Efficient Heuristics for Virtual Machine Migration in Data Centers

Khodayar Jeirroodi

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

July 2019

(© Khodayar Jeirroodi, 2019

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Khodayar Jeirroodi

FEntitled: Efficient Heuristics for Virtual Machine Migration in Data Centers

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Weiyi Shang Examiner
Dr. Dhrubajyoti Goswami

Examiner

Dr. Tse-Hsun Chen

Thesis Supervisor(s)

Dr. Brigitte Jaumard

Approved by

Chair of Department or Graduate Program Director

Dean,

Date

ABSTRACT

Efficient Heuristics for Virtual Machine Migration in Data Centers

Khodayar Jeirroodi

Live migration of virtual machines is one of the essential virtualization technologies
which enables the consolidation and load balancing in cloud data centers without inter-
rupting the services. Main goals for optimizing a single virtual machine live migration
is to minimize migration time, transferred data and downtime. Planning multiple live
migrations in a data center has an essential impact on feasibility of consolidation and
quality of services during migrations, however, optimizing parallel VM migrations has
been studies less. Minimizing makespan (total migration time) while reducing energy
and service quality degradation caused by using datacenter resources for migrations, are
the main objectives of the problem. One of the issues in planning multiple live migra-
tions is to detect and consider migrations order dependency constraints and possible
deadlocks caused by lack of enough free resources in servers during the process. In the
literature, exact mathematical models are not scalable and heuristics are not optimal
and they don’t consider the quality of service and energy efficiency of migration process
when resources are restricted.

In this work we propose a heuristic algorithm for scheduling the migration of virtual
machines in a data center in order to minimize makespan (total migration time) and
solve the conflicts (deadlocks) caused by limitation of resources with minimum cost and

quality degradation.

iii

Acknowledgements

I would like to express my deepest appreciation and gratitude to my supervisor
Professor Jaumard for all the things I learned from her during my study. Her
guidance, support and patience greatly helped and inspired me for this study.

Also I would like to thank my wife Anahita and my parents for their continuous

support, encouragement and their kindness.

v

Contents

List of Figures

List of Tables

1

Introduction

1.1 Motivation
1.2 Virtual machine migration
1.3 Contribution
1.4 Thesisplan

Problem Statement

2.1 Virtual machine placement L.
2.2 Virtual machine live migration
2.3 Mixed problem
2.4 Statement of scheduling virtual machine live migrations problem . .

Literature Review
3.1 Related works
3.2 Summary

Virtual Machine Live Migration Scheduling

4.1 Migration priorities and dependency weights
4.1.1 Dependency graph L.
4.1.2 Migration weights
4.1.3 Onoue et al. heuristic,
4.1.4 Corrections and completions

4.2 Scheduling virtual machine migrations
4.2.1 Introducing contributions of this study
4.2.2 Reducing number of temporary migrations
4.2.3 Large connected components
4.2.4 Speeding up by solving largest cycle periodically

Numerical Results
5.1 Data generator L
5.2 Comparing the results oL

Conclusion and Future Works

vii

viii

11
19
20

24
24
27

29
29
30
33
35
36
40
40
43
49
49

54
04
56

67

CONTENTS

Bibliography

vi

69

List of Figures

4.1
4.2
4.3
4.4
4.5

4.6
4.7

5.1

5.2

5.3

5.4

5.5

2.6

2.7

5.8

Virtual machine migration example 32
Example of migration dependency graph 32
Example of dependency graph 35
Shuffling temporary migrations effect on total finished migrations . 40
Temporary migrations generated for Algorithm 3 (datasets of 50

SETVETS) o v v v v e e e e e e 44
Temporary server selection with different f.and f, 48
Effects of adding the method of solving largest cycle to Algorithm 7 51

Comparing makespan and number of temporary migrations of final
heuristic and Onoue et al. heuristic - datasets of 50 servers 57
Comparing makespan and number of temporary migrations of final
heuristic and Onoue et al. heuristic - datasets of 100 servers 58
Comparing makespan of final heuristic with FF heuristic - datasets
of 30 servers 60
Comparing makespan of final heuristic with FF heuristic - datasets
of 200 servers 61
Comparing makespan of final heuristic with Onoue et al. exact
model (MILP) - datasets of 30 servers 61
Comparing Makespan of final heuristic with MILP of Jaumard et
al. (MILP-JGL) - datasets of 30 servers. 63
Compare results of final heuristic with minimum temporary migra-
tions heuristic - datasets of 50 servers L. 65
Comparing makespan and number of temporary migrations of final
heuristic - grouped by different Scenarios - datasets of 50 servers . . 66

vii

List of Tables

4.1

5.1

2.2

2.3

5.4

PLcurrent and PLygyr of the virtual machine migration

Comparing results of final heuristic with FF heuristic - datasets of
30 servers ...
Comparing results of final heuristic with FF heuristic - datasets of
200 SETVETS e

Comparing results of final heuristic with MILP-Onoue - datasets of
30 Servers L

Comparing makespan of final heuristic with MILP of Jaumard et
al. (MILP-JGL) - datasets of 30 servers.

viii

Chapter 1

Introduction

1.1 Motivation

Cloud computing and virtualization technologies are growing very fast and big
companies such as Google and Amazon are developing and providing cloud-based
services for their customers. Virtual machines act like images of real machines in
data centers and provide resources for applications. With vast grow in demand
and complexity of the applications, cloud service providers need to assure quality
of services for their customers, dedicate required physical resources and network
bandwidth to follow Service Level Agreements (SLA). The number of virtual ma-
chines and average workloads change during the time. For example, some virtual
machine might be shut down and new virtual machines may be required, also ser-
vices run in each virtual machine and their load (memory, processor or bandwidth)
will change. Therefore it is required to occasionally relocate virtual machines for
efficient resources usage and ensuring the quality of service. The virtual tech-
nologies management system in a data center, moves virtual machines between
the servers (physical machines) on the basis of a virtual machine placement algo-
rithm, for several purposes such as balancing the load between physical machines

to ensure more optimized utilization of resources and quality of service [1].

Chapter 1 Introduction

Furthermore for optimizing utilization of resources such as data center power con-
sumption and site cooling systems, one way is to reduce the data center energy
waste by the server consolidation technique, where virtual machines are packed
into fewer number of servers (physical machines). Likewise for other reasons (e.g.,
customer preferences, failure or planned maintenance), we might need to change
virtual machines placements in physical sources across the cloud. The techniques
for finding the optimized placement of virtual machines are called server consoli-
dation.

Live migration of virtual machines, allows datacenters to relocate the virtual ma-
chines while services they provide do not stop but for a tiny time between stopping
the virtual machine on legacy location and starting its copy on the destination
server. There are various studies to address optimization of virtual machine live
migrations in different directions, such as memory migration optimization, power
consumption of a single live virtual machine migration, migrations over WAN and
optimizing live migration of multiple virtual machines [2].

Most studies try to optimize the live migration of a single virtual machine, but in
real applications such as server consolidation in datacenters we need to migrate
several virtual machines in a short period of time. Studies such as Onoue et al.
[3] , Sun et al. [4] and Deshpande and Keahey [5] try to reduce the makespan
which is the total time between start of the first migration and the time when
the last virtual machine finishes its migration. Although reducing the makespan,
helps quality of service for the users via reducing the time window during which
users expect degradation of service, but considering the quality of service degra-
dation caused by intermediate steps and order of migration can strongly affect the
service quality and hence the objectives of the planned migrations (e.g., server

consolidation), which is the main focus of this study.

Chapter 1 Introduction

1.2 Virtual machine migration

Server consolidation, in general tries to pack a number of virtual machines on a
fewer number of servers to optimize resource utilization and reduce power con-
sumption regarding server constraints and possible SLA requirement. The impor-
tant feature that makes the server consolidation technique even more attractive
is virtual machine live migration. With using virtual machine live migration, one
can transfer a running virtual machine from a server to another one without con-
siderable service downtime [1].

In live migration of a virtual machine, if we use the pre-copy technique, while
the services are still running on the virtual machine on source server, all of the
memory pages of virtual machine are transferred to the destination server. Based
on the size of the memory and page dirtying rate, the process of copying memory
pages might be repeated for dirtied memory pages until it reaches a threshold for
the number of iterations or size of the dirtied page. Then the virtual machine on
source server stops and the remaining dirties pages with CPU state will be trans-
ferred to the destination server and the virtual machine starts on the destination
server [6]. The time between stopping virtual machine and restarting it on target
server, depends on memory size, dirty page rate and bandwidth and resources of
both servers and network, which can be as small as few tens of milliseconds.
There are several studies that solve the server consolidation and virtual machine
optimized placement problems. Many of them use different approaches of bin pack-
ing problem. Some other use different methods for forecasting usage of physical
resources (RAM, CPU, I/0O) and according to thresholds of high and low usages
find new placements for virtual machines assigned to those locations. One step of
the problem which has been considered less, is moving virtual machines to new
placements via a seamless virtual machines migration. Keeping services running
during the migration (without considerable downtime) and finish the migrations in

desired time with minimum service degradation is an important part of the server

Chapter 1 Introduction

consolidation process. The migration step can be considered along with the place-
ment problem or as a separate one (where we assume new and legacy placements
are given). In both cases finding order (scheduling) and migration plan for mi-
grating virtual machines is not straightforward. Migration process needs resources
(CPU, memory, etc.) in both source and destination. Also the amount of network
bandwidth used for migrations has restrictions. If we prefer faster total transition
time, we might confront SLA violations. Also long migration time leads to longer
time for the current unfavorable state of placements which voids the optimization
and extends the period of possible SLA violations and service degradation because
of the migration process.

During the migration process, we might need to move virtual machine to a tem-
porary server to solve a blocked situation, we call them temporary or transient
migrations since later we must migrate them again to the original destination.
Temporary migrations are costly, because they consume resources and degrade

quality of service(s) running on those machines during migration.

1.3 Contribution

In this study we propose heuristics for virtual machine migration scheduling and
planning algorithm which tries to find the optimal order of virtual machine mi-
grations to reduce the makespan considering service level degradation cause by
intermediate steps and temporary migrations. The final heuristic is evaluated by
solving the migration scheduling problem for generated datasets and is compared
with a heuristic algorithm and the results of two exact models in the literature.
Also we compare results of the intermediate heuristics with the final heuristic as

we gradually constructing our final heuristic.

Chapter 1 Introduction

1.4 Thesis plan

The thesis is organized as follows. Chapter 2 gives the background and detailed
statement of the problem, the heuristic approach for scheduling virtual machine
migrations. In Chapter 3 we review the previous studies. Chapter 4 gives the
details of the heuristics algorithms proposed by this study. In Chapter 5 we have
the numerical results and comparison between the approaches, and Chapter 6

concludes the study and introduces ideas for future work.

Chapter 2

Problem Statement

In this chapter we review the background of virtual machine consolidation and
migration problems. In Section 2.1 we review the problem of optimized place-
ment of virtual machines. The placement/consolidation problem can be studied
alongside the migration problem, which is reviewed in Section 2.3. Background of
optimizing virtual machine migrations (with given placements) which is the main

focus of this study is introduced in Section 2.2

2.1 Virtual machine placement

The number of virtual machines and their average workloads change during the
time. For example, some virtual machine might be shut down and new virtual
machines may be required, also services run in each virtual machine and their
load (memory, CPU, Bandwidth, etc.) might change and therefore it is profitable
to regularly relocate virtual machines for efficient resources usage and ensuring
the quality of the services running on virtual machines. The virtual technologies
management system moves virtual machines between the data centers (physical
machines) for several purposes such as load balancing between physical machines.
Virtual machine placement is studied from different aspects and by using different

methods.

Chapter 2 Problem Statement

Virtual machine placement problem

In this section, we review the concepts and methods used for virtual machine
placement problem. In a datacenter with several servers (physical machines), each
server contains multiple running virtual machines, for several reasons such as op-
timal placement, maintenance, etc we might need to have a new placement for
the virtual machines. Finding new or optimized placements for all or part of the
virtual machines is a problem every cloud service provider must manage regularly.
This problem has been addressed in many studies with different approaches and
domains. Frequent additions and removals of virtual machines beside changes in
the load and resource requirement of each virtual machine, make the legacy place-
ment of virtual machine in data centers non-optimized. There are many studies
trying to find an optimized virtual machine placement with different objectives
such as load balancing or reducing number of active data centers [1]. Some of the

purposes of changing virtual machines placements are:

Load balancing

Server consolidation

Service level agreement

Hardware maintenance

e Maximizing reliability

Optimizing network traffic

Constraints of virtual machine placement problem can be physical machine re-
sources (CPU, memory, disk), network capacity, SLA, etc.

The output of this problem is a new placement for a subset of virtual machines.
Some of the studies consider the migration of virtual machine to new placement

combined with the placement problem. These studies are reviewed in Section 2.3

Chapter 2 Problem Statement

Virtual machine placement problem objectives

Regularly the strategy used for solving a virtual machine placement problem has
objective and constraints similar to a bin packing problem (multi capacity bin
packing). In a classic bin packing problem the aim is to place objects as dense as
constraints allow in fewer number of containers, while in virtual machine placement
the purposes of the new placement can be resource shortage or reducing energy
consumption (active server energy consumption, cooling system, ...) maintenance
and overhead costs of running physical machines. Bloglazov et al. [7] set upper
and lower thresholds for total CPU utilization by virtual machines allocated on a
server. If the CPU utilization of a server falls below the lower threshold, all of the
virtual machines of the server are planned to migrate to new locations and if CPU
utilization exceed the upper threshold some virtual machines must be migrated in
order to prevent SLA violations occur due to the lack of available resources.
Another example of optimization objective that can be considered is network traf-
fic. For example Meng et al. in [8] formulate the virtual machine placement based
on the network traffic. In their study, virtual machines with large mutual band-
width usage are assigned to the servers in close proximity to achieve better network
scalability.

In Deng et al. work, [9], problem of minimizing SLA violations with finding the
optimize placement of virtual machines, based on several parameters such as reli-

ability of physical machine (server) is studied.

Virtual machine placement key problem constraints

The key constraints for assigning virtual machines to servers in a datacenter (phys-
ical machines) are the capacity of servers and network bandwidth. In several stud-
ies, this capacity is divided into Memory, CPU, Disk resource and server network
bandwidth.

