PV(n-2)

replicates

r/w

app: VoD
HAState: Active

VoD-(n-2)

PV(n-1)

w

app: VoD
HAState: Standby
Peer: VoD-(n-2)

VoD-(n-1)

Replicas= n

.

.

.

.

.

.

.

.

.

97

Figure 4-14. Modified State Controller integrated with Deployment controller - stateful application with multiple pairs of

active-standbys.

Application Service:
Selects pods with label:

app: VoD
HAState: Active

Replication Service:
name: replicate-PodA0
Selects pods with labels:

app: VoD
HAState: Standby
Peer: PodA0

SC

replicates

D

API Server

app: VoD
HAState: Active

PodA0

w

app: VoD
HAState: Standby
Peer: PodA0

PodA1

Replication Service:
name: replicate-PodA(n-2)
Selects pods with labels:

app: VoD
HAState: Standby
Peer: PodA(n-2)

replicates

app: VoD
HAState: Active

PodA(n-2)

app: VoD
HAState: Standby
Peer: PodA(n-2)

PodA(n-1)

Replicas = n

.

.

.

.

.

.

.

.

.

PodA0

storage area

PodA1

storage area

PodA(n-2)

storage area

PodA(n-1)

storage area

PV1

w

r/w

r/w

98

4.2.1 Evaluating the Scaling Overhead and the Achievable Service Availability

with the Modified State Controller

In the Sub-section 4.1.3, we evaluated the achievable service availability when the initial

State Controller (the State Controller than can only keep one pair of active-standby) is inte-

grated with Kubernetes. In this sub-section, we evaluate the achievable availability as well as

the scaling overhead of integrating the modified State Controller (i.e., the State Controller en-

riched with elasticity) with Kubernetes. We do these evaluations by addressing the following

research questions:

RQ9: What is the impact of integrating the modified State Controller on the provided

availability?

RQ10: What is the impact of scaling during failover on the availability that the modified

State Controller can provide for its managed microservices?

RQ11: What is the scaling overhead of integrating the modified State Controller?

RQ12: What is the impact of simultaneous failure of multiple active pods on the outage

time for each failed pod?

To address these research questions, we conducted a set of experiments and measured

the following metrics:

1. Availability metrics defined in Sub-section 3.2.1.1.

2. Scaling time: The time between when the scaling request is sent until the last pod

is deployed and ready (or deleted in case of scale-in).

3. HA state assignment time: The time between when the scaling request is sent

until the State Controller assigns HA state to the last added pod.

99

In the experiments where we measure the availability metrics, the failure scenario is

service outage due to application container failure. The scaling decision is not made by the

State Controller and we assume that the application is scaled in or out by two. Moreover, the

experiments’ setting is the same as discussed in Sub-section 4.1.3. However, instead of two

worker nodes, we have eight worker nodes in these experiments in order to be able to scale-out

the application. The State Controller used in these experiments is the modified version which

can handle multiple active and standby HA state assignments.

100

4.2.1.1 Evaluating the Impact of Integrating the Modified State Controller on the

Provided Availability (RQ9)

In Sub-section 3.1.2, we presented one architecture with StatefulSet controller (Figure

3-2) and another with Deployment controller (Figure 3-3) for deploying stateful microservice

based applications with Kubernetes. We discussed that with both architectures, other pods can-

not recover the service for a pod when it fails. Because the healthy pods do not know about the

failure, nor are aware of the location its data are stored. It was also mentioned that with the

architecture of Figure 3-3, we cannot always rely on the restart procedure for recovering the

stored service state. Because, the identity of a restarted pod changes in certain failure scenarios

such as node failure scenarios. However, in the experiments in this sub-section, we only con-

sider the failure scenario of service outage due to application container failure. Therefore, we

consider both architectures of Figure 3-2 and Figure 3-3 to measure the availability metrics as

a baseline and compare with the availability that integrating the modified State Controller can

provide. Figure 4-15 shows the concrete architectures for the experiments where we evaluate

Kubernetes in terms of the availability it provides for stateful applications only by its repair

actions through a set of availability experiments. The measurements for these experiments are

shown in Table 4-6.

To answer this research question, similar to the experiments in Sub-section 4.1.3.2, we

evaluate the impact of integrating the State Controller on the availability by measuring the

availability metrics through a set of availability experiments. The architectures for these exper-

iments are depicted in Figure 4-5 and Figure 4-6 and the failure scenario is service outage due

to application container failure. However, the State Controller used in these experiments is the

modified version which can hold pairs of active-standbys. The measurements of this set of

experiments are shown in Table 4-7.

101

Figure 4-15. Concrete architecture for experimenting with Kubernetes - Stateful microservice based application with

No-Redundancy redundancy model. a) Deployed with StatefulSet controller. b) Deployed with Deployment controller.

