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ABSTRACT 

Kubernetes as an Availability Manager for 

Microservice Based Applications 

 Leila Abdollahi Vayghan 

The architectural style of microservices has been gaining popularity in recent years. In this 

architectural style, small and loosely coupled modules are deployed and scaled independently 

to compose cloud-native applications. Microservices are maintained and tested easily and are 

faster at startup time. However, to fully leverage from the benefits of the architectural style of 

microservices, it is necessary to use technologies such as containerization. Therefore, in prac-

tice, microservices are containerized in order to remain isolated and lightweight and are or-

chestrated by orchestration platforms such as Kubernetes. Kubernetes is an open-source plat-

form that defines a set of building blocks which collectively provide mechanisms for orches-

trating containerized microservices. The move towards the architectural style of microservices 

is well underway and carrier-grade service providers are migrating their legacy applications to 

a microservice based architecture running on Kubernetes. However, service availability re-

mains a concern. Service availability is measured as the percentage of time the service is pro-

visioned. High Availability (HA) is a non-functional requirement for service availability of at 

least 99.999%. Although the characteristics of microservice based architectures naturally con-

tribute to improving the availability, Kubernetes as an orchestration platform for microservices 

needs to be evaluated in terms of availability. Therefore, in this thesis, we identify possible 

architectures for deploying stateless and stateful microservice based applications with Kuber-

netes and evaluate Kubernetes from the perspective of availability it provides for its managed 
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applications. Our experiment’s results show that the healing capabilities of Kubernetes are not 

sufficient for providing high availability, especially for stateful applications. Therefore, we 

propose a State Controller which integrates with Kubernetes and allows for state replication 

and automatic service redirection to the healthy microservice instance. We conduct experi-

ments to evaluate our solution and compare the different architectures from an availability per-

spective and scaling overhead. The results of our investigations show that our solution im-

proves the recovery time of stateful microservice based applications by 55% and even up to 

99% in certain cases. 
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Chapter 1 

1 Introduction 

This chapter introduces the research domain and the motivations for this thesis followed 

by its contributions and organization. 

1.1 Research Domain 

With the advent of cloud computing [1], the microservices architectural style [2] has drawn 

a substantial amount of attention in the software engineering community. As opposed to mon-

olithic architecture, the microservice based architecture tackles the challenges of building 

cloud-native applications that leverage the opportunities given by the cloud infrastructure [3].  

Microservices [4] are a realization of the service-oriented architectural style for designing 

software composed of small services that can be deployed and scaled independently by fully 

automated deployment machinery and with minimum centralized management [5]. Each mi-

croservice has a separate business functionality, runs in its own process, and communicates 

through lightweight mechanisms often using APIs [2]. The fine granularity of this architectural 

style makes the scaling more flexible and efficient as each microservice can evolve at its own 

pace. Moreover, compared to monolithic applications, microservices are small and can restart 

faster at the time of upgrade or failure recovery. Microservices are loosely coupled and failure 
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of one microservice will not affect other microservices of the system. Because of these charac-

teristics, adopting the architectural style of microservices can improve the service availability 

of applications [2]. 

Service availability is a non-functional requirement defined as the percentage of time a 

service is provisioned [6]. High availability is achieved when the system is available at least 

99.999% of the time. Therefore, the total downtime allowed in one year for highly available 

systems is around 5 minutes [7]. 

To leverage the benefits of microservice based architectures, one needs to use technologies 

aligned with the characteristics of this architectural style. Containerization is the technology 

that enables virtualization at the operating system level [8]. Containers are lightweight and 

portable, therefore suitable for creating microservices.  Docker [9] is the leading container plat-

form that packages code and dependencies together and ships them as one container image. 

Since containers are isolated, they are not aware of each other. Thus, there is a need for an 

orchestration platform to manage the deployment of containers.  

Kubernetes [10] is an open-source platform that enables the automated deployment, man-

agement, and scaling for containerized applications. Kubernetes alleviates the complexity of 

implementing applications’ resiliency through its mechanisms for maintenance and healing. 

Therefore, it has become a popular platform for deploying containerized microservice based 

applications. 
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1.2 Thesis Motivation 

The move towards the microservice based architectures is well underway. Organizations 

are migrating their legacy applications into cloud-native architectures by adopting the archi-

tectural style of microservices [11]. These microservice based applications are containerized 

and orchestrated by orchestration platforms such as Kubernetes. However, as an important 

quality attribute for carrier-grade service providers, service availability remains a concern. 

Some characteristics of microservices and containers such as being small and lightweight 

would naturally contribute to improving service availability [12]. Kubernetes provides healing 

for its managed microservice based applications [10]. The healing capability of Kubernetes 

consists of restarting the failed containers and replacing or rescheduling containers when their 

hosts fail. The healing capability also means not advertising unhealthy containers until they are 

ready again. These features would also improve the availability of the services provided by the 

applications deployed with Kubernetes. It is, therefore, important to evaluate the level of avail-

ability that Kubernetes can provide solely through its healing capabilities.  

Replication is an important means of enabling availability. Stateless microservices are the 

most amenable to be replicated as they can be easily deployed as interchangeable instances. 

However, the same is not true for stateful microservices. Stateful microservices are not inter-

changeable and each one may have a unique state. This means one cannot bring stateful micro-

services down at a moment’s notice and expect their services to be resumed by the other mi-

croservice instances. Deploying a replicated set of stateful microservices requires coordination 

of the different replicas to keep them synchronized and the “state” aspect makes orchestration 

even more complex. 
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The goals of this thesis are to evaluate Kubernetes as an availability manager for micro-

service based applications, identify weaknesses and propose solutions to improve the availa-

bility provided by Kubernetes. 

1.3 Thesis Contributions 

In this thesis, we identify the possible architectures for deploying microservice based ap-

plications with Kubernetes and qualitatively evaluate them from the perspective of service dis-

covery and deployment. We also conduct availability experiments to measure the availability 

that Kubernetes can provide for its managed applications. Finally, we propose and evaluate a 

solution to improve the availability of stateful microservice based applications deployed with 

Kubernetes and we evaluate our solution from the perspective of availability and scaling over-

head. The main contributions of this thesis are summarized as follows: 

o Evaluation of the architectures for deploying microservice based applications with Kuber-

netes 

In this contribution we: 

 Identify the architectures for deploying stateless and stateful microservice based 

applications 

 Qualitatively evaluate the identified architectures 

 Conduct availability experiments under different failure scenarios and configura-

tions to measure the achievable availability with Kubernetes 

o A solution to improve the availability of stateful microservice based applications deployed 

with Kubernetes 

In this contribution we: 
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 Address the identified problems in managing the availability of stateful micro-

service based applications deployed with Kubernetes by proposing an availability 

architecture 

 Introduce a “State Controller” component to integrate availability states with Ku-

bernetes and assign active and standby roles to microservice instances 

 Implement a prototype and conduct availability experiments under different failure 

scenarios and configurations to measure the achievable availability with our pro-

posed solution 

 Extend the State Controller prototype to assign availability states to multiple pods 

and conduct experiments to evaluate the achievable availability as well as the scal-

ing overhead  

1.4 Thesis Organization 

This thesis is organized into five chapters. In Chapter 2, the background knowledge related 

to microservice based architectures, containerization, Kubernetes architectural components, 

and availability as well as related work are discussed. In Chapter 3, the possible architectures 

for deploying stateless and stateful microservice based applications with Kubernetes are iden-

tified and evaluated from the perspective of availability. In this chapter, the issues that Kuber-

netes faces in managing the availability of stateful applications are identified and discussed. In 

Chapter 4, we propose an architecture where we introduce a State Controller component which 

addresses the issues identified in Chapter 3. A prototype is implemented to measure, evaluate, 

and analyze the availability achievable with our solution. The proposed State Controller is 

modified in order to enable elasticity and evaluated in terms of availability and scaling over-

head. Finally, in Chapter 5, we summarize our contributions and discuss potential future work.
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Chapter 2 

2 Background Information and Related 

Work 

 In this chapter, we present the related background information in Section 2.1 followed 

by the review of the literature for microservice based architectures and their availability in 

Section 2.2. 

2.1 Background Information 

In this section, we explain about the microservice based architectures [2] and their charac-

teristics and discuss how containers can empower the usage of microservices [8]. We also in-

troduce Kubernetes [10] and its objects as a platform for orchestrating containers. Lastly, we 

provide a general definition for service availability followed by an introduction to the Availa-

bility Management Framework (AMF) [13]. 

2.1.1 Microservices  

The traditional way to create software is a monolithic approach. In this approach, the soft-

ware is built as a large and single deployable unit to fulfill all business requirements. While the 

monolithic approach might be practical for small applications, a monolithic architecture for 

complex projects will create barriers for scalability and high availability [14]. Components of 

a monolithic application are tightly coupled which creates a “dependency hell” [15]. This leads 

to extended integration time and a lack of direct traceability to the source of errors during the 
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integration cycles. Moreover, because of the dependency, one cannot scale only a portion of a 

monolithic application as needed. Instead, the entire application needs to be scaled [2].   

A microservice based architecture [16] is a realization of the service-oriented architectural 

style for developing software composed of small services (microservices) that can be deployed 

and scaled independently by fully automated deployment machinery, with minimum central-

ized management [16]. Microservices are built around separate business functionalities and a 

single microservice fulfills only one business requirement. Each microservice runs in its own 

process space and communicates with other microservices through lightweight mechanisms 

such as APIs [2]. Microservices of an application can be written in different programming 

languages and use different storage technologies and avoid “technology lock-in” [2]. 

Microservices’ characteristics address the issues of monolithic architectures. For example, 

since each microservice implements a single business functionality, its code base will be small 

[2]. Therefore, maintaining and testing a microservice will require less effort. Also, micro-

services are loosely coupled and changing one microservice of the application does not require 

the whole system to be rebooted [2]. Moreover, because of the independency between micro-

services, it is possible to scale microservice based applications in a fine-grained manner. That 

is, increasing the number of one microservice instance while the number of other microservice 

instances of the application stays the same [2]. 

As we mentioned above, migrating towards a microservice based architecture has ad-

vantages. However, one needs to consider the disadvantages of this architectural style as well. 

For example, using microservices’ architectural style means bringing the complexity of design-

ing distributed systems into the design process [17]. Developers need to handle requests be-

tween microservices of the application and take the latency of remote calls into consideration. 
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Moreover, having multiple databases and managing transactions will require more effort [17]. 

Although testing a single microservice is less complex compared to a monolithic application, 

testing a microservice based application can be difficult. The reason is that all microservices 

of the application and their connectivity with the underlying infrastructure needs to be con-

firmed before testing the entire application [17]. 

2.1.2 Containers 

In Sub-section 2.1.1, we discussed how the architectural style of microservices can address 

the issues of the monolithic approach. However, microservices architecture brings complexity 

for the developers that requires a certain level of automation and agility to help them adapt to 

this architectural style [14]. Today, containerization technologies are accelerating the use of 

microservice based architectures. 

Containerization technology encapsulates the application’s code and its dependencies and 

enables fine-grained resource control and isolation for them [18]. Containers implement virtu-

alization at the operating system level. It is possible to run multiple containers on a single 

machine. These containers will share the OS kernel and run as isolated processes in user space 

[9]. On the other hand, Virtual Machines (VMs) implement virtualization at the physical hard-

ware level which makes one single server to work as a number of servers [9]. Containers take 

less space (around tens of MBs) and are more lightweight compared to VMs. Because VMs 

include a full copy of an operating system and its binaries which can take tens of GBs. 

Docker [9] is the leading container platform that encapsulates code and its dependencies 

together and ships them as a container image. Any machine that has the Docker container en-

gine running can pull this image from the Docker Hub repository [19] and run containers based 

on this image. A Docker container image is a lightweight executable package of software that 
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includes the code, runtime, and system libraries to run an application. Container images be-

come containers when they run on the Docker engine. They always run the same regardless of 

their infrastructure. Containers running on the same machine are isolated from each other and 

the application running inside a container will not impact other containers running on that ma-

chine. 

The characteristics of Docker containers are aligned with the requirements of microservice 

based architectures [14]. For example, Docker containers are independently deployable units 

each of them providing a service. Moreover, they can be scripted to be created and launched 

and it is possible to automate their deployment and scaling. Each Docker container is an iso-

lated environment that contains the required runtime for providing a particular service. There-

fore, it is possible for each development team to use a different technology based on their needs 

and avoid the “technology lock-in” we mentioned before. Containers are lightweight and start 

up faster than virtual machines (VMs). Since one of the reasons microservices are designed 

small is fast restart in case of failure, a technology like containers should be used to avoid a 

bottleneck at start-up time. Moreover, containers running on a single machine run as isolated 

processes, therefore they will not affect each other or the underlying infrastructure. The isola-

tion of containers helps to limit the failure impact of one microservice on other running micro-

services. 

2.1.3 Kubernetes 

In Sub-section 2.1.2, we explained how containers are a suitable solution for building mi-

croservices. We mentioned that containers isolate microservices from their environment. Be-

cause of this isolation, the containerized microservices of a microservice based application are 
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not aware of each other. Therefore, deployment of containers and their communication need to 

be orchestrated. 

Kubernetes [10] is an orchestration platform that automates the deployment and manage-

ment of containerized microservices. Kubernetes hides all this complexity behind its API. 

Therefore, Kubernetes' users do not need to implement the required mechanisms to manage 

their applications’ resilience.  Kubernetes' users only have to interact with the API to specify 

the desired deployment architecture and Kubernetes will be in charge of orchestration and 

availability management of the application. However, users with advanced requirements such 

as high availability may need to dive into Kubernetes details, since the Kubernetes architectural 

components can be used in different ways to deploy applications in a Kubernetes cluster. 

The Kubernetes cluster has a master-slave architecture. The nodes in a Kubernetes cluster 

can be either virtual or physical machines. The master node hosts a collection of processes to 

maintain the desired state of the cluster. The slave nodes, which we will refer to simply as 

nodes, have the necessary processes to run the containers and also be managed by the master 

node.  

An important process running on every node of a Kubernetes cluster is called the Kubelet. 

The Kubelet is a node agent that runs the containers assigned to its node via Docker and peri-

odically performs health checks on them and reports to the master their status as well as the 

status of the node. Another node process is called the Kube-proxy that maintains network rules 

on the host and performs connection forwarding to redirect traffic to a specific container. 

2.1.3.1 Pods 

The smallest and simplest unit that Kubernetes deploys and manages is called a pod [10]. 

A pod is a collection of one or more containers. A pod is a process that provides an environment 
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to run containers by providing storage (called volumes) and network for them. A pod also has 

the specifications of how to run its containers. For example, it is possible to include in the pod’s 

specification (called the pod template) to run a script inside the container once the pod is cre-

ated. Customized labels can be assigned to pods to group and query them in the cluster. Con-

tainers in a pod share its IP address and port space. Once pods are created, Kubernetes assigns 

an IP address to them. In the pod template, it is specified which container is connected to which 

port of the pod. Therefore, any traffic received at the specified port of the pod will be redirected 

to its corresponding container. In practice, microservices are containerized and deployed on a 

Kubernetes cluster as pods. Pods can be created manually as well as by controllers. If a pod is 

created manually, Kubernetes will not monitor it for managing its lifecycle and will not recreate 

it if it fails. Therefore, it is recommended to deploy pods by using controllers. In the next sub-

section, we will introduce the controllers in Kubernetes’ binary and how to deploy applications 

with them. 

2.1.3.2 Controllers 

Kubernetes’ controllers deploy and maintain pods. A pod’s template along with its desired 

number of replicas and other information such as upgrade strategy and pods’ labels are included 

in a controller specification. Once the controller is deployed to the cluster, it creates the desired 

number of pods based on the provided template and continuously maintains their number equal 

to the desired number. For example, when a pod fails due to its container failure, the corre-

sponding controller will automatically create a new one. In other words, controllers are watch 

loops that continuously work to bring the current state of the application to its desired state. 

There are different types of controllers in Kubernetes and each of them is suitable for a 

specific purpose. For example, DaemonSet controllers run a copy of a pod on all nodes while 
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Job controllers create a number of pods and make sure they successfully terminate after they 

finish their tasks. Deployment controllers are mainly used for deploying stateless applications. 

On the other hand, StatefulSet controllers are used to manage stateful applications. A State-

fulSet controller assigns a unique and persistent identity to each of its pods.  

Stateful applications deployed as StatefulSet pods store their state in persistent storages. 

Kubernetes abstracts the details of storage solutions by providing two API resources: the Per-

sistent Volumes (PV) and Persistent Volume Claims (PVC). A PV is a piece of storage in the 

cluster whose lifecycle is independent of those of the pods using it. PVs can be provisioned 

dynamically or statically. A PVC, on the other hand, is a request for storage made by a pod. A 

PVC binds the pod to a PV that matches the PVC’s characteristics. A StatefulSet controller 

specification contains a PVC template which defines the characteristics of the PV (capacity 

and memory) that the pods need to be bound to once they are created. It is worth mentioning 

that a pod deployed by a Deployment controller can also store its data in a PV. However, that 

PV will be shared between all pods of the Deployment controller. 

2.1.3.3 Services and Ingress 

As the state of the cluster changes, a controller may delete a pod and move it in the cluster 

and cause the pod’s IP address to change. Therefore, the pods’ IP addresses are not reliable for 

communication. As mentioned before, Kubernetes allows to assign customizable labels to pods 

and select the pods based on these labels. Kubernetes also defines an abstraction called Service 

which selects pods as its endpoints list based on their labels. Services have static virtual IP 

addresses. The Kube-proxy watches the Kubernetes master and detects when a service or an 

endpoint is added or removed. For each service that is added, it installs iptable rules that redirect 

the traffic for the service’s virtual IP and port to one of the service’s endpoints. All requests 
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received at the IP address of the service are load balanced between the service endpoints in a 

random or round-robin manner. Although a pod gets a new IP address once it is deleted by a 

controller and created again, it will have the same labels as before. Because it is created based 

on the same pod template. Therefore, it will stay on the endpoints list of the service. 

