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ABSTRACT 

The greenhouse gas climate commitment and reversibility of peak warming from historic 

emissions 

The warming caused by past CO2 emissions is known to persist for centuries to millennia, even in 

the absence of additional future emissions. Other non-CO2 greenhouse gas emission have caused 

additional historical warming, though the persistence of this non-CO2 warming varies among 

gases owing to their different atmospheric lifetimes. Under deep mitigation scenarios or in an 

idealized scenario of zero future greenhouse gas emissions, the past warming from shorter-lived 

non-CO2 gases has been shown to be considerably more reversible than that caused by CO2 

emissions. Here I use an intermediate-complexity global climate model coupled to an atmospheric 

chemistry module to quantify the warming commitment and its reversibility for individual and 

mixtures of non-CO2 greenhouse gases. I show that warming caused by gases with short 

atmospheric lifetimes will decrease by more than half its peak value within 30 years following 

zeroed emissions at present day, with more 80 percent of peak temperature reversed by the end of 

this century. Despite the fast response of atmospheric temperature to the elimination of non-CO2 

emissions, the ocean responds much more slowly: past ocean warming does not reverse, but rather 

continues for several centuries after zero emissions. Further consequences are shown for the land 

carbon pool, which decreases as an approximately linear function of historical non-CO2 

greenhouse gas induced warming. Given that CO2 and non-CO2 greenhouse gas emissions share 

common emission sources, I also explore a set of scenarios where sets of emissions are zeroed 

according to two broad source categories: (1) fossil fuel combustion, and (2) land-use and 

agriculture. Using these additional model runs, I investigate the temperature change that is avoided 

if all CO2 and non-CO2 greenhouse gas emissions from a particular source abruptly stops while 
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others are allowed to continue. These results indicate the possibility of land-use change and 

agriculture activities continuing under deep mitigation scenarios and ambitious climate targets, 

without leading to exceedance of global climate targets. Though I analyze unlikely scenarios, my 

work provides baselines from which more realistic mitigation scenarios can be assessed. The 

reversibility of peak temperature caused by historic non-CO2 gases is a relevant measure for policy 

frameworks seeking to limit global warming to ambitious targets, such as the 1.5 oC target adopted 

by the Paris Agreement  
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Zero Emissions Commitment A climate modelling scenario with forcing 

from historical emissions, or a proxy thereof, 

that abruptly stop in a given year. 

 

Climate commitment The general term used to refer to the impact 

of historical anthropogenic emissions on the 

climate system in the absence of future 

emission. Used here to indicate either an 

increase or decrease in temperature change 

following zeroed emissions 

 

Warming commitment Positive temperature change following zeroed 

emissions 

 

Warming reversibility Negative temperature change following 

zeroed emissions 

 

Temperature commitment The climate commitment specific to 

atmospheric temperature change  

 

Peak warming/temperature change The maximum temperature change in a given 

simulation 
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CHAPTER 1 

INTRODUCTION 

 

1.1 The historical climate commitment 

 

Under the Paris Agreement, nations will attempt to keep global temperature from 

exceeding 1.5 °C above pre-industrial levels (UNFCC, 2015). This is an ambitious target, and will 

require detailed knowledge about how climate will respond to all drivers of temperature change. 

Extensive research has shown the main driver of long-term temperature change is cumulative 

carbon dioxide (CO2) emissions (Allen et al., 2009; Matthews et al., 2009; Matthews & Solomon, 

2013;Gillett et al., 2013; Tokarska et al., 2016; Matthews et al., 2018). This is the most important 

anthropogenic greenhouse gas (GHG), and persists in the atmosphere on timescales of a century 

to multiple-millennia (Eby et al., 2009; Ciais et al., 2013; Solomon et al., 2009; Matthews & 

Zickfeld, 2012; Zickfeld et al., 2012; Frolicher et al., 2014; Frolicher & Paynter, 2015; Ehlert & 

Zickfeld, 2017; Mauritsent & Pincus, 2017; Williams et al., 2017; Smith et al., 2019). Short of 

actively removing it from the atmosphere (Tokarska & Zickfeld, 2016; Zickfeld et al., 2016), the 

CO2 burden from past and current CO2 emissions commits global temperatures to remain 

approximately stable, even in the absence of additional emissions (Solomon et al., 2009; Matthews 

& Zickfeld, 2012; Frolicher et al., 2014; Frolicher & Paynter, 2015; Ehlert & Zickfeld, 2017; 

Mauritsent & Pincus, 2017; Williams et al., 2017; Smith et al., 2019). In other words, warming 

caused CO2 emissions is effectively irreversible on human timescales (Matthews & Solomon, 

2013). 