The above mentioned constraints are the key ones, other constraints such as hard-

ware reliability, inter-VM performance degradation, cooling systems can also be

8

Chapter 2 Problem Statement

considered [1].

Onoue et al. [3] puts the constraints for the processors and memory size in a way
that summation of memory and processor demands for virtual machines assigned
to a server must not exceed its capacity for any of the resources.

Li et al. [10] add the constraint of network capacity with the same logic, the total
network usage of all virtual machines running on any single server must not exceed
the network capacity upper bound of that server.

Beside considering the resource optimization obtained from consolidating virtual
machines on fewer servers, the possible performance degradation must be regarded.
Although CPU, memory and I/0O are split between virtual machines, shared caches
and memory bandwidths can degrade performance significantly, it is also possible
that if we put certain combination of virtual machines on a server, the contention
decreases the performance and violates quality of service requirement, or longer
task execution times in virtual machines result in more energy consumption than
non-consolidated state. Roytman et al. [11] determine how much each virtual
machine service quality is degraded when placed with different sets of virtual ma-
chines to be consolidated and identify which and how many virtual machines can
be placed on a server such that required performance is maintained. For this pur-
pose, they assume degradation of a virtual machine ’A’” when it runs with virtual
machine "B’ on the same server, and consider maximum tolerable degradation of
each virtual machine as a constraint.

Reliability of servers has direct effect on virtual machine service SLA, several short
term turning on and off a physical machine will reduce the lifetime and reliabil-
ity of data center devices. Also packing more virtual machine into one server,
increases its temperature which leads to higher risk of hardware failure and less
reliability. Sansottera et al. [12] consider power, performance and reliability as-
pects simultaneously on their consolidation model with focus on performance and
reliability requirements to guarantee average response time constraints for virtual
machine services, in addition using an active/active sparing model for servers in

which the data center uses one of the active servers in a round-robin fashion so as

Chapter 2 Problem Statement

to make the services more stable and reliable.

Legal mandates governing user data can result in constraints for the virtual ma-
chine processing those data, restricted physical location of data or data isolation,
and co-location limitations can also affect virtual machine placement constraints

[13].

Static or dynamic virtual machine replacement

Virtual machines replacement can be done statically or live (dynamically). In
static approach mapping of virtual machines to servers is not changed over spe-
cific period of time. The load balance of each server is estimated based on the
peak resource demand of virtual machines. At time intervals, the load balance and
unusual changes will be detected and new virtual machine placements will be cal-
culated. In dynamic virtual machine, the cloud computing management platforms
monitors the workloads of the servers and network, and if resource utilization and
demand of any of the virtual machines exceeds a threshold, placements of virtual
machines will be optimized. Wolk et al. [14] compare static against dynamic con-
solidation method in a real data center experiment. Their study concludes static
method leads to higher energy efficiency compared to dynamic allocation with
only a modest level of overbooking. This is partly due to migration overheads and
response time peaks caused by live migration (details are beyond the scope of this

study).

Virtual machine placement SLA

Availability of services, service response time, resources and maximum downtime
of a service indirectly affect the strategy by which we assign and manage the
resources of virtual machines. Also constraints such as data location and shared
infrastructure resources are the examples of constraints based of the defined Service

Level Agreement (other than technical constraints) [13].

10

Chapter 2 Problem Statement

Virtual machine placement problem solving methods

Virtual machine consolidation problem can be mapped into a version of bin packing
problem, (Lee et al. [15], cited in Varasteh and Goudarzi [1]), where virtual ma-
chines as objects must be packed into servers which are similar to bins. Resources
of servers here are placement constraints. Methods for the exact solution, such
as linear programming, dynamic programming and stochastic programming are
NP-hard. For overcoming complexity of this problem, several heuristic methods
are used. Among the heuristic methods greedy algorithm of First Fit Decreasing
(FFD) is used more frequently, although FFD method has major limitation that
forces the problem to be one dimensional and servers have the same resource ca-
pacity (Lee et al. [15], cited in Varasteh and Goudarzi [1]), but it has advantage
of being simple and fast. Dosa [16] approved that number of bins found by first fit
decreasing algorithm is not more than 11/9 OPT + 6/9 where OPT is the opti-
mal number of bins found by an exact algorithm. Other than known bin packing
algorithms, there are several studies that implement specific heuristics for solving

virtual machine consolidation problem.

2.2 Virtual machine live migration

Live migration of a virtual machine is the process of moving a virtual machine with
running service between locations (servers) without stopping the services during
the process. This is done by moving the memory state of the running virtual
machine from the source server to destination server while the VM is running on
either source or destination. There are two main approaches for migrating virtual

machines pre-copy and post-copy.

11

Chapter 2 Problem Statement

Pre-copy technique

This is the most general technique of moving a live virtual machine. In this
technique the memory and processor state of a virtual machine is transferred in
iterations from the source host to the destination host, whereas the virtual machine
is still running on the source host. In the first iteration, the entire state of the
virtual machine is transferred to the destination host. Changed pages of memory
is resent to the destination in the next iteration if it has been changed (dirtied)
until the remaining dirtied page memory can be transferred in a tiny stop and copy
phase (which is negligible in service) or number of iterations reaches a threshold.
In pre-copy approach the virtual machine keeps running on the source server until
the migration to the destination server is done, so if the process is interrupted
the state of the virtual machine will not be lost. Most of the hypervisors such as

Virtual MachineWare, KVirtual Machine and Xen use this approach.|2]

Post-copy technique

In this approach first the processor state is transferred to the destination server and
the services start working on destination server, then the memory of the stopped
virtual machine in source will be transferred. If there is demand for a part of the
memory during running of the service in destination server before all the memory
pages are moved, it will be fetched from the source which is called page-fault.
Although this approach results in shorter migration time but has drawbacks of
service degradation due to accessing required memory via network also has risk of

loosing the latest service state if the virtual machine in the destination fails.

Hybrid technique

In this approach, hypervisor first transfers a part of the memory from source to
destination with pre-copy approach then starts the virtual machine in destination

and continue transferring memory pages via post-copy approach.

12

Chapter 2 Problem Statement

Inter-datacenter virtual machine migration

Live migration of a virtual machine is relocating the virtual machine between two
servers, these servers can be located in the same datacenter or different datacenters.
The server consolidation problem principally is inside one datacenter [1], therefore
the migration problem is also inside the same datacenter, which is likewise the do-
main of this study. Optimizing virtual machine live migration between datacenters
mostly consists of routing and bandwidth assignment for migrations, for instance
Ayoub et al. [17] propose an algorithm for efficient routing and bandwidth assign-
ment for single and parallel virtual machine migrations between datacenters in an

optical network.

Virtual machine live migration problem

In this section, we review the problem of migrating virtual machines from a cur-
rent placement to a new placement. New placement is calculated based on the
optimized assignment of virtual machines to servers (regarding the constraints),
the migration phase must be planned independent of implementation of the first
phase for finding feasible and optimal order (schedule) to relocate virtual machines
to new places. Impulsive migration plan might be impractical due to deadlocks or
SLA violation caused by overloading network resources, also if migration process
takes too long the overhead can violate optimally of the re-placement, similarly
state of the virtual machines might change during a long period of migration.
Scheduling virtual machine migrations can be categorized in two approaches, first
one is migrating one virtual machine at a time and the other one is scheduling
parallel migrations. Also we can migrate virtual machines inside a datacenter or
between datacenter. In the following sections we review shortly the single virtual
machine migration and also inter-datacenter migration, then in more details we
review multiple virtual machine migrations inside a datacenter which is the focus

of this study.

13

Chapter 2 Problem Statement

Migrating a single virtual machine

Problem of optimizing a single virtual machine migration, instead of optimizing the
order of several virtual machine migrations, focuses on optimizing the process of
migration itself. This problem aims to optimize the migration duration, minimize
the data transferred in the network, reduce energy consumption and minimize
the downtime of the services when switching from the virtual machine stopped in
the source to the one in the destination. Example of such optimization is using a
techniques to predict the dirty pages of memory in advance to optimize the memory
migration by reducing migration time and/or downtime of the service [2]. Another
domain of the study is power consumption for live migrating virtual machines,
major application of virtual machine migration is physical server consolidation
which aims to reduce the energy consumption is datacenters, this additional energy
consumption is due to having duplication of virtual machines simultaneously and
also network resources used for conducting the migrations. [2]. Although this
study’s center of attention is optimizing migration of several virtual machine, but
among its objective is reducing number of temporary migrations which results in

reducing energy consumption for the total migration process.

Multiple virtual machine migrations

With current technologies, parallel migrations are possible. However, all of these
live migrations cannot be done concurrently because of capacity constraints of the
network and also possible blockages caused by servers limited capacities to host
the virtual machines of the current and new placements simultaneously.

Finding the optimized order of migrations will reduce the total migration time
(we will use the term 'makespan’) to gain more stable service and avoid service
quality degradation due to the resource usage by migrations. Main inputs of
the this problem are, virtual machines characteristics (CPU, memory, bandwidth,
dirty page rate), servers (physical machines) capacities, network bandwidth and
legacy and new placements for each virtual machine. Other constraints such as

14

Chapter 2 Problem Statement

maximum total time for migrations also can be part of the inputs. In the following

subsections, we review the virtual machine migration problem.

Virtual machine migration problem objective

Main objective for migrating virtual machines is to minimize makespan or total
migration time, by total here we mean the time until the last re-located virtual
machine migrates to its new server and all the virtual machines are moved to their
assigned servers based on the new placements. Minimizing total migration time
results a smaller impact on performance degradation due to virtual machine mi-
grations, also reduces the waiting time for adding new virtual machines after new
placements are achieved. Any VM addition should be delayed until all migrations
are complete because shortages of destination servers can occur while virtual ma-
chines are migrating. In terms of management tasks, it is also beneficial for cloud
providers to know how long it takes for all virtual machines to finish migrating
[3]. Also, the migration process must not take so long in a way that there are con-
siderable changes in virtual machines service load which might make the current

placement non-optimized again.

Virtual machine migration problem constraints

The order (scheduling) of virtual machine migration cannot be impulsive, there
are constraints must take into account otherwise the migration plan might not be
practical. Reaching optimal time for migrating virtual machines not only optimizes
the process (i.e., energy consumption), sometimes taking too much time, puts
down the main aim of migration (i.e., SLA violation raised by migration). For
optimizing total migration time, several constraints at source and target servers
of migrations and datacenter network must be considered. Also, the migration
timing (individual virtual machine migration and total migration time) and path
must not violate any SLA related to network links bandwidth dedicated to services
[18].
15

Chapter 2 Problem Statement

Dow and Matthews [13] in addition to constraints for resources such as memory,
CPU, disk or networking 1/O, consider the constraints of network management
resources such as hypervisor low memory conditions, virtual machine:virtual ma-
chine anti-colocation, and virtual machine:Host anti-co-location constraints. In
this study authors use A* search algorithm for which they define cost of each
movement for virtual machines in network based on the type of the movement
(random move, moves that violates any constraints etc.) some movements such
as move has a high cost (e.g., invalid) that it is unlikely they are being chosen
in algorithm. We can categorize these constraints based on the constraint emerge
from physical machines or the ones come from network links (paths). In addition,
there is another type of problem (deadlock) that can be caused by server or links

constraints.

Number and order of migrations

If we assume there is a need to change the current placement to the new one
and multiple individual virtual machine migrations must be done in one server,
if all of these migrations are done simultaneously the excessive utilization of the
resources in the server (CPU, memory etc.) might violate the quality of service
for running virtual machines, also it is possible that simultaneous migrations take
too long which affects the optimally of the new placement. Beside the limitation
of resources, traffic and bandwidth of the paths might affect the number and order
of migration. it is possible that the shortest path (physical distance, less number
of routers/switches) between the source and destination for a virtual machine A
does not have the required capacity for performing the migration without effecting
the quality of services using that path simultaneously, or the free bandwidth is not
enough to perform multiple simultaneous migrations in the desired time window,
we have to delay some of migrations or change their migration paths. Oneue et al.
[3], for avoiding traffic congestion assume parallel degree for network links, which

is based on maximum number of parallel migrations in each output links.

16

Chapter 2 Problem Statement

Deadlocks

If at the moment of migration there is not enough resources (processor, memory or
service bandwidth) on the destination server, the migration can not be done and
we have a deadlock. There are two main types of deadlocks [19], one is indirect
deadlock which occurs when a virtual machine needs resources in a server that are
currently used by another virtual machine that is planned to be relocated. In this
case we must be sure to plan the migration of the second virtual machine in prior
to the first one and can be solved by ordering the migrations considering resource
shortages. Other type of deadlock is when there the dependency of migrations for
releasing the resources makes a cyclic graph which can be solved by more complex
methods such as planning some temporary migrations. One reason that makes
the resource shortages which lead to deadlock more possible is the fact that in a
datacenter during migrating a virtual machine, twice of the required resources for
running that VM is needed.

One way to solve this infeasibility of the migrations is to change the allocation
of virtual machines in the new placement in a way to avoid having such set of
migrations [19]. Another approach is to migrate a set of virtual machines to a
temporary physical machine in order to make the migrations possible.

For example we assume virtual machine A currently in location m is planned
to migrate to location n and virtual machine B which is currently at virtual
machine n is planned to be placed in m. If both machines can not host A and B
simultaneously (physical resource or network bandwidth limitations), we have to
move one of them to a temporary location or shut down one of them in order to
free one of the physical machines for the first step of placement. As an example
in work of Onoue et al. [3], they use migration dependency graph (described in
detail in Section 4.1.1) to gain the optimal order of migrations, in the algorithm
they are solving the deadlocks by migrating a low cost virtual machine(s) in cycles

to temporary positions which must be retrieved to the original destinations later.

17

Chapter 2 Problem Statement

Individual virtual machine migration duration

One of inputs for the problem of optimizing multiple virtual machine migrations
is the migration time for an individual virtual machine. In virtual machine live
migration, full state of the machine running in the source server must be trans-
ferred to the destination, but the predominant part is the memory. Many of the
studies in this domain use the memory size value as input without loss of gen-
erality. In our study, although we can use this approximation, there are more
precise approaches to calculate the time needed for migrating one virtual machine
with given memory size, dirty page rate and assigned migration bandwidth. In
[20] authors use a simple mathematical formula to calculate the migration time.
With using pre-copy method for migrating a virtual machine, with memory size
of V,, and average dirty page rate of D Mbps, it needs n iteration to complete
transferring memory and the dirtied pages generated during the process. If V; is

the amount of data sent during iteration ¢ we have:

V . .

moy T ifi=1
vi=q "

D xT;, 4 otherwise.