Kubernetes’ services can be of different types. The default type is called “Cluster IP”. 

Services of this type are accessible only from within the cluster. The “Node Port” type of ser-

vice is built on top of a Cluster IP service and exposes the service on the same port of each 

node of the cluster. Lastly, a “Load Balancer” type of service is exposed externally only when 

the cluster is running in a public cloud. 

Kubernetes provides another way, called ingress, to access services from outside of the 

cluster [10]. An ingress is a collection of rules for inbound connections to reach certain services 

in the cluster that are defined as backends for the ingress. For an ingress to work, an ingress 

controller needs to run in the cluster. Ingress controllers are not part of Kubernetes. To have an 

ingress controller, one should either implement it or use one that is available, e.g. Nginx [20] 

or HAProxy [21]. 
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2.1.4 Service Availability 

Service availability is an important non-functional requirement that defines the acceptable 

service outage in a period of time. Service availability is measured as the percentage of time a 

service is accessible in a given period [22]. The formula for measuring service availability is 

presented in Equation 2-1. 

Availability = 
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
                             (2-1) 

In the Equation (2-1), MTBF is the Mean Time Between Failures which is the average 

mean time between two consecutive failures of a system, and MTTR is the Mean Time to 

Repair which is the average time to repair the system that has failed. 

2.1.5 Availability Management Framework 

The Service Availability Forum (SA Forum) [13] is a group of telecommunications and 

computing companies that cooperatively have standardized the high availability solutions. The 

SA Forum has defined several services and the Availability Management Framework (AMF) 

[13] is one of them. The AMF is a middleware service that provides availability for services 

provided by applications through coordinating redundant resources and performing recovery 

and repair actions. The AMF configuration is a specific organization of application resources 

that the AMF requires for managing the availability of services provided by the application.  

Redundancy is an important mechanism for improving service availability. AMF defines 

five different redundancy models [13]. What follows is the explanation about these redundancy 

models defined by the AMF. 

No-Redundancy Redundancy Model [13]: In this redundancy model, there are no 

standbys that protect the state of an active service provider instance. If an active instance fails, 
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service recovery will failover on any available spare service provider instance. However, the 

spare would not have the state of the failed service provider instance. If there are no spares 

available, service recovery will depend on the repair of the failed service provider instance. 

N-Way Active Redundancy Model [13]: In this redundancy model, all service provider 

instances are considered active out of which N service provider instances can provide the same 

service. This model does not support standby assignments and is primarily used for stateless 

applications. 

2N Redundancy Model [13]: In this redundancy model, one active service provider in-

stance exists that provides a service and has one standby. Other service provider instances 

might be considered as spare (they do not have the state of the active). An active service pro-

vider instance serves the received requests while the standby service provider instance keeps 

the state of the service that the active service provider instance serves and is ready to take over 

if the active service provider instance fails. Note that in this model, a service provider instance 

cannot be active and standby at the same time. 

N+M Redundancy Model [13]:  This redundancy model is considered an extension to the 

2N Redundancy Model. The N+M Redundancy model allows N service provider instances to 

have the active HA state and M service provider instances to have the standby HA state. Similar 

to 2N redundancy model, a service provider instance cannot be active and standby at the same 

time. Through using this model, it is possible to make better use of the resources. Because a 

standby service provider instance can be shared between multiple active ones. 

N-Way Redundancy Model [13]: This redundancy model extends the N+M Redundancy 

model by allowing service provider instance to have active HA state for one service while 

having standby HA state for others.   
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2.2 Related Work 

The architectural style of microservices has emerged primarily from the industry [5]. It is 

being adopted and investigated from different perspectives by practitioners and to a smaller 

extent by researchers in academia as well. In this section, we review the related work focusing 

on microservice based architectures and containers as their enabler. We also consider the re-

lated work for stateful microservices. In the end, we review other container orchestration plat-

forms similar to Kubernetes. 

Dragoni et al. in their work [2] propose the definition of a microservice as a small and 

independent process that interacts with other microservices by messaging. They define the mi-

croservice based architecture as a distributed application composed of microservices and dis-

cuss the impact of adopting the architectural style of microservices on the quality attributes of 

the application. Along with performance and maintainability, they specifically discuss availa-

bility as a quality attribute which is impacted by the microservice based architecture. Emam et 

al. in [23] found that as the size of a service increases, it becomes more fault-prone. Since 

microservices are small in size, in theory, they are less fault-prone. However, Dragoni et al. 

argue that at integration, the system will become more fault-prone on the integration level be-

cause of the complexity of launching an increasing number of microservices [2].  

Other related works compare monolithic and microservice based approaches. For example, 

Villamizar et al. in [24] compare web applications deployed with a monolithic architecture and 

those deployed with a microservice based architecture. In their case study, they developed an 

application using the monolithic approach and one using the microservice based architecture 

and deployed both in a cloud infrastructure as a service. Their experiments show that the mi-

croservice based architecture can reduce the infrastructure costs by 17%. Although it is not 
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significant, the average response time of the microservice based solution was reported higher 

than that of the monolithic one. Another comparison of the monolithic approach with the mi-

croservice based architecture is done by Ueda et al. in [25]. They report 70% degradation of 

throughput with the microservice based architecture. In some cases, the Docker network con-

figuration causes up to 33% degradation in performance [23]. 

Containers have been introduced as a technology that allows leveraging the benefits of 

microservices. Jaramillo et al. discuss in [14] how each Docker container is a deployable unit 

and an isolated box that contains the runtime environment and packages all dependencies 

within itself. For these reasons, Docker containers are suitable for microservices and bring 

automation, independency, and portability. Amaral et al. in [8] examine two different ap-

proaches where services can be developed as sets of containers: master-slave and nested con-

tainers. In the former, one container acts as parent and manages all other containers that work 

as peers. The nested containers model is inspired by Kubernetes’ pod concept where the parent 

is a privileged container and the child runs in the parent’s namespace. Their results show that 

the time to create a nested container is longer than that of a regular container and increases as 

the number of children grows. 

Khazaei et al. in [26] propose a microservice platform for the cloud by using a Docker 

technology that provisions containers based on the requests of microservice users. One of the 

key differences between this platform and Kubernetes is that this platform has the ability to ask 

for more VMs from the infrastructure when needed while Kubernetes does not. Kang et al. in 

[27] propose a microservice based architecture and use containers to operate and manage the 

cloud infrastructure services. In their architecture, each container is monitored by a sidekick 

container and in case of failure, recovery actions are taken. They performed some experiments 

and concluded that recovering from container failure is faster than recovering from VM failure. 
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In their architecture, they have both stateless and stateful microservices. Their stateful micro-

service is a MySQL database with the active-active mode. For synchronizing data between 

microservices, they suggest shared storage and application level data replication. In the former, 

all MySQL microservices access the same data while in the latter the database process repli-

cates the data across the cluster. 

Netto et al. in [28] and [29] believe that Kubernetes is able to improve service availability 

of stateless applications. However, for stateful applications, Kubernetes faces some issues. In 

[28], to automate state replication between pods, all pod replicas execute the incoming requests. 

However, only the one that has received the request from the client will respond. In [29], they 

integrate a layer of containers between the client and the application (called Koordinator), 

which orders the requests received from the client and sends them to all application containers. 

They use a containerized firewall for redirecting the client requests to the Koordinator layer. 

This firewall is a single point of failure, especially in case of node failure. Moreover, although 

the availability is mentioned as one of the benefits in both works ([28] and [29]), it is not 

measured. 

Soenen et al. in [30] aim to provide high availability for the management and orchestration 

(MANO) in the Network Function Virtualization (NFV) architecture by decomposing its func-

tional blocks into microservices each performing a task in a workflow and interacting through 

remote calls over a network. To support availability, they deploy a redundant instance for each 

microservice type and both receive requests. Redundant microservices check each other’s 

health through heartbeat. Meaning that the application needs to implement the availability 

logic. Moreover, each instance has the entire state and the task logs for both instances but only 

performs the tasks which was assigned to it. If a microservice instance does not receive a heart-

beat, it also performs the tasks assigned to its peer. This can lead to a problem as the reason for 
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not receiving the heartbeat could be a network partition between two instances. In this case, 

there will be two instances performing the same task which can lead to data inconsistency. 

 [31] is an NFV specification with the goal of making virtualized network functions 

(VNFs) compatible with the cloud-native approach. It defines a set of requirements to make 

VNFs compatible with this approach. For example, VNF components should be containerized 

and also support high availability which is an important requirement of the cloud-native ap-

proach. Thus, redundancy at the VNF component (container) level must be supported as well. 

Moreover, since most telecom applications are stateful, the containers’ state should be persis-

tent and stored in external storages. 

In Sub-section 2.1.5, we introduced the SA Forum [13] which defines a set of specifica-

tions to facilitate the development of carrier-grade applications. The Availability Management 

Framework (AMF) is one of the services defined by the SA Forum which is a middleware 

service that coordinates redundant resources and performs recovery and repair actions to pro-

vide availability for services provided by applications. The OpenSAF project [13] is an open-

source middleware which implements SA Forum specifications including AMF and focuses on 

providing service availability for applications. The authors in [32] propose an elasticity engine 

that reacts to the fluctuations of the workload of applications managed by the AMF by modi-

fying the AMF configuration resulting in a rearrangement of service provider resources. In 

their solution, they use the OpenSAF implementation of SA Forum specifications and demon-

strate that elasticity can be managed at the application level within the AMF’s framework that 

is for managing the availability of applications. 

In Sub-section 2.1.3, we introduced Kubernetes as an open-source platform for orchestrat-

ing the lifecycle of containerized applications. However, there are other container orchestration 



20 

 

 

platforms available as well. For example, Docker Swarm [33] is a native clustering system for 

Docker that uses an API proxy system to turn a number of Docker hosts into a single virtual 

host. In this platform, a swarm is like a cluster in Kubernetes that is a group of virtual or phys-

ical machines with at least one master node. It is possible to use the Docker Engine command-

line interface to create a swarm of Docker Engines. In Docker Swarm, the container images 

the swarm should use and the commands that need to be run in each container are defined in a 

service by a swarm administrator [34]. The Docker containers that execute the commands de-

fined in the service are called tasks. When a master node assigns a task to a worker node, this 

task cannot be moved to another worker node. If a task fails, the master will assign a new 

version of that task to another worker node. Deploying applications with Docker Swarm is 

rather simple and Swarm mode is included in Docker Engine. However, one should note that 

it only supports Docker containers unlike Kubernetes that can use other container runtimes as 

well to run containers in pods (e.g., CRI-O [35], Containerd [36], and frakti [37]). 

Another example of container orchestration platforms is Marathon [38] on Apache Mesos 

[39]. Apache Mesos is a cluster manager that simplifies resource allocation in public and pri-

vate clouds by abstracting data center resources into one single pool of resources. It is able to 

scale both its underlying infrastructure and also the applications running on top of it. Apache 

Mesos can manage a diverse set of workloads including containerized applications. Marathon 

is the orchestration framework for managing containerized workloads that is built on top of 

Apache Mesos. Unlike Kubernetes that can run on any environment, Marathon can only run on 

Distributed Cloud Operating System (DC/OS) [40] and Apache Mesos. Apache Mesos has a 

master/slave architecture. The master node has information about the slave nodes’ resources 

and sends this information to Marathon. A unit of work by Marathon is called a “task” that is 

scheduled on slave nodes based on the resource offers received from Mesos master. 
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Chapter 3 

3 Microservice Based Architectures 

with Kubernetes and their Availability 

In this chapter, architectures for deploying stateless and stateful microservice based appli-

cations with Kubernetes are identified and evaluated. In Section 3.1, we identify and evaluate 

these architectures qualitatively in terms of deployment and service discovery. In Section 3.2, 

we conduct experiments to quantitatively evaluate the stateless microservice based architec-

tures from the perspective of availability and analyze the results in Section 3.3. We also address 

the availability challenges of Kubernetes in managing the availability of stateful applications 

in Section 3.3. 

3.1 Architectures for Deploying Microservice Based Applications   

There are different ways of using Kubernetes’ architectural components to deploy appli-

cations. As an example, based on the application’s characteristics, one can use a Deployment 

controller or a StatefulSet controller to deploy the application. Also, exposing the application 

to the world outside of the Kubernetes cluster or other services of the application inside the 

Kubernetes cluster can be done in different ways. For example, an application can be exposed 

either by using only services or an ingress. Moreover, the environment in which the Kubernetes 

cluster is running (e.g., public or private cloud) can affect the type of services used in deploying 

the application.  
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In this section, we present the possible architectures for deploying stateless and stateful 

microservice based applications with Kubernetes in different environments, i.e., public and 

private cloud. We also discuss service discovery and the related challenges for each case. These 

architectures are based on the Kubernetes architectural components described in [1]. 

3.1.1 Stateless Microservice Based Applications 

The main controller for deploying stateless applications with Kubernetes is the Deploy-

ment controller. A Deployment controller specification is composed of a pod’s template and 

a desired number of pods. After the Deployment controller is deployed, it creates the desired 

number of pod replicas and constantly works to bring the current state of the application to 

the desired state which means rescheduling pods when failures happen. In Kubernetes,  a 

pod can store its data in a volume which is accessible by all of its containers. The volume is 

ephemeral and the data are lost when the pod is rescheduled or restarted. However, since 

stateless applications do not require the previously stored data for continuing their tasks, the 

loss of these data will not harm the application’s functionality. 

In Figure 3-1, a Deployment controller is used for deploying a stateless microservice 

based application. In this architecture, we consider a Kubernetes cluster composed of a num-

ber of VMs. Kubernetes runs on all VMs and creates a unified view of the cluster. One of 

the VMs is selected as the master and is in charge of managing the worker nodes. For sim-

plicity, the application in this example is composed of only one microservice. The pod tem-

plate for the containerized microservice as well as its desired number of replicas are included 

in the Deployment controller specification which is deployed to the cluster. It is possible to 

include customizable pod labels in a Deployment controller specification. The Deployment 

controller assigns these labels to pods when it is creating them. As seen in Figure 3-1, a 
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service is created which redirects the incoming requests to the application pods. The pods 

are selected as service endpoints based on the labels they have been assigned. There are 

different types of services that can be used which we will discuss later in this sub-section. 

3.1.2 Stateful Microservice Based Applications 

In this sub-section, we bring the possible architectures for deploying stateful micro-

service based applications with Kubernetes. 

For stateful microservice based applications, Kubernetes provides different solutions. 

It is possible to deploy stateful microservice based applications with Deployment controllers 

as well as with StatefulSet controllers. In any case, the assumption is that the application’s state 

data are stored in a persistent storage outside of Kubernetes called persistent volumes (PVs). 

Meaning that Kubernetes is not in charge of managing the PVs and it only consumes them. 

 

Figure 3-1. An architecture for deploying stateless microservice based applications with Kubernetes. 
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3.1.2.1 Deploying with StatefulSet Controllers   

The most common way of deploying stateful applications with Kubernetes is by a State-

fulSet controller. In a StatefulSet controller specification, a PVC template is included along 

with the pod template. This PVC template describes the criteria (capacity, access mode, and 

etc.) for the PVs that the pods of the StatefulSet controller can be bound to. When the State-

fulSet is deployed, a PVC is created for each pod binding it to a dedicated PV that meets these 

criteria. Since the data a pod stores in its PV are not shared with other pods of the StatefulSet, 

a mechanism such as sticky session is required to ensure that a client is always served by the 

same pod as its state is stored in the PV only accessible by that pod.  

Figure 3-2 shows the architecture for deploying stateful applications using a StatefulSet 

controller. As shown in Figure 3-2 StatefulSet pods’ names are a combination of their control-

ler’s name (“MS”) and an ordinal index (MS-0, MS-1… MS-(n-1)). A difference that State-

fulSet pods have compared to pods managed by other controllers is that they have persistent 

 
Figure 3-2. An architecture for deploying stateful microservice based applications using a StatefulSet controller. 
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identities. Meaning that if MS-0 which stores its state data in PV0 fails, the StatefulSet con-

troller will restart the pod and will give the same identity to it. Therefore, MS-0 will be bound 

to PV0 again and it will have access to its state data stored prior to its restart. 

3.1.2.2 Deploying with Deployment Controllers 

Although StatefulSet controllers are the most commonly used controllers for deploying 

stateful applications, one can use Deployment controllers for this type of application as well. 

Similar to StatefulSets, the stateful Deployment pods can store their state data in a PV. How-

ever, with Deployment controllers, all pods have to share a PV. The reason is that it is not 

possible to include a PVC template in a Deployment controller specification. Therefore, one 

PVC should be created before deploying the application which will be used by all pods once 

they are deployed by the Deployment controller. 

Figure 3-3 shows the architecture for deploying stateful applications using a Deployment 

controller. In this architecture, the state data for each client are shared between all pods. There-

fore, all pods can serve a client as they have access to its data.  

 

Figure 3-3. An architecture for deploying stateful microservice based applications using a Deployment controller. 
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3.1.3 Service Discovery 

In the previous sub-section, we explained the possible architectures for deploying both 

stateless and stateful microservice based applications with Kubernetes. In all discussed archi-

tectures, we see that there is a service exposing the application. Kubernetes’ services can have 

different types and depending on the application and the environment in which the Kubernetes 

cluster is running, a specific service type may be used. In this sub-section, we describe two 

ways of exposing applications deployed with Kubernetes: services and ingress. The method of 

service discovery does not depend on the type of controller used for maintaining the pods. 