According to the Global Warming Index (Haustein et al., 2017), current temperature 

change is near 1.1 °C above the pre-industrial baseline. As a result of the influence of historical 
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CO2 emissions on the carbon cycle, the climate system is committed to much of this current global 

warming, and associated impacts, for the foreseeable future (Matthews & Zickfeld, 2012; 

Matthews & Solomon, 2013). In contrast, the current warming caused by historical non-CO2 

greenhouse gases with shorter atmospheric lifetimes can be reversed over long timescales with 

ambitious mitigation efforts (Bowerman et al., 2013; Zickfeld et al., 2017). These climate 

commitments – warming, stable, or cooling – have been estimated using the conceptual scenario 

of “Zero Emissions Commitment” (ZEC), which defines the change in temperature caused by past 

emissions, at a given point in the future after emissions have been set to zero (Solomon et al., 2009; 

Matthews & Zickfeld, 2012; Allen et al., 2018b). 

 

1.1.1 Non-CO2 greenhouse gases and the climate system 

 

For past emissions from CO2, results from ZEC simulations depend on how historical 

changes to the carbon cycle evolve in the absence of additional forcing and on ocean thermal 

inertia (Solomon et al., 2009; Ehlert & Zickfeld, 2017). For past emissions from non-CO2 

greenhouse gases and aerosols, results from ZEC simulations depend on the rate of atmospheric 

concentration decline in the absence of additional emissions and on the effective radiative forcing 

of individual gases (Matthews & Zickfeld, 2012; Zickfeld et al., 2017; Allen et al., 2018b).Though 

not analyzed here, the effect on future temperature from past emissions of aerosols is different 

from that of greenhouse gases because in the absence of aerosol emissions temperature rises, for a 

magnitude and duration dependent on the additional forcing that continues in the future (Matthews 

& Zickfeld, 2012; Allen et al., 2018b). 

Because the rate of atmospheric concentration decline of non-CO2 GHGs following zero 

emissions is a driver of temperature decline (Matthews & Zickfeld, 2012; Bowerman et al., 2013; 
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Zickfeld et al., 2017; Allen et al., 2018b), historical warming induced by emissions from those 

gases is thought to be partly reversible. This means that if non-CO2 greenhouse gas emissions are 

allowed to continue, a portion of the global warming those emissions induce up to the point of 

deep mitigation, or zero emissions, will reverse itself in the absence of additional forcing 

(Bowerman et al., 2013; Zickfeld et al., 2017; Collins et al., 2018). There is therefore a need to 

quantify that portion of warming reversibility: my study fills this gap by assessing the reversibility 

of peak warming induced by historical non-CO2 GHG emissions. To account for the wide range 

of atmospheric lifetimes and radiative efficiencies of non-CO2 greenhouse gases (Myhre et al., 

2013; Smith et al., 2018), I analyze the reversibility of peak temperature changes over decadal and 

centennial timescales. To better understand the influence of individual and select mixtures of past 

non-CO2 GHG emissions on the future climate commitment, I here disaggregate non-CO2 GHG 

emissions into policy-relevant groupings. These are: methane (CH4), nitrous oxide (N2O), CH4& 

N2O together, fluorinated gases (F-gases or Kyoto Protocol gases), ozone depleting substances 

(ODS or Montreal Protocol gases), and tropospheric-ozone (trop-ozone) (Myhre et al., 2013). 

By means of individual processes that are not directly involved with the carbon cycle, 

additional historical warming caused by non-CO2 GHGs emissions can further cause decreases in 

the land (soil and biosphere) and ocean carbon pool, with increases in the atmosphere carbon pool 

(MacDougall & Knutti, 2016; Collins et al., 2018). Decreases in the land carbon pools occur 

because additional warming causes increased decomposition of soil organic matter and increased 

plant respiration (processes that release carbon into the atmosphere) (MacDougall & Knutti, 2016; 

Collins et al., 2018). Decreases in the ocean carbon pool occur because the rate of ocean carbon 

dissolution slows with increasing sea-surface temperature, which increases with atmospheric 

warming (MacDougall & Knutti, 2016; Zickfeld et al., 2017). Here I disaggregate this influence 
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per individual and non-CO2 GHG groupings and examine the relationship between additional 

temperature change increase and decreases in the land carbon pool. 