If we consider R as network bandwidth for the migration, 7 as the delay be-

tween each iteration and A = D/R , we can calculate each iteration time :

Vio/R+T ifi=1

Ti i X AN+T otherwise.

We can conclude T; as :

. 1_1' .
TZ-:‘%”)\Z 1—1—7'?’\)\ 1=1,2,..n

V(1= A (1= A) — A(1 — A
RA—N T 1-)2

Tv:iﬂ-l'Tdown:

i=1

+ tdOwnv

18

Chapter 2 Problem Statement

Where T, is the total migration time for an individual virtual machine v, which

can be used in problems of optimizing multiple virtual machine migrations.

2.3 Mixed problem

The virtual machine consolidation problem can also consider a more optimized mi-
gration possibility along with the problem of placement. As discussed, its possible
that migration constraints make the placement solution impractical, also optimal
solution of new placement might become ineffective by a excessive time and energy
consuming migration plan. For tackling these issues some of the studies consider
limitations for migrations or change the objective of the problem to include the

migration criteria.

Problem objective

In some of the mixed problem studies, the authors use the same objectives of a
general virtual machine placement problem and they consider the migrations pro-
cess by adding related constraints to the problem. Some of the studies change
the problem objective in a way to add the effects of migrations to the problem.
[21] Verma et al. add a migration cost estimated by quantifying the decrease in
throughput because of live migration and estimating the revenue loss because of
the decreased performance (as given by SLA) to the problem formulation.

Li et al. [10] add an objective for minimizing the migration cost beside the objec-
tives of placement (for example minimizing number of active PMs), to minimize the
number of migrations in addition to minimizing unbalancing between resources.
Migration cost consists of a constant overhead cost for each migration and also a

cost related to pre-copy and stop-and-copy phases duration.

19

Chapter 2 Problem Statement

Problem constraints

In general, a mixed problem contains the constraints of virtual machine placement
problem and for migration constraints most of the studies, try to avoid migration
complexities by limiting the number of migrations in virtual machine consolidation.
Takeda and Takemura [22] use a first fit decreasing algorithm to assign virtual
machines to PMs and for limiting number of migrations they only consider virtual
machines which are currently in high-load or low-load PMs. A high load PM is
the one which has at least one resource (for example CPU) utilization above the
threshold. Also in their algorithm sending or receiving PMs are not candidate for
new migration. The algorithm tries to balance the virtual machine placement by
moving virtual machine from low load/high load PMs to the most loaded PM with
enough resources.

In the study of Takahashi et al. [23], to prevent servers performance loss during
migrations, authors add a limitation in a way that each server can send or receive
at most one virtual machine per time to prevent performance degradation due to
migration collision.

Some studies try to add a migration cost penalty related to number of migrations
to objective function, Beloglazov et al. [7] for optimized virtual machine allocation,
set objective of reducing energy consumption in cloud data center management, in
their heuristic algorithm the number of required migrations is minimized through
a policy to select the minimum number of virtual machines to be migrated with
the goal of minimizing energy consumption and overcome servers CPU utilization

violations (out of upper lower thresholds).

2.4 Statement of scheduling virtual machine live migra-

tions problem

The objective of the problem is to find the order of migrations and temporary

location assignments (if any) to migrate a set of virtual machines from a legacy

20

Chapter 2 Problem Statement

(current) server placement to a new one inside a datacenter in a way to minimize
makespan (total migration time) and number of temporary migrations.

Temporary migrations affects the resource (energy) utilization and quality of ser-
vices during migrations, by minimizing number of temporary migration we can

reduce the energy consumption and possible SLA degradation.

Assumptions:

1. Virtual machine migrations are intra-DC (physical servers are hosted within

the same data-center).
2. We consider the pre-copy live migration strategy.

3. Migration time for each virtual machine is calculated based on memory size

and dirty page rate of each virtual machine [20].
4. Dedicated bandwidth is the same for all migrations.

5. Migration bandwidth assignment is greater than dirty page rate of any virtual

machine.
6. Both current and new placements are feasible.

7. Datacenter network structure follows FAT tree topology.

In most recent cloud implementations, cloud backbone network structure has fat
tree structure, by which we can abstract the data center network as a bandwidth
guaranty network and the capacity between each two servers is based on whole
network pipeline free capacity (total parallel degree) and direct links from source
and destination to first switches, no need for tracing the exact capacities in paths
between the servers [4],[3]. In this study we assume the datacenter network has a

fat tree topology.

21

Chapter 2 Problem Statement

Inputs:

1. Virtual machines information

(a) Processor (CPU) size of each virtual machine
(b) Memory size of each virtual machine

(¢) Network bandwidth (for service) size of each virtual machine

2. Servers (for convenient and based on the context we might use the terms

"Physical Machine’ , "PM’ or ’location’ for servers)

(a) Processor (CPU) capacity of each location
(b) Memory capacity of each location

(¢) Network bandwidth of each location

3. Current assignments of virtual machines to locations (P L™ T) for each

VM ¢, S;; if virtual machine ¢ is assigned to server j in current placement.

4. New replacement of virtual machines to locations (PL"**"), for each VM 1,

R;; if virtual machine ¢ is assigned to server j in new placement.

5. Datacenter capacity for parallel migrations

Constraints:

1. There is always a working copy of each virtual machine (except a tiny down-
time between shutting down a VM in the source and starting it in the desti-

nation server)

2. After the migration, each virtual machine is assigned to one and only one

location (destination location which is provided).

3. None of the servers has any overloaded resources at any time.

22

Chapter 2 Problem Statement

Output:

1. Order of virtual machine migrations.

2. Each virtual machine migration start and finish timestamp.

3. Location of each virtual machine during migrations.

4. Each server load (resource usage) before, after and during the migrations.
5. Datacenter network load during migrations.

6. Makespan (total migration time).

23

Chapter 3

Literature Review

In this chapter, we review the studies in the domain of virtual machine migration
optimization problem with different objectives and methods. First we explore the

related studies in Section 3.1 and then we summarize our review in Section 3.2.

3.1 Related works

Virtual machine migration is a technology that expands the area of improving
manageability of datacenters for optimizing the resource usage and increase the
quality of services. Live migration allows a virtual machine continue to run during
migration without disrupting service or services running on it, which brings a vast
area of interest for studies. Optimization techniques for virtual machine live migra-
tion can target makespan (total migration time), downtime and total transferred
data during migration [2]. The focus of this study is optimization of multiple par-
allel migrations with the objective of reducing makespan with minimizing number
of possible temporary migrations. Temporary migrations are for overcoming pos-
sible cyclic dependencies during the migrations and affects energy consumption,
total transferred data and service quality which can be a part of the objectives
or constraints of the problem (more details in Section 4.1.3). The literature of

minimizing makespan of multiple migrations problem, can be classified based on

24

Chapter 3 Literature Review

the techniques to achieve this objective, for example finding the order and paths
of migrations, or minimizing makespan by optimizing memory transferring tech-
niques such as pre-copy or post-copy. Also another principle for categorizing is the
mathematical method used for solving the problem, linear programming, heuristic,
greedy etc. Also we can categorize the studies based on the problem boundaries,
virtual machine placement optimization, virtual machine migration(s) optimiza-
tion or mixed problem (detail definition can be found in Chapter 2).

Onoue et al. [3] define a Mixed Integer Linear Program (MILP) to solve the mul-
tiple migrations problem. Their exact method has current and new placements
as input and objective of minimizing makespan (total migration time) and the re-
ducing unnecessary (temporary or transient) migrations. Their objective function
has a total number of migration steps (multiples of the greatest common divisor
of migration times) and a second term which is a coefficient of number of total
migrations as a penalty to minimize the number of temporary migrations. Nine
constraints assure the completion of migrations and resource limitation during and
at the end of migrations. Their MILP formulation is not scalable and based on
their evaluation section, it cannot finish the calculation for certain number of test
datasets in less than one hour, which was the limit of timeout for their MILP
solver. They also propose a heuristic with the use of migration dependency graph
which also has been used in this study. The drawbacks and missed parts of their
heuristic are addressed in Chapter 4.

In [24], Ghribi et al. propose an exact method (ILP) for optimizing placements
of virtual machines on servers (consolidation) along with optimizing number of
migrations to minimize the energy consumption which is considered as a mixed
problem (defined in Section 2.3). In their evaluation section, their exact method
does not seem scalable, and the execution time when the number of active nodes
(servers) is more than 20 is in the scale of tens of hundreds of minutes [24].
Kherbache et al. in [25] describe a migration scheduler module which uses the
resource constrained project scheduling algorithm (RCPSP). For overcoming the

NP-Hard performance of the algorithm they propose to simplify the problem and

25

Chapter 3 Literature Review

use a heuristic. The outputs of their migration scheduler are best moment to start
migration(s) also the amount of bandwidth to allocate to migrations. Inputs are
virtual machine workload, the network topology and user specified constraints.
In [26] Bari et al. propose a simple heuristic to optimize the sequence of virtual
machine migrations. Their heuristic groups the virtual machines based on the
resources needed for migrations and prioritize the migrations of VMs in a group
that has the maximum migration time and more dependant groups. For evalua-
tion, they compared it with a very simple heuristic that find and returns a feasible
and not necessarily optimized solution. In the output of their algorithm they as-
sume virtual machine and network downtime which is against the main advantage
of live migration and quality of service expected from this technology.

Sun et al. in [4], try to minimize the total migration time (makespan) of parallel
migrating virtual machines with use of a combination of pre-copy and post-copy
migration strategies. Their study though tries to minimize the migration time of
parallel multiple migrating virtual machines but does not consider optimization of
sequence of migrations and dependency conflicts.

Gilesh et al. [27], define an MILP for minimizing or bounding the cost of migra-
tions in cloud data centers. They define their exact problem formulation and then
for offering computational feasibility they propose a greedy and a meta-heuristic
methods. Their greedy algorithm sorts virtual machines based on the calculated
migration time and start to migrate feasible ones. One drawback of their meta-
heuristic approach is to limit the number of successful migration after a certain
number of iteration in the algorithm and also do not have a mechanism to consider
the number of temporary migrations. Based on their simulated results, the meta-
heuristic approach makespan is on average 25% less than their greedy algorithm.
Deshpande and Keahey [28] study the effect of contention between service band-
width request and virtual machine migrations in a datacenter. The pre-copy and
post-copy migration strategies affect traffic of the source or destination servers
differently during migrations, these conditions affect the quality of service in dat-

acenter and also migration makespan. They propose a traffic-sensitive live virtual

26

Chapter 3 Literature Review

machine migration technique to optimize the combination of pre-copy and post-
copy techniques for migrations of the co-located VMs (those located on the same
source host), instead of relying on a single pre-determined technique for all migra-
tions.

Jaumard et al. [29], propose an exact sequence-based model of Mixed Integer Lin-
ear Program (MILP) and compare it with other exact models such as Onoue et al.
[3]. Their sequence-based MILP model is highly efficient and can solve sufficiently
big virtual machine migration problem instances in a few seconds except for in-
frequent instances which need temporary migrations. In other part of their study,
they investigate the necessity of intermediate migrations for a minimum makespan
solution, their model can solve most of the problem instances without need of any
temporary migrations which is a big advantage compared to other exact models
and heuristics in the literature. Their numerical results provide a proper source

for evaluating the results of the heuristic of this study.

3.2 Summary

Number of studies addressing virtual machine migration optimization is not con-
siderable compared to studies in other areas of cloud computing. Some of the
studies try to optimize makespan and quality of service of virtual machine migra-
tions by selecting an optimized combination of post-copy and pre-copy techniques
during migrations which is not the area of this study. The studies attempt to
solve the virtual machine live migration scheduling with an exact method (e.g.,
MILP) try to solve a problem that by nature is NP-HARD, so they are likely
not scalable. The heuristics algorithms in the literature often don’t consider the
resource limitation dependencies which beside the memory size of migrating vir-
tual machine, is the main factor for prioritization some migrations over others in
scheduling. Bari et al. [26] try to consider this dependency with putting migrating
virtual machines in groups based on the resource needed. Onoue et al. [3] in a

more advanced approach introduce the dependency graph which creates a chain

27

Chapter 3 Literature Review

of dependencies based on the resource limitations in the current placements of the
datacenter.

The heuristic algorithms do not consider the migration dependency factor or if so,
they do not control the number of unwanted temporary (transient) migrations.
Jaumard et al. in [29] show that in an exact solution there can be no or very few
transient migrations.

In this study, we propose a heuristic which with considering migration depen-
dency concept, minimizes the number of transient migrations and also optimizes
the makespan. We compare our results with heuristic and exact model of [3] and

also results from exact model in [29].

28

Chapter 4

Virtual Machine Live Migration

Scheduling

In this chapter, we introduce new heuristics for multiple virtual machine migra-
tions scheduling. We explore different heuristics which gradually improve the
algorithm to reach the final heuristic with aim of optimizing makespan and num-
ber of temporary migrations. We also review possible trade-off between makespan

and temporary migrations in the algorithm.

4.1 Migration priorities and dependency weights

A very basic heuristic for migrating virtual machines from the current placement
to the new one, sorts the migrating virtual machines in descending order of their
migration times and starts migrating the feasible ones in the same descending
order. This approach faces two main drawbacks, first it is not optimized since
the priority of the migrations are only based on their migration times and the
algorithm does not consider the dependencies. A simple example is when a virtual
machine with large memory size cannot migrate due to the lack of resources in the
destination which is being held by one or more virtual machines smaller in mem-

ory size. Other problem, deadlock happens when there is one or more cyclic chain

29

© 0w NS TR W N

T B O
S A W N R O

Chapter 4 Virtual Machine Live Migration Scheduling

of dependencies, a basic heuristic can not detect or solve this type of complexity.
For addressing these issues we can use migration dependency graph, which has
been used in Onoue et al. [3], the authors propose a heuristic algorithm which
makes use of a migration dependency graph (detailed definition in Section 4.1.1)
and migration dependency weights (details in Section 4.1.2), to find the priority
(dependency sequence) of the migrations and also to detect possible cyclic depen-
dencies which results in deadlocks (Section 2.2). First we define the dependency

graph and the algorithm to weight the migrations.