Therefore in all examples, we only consider the architecture with a Deployment controller for 

stateless applications. 

3.1.3.1 Using Services to Expose Applications  

The most common way to expose applications deployed with Kubernetes to the world 

outside of the cluster or other services of the application is Kubernetes’ services. Services can 

be of different types and are rules that are added to the IP tables of Kubernetes’ cluster nodes. 

The default service type is called the “cluster IP” which is only useful when we need to 

expose a set of pods to another service inside Kubernetes’ cluster. However, exposing the ap-

plication to the outside of Kubernetes cluster can be challenging.  

A Kubernetes cluster can run in a private cloud as well as a public one. For each type 

of environment, a different service type should be used to expose the application to the outside 

world. For applications deployed with Kubernetes running in a public cloud, a service of type 

“Load Balancer” can be used as shown in Figure 3-4. In addition to a cluster IP, services of 

type “Load Balancer” have an external IP address that is automatically set to the cloud pro-

vider’s load balancer IP address. Clients from outside of the cluster can access the application 
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through this public external IP address. The requests received at this address are redirected to 

the cluster IP of the service and later load balanced between all pods. 

Services of type “Load Balancer” are a straight forward way to expose applications as 

they automatically obtain the cloud provider’s load balancer IP. However, this feature does not 

exist in Kubernetes clusters running in a private cloud. Figure 3-5 depicts the architecture for 

exposing the applications deployed with Kubernetes running in a private cloud to the outside 

of the cluster. In this architecture, a service of type “Node Port” is used. This type of service 

exposes the application on the same port on every node in the cluster. The “Node Port” service 

is also built on top of a “Cluster IP” service. Meaning that all requests received at the specified 

port will be redirected to the cluster IP of the service and later load balanced between all pods.  

However, since it is not a good practice to expect the users to connect to the nodes directly, an 

external load balancer is used which distributes the requests between the nodes and delivers 

them to the port on which the “Node Port” service is exposed. The problem with this architec-

ture is that for each service of the application in the cluster that needs to be exposed externally, 

we will need one external load balancer. 

 

Figure 3-4. Public cloud - exposing services via services of type “Load Balancer”. 
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3.1.3.2 Using Ingress to Expose Applications  

Applications can have more than one service that need to be exposed externally and 

with the methods explained in the previous sub-section, we need one load balancer for each 

service. On the other hand, Kubernetes’ ingress resource can have multiple services as 

backends and minimize the number of load balancers utilized. With an ingress resource, each 

service in the cluster can be given an externally reachable URL. An ingress controller should 

be deployed in the cluster in order to redirect the incoming requests to the backend services 

based on the rules defined in the ingress resource. The ingress controller is deployed as one 

pod using a Deployment controller. 

In a Kubernetes cluster running in a public cloud, the ingress controller is deployed by 

a Deployment controller and exposed by a service of type “Load Balancer” (Figure 3-6). There-

fore, requests for all services that are sent to the cloud provider’s load balancer are received by 

the ingress controller and redirected to the appropriate service based on the rules defined in the 

 

Figure 3-5. Private cloud - exposing services via services of type “Node Port”. 
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ingress resource. In a Kubernetes cluster running in a private cloud, the ingress controller is 

also deployed by a Deployment controller but exposed by a service of type “Node Port” (Figure 

3-7). 

 

Figure 3-7. Private cloud - exposing services via ingress. 
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Figure 3-6. Public cloud - exposing services via ingress. 
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3.2 Availability of Stateless Architectures   

For carrier-grade service providers, availability is an important non-functional require-

ment measured as the total outage time over a given period [6]. As these service providers are 

migrating towards the microservice based architecture, it is important to evaluate Kubernetes 

from the perspective of availability it can provide for its managed applications. In this section, 

we evaluate the architectures presented in Sub-section 3.1.1 for stateless microservice based 

applications from the perspective of availability by addressing the following research questions 

(RQ): 

RQ1: What is the level of availability that Kubernetes can provide for its managed micro-

services solely through its repair actions? 

RQ2: What is the impact of adding redundancy on the availability achievable with Kuber-

netes? 

RQ3: What is the availability achievable with Kubernetes under its most responsive con-

figuration? 

RQ4: How does the availability achievable with Kubernetes compare to existing solu-

tions? 

To address these research questions, we conducted some availability experiments cover-

ing a number of failure scenarios and measured the defined availability metrics. These failure 

scenarios and the availability metrics are explained in the next sub-section. 

3.2.1 Availability Metrics and Failure Scenarios 

The availability metrics and failure scenarios for our experiments are as follows. 
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3.2.1.1 Availability Metrics 

The metrics we use to evaluate Kubernetes from availability perspective are defined 

below. In Figure 3-8, we summarize the relations between these metrics. 

Reaction Time: The time between the failure event we introduce and the first reaction 

of Kubernetes that reflects that the failure event was detected. 

Repair Time: The time between the first reaction of Kubernetes to the failure event and 

when the pod failed due to the failure event is repaired. 

Recovery Time: The time between the first reaction of Kubernetes to the failure event 

and when the service is available again. 

Outage Time: The duration for which the service was not available. It represents the 

sum of the reaction time and the recovery time as shown in Figure 3-8. 

3.2.1.2 Failure Scenarios 

Kubernetes offers three levels of health check and repair action for managing the avail-

ability of the deployed applications.  First, at the application level, Kubernetes ensures that the 

 

Figure 3-8. Availability metrics. 
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software components executing inside a container are healthy either through process health 

check or predefined probes. In both cases, if the Kubelet discovers a failure, it will react ac-

cording to the defined restart policy. Second, at the pod level, Kubernetes monitors the pod 

process failures. That is, monitoring the pod process that is the environment provided for run-

ning application containers by providing shared storage and network for them. Finally, at the 

node level, Kubernetes monitors the status of the cluster nodes through its node controller com-

ponent. If the node hosting a pod fails, the pod is rescheduled on another healthy node. With 

respect to these levels of health check, we defined three failure scenarios which are explained 

as follows. 

Service Outage Due to Application Container Failure: In this scenario, the failure is 

simulated by killing the application container process from the OS. 

Service Outage Due to Pod Process Failure: When a pod is deployed, along with the 

application containers specified in its template, one extra container is created which is the pod 

process. Since the pod itself is a process in the OS, it is possible that it crashes. In this scenario, 

the failure is simulated by killing the pod process from the OS. 

Service Outage Due to Node Failure: In this scenario, a node that is hosting a pod 

fails. For some experiments, this scenario is simulated by Linux’s reboot command and for 

others is simulated by shutting down the node. 

In the following Sub-sections, we address the previously posed research questions for 

stateless microservice based applications deployed with Kubernetes as well as stateful ones.  
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In this Sub-section, we present the concrete architectures, the experiments, the results 

and the analysis for answering the research questions we brought before for stateless micro-

service based applications deployed with Kubernetes. 

For these experiments, we set up a Kubernetes cluster in a private cloud (Figure 3-7). 

This cluster is composed of three VMs running on an OpenStack cloud. Ubuntu 16.04 is the 

OS running on all VMs. Kubernetes 1.8.2 runs on all VMs and the container engine is Docker 

17.09. The Network Time Protocol (NTP) [41] is used for time synchronization between the 

nodes. The deployed application is VideoLan Client (VLC) [42]. There is one container image 

in the pod template, in which VLC is installed. Once a pod is deployed, an application container 

will be created based on this image and will start streaming from a file. The application is 

stateless and if the container is restarted, it will start streaming from the beginning of the file. 

3.2.2 Evaluating the Availability of Stateless Applications Deployed with Ku-

bernetes 

In this sub-section, we evaluate the availability that Kubernetes can provide for the 

stateless applications under different scenarios and address the research questions posed earlier 

in this section. 

3.2.2.1 Evaluating the Repair Actions with the Default Configuration of Kubernetes 

(RQ1) 

The common practice to evaluate Kubernetes’ repair actions is to simulate failures 

through administrative operations (e.g. delete the pod or the node) using the Kubernetes com-

mand-line interface (CLI) and then observe how fast a new pod replaces the failed one [43]. 

Due to the use of Kubernetes’ administrative operations, such a failure is not a spontaneous 
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event that Kubernetes needs to detect and react to. Instead, the operation is executed by Kuber-

netes in due order often in a graceful manner. Therefore, these operations cannot reflect com-

mon execution failure scenarios, which are anything but graceful and happen spontaneously 

maybe as a result of external failure events (e.g., process or physical node crash). Drawing 

conclusions based on such administrative operations would not be accurate. Hence, it is im-

portant to identify and simulate execution failure scenarios due to external events properly and 

measure the availability in these cases before making conclusions. 

In this sub-section, we first bring the experiments where service outage is due to exter-

nal events causing execution failures. Then, we repeat the failure scenarios where the failure is 

injected by administrative commands. We analyze the results and compare the measured avail-

ability of experiments with failure events due to administrative Kubernetes operations to those 

with external execution failure events. 

Figure 3-9 shows the architecture for these experiments. For this research question, we 

are interested in measuring the availability that Kubernetes can provide only through its repair 

actions. Therefore, the redundancy model in this case is No-Redundancy without spare [13] 

which means the number of pods in the Deployment controller specification is only one. The 

measurements of the experiments with external execution failure events are shown in Table 3-

1 and those with administrative failure events are shown in Table 3-2. What follows is the 

detailed explanation for each failure scenario in these experiments. 
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Service Outage Due to External Execution Failure Events 

We conducted availability experiments where the failures are external execution fail-

ures resulting in service outage which can reflect the real-life failure events. 

Service Outage due to VLC Container Process Failure: In this scenario, the failure 

is simulated by killing the VLC container process from the OS. When the VLC container 

crashes, the Kubelet detects the crash and brings the pod to a state where it will not receive 

new requests. At this time, that is the reaction time, the pod is removed from the endpoints list. 

Later, the Kubelet restarts the VLC container and the video will start from the beginning of the 

file. This time marks the repair time. Recovery time is when the pod is in the endpoints list 

again and is ready to receive requests. 

 

Figure 3-9. Concrete architecture for experimenting with Kubernetes - Stateless microservice based application 

with No-Redundancy redundancy model. 
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Service Outage due to Pod Process Failure: In this scenario, the failure is simulated 

by killing the pod process from the OS. When the pod process is killed, the Kubelet detects 

that the pod process is no longer present and this marks the reaction time. When the new pod 

is created and its VLC container is started, the video will start streaming from the beginning of 

the file and we consider the pod as repaired. After, the Kubelet will add the new pod to the 

endpoints list and it will be ready to receive new requests. This marks the recovery time. 

Service Outage due to Node Failure: In this scenario, node failure is simulated by the 

Linux’s reboot command on a VM hosting the pod. As mentioned before, the Kubelet is re-

sponsible to report the status of the node to the master, and it is the node controller of the master 

who detects the failure of the node. With the default configuration of Kubernetes, when a node 

hosting a pod fails, it stops sending status updates to the master and the master will mark the 

node as not ready after the fourth missed status update. This time is the reaction time. When 

the node is marked as not ready, the VLC pod on the node is scheduled for termination and 

after it is completely terminated a new one will be created. The repair time is when the new 

VLC pod is started and streaming the video. Recovery time is when the pod is added to the 

endpoints list of the service. 

Service Outage Due to Administrative Failure Events 

As explained before, the common practice to evaluate Kubernetes’ repair actions is by 

injecting “failure” events from Kubernetes’ CLI. In order to compare with external execution 

failures, we conducted experiments that cover two failure scenarios. In the first scenario, the 

failure is simulated by deleting the pod administratively. In the second scenario, the failure is 

simulated by administrative deletion of the node. Note that since there are no commands in 

Kubernetes that can terminate the application container, we do not have the scenario where 

service outage is due to administrative application container failure. 
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Service Outage due to Administrative Pod Termination: In this scenario, the pod is 

ordered to terminate by a command and will consequently be removed from the endpoints list 

of the service and this is when we consider that the pod has failed. By default, pods have 30 

seconds of graceful termination period. During this time, the pod will not receive new requests 

but will keep serving the requests previously assigned to it. This gives ample time to Kuber-

netes to schedule a new pod and deal with incoming requests. Since it is the responsibility of 

the deployment controller to always maintain one replica of this pod, it will bring up a new one 

and this event marks the reaction time. The repair time is when the new pod is started. Although 

at this time, the pod has started and is streaming the video, it will not be available to users 

unless it is added to the endpoints list of the service. Therefore, we consider the streaming 

service as recovered when the new pod is added to the endpoints list of the service and starts 

streaming. 

Service Outage due to an Administrative Deletion of the Node: In this scenario, a 

node hosting a pod is deleted using a Kubernetes’ CLI command. As a result, the cleanup of 

all containers and processes related to Kubernetes on this node is initiated. Any pod running 

on the node that is to be deleted enters a state that it does not receive new requests. Hence, this 

is what we consider the moment of failure. However, the behavior in this scenario is different 

from that of the administrative pod failure scenario. Here, the pod will serve the previously 

assigned requests for only around one second (not the default 30 seconds of graceful termina-

tion period). Shortly after, the pod is completely deleted and this time marks the reaction time. 

When the pod is completely deleted, the deployment controller will attempt to add a new pod 
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on another node. Repair time is when the new pod is started. Recovery time is marked later 

when the new pod is added to the endpoints list of the service and starts streaming. 

  

Table 3-1. Experiments with Kubernetes under Default Configuration – External Execution Failures with No-Re-

dundancy Redundancy Model. 

failure trigger 

(unit: seconds) 

reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

VLC Container 

Failure 
0.716 0.472 1.050 1.766 

Pod Process Failure 0.496 32.570 31.523 32.019 

Node Failure 38.187 262.542 262.665 300.852 
 

Table 3-2. Experiments with Kubernetes under Default Configuration – Administrative Failures with No-Redun-

dancy Redundancy Model  

failure trigger 

(unit: seconds) 

reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

Administrative Pod 

Termination 
0.041 0.982 1.547 1.588 

Adiministrative Node 

Deletion 
0.031 1.009 1.500 1.531 
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3.2.2.2 Evaluating the Impact of Redundancy on the Availability (RQ2) 

In the previous sub-section, we evaluated the repair actions of Kubernetes in providing 

availability for its applications. However, an important mechanism for improving availability 

is adding redundant instances. In this sub-section, we investigate the impact of adding redun-

dancy on the availability provided by Kubernetes. We consider the architecture of Figure 3-10 

where the number of pod replicas that the Deployment controller maintains is increased to two. 

In this architecture, we have an N-Way Active redundancy model [13]. In this redundancy 

model, a number of microservice instances are deployed and since they are stateless, all of 

them are capable of providing the same service. We evaluate the availability metrics for each 

of the failure scenarios under the default configuration of Kubernetes with an N-Way Active 

redundancy model. We compare the results to the previous experiments (Sub-section 3.2.2.1). 

The measurements for this set of experiments are shown in Table 3-3. What follows is 

the detailed explanation for each failure scenario in these experiments. 

Service Outage due to the VLC Container Process Failure: In this scenario, similar 

to the No-Redundancy redundancy model, the reaction time is when the Kubelet detects the 

VLC container has crashed and removes the pod from the endpoints list. By just removing the 

unhealthy Pod1 from endpoints list, the service is recovered. This is because another healthy 

pod is still on the endpoints list and ready to serve the requests. Therefore, the reaction time 

for this scenario is the same as the recovery time. The repair time is when the Kubelet has 

restarted the crashed VLC container and the video has started streaming again.  
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Service Outage due to Pod Process Failure: In this scenario, the same as for the No-

Redundancy redundancy model architecture, the reaction time is when the Kubelet detects that 

the pod is no longer there. Similarly to the previous scenarios, the recovery time is when the 

unhealthy pod is removed from the endpoints list making the healthy pod the only endpoint of 

the service. The repair time is when a new pod is created and its VLC container is started and 

streaming the video. 

Service Outage due to Node Failure: In this scenario, node failure is simulated by the 

Linux’s reboot command on a VM hosting the pod. The reaction time in this scenario is the 

same as for the No-Redundancy redundancy model architecture, i.e. the time the master marks 

the node as not ready and schedules the pod for termination. The recovery time is when the IP 

 

Figure 3-10. Concrete architecture for experimenting with Kubernetes - Stateless microservice based applica-

tion with N-Way Active redundancy model. 
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of the failed pod is removed from the endpoints list. The repair time is when the failed pod is 

terminated and another one is created. 

  

 

Table 3-3. Experiments with Kubernetes under the Default Configuration – N-Way Active Redundancy Model. 

failure trigger 

(unit: seconds) 

reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

VLC Container 

Failure 
0.579 0.499 0 0.579 

Pod Process Failure 0.696 30.986 0.034 0.730 

Node Failure 38.554 262.178 0.028 38.582 
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3.2.2.3 Evaluating the Repair Actions with the Most Responsive Configuration of 

Kubernetes for Supporting Availability (RQ3) 

As observed in Sub-sections 3.2.2.1 and 3.2.2.2, the default configuration of Kuber-

netes has a significant impact on the service outage. Our analysis for the different failure sce-

narios has led to the identification of the aspects that need to be modified to reduce the observed 

outage. One aspect affecting the service outage is the graceful termination signal sent to the 

application container in the scenario of pod process failure which takes at least 30 seconds. For 

the node failure scenario, the frequency of node status posting by the Kubelet to the master is 

10 seconds and the number of allowed missed status updates before marking a node as un-

healthy is four which makes the reaction time between 30 to 40 seconds. Moreover, Kubernetes 

waits around 260 seconds to delete the failed pod and recreate a new one. All these factors 

hinder the availability of the application and therefore, we change them to measure the highest 

achievable availability with Kubernetes.  