 

 

1.1.2 The importance of emissions source 

 

Though my analyses focus on policy relevant groupings of non-CO2 gases, the sources of 

emissions are another important method by which to evaluate future temperature change. Two 

general sources of human emissions are fossil fuel combustion (FFC) and land-use 

change/agriculture (LUC), which both produce a mixture of greenhouse gases and aerosols (Ciais 

et al., 2013; Mengis & Matthews, 2019). The combination of gases emitted by each source can be 

partitioned into the percentage of individual gas emissions resultant from either FFC or LUC 

activities (Mengis & Matthews, 2019). In this study, I use these partitions to analyse how 

temperature changes in the absence of one activity (e.g. LUC, including agriculture), while 

continuing emissions from all other activities (e.g. FFC and other anthropogenic activities), and 

vice versa. 

 

1.2 Research techniques and objectives, and thesis structure 
 

To simulate the climate effect of non-CO2 GHG emissions changes, I built a simple 

atmospheric chemistry module (see Chapter 3.2) within the University of Victoria Earth Systems 

climate model (UVic-ESCM), a climate model of intermediate complexity (Weaver et al., 2001). 

I used ZEC simulations to quantify the reversibility of peak temperature and to analyze the effect 

of historical non-CO2 GHG emissions on simulated carbon pools. The subsequent analysis of by-

source future temperature change was done with a variation on the ZEC method, where I zeroed 

emissions in one sector while allowing emissions in all other sectors to continue.  
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In using ZEC scenarios, where GHG emissions are assumed to stop at the present-day, my 

work should be viewed as highly idealized. This work, however, is relevant because it 1) provides 

baselines of future temperature change caused by individual greenhouse gases, 2) defines timeline 

for the natural reversibility of peak temperature changes caused by past GHG emissions, 3) defines 

the effect of non-CO2 GHG warming on the land and ocean carbon pools, and 4) provides a 

measure by which continued human activities by sector could influence temperature change.  

The following sections of this thesis include a literature review (Chapter 2), modelling 

considerations (Chapter 3), a manuscript (Chapter 4), and an expanded discussion and conclusion 

(Chapter 5).  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1     Climate response to cumulative CO2 emissions 

 

The climate system is a dynamic network of physical, chemical and energy processes 

evolving over timescales of days to millennia, and involving interactions between the hydrosphere, 

lithosphere, biosphere, atmosphere, and cryosphere (Baede et al., 2001). These processes include, 

but are not limited to: precipitation, pressure (wind), temperature, photosynthesis, weathering, and 

movement of energy or heat (radiative forcing) (Baede et al., 2001). Changes in the system are 

driven by both natural and human perturbations to the planetary energy budget (Myhre et al., 

2013). Energy to the system is forced externally by solar output, orbital variation, and volcanic 

activity (Baede et al., 2001; Myhre et al., 2013). In principle, radiative energy is supplied daily by 

solar output that is either reflected back to space or absorbed by water, land surfaces, and the 

atmosphere (Baede et al., 2001). At night land surfaces re-emit radiative energy which either 

escapes to space or is trapped by GHGs in the atmosphere that are themselves radiative forcers on 

the climate system (Baede et al., 2001).  

This radiative energy in the climate system is otherwise called heat and though its only 

source is solar output, radiative energy flows between and is stored in the internal climate system 

components (Baede et al., 2001). Considering the planetary land surface as a uniform body, 

sustained increase in radiative energy translates into temperature increase at the surface by a simple 

relationship whereby temperature change is proportional to radiative forcing and climate 

sensitivity (Myhre et al., 2013).  
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Owing to the significant difference in heat capacity between the land and the ocean, the 

ocean can absorb far greater quantities of radiative energy than the land (Baede et al., 2001). As 

such, the ocean both does not re-emit radiative energy to the same degree as land surfaces, and it 

is the driver of the thermal inertia of the climate system (Baede et al., 2001). This means that with 

any change to the radiative balance of the system, there is a lagged effect on the temperature of 

the ocean and as a consequence on global temperatures (Hansen et al., 2005; Ricke & Caldiera, 

2014; Zickfeld & Herrington, 2015). While the ocean can uptake energy from the atmosphere, the 

capacity to do so decreases as temperate increases (Solomon et al., 2009; Ehlert & Zickfeld, 2017).   

If we look at the climate system as it exists today, such changes to the radiative balance 

can be measured by changes to the internal cycles of the climate system. Internal changes to 

vegetation, land surface, sea and land ice, ocean, and atmospheric processes all affect the system. 