4.1.1 Dependency graph

To find the feasible sequence of migrations and the most prior ones, Onoue et
al. [3] define a migration dependency graph d = (V°, L") [3] which is generated
based on this observation that a migration is possible when there is no shortage of
resources in the destined server to host a new virtual machine. In Onoue et al. [3]
migration time for each virtual machine assumed to be equal to its memory size
(without loss of generality), more accurate formula for calculating the migration

time is described in Section 2.2.

Algorithm 1: Generating dependency graph

Result: Dependency graph

Data: VMs, Servers, PLCURRENT and PLN®*T VM migration times

C's < free resources in server s

R, + resource demand for VM v

Ing < list of VMs migrating to server s

Outg < list of VMs migrating from server s

d<{} // empty graph

foreach s € Servers do

Ing — sort descending migration time

foreach v € Ing do

if s has enough resources for v then
Cs=Cs— Ry
Ing = Ing — {v} // remove v from Ing

end

f Ing # () then

add an edge from Ing to Outs

add Ing and Outg to d

e

end

30

Chapter 4 Virtual Machine Live Migration Scheduling

In Algorithm 1, we assume each dependency edge is from a set of migrating virtual
machines to a server, for which there are not enough resources at the current time
in the destination server, to the set of virtual machines which are currently in
the server (PLC"™T) and will migrate from the server based on PLN**T. This
dependency edge means the coming virtual machines can migrate after one or more

LEVRRENT mgve from the server (finish

of the virtual machines in the server at P
migrating) and release resources. To achieve this in Algorithm 1, for each server,
we sort the coming VMs in descending order of their migration times (coming
VMs are the virtual machines which supposed to migrate to the current server in
PLN*™*T) and by iterating over them, we check if there are enough resources on

LCURRENT " if 50 we reserve the required

the server for each of them based on the P
resources (subtract the required resources from the available resources) and remove
the VM from list of coming VMs until there are not enough free resources for any
of the VMs. If one or more VMs left in the set of coming VMs, we draw an edge
from this set to the set of outgoing VMs from this server.

Consider the example of Figure 4.1, current and next placements are as described

in Table 4.1. In this example we assume migration times are equal to memory size

of each virtual machine without loss of generality.

Server #1 Server #2 Server #3 Server #4 Server #5
Server memory: 20 memory: 20 memory: 25 memory: 30 memory: 40
resources processor: 15 processor: 15 processor: 30 processor: 30 processor: 35
PLcurrent VM;, VM VMg VM5, VMg VM., VM7, VM3 VMg
PLxexr VM7 VMy VMg , VM3, VM, VMg, VM VMs5,VMy4
Dependencies VMg —> VMg {VMg, VM1} —> {VM5, VMo } {VMg, VM2 } —> {VM.4, VM7, VM3 } -

VM resources (memory , processor)

VM1:5.5) VM>:(10,8) VM3:(5,5) VM,(15,10) VM;:(3.8)
VMe:(16,16) VM7:(2,2) VMs:(10,8) VMo:(10,8)

VM migration times

VM;:5 VM2:10 VM35 VMy:15 VMs5:8
VMg:16 VM7:2 VMg:10 VMg:10

TABLE 4.1: PLcyggenr and PLygxr of the virtual machine migration

For example in Figure 4.1, server 3 currently has 7 units of memory and 14 units
of processor as free resources. After sorting the virtual machines migrating to
server 3 in descending order of migration times, for example {V Mg, V M3, V M, },

we cannot migrate V' Mg due to the lack of enough free resources in the server. If

31

Chapter 4 Virtual Machine Live Migration Scheduling

Server 1: (20,15) ' Server 2: (20,15)
=
VM,: (5,5) VM8:(10,8) '
VM:(8,8)

il
)
——

VM,:(15,10)

= f
VM:(2,2) |

Server 3: (25,30)
VM¢:(16,16)

Server 5: (40,35)

Server 4: (30,30)

FIGURE 4.1: Virtual machine migration example

VM, VM,
-—

VM, VM6

VM,

VM, » VM,
—

VM, VM,

FIGURE 4.2: Example of migration dependency graph

we check the next candidate, we can migrate V M3 so we remove it from the list
of migrating virtual machines to the server and update the free resources to {2,9}
(memory and processor respectively). This is the last possible migration, so there
is an edge from {V Mg, V M} to {VM;,VMy}. We do the same for all servers
to obtain the whole dependency graph. The entire migration dependency graph
generated based on dependency graph of each server, is depicted in Fig. 4.2.

As we describe in Algorithm 1, also shown in the example, one edge from a set

of virtual machines to the other one, does not state an exact dependency relation

32

Chapter 4 Virtual Machine Live Migration Scheduling

between two sets. This is because we put an edge from VMs of blocked incoming
migrations to all outgoing migrations of a server. It is possible that by migrating a
subset of VMs in the destination node, there are enough resources to free enough
spaces for coming VMs. This concludes that the dependency graph is not an exact

modeling of the dependency relations.

4.1.2 Migration weights

Migrating the virtual machines in descending order of their migration weights
instead of migration times, probably decreases the makespan in a heuristic algo-
rithm by considering the dependencies. Migration weights are calculated based
on virtual machines migration times and migration dependencies. The migration
weight for each virtual machine is the sum of its migration time and migration
weights of its dependent virtual machines. After generating migration depen-
dency graph MDG, migration weights are calculated as described in Algorithm 2.
In this algorithm first we calculate the dependency weights for the VMs in the
sets with no incoming edge in a dependency graph (the VMs which no other VM
is dependant to them) which is equal to their migration time. And then we add
this weight to the migration times of the immediate dependant VMs. When the
migration weights of all dependant VMs calculated, we remove incoming edge of
the dependant VMs and repeat the process. If there is no VM set with no incom-
ing edge in the dependency graph either we have finished weighting all the VMs in
the dependency graph or we need to migrate temporarily a VM set with minimum
summation of migration times to generate a node with no incoming edge (line
21 in Algorithm 2). This step is just for calculating the migration weights and
later whether temporary migrations are really required or not, is decided during

migration process in the main algorithm.

As an example in Figure 4.3, the migration times for V My, V My, V M3 and V M,

are 2, 3, 1, 2 respectively. For calculating the migrations weight we start from

33

© 0w NS TR W N -

NN NN NN O e e e e e e e e
S U R ®NR O © N O WA W RO

Chapter 4 Virtual Machine Live Migration Scheduling

Algorithm 2: Calculating Migration Weights

Result: Migrations Weights w
Data: VMs, Dependency Graph d , migration times (M,
Nodes « List of VMs in g;
w <+ {} // array of migration weights
foreach v € Nodes do
| wv] «-0
end
repeat
0 < get a VM set with no incoming edge in d;
if (o0 is not empty) then
foreach v € 0 do
wlv] <= wv] + My;
if v has outgoing edges (d) then
Dep <+ Dependant VMs of v;
foreach D € Dep do
| w[D] + w[D] + wlv] ;
end
remove outgoing edges of V (d)
add wlv] to w
remove V from Nodes

end
else
// when o is empty ;
Vi <= VM set with min sum of migration times;
remove outgoing edges from Vi (d)
end

until Nodes is empty;
Return w;

: migration time of VM v)

V' M; which has no incoming edge. Migration weight for V' M; is equal to its mi-

gration time which is 2. Then for the VMs in the set {V M;} which is dependant

to the set {V My, V M3}, we calculate migration weight of 5 (3 + 2) for V' M,, and

for VM3, 3 (1 + 2). In the next step for V M, migration weight equals to 10 (2 +

5 + 3). Based on these weights the migration order will be [VM, , VM, , VM3 ,

V' M, |, which for this simple example can be directly derived from the dependency

graph.

34

Chapter 4 Virtual Machine Live Migration Scheduling

VM,

VM, — » —_— VM,
VM,

FIGURE 4.3: Example of dependency graph

4.1.3 Onoue et al. heuristic

In this heuristic virtual machines are migrated in an order that meets the feasi-
bility and also optimally for reducing the makespan (total migration time). First
for feasibility, the algorithm needs to find migration candidate VMs which are not
forced to wait for availability of resources in the destination they reside in PL ™",
in other words virtual machines which are in nodes (sets) where there is no out-
going edge in the dependency graph. The availability of bandwidth for migrating
also must be verified.

For finding the deadlocks or cyclic dependencies, the algorithm checks each con-
nected component of the dependency graph, they look for feasible migration by
checking whether there is any VM without outgoing edges in the connected compo-
nent, if no it means there is no virtual machinethat can start its migration and we
have a deadlock, in this case we have to solve such cyclic dependencies by moving
a VM set to a temporary location to make some migrations feasible. These tran-
sient migrations have additional costs (increased makespan, quality degradation)
for the migration planning, for this reason Onoue et al. [3] select a source node
(VM set) in the cyclic connected component of the dependency graph, with one
with minimum sum of migration weights. We can use migration weights for get-
ting the order of migrations. When there are multiple VMs ready to be migrated
it is more optimized if we prioritize the ones with more dependent migrations, in
other words VMs with bigger migration weights.

The complete heuristic is shown in Algorithm 3. First it starts to find the possible
deadlocks by checking connected components of the dependency graph (Algorithm

3 line 9). If any of the connected components does not have at least one feasible

35

Chapter 4 Virtual Machine Live Migration Scheduling

migration, in other words a VM set without outgoing edges in dependency graph
(independent node) (Algorithm 3 line 11), it will be added to the list of cycles.
Afterward it solves the deadlocks by transforming migration dependency graph
(Algorithm 3 line 20), which is described in detail in Algorithm 4. Then it checks
the independent migrations and starts the feasible ones in descending order of mi-
gration weights by checking if there are enough resources in the destination server
and enough network bandwidth (Algorithm 3 line 21). After finding and starting
a set of migrations, it looks for the next set of VMs among the ongoing migra-
tions that are going to finish their migrations first, and finishes their migration
by releasing the resources on the source servers and subtracting the passed time
from the remaining time of all ongoing migrations (Algorithm 3 line 32). After
starting new migrations or finishing a set of migrations the dependency graph and

migration weights are updated.

4.1.4 Corrections and completions

In this section we describe some added parts to Onoue et al. [3] heuristic which
we found by some means necessary for implementation of the algorithm and we
proposed a solutions for them.

One of the modifications, shuffling the temporary migrations, in fact improves the
Algorithm 3, but it was necessary to construct an algorithm to finish all migrations
for data sets with average and high complexity to provide us a source for evaluating

our own heuristic.

Retrieving temporary migrations

For solving the cyclic dependencies, transform MDG method (Algorithm 4) inside
Algorithm 3 creates temporary (transient) migrations. After adding these tem-
porary migrations, because they have the highest weight in the related connected
components, they are going to migrate as soon as other constraints are solved (for

example network bandwidth). We need to keep the track of original migrations

36

Chapter 4 Virtual Machine Live Migration Scheduling

Algorithm 3: Onoue et al. [3] algorithm

Result: Total migration time

Data: M: migration times, S: server capacities, V : virtual machine capacities, P
PLN**T n: topology graph

d + generateDependencyGraph (PLCVERENT | PINEXT 1 Q) (d = (VP LP))

c+—{} /] MDG cycles;

x <+ {} // migrateable VMs;

r <+ {} // migration time steps;

1+ {} // next migration candidate VMs;

t <+ {} // independent VMs after solving cycles;

i<+ {} // list for keeping independent VMs;

w // migration weights;

foreach connected component g in d do

w < CalculateMigration Weights(g , M);

i « getV M sWithoutOutgoing Edge(g,w) ;

LCURRENT

© 0 N O oA W N

[
= O

12 if i = 0 then

13 ‘ add g to ¢

14 else

15 ‘ add i to 1

16 end

17 end

18 repeat

19 if ¢ is not empty then

20 t + TRANSFORMMDG(c, P LCVRRENT P [NEXT G V)
21 foreach vm in [do

22 if destination has enough resources and path has bandwidth then
23 reserve resources;

24 add vm to z;

25 remove vm from [;

26 end

27 add ¢ to [;
28 if z is empty AND [is empty then

29 ‘ unsolvable deadlocks

30 else

31 y < min migration time calculated for x (w);
32 foreach vm in z do

33 migrate vm and release resources ;

34 update d = Gym

35 1 < get VMs without outgoing edges € g;
36 if i is empty and g is not empty then
a7 | add g to ¢

38 else

39 ‘ add i to [

40 end

a1 end

a2 add y to r

43 end

a4 until d is empty;
45 return r

37

© 0w NS TR W N -

T T N S e S S S Gy S
H O © 0 N O Uk W N R O

22
23
24

Chapter 4 Virtual Machine Live Migration Scheduling

Algorithm 4: TRANSFORM MDG : method in Algorithm 3
Result: create independent VMs
Data: cMDG, PLCVRRENT - PINEXT 'SV
VMs; <+ find VM set with min sum of migration times in target nodes of cMDG
Sc <+ current server of vs; in PLCVRRENT
sn < servers for each VM € V Ms; in PLN®XT
s[v] // new location for transient migration for VM v
isSolvable < true // boolean if cycles is solvable
foreach v in VMs; do
foreach s in n do
if s # Splv] AND s # S. AND s has enough resources for v in PL°VRF*NT then
s[v] < s
break

end

if s[v] # null then

| add new transient migration (v , s[v])
else

isSolvable < false ;

break

end

end
// all VMs can be migrated to temporary locations?
if isSolvable then
remove incoming edge to VMs; , update cMDG Return (VMset without outgoing
edges in cMDG)

else
‘ cMDG has a unsolvable deadlock
end

(PL"™T) and as soon as all the migrations in the related connected component
finish their migration add a new migration from temporary server to the original
destination in PL""*" for temporarily moved VMs (Algorithm 5), so in next itera-
tion the dependency graph includes migrations which retrieve the temporary ones,
otherwise we will reach a different or even infeasible PL"**" during the migrations
or when all migrations are done. The authors might consider this step in their

implementation of the heuristic, but it is not mentioned clearly in their paper [3].