To answer this research question, we perform two sets of experiments where Kuber-

netes has the most responsive configuration. In the first set, for the pod process failure, the 

configuration parameter for the graceful termination of pods is set to zero seconds. In the sec-

ond set, for the node failure, the configuration parameters related to handling node failure are 

set to the lowest value possible (one second). We are aware of the network overhead and po-

tential false-positive node failure reports for the most responsive configuration. However, our 

goal in this experiment is to measure the best achievable availability when deploying applica-

tions with Kubernetes. These experiments were conducted with both No-Redundancy and N-

Way Active redundancy model architectures (Figure 3-9 and Figure 3-10). The results of these 

experiments are presented in Table 3-4 and Table 3-5. What follows is the detailed explanation 

for each reconfiguration. 
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Reconfiguring the Graceful Termination Period of Pods: As it was mentioned, when 

a pod process fails, a graceful termination signal is sent to Docker to terminate the application 

container which delays the repair of the pod for 30 seconds. In the No-Redundancy redundancy 

model, this grace period affects the recovery time, because a new pod will not be created unless 

the failed one completely terminates. To reduce this grace period, we updated the pod template 

and set the grace period to zero. We repeated the experiments for the pod process failure 

scenario and evaluated the impact of this change on service outage.  

Reconfiguring Node Failure Handling Parameters: To have the most responsive 

Kubernetes configuration, we reconfigured the Kubelet of each node to post the node’s status 

every second to the master. The node controller of the master was also reconfigured to read the 

updated statuses every second and allow no missed status updates for each node. We repeated 

the experiments for the node failure scenario in order to evaluate the impact of this 

reconfiguration on service outage.  

Table 3-4. Experiments with Kubernetes with changed configuration - service outage due to pod container failure. 

redundancy model 

(unit: seconds) 
reaction time 

repair 

time 

recovery 

time 

outage 

time 

No-Redundancy 0.708 3.039 3.337 4.045 

N-Way Active 0.521 3.008 0.032 0.554 

 

Table 3-5. Experiments with Kubernetes with changed configuration - service outage due to node failure. 

redundancy model 

(unit: seconds) 
reaction time 

repair 

time 

recovery 

time 

outage 

time 

No-Redundancy 0.976 2.791 2.998 3.974 

N-Way Active 0.849 2.173 0.022 0.872 
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3.2.2.4 Comparing Kubernetes with Existing Solutions for Availability Management 

(RQ4) 

To better position the availability results obtained with Kubernetes, we address RQ4.  

AMF [13] is a standard middleware service for managing the availability of components based 

applications. It has been implemented, with other middleware services, in the OpenSAF mid-

dleware [13], a proven solution for availability management. In a previous work [44], a set of 

experiments for different failure scenarios with the same application (VLC) was conducted 

with OpenSAF. The architecture for the experiments with OpenSAF is shown in Figure 3-11. 

In AMF, a component is the smallest service provider entity and the resources represented by 

the component encapsulate specific application functionality. In the architecture of Figure 3-

11, a VLC component and an IP component are used. Components are either SA-Aware or 

Non-SA-Aware. SA-Aware components implement AMF API and register with AMF to man-

age service availability [13]. SA-Aware components are primarily used for stateful applica-

tions. The Non-SA-Aware components do not interact with AMF directly and AMF is only in 

charge of managing their lifecycles. In these experiments, the VLC component that is used is 

not modified and it is a Non-SA-Aware component. 

Moreover, in this architecture, the SU stands for service unit which is a cooperation of 

components combining their individual functionalities to provide a higher level service. The 

SU in AMF is the unit of redundancy. Also, CSI stands for component service instance and is 

an abstraction of a service provided by a component that is assigned to the component by AMF 

at runtime. The SI (service instance) is an aggregation of CSIs. The SI is a single workload 

assigned to a SU. It is possible to assign a single SI to a number of SUs. 
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We considered the following failure scenarios of VLC process failure, VM failure, and 

physical host failure, corresponding to VLC container failure, pod process failure and node 

failure, respectively. In the experiments with OpenSAF, a No-redundancy redundancy model 

with two VLC components are considered. One component is running and providing service 

and the other one is a spare to be instantiated and take over in case of failure of the active. The 

results of the experiments with OpenSAF and the comparison with Kubernetes are shown in 

Table 3-6. 

 

 

Table 3-6. Experiments with OpenSAF (Non-SA-Aware VLC). 

failure trigger 

(unit: seconds) 

reaction 

time 
repair time 

recovery 

time 

outage 

time 

VLC Process  Failure 0.650 - 0.145 0.795 

VM Failure 3.233 - 0.123 3.351 

Physical Host Failure 3.229 - 0.118 3.346 

 

 

 

 
Figure 3-11. The architecture for availability experiments with OpenSAF (stateless VLC). 
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3.3 Analysis and Discussion 

In this section, we analyze the results of the availability experiments of Section 3.2 in 

order to answer the research questions we asked earlier and also discuss the availability chal-

lenges for stateful microservice based applications. 

3.3.1 Availability of Stateless Applications 

We analyze the results of the availability experiments of Section 3.2 separately for each 

failure scenario. First, we analyze the results of the scenarios where service outage is due to 

external execution failures and later compare with the results of the experiments where the 

service outage is due to administrative failure events. 

Analysis of Service Outage due to Application Container Failure Scenario: In this 

failure scenario, after killing the application container, the service becomes unavailable. How-

ever, since Kubernetes has not detected the failure yet, the IP address of the failed pod stays in 

the endpoints list. The reaction time is when Kubernetes detects the failure and removes the 

pod’s IP from the endpoints list. As it is observed in Table 3-1 and Table 3-3, for the architec-

tures of Figure 3-9 and Figure 3-10, the measured reaction times are close (0.716 and 0.579 

seconds). The total service outage, however, is different. Service outage for the architecture 

 

Figure 3-12. Analysis of experiments with Kubernetes under the default configuration and No-Redundancy re-

dundancy model – evaluating the repair actions. 
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with No-Redundancy redundancy model was measured 1.766 seconds while for the architec-

ture with N-Way Active redundancy model was only measured 0.579 seconds. Because for the 

former, we rely on the failed pod to be repaired in order to have service recovery (Figure 3-

12). However, for the latter, the service is recovered by only removing the unhealthy Pod1 

from the endpoints list (Figure 3-13). This is because another healthy pod is still on the end-

points list and ready to serve the requests. 

In Figure 3-14, we compare the results of the experiments in Sub-section 3.2.2.1 with 

those of the experiments with OpenSAF (Sub-section 3.2.2.4) as a proven reference for avail-

ability management. As it is observed in Table 3-1 and Table 3-6, the measured service outage 

for the experiments with Kubernetes with No-Redundancy redundancy model is higher than 

that of the experiments with OpenSAF (1.766 and 0.795 seconds). The recovery time of the 

experiments with OpenSAF is lower because there is a spare which is ready to be instantiated 

when a failure happens. 

 

 

Figure 3-13. Analysis of experiments with Kubernetes under the default configuration and N-Way Active Redun-

dancy model – evaluating the impact of redundancy. 
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Figure 3-14. Comparing Kubernetes and OpenSAF from availability perspective for stateless applications. a) VLC 

container failure scenario, b) Pod container failure scenario, c) Node failure scenario. 
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Analysis of Service Outage due to Pod Process Failure: In this failure scenario, the 

service becomes unavailable when the pod process fails. In Table 3-1 and Table 3-3, we ob-

serve that the reaction time for the architectures of Figure 3-9 and Figure 3-10 are relatively 

close while their total service outage significantly differ (32.019 and 0.730 seconds). The rea-

son for this difference is the repair time which takes 30 seconds on average and in the archi-

tecture with No-Redundancy redundancy model, recovery depends on the repair of the failed 

pod. In the architecture of Figure 3-10, however, recovery happens shortly after reaction time 

when Kubernetes removes the IP of the failed pod from the endpoints list. The reason for the 

long repair time is that when the pod process fails, a graceful termination signal is sent to the 

VLC container and Docker waits 30 seconds before terminating it forcefully and the repair 

process will not start unless the VLC container is terminated. 

In Sub-section 3.2.2.3, we reconfigured the graceful termination period of the pod to 

decrease the aforementioned long repair time. The results of these experiments are presented 

in Table 3-4. As it was expected, Table 3-4 shows a significant decrease in repair time which 

affects the service outage of experiments done with No-Redundancy redundancy model. The 

service outage of experiments with the N-Way Active redundancy model has not changed, as 

the repair time does not play a role in the service outage in this case. We observed that with the 

new configuration when the pod process crashes, the time Docker gives to the application con-

tainer before forcefully killing it is reduced to 2 seconds. However, this drastic change of the 

graceful termination period might cause unnecessary pod restarts when there are false-positive 

reports about the application container failure. 

For the architecture of Figure 3-9, we can compare the results of the pod failure scenario 

with the results of the experiments with OpenSAF where service outage is due to VM failure. 

We observe in Figure 3-14 that with the default graceful termination period, the outage time 
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with Kubernetes is significantly higher compared to that of the experiments with OpenSAF. 

However, the service outage with Kubernetes and OpenSAF became comparable by reconfig-

uring the graceful termination period to its lowest value. 

Analysis of Service Outage due to Node Failure Scenario: In this failure scenario, as 

it is observed in Table 3-1 and Table 3-3, with the default configuration of Kubernetes, it takes 

between 30 to 40 seconds for Kubernetes to consider the node as lost and remove the IP of its 

pods from the endpoints list and the repair time also takes around 260 seconds. While the ser-

vice outage for the architecture with No-Redundancy redundancy model was measured 

300.852 seconds, this metric was measured 38.582 seconds for the architecture with N-Way 

Active redundancy model. Because as mentioned before, for the architecture of Figure 3-10, 

recovery does not depend on the repair of the failed pod. 

In Sub-section 3.2.2.3, we reconfigured the node failure handling parameters to their 

most responsive configuration. Table 3-1, Table 3-3, and Table 3-5 show that reconfiguring 

Kubernetes reduced the outage time from 300.852 seconds to 3.974 seconds for the architecture 

of Figure 3-9 and from 38.582 seconds to 0.897 seconds for the architecture of Figure 3-10. 

Moreover, in comparison with OpenSAF (Figure 3-14), we observe that in the cases of 

No-Redundancy redundancy model, the OpenSAF solution shows a lower outage time. More-

over, although the N-Way Active redundancy model should render a higher level of availability 

compared to the No-Redundancy redundancy [45], the outage time for the node failure scenario 

of Kubernetes with N-Way Active is still significantly higher than for OpenSAF with the No-

Redundancy redundancy model. The reason for the long outage time with Kubernetes is the 

default configuration of Kubernetes that leads to late reaction time. However, with the changed 

configuration of Kubernetes, the outage times in Kubernetes experiments with No-Redundancy 

architecture are comparable to those of the OpenSAF solution. 
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Administrative Failure Events vs Execution Failure Events: Now we compare the 

results of external execution failure scenarios with those of the administrative failure scenarios. 

In the administrative pod termination scenario, the reaction time is 0.041 seconds which is 

significantly lower than the 0.496 seconds of the externally triggered pod process failure. The 

reason is that in the former, the termination is triggered from inside of Kubernetes, which then 

reacts according to the termination procedure, while in the latter it is up to the Kubelet’s health 

check to detect first that the pod is no longer present and this depends on how close to the next 

health check the failure happens. 

An important observation of these experiments is shown in Figure 3-15. Although the 

pod process is failed forcefully (Figure 3-15 (b)), the orphaned application container of the pod 

PodA is running

PodA is deleted via CLI

PodA is running 
but not getting 
new requests

PodA is terminated

PodB is running

a)

b)

PodA is running

PodA is terminated

PodA process is crashed
and graceful termination signal 
is sent to application container

Application container 
is terminated

PodB is running

time

time

 

Figure 3-15. Analysis of pod failure scenarios. (a) Administrative pod termination. (b) Pod process failure. 
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receives a graceful termination signal. Thus, the pod process failure is detected by the Kubelet, 

which waits for Docker and will not start the repair process before it makes sure that the appli-

cation container of the pod is terminated as well. This means graceful termination of the appli-

cation container whose duration depends on Docker’s configuration, impacts and delays the 

service recovery time. However, this may also allow for fault propagation should the pod pro-

cess fail due to real fault or bug. Fault isolation principles would require immediate forceful 

cleanup of the application containers once their pod’s process failure is detected. This grace 

period is the reason why the repair time for the pod process failure scenario is 32.570 seconds. 

This is significantly longer than that of the administrative pod termination scenario which is 

0.982 seconds. In the latter (Figure 3-15 (a)), Kubernetes performs the graceful termination 

and repair procedures in parallel. The ordering is guaranteed for certain actions of these proce-

dures. For example, the removal of the terminating pod from the endpoints list precedes the 

start of the repair procedure, and the completion of pod termination follows the addition of the 

new pod. This parallelization is possible due to the assumption that there is no fault in the 

system. This emphasizes the point made earlier about the correct simulation of failures with 

respect to availability metrics. As it is observed, the administrative pod termination scenario 

reports an outage time of 1.588 seconds while for the pod process failure scenario it is 32.019 

seconds. 

For the node failure scenarios, we observed similar differences in all measured availa-

bility metrics. For the administrative node deletion scenario, since the failure is triggered from 

inside of Kubernetes, the reaction time is 0.031 and it is significantly faster than the reaction 

time of externally triggered node failure which is 38.187 seconds. As explained before and 

shown in Figure 3-16 (b), it depends on the period of the Kubelet’s status update (default 10 

seconds) and the allowed number of misses (default 4 seconds).  
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Another important observation of the administrative node deletion scenario is shown in 

Figure 3-16 (a). Although the failure is triggered from inside of Kubernetes, the new pod is 

started after the old one is terminated. It was expected to behave similarly to the administrative 

pod termination shown in Figure 3-15 (a) where the new pod is started before the old one is 

terminated. 

 

  

PodA is running

PodA is running 
but not getting 
new requests

PodA is terminated

a)

b)

PodA is running

PodA is terminated

PodB is running

Node of PodA is deleted via CLI

PodB is running

Node of PodA is 
shut down

Master detects the 
node is failed

time

time

 

Figure 3-16. Analysis of node failure scenarios. (a) Administrative node termination. (b) Externally triggered 

node failure. 
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3.3.2 Challenges of Managing the Availability of Stateful Applications  

As mentioned before, to manage the availability of applications, Kubernetes provides 

healing for its managed microservices [46] that is restarting the failed containers and replacing 

or rescheduling them when their hosts fail. Although these repair actions can improve the avail-

ability of the applications deployed with Kubernetes, redundancy remains the most important 

feature to enable high availability (HA).  

Kubernetes enables replication of the pods with the aim of improving applications’ avail-

ability. Stateless pods can be easily replicated as they can be deployed as interchangeable in-

stances. However, the same is not true for stateful pods. Deploying a replicated set of stateful 

pods requires coordination of the different replicas to keep them synchronized and the “state” 

aspect makes orchestration more complex than what the initial Kubernetes features and con-

trollers were built for. 

For example, if the application is deployed by a StatefulSet controller as shown in Figure 

3-2, if one pod fails, other pods cannot resume the service instead of the failed pod. One reason 

is that the state data for each pod are stored separately and other pods do not have access to 

them so they cannot resume the service. The other reason is that pods are isolated and are not 

aware of each other’s failure and therefore cannot resume the service instead of the failed pod. 

Therefore, we can only rely on the failed pod to be restarted with the same identity so it can 

restore the state that was stored before failure from its own PV. This means that the service can 

be recovered, but the clients need to wait for the failed pod to be restarted, which may be too 

slow for some applications or impossible for some failure scenarios. For example, with the 

architecture in Figure 3-2, if the service outage is due to node shutdown, the pod will not be 

restarted and the service will not be recovered unless the node rejoins the cluster. 
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Moreover, as shown in Figure 3-3, when a stateful microservice based application is de-

ployed by a Deployment controller, all microservice instances have access to the same state 

data. Because it is not possible to define separate PVs for each pod of a Deployment controller. 

However, if a pod fails, other pods will not be able to resume the service that was provided by 

the failed pod. Because although every pod has access to the state data, they do not know about 

the failure and the need for the service to be recovered. Moreover, they are not aware of the 

location where the failed pod’s state data is stored. Therefore, they cannot recover the service 

that was provided by the failed pod. Since the identity of a restarted pod also changes, we 

cannot rely on the restart procedure for recovering the stored service state. 
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3.4 Conclusion 

In this chapter, we presented and compared architectures for deploying stateless and state-

ful microservice based applications in Kubernetes clusters hosted in public and private clouds. 

Through our investigations, we learned that although it is not stated in Kubernetes’ documen-

tation [10], Kubernetes is more tailored for public clouds than it is for private clouds. We also 

conducted experiments in a private cloud environment, considering different failure scenarios, 

configurations, and redundancy models to evaluate Kubernetes from the perspective of availa-

bility it can provide for its applications.  

In our experiments, we found that the failure scenarios due to external execution failure 

events show significantly longer outage times compared to failure scenarios due to internal 

administrative operations that are more commonly used to demonstrate Kubernetes’ support 

for availability. We also found that the repair actions of Kubernetes are not sufficient for 

providing availability, especially high availability. For instance, the default configuration of 

Kubernetes results in a significant outage in the case of node failure.  The outage time for this 

scenario was measured around 5 minutes, which is equivalent to the amount of downtime al-

lowed in a one-year period for a highly available system. Kubernetes can be reconfigured to 

avoid this significant outage and under its most responsive configuration, outage times in Ku-

bernetes experiments are comparable to those of OpenSAF, a proven solution for availability 

management. However, the impact of this reconfiguration on network overhead and false-pos-

itive node failure reports should be investigated. Moreover, the results of our experiments are 

compared with the experiments with OpenSAF where the VLC component is not modified. 