Research has shown the most dominant forcers on internal components are that movement of 

energy between the atmosphere and ocean (and associated feedbacks from the other components) 

and the carbon cycle (Myhre et al., 2013; Ehlert & Zickfeld, 2017).  

Affected by temperature changes, as well as its own internal and external processes, the 

carbon cycle is the movement of carbon (organic, inorganic, dissolved inorganic, and CO2) 

between the components of the climate system (Ciais et al., 2013). Because CO2 is a greenhouse 

gas (gases that trap and re-radiate radiative energy), changes in the atmospheric concentration of 

CO2 lead to changes in the radiative balance of the climate system and thus translate into changes 

in surface air temperature (SAT) and sea-surface temperature (SST) (Baede et al., 2001). Natural 

processes of plant and animal respiration, and tectonic outgassing lead to increases in the 

atmospheric concentration of CO2, while photosynthesis, ocean dissolution, and silicate 

weathering lead to decreases in atmospheric CO2 (Ciais et al., 2013), and associated increases in 
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the land (biosphere and soil) and ocean carbon pools. These sinks function on yearly, centennial, 

and multiple-millennia timescales and the balance of natural input and output can be disturbed by 

emitting CO2 into the atmosphere and increasing SAT and SST (Ciais et al., 2013).  

For example, human output of CO2 beyond the efficacy of the short-term sinks causes a 

portion the emissions to accumulate in the atmosphere (Ciais et al., 2013).Climate modelling 

research has shown cumulative CO2 emissions and SAT change are approximately linearly related 

(Allen et al., 2009; Matthews et al., 2009; Gillet et al., 2013; Tokarska et al., 2016; Matthews et 

al., 2018). Called the transient climate response to cumulative carbon dioxide emission (TCRE), 

this response emerges as a combination of the non-linear processes of CO2 radiative forcing and 

removal from the atmosphere by sinks (Matthews et al., 2009; Gillet et al., 2013; MacDougall & 

Friedlingstein, 2015). As cumulative emissions increase, increasing SAT decreases the efficacy of 

biosphere sinks and increasing SST decreases the efficacy of ocean carbon dissolution, leading to 

a larger airborne fraction of emissions (MacDougall et al., 2015). However, this larger fraction 

exhibits a smaller per-unit radiative forcing due to saturation of absorption bands (MacDougall et 

al., 2015). Therefore, each unit of CO2 emissions induces approximately the same climate 

response. 

Calculations of the TCRE yield a range of values but a recent assessment of the literature 

in this field by Matthews et al. (2018), placed a best estimate for the TCRE at 1.6 ºC per trillion 

tonnes of cumulative CO2 emissions, within the range of 0.8 to 2.4 ºC per TtCO2. Constraining 

these results by observations of temperature increase versus CO2 emissions yielded a TCRE of 

1.35 ºC per TtCO2, with a range of 0.7 to 2.0 ºC per TtCO2(Matthews et al., 2018).A strong 

advantage of the TCRE is that inverting it yields the amount of cumulative CO2 emissions that 

would be responsible for a given temperature change (Matthews et al., 2009; Zickfeld et al., 2009; 



 
 

 
 

9 

Collins et al., 2013; Rogelj et al., 2013; Millar et al., 2016; Matthews et al., 2017; Millar et al., 

2017). 

This is the basis of a carbon budget – the amount of CO2emittable before a specific 

temperature threshold is breached. For the ambitious temperature threshold set by the Paris 

agreement of 1.5 oC (UNFCCC, 2015), the TCRE concept has been used to define both the total 

carbon budget (from a pre-industrial baseline to the temperature threshold) and the remaining 

carbon budget after accounting for past cumulative CO2 emissions. From a recent estimate 

accounting for historical cumulative CO2 emissions up to 2018, the remaining carbon budget has 

been calculated at 580 GtCO2 (Allen et al., 2018b). Though attractive in terms of policy approaches 

(Millar et al., 2017), a caveat to the concept of carbon budgets is that they apply to cumulative CO2 

emissions and cannot, by measure of the TCRE, be directly related to the historical or future 

warming caused by non-CO2 GHGs. Most analyses therefore adjust downwards the total or 

remaining carbon budget as a function of warming from non-CO2 gases additional to the warming 

from CO2 (Frame et al., 2014; MacDougall et al., 2015; Millar et al., 2016; Matthews et al., 2017; 

Collins et al., 2018). 