SS

StatefulSet

Service:

Selects pods with labels:

app: VoD

r/w

Labels:

app: VoD

PV0

VoD-0

D

Deployment

PV0
PodA

storage area

Service:

Selects pods with labels:

app: VoD

r/w

Labels:

app: VoD

PodA

a) b)

Table 4-6. Evaluating the repair actions of Kubernetes for providing availability – Application container failure scenario.

architecture

(unit: seconds)

reaction

time
repair time

recovery

time

outage

time

StatefulSet controller

(Figure 4-15 (a))
0.679 1.029 1.480 2.159

Deployment controller

(Figure 4-15 (b))
0.554 1.021 1.534 2.088

Table 4-7. Evaluating the modified State Controller for providing availability – Application container failure scenario.

architecture

n = 2

(unit: seconds)

reaction

time
repair time

recovery

time

outage

time

Modified State Controller

integrated with StatefulSet

controller

(Figure 4-13)

0.719 1.083 0.793 1.512

Modified State Controller

integrated with Deployment

controller

(Figure 4-14)

0.784 1.244 0.688 1.472

102

4.2.1.2 Evaluating the Provided Availability by the Modified State Controller when

Failover and Scaling Overlap (RQ10)

In this research question (RQ10), we are interested in evaluating the impact of a simul-

taneous scaling event on the availability that the State Controller can provide for its managed

application. To address RQ10, we conduct a set of experiments under two scenarios; scale-out

and scale-in. For the scale-out scenario, we consider both architectures of Figure 4-5 and Figure

4-6 where the modified State Controller is integrated with a StatefulSet controller and a De-

ployment controller, respectively. In these architectures, two pods are deployed (one active and

one standby) and we forcefully kill the application container of the active pod that is streaming

a video. While the service is being recovered by the State Controller, we scale the application

to four pods. We measure the availability metrics for the failed pod as well as the scaling time

and HA state assignment time for the added pods. We compare the availability metrics of this

set of experiments with those of an experiment where no scaling event had happened during

failover. Moreover, we compare the scaling time and HA state assignment time of this set of

experiments with those of an experiment where no failure had happened during scaling the

application. The measurements for the scale-out scenario are shown in Table 4-8.

In the scale-in scenario, four pods are deployed (two active-standby pairs) and we force-

fully kill the application container of the active pod that is streaming a video and was created

before the other active pod. Also, we have set the graceful termination period of pods to zero.

Meaning that when a pod is ordered to be deleted, it will be done immediately. Note that in this

scenario, we only consider the architecture of Figure 4-13 where the stateful application is

deployed by a StatefulSet controller (n=4) and we do not consider the architecture where the

application is deployed by a Deployment controller. Because, with Deployment controllers,

there is no guaranteed order in deleting the pods in case of a scale-in. For example, in Figure

103

4-16, let us assume that the active pod “podA” fails and during its recovery, the application is

scaled in to two pods. Since the application is deployed by a Deployment controller, one pos-

sibility is that podB and podC are deleted. Therefore, there will be no standby pod for the failed

active pod (podA) and service recovery cannot happen. Therefore we do not consider this ar-

chitecture as it cannot guarantee service recovery.

In the scale-in scenario, we measure the availability metrics for the failed pod as well

as the scaling time for the deleted pod. We compare the availability metrics of these experi-

ments with those of an experiment where no scaling event had happened during failover. More-

over, we compare the scaling time of this set of experiments with those of an experiment where

Figure 4-16. Example of integrating the modified State Controller with Deployment controllers.

Application Service:
Selects pods with label:

app: VoD
HAState: Active

Replication Service:
name: replicate-podA
Selects pods with labels:

app: VoD
HAState: Standby
Peer: podA

SC

replicates

D

API Server

app: VoD
HAState: Active

podA

app: VoD
HAState: Standby
Peer: podA

podB

Replicas= 4

Replication Service:
name: replicate-podC
Selects pods with labels:

app: VoD
HAState: Standby
Peer: podC

replicates

app: VoD
HAState: Active

podC

app: VoD
HAState: Standby
Peer: podC

podD

104

no failure had happened during scaling the application. The measurements for the scale-out

scenario are shown in Table 4-9.

Table 4-8. Evaluating the provided availability by the modified State Controller when failover and scaling overlap –

Scale-out scenario.

architecture

n = 2

(unit: seconds)

scenario
reaction

time

repair

time

recovery

time

outage

time

scaling

time

HA state

assign-

ment time

Modified State

Controller inte-

grated with

StatefulSet con-

troller

(Figure 4-13)

active pod

fails
0.719 1.083 0.793 1.512 NA NA

application

scaled out to 4
NA NA NA NA 4.234 5.653

scaling and

failover over-

lap

0.689 1.161 1.012 1.701 7.049 7.293

Modified State

Controller inte-

grated with De-

ployment con-

troller

(Figure 4-14)

active pod

fails
0.784 1.244 0.688 1.472 NA NA

application

scaled out to 4
NA NA NA NA 3.016 3.060

scaling and

failover over-

lap

0.607 1.205 1.028 1.635 5.055 5.608

Table 4-9. Evaluating the provided availability by the modified State Controller when failover and scaling overlap –

Scale-in scenario.

architecture

n = 4

(unit: seconds)

scenario
reaction

time

repair

time

recovery

time

outage

time

scaling

time

Modified State Con-

troller integrated with

StatefulSet controller

(Figure 4-13)

active pod

fails
0.719 1.083 0.793 1.512 NA

application

scaled in to 2
NA NA NA NA 0.712

scaling and

failover over-

lap

0.581 1.468 1.172 1.754 0.797

105

4.2.1.3 Evaluating the Scaling Overhead of Integrating the Modified State Control-

ler (RQ11)

In this research question (RQ11), we are interested in evaluating the impact of integrat-

ing the State Controller on the time it takes for the application to be scaled. To address RQ11,

we conduct a set of experiments under two scenarios; scale-out and scale-in. Also, we have set

the graceful termination period of pods to zero. For the scale-out scenario, we consider the four

architectures below.