However, if the VLC component is modified and implement the AMF API, higher service 

availability will be achieved. 



57 

 

 

We acknowledge that there are some threats to the validity of our results. For example, all 

experiments were conducted in a small cluster consisting of only a master and two worker 

nodes. Kubernetes may behave differently in larger clusters which may impact the availability 

measurements presented in our experiments. Also, the availability measurements may also vary 

depending on the application’s complexity and the collocated applications managed by Kuber-

netes. In our experiments, we considered a simple case of only one microservice. We under-

stand that these factors may impact the results of our study. The mapping of the metrics to the 

concrete events is the biggest threat and requires more investigation as one can map them dif-

ferently, in which case all the measurements could be different. However, we believe that even 

with a different mapping what would change is the split between reaction and repair times and 

reaction and recovery times, thus, resulting still in the same outage time. We may observe a 

decrease in the reaction time which adds to the recovery time, or inversely but the total outage 

time would be the same since it represents the duration in which the service was not available. 

For stateless applications, we observed that adding redundancy can significantly decrease 

the downtime since the service is recovered as soon as Kubernetes detects the failure and it 

does not depend on the repair of the faulty unit.  For the stateful applications, however, adding 

redundancy cannot improve the availability of the application. Because if one pod fails, the 

redundant pod neither knows about the failure nor has the state data and therefore cannot take 

over and resume the service that was previously provided by the failed pod. Therefore, we rely 

on the failed pod to be repaired so it can resume the service. In chapter 4, we will propose a 

solution to address the challenges that Kubernetes has in providing availability for stateful mi-

croservice based applications. 

The contents provided in this chapter are published in [47] and [48]. 
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Chapter 4 

4 A State Controller to Manage the 

Availability of Stateful Microservice 

Based Applications 

In Section 3.3, we explained the issues that Kubernetes has in managing the availability of 

stateful applications. In this chapter, we address these issues and propose a solution which is 

integrated with Kubernetes and improves the availability of stateful microservice based appli-

cations. This solution, which is explained in Section 4.1, consists of a State Controller that 

allows for the automatic service redirection to the healthy pods through the usage and manage-

ment of secondary pod labels. We have implemented a prototype for the State Controller and 

conducted availability experiments to evaluate the availability provided by our solution and 

compare with the availability of the architectures without our solution. Moreover, in Section 

4.2, we enrich the State Controller so it can handle the cases where the application is scaled in 

or scaled out and provide availability for the stateful microservice based applications whose 

number of microservice instances change. We also implemented a prototype of the State Con-

troller enriched with elasticity and conducted experiments to evaluate the modified State Con-

troller in terms of scaling overhead and availability. 
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4.1 A State Controller for Kubernetes 

We explained the challenges of managing the availability of stateful microservice based 

applications with Kubernetes in Section 3.3. The main problem is that when a pod instance 

fails, other pods do not know about this failure and cannot recover the service that was provided 

by the failed pod. One solution is to have a standby pod that would take over and resume the 

service when the active pod fails. Moreover, there needs to be a third party that notifies the 

standby pod about the active pod’s failure so it can resume the service. However in Kubernetes, 

the concept of standby does not exist and once a pod is deployed and added to the endpoints 

list of the service that exposes the application, it will be active and will serve once it receives 

a request. 

4.1.1 Managing Availability with the State Controller 

To address the issues mentioned at the beginning of this section, we propose a solution 

that integrates the concept of high availability states, i.e., active and standby, with Kubernetes 

to improve the availability of stateful microservice based applications. In this solution, a com-

ponent named the State Controller is added to Kubernetes per service. The State Controller 

communicates with the API server and assigns a secondary label (HAState label) with the value 

of active or standby to the pods. 

To expose the application, a service which we call the application service should be cre-

ated that uses the HAState label and only targets the pod whose HAState label has the active 

value. In addition to the service exposing the application, another service called the state rep-

lication service should be created which only targets the pod whose HAState label has the 

standby value. Through the state replication service, the checkpointing process of the active 
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pod which has the IP address of the state replication service sends the state data to the standby 

pod every time it checkpoints its state data to its PV. 

What follows are the steps the State Controller takes to manage the availability of stateful 

applications (Figure 4-1): 

A. Assigns HAStates to pods (active and standby) 

1) The active pod becomes the endpoint of the service exposing the application (ap-

plication service) 

2) The standby pod becomes the endpoint of the state replication service 

B. Monitors for the events related to pods and if it identifies a failure, it will take action 

accordingly 

1) If the failed pod had the active HAState, it assigns standby HAState to the failed 

pod and active HAState to the standby pod. The new active pod becomes the 

endpoint of the application service and restores the last state from its storage area 

in the PV and resumes the service.  

2) If the failed pod had the standby HAState, it ensures that the failed pod is assigned 

the standby HAState after it is repaired. 

This solution enables availability management of stateful microservice based applica-

tions deployed by a Deployment controller and speeds up the service recovery for the ones that 

are deployed by a StatefulSet controller. Because service recovery no longer depends on the 

repair of the failed pod. 
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As mentioned above, one role of the State Controller is to assign an active label to one 

pod and standby label to another pod after they are deployed (Figure 4-2). In Figure 4-2, “x” 

can be either active or standby. It is important to note that pods are not aware of their HAState 

 

Figure 4-1. The behavior of the State Controller. 
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labels assigned by the State Controller. Therefore, to make the pods aware of their HA states, 

the State Controller manipulates an environment variable in each pods’ environment called the 

HAState variable which is also shown in Figure 4-2.  

As the State Controller makes changes in the HAState variable of the pod, there needs to 

be an agent inside each pod that coordinates the pod’s actions with respect to these changes. 

Therefore, a script is included in the container image of pods that is executed as the entrypoint 

process of the pod and runs in the background once the pod is deployed. The entrypoint process 

has two tasks which are explained in Figure 4-3 and Figure 4-4. 

A. The first task of the entrypoint process explained in Figure 4-3 is to monitor the 

HAState variable of the pod and make decisions accordingly: 

1) Before the HAState variable is set by the State Controller, its value is 

“not set”. The entrypoint process keeps checking until the HAState variable is set to 

active or standby. To check for changes made to the HAState variable, the entrypoint 

 

Figure 4-2. Setting the HAState label and HAState variable for pods (Step A). 
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process keeps the current HA state of the pod and periodically compares the HAState 

variable and the current HA state. 

2) If the   HAState variable is active, and it is changed by the State 

Controller to standby, the entrypoint process initiates a self-cleanup process that 

terminates all processes running in the pod’s environment, except the entrypoint 

process itself. The reason for the self-cleanup is to ensure that if an active is changed 

into standby by mistake, it keeps serving and changing the data. 

 
Figure 4-3. Decision making of the entrypoint process based on the HAState variable (Step A). 
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3) When the  HAState variable is standby, and it is changed by the State 

Controller to active, it restores the last state stored by the failed pod from the PV and 

resumes the service and starts checkpointing the state in its own storage area in the PV.  

B. The other task of the entrypoint process which is explained in Figure 4-4 is to 

run a watch loop to enable initiating a self-cleanup process when the pod is no longer controlled 

by Kubernetes (e.g., a network partition has happened between the pod and the master) to avoid 

data loss or data inconsistency. In this watch loop, the master is periodically pinged and if it is 

unreachable for three tries, a self-cleanup procedure will be initiated that will terminate all 

processes except the entrypoint process itself. In the self-cleanup procedure, all processes ex-

cept for the entrypoint process are forcefully terminated. 

 

Figure 4-4. Self-cleanup watch loop of the entrypoint process (Step B). 
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The proposed State Controller has been implemented as a proof of concept. The State 

Controller has been developed using the Go programming language [49]. For the implementa-

tion, we used the client-go library [50] of Kubernetes which consumes the REST interface 

exposed by Kubernetes API server in order to access and manipulate objects deployed with 

Kubernetes (pods, services, and etc.). In our implementation, we retrieve the configuration of 

the Kubernetes cluster and create a client that communicates with the API server and monitors 

the events related to pod objects exposed by Kubernetes and stores them in a message queue. 

Our proposed State Controller reads this message queue and performs the tasks explained at 

the beginning of this section. 

Our solution can be used to manage the availability of applications deployed with State-

fulSet controllers and with Deployment controllers. In the following sub-sections, we bring the 

architectures where we integrate the State Controller with StatefulSet controllers as well as the 

ones deployed with Deployment controllers and evaluate them. In any case, for recovering the 

failed pods the State Controller relies on the Deployment or StatefulSet controller without any 

modifications. 

4.1.2 Integrating the State Controller with Kubernetes 

In this sub-section, we present the architectures where the proposed State Controller is inte-

grated with Kubernetes. 
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4.1.2.1 Integrating the State Controller with StatefulSet Controllers 

Figure 4-5 shows the architecture where the proposed State Controller is integrated with 

Kubernetes to manage the availability of a stateful application deployed with a StatefulSet con-

troller (named “VoD”). In this architecture, the StatefulSet controller is deployed and creates 

two pod replicas. Each pod has a separate PV where it can store its state data. In this architec-

ture, two services should be created by the user:  

i. The application service which exposes the active pod to the clients. This service 

only targets the pods that have both labels of “app: VoD” and “HAState: Active”. 

ii. The state replication service which has a static IP address that does not change 

and is known to the active pod as an endpoint where it should replicate its state data to. This 

 

Figure 4-5. Integrating the State Controller with StatefulSet controllers. 
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service only targets the pods who have both labels of “app: VoD” and “HAState: Standby”. In 

the checkpointing process included in the container image of the pods, when a pod is active, it 

periodically stores its state in its own PV and also replicates it to the IP address of the state 

replication service. The state replication service receives the state data and sends it to the 

standby pod through an HTTP request. The standby pod that is listening will store the state 

data in its own PV when it receives it. Through the state replication service, the active pod does 

not need to keep track of the changes in the location of the standby pod. 

As mentioned before, the State Controller monitors the events related to pods and if a 

failure happens to the active pod, it changes the HAState label value of the standby pod from 

standby into active, making it the new endpoint to the application service. Consequently, the 

entrypoint process of the new active pod will initiate the service resume process where the last 

stored state is retrieved from the associated PV and the service is resumed. The new active pod 

has the state data of the failed active pod because the failed active pod had been replicating its 

state to the standby pod through the state replication service. The HAState label of the failed 

pod is also changed from active to standby once it is repaired.  

As mentioned before, StatefulSet controllers do not recreate pods if the pods’ hosts fail 

and it is not possible to recover the service unless the host is repaired and rejoins the cluster. 

However, integrating the State Controller with StatefulSet controllers enables service recovery 

for this failure scenario. Because regardless of the cause of a failure, the State Controller 

changes the HAState label of the standby pod into active and because of the change in the label, 

the application service is redirected to the new active pod. It is important to mention that alt-

hough the service is recovered because of changing HAState labels by the State Controller, the 

failed pod will still not be repaired by the StatefulSet controller unless the node becomes re-

sponsive again. Meaning that with this architecture, it is only possible to recover from only one 
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node failure. Because after each node failure, one pod will be lost, unless its node becomes 

responsive again. 

If the node failure was due to a network partition, the entrypoint process of the active 

pod whose host had left the cluster would detect that the master is out of reach. Therefore, it 

would automatically set its HAState variable to “not set” and terminate all running processes 

except for the entrypoint process itself. This way, we ensure that the former active pod will not 

keep serving the clients. 

Since Deployment controllers do not have limitations in recovering from node failures, 

we also bring an architecture where we integrate the State Controller with a Deployment con-

troller in the next sub-section.  
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4.1.2.2 Integrating the State Controller with Deployment Controllers 

Figure 4-6 shows the architecture where the State Controller is integrated with a De-

ployment controller to manage the availability of a stateful application. Similar to the architec-

ture of Figure 4-5, two pod replicas are deployed. We have the application service to expose 

the application and the state replication service for the active pod to replicate its state to the 

standby pod. The difference is that with Deployment controllers, the same PV is shared be-

tween all pods. However, we create a separate storage area for each pod to distinguish between 

the state data of each pod that is stored for each client. 

The steps that the State Controller takes for managing the availability of the applica-

tions deployed with Deployment controllers are the same as described in the previous sub-

section. The difference is in how the Deployment controller behaves when a node failure is 

detected. As Deployment controllers are primarily used for stateless applications, they do not 

consider the risk of data inconsistency in case of a network partition and recreate pods when 

their hosts become unresponsive. For example, if the node hosting PodA in Figure 4-6 becomes 

unresponsive, whether it is due to a network partition or a system reboot, the Deployment con-

troller will delete the failed pod from the list of pods and recreate another pod on a healthy 

node after the pod eviction timeout which is defined in the configuration. Therefore, with this 

architecture, the number of pod replicas do not change with node failures. 
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Figure 4-6. Integrating the State Controller with Deployment controllers. 
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4.1.3 Evaluating the Achievable Service Availability by Integrating the State 

Controller with Kubernetes 

In Section 3.3, we explained the issues that Kubernetes has in managing the availability 

of stateful microservice based applications and in Section 4.1, we proposed a solution in order 

to enrich Kubernetes with a State Controller so it can achieve a higher level of availability 

through managing redundant stateful microservices. In this sub-section, we evaluate the achiev-

able service availability with the architectures presented in Section 4.1 where we integrate the 

State Controller with a StatefulSet controller (Figure 4-5) and with a Deployment controller 

(Figure 4-6). We evaluate these architectures by addressing the following research questions 

(RQ): 

RQ5: What is the level of availability that Kubernetes can provide for stateful micro-

services solely through its repair actions? 

RQ6: What is the impact of enriching Kubernetes with the proposed State Controller for 

state management on the availability of stateful microservice based applications?  

RQ7: What is the availability achievable with the State Controller for stateful micro-

service based applications under the most responsive configuration of Kubernetes? 

RQ8: How does the availability achievable with the State Controller for stateful micro-

service based applications compare to non-Kubernetes based solutions? 

To address these research questions, we conducted a set of availability experiments under 

the failure scenarios introduced in Sub-section 3.2.1.2 and measured the availability metrics 

defined in Sub-section 3.2.1.1.  



72 

 

 

In these experiments, we have a Kubernetes cluster composed of four VMs running on 

OpenStack cloud. Ubuntu 16.04 is the OS running on all VMs. Kubernetes 1.12.1 runs on all 

VMs and the container engine is Docker 18.06. NTP is used for time synchronization between 

VMs. The application deployed is stateful Video on Demand (VoD) where each client can 

request a video to be streamed for them. The same pod template is used for all experiments that 

has one container image in which VLC is installed as the video streaming application. The 

container image also has the Apache HTTP server [51] hosting a webpage that allows the cli-

ents to request for a video stream. To ensure service continuity, the container image has a 

checkpointing process which checkpoints the elapsed time of the video to the location where 

its PV is mounted when the pod receives requests from clients to stream a video. The streaming 

position, which is the state data, is stored for each client separately. The state data is also sent 

to the IP address of the state replication service so it will be stored by the standby pod. The 

State Controller used in these experiments is the initial version which handles one active and 

one standby HA state assignment.  
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4.1.3.1 Evaluating the Repair Actions with the Default Configuration of Kubernetes 

(RQ5) 

In Sub-section 3.1.2, we presented two possible architectures for deploying stateful mi-

croservice based applications with Kubernetes. One with StatefulSet controller (Figure 3-2) 

and the other with Deployment controller (Figure 3-3). In the latter, all microservice instances 

have access to the same state data. However, if a pod fails, other pods do not know about the 

failure, nor are aware of the location its data are stored. Therefore, they cannot recover the 

service that was provided by the failed pod. Since the identity of a restarted pod also changes 

in node failure scenarios, we cannot rely even on the restart procedure for recovering the stored 

service state. Therefore in this sub-section, we only evaluate the architecture where the appli-

cation is deployed with a StatefulSet controller. Figure 4-7 shows the concrete architecture for 

the experiments where we evaluate Kubernetes in terms of the availability it provides for state-

ful applications only through its repair actions. 

 

Figure 4-7. Concrete architecture for experimenting with Kubernetes - Stateful microservice based application 

with No-Redundancy redundancy model. 
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To answer this research question, we evaluate the availability metrics for each of the 

failure scenarios under the default configuration of Kubernetes through a set of availability 

experiments. The measurements of this set of experiments are shown in Table 4-1. What fol-

lows is the detailed explanation for each failure scenario in these experiments. 

Service Outage due to Application Container Failure: In this scenario, the failure is 

simulated by killing the application container process from the OS. When the application con-

tainer crashes, the Kubelet detects the crash and brings the pod to the “not ready” state where 

it will not receive new requests. At this time, that is the reaction time, the pod is removed from 

the endpoints list. Later, the Kubelet restarts the failed container and the pod is in the endpoints 

list of the service again and is ready to receive requests. This time marks the repair time. Since 

the application container was checkpointing its state to its PV before the failure, when the 

container is restarted, it can restore the last state from its PV and the video will start from the 

point of failure. This time marks the recovery time. 

Service Outage due to Pod Process Failure:  In this scenario, the pod process is killed 

from the OS which is detected and reported by the Kubelet. However, the Kubelet does not 

bring the pod to the “not ready” state and therefore the service is not interrupted. To repair the 

pod process, the Kubelet first terminates the application container which will cause service 

outage, and then starts the pod process and application container again. In this scenario, the 

failure event and reaction are considered at the same time which is when the application con-

tainer is terminated. We consider the pod as repaired when the restart of both application con-

tainer and pod process are finished. After restart, the application container restores the last 

stored state from its PV and the video will continue from this point, which marks the recovery 

time. 