38

© 0 N, TR W N

e e e e e
L O e R)

Chapter 4 Virtual Machine Live Migration Scheduling

Algorithm 5: Finishing next wave of migrations

OM < List of ongoing migrations
t;, ¢ remaining time of an ongoing migration m
start
t < min t,,, for virtual machines € OM
foreach vm € OM do
if ¢,,, =t then
// release resources in source server and start vm in destination

PLy N = PLy™
if vm was a temporary migration then
| PLYET = Original(PLYES™)
else
| tum < tom — €
end

end

Shuffling temporary migrations

In the heuristic methods we cannot find the possible optimal temporary servers for
transient migrations. In case of blockage, we can change the temporary migration
and add a new or final location for some of the temporary migrations (shuffling
temporary, for solving blockages). It happens when the locations selected for tem-
porary migrations become unavailable before they start migrating. For example
if there is another migration with higher weight that starts migrating (reserving
resources) on temporary server and reserve it resources. In this situations we need
to find a new temporary server, otherwise we will encounter blocked migration(s).
With having a better method for choosing the temporary servers for transient mi-
grations, we can decrease these type of blockages with a better greedy selection
of temporary servers (as described in Section 4.2.2). As an example in Figure 4.4
, we can see adding shuffling temporary migration step can increase the number
of successful migration specially when number of total migrations increases. The
chart in Figure 4.4, compares Onoue et al. [3] algorithm for datasets (33 datasets)
of 100 servers with and without adding the shuffling temporary migration steps to
the algorithm. As we go right in horizontal axis number of VMs to be migrated

in datasets increases.

39

Chapter 4 Virtual Machine Live Migration Scheduling

finished migrations

FI1GURE 4.4: Shuffling temporary migrations effect on total finished migrations

4.2 Scheduling virtual machine migrations

In this section we propose our heuristic for minimizing the makespan (total mi-
gration time) of multiple simultaneous virtual machine migrations. We use the
concept of migration dependency graph introduced in Onoue et al. [3] (described

in Section 4.1.3).

4.2.1 Introducing contributions of this study

In our heuristic we use the strategy of the first fit decreasing (FFD) algorithm.
The weights or sizes of migrations are their dependency weights calculated by
migrations dependency graph (described in Section 4.1.2) to assure priority of
the migrations based on the availability of resources on source and destination
servers of the migrations. We also use the dependency graph to find the possible
deadlocks. For solving the deadlocks we must move one or more of migrating

40

Chapter 4 Virtual Machine Live Migration Scheduling

VMs in the cycle to a temporary server other than source and destination of their
migration, similar to what described in Algorithm 4.

Based on our observations on Onoue’s algorithm we found and solved the below
mentioned issues and improved the makespan, energy consumption and quality

degradation of the solution in our heuristic:

1. Retrieving temporary migrations as early as possible.
2. Adjusting temporary migration locations

3. Reducing the number of temporary migrations.

4. Reducing makespan.

5. Option of trade-off between makepsan and quality degradation during mi-

grations

Temporary migrations are not desirable, since we have to conduct an extra migra-
tion also we need to put a VM in an unplanned server for a period of time, for
addressing item 1, we need to wait for the availability of resource in the original
destination of the migrations and move the temporary migration VM set to the
original destination, more description can be found in Section 4.1.4. This step is
added to our heuristic in line 13 of Algorithm 6.

Item 2 is needed to make sure the temporary migrations can start as soon as pos-
sible, otherwise the number of temporary migrations and a chance of migration
blockages increase. The server loads are changing during the migrations and op-
timally of selected temporary locations is not guaranteed, so if they cannot start
migration right away due to unavailability of resources on the temporary location,
we need to check and adjust the location of temporary migrations. This is de-
scribed in Section 4.1.4.

Temporary migrations increase energy consumption, quality degradation and makespan,
to reducing number of temporary migrations, item 3, we introduce a new policy
for selecting the time to generate temporary migrations and also a method to se-

lect temporary migration locations more optimally. These two help decreasing the

41

Chapter 4 Virtual Machine Live Migration Scheduling

number of temporary migrations effectively, the details are in Section 4.2.2.
Waiting for a more optimal moment to conduct the temporary migrations, as a
solution for item 3, has a drawback of increasing makespan due to reducing the
usage of the available bandwidth for migrations. For overcoming this issue and
minimizing the makespan, (item 4), we add a step which checks if usage of the net-
work drops below a threshold (Section 4.2.4) and solves possible cycles and start
some temporary migrations. Also better detection of cycles can help to manage
temporary migrations earlier (Section 4.2.3).

Beside reducing the makespan, minimizing the migration costs (energy consump-
tion and/or quality degradation) is part of the objective of the problem (item 5),
reducing number of temporary migration with cost of increasing the makespan,
can reduce the energy consumption and quality degradation which is described in

Section 4.2.2, Subsection "Minimum number of transient migrations strategy’.

Algorithm 6 shows the initial version of the proposed heuristic. The inputs of the
algorithm are virtual machines and servers capacities, migration times (described
in Section 2.2), legacy and new placements. With these inputs we can extract
the list of migrations and generate migration dependency graph. For finding and
starting migrations we iterate over all migrations sorted on descending order of
their dependency weights (line 6) and check if we can start migrating them. The
method resourcesAvailable checks if the destination server of the migration has
enough resources (at the current moment) to host the VM, also if there is enough
network bandwidth to convey the migration. The method startMigrating, reserves
the resources on the destination server and updates the network capacity for mi-
grations (network parallel degree).

Also we check if there are temporary migrations for which the original destination
(not the temporary location) has enough resources at the moment, because during
the possible period for pending temporary migrations, the servers capacities might
change so there is a possibility of moving the VM of a temporary migration to its

original destination. The started migration are kept in a list (x). If this list, z, is

42

Chapter 4 Virtual Machine Live Migration Scheduling

empty and we still have undone migrations it means there are locked migrations
that can be found by checking the connected components with no independent
VM (line 22), then we solve the cycles (same as Transform MDG described in
Algorithm 4) and update the dependency graph to have new migrateable VMs.

At the end of each iteration, we look into ongoing migrations and finish the next
set of them with lowest remaining migration time in method finishNextMigrations

(as shown in Algorithm 5).

4.2.2 Reducing number of temporary migrations

Algorithm 3 is a greedy one and order of migrations and temporary locations cho-
sen for transient migrations are not optimal, hence in a complex dataset for virtual
machine migrations planning, it results in considerable number of temporary mi-
grations. In our experiences with generated datasets (described in Section 5.1)
there are lots of temporary migrations needed for finishing migrating all of virtual
machines to their final destination. For dataset of 50 servers, the average ratio of
number of transient migrations to number of total planned migrations (relocated
virtual machines) is about 40 percent (Figure 4.5). The more complex the prob-
lem (more migrations, highly loaded servers, etc.) the more number of temporary
migrations are needed.

These temporary migrations are highly costly, they expand the resource usage dur-
ing these unwanted migrations and decrease the quality for the services running on
them and also on other VMs residing on the same servers by using sever and net-
work resources. Also temporary migrations increase the chance of new blockages,
by occupying twice the amount of resources during the migration. With average
of 40 percent increase in number of migrations for achieving a new placement (see
Figure 4.5), any service degradation or energy consumption that is a proportion
of the number of migrations will also increase with that amount. In switch based
networks such as fat tree topology a part of the energy consumption by network

is a proportion of number of bits conveyed by the network [30], so these excess

43

Chapter 4 Virtual Machine Live Migration Scheduling

migrations increase the energy consumption for migrations with the same rate of
increase in number of migrations, subsequently.

We propose two approaches for reducing the number of temporary migrations in
our method, first "waiting for ongoing migrations to be finished before adding tran-
sient migrations’ and also ‘optimizing selection of temporary servers’ for those

migrations.

Temporary migrations

M Total migrations W Temporary migrations

350

: l.m..mmmllllllllhll||||||L

Datasets

P
o
o

Migrations
=
Ln
[=]

[
o
o

FIGURE 4.5: Temporary migrations generated for Algorithm 3 (datasets of 50 servers)

Waiting for completion of ongoing migration

Based on the datacenter network’s parallel degree for concurrent migrations, the
number of simultaneous migrations can affect free resources of the servers and
create new and strict dependencies in the network. Independent of the method
used for virtual machine migration (pre-copy , post-copy, or mixed), during the
migration each virtual machine occupies twice the amount of physical resources
in servers, since after starting the migration and before starting the copied vir-
tual machine in the destination at (PLN™T) there is two copies of the virtual
machine in the datacenter. If we want to generate the dependency graph during
migrations there will be less resources at destinations which results more possible

44

© 0 N O A W N

e e s
o W N = O

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

Chapter 4 Virtual Machine Live Migration Scheduling

Algorithm 6: Heuristic: Initial version

Result: Total migration time
Data: M: migration times, S: server capacities, V : virtual machine capacities, P
PLYEXT 1 : datacenter network
d + generateDependencyGraph (P LCVRRENT & p [NEXT)
m <« {} // all migrations;
c+{} /] MDG cycles;
x + {} // ongoing migration VMs;
1+ {} // feasible migration candidate VMs;
while m # empty do
if | # empty then
sort (1) // descending dependency weight;
foreach vm € [do
if resourcesAvailable(vm, n) then
startMigrating(vm);

add vm to x;
else if vm = tempMigration & resourcesAvailableForOriginal(vm,n)
startMigrating ToOriginal(vm);
add vm to x;

end

end
remove x from I
end
if © = empty then
foreach connected component g in d do
1+ getV M sWithoutOutgoingEdge(g) ;
if ¢ = () then
‘ add g to ¢
else
‘ add i to'l
end
end
if ¢ # empty then
SolveCycles(c);
d + generateDependencyGraph (PLCVRRENT & PINEXT “p).
I add getVMsWithoutOutgoingEdge(d);
else
shuffle TempMigrations();
d + generateDependencyGraph (PLCURRENT & PNEXT 1),
1 < getVMsWithoutOutgoingFEdge(d);
if i # () then
‘ l add 1;
else
‘ infeasible migrations
end

end

if © # empty then

x remove finishNextMigrations(x) ;

GD + generateDependencyGraph (PLCVRRENT & PINEXT “p),
I add getVMsWithoutOutgoingEdge(GD);

end

end

LCURRENT

then

45

Chapter 4 Virtual Machine Live Migration Scheduling

dependencies. Also for solving possible deadlocks there are less available tempo-
rary locations in the network. For this purpose in our heuristic when we start
migrating a group of virtual machine, we wait until this wave of migrations fin-
ishes (with some exceptions described in Section 4.2.4), then we regenerate and
look for possible cycles in the dependency graph. As we can see in Algorithm 6
line 20, if there is no ongoing migrations then we check if a connected component
does not have any VMs without incoming edges and solve the deadlock, it means
unless there is no feasible migration in the whole network we are not trying to
solve the cyclic connected components in the dependency graph by adding new
temporary migrations.

Since we are not solving the cycles as they appear in the dependency graph, we
don’t need to iterate over the connected components in dependency graphs (to
detect cycles) as done in algorithm of Onoue et al. [3] (Algorithm 3 line 9), and

we can loop over the migrations as done in Algorithm 6, line 6.

We must mention here, although the approach of the heuristic in Algorithm 6
decreases the number of temporary migrations significantly, it has a drawback
of increasing the makespan (total migration time), which is caused by not using
the full capacity of network when there are cyclic connected components waiting
for the ongoing migrations to be finished. This issue can be solved by checking
the number of ongoing migrations against a threshold and adding more transient

migrations to the network (Section 4.2.4).

Optimize temporary location selection

For temporary migrations we can chose any server other than the current location
and the migration destination of the virtual machine(the candidate VMs for tem-
porary migration are inside a cyclic dependency graph component, which indicates
they have an outgoing edge and they cannot migrate to their original destination
at the current moment). The simple way of selecting a temporary location for a

transient migration is to search for a server that currently has the free capacity

46

Chapter 4 Virtual Machine Live Migration Scheduling

to host the virtual machine, which is used in Onoue et al. [3] heuristic in method
TransformMDG (Algorithm 4 line 7).

The parameters affect the selection of a temporary server (in a heuristic manner)
are the conditions of the server at current and new placements. For this purpose

we define a new formula to calculate a score for each server.

Si(s) = fo x ce(8) + fn X cnls) (4.1)

total score for server s <— St(s)

current capacity (PLCURRENT) factor <— f,

new capacity (PLY™XT) factor <— f,

free capacity of server s in (PLCVRR™NT) <— ¢, (s)

free capacity of server s in (PL¥™T) <— ¢, (s)

In Equation 4.1, free capacity for current assignments (c.) is calculated based on
the free capacity of each server at the current situation of the datacenter (not the
starting legacy assignments before the migrations started). Free capacity based
on the PLN**T (¢,) is the free capacity of the server at new placements, which is
the free capacity of the server when all migrations are done. Diagram in Figure
4.6 depicts the average number of temporary migrations with different values for

fo and f, after executing Algorithm 6 for 36 datasets of 50 servers.

Selecting the temporary migration based on their free resources after all migrations
are done, reduces the number of temporary migrations. With this observation we
can say it happens because we have to put transient VMs in locations which are
less likely destination for the coming migrations in next steps to avoid creating
new infeasible migrations (dependencies) which generates new temporary migra-
tions consequently. So selection of temporary servers (line 7 Algorithm 4) from the

feasible servers (those have enough resources for the transient VM in PLCVRRENT)

47

Chapter 4 Virtual Machine Live Migration Scheduling

Temporary server selection method effect
70

50
(0,1} 1,1} 1.2} 21

randomly selected {1,0}

a
=}

average number of temp migration
n
o

n

Temporary server selection formula

FIGURE 4.6: Temporary server selection with different f. and f,

we select the one with the maximum S;.

Minimum number of transient migrations strategy

In Algorithm 4, if a connected component in the migration dependency graph,
(¢cMDG) does not have any virtual machine set with no outgoing edges is con
cyclic dependencies and we need transient (temporary) to solve the deadlock. For
transient migrations we select a set of virtual machines with minimum summation
of migrations times in the cM DG, the purpose of this selection is to minimize time
required for moving the transient migration to their temporary locations, but it
does not minimize the number of transient migrations. In cases where we want to
minimize the number of temporary migrations (for example with the objective of
affecting less number of services with quality degradation) in the step of solving
the deadlocks, we can select the minimum size virtual machine set instead of
choosing the set with minimum summation of migration times. This selection
has a drawback of increasing the makespan and also amount of data flow in the
datacenter which results in more energy consumption, but decreases the number

of transient migrations.