 Figure 3-2, where the application is deployed by a StatefulSet controller.

 Figure 3-3, where the application is deployed by a Deployment controller.

 Figure 4-13, where the application is deployed by a StatefulSet controller with

the Modified State Controller integrated.

 Figure 4-14, where the application is deployed by a Deployment controller with

the Modified State Controller integrated.

In all architectures, the number of pods initially deployed is two (n = 2). In each round

of the experiment, we scale the application from two pods to i pods where i gets one of the

values in {4, 8, 16, 32, 64, and 128}. For this scenario, we measure the scaling time as well as

HA state assignment time. The measurements for this set of experiments are shown in Table

4-10.

For the scale-in scenario, we consider the abovementioned architectures. However, in

each round of the experiment, the number of pods initially deployed (i.e., n) gets one of the

values in {4, 8, 16, 32, 64, and 128}. In each round of the experiment, we scale the application

into 2 pods. Let us take the architecture of Figure 3-2 as an example. When n is equal to 128,

106

the StatefulSet, in the beginning, creates 128 pods and in the experiment we scale the applica-

tion in into two pods. The measured metric for this scenario is the scaling time shown in Table

4-11.

Table 4-10. Scaling overhead and HA state assignment time for the scale-out scenario.

architecture

(n = 2)

metric

(unit: seconds)
2 to 4 2 to 8 2 to 16 2 to 32 2 to 64 2 to 128

StatefulSet control-

ler

(Figure 3-2)

scaling time 4.099 15.056 47.722 119.674 297.470 753.045

Modified State Con-

troller integrated

with StatefulSet con-

troller

(Figure 4-13)

scaling time 4.234 16.692 49.937 131.726 312.037 842.068

HA state as-

signment time
5.653 17.018 51.865 133.373 316.107 845.114

Deployment control-

ler

(Figure 3-3)

scaling time 2.979 4.459 7.956 15.237 31.574 80.694

Modified State Con-

troller integrated

with Deployment

controller

(Figure 4-14)

scaling time 3.016 4.914 8.856 17.428 35.248 92.240

HA state as-

signment time
3.060 6.763 16.142 35.290 73.001 147.798

107

Table 4-11. Scaling overhead for the scale-in scenario.

architecture

n = {4, 8, 16, 32, 64,

and 128}

metric

(unit : seconds)
4 to 2 8 to 2 16 to 2 32 to 2 64 to 2 128 to 2

StatefulSet controller

(Figure 3-2)

scaling time

0.555 1.353 2.613 5.459 11.440 26.062

Modified State Con-

troller integrated with

StatefulSet controller

(Figure 4-13)

0.712 1.512 3.148 6.407 14.463 48.662

Deployment control-

ler

(Figure 3-3)

0.566 0.827 1.370 1.944 3.375 7.007

Modified State Con-

troller integrated with

Deployment control-

ler

(Figure 4-14)

0.641 1.327 1.555 2.375 4.441 8.821

108

4.2.1.4 Evaluating the Impact of Simultaneous Failure of Multiple Active Pods on

the Outage Time of each Failed Pod (RQ12)

To address RQ12, we are interested in evaluating the State Controller in terms of avail-

ability when multiple active pods fail at the same time. Meaning that a second failure happens

when the State Controller is still in the process of failover for the previously failed pod. In this

research question (RQ12), we consider the architectures of Figure 4-13 and Figure 4-14 where

the modified State Controller is integrated with a StatefulSet controller and a Deployment con-

troller, respectively. For each architecture, the number of deployed pods is equal to 10. In these

experiments, we forcefully kill the application container of i active pods where i can get the

values in {1, 2, 3, 4, and 5}. In each round of the experiment, we measure the availability

Table 4-12. Availability metrics of simultaneously failed pods – The Modified State Controller integrated with a State-

fulSet controller (Figure 4-13).

number of simultane-

ously failed active pods

Order number of the active

pod whose failure was de-

tected

reaction

time

repair

time

recovery

time

outage

time

1 first failed pod 1.180 1.437 1.312 2.491

2
first failed pod 0.646 2.205 2.208 2.855

second failed pod 1.122 2.043 2.206 3.328

3

first failed pod 0.487 1.800 1.728 2.215

second failed pod 0.791 1.799 2.067 2.858

third failed pod 1.182 1.855 1.799 2.981

4

first failed pod 0.526 1.786 1.949 2.475

second failed pod 0.855 1.708 1.935 2.790

third failed pod 1.269 1.952 2.265 3.534

fourth failed pod 2.720 2.382 2.101 4.820

5

first failed pod 0.473 1.605 2.220 2.693

second failed pod 0.940 1.213 1.973 2.913

third failed pod 1.240 2.189 2.250 3.491

fourth failed pod 1.224 4.296 2.862 4.086

fifth failed pod 1.800 4.574 4.010 5.810

109

metrics for each failed pod and compare how simultaneous failure of multiple active pods af-

fects the service recovery. The results of this set of experiments are shown in Table 4-12 and

Table 4-13.