75 

 

 

Service Outage due to Node Failure: In this scenario, node failure is simulated by 

shutting down the VM hosting the pod from OpenStack. As mentioned before, the Kubelet is 

responsible to report the status of the node to the master, and it is the node controller of the 

master who detects the failure of the node. When a node hosting a pod fails or is partitioned 

from the master, it stops sending status updates to the master and the master will mark the node 

as not ready after the fourth missed status update. This time is the reaction time. However, 

unlike Deployment controllers, StatefulSet controllers do not recreate pods if their hosts die, 

unless the node becomes responsive again. Therefore with this architecture, the pod will not be 

repaired in this scenario and the service cannot be recovered. We also simulated node failure 

by rebooting the VM hosting the pod using the Linux’s reboot command so it becomes respon-

sive again. 

  

  

Table 4-1. Kubernetes with Default Configuration - Stateful VoD deployed with a StatefulSet controller. 

failure trigger 

(unit: seconds) 
reaction time 

repair 

time 

recovery 

time 

outage 

time 

Application Container Failure 0.679 1.029 1.480 2.159 

Pod Process Failure 0 0.943 2.133 2.133 

Node Shutdown NA NA NA NA 

Node Reboot 37.127 126.400 127.380 164.507 
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4.1.3.2 Evaluating the Impact of Enriching Kubernetes with the State Controller for 

State Management on the Availability of Stateful Microservice Based Appli-

cations (RQ6) 

To answer this research question, we conduct experiments to evaluate the achievable 

service availability when our proposed State Controller is integrated with StatefulSet control-

lers (Figure 4-5) as well as Deployment controllers (Figure 4-6). We evaluate the availability 

metrics for each of the failure scenarios under the default configuration of Kubernetes to later 

compare with the results of the experiments in Sub-section 4.1.3.1. The measurements of these 

experiments for the architectures of Figure 4-5 and Figure 4-6 are shown in Table 4-2 and Table 

4-3, respectively. What follows is the detailed explanation for each failure scenario in these 

experiments. 

Service Outage due to Application Container Process Failure: In this scenario for 

both architectures of Figure 4-5 and Figure 4-6, the failure happens when the application con-

tainer process of the active pod is killed from the OS. When the active pod’s applications con-

tainer is killed, the Kubelet detects it and brings the active pod to the “not ready” state and 

removes it from the endpoints list of the application service which marks the reaction time. The 

State Controller reacts to the change made to the service state of the active pod and changes 

the HAState label and HAState variable of the standby pod to active. The entrypoint process 

of the new active pod detects the HAState variable’s change and orders the pod to read the last 

stored state and resumes the service by executing the resume script present on the container 

image. Recovery time is when the new active pod has started the video stream from the last 

stored state. In the meantime, the failed pod is restarted by the Kubelet and gets the standby 

HAState label and HAState variable. 
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Service Outage due to Pod Process Failure:  In this scenario, the pod process is killed 

from the OS and the Kubelet detects and reports that the pod process no longer exists but it 

does not bring the pod to the “not ready” state. The State Controller detects the event reported 

by the Kubelet and, since there is a healthy standby pod available, the State Controller initiates 

a failover to this standby pod by changing the HA state of the active pod to standby and termi-

nating all its active processes. This results in a service outage and we consider this event as the 

failure event but also as the reaction to the failure. The reason that we consider this event also 

as the failure event is that prior to this event, although the pod process had crashed, the service 

was still available and based on our definition, the failure event is the start of service outage. 

Next, the State Controller assigns the active HA state to the healthy pod. The recovery time is 

when the new active pod starts streaming the video. As it was mentioned before, the repair time 

is when the restart of the pod with the failed pod process is completed. 

Service Outage due to Node Failure: In this scenario for both architectures of Figure 

4-5 and Figure 4-6, failure of the node hosting the active pod is simulated in two ways. One is 

by shutting down the node from OpenStack while the other is using Linux’s reboot command 

on that node. After the node is considered as not ready (after four missed status updates in the 

default configuration), Kubernetes brings the active pod to the “not ready” state (reaction time). 

Therefore, the State Controller detects the failure and initiates the failover process. That is, the 

standby pod is assigned the active HAState label and variable and its entrypoint process will 

order the pod to resume the service by executing the resume script present on the container 

marking the recovery time. In the case of VM shutdown for the architecture shown in Figure 

4-5, since the application is deployed by a StatefulSet controller, the failed pod will not be 

repaired. However, when the VM is rebooted, the StatefulSet controller will recreate the pod 

and therefore we have repair time. The repair time depends on how fast the node can reboot. 
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In both cases of VM shutdown and VM reboot for the architecture of Figure 4-6, since the 

application is deployed with a Deployment controller, the failed pod will be repaired. In all 

cases, if the pod is repaired, it will be assigned standby HAState. 

 

 

 

  

Table 4-2. Kubernetes with Default Configuration - Stateful VoD deployed with a StatefulSet controller and the State 

Controller. 

failure trigger 

(unit: seconds) 
reaction time 

repair 

time 

recovery 

time 

outage 

time 

App Container Failure 0.739 1.052 0.661 1.400 

Pod Process Failure 0 31.527 0.637 0.637 

Node Shutdown 37.236 NA 0.710 37.946 

Node Reboot 37.660 126.738 0.800 38.460 

Table 4-3. Kubernetes with Default Configuration - Stateful VoD deployed with a Deployment Controller and the State 

Controller. 

failure trigger 

(unit: seconds) 
reaction time 

repair 

time 

recovery 

time 

outage 

time 

App Container Failure 0.549 1.027 0.656 1.205 

Pod Process Failure 0 31.841 0.656 0.656 

Node Shutdown 37.902 262.932 0.760 38.662 

Node Reboot 36.128 123.974 0.827 36.955 
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4.1.3.3 Evaluating the Availability Achievable with the State Controller for Stateful 

Microservice Based Applications under the Most Responsive Configuration 

of Kubernetes (RQ7) 

In the node failure scenarios, the default configuration of Kubernetes significantly delays 

both reaction and repair time. The configuration parameters are the frequency of posting the 

node status by the Kubelet to the master, the number of allowed missed status updates before 

marking a node as unresponsive, and pod eviction timeout. Therefore to answer RQ7, we con-

ducted the experiments for the architectures of Figure 4-7, Figure 4-5, and Figure 4-6 under 

the most responsive configuration. Note that unlike what we discussed in Sub-section 3.2.2.3, 

the default graceful termination period for pods does not impact service outage in the newer 

versions of Kubernetes. Since in these experiments we used Kubernetes 1.12.1, we do not con-

sider the case where we change the default graceful termination period parameter. 

To have the most responsive configuration, we reconfigured the Kubelets of all nodes to 

post the status of the node to the master every one second. We also reconfigured the Controller 

Manager so the master checks the posted node statuses every second and allow one missed 

status update for each node. The pod eviction timeout is also set to one second. Since these 

parameters only affect responding to node failures, we only consider the node failure scenario 

for our experiments where we simulate node failure by shutting down the node from OpenStack 

as well as Linux’s reboot command on the VM that is hosting the pod which is streaming the 

video. The measurements of this set of experiments for the architectures of Figure 4-7, Figure 

4-5, and Figure 4-6 are shown in Table 4-4. 
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Table 4-4. Kubernetes with the Most Responsive Configuration – Service Outage due to Node Failure Scenario. 

architecture 
failure trigger 

(unit: seconds) 

reaction 

time 
repair time 

recovery 

time 

outage 

time 

StatefulSet controller 

(Figure 4-7) 

Node Shutdown NA NA NA NA 

Node Reboot 1.738 124.078 126.155 127.893 

State Controller 

integrated with 

StatefulSet controller 

(Figure 4-5) 

Node Shutdown 2.209 NA 0.727 2.936 

Node Reboot 1.970 128.201 0.883 2.853 

State Controller 

integrated with 

Deployment controller 

(Figure 4-6) 

Node Shutdown 2.033 3.825 0.780 2.813 

Node Reboot 2.050 4.513 0.918 2.968 
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4.1.3.4 Evaluating the Availability Achievable with the State Controller for Stateful 

Microservice Based Applications Compared to Non-Kubernetes Based Solu-

tions (RQ8) 

We address RQ8 to better position the availability results obtained with our solution. 

As mentioned in Sub-section 3.2.2.4, we consider the OpenSAF middleware as a proven solu-

tion for providing availability. In a previous work [44], a set of availability experiments with 

OpenSAF were conducted. These experiments covered different failure scenarios with the 

same video streaming application (VLC). For comparison, we consider the failure scenario of 

VLC component failure and physical host failure, corresponding to VLC container failure and 

node reboot in Kubernetes, respectively. In the experiments with OpenSAF, the application is 

stateful and the redundancy model is 2N [13]. The architecture for these experiments are shown 

in Figure 4-8. The application has two VLC components, one active and the other one as an 

instantiated standby to take over in case of failure of the active. The configuration with regards 

to node failure detection used is the default configuration of OpenSAF. The results of the ex-

periments with OpenSAF are shown in Table 4-5. 
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Table 4-5. Experiments with OpenSAF (SA-Aware VLC). 

failure trigger 

(unit: seconds) 

reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

VLC Component  Failure 0.089 0.181 0.140 0.229 

VM Failure 3.233 21.074 0.116 3.344 

Physical Host Failure 3.229 37.795 0.101 3.329 

 

 

 

 
Figure 4-8. The architecture for availability experiments with OpenSAF (stateful VLC). 

VM 1

KVM

Physical Host 1

VM 2

KVM

Physical Host 2

OpenStack Cloud

OpenSAF
SG

SI

active

CSI 1

VLC component
(SA-Aware) 

SU

IP component

CSI 2
active

VLC component
(SA-Aware) 

SU

IP component

standby

standby



83 

 

 

4.1.4 Analysis and Discussion 

In this sub-section, we analyze the results of the experiments of Sub-section 4.1.3 in 

order to answer the research questions we brought earlier. We analyze the results for each fail-

ure scenario separately. 

Analysis of Service Outage due to Application Container Failure Scenario: In this 

failure scenario, before killing the application container, the IP address of the pod was in the 

endpoints list and the service was available. After the failure, the service becomes unavailable. 

However, since Kubernetes has not detected the failure yet, the IP address of the pod stays in 

the endpoints list. The reaction time is when Kubernetes detects the failure and removes the 

pod’s IP from the endpoints list. As it is observed in Table 4-1, Table 4-2, and Table 4-3, the 

reaction times of all architectures are measured between 0.549 and 0.739 seconds. The increase 

of reaction time from 0.679 seconds to 0.739 seconds shown in Table 4-1 and Table 4-2 can be 

considered as the overhead of integrating the State Controller with StatefulSet controllers on 

the reaction time. Also, the average repair time of the failed pod was measured between 1.027 

to 1.052 seconds for all architectures. However, it is only the architecture in Figure 4-7 (State-

fulSet controller without the State Controller) whose service recovery depends on the repair 

time and therefore, has the longest service recovery which is 1.480 seconds making the average 

service outage time 2.159 seconds with the standard deviation of 0.24 seconds. In the other 

architectures where the proposed State Controller is integrated with the StatefulSet controller 

and Deployment controller (Figure 4-5 and Figure 4-6), the service recovery does not depend 

on the repair time. The reason is that after the failure is detected by Kubernetes, that is, when 

it marks the pod’s state “not ready”, the State Controller fails over the service to the standby 

pod which already has the last stored state by only changing the HAState labels and there is no 

need to wait for the failed pod to be restarted. Therefore, the average service outage time for 
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the architecture of Figure 4-5 is less and is 1.400 seconds with the standard deviation of 0.42 

seconds. The average service outage time for the architecture of  Figure 4-6 is 1.205 seconds 

with the standard deviation of 0.30 seconds. In average, we observe a 55% improvement in 

recovery time when the proposed State Controller is integrated with Kubernetes. 

To better position the impact of integrating the State Controller with Kubernetes on 

availability, we compare our results with those of the experiments conducted with OpenSAF. 

As shown in Figure 4-9, the OpenSAF solution shows a lower outage – only 0.229 seconds. 

Table 4-5 shows that the difference is in both reaction time and recovery time. The reason is 

 

Figure 4-9. Comparing Kubernetes and OpenSAF from availability perspective. a) Application container/compo-

nent failure scenario, b) Node/physical host reboot scenario. 
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that in the experiments with OpenSAF, the VLC component is modified and implements the 

AMF API and therefore its failure can be detected faster by the AMF. 

Analysis of Service Outage due to Pod Process Failure Scenario: The pod process 

is an environment for managing a group of application containers. Although the containers of 

a pod communicate and share volumes through this environment, in the newer versions of Ku-

bernetes, the failure of the pod process itself does not result in their failure. After the pod pro-

cess failure, Kubernetes gives the application container 30 seconds to terminate. During this 

grace period, the service is available for incoming requests as well as for ongoing ones. After 

the 30 seconds, the application container is terminated and restarted along with the pod process. 

For the architecture of Figure 4-7, the failure event is when the application container is termi-

nated which is the same as the reaction time. Therefore, it is zero seconds. Later, the Kubelet 

restarts the pod process and the application container and the pod is considered repaired when 

the restart procedure is finished which takes 0.943 seconds. Subsequently, the service is re-

sumed 2.133 seconds after the failure making the average service outage 2.133 seconds with 

the standard deviation of 0.21 seconds. For the architectures of Figure 4-5 and Figure 4-6, the 

measurements correspond to different events. For these architectures, the failure event is in-

duced by the State Controller and happens before the application container is terminated by the 

Kubelet. That is, when the State Controller detects that the Kubelet has reported a pod process 

failure and it assigns the standby HA state to the failed active pod and terminates all its active 

processes. The reaction for these architectures is the same as the failure time making the reac-

tion time zero seconds. Recovery time is when the healthy pod has been assigned the active 

HA state and the video is resumed, which was measured between 0.656 seconds with the stand-

ard deviation of 0.14 seconds and 0.637 seconds with the standard deviation of 0.15 seconds 

for these architectures.  However, the repair time depends on the graceful termination period 
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of the pod. The results show that integrating the State Controller reduced the outage time by 

around 70%. 

Analysis of Service Outage due to Node Failure Scenario: In this failure scenario, as 

it is observed in Table 4-1, Table 4-2, and Table 4-3, with the default configuration of Kuber-

netes, it takes between 30 to 40 seconds for Kubernetes to consider the node as lost and remove 

the IP of its pods from the endpoints list. In the architectures where the application is deployed 

by a StatefulSet controller (Figure 4-7 and Figure 4-5), if the failed node does not become 

responsive and does not rejoin the cluster, Kubernetes will not recreate the pods of the failed 

node on other nodes; therefore there will be no repair time. This means that the service will not 

be recovered in the node shutdown scenario for the architecture of Figure 4-7. For the archi-

tecture in Figure 4-5, however, the State Controller will failover the service to the standby pod 

which is able to resume the service in 0.710 seconds on average with the average service outage 

of 37.946 seconds with the standard deviation of 2.72 seconds. For the architecture of Figure 

4-6 with the same scenario, the measured recovery times is 0.760 seconds making the average 

service outage time 38.662 seconds with the standard deviation of 3.41 seconds which is close 

to that of the architecture in Figure 4-5. However, with this architecture, after the default pod 

eviction timeout, a new pod is recreated on another node making the repair time 262.932 sec-

onds on average. We observe that in the scenario where service recovery was not possible when 

only using StatefulSet controllers, integrating the State Controller has enabled service recovery 

measured as 0.710 seconds. 

When service outage is due to node reboot, that is, the node becomes responsive again 

as it rejoins the cluster, Kubernetes will be able to recreate the pod in all architectures. This 

means that repair time depends on how fast the node can become responsive again. As it is 

observed in Table 4-1, for the architecture in Figure 4-7, the repair time affects the recovery 
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time which was measured as 127.380 seconds resulting in the average service outage of 

164.507 seconds and standard deviation of 6.86 seconds. However, for the architectures of 

Figure 4-5 and Figure 4-6, since the State Controller reassigns the active HAState to the 

standby pod and since service recovery does not need the failed pod to be repaired, the recovery 

time will not depend on the node reboot. Therefore, the average service outage time is reduced 

and is 38.460 seconds with a standard deviation of 4.460 seconds for the architecture of Figure 

4-5. The average service outage time for the architecture of Figure 4-6 is 36.955 seconds with 

the standard deviation of 3.11 seconds. In the node reboot scenario, we observe a 99% im-

provement in the recovery time when the State Controller is integrated with Kubernetes. 

We also reconfigured Kubernetes to its most responsive configuration and repeated the 

node reboot scenario for all three architectures. The measurements of Table 4-4 show that the 

new configuration has decreased service outage by 22% for the architecture of Figure 4-7 and 

by 92% for the architectures of Figure 4-5 and Figure 4-6.  For the architecture of Figure 4-7, 

the new configuration only affects the reaction time. The repair time remains the same and 

depends on how fast the node is able to reboot. For the architecture in Figure 4-6, the new 

configuration changes both reaction and repair time. However, since in this architecture recov-

ery does depend on the repair time, only the change in the reaction time affects the outage. 