48

Chapter 4 Virtual Machine Live Migration Scheduling

4.2.3 Large connected components

For big connected components in a busy datacenter, waiting for dependencies to
be solved, increases the overall time. In Algorithm 3, for finding the feasible mi-
grations which can be detect by selecting virtual machines belong to sets without
outgoing edges in dependency graph, we iterate over connected components in the
dependency graph. In complex datacenter server placements (with higher num-
ber of migrations relative to number of virtual machines or servers), we might
have large connected components in dependency graphs. So if we have cycles in
a connected component which need transient migrations to proceed, the process
of solving cycles waits until all other feasible migrations in connected components
are done. This excess waiting increases the makespan.

The above observation is considered in Algorithm 7. If there is no ongoing migra-
tions (there was no feasible migration to start) we check for every cycles inside the
dependency graph without considering the connected components (line 20). This
means if we have complex connected components we start solving possible cyclic
dependencies earlier and concurrently, which results to conducting more required

transient migrations simultaneously.

4.2.4 Speeding up by solving largest cycle periodically

Minimizing number of temporary migrations by waiting for ongoing migration to
be finished before solving the deadlocks has a drawback of declining usage of free
network capacity for conducting the temporary migrations. It means even when
there is free capacity for the network and feasible candidate servers for transient
migrations, we are not starting the transient migration immediately and the goal
of reducing temporary migrations we are increasing the makespan (total migration
time). One solution for tackling this issue is to avoid waiting unconditionally for
the ongoing migrations to be finished. We can have a threshold for number of on-
going migrations after which we can start moving transient migrations. The affect
of this change (beside decreasing makespan) on number of temporary migration

49

© 0 N O G~ W N

[S S S U
oA W N = O

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

Chapter 4 Virtual Machine Live Migration Scheduling

Algorithm 7: Heuristic

Result: Total migration time

Data: M: migration times, S: server capacities, V : virtual machine capacities, P
PLY®XT 1 : datacenter network

LCURREN'I‘

d + generateDependencyGraph (P LCUVRRENT p [NEXT)

m + {}

c+{}

x+ {}

// all migrations;
/] MDG cycles;
// ongoing migration VMs;

1 + getV M sWithoutOutgoingEdge(d) // feasible migration candidate VMs;
while m # empty do

e

€

end

if [# empty then

sort (1) // descending dependency weight;
foreach vm € [do
if resourcesAvailable(vm, n) then
startMigrating(vm);

add vm to x;
else if vm = tempMigration & resourcesAvailableForOriginal(vm,n) then
startMigrating ToOriginal(vm);
add vm to ;

end

end

remove x from l;

nd
if 2=0 & m # 0 then

¢ < detectCycles(d) ;
if ¢ # empty then
SolveCycles(c);
d + generateDependencyGraph (PLCVRRENT & PTNEXT “p),
I add getVMsWithoutOutgoingEdge(d);
if [=0 then
‘ infeasible migrations
else
shuffle Temp Migrations();
d + generateDependencyGraph (PLCVRRENT & PTNEXT 1),
i < getVMsWithoutOutgoingFEdge(d);
if i # () then
‘ [add i;
else
‘ infeasible migrations
end
end

nd
if © # empty then

x remove finishNextMigrations(x) ;
GD < generateDependencyGraph (PLCURRENT & PINEXT “p);
[add getVMsWithoutOutgoingEdge(GD);

end

50

Chapter 4 Virtual Machine Live Migration Scheduling

depends on the complexity of the network. Based on our datasets, for simple and
average complexities it decreases the number of temporary migrations too, though
for some of the highly loaded networks in sample data it increases the number of
temporary migration slightly which is neglectable considering lowering makespan

more effectively.

Makespan
m With finding and solving Largest Cycle m Algorithm 7
7000

6000
5000

Time

4000
3000

o i I |I| IlII‘
1000
0 -----—----ll'.'l l'l IIIII '

Datasets

Temporary migrations

m With finding and solving Largest Cycle m Algorithm 7

40

30

20 ‘
lz __________ ll-l;l_‘_ﬂlll___;i —ll

Datasets

Temporary migrations

FicURrE 4.7: Effects of adding the method of solving largest cycle to Algorithm 7

Diagram in Figure 4.7 shows the results of running Algorithm 7 with and without
method of solving the largest cycle in each iteration. As depicted in the diagram,
the average of total migration time is reduced by 15% while the number of total
temporary migration has a 2.7% rise. Sample dataset consists of 50 servers, the
horizontal axis is the number of migration for each dataset and the threshold in

line 20 Algorithm 8 is the number of migrations divided by number of servers.

o1

Chapter 4 Virtual Machine Live Migration Scheduling

Final Heuristic

With applying all the optimizations described in this chapter to our heuristic,
the final Algorithm 8 is concluded. The goal of this algorithm as mentioned in
Chapter 2, is to reduce the makespan of simultaneous migrations while trying to
avoid unnecessary transient migration as much as possible to avoid service quality
degradation and excess energy consumption. The evaluation of this heuristic has
been done against exact methods and other heuristics in the literature in the next
chapter.

In this algorithm we iterate over the migrations as we mentioned in beginning of
the Section 4.2. Checking for migrateable VMs and start their migrations, lines 7
to 19, is the same as Algorithm 7. While we still have ongoing migrations, we check
if the number of proceeding migrations is less than a threshold, we find the largest
cycle and by solving it we make more feasible migrations ready to be started (line
24). If all the migrations are finished, we try to solve all the cycles to make best
use of the free network bandwidth for temporary and new feasible migrations, we
also check and if there is no new cycles (to generate new temporary migrations),
we try to find new locations for possible blocked temporary migrations (line 35)
by shuffling pending temporary migrations.

In the last part of the algorithm, we finish next wave of ongoing migrations, we
find the smallest remaining migration time among the ongoing migrations and sub-
tract it from remaining migration times of all ongoing migrations (inner method
finishNextMigrations()). For the ongoing migrations with zero remaining migra-
tion times (finished one), we mark the migration finished and release the resources
at the source server. Finishing a migration affects the migration dependency graph
and migration weights, which must be updated in this step. After updating depen-
dency graph, we might have new VM set without outgoing edges, in other words
new feasible migrations which must be added to the corresponding list (lines 45

to 49). We repeat this procedure until all the migrations are finished.

52

Chapter 4 Virtual Machine Live Migration Scheduling

Algorithm 8: Final Heuristic

Result: Total migration time

Data: M: migration times, S: server capacities, V : virtual machine capacities,
PLCVRRENT " DPTNEXT 'y + datacenter network

d <+ generateDependencyGraph (P LCVRRENT & p [NEXT)

m <+ {} // all migrations;

c+{} /] MDG cycles;

x <+ {} // ongoing migration VMs;

W N =

'S

5 | < getV M sWithoutOutgoing Edge(d) // feasible migration candidate VMs;
6 while m # empty do
7 if [# empty then
| ... start migrating VMs in |
19 end
20 if 0 < z.size < threshold then
21 C) + getLargestCycle(d) ;
22 SolveCycle(Cy);
23 d + generateDependencyGraph (P LCVRRENT & P NEXT "p),
24 I add getVMsWithoutOutgoingEdge(d);
25 end
26 if =0 & m # () then
27 ¢ < detectCycles(d) ;
28 if ¢ # empty then
29 SolveCycles(c);
30 d < generateDependencyGraph (PLCVRRENT & PINEXT "p),
31 l add getVMsWithoutOutgoingEdge(d);
32 if I =0 then
33 ‘ infeasible migrations
34 else
35 shuffle Temp Migrations();
36 d < generateDependencyGraph (PLCVRRENT & PINEXT p).
37 i < getVMsWithoutOutgoingEdge(d);
38 if i # () then
39 ‘ [add 1;
40 else
41 ‘ infeasible migrations
42 end
43 end
44 end
45 if x # empty then
46 x remove finishNextMigrations(z) ;
a7 GD < generateDependencyGraph (P LEVRRENT = p[NEXT “p);
48 I add getVMsWithoutOutgoingEdge(GD);
49 end
50 end

53

Chapter 5

Numerical Results

The heuristics described in Chapter 4 are implemented and evaluated by run-
ning them for generated datasets. Although the main contribution of this study
is represented in final heuristic (Algorithm 8), in Chapter 4 we introduced some
intermediate heuristics to test and compare improvement steps. The numerical
results for comparing those heuristics can be found in previous chapter (for exam-
ple Figures 4.4 and 4.7). Also, we introduced a modified version of final heuristic
with the strategy of minimizing number of temporary migration in Section 4.2.2,
this heuristic is compared with final heuristic in this chapter (Section 5.2).

In this chapter, we introduce our data generator in Section 5.1. We compare the

results of the final heuristic with other heuristics and exact models in Section 5.2.

5.1 Data generator

During the implementation and for evaluating the heuristics of this study we used
the data instances generated for a parallel study conducted by Jaumard et al.
in [29]. The data instance generator, generates datasets based on different input
parameters, each dataset consists of servers and their characteristics (available
memory, processor and network bandwidth), virtual machines and their capacities,

current and new placements from which we get the migrations. The values for

o4

Chapter 5 Numerical Results

virtual machines resources are based on the Amazon EC2 instances [31]. For

capacities of the servers, we used the characteristics of Dell servers found on [32].

The possible pairs of values (¢, m), as ¢ stands for number of CPU units (virtual

CPU for VMs) and m for memory (GiB) for Servers are (28,128), (56,256), (78,512)

and (112,768) and for virtual machines are (2,4), (2,8), (4,8), (4,16), (4,122), (8,16),
(8,32), (8,244), (16,64), (16,122), (16,488), (36,72), (48,192) and (64,256). For

generating dissimilar datasets, beside the number of servers there are other inputs

to determine the characteristic of each instance :

1. Initial load of server resources, the range which indicates servers load of

resources (CPU and memory) for current placements.

2. Placement scenarios: for generating the new placement of VMs in datacenter

we can choose among the scenarios which are based on real-world problems

of virtual machine placement problems. Each scenario is briefly described as

follow:

(a)

(b)

Load Balancing, this scenario aims to redistribute the VMs in datacenter

in way that servers have approximately the same load/occupancy.

Consolidating, servers consolidation in datacenter aims to optimized the
usage of the servers based on turning off excess servers by packing VMs
more optimized in fewer servers. In this scenario VMs are migrated until

each servers has a load inside an acceptable interval or being empty

(turned off).

Server failure/maintenance, is a case where number of servers in the
datacenter are going to be stopped and all VMs resided in those servers
are migrated to other servers. After number of failing servers is selected

randomly, each related VM must be moved to a random feasible server.

Deadlock shuffle, this scenario does not simulate a real world datacenter
situation, by redistributing all the VMs in a datacenter this scenario
creates a complex migration plan for testing extreme situation such as

having deadlock (cyclic) migration sequences.

55

Chapter 5 Numerical Results

3. Random factor/shuffling, another optional input is a factor for randomly
migrate a portion of VMs in the datacenter, to add more complexity to the

scenarios for simulating the unknown situations in real-world.

For each different number of servers (data center size) of 30, 50, 100, 200, 300 and

500 we generated 32 data set with different above mentioned parameters.

5.2 Comparing the results

In this section, we compare the result of running the final heuristic with other al-
gorithms for different datasets. The comparisons aim to evaluate the results based
on the makespan (total migration time) and number of intermediate (temporary)
migrations. We also compare the makespan and number of temporary migrations
and their bandwidth usage of minimum number of temporary migrations strategy

with final heuristic.

Comparing with Onoue et al. heuristic [3]

Sample results of running the final heuristic against the Onoue et al. heuristic,
Figure 5.1 depicts the results for running final heuristic for a dataset of 50 servers,
the horizontal axis is proportion of number of migrations to number of virtual
machines in each dataset.

In Figure 5.2 we can see the same results for datasets of 100 servers.

As we can see in both Charts, we can migrate the virtual machines with less tem-
porary migrations, the average of temporary migration for datasets of 50 servers
are ~ 88% less than heuristic of Onoue et al. , for datasets of 100 servers number of
temporary migrations reduced by ~ 92% on average. This reduction, are more no-
ticeable when the number of migrations in a datacenter increases. The makespan
is also slightly better in the optimized heuristic, while the main objective was to

reduce the number of temporary migrations.