 

2.2 Human influence, non-CO2 GHGs, and emissions classification methods 

 

Given the natural variability of the climate system, human influenced changes in the system 

are driven by perturbations to the chemical structure of the atmosphere that either lead to positive 

or negative radiative forcing, or both, and by changes to the land surface (Myhre et al., 2013). 

Causes of human influence on the climate system result from activities which increase the 

concentrations of GHGs and other pollutants in the atmosphere and which alter the solar 

reflectivity of land surfaces (Baede et al., 2001; Myhre et al., 2013). By burning fossil fuels, 
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growing agricultural crops, building cities and cutting forests, and refrigerating produce, humans 

emit both gases and particulate matter into the atmosphere (Myhre et al., 2013). These pollutants 

are emitted or co-emitted from individual or multiple sources and persist in the atmosphere for 

days to multiple-millennia depending on the type of pollutant (Ciais et al., 2013; MacDougall & 

Knutti et al., 2016; Saunois et al., 2016; Le Quere et al., 2018). Due to the positive or negative 

effect on radiative fluxes, the combination of sources, and wide range of persistence of emissions, 

human influence on the climate system is a challenge to quantify.  

Although the TCRE explains the relationship between cumulative CO2 emissions and 

temperature change, it does not, as is, apply to changes in radiative forcing driven by non-CO2 

GHGs. One difference in quantifying the climate response from CO2 and non-CO2 GHGs is that 

each non-CO2 GHG (see Tables3.1 &3.2 for a listing of gases included here) exhibits its own 

effective radiative forcing (ERF) dependent on the radiative efficiency of the gas and the 

concentration of the gas relative to pre-industrial levels (Myhre et al., 2013; Smith et al., 2018).  

The change in concentration of each non-CO2 gas is further a function of their natural sinks. 

Many non-CO2 GHGs (including those listed in Tables 3.1 &3.2), are chemically reactive in the 

atmosphere and their atmospheric sink is a process of chemical reactions involving the hydroxyl 

radical (OH-) (Levy, 1979; Seinfeld & Pandis, 2016). Within this atmospheric chemistry, non-CO2 

GHGs have their own cycles that are less affected by changes in temperature or the carbon cycle 

than CO2. One part of the atmospheric chemistry cycles is the decay rate of non-CO2 GHG 

concentrations. Non-CO2 GHGs span a range of atmospheric lifetimes from days (e.g. tropospheric 

ozone) to multiple-millennia (e.g. CF4) (see Table 3.2) (Smith et al., 2012; Myhre et al., 2013; 

Smith et al., 2018). Gases with atmospheric lifetimes at the lower end of this range do not remain 

in the atmosphere under deep mitigation and are hence short-lived (Smith et al., 2012; Bowerman 
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et al., 2013; Myhre et al., 2013). These differences in ERF and atmospheric chemistry cycles 

(including, for some gases, natural perturbations) effectively means the radiative forcing from non-

CO2 GHGs is separate from CO2.  

With respect to non-CO2 gases and considering their individual differences in radiative 

efficiency and atmospheric lifetime, a challenge for aggregating the radiative forcing from non-

CO2 GHGs is the choice of substance classification method. How substances are grouped together 

will impact which properties of the emissions are aggregated and therefore obfuscated. For 

example, substances exhibiting atmospheric lifetimes on decadal timescales or less have been 

termed short-lived climate forcers (SLCFs) or short-lived climate pollutants (SLCPs) (Shindell et 

al., 2012; Smith et al., 2012; Pierrehumbert, 2014;Rogelj et al., 2014; Allen et al., 2016). SLCFs 

and SLCPs include both positive radiative forcers (non-CO2 GHGs) and net negative forcers 

(aerosols) (Pierrehumbert, 2014; Rogelj et al., 2014).In using atmospheric lifetime as the 

amalgamating parameter, the individual radiative efficiency and concentration nof each pollutant 

is more hidden. This means the effect of a GHG with a low effective radiative forcing, such as 

flouro-carbons (HFCs), chlorofluorocarbons (CFCs), halo-chlorofluorocarbons (HCFCs), and 

halocarbons, will be obscured by the effect of a GHG with a larger forcing, such as methane (CH4). 

A wider range grouping is the non-CO2 climate forcers, which includes all anthropogenic climate 

forcers other than CO2 and including land-use change (an activity that both causes emissions and 

influences radiative forcing) (Myhre et al., 2013; Matthews et al., 2017). Under a non-CO2 climate 

forcers classification, aggregation includes both atmospheric lifetime and radiative efficiency, thus 

further masking the effect from any one forcer.  