Table 4-13. Availability metrics of simultaneously failed pods – The Modified State Controller integrated with a Deploy-

ment controller (Figure 4-14).

number of simultane-

ously failed active pods

Order number of the active

pod whose failure was de-

tected

reaction

time

repair

time

recovery

time

outage

time

1 first failed pod 0.749 0.454 1.886 2.634

2
first failed pod 0.642 0.464 1.863 2.505

second failed pod 1.332 0.562 2.003 3.335

3

first failed pod 0.411 0.456 1.786 2.197

second failed pod 1.006 0.538 1.924 2.930

third failed pod 1.627 1.139 2.092 3.719

4

first failed pod 0.761 0.414 2.171 2.932

second failed pod 0.889 0.702 2.084 2.974

third failed pod 1.172 1.433 2.191 3.363

fourth failed pod 2.446 2.172 2.587 5.034

5

first failed pod 0.495 0.558 2.096 2.591

second failed pod 0.851 0.898 2.304 3.155

third failed pod 1.163 1.562 3.117 4.280

fourth failed pod 1.494 2.359 3.118 4.612

fifth failed pod 2.471 2.936 3.394 5.865

110

4.2.2 Analysis and Discussion

In this sub-section, we analyze the results of the experiments of Sub-section 4.2.1 in

order to answer the research questions we asked earlier.

In RQ9, we are interested in evaluating the impact of integrating the modified State

Controller with Kubernetes on the provided availability. To address this research question, we

conducted some availability experiments whose results (Table 4-6 and Table 4-7) show that

integrating the State Controller improves service recovery is by around 50%. The reason is that

with the State Controller, we no longer need to wait for the failed pod to be repaired in order

to have the service recovered. The State Controller is able to recover the service faster by failing

over to the Standby pod. However, we observe that integrating the State Controller has added

an average overhead of 22% to the reaction time.

In the experiments for RQ10, we evaluate the impact of scaling during failover on the

provided availability by comparing the measured availability metrics to those of the experiment

where the only event is the failure (without any simultaneous scaling). The results of these

experiments (Table 4-8 and Table 4-9) show that when a scaling event happens during recov-

ery, the outage time is increased by 12% and 16% for the scale-out and scale-in scenario, re-

spectively. We also evaluate the impact of scaling during failover on the scaling time by com-

parison to the experiments where the only event is the scaling (without any simultaneous fail-

ure). The results of the experiments for both scale-out and scale-in scenario (Table 4-8 and

Table 4-9) show that when a failure happens during scaling, the scaling time is increased by

66% in the scale-out scenario and 12% in the scale-in scenario. Moreover, for the scale-out

scenario, the HA state assignment time is increased by 56% on average. The reason is that

when scaling and failover overlap, the State Controller is busy with failover and it can only

111

assign the HA states with some delay. We also discussed that with the architecture where the

modified State Controller is integrated with a Deployment controller Figure 4-16, a scale-in

request may result in deleting the standby pod of an active pod. Because with this architecture,

there is no order in deleting the pods when the application scales in. Therefore, it is not possible

to guarantee service recovery.

In RQ11, we are interested in evaluating the impact of integrating the modified State

Controller with Kubernetes on the scaling overhead. To address this research question, we con-

ducted experiments under the scale-in and scale-out scenarios. For the scale-out scenario (Table

4-12), when the application is deployed by a StatefulSet, integrating the modified State Con-

troller has a scaling overhead of 7.5% on average. Also, integrating the modified State Con-

troller with a Deployment controller increases the scaling time by 10.5%. The standard devia-

tion for these measurements does not go above 23% of the average. Moreover, as it is observed

in Figure 4-17 and Figure 4-18, the applications deployed by a Deployment controller have a

shorter scaling time and HA state assignment time compared to the ones deployed by State-

fulSets. The reason is that the pods deployed by Deployment controllers are created in parallel

while with StatefulSet controllers, they should be created in an ordered manner which can take

more time. While fast start-up time can be considered as a benefit of deploying the applications

with Deployment controllers, one should take into consideration that service recovery is not

guaranteed with Deployment controllers in scale-in scenarios. Because Deployment controllers

do not scale-in the application in a guaranteed manner and the standby of an active pod might

be deleted in the scale-in process while the active pod remains in the pods' list. We also con-

ducted the experiments for the scale-in scenario whose results (Table 4-13) show that the scal-

ing overhead of integrating the modified State Controller with StatefulSet controllers and De-

ployment controllers is 31% and 27% in average, respectively. The standard deviation for these

112

measurements does not go above 28% of the average. Similar to the scale-out scenario, we also

observe in Figure 4-19 that the applications deployed with Deployment controller have a

shorter scaling time. The reason is that the pods deployed with Deployment controllers are

deleted in parallel while with StatefulSet controllers, they are deleted in an order which can

take more time.