56

Chapter 5 Numerical Results

Makespan

s OnoUe et @l === Final heuristic

9000
8000
7000
6000
5000
4000
3000
2000
1000

Time

20.5%
21.0%
21.2%
22.7%
23.0%
27.7%
279%
34.3%
34 8%
45 5%
57.9%
50.2%
61.9%
62 4%
62.6%
B5.0%
67.9%
71.2%
71.5%
73.1%
92.5%
o4 1%
96.1%
96.8%
97 7%
98 4%
08 7%
99.1%
00.2%
99.5%
00 5%
99.5%
00 6%

migrations/VMs
Temporary Migrations

s Onoue et al === TFinal heuristic

400
350
300
250
200
150
100

50

Temporary migrations

&
]

20.5%
21.0%
21.2%
22.7%
23.0%
27.7%
27.9%
34.3%
34.8%
45.5%
57.9%
59.2%
61.9%
62 4%
62.6%
B67.9%
71.2%
71.5%
73.1%
92.5%
894.1%
96.1%
965.8%
97.7%
98.4%
88.7%
99.1%
99.2%
99.5%
99.5%
00.5%
89 6%

wn
o

migrations/VIMs

F1GURE 5.1: Comparing makespan and number of temporary migrations of final heuris-
tic and Onoue et al. heuristic - datasets of 50 servers

Comparing with First Fit heuristic

In figure 5.3, we are comparing the result of heuristic 8 with the results of another
heuristic, an FF heuristic (First Fit) method introduced in [29]. For datasets of
30 server, in table 5.1. The heuristic 8 has on average a smaller makespan of 22%
and also finishes all the migrations where the FF algorithm can not finish ~ 11%

of the datasets (dependency deadlocks).

o7

Chapter 5 Numerical Results

Makespan

e Oi0UE €t @l === Final heuristic

8000
7000
6000
w 5000
£ 4000
=
3000
2000
1000
0
a?a‘iaﬂs&a&aﬁa‘&aﬂa?a&aﬂa&a&a?a?aﬂaﬁa&aﬂa?aﬂa?a?eﬂa‘?a&a?a‘iaﬂaﬁataﬂg
L WL e Tl P) S i - W Gl (s Bl R0 e e e) TS 8 T SR By B L B
AERARANRAREUEEEEERREGRFERERERSRESRT
migrations/VMs
Temporary Migrations
s Qinoue et al === Final heuristic
700
wn
§ 600
®
.@ 500
E 400
&
§ 300
2 200
E
£ 100
=
0 i,
FRERERAIEEIIIIRIEAARERIIRI AR EIIRERRRR .
NRBE TN AN MR NN ERNN QO NMNn g RN D
ARRARRARRCOCBEEERRGGTRRIZRRAAERAS

migrations/\VMs

FIGURE 5.2: Comparing makespan and number of temporary migrations of final heuris-
tic and Onoue et al. heuristic - datasets of 100 servers

Comparing the results of big dataset

The results for dataset of 200 servers in depicted in chart 5.4 and table 5.2. In
the chart the results for two datasets with unfinished migrations for FF method
(datasets DS 29 and 30) have been removed. On average the makespans for heuris-
tic method of algorithm 8 is approximately 37% smaller. For comparing how long

the process takes for each method, we can check the cpu time for FF and heuristic

8 (in ms).

o8

Chapter 5 Numerical Results

classification First Fit heuristic Heuristic

g

2 v

3 - 2 ?_ g B b5 2 b

g g °c ° 2 § & £ 2 § 8 £ 2%

£ = 2 3 2) @ £ o o} a £ o @

8 g 2 § E E Z £ = § = £ = § =2
Datasetld £ 5 E & 2 2 2 S ¥ £ & S £ £ &
DS1 Cons 90-100 80-100 0 30 121 30 245 30 0 100% 245 30 0 100%
DS 2 Cons 100-100 80-100 0 30 134 35 123 35 0 100% 123 35 0 100%
DS 3 Cons 100-100 60-80 0 30 121 47 245 47 0 100% 245 47 0 100%
DS 4 Cons 90-100 60-80 0 30 126 54 245 54 0 100% 245 54 0 100%
DS 5 Cons 100-100 80-100 50 30 126 78 945 78 0 100% 945 78 9 100%
DS 6 Cons 100-100 60-80 50 30 118 86 733 86 0 100% 1213 86 0 100%
DS7 Fail 1/3 80-100 50 30 140 72 759 72 0 100% 775 72 4 100%
DS 8 Cons 90-100 80-100 50 30 158 99 1117 99 0 100% 1117 99 6 100%
DS 9 DSHF 60-80 100 30 136 134 2069 134 2 100% 1495 134 4 100%
DS 10 Cons 100-100 60-80 100 30 100 100 1253 100 1 100% 917 100 10 100%
DS 11 Fail 1/3 60-80 0 30 127 46 193 46 0 100% 193 46 0 100%
DS 12 Fail 2/3 80-100 0 30 153 25 123 25 0 100% 123 25 0 100%
DS 13 Fail 2/3 60-80 0 30 129 38 123 38 0 100% 123 38 0 100%
DS 14 Fail 1/3 60-80 50 30 122 74 1511 74 0 100% 1415 74 7 100%
DS 15 Cons 90-100 60-80 50 30 114 83 611 83 0 100% 631 83 0 100%
DS 16 Cons 90-100 60-80 100 30 124 123 2273 123 2 100% 1309 123 20 100%
DS 17 Fail 1/3 80-100 100 30 124 114 2555 114 5 100% 1365 114 16 100%
DS 18 Fail 1/3 80-100 0 30 138 35 245 35 0 100% 245 35 0 100%
DS 19 Fail 2/3 60-80 50 30 125 87 501 87 0 100% 797 87 1 100%
DS 20 Fail 2/3 80-100 50 30 126 73 2427 73 T 100% 2087 73 8 100%
DS 21 LBAL 80-100 50 30 134 121 1509 121 0 100% 1387 121 0 100%
DS 22 DSHF 60-80 50 30 127 120 707 120 0 100% 707 120 0 100%
DS 23 LBAL 60-80 50 30 105 98 417 98 0 100% 445 98 0 100%
DS 24 LBAL 60-80 100 30 114 110 1051 110 0 100% 1051 110 0 100%
DS 25 DSHF 60-80 0 30 157 150 1275 150 1 100% 1111 150 0 100%
DS 26 Cons 90-100 80-100 100 30 133 126 1305 97 0 77% 1543 126 12 100%
DS 27 Fail 2/3 60-80 100 30 106 104 2083 104 0 100% 1927 104 2 100%
DS 28 DSHF 80-100 0 30 153 146 1241 93 0 64% 3871 146 106 100%
DS 29 DSHF 80-100 50 30 130 127 3657 127 0 100% 2369 127 11 100%
DS 30 LBAL 80-100 100 30 156 150 1263 127 2 8% 2863 150 24 100%
DS 31 Fail 1/3 60-80 100 30 113 112 973 112 0 100% 1041 112 2 100%
DS 32 Fail 2/3 80-100 100 30 128 120 1983 120 2 100% 1359 120 8 100%
DS 33 DSHF 80-100 100 30 112 108 2143 78 2 12% 3847 108 45 100%
DS 34 Cons 100-100 100-80 100 30 137 133 6969 133 5 100% 3147 133 23 100%
DS 35 LBAL 60-80 o 30 119 109 733 109 0 100% 697 109 0 100%
DS 36 LBAL 80-100 o 30 141 117 803 117 0 100% 803 117 1 100%

TABLE 5.1: Comparing results of final heuristic with FF heuristic - datasets of 30
servers

Comparing with exact algorithms
Onoue et al. MILP

Figure 5.5 and Table 5.3 depict the comparison of the result (Makespan - total

migration time) for the datasets where the results have been calculated with the

Chapter 5 Numerical Results

Makespan

— FF Final heuristic

8000

7000

6000

5000

4000

Time

2000
1000

0
DsDSD5D5D5DSD5S5D5D5DSDS D5D5D5D5 DS D5 D5D5 DS D5 D5 DS DS DS DS DS DS DS DS D5 DS

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 27 29 31 32 34 35 36
dataset Id

FI1GURE 5.3: Comparing makespan of final heuristic with FF heuristic - datasets of 30
SEervers
exact method introduced in Onoue et al. [3]. The results are not complete on all
the datasets due to setting a time limit for exact model to complete the calcu-
lations. The time limit was fairly long and the experience shows that the exact
method is not salable for relatively big or complex problems. Nevertheless the

results are compared with the heuristic for the finished runs.

Sequence based MILP

This mixed integer linear programming method which is introduced in the study
of Jaumard et al. [29] is much more scalable than the MILP of Onoue et al. [3],
which offers an excellent range of results for evaluating the result of the heuristic
in this study. As we can see in Fig. 5.6, the makespan for datasets of 30 servers
with the exact method introduced in [29] (MILP-JGL), is almost 30 percent less

than the results of the final heuristic of this study.

60

Chapter 5 Numerical Results

Makespan
s FF s Final heuristic
30000
25000

20000

Time

15000
10000

5000

DSDSD5SDSDSDSDSDSDSDSDS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 15 20 21 22 23 24 25 26 27 28 31 32

dataset id

FI1GURE 5.4: Comparing makespan of final heuristic with FF heuristic - datasets of 200
servers

Makespan

== Exact model (Onoueetal.) ====Final heuristic

2500
2000

1500

Time

1000

500

D51 DS2 D53 DS4 DS5 DS6 DS7 DS8DS11D512DS13D514D5 15051805 1905 2005 23DS 24
dataset id

F1GURE 5.5: Comparing makespan of final heuristic with Onoue et al. exact model
(MILP) - datasets of 30 servers

Numerical results for minimum temporary migrations heuristic

In section 4.2.2, we discussed a strategy to minimize number of temporary migra-
tions with a cost of increasing the amount of memory transferred for temporary
migrations. Here is the numerical results for comparing the number of temporary

migrations for datasets with 50 servers. As we can see in Fig 5.7 the number of

61

Chapter 5 Numerical Results

classification First Fit heuristic heuristic

S I [cpu Time (on Linux Server) @edmonds.encs

il

g v

3 z = 2

c B k) k) =2 c o = c =

2 S 23 3 5|8& E %] & 3

8 g £ 8§ E E Z | = = 2| £ 2

< 2 = 2 =1 S =) c [~} c
Datasetld # = E &5 = = S > S = > i
DS1 Cons 90-100 80-100 O 200 871 205 245 9.26E+06 100%| 245 100%
DS 2 Cons 100-100 80-100 O 200 853 212 245 5.24E+06 100%| 245 3 100%
DS3 Cons 100-100 60-80 O 200 772 299 257 1.20E+07 100%| 257 697 100%
DS 4 Cons 90-100 60-80 0 200 792 316 489 1.05E+07 100%| 489 73 100%
DS5 Cons 100-100 80-100 50 200 894 570 | 8989 3.05E+07 100%| 4853 9,235 100%
DS 6 Cons 100-100 60-80 50 200 756 523 | 1873 2.28E+07 100%| 1679 1,209 100%
DS7 Fail 1/3 80-100 50 200 890 573 | 3757 2.14E+07 100%| 4457 9,301 100%
DS8 Cons 90-100 80-100 50 200 885 554 | 3645 2.13E+07 100%| 3013 6,657 100%
DS9 DSHF 60-80 100 200 782 781 1831 1.97E+07 100%| 2591 1,879 100%

DS 10 Cons 100-100 60-80 100 200 815 815 | 4225 2.93E+07 100%| 2853 19,561 100%
DS 11 Fail 1/3 60-80 0 200 817 232 489 1.17E+07 100%| 489 60 100%
DS 12 Fail 2/3 80-100 0 200 878 204 245 B8.92E+06 100%| 245 61 100%
DS 13 Fail 2/3 60-80 0 200 800 257 489 1.37E+07 100%| 489 64 100%
DS 14 Fail 1/3 60-80 50 200 822 611 | 1437 1.91E+07 100%| 1379 854 100%
DS 15 Cons 90-100 60-80 50 200 789 540 | 1099 1.75E+07 100%| 1163 3,853 100%
DS 16 Cons 90-100 60-80 100 200 831 831 | 2617 2.99E+07 100%| 1753 10,878 100%
DS 17 Fail ~ 1/3 80-100 100 200 880 873 | 14143 4.96E+07 100%| 6099 204,629 100%
DS 18 Fail ~ 1/3 80-100 0 200 926 114 245 456E+06 100%| 245 685 100%
DS 19 Fail 2/3 60-80 50 200 740 488 919 2.01E+07 100%| 1005 367 100%
DS 20 Fail ~ 2/3 80-100 50 200 878 542 | 3335 1.69E+07 100%| 3455 3,286 100%

DS 21 LBAL 80-100 50 200 917 865 | 4089 2.79E+07 100%| 3581 64,085 100%
DS 22 DSHF 60-80 50 200 788 783 | 1459 2.75E+07 100%| 1595 15,288 100%
DS 23 LBAL 60-80 50 200 756 726 | 1343 1.99E+07 100%| 1485 1,808 100%
DS 24 LBAL 60-80 100 200 809 804 | 1953 2.07E+07 100%| 1953 8,653 100%
DS 25 DSHF 60-80 0 200 767 762 | 2529 2.09E+07 100%| 2857 3,683 100%

DS 26 Cons 90-100 80-100 100 200 874 864 |18329 6.13E+07 100%| 7641 155,017 100%
DS 27 Fail 2/3 60-80 100 200 772 770 | 5637 2.73E+07 100%| 2493 10,889 100%

DS 28 DSHF 80-100 0 200 870 860 |24867 4.20E+07 100%| 10543 111,249 100%
DS 29 DSHF 80-100 50 200 898 890 | 8193 3.26E+07 76% | 10087 87,700 100%
DS 30 LBAL 80-100 100 200 840 831 | 4157 3.91E+07 98% | 3909 98,746 100%

DS 31 Fail 1/3 60-80 100 200 773 773 | 5503 3.82E+07 100%| 3747 13,029 100%
DS 32 Fail ~ 2/3 80-100 100 200 826 814 |12029 452E+07 100%| 7301 94568 100%

TABLE 5.2: Comparing results of final heuristic with FF heuristic - datasets of 200
servers
temporary migrations with the new strategy is fewer than the number of tempo-
rary migrations in heuristic 8 (on average 61% less) but the amount of bandwidth
(memory transferred) for temporary migrations is on average 32% more, also the

makespan is almost 10% more with the new strategy.