As shown in Figure 4-9, the service outage of the physical host failure scenario of the 

OpenSAF solution is significantly lower compared to that of the node reboot scenario with our 

proposed State Controller under the default configuration. The main contributing factor to the 

higher outage with Kubernetes is the node failure handling configuration parameters. Therefore 

with the most responsive configuration, the results of our solution integrated with Kubernetes 

are comparable with those of the OpenSAF solution. 
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In Section 2.2, it was mentioned that authors of [27] have considered a database as a 

microservice and proposed that the state replication between microservice instances can be 

done by the database process. However, one cannot guarantee service recovery and continuity 

only by replicating the state data between microservice instances. For service recovery, a mi-

croservice instance needs to be notified and ordered to access the replicated data and continue 

the service. Also, it should be clear where the state data of each microservice instance is stored. 

In our solution, a state replication mechanism is provided through which the active pod repli-

cates its state data to the standby pod and a third party (the State Controller) notifies the standby 

pod if its corresponding active pod fails. Moreover, each pod stores its data separately and is 

aware of the location of its data. 
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4.1.5 Limitations of the Proposed State Controller 

In the previous sub-section, we proposed a State Controller which improves the availa-

bility of stateful applications deployed with Kubernetes by integrating the concept of high-

availability states, i.e., active and standby. However, there are some limitations to this solution 

in terms of handling elasticity. In the proposed solution, the State Controller only assigns one 

active HA state and one standby HA state. Meaning that if due to the increase in load, the 

StatefulSet (or Deployment) controller scaled out the application, the newly added pods will 

not be assigned any HA states. Even if the State Controller was able to assign HA states to the 

new pods, replicating the state data was not possible. Because the state replication service that 

is created before running the State Controller would have multiple standby pods as its endpoints 

and would send the state data of an active pod to several standby pods which makes it impos-

sible for a standby pod to have all the state data of its active pod. The next section explains 

how the State Controller is modified to handle elasticity.  
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4.2 Handling Elasticity with the State Controller 

In this section, we address the issue of the proposed State Controller in handling availa-

bility where the application is scaled in or out. 

To address the problem mentioned in Sub-section 4.1.3, we modified our proposed 

State Controller so it can handle multiple HA state assignments when the application is scaled 

in or out. In this solution, the application can be deployed by a StatefulSet controller as well as 

a Deployment controller. Moreover, a service called the application service should be created 

that uses the HAState label and targets all pods with the active label. However, unlike the initial 

State Controller introduced in Section 4.1, we have more than one state replication service 

which are automatically created by the State Controller. In this solution, the State Controller 

holds pairs of active and standby pods and identifies a pair by adding a “peer” label to each 

pod which gets its corresponding active or standby pod’s name. Below are the steps that the 

modified State Controller (i.e., the State Controller enriched with elasticity) takes to manage 

the availability of stateful applications (Figure 4-10). Note that the entrypoint process of pods 

introduced in Section 4.1 remains the same. 

A. Sorts running pods based on their creation time 

B. Picks first two pods 

C. Assigns HA state and peer labels to pods (Figure 4-11) 

1) The first pod named “X” is assigned the active HA state and becomes an end-

point to the application service 

2) The second pod named “Y” is assigned the standby HA state 

3) Assigns peer label to pod “X” with the value of “Y” and to pod “Y” with the 

value of “X” 
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4) For the active pod named “X”, creates a service named “replicate-X” that 

selects a pod with HAState label equal to standby and peer label equal to “X”. 

Pod “X” periodically replicates its state data to a service named “replicate-X” 

D. If there are more pods remaining, picks the next two pods and goes to step 3 

E. Monitors the events of the API server 

1) If the event corresponds to the service state of a pod changing into “not ready” 

i. If the failed pod had the active HA state 

 It assigns active HA state to the standby pod which was the peer 

of the failed active pod. The new active pod becomes the endpoint 

of the application service and restores the last state from its storage 

area in the PV and resumes the service. 

 It assigns standby HAState to the failed pod and deletes the state 

replication service of the failed active pod 

 Creates the replication service for the new active pod 

ii. If the failed pod had the standby HAState, it ensures that the failed pod is 

assigned the standby HAState after it is repaired 

2) If the event corresponds to a scale-out, then goes to step 3 

3) If the event corresponds to a scale-in, it deletes the state replication service 

for a deleted active-standby pair  
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Figure 4-10. The behavior of the State Controller enriched with elasticity. 
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The modified State Controller has been implemented as a proof of concept and devel-

oped using the Go programming language [49] and the client-go library [50] of Kubernetes. It 

is important to mention that we assume that an external elasticity engine is present and makes 

the scaling decisions. We also assume that in the scale-out events, the number of pods is in-

creased by two, and in scale-in events, it is decreased by two as well. 

Figure 4-12 shows an example architecture where we integrate the modified State Con-

troller with Kubernetes. In this architecture, the application is video-on-demand (VoD) stream-

ing and is deployed by a StatefulSet controller. As it is shown in this architecture, a service 

called the application service should be created which only selects the pods with HAState label 

equal to active and app label equal to VoD and the State controller should be running.  

 

Figure 4-11. Setting the HAState and Peer label and variables to pods (Step C). 

assign active HAState to first pod named “X”
(pod “X” is the endpoint of the application service)

(C.1)

create a state replication service named “replicate-X”
(pod “Y” is the endpoint of the replicate-X service)

(C.4)

assign peer label with the value of “X” to pod “Y”
(C.3)

assign standby HAState to second pod named “Y”
(C.2)

assign peer label with the value of “Y” to pod “X”
(C.3)
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In the architecture of Figure 4-12, when the StatefulSet controller is deployed, it creates 

two pod replicas named VoD-0 and VoD-1. In the beginning, there are no pods in the endpoints 

list of the application service. After the pods are deployed, the State Controller assigns the 

active HA state to VoD-0 which makes it an endpoint to the application service. Once VoD-0 

receives a request from a client for streaming a video, it periodically checkpoints its streaming 

position to its PV. In the checkpointing process, in addition to storing the state in PV0, VoD-0 

also replicates its state data to a service called “replicate-VoD-0”. This service is created by 

the State Controller after it assigns the standby HA state to VoD-1 as well as the peer label 

with the value of “VoD-0”. Note that the “replicate-VoD-0” service selects a pod with HAState 

label equal to standby, app label equal to VoD, and peer label equal to VoD-0. This way, VoD-

0 and VoD-1 are paired, and VoD-1 stores the state data of its active pod (VoD-0) in its PV. 

 

Figure 4-12. An example architecture for the State Controller enriched with elasticity. 
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Let us assume that the demand for service increases and the StatefulSet is ordered to 

add n-2 more pods (Figure 4-13). The State Controller detects that pods VoD-2, VoD-3... VoD-

(n-1) are added. It assigns the active HA state to VoD-2 making it the second endpoint to the 

application service. Moreover, it assigns the standby HA state to VoD-3 and adds a peer label 

with the value of VoD-2. This will be done until all pods are assigned an HA state. In the next 

step, for each pair of active-standby, the State Controller creates a service named “replicate-

{active pod’s name}” which selects the standby pod as its endpoint. Through the “replicate-

{active pod’s name}” service, the active pod replicates its state data to its corresponding 

standby pod. Note that the modified State Controller can integrate with Deployment controllers 

as well and maintain multiple pairs of active-standbys (Figure 4-14). 

Now let us assume that the active pod VoD-(n-2) fails due to application container fail-

ure. The first step for the State Controller after detecting that there was a failure is to find the 

peer of VoD-(n-2). The State Controller holds the pairs of pods in an array and finds that the 

corresponding standby pod for VoD-(n-2) is VoD-(n-1). Therefore, it fails over the service to 

VoD-(n-1) by changing its HAState label and variable into active. It also changes the HAState 

label and variable of VoD-(n-2) into standby after it is repaired. Moreover, it deletes the “rep-

licate-VoD-(n-2)” service and instead, creates a service named “replicate-VoD-(n-1)” through 

which the new active pod (VoD-(n-1)) can replicate its state data to the new standby pod (VoD-

(n-2)) after it is repaired. 
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Figure 4-13. Modified State Controller integrated with StatefulSet controller - stateful application with multiple pairs of 

active-standbys. 
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Figure 4-14.  Modified State Controller integrated with Deployment controller - stateful application with multiple pairs of 

active-standbys. 
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4.2.1 Evaluating the Scaling Overhead and the Achievable Service Availability 

with the Modified State Controller 

In the Sub-section 4.1.3, we evaluated the achievable service availability when the initial 

State Controller (the State Controller than can only keep one pair of active-standby) is inte-

grated with Kubernetes. In this sub-section, we evaluate the achievable availability as well as 

the scaling overhead of integrating the modified State Controller (i.e., the State Controller en-

riched with elasticity) with Kubernetes. We do these evaluations by addressing the following 

research questions: 

RQ9: What is the impact of integrating the modified State Controller on the provided 

availability? 

RQ10: What is the impact of scaling during failover on the availability that the modified 

State Controller can provide for its managed microservices? 

RQ11: What is the scaling overhead of integrating the modified State Controller? 

RQ12: What is the impact of simultaneous failure of multiple active pods on the outage 

time for each failed pod? 

To address these research questions, we conducted a set of experiments and measured 

the following metrics: 

1. Availability metrics defined in Sub-section 3.2.1.1. 

2. Scaling time: The time between when the scaling request is sent until the last pod 

is deployed and ready (or deleted in case of scale-in). 

3. HA state assignment time: The time between when the scaling request is sent 

until the State Controller assigns HA state to the last added pod.  
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In the experiments where we measure the availability metrics, the failure scenario is 

service outage due to application container failure. The scaling decision is not made by the 

State Controller and we assume that the application is scaled in or out by two. Moreover, the 

experiments’ setting is the same as discussed in Sub-section 4.1.3. However, instead of two 

worker nodes, we have eight worker nodes in these experiments in order to be able to scale-out 

the application. The State Controller used in these experiments is the modified version which 

can handle multiple active and standby HA state assignments. 
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4.2.1.1 Evaluating the Impact of Integrating the Modified State Controller on the 

Provided Availability (RQ9) 

In Sub-section 3.1.2, we presented one architecture with StatefulSet controller (Figure 

3-2) and another with Deployment controller (Figure 3-3) for deploying stateful microservice 

based applications with Kubernetes. We discussed that with both architectures, other pods can-

not recover the service for a pod when it fails. Because the healthy pods do not know about the 

failure, nor are aware of the location its data are stored. It was also mentioned that with the 

architecture of Figure 3-3, we cannot always rely on the restart procedure for recovering the 

stored service state. Because, the identity of a restarted pod changes in certain failure scenarios 

such as node failure scenarios. However, in the experiments in this sub-section, we only con-

sider the failure scenario of service outage due to application container failure. Therefore, we 

consider both architectures of Figure 3-2 and Figure 3-3 to measure the availability metrics as 

a baseline and compare with the availability that integrating the modified State Controller can 

provide. Figure 4-15 shows the concrete architectures for the experiments where we evaluate 

Kubernetes in terms of the availability it provides for stateful applications only by its repair 

actions through a set of availability experiments. The measurements for these experiments are 

shown in Table 4-6. 

To answer this research question, similar to the experiments in Sub-section 4.1.3.2, we 

evaluate the impact of integrating the State Controller on the availability by measuring the 

availability metrics through a set of availability experiments. The architectures for these exper-

iments are depicted in Figure 4-5 and Figure 4-6 and the failure scenario is service outage due 

to application container failure. However, the State Controller used in these experiments is the 

modified version which can hold pairs of active-standbys. The measurements of this set of 

experiments are shown in Table 4-7. 



101 

 

 

  

 

Figure 4-15. Concrete architecture for experimenting with Kubernetes - Stateful microservice based application with 

No-Redundancy redundancy model. a) Deployed with StatefulSet controller. b) Deployed with Deployment controller. 
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Table 4-6. Evaluating the repair actions of Kubernetes for providing availability – Application container failure scenario. 

architecture 

(unit: seconds) 

reaction 

time 
repair time 

recovery 

time 

outage 

time 

StatefulSet controller 

(Figure 4-15 (a)) 
0.679 1.029 1.480 2.159 

Deployment controller 

(Figure 4-15 (b)) 
0.554 1.021 1.534 2.088 

Table 4-7. Evaluating the modified State Controller for providing availability – Application container failure scenario. 

architecture 

n = 2 

(unit: seconds) 

reaction 

time 
repair time 

recovery 

time 

outage 

time 

Modified State Controller 

integrated with StatefulSet 

controller 

(Figure 4-13) 

0.719 1.083 0.793 1.512 

Modified State Controller 

integrated with Deployment 

controller 

(Figure 4-14) 

0.784 1.244 0.688 1.472 
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4.2.1.2 Evaluating the Provided Availability by the Modified State Controller when 

Failover and Scaling Overlap (RQ10) 

In this research question (RQ10), we are interested in evaluating the impact of a simul-

taneous scaling event on the availability that the State Controller can provide for its managed 

application. To address RQ10, we conduct a set of experiments under two scenarios; scale-out 

and scale-in. For the scale-out scenario, we consider both architectures of Figure 4-5 and Figure 

4-6 where the modified State Controller is integrated with a StatefulSet controller and a De-

ployment controller, respectively. In these architectures, two pods are deployed (one active and 

one standby) and we forcefully kill the application container of the active pod that is streaming 

a video. While the service is being recovered by the State Controller, we scale the application 

to four pods. We measure the availability metrics for the failed pod as well as the scaling time 

and HA state assignment time for the added pods. We compare the availability metrics of this 

set of experiments with those of an experiment where no scaling event had happened during 

failover. Moreover, we compare the scaling time and HA state assignment time of this set of 

experiments with those of an experiment where no failure had happened during scaling the 

application. The measurements for the scale-out scenario are shown in Table 4-8. 

In the scale-in scenario, four pods are deployed (two active-standby pairs) and we force-

fully kill the application container of the active pod that is streaming a video and was created 

before the other active pod. Also, we have set the graceful termination period of pods to zero. 

Meaning that when a pod is ordered to be deleted, it will be done immediately. Note that in this 

scenario, we only consider the architecture of Figure 4-13 where the stateful application is 

deployed by a StatefulSet controller (n=4) and we do not consider the architecture where the 

application is deployed by a Deployment controller. Because, with Deployment controllers, 

there is no guaranteed order in deleting the pods in case of a scale-in. For example, in Figure 
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4-16, let us assume that the active pod “podA” fails and during its recovery, the application is 

scaled in to two pods. Since the application is deployed by a Deployment controller, one pos-

sibility is that podB and podC are deleted. Therefore, there will be no standby pod for the failed 

active pod (podA) and service recovery cannot happen. Therefore we do not consider this ar-

chitecture as it cannot guarantee service recovery. 

In the scale-in scenario, we measure the availability metrics for the failed pod as well 

as the scaling time for the deleted pod. We compare the availability metrics of these experi-

ments with those of an experiment where no scaling event had happened during failover. More-

over, we compare the scaling time of this set of experiments with those of an experiment where 

 

Figure 4-16. Example of integrating the modified State Controller with Deployment controllers. 
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no failure had happened during scaling the application. The measurements for the scale-out 

scenario are shown in Table 4-9. 

  

Table 4-8. Evaluating the provided availability by the modified State Controller when failover and scaling overlap –   

Scale-out scenario. 

architecture 

n = 2 

(unit: seconds) 

scenario 
reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

scaling 

time 

HA state 

assign-

ment time 

Modified State 

Controller inte-

grated with 

StatefulSet con-

troller 

(Figure 4-13) 

active pod 

fails 
0.719 1.083 0.793 1.512 NA NA 

application 

scaled out to 4 
NA NA NA NA 4.234 5.653 

scaling and 

failover over-

lap 

0.689 1.161 1.012 1.701 7.049 7.293 

Modified State 

Controller inte-

grated with De-

ployment con-

troller 

(Figure 4-14) 

active pod 

fails 
0.784 1.244 0.688 1.472 NA NA 

application 

scaled out to 4 
NA NA NA NA 3.016 3.060 

scaling and 

failover over-

lap 

0.607 1.205 1.028 1.635 5.055 5.608 

 

Table 4-9. Evaluating the provided availability by the modified State Controller when failover and scaling overlap –   

Scale-in scenario. 

architecture 

n = 4 

(unit: seconds) 

scenario 
reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

scaling 

time 

Modified State Con-

troller integrated with 

StatefulSet controller 

(Figure 4-13) 

 

active pod 

fails 
0.719 1.083 0.793 1.512 NA 

application 

scaled in to 2 
NA NA NA NA 0.712 

scaling and 

failover over-

lap 

0.581 1.468 1.172 1.754 0.797 
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4.2.1.3 Evaluating the Scaling Overhead of Integrating the Modified State Control-

ler (RQ11) 

In this research question (RQ11), we are interested in evaluating the impact of integrat-

ing the State Controller on the time it takes for the application to be scaled. To address RQ11, 

we conduct a set of experiments under two scenarios; scale-out and scale-in. Also, we have set 

the graceful termination period of pods to zero. For the scale-out scenario, we consider the four 

architectures below. 

 Figure 3-2, where the application is deployed by a StatefulSet controller. 

 Figure 3-3, where the application is deployed by a Deployment controller. 

 Figure 4-13, where the application is deployed by a StatefulSet controller with 

the Modified State Controller integrated. 

 Figure 4-14, where the application is deployed by a Deployment controller with 

the Modified State Controller integrated. 

In all architectures, the number of pods initially deployed is two (n = 2). In each round 

of the experiment, we scale the application from two pods to i pods where i gets one of the 

values in {4, 8, 16, 32, 64, and 128}. For this scenario, we measure the scaling time as well as 

HA state assignment time. The measurements for this set of experiments are shown in Table 

4-10. 