2
.9

7
9

4.
45

9

7.
95

6

15
.2

37

31
.5

74

8
0

.6
9

4

3.
01

6

4.
91

4

8
.8

5
6

17
.4

28

35
.2

48

92
.2

40

4.
09

9

15
.0

56

47
.7

22

11
9.

67
4 29

7.
47

0

75
3.

04
5

4.
23

4

16
.6

92

49
.9

37

13
1.

72
6 31

2.
03

7

84
2.

06
8

2 T O 4 2 T O 8 2 T O 1 6 2 T O 3 2 2 T O 6 4 2 T O 1 2 8

SC
A

LI
N

G
 T

IM
E

(S
EC

O
N

D
S)

SCALE OUT NUMBER (NUMBER OF PODS)

THE OVERHEAD OF THE STATE CONTROLLER
ON SCALING TIME

Deployment SC + Deployment StatefulSet SC + StatefulSet

Figure 4-17. Scaling time results for experiments of RQ11 – Scale-out scenario.

3
.0

6

6
.7

6
2

9

1
6

.1
4

1
8

3
5

.2
9

0

7
3

.0
0

1

1
4

7
.7

9
8

5
.6

5
3

1
7

.0
1

8

5
1

.8
6

5

1
3

3
.3

7
3 3

1
6

.1
0

7

8
4

5
.1

1
4

2 T O 4 2 T O 8 2 T O 1 6 2 T O 3 2 2 T O 6 4 2 T O 1 2 8

H
A

 S
TA

TE
 A

SS
IG

N
M

EN
T

TI
M

E
(S

EC
O

N
D

S)

SCALE OUT NUMBER (NUMBER OF PODS)

COMPARING HA STATE ASSIGNMENT TIME

SC + Deployment SC + StatefulSet

Figure 4-18. HA state assignment time results for experiments of RQ11 – Scale-out scenario.

113

In RQ12, we evaluate the availability provided by the modified State Controller when

multiple pods fail simultaneously. The diagrams of Figure 4-20 and Figure 4-21 show that

when multiple pods fail simultaneously, the later the pod’s failure is detected, the longer it

takes for the State Controller to recover the service for that pod. The reason is that once a pod’s

failure is detected, it is put as an event in a queue and its service will be recovered after the

recovery of other pods’ that were inserted in the queue before.

0
.5

6
6

5

0
.8

2
7

1
.3

7
0

1
.9

4
4

3
.3

7
5

7
.0

0
7

0
.6

4
0

7

1
.3

2
7

1
.5

5
5

2
.3

7
5

4
.4

4
1

8
.8

2
1

0
.5

5
5

4

1
.3

5
3

2
.6

1
3

5
.4

5
9

1
1

.4
4

0

2
6

.0
6

2

0
.7

1
2

1
.5

1
2

3
.1

4
8

6
.4

0
7 1
4

.4
6

3

4
8

.6
6

2

4 T O 2 8 T O 2 1 6 T O 2 3 2 T O 2 6 4 T O 2 1 2 8 T O 2

SC
A

LI
N

G
 T

IM
E

(S
EC

O
N

D
S)

SCALE IN NUMBER (NUMBER OF PODS)

THE OVERHEAD OF THE STATE CONTROLLER
ON SCALING TIME

Deployment SC + Deployment StatefulSet SC + StatefulSet

Figure 4-19. Scaling time results for experiments of RQ11 – Scale-in scenario.

114

2
.5

4
6

2
.9

7
2

3
.3

3
5

4
.4

5
3

5
.8

1
0

O
U

TA
G

E
TI

M
E

(S
EC

O
N

D
S)

THE IMPACT OF MULTIPLE ACTIVE PODS FAILING ON
THE OUTAGE TIME - STATEFULSET CONTROLLER

first failed pod

second failed pod

third failed pod

fourth failed pod

fifth failed pod

Figure 4-20. Results for experiments of RQ12 – StatefulSet controller (average outage time for each failed pod).

2
.5

7
2 3
.0

9
9 3

.7
8

7

4
.8

2
3

5
.8

6
5

O
U

TA
G

E
TI

M
E

(S
EC

O
N

D
S)

THE IMPACT OF MULTIPLE ACTIVE PODS FAILING ON
THE OUTAGE TIME - DEPLOYMENT CONTROLLER

first failed pod

second failed pod

third failed pod

fourth failed pod

fifth failed pod

Figure 4-21. Results for experiments of RQ12 – Deployment controller (average outage time for each failed pod).