62

Chapter 5 Numerical Results

classification Exact Model (Onoue et al.) Heuristic

,g i

3 z 2 ¢ 3 s 3 s

g g Tt oE g 5 £ £ |§ 8 £ %

£ = 2 g 3 o 2 £ o 3 a E o @

3] = £E & E 2 g = £ 5 ¥ = £ F
Datasetld & 5 s 2 2 2 3 g 2 =z E g £ £ =
DS1 Cons S0-100 80-100 0 30 121 30 245 30 0 100% 245 30 0 100%
Ds2 Cons 100-100 80-100 0 30 134 35 123 35 0 100% 123 35 0 100%
DS3 Cons 100-100 60-80 0 30 121 47 245 47 0 100% 245 47 0 100%
DS 4 Cons S0-100 60-80 0 30 126 54 245 54 0 100% 245 54 0 100%
DS5 Cons 100-100 80-100 50 30 126 78 661 78 0 100% 945 78 g 100%
DS6 Cons 100-100 60-80 50 30 118 86 733 86 0 100% 1213 86 0 100%
DS7 Fail 1/3 80-100 50 30 140 72 637 72 0 100% 775 72 4 100%
DS8 Cons S0-100 80-100 50 30 158 99 1131 99 0 100% 1117 s9 6 100%
DS11 Fail 1/3 60-80 0 30 127 46 193 46 0 100% 183 46 0 100%
DS 12 Fail 2/3 80-100 0 30 153 25 123 25 0 100% 123 25 o 100%
DS 13 Fail 2/3 60-80 0 30 129 38 123 38 0 100% 123 38 0 100%
DS 14 Fail 1/3 60-80 50 30 122 74 1221 74 0 100% 1415 74 7 100%
DS 15 Cons S0-100 60-80 50 30 114 83 627 83 0 100% 631 83 0 100%
D518 Fail 1/3 80-100 0 30 138 35 245 35 0 100% 245 35 0 100%
DS 19 Fail 2/3 60-80 50 30 125 87 449 87 0 100% 797 87 1 100%
DS 20 Fail 2/3 80-100 50 30 126 73 1435 73 0 100% 2087 73 8 100%
DS 23 LBAL 60-80 50 30 105 98 383 98 0 100% 445 58 0 100%
Ds 24 LBAL 60-80 100 30 114 110 761 110 0 100% 1051 110 0 100%

TABLE 5.3: Comparing results of final heuristic with MILP-Onoue - datasets of 30
servers

Makespan
s MILP-JGL == Final heuristic

4500
4000
3500
3000
2500
2000
1500
1000

500

Time

DS DS DS DS DS DS DS DS DS DS DS D5 DS
123456 7 8 9 1011121314151617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32

dataset id

FiGURE 5.6: Comparing Makespan of final heuristic with MILP of Jaumard et al.
(MILP-JGL) - datasets of 30 servers

Numerical results based on the virtual machine placement scenarios

In the previous section, we compared the Onoue et al. (Algorithm 3) and final
heuristic (Algorithm 8) for datasets containing data generated with a combina-

tion of different scenarios. For comparing each placement scenario separately, we

63

Chapter 5 Numerical Results

classification MILP-JGL Heuristic

o

5 o

e z 2 3

z v = £ £ g 8 g s
Dataset Id Em |_§ E 'E ; z g g g
D51 Cons 90-100 80-100 o 30 121 30 245 245
D52 Cons 100-100 80-100 o 30 134 35 123 123
D53 Cons 100-100 60-80] 30 121 47 245 245
D54 Cons 90-100 60-80 0 30 126 54 245 245
D55 Cons 100-100 80-100 50 30 126 78 661 945
D56 Cons 100-100 60-80 50 30 118 86 733 1213
D57 Fail 1/3 80-100 50 30 140 72 611 775
D58 Cons ©90-100 80-100 50 30 158 99 1117 1117
D55 DSHF 60-80 100 30 136 134 516 1455
D5 10 Cons 100-100 60-80 100 30 100 100 769 217
D511 Fail 1/3 60-80 30 127 46 153 153
D512 Fail 2/3 80-100 30 153 25 123 123
D513 Fail 2/3 60-80] 30 129 38 123 123
Ds 14 Fail 1/3 60-80 50 30 122 74 1221 1415
D515 Cons 90-100 60-80 30 30 114 &3 611 631
D5 16 Cons 90-100 60-80 100 30 124 123 765 1309
D5 17 Fail 1/3 80-100 100 30 124 114 715 1365
D5 18 Fail 1/3 80-100 o 30 138 35 245 245
D519 Fail 2/3 60-80 50 30 125 387 449 787
Ds 20 Fail 2/3 80-100 50 30 126 73 1435 2087
D5 21 LBAL 80-100 50 30 134 121 1119 1387
D5 22 DSHF 60-80 50 30 127 120 561 707
Ds 23 LBAL 60-80 50 30 105 98 383 445
Ds 24 LBAL 60-80 100 30 114 110 733 1051
D5 25 DSHF 60-80 o 30 157 150 439 1111
Ds 26 Cons 90-100 30-100 100 30 133 126 1061 1343
Ds 27 Fail 2/3 60-80 100 30 106 104 1529 1927
D5 28 DSHF 80-100 0 30 153 146 2091 3871
Ds 29 DSHF 80-100 30 30 130 127 1441 2368
D5 30 LBAL 30-100 100 30 156 150 1543 2863
D5 31 Fail 1/3 60-80 100 30 113 112 611 1041
Ds 32 Fail 2/3 80-100 100 30 128 120 1019 13589

TABLE 5.4: Comparing makespan of final heuristic with MILP of Jaumard et al.
(MILP-JGL) - datasets of 30 servers
generated datasets of 50 servers based on each scenario (between 30 - 60 datasets
for each scenario). The results (makespan and number of temporary migrations)
are depicted in Figure 5.8, the makespans are moderately better for final heuristic

compared to Onoue et al. heuristic (Algorithm 3), while number of temporary

64

Chapter 5 Numerical Results

Temporary migrations

= H euristic B m—Minimum temporary migrations heuristic

Temporary migrations
o B8 88588

B RGN AR S E AR RSB EN LN
AL EZZRRNARAT AR ICRRERARRRasRERERRRES
migrations [VMs
Bandwith used for temporary migrations
E e Final heuristic e M NiMUM temporary migrations heuristic
=
2 2500
2
2 2000
a
'*E 1500
20
£ 1000
& 500
o
S 0
§ EIEBELEEAATEINTAfEERELILEAREEEREREE
[B REEEET R R RS R R R R R R

migrations/VMs

Makespan

e Final heuristic e A iU M TEMpOrary migrations heuristic

7000
6000
5000
4000
3000
2000
1000

Time

18.0%
13.3%
16.3%
19.5%
205%
222%
280%
52.8%
382%
412%
56.3%
55.8%
60.3%
61.3%
54.9%
a7.8%
BE7%
69.6%
&5.8%
722%
245%
95.6%
$6.8%
26 8%
26.5%
97.5%
§7.7%
286%
3E5%
S5.0%
95.1%
29.4%
99.5%

100.0%
100.0%

migration/#YMs

FIGURE 5.7: Compare results of final heuristic with minimum temporary migrations
heuristic - datasets of 50 servers

migrations are on average 86% less than Onoue et al. heuristic. As we can see
for the deadlock shuffle scenario which aims to create complex migration plans,

makespan of final heuristic is clearly less than the other one.

65

Chapter 5 Numerical Results

Makespan
M Final heuristic ™ Onoue et al. heuristic
3500
3000
2500
o 2000
E
= 1s00
1000
- I
0
consolidation deadlock shuffle server failure load balancing
Placement scenarios
Temporary migrations
M Final heuristic M Onoueetal.
90
80
s
= 70
e
o 60
£
50
oy
® a0
2
5 30
= 20
®
0 || I —

consolidation deadlock shuffle server failure load balancing

Placement scenarios

F1GURE 5.8: Comparing makespan and number of temporary migrations of final heuris-
tic - grouped by different Scenarios - datasets of 50 servers

66

Chapter 6

Conclusion and Future Works

In this study, we designed heuristics for optimizing migration of multiple virtual
machines with the main goal of minimizing the makespan. Our final heuristic
has objective of minimizing makespan of multiple VM migrations while reducing
number of temporary migrations or the data transferred for temporary migra-
tions (different scenarios). By nature this problem has computational complexity,
most of the exact mathematical models in the literature are not scalable except
a recent one which is mentioned in this study and is used for evaluating our re-
sults. Heuristics in the literature are scalable, however beside trying to optimize
makespan, they do not consider other factors such as number of temporary mi-
grations they use to reach the final state of placements. Also, heuristics in the
literature do not guaranty finishing all the migrations for complex problem where
limitation of resources makes it hard to find a feasible order of migrations. In
our heuristic, we achieve to reduce number of temporary migrations beside mini-
mizing the makespan with observing the behavior of algorithm in various difficult
cases. We evaluated our heuristic with comparing parameters such as makespan,
number of temporary migrations and calculation (running) time of our algorithm
with other heuristics and also exact models in the literature. The results show the

quality of our solution.

67

Chapter 6 Conclusion and Future Works

Future work will include a mix problem where beside minimizing makespan and
number of temporary migrations for multiple parallel VM migrations, optimiza-
tion of each individual migration will be considered too. This can be achieved
apparently by adding dynamic bandwidth assignments to migrations based on
the network load and VM characteristics beside dynamic selection of migration

techniques (pre-copy, post-copy or hybrid) for each migration.

68

Bibliography

1]

2]

3]

[4]

[5]

[6]

A. Varasteh and M. Goudarzi. Server consolidation techniques in virtualized

data centers: A survey. IEEE Systems Journal, 11(2):772-783, 2015.

M. Noshy, A. Ibrahim, and H. Arafat Ali. Optimization of live virtual machine
migration in cloud computing: A survey and future directions. Journal of

Network and Computer Applications, 110:1-10, 2018.

K. Onoue, S. Imai, and N. Matsuoka. Scheduling of parallel migration for
multiple virtual machines. In IEFE 31st International Conference on Ad-
vanced Information Networking and Applications (AINA), pages 827-834,
March 2017.

G. Sun, D. Liao, V. Anand, D. Zhao, and Y. Hongfang. A new technique
for efficient live migration of multiple virtual machines. Future Generation

Computer Systems, 55 (Supplement C):74-86, 2016.

U. Deshpande and K. Keahey. Traffic-sensitive live migration of virtual ma-
chines. 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pages 50—60, 2015.

C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpac, 1. Pratt, and
A. Warfield. Live migration of virtual machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems Design € Implementation

- Volume 2, NSDI'05, pages 273-286. USENIX Association, 2005.

69

BIBLIOGRAPHY

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. Future

Generation Computer Systems, 28(5):755-768, 2012.

X Xiaoqiao, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. IEFE Annual
Joint Conference of the IEEE Computer and Communications Societies - IN-
FOCOM, pages 1-9, 2010.

W. Deng, F. Liu, H. Jin, X. Liao, and H. Liu. Reliability-aware server consol-
idation for balancing energy-lifetime tradeoff in virtualized cloud datacenters.

International Journal of Communication Systems, 27(4):623-642, 2013.

R. Li, Q. Zheng, X. Li, and J. Wu. A novel multi-objective optimization
scheme for rebalancing virtual machine placement. IEEE 9th International

Conference on Cloud Computing (CLOUD), pages 710-717, 2016.

A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath. Pacman: Per-
formance aware virtual machine consolidation. In Proceedings of the 10th

International Conference on Autonomic Computing (ICAC 13), pages 83-94.
USENIX, 2013.

A. Sansottera, D. Zoni, P. Cremonesi, and W. Fornaciari. Consolidation of
multi-tier workloads with performance and reliability constraints. Interna-
tional Conference on High Performance Computing and Simulation (HPCS),
pages 74-83, 2012.

E. Dow and J. Matthews. Wayfinder: parallel virtual machine reallocation

through A* search. Memetic Computing, 8(4):255-267, 2016.

A. Wolke, M. Bichler, and T. Setzer. Planning vs. dynamic control: Re-
source allocation in corporate clouds. IEEE Transactions on Cloud Comput-

ing, 4(3):322-335, Jan 2016.

70

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar,
L. Uyeda, and U. Wieder. Validating heuristics for virtual machines consoli-

dation, 2011.

G. Dosa. The tight bound of first fit decreasing bin-packing algorithm. In
Proceedings of the First International Conference on Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies, ESCAPE’07, pages 1—
11. Springer-Verlag, 2007.

O. Ayoub, F. Musumeci, M. Tornatore, and A. Pattavina. Efficient rout-
ing and bandwidth assignment for inter-data-center live virtual-machine mi-
grations. [EEE/OSA Journal of Optical Communications and Networking,
9(3):B12-B21, 2017.

K.s Tsakalozos, V. Verroios, Mema Roussopoulos, and A. Delis. Live v
migration under time-constraints in share-nothing iaas-clouds. IEEE Trans-

actions on Parallel and Distributed Systems, 28(8):2285-2298, 2017.

F. Tian, R. Zhang, J. Lewandowski, K.-M. Chao, L. Li, and B. Dong.
Deadlock-free migration for virtual machine consolidation using chicken

swarm optimization algorithm. Journal of Intelligent and Fuzzy Systems,

32(2):1389-1400, 2017.

U. Mandal, P. Chowdhury, M. Tornatore, C. Martel, and B. Mukherjee. Band-
width provisioning for virtual machine migration in cloud: Strategy and ap-

plication. IEEE Transactions on Cloud Computing, 6(4):967-976, Jan 2018.

A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and Migration Cost
Aware Application Placement in Virtualized Systems, pages 243—264. Springer
Berlin Heidelberg, 2008.

S. Takeda and T. Takemura. a rank-based vm consolidation method for power
saving in data centers. Information and Media Technologies, 5(3):994-1002,
2010.

71

BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

S. Takahashi, H. Nakada, T. Atsuk, K. Tomohiro, S. Maiko, and Y. Akiko.
Virtual machine packing algorithms for lower power consumption. 4th [EFEE
International Conference on Cloud Computing Technology and Science Pro-

ceedings, pages 161-168, 2012.

C. Ghribi, M. Hadji, and D. Zeghlache. Energy efficient vm scheduling
for cloud data centers: FExact allocation and migration algorithms. 15th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Comput-
ing, pages 671-678, 2013.

V. Kherbache, E. Madelaine, and F. Hermenier. Scheduling live migration of

virtual machines. IEEE Transactions on Cloud Computing, pages 1-14, 2018.

M. F. Bari, M. F. Zhani, Q. Zhang amd R. Ahmed, and R. Boutaba. Cqnecr:
Optimal vm migration planning in cloud data centers. In 2014 IFIP Network-

ing Conference, pages 1-9, June 2014.

M. Gilesh, S. MadhuKumar, and J. Lillykutty. Bounding the cost of virtual
machine migrations for resource allocation in cloud data centers. In ACM

SAC Cloud Computing Track, pages 201-206, 2018.

U. Deshpande and K. Keahey. Traffic-sensitive live migration of virtual ma-

chines. Future Generation Computer Systems, 72:118-128, 2017.

B. Jaumard, O. Gluck, and D. Le. Effectiveness of heuristics for vim migration.

Paper in preparation, 2019.

O. Popoola and B. Pranggono. On energy consumption of switch-centric data

center networks. The Journal of Supercomputing, 74(1):334-369, Jan 2018.

Amazon ec2 instance types - amazon web services. https://aws.amazon.

com/ec2/instance-types. Online; accessed 20-June-2019.

Dell servers. https://www.dell.com/fr-fr/work/shop/
serveurs-dell-poweredge/sc/servers/poweredge-rack-servers. On-

line; accessed 15-June-2019.

72