For the scale-in scenario, we consider the abovementioned architectures. However, in 

each round of the experiment, the number of pods initially deployed (i.e., n) gets one of the 

values in {4, 8, 16, 32, 64, and 128}. In each round of the experiment, we scale the application 

into 2 pods. Let us take the architecture of Figure 3-2 as an example. When n is equal to 128, 
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the StatefulSet, in the beginning, creates 128 pods and in the experiment we scale the applica-

tion in into two pods. The measured metric for this scenario is the scaling time shown in Table 

4-11. 

 

  

Table 4-10. Scaling overhead and HA state assignment time for the scale-out scenario. 

architecture 

(n = 2) 

metric 

(unit: seconds) 
2 to 4 2 to 8 2 to 16 2 to 32 2 to 64 2 to 128 

StatefulSet control-

ler 

(Figure 3-2) 

scaling time 4.099 15.056 47.722 119.674 297.470 753.045 

Modified State Con-

troller integrated 

with StatefulSet con-

troller 

(Figure 4-13) 

scaling time 4.234 16.692 49.937 131.726 312.037 842.068 

HA state as-

signment time 
5.653 17.018 51.865 133.373 316.107 845.114 

Deployment control-

ler 

(Figure 3-3) 

scaling time 2.979 4.459 7.956 15.237 31.574 80.694 

Modified State Con-

troller integrated 

with Deployment 

controller 

(Figure 4-14) 

scaling time 3.016 4.914 8.856 17.428 35.248 92.240 

HA state as-

signment time 
3.060 6.763 16.142 35.290 73.001 147.798 

 

 



107 

 

 

 

  

Table 4-11. Scaling overhead  for the scale-in scenario. 

architecture 

n = {4, 8, 16, 32, 64, 

and 128} 

metric 

(unit : seconds) 
4 to 2 8 to 2 16 to 2 32 to 2 64 to 2 128 to 2 

StatefulSet controller 

(Figure 3-2) 

scaling time  

0.555 1.353 2.613 5.459 11.440 26.062 

Modified State Con-

troller integrated with 

StatefulSet controller 

(Figure 4-13) 

0.712 1.512 3.148 6.407 14.463 48.662 

Deployment control-

ler 

(Figure 3-3) 

0.566 0.827 1.370 1.944 3.375 7.007 

Modified State Con-

troller integrated with 

Deployment control-

ler 

(Figure 4-14) 

0.641 1.327 1.555 2.375 4.441 8.821 
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4.2.1.4 Evaluating the Impact of Simultaneous Failure of Multiple Active Pods on 

the Outage Time of each Failed Pod (RQ12) 

To address RQ12, we are interested in evaluating the State Controller in terms of avail-

ability when multiple active pods fail at the same time. Meaning that a second failure happens 

when the State Controller is still in the process of failover for the previously failed pod. In this 

research question (RQ12), we consider the architectures of Figure 4-13 and Figure 4-14 where 

the modified State Controller is integrated with a StatefulSet controller and a Deployment con-

troller, respectively. For each architecture, the number of deployed pods is equal to 10. In these 

experiments, we forcefully kill the application container of i active pods where i can get the 

values in {1, 2, 3, 4, and 5}. In each round of the experiment, we measure the availability 

Table 4-12. Availability metrics of simultaneously failed pods – The Modified State Controller integrated with a State-

fulSet controller (Figure 4-13). 

number of simultane-

ously failed active pods 

Order number of the active 

pod whose failure was de-

tected 

reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

1 first failed pod 1.180 1.437 1.312 2.491 

2 
first failed pod 0.646 2.205 2.208 2.855 

second failed pod 1.122 2.043 2.206 3.328 

3 

first failed pod 0.487 1.800 1.728 2.215 

second failed pod 0.791 1.799 2.067 2.858 

third failed pod 1.182 1.855 1.799 2.981 

4 

first failed pod 0.526 1.786 1.949 2.475 

second failed pod 0.855 1.708 1.935 2.790 

third failed pod 1.269 1.952 2.265 3.534 

fourth failed pod 2.720 2.382 2.101 4.820 

5 

first failed pod 0.473 1.605 2.220 2.693 

second failed pod 0.940 1.213 1.973 2.913 

third failed pod 1.240 2.189 2.250 3.491 

fourth failed pod 1.224 4.296 2.862 4.086 

fifth failed pod 1.800 4.574 4.010 5.810 
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metrics for each failed pod and compare how simultaneous failure of multiple active pods af-

fects the service recovery. The results of this set of experiments are shown in Table 4-12 and 

Table 4-13. 

  

Table 4-13. Availability metrics of simultaneously failed pods – The Modified State Controller integrated with a Deploy-

ment controller (Figure 4-14). 

number of simultane-

ously failed active pods 

Order number of the active 

pod whose failure was de-

tected 

reaction 

time 

repair 

time 

recovery 

time 

outage 

time 

1 first failed pod 0.749 0.454 1.886 2.634 

2 
first failed pod 0.642 0.464 1.863 2.505 

second failed pod 1.332 0.562 2.003 3.335 

3 

first failed pod 0.411 0.456 1.786 2.197 

second failed pod 1.006 0.538 1.924 2.930 

third failed pod 1.627 1.139 2.092 3.719 

4 

first failed pod 0.761 0.414 2.171 2.932 

second failed pod 0.889 0.702 2.084 2.974 

third failed pod 1.172 1.433 2.191 3.363 

fourth failed pod 2.446 2.172 2.587 5.034 

5 

first failed pod 0.495 0.558 2.096 2.591 

second failed pod 0.851 0.898 2.304 3.155 

third failed pod 1.163 1.562 3.117 4.280 

fourth failed pod 1.494 2.359 3.118 4.612 

fifth failed pod 2.471 2.936 3.394 5.865 
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4.2.2 Analysis and Discussion 

In this sub-section, we analyze the results of the experiments of Sub-section 4.2.1 in 

order to answer the research questions we asked earlier. 

In RQ9, we are interested in evaluating the impact of integrating the modified State 

Controller with Kubernetes on the provided availability. To address this research question, we 

conducted some availability experiments whose results (Table 4-6 and Table 4-7) show that 

integrating the State Controller improves service recovery is by around 50%. The reason is that 

with the State Controller, we no longer need to wait for the failed pod to be repaired in order 

to have the service recovered. The State Controller is able to recover the service faster by failing 

over to the Standby pod. However, we observe that integrating the State Controller has added 

an average overhead of 22% to the reaction time. 

In the experiments for RQ10, we evaluate the impact of scaling during failover on the 

provided availability by comparing the measured availability metrics to those of the experiment 

where the only event is the failure (without any simultaneous scaling). The results of these 

experiments (Table 4-8 and Table 4-9) show that when a scaling event happens during recov-

ery, the outage time is increased by 12% and 16% for the scale-out and scale-in scenario, re-

spectively. We also evaluate the impact of scaling during failover on the scaling time by com-

parison to the experiments where the only event is the scaling (without any simultaneous fail-

ure). The results of the experiments for both scale-out and scale-in scenario (Table 4-8 and 

Table 4-9) show that when a failure happens during scaling, the scaling time is increased by 

66% in the scale-out scenario and 12% in the scale-in scenario. Moreover, for the scale-out 

scenario, the HA state assignment time is increased by 56% on average. The reason is that 

when scaling and failover overlap, the State Controller is busy with failover and it can only 
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assign the HA states with some delay. We also discussed that with the architecture where the 

modified State Controller is integrated with a Deployment controller Figure 4-16, a scale-in 

request may result in deleting the standby pod of an active pod. Because with this architecture, 

there is no order in deleting the pods when the application scales in. Therefore, it is not possible 

to guarantee service recovery. 

In RQ11, we are interested in evaluating the impact of integrating the modified State 

Controller with Kubernetes on the scaling overhead. To address this research question, we con-

ducted experiments under the scale-in and scale-out scenarios. For the scale-out scenario (Table 

4-12), when the application is deployed by a StatefulSet, integrating the modified State Con-

troller has a scaling overhead of 7.5% on average. Also, integrating the modified State Con-

troller with a Deployment controller increases the scaling time by 10.5%. The standard devia-

tion for these measurements does not go above 23% of the average. Moreover, as it is observed 

in Figure 4-17 and Figure 4-18, the applications deployed by a Deployment controller have a 

shorter scaling time and HA state assignment time compared to the ones deployed by State-

fulSets. The reason is that the pods deployed by Deployment controllers are created in parallel 

while with StatefulSet controllers, they should be created in an ordered manner which can take 

more time. While fast start-up time can be considered as a benefit of deploying the applications 

with Deployment controllers, one should take into consideration that service recovery is not 

guaranteed with Deployment controllers in scale-in scenarios. Because Deployment controllers 

do not scale-in the application in a guaranteed manner and the standby of an active pod might 

be deleted in the scale-in process while the active pod remains in the pods' list. We also con-

ducted the experiments for the scale-in scenario whose results (Table 4-13) show that the scal-

ing overhead of integrating the modified State Controller with StatefulSet controllers and De-

ployment controllers is 31% and 27% in average, respectively. The standard deviation for these 
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measurements does not go above 28% of the average. Similar to the scale-out scenario, we also 

observe in Figure 4-19 that the applications deployed with Deployment controller have a 

shorter scaling time. The reason is that the pods deployed with Deployment controllers are 

deleted in parallel while with StatefulSet controllers, they are deleted in an order which can 

take more time. 
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Figure 4-17. Scaling time results for experiments of RQ11 – Scale-out scenario. 

3
.0

6

6
.7

6
2

9

1
6

.1
4

1
8

3
5

.2
9

0

7
3

.0
0

1

1
4

7
.7

9
8

5
.6

5
3

1
7

.0
1

8

5
1

.8
6

5

1
3

3
.3

7
3 3

1
6

.1
0

7

8
4

5
.1

1
4

2  T O  4 2  T O  8 2  T O  1 6 2  T O  3 2 2  T O  6 4 2  T O  1 2 8

H
A

 S
TA

TE
 A

SS
IG

N
M

EN
T 

TI
M

E
(S

EC
O

N
D

S)

SCALE OUT NUMBER (NUMBER OF PODS)

COMPARING HA STATE ASSIGNMENT TIME

SC + Deployment SC + StatefulSet

 
Figure 4-18. HA state assignment time results for experiments of RQ11 – Scale-out scenario. 
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In RQ12, we evaluate the availability provided by the modified State Controller when 

multiple pods fail simultaneously. The diagrams of Figure 4-20 and Figure 4-21 show that 

when multiple pods fail simultaneously, the later the pod’s failure is detected, the longer it 

takes for the State Controller to recover the service for that pod. The reason is that once a pod’s 

failure is detected, it is put as an event in a queue and its service will be recovered after the 

recovery of other pods’ that were inserted in the queue before. 
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Figure 4-19. Scaling time results for experiments of RQ11 – Scale-in scenario. 
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Figure 4-20. Results for experiments of RQ12 – StatefulSet controller (average outage time for each failed pod). 
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Figure 4-21. Results for experiments of RQ12 – Deployment controller (average outage time for each failed pod). 
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4.3 Conclusion 

In this chapter, we proposed a solution to address the identified challenges of Kuber-

netes in providing availability for stateful microservice based applications and improve the 

availability. Our solution which is a State Controller allows for the automatic redirection of 

services to healthy pods through the management of secondary labels reflecting the current role 

of pods in the configuration from an availability perspective. Our solution allows for failure 

handling at the platform (i.e., Kubernetes) level and thus it closes a gap in Kubernetes when it 

comes to stateful microservice based applications. That is, in case of failure of the pod provid-

ing the service, the service is redirected to the healthy standby pod which is aware of the failed 

active pod’s state. Therefore, it is capable of resuming its service. We observed that this redi-

rection time may be significantly shorter than the restart of the failed pod of a StatefulSet con-

troller. 

In case of application container failure, with our solution, recovery happens before re-

pair. Thus, we are able to improve recovery time by 55%. Moreover, applications deployed by 

StatefulSet controllers cannot recover from node failure if the node does not rejoin the cluster. 

Without our solution, recovery depends on how fast the node can reboot or rejoin the cluster.  

In such scenarios, we are able to improve recovery time by 99%. Since the State Controller 

communicates with the Kubernetes’ API server, it can be easily integrated with Kubernetes 

and can work hand in hand with the current controllers in Kubernetes’ binary. 

Moreover, we enriched our proposed State Controller so it can provide availability for 

stateful microservice based applications whose number of microservice instances increase or 

decrease. With the modified State Controller, there can be multiple active and standby pairs.  

Our evaluations of the modified State Controller shows that integrating our solution improves 
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service recovery by 50% on average. However, we observed that when a scaling event happens 

during a failover process is being done by the modified State Controller, the outage time is 

increased by 16% and HA state assignment time for the scale-out scenario is increased by 48%. 

Moreover, we measured the scaling overhead of integrating the State Controller with Kuber-

netes between 7.5% and 10.5%. We also observed that that scaling and HA state assignment is 

done faster when the application is deployed by a Deployment controller compared to when it 

is deployed by a StatefulSet controller. Because unlike StatefulSet controllers, the Deployment 

controller does not add or delete pods in an order and one by one. While the fast deployment 

and HA state assignment of pods can be considered as a reason to deploy the application by a 

Deployment controller, one should consider the drawback of deploying stateful applications 

with Deployment controllers as well. That is, with Deployment controllers, service recovery is 

not guaranteed in the scale-in scenarios. Because Deployment controllers do not scale-in the 

application in a guaranteed manner and the standby of an active pod might be deleted in the 

scale-in process while the active pod remains in the pods’ list. We also evaluated the availabil-

ity provided by the modified State Controller when multiple active pods fail simultaneously 

and observed that the later the failure of a pod is detected by the State Controller, the longer its 

recovery time will be. 

Finally, we acknowledge the threats to the internal, external, and construct validity of 

our results. One threat to the internal validity of our results is that the cluster for our experi-

ments consists of a small number of nodes. Especially for the most responsive configuration, a 

larger Kubernetes cluster may add overhead and delays when detecting node failure which will 

certainly impact service availability. Another threat is the events that we consider as reaction, 

repair, or recovery time may be mapped differently. However, the change in the mapping will 

not affect the total outage time measured. The threat to the external validity of our results is 
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that we only considered the case of an on-demand video streaming application while other 

types of applications should be considered before generalizing the results. Moreover, the tools 

and mechanisms used in our experiments can be considered as threats to the construct validity 

of our results. While we used NTP for time synchronization, other methods such as container 

instrumentation may be used to be more precise. 

The contents provided in this chapter are published in [52]. 
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Chapter 5 

5 Conclusion 

In this thesis, we identified possible architectures for deploying stateless and stateful 

microservice based applications with Kubernetes. We evaluated these architectures from the 

perspective of availability and identified the issues that Kubernetes has in managing the avail-

ability of stateful microservice based applications. We proposed a solution that easily integrates 

with Kubernetes and improves the availability of its managed stateful applications. 

For stateless microservice based applications, we conducted availability experiments 

for different failure scenarios to evaluate the repair actions of Kubernetes for providing avail-

ability for its managed applications. The results showed that in the failure scenarios where 

service outage is due to external execution failure events, the outage times are significantly 

longer compared to failure scenarios where service outage is due to internal administrative 

operations. However, in practice, Kubernetes’ support for availability is demonstrated through 

internal administrative operations which does not reflect the performance of Kubernetes when 

external execution failures happen. For example, in the scenario where the service outage is 

due to node shutdown, the default configuration of Kubernetes will result in service outage of 

around 5 minutes. That is, the total allowed downtime over one year for the systems with high 

availability requirements. We also investigated the impact of adding redundant microservice 

instances on the availability and observed that it decreases downtime significantly. Because 

service recovery does not depend on the repair of the failed microservice instance. For stateful 
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applications, however, it does not hold true. That is, adding redundancy does not improve the 

availability for stateful applications. The reason is that in the event that a microservice instance 

fails, the redundant microservice instances neither know about the failure nor have the state of 

the failed pod to continue the service. Therefore, service recovery depends on the repair of the 

failed microservice instance. The results of our experiments show that the repair time (espe-

cially in node reboot scenarios) can be too long which can significantly decrease service avail-

ability. Moreover, in the scenarios where service outage is due to node shutdown, the micro-

service instance that was hosted by the failed node will not be repaired by Kubernetes. There-

fore, service recovery does not even happen. 

To address these issues, we proposed a solution that is a State Controller that integrates 

with Kubernetes and works hand in hand with the existing Kubernetes controllers and improves 

the availability of its managed stateful applications. The State Controller improves the availa-

bility through automatic redirection of the service to healthy microservice instances by man-

aging secondary labels assigned to microservices of the application. Our solution implements 

the 2N redundancy model and assigns active and standby HA states. The standby microservice 

keeps the state of the active one. The State Controller notifies the standby microservice instance 

when a failure happens to the active one and also assigns active HA state to the standby micro-

service. Thus, it can resume the service instead of the failed microservice instance which takes 

less time compared to the repair of the failed microservice instance. We also modified our 

solution to provide availability for the application when it is scaled in or scaled out by keeping 

multiple pairs of active-standbys. 

The experiments’ results show that integrating the State Controller with Kubernetes 

improves recovery time from 55% to 99%. The reason for this improvement is that service 

recovery no longer relies on the repair of the failed microservice instance. Moreover, for the 
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scenarios where service outage is due to node shutdown that the failed microservice is not 

repaired, service recovery is not possible without our solution and integrating the State Con-

troller enables service recovery for this type of failure as well. Since our solution does not 

require any change to Kubernetes’ source code, it can be easily used to provide a higher level 

of availability for their existing containerized microservice based applications. 

We identify high resource utilization as a limitation to our solution which is related to 

the 2N redundancy model where each standby microservice keeps protects only one active 

microservice. As future work, this limitation can be addressed by implementing other redun-

dancy models such as N-Way redundancy model in order to have one standby microservice for 

a number of active microservice instances.
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