115

4.3 Conclusion

In this chapter, we proposed a solution to address the identified challenges of Kuber-

netes in providing availability for stateful microservice based applications and improve the

availability. Our solution which is a State Controller allows for the automatic redirection of

services to healthy pods through the management of secondary labels reflecting the current role

of pods in the configuration from an availability perspective. Our solution allows for failure

handling at the platform (i.e., Kubernetes) level and thus it closes a gap in Kubernetes when it

comes to stateful microservice based applications. That is, in case of failure of the pod provid-

ing the service, the service is redirected to the healthy standby pod which is aware of the failed

active pod’s state. Therefore, it is capable of resuming its service. We observed that this redi-

rection time may be significantly shorter than the restart of the failed pod of a StatefulSet con-

troller.

In case of application container failure, with our solution, recovery happens before re-

pair. Thus, we are able to improve recovery time by 55%. Moreover, applications deployed by

StatefulSet controllers cannot recover from node failure if the node does not rejoin the cluster.

Without our solution, recovery depends on how fast the node can reboot or rejoin the cluster.

In such scenarios, we are able to improve recovery time by 99%. Since the State Controller

communicates with the Kubernetes’ API server, it can be easily integrated with Kubernetes

and can work hand in hand with the current controllers in Kubernetes’ binary.

Moreover, we enriched our proposed State Controller so it can provide availability for

stateful microservice based applications whose number of microservice instances increase or

decrease. With the modified State Controller, there can be multiple active and standby pairs.

Our evaluations of the modified State Controller shows that integrating our solution improves

116

service recovery by 50% on average. However, we observed that when a scaling event happens

during a failover process is being done by the modified State Controller, the outage time is

increased by 16% and HA state assignment time for the scale-out scenario is increased by 48%.

Moreover, we measured the scaling overhead of integrating the State Controller with Kuber-

netes between 7.5% and 10.5%. We also observed that that scaling and HA state assignment is

done faster when the application is deployed by a Deployment controller compared to when it

is deployed by a StatefulSet controller. Because unlike StatefulSet controllers, the Deployment

controller does not add or delete pods in an order and one by one. While the fast deployment

and HA state assignment of pods can be considered as a reason to deploy the application by a

Deployment controller, one should consider the drawback of deploying stateful applications

with Deployment controllers as well. That is, with Deployment controllers, service recovery is

not guaranteed in the scale-in scenarios. Because Deployment controllers do not scale-in the

application in a guaranteed manner and the standby of an active pod might be deleted in the

scale-in process while the active pod remains in the pods’ list. We also evaluated the availabil-

ity provided by the modified State Controller when multiple active pods fail simultaneously

and observed that the later the failure of a pod is detected by the State Controller, the longer its

recovery time will be.

Finally, we acknowledge the threats to the internal, external, and construct validity of

our results. One threat to the internal validity of our results is that the cluster for our experi-

ments consists of a small number of nodes. Especially for the most responsive configuration, a

larger Kubernetes cluster may add overhead and delays when detecting node failure which will

certainly impact service availability. Another threat is the events that we consider as reaction,

repair, or recovery time may be mapped differently. However, the change in the mapping will

not affect the total outage time measured. The threat to the external validity of our results is

117

that we only considered the case of an on-demand video streaming application while other

types of applications should be considered before generalizing the results. Moreover, the tools

and mechanisms used in our experiments can be considered as threats to the construct validity

of our results. While we used NTP for time synchronization, other methods such as container

instrumentation may be used to be more precise.

The contents provided in this chapter are published in [52].

118

Chapter 5

5 Conclusion

In this thesis, we identified possible architectures for deploying stateless and stateful

microservice based applications with Kubernetes. We evaluated these architectures from the

perspective of availability and identified the issues that Kubernetes has in managing the avail-

ability of stateful microservice based applications. We proposed a solution that easily integrates

with Kubernetes and improves the availability of its managed stateful applications.

For stateless microservice based applications, we conducted availability experiments

for different failure scenarios to evaluate the repair actions of Kubernetes for providing avail-

ability for its managed applications. The results showed that in the failure scenarios where

service outage is due to external execution failure events, the outage times are significantly

longer compared to failure scenarios where service outage is due to internal administrative

operations. However, in practice, Kubernetes’ support for availability is demonstrated through

internal administrative operations which does not reflect the performance of Kubernetes when

external execution failures happen. For example, in the scenario where the service outage is

due to node shutdown, the default configuration of Kubernetes will result in service outage of

around 5 minutes. That is, the total allowed downtime over one year for the systems with high

availability requirements. We also investigated the impact of adding redundant microservice

instances on the availability and observed that it decreases downtime significantly. Because

service recovery does not depend on the repair of the failed microservice instance. For stateful

119

applications, however, it does not hold true. That is, adding redundancy does not improve the

availability for stateful applications. The reason is that in the event that a microservice instance

fails, the redundant microservice instances neither know about the failure nor have the state of

the failed pod to continue the service. Therefore, service recovery depends on the repair of the

failed microservice instance. The results of our experiments show that the repair time (espe-

cially in node reboot scenarios) can be too long which can significantly decrease service avail-

ability. Moreover, in the scenarios where service outage is due to node shutdown, the micro-

service instance that was hosted by the failed node will not be repaired by Kubernetes. There-

fore, service recovery does not even happen.

To address these issues, we proposed a solution that is a State Controller that integrates

with Kubernetes and works hand in hand with the existing Kubernetes controllers and improves

the availability of its managed stateful applications. The State Controller improves the availa-

bility through automatic redirection of the service to healthy microservice instances by man-

aging secondary labels assigned to microservices of the application. Our solution implements

the 2N redundancy model and assigns active and standby HA states. The standby microservice

keeps the state of the active one. The State Controller notifies the standby microservice instance

when a failure happens to the active one and also assigns active HA state to the standby micro-

service. Thus, it can resume the service instead of the failed microservice instance which takes

less time compared to the repair of the failed microservice instance. We also modified our

solution to provide availability for the application when it is scaled in or scaled out by keeping

multiple pairs of active-standbys.

The experiments’ results show that integrating the State Controller with Kubernetes

improves recovery time from 55% to 99%. The reason for this improvement is that service

recovery no longer relies on the repair of the failed microservice instance. Moreover, for the

120

scenarios where service outage is due to node shutdown that the failed microservice is not

repaired, service recovery is not possible without our solution and integrating the State Con-

troller enables service recovery for this type of failure as well. Since our solution does not

require any change to Kubernetes’ source code, it can be easily used to provide a higher level

of availability for their existing containerized microservice based applications.

We identify high resource utilization as a limitation to our solution which is related to

the 2N redundancy model where each standby microservice keeps protects only one active

microservice. As future work, this limitation can be addressed by implementing other redun-

dancy models such as N-Way redundancy model in order to have one standby microservice for

a number of active microservice instances.

121

Bibliography

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” p. 7.

[2] N. Dragoni et al., “Microservices: Yesterday, Today, and Tomorrow,” in Present and

Ulterior Software Engineering, M. Mazzara and B. Meyer, Eds. Cham: Springer Inter-

national Publishing, 2017, pp. 195–216.

[3] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, Jan. 2015.

[4] S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly Media,

Inc., 2015.

[5] “Microservices,” martinfowler.com. [Online]. Available: https://martinfowler.com/arti-

cles/microservices.html. [Accessed: 01-Oct-2018].

[6] M. Toeroe and F. Tam, Service Availability: Principles and Practice. John Wiley &

Sons, 2012.

[7] M. Nabi, M. Toeroe, and F. Khendek, “Availability in the cloud: State of the art,” Jour-

nal of Network and Computer Applications, vol. 60, pp. 54–67, Jan. 2016.

[8] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder, “Perfor-

mance Evaluation of Microservices Architectures Using Containers,” in 2015 IEEE 14th

International Symposium on Network Computing and Applications, 2015, pp. 27–34.

[9] “Docker - Build, Ship, and Run Any App, Anywhere.” [Online]. Available:

https://www.docker.com/. [Accessed: 01-Oct-2018].

[10] “Kubernetes Documentation.” [Online]. Available: https://kubernetes.io/docs/home/.

[Accessed: 01-Oct-2018].

[11] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn, “Microservices

migration patterns,” Software: Practice and Experience, vol. 48, no. 11, pp. 2019–2042,

2018.

[12] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L. Safina, “Micro-

services: How To Make Your Application Scale,” in Perspectives of System Informatics,

2018, pp. 95–104.

[13] “OpenSAF Foundation - Welcome to OpenSAF.” [Online]. Available: http://open-

saf.org/. [Accessed: 12-Oct-2018].

[14] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices architecture by

using Docker technology,” in SoutheastCon 2016, 2016, pp. 1–5.

[15] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development and

Deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[16] S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly Media,

Inc., 2015.

[17] “Microservices Architecture: Advantages and Drawbacks,” Cloud Academy, 18-Oct-

2018. .

[18] S. Fu, J. Liu, X. Chu, and Y. Hu, “Toward a Standard Interface for Cloud Providers:

The Container as the Narrow Waist,” IEEE Internet Computing, vol. 20, no. 2, pp. 66–

71, Mar. 2016.

[19] “Docker Hub.” [Online]. Available: https://hub.docker.com/. [Accessed: 18-Mar-2019].

122

[20] NGINX Ingress Controller for Kubernetes. Contribute to kubernetes/ingress-nginx de-

velopment by creating an account on GitHub. Kubernetes, 2018.

[21] Andjelko Iharos, “HAProxy Ingress Controller for Kubernetes,” HAProxy Technologies,

12-Dec-2017. .

[22] M. Toeroe and F. Tam, Service Availability: Principles and Practice. John Wiley &

Sons, 2012.

[23] K. E. Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S. N. Rai, “The optimal

class size for object-oriented software,” IEEE Transactions on Software Engineering,

vol. 28, no. 5, pp. 494–509, May 2002.

[24] M. Villamizar et al., “Evaluating the monolithic and the microservice architecture pat-

tern to deploy web applications in the cloud,” in 2015 10th Computing Colombian Con-

ference (10CCC), 2015, pp. 583–590.

[25] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for microservices,” in

2016 IEEE International Symposium on Workload Characterization (IISWC), 2016, pp.

1–10.

[26] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Efficiency Analysis of

Provisioning Microservices,” in 2016 IEEE International Conference on Cloud Compu-

ting Technology and Science (CloudCom), 2016, pp. 261–268.

[27] H. Kang, M. Le, and S. Tao, “Container and Microservice Driven Design for Cloud In-

frastructure DevOps,” in 2016 IEEE International Conference on Cloud Engineering

(IC2E), 2016, pp. 202–211.

[28] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. Sá de Souza, “State machine

replication in containers managed by Kubernetes,” Journal of Systems Architecture, vol.

73, pp. 53–59, Feb. 2017.

[29] H. V. Netto, A. F. Luiz, M. Correia, L. de O. Rech, and C. P. Oliveira, “Koordinator: A

Service Approach for Replicating Docker Containers in Kubernetes,” in 2018 IEEE

Symposium on Computers and Communications (ISCC), 2018, pp. 00058–00063.

[30] T. Soenen, W. Tavernier, D. Colle, and M. Pickavet, “Optimising microservice-based

reliable NFV management amp;amp; orchestration architectures,” in 2017 9th Interna-

tional Workshop on Resilient Networks Design and Modeling (RNDM), 2017, pp. 1–7.

[31] “www.etsi.org - /deliver/etsi_gs/NFV-EVE/001_099/011/03.01.01_60/.” [Online].

Available: https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/011/03.01.01_60/.

[Accessed: 07-Jun-2019].

[32] M. Toeroe, N. Pawar, and F. Khendek, “Managing application level elasticity and avail-

ability,” in 10th International Conference on Network and Service Management

(CNSM) and Workshop, 2014, pp. 348–351.

[33] Swarm: a Docker-native clustering system. Contribute to docker/swarm development by

creating an account on GitHub. Docker, 2019.

[34] I. Eldridge and pwpadmin, “What Is Container Orchestration?,” New Relic Blog, 17-Jul-

2018. [Online]. Available: https://blog.newrelic.com/engineering/container-orchestra-

tion-explained/. [Accessed: 29-Mar-2019].

[35] “cri-o.” [Online]. Available: https://cri-o.io/. [Accessed: 29-Mar-2019].

[36] “containerd – An industry-standard container runtime with an emphasis on simplicity,

robustness and portability.” [Online]. Available: https://containerd.io/. [Accessed: 29-

Mar-2019].

[37] The hypervisor-based container runtime for Kubernetes.: kubernetes/frakti. Kubernetes,

2019.

123

[38] “Marathon: A container orchestration platform for Mesos and DC/OS.” [Online]. Avail-

able: https://mesosphere.github.io/marathon/. [Accessed: 02-Apr-2019].

[39] “Apache Mesos,” Apache Mesos. [Online]. Available: http://mesos.apache.org/. [Ac-

cessed: 02-Apr-2019].

[40] “The Definitive Platform for Modern Apps,” DC/OS. [Online]. Available:

https://dcos.io/. [Accessed: 02-Apr-2019].

[41] “ntp.org: Home of the Network Time Protocol.” [Online]. Available:

http://www.ntp.org/. [Accessed: 12-Oct-2018].

[42] “VLC: Official site - Free multimedia solutions for all OS! - VideoLAN.” [Online].

Available: https://www.videolan.org/index.html. [Accessed: 12-Oct-2018].

[43] “Run a Replicated Stateful Application.” [Online]. Available: https://kuber-

netes.io/docs/tasks/run-application/run-replicated-stateful-application/. [Accessed: 04-

Jan-2019].

[44] “Integrating Open SAF High Availability Solution with Open Stack - IEEE Conference

Publication.” [Online]. Available: https://ieeexplore.ieee.org/abstract/docu-

ment/7196529. [Accessed: 12-Oct-2018].

[45] A. Kanso, M. Toeroe, and F. Khendek, “Comparing redundancy models for high availa-

bility middleware,” Computing, vol. 96, no. 10, pp. 975–993, Oct. 2014.

[46] “Production-Grade Container Orchestration.” [Online]. Available: https://kubernetes.io/.

[Accessed: 12-Oct-2018].

[47] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying Microservice

Based Applications with Kubernetes: Experiments and Lessons Learned,” in 2018 IEEE

11th International Conference on Cloud Computing (CLOUD), 2018, pp. 970–973.

[48] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Kubernetes as an Availabil-

ity Manager for Microservice Applications,” arXiv:1901.04946 [cs], Jan. 2019.

[49] “The Go Programming Language.” [Online]. Available: https://golang.org/. [Accessed:

21-Jan-2019].

[50] Go client for Kubernetes. Contribute to kubernetes/client-go development by creating

an account on GitHub. Kubernetes, 2019.

[51] “Welcome! - The Apache HTTP Server Project.” [Online]. Available:

https://httpd.apache.org/. [Accessed: 24-Nov-2018].

[52] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice Based Archi-

tecture: Towards High-Availability for Stateful Applications with Kubernetes,” in 2019

IEEE 19th International Conference on Software Quality, Reliability and Security

(QRS), 2019, pp. 176–185.