Policy frameworks offer a different approach to classifying anthropogenic emissions. The 

Montreal Protocol banned the use of chlorofluorocarbons and similar substances from refrigerants 
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because they were shown be causing a hole in the stratospheric ozone layer (UNEP, 1987). Though 

these ozone depleting substances (ODSs) exhibit yearly to millennia lifetimes, they do show 

similar radiative efficiencies, are within an order of magnitude of the same atmospheric 

concentration (at present), and are almost all only emitted anthropogenically. As an extension on 

the Montreal Protocol, the Kyoto Protocol grouped the fluorinated gases (F-gases), setting 

objectives to limit their emissions (UNFCCC, 1998). Because F-gases include multiple 

compounds with millennia scale atmospheric lifetimes, using this group limits the capacity to 

capture changes on centennial or less scales. However, by following policy formed classifications, 

as I do here, conclusions more directly impact policy decisions and more closely follow emissions 

scenarios developed in relation to international agreements (van Vuuren et al., 2011; Riahi et al., 

2017).  

A third classification method, and secondary method used here, for human influenced 

radiative forcing is by source. As noted above ODSs are grouped by their common effect on the 

atmosphere but they also share a common main source: refrigerants. The remaining high level 

sources are fossil fuel combustion (FFC) and land-use change / agriculture (LUC) (Ciais et al., 

2013; Myhre et al., 2013). All other sources, including refrigerants, can additionally be grouped 

as other anthropogenic activities. Emissions from fossil fuels result from burning carbon-based 

fuels for energy. The primary resulting pollutant is CO2, but the production and use of fossil fuels 

also produces methane (CH4), nitrous oxide (N2O), tropospheric ozone precursors (trop-ozone), 

and minor F-gases output as co-emissions (Baede et al., 2001; Ehalt et al., 2001;Ciais et al., 2013; 

Myhre et al., 2013). Land-use change involves any activity that changes the landscape, including 

agriculture as well as biomass burning. With agriculture, N2O (from the use of nitrogen fertilizers) 

and CH4 (from livestock and rice production) are co-emitted along with or independently from 
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CO2, where agriculture is the larger source of CH4 and N2O gases compared to fossil fuel 

combustion (Baede et al., 2001; Mengis & Matthews, 2019).  

 

2.3 Zero emissions commitments and the climate system 

 

 

Regardless of the chosen classification method, non-CO2 GHGs are known to influence 

radiative forcing and therefore constitute an additional challenge in quantifying the current and 

future human impact on the climate system. With historical data, climate forcing from past and 

current emissions can be used to render a snapshot of the climate system and warming experienced 

today (Haustein et al., 2017; Mauritsen & Pincus, 2017; Allen et al., 2018b). Projecting climate 

change into the future is done through a variety of methods and emissions projects and, due to our 

inability to predict human actions over long periods, is generally very uncertain. The level of 

climate change today from past emissions, however, can be shown to extend multiple centuries 

into the future through zero emissions commitment scenarios (ZEC) (Matthews & Zickfeld, 2012; 

Allen et al., 2018b).  

ZEC scenarios are a method used to understand how climate will continue to change (i.e. 

continue warming, or cool over time) in response to the emissions that are already in the 

atmosphere (Solomon et al., 2009; Matthew & Zickfeld, 2012; Ehlert & Zickfeld, 2017; Mauritsen 

& Pincus, 2017). These scenarios are constructed by driving a global climate model with historical 

anthropogenic forcing (or a proxy to it), then setting emissions to zero and observing changes over 

the proceeding centuries or millennia, termed here the climate commitment, it is calculated by 

assessing the change in atmospheric temperature from the time emissions were zeroed to the end 

of the simulation. This commitment has been called the warming commitment for results that are 
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greater than zero (Ehlert & Zickfeld, 2017)1, but results less than zero could be termed the warming 

reversibility – i.e. the amount of temperature change that is reduced due to emissions stoppage 

over a given period of time.  

As a function of past emissions, the long-term climate commitment is dominantly 

dependent on historical cumulative CO2 emissions (Matthews & Zickfeld, 2012). However, the 

climate commitment is additionally dependent on historical non-CO2 forcing, the climate system 

parameters considered (i.e. which climate model is used to simulate the response), the proximity 

of the system equilibrium, which types of emissions are zeroed, and the length of ZEC simulation 

(Solomon et al., 2009; Matthew & Zickfeld, 2012; Ehlert & Zickfeld, 2017,Zickfeld et al., 2017; 

Allen et al., 2018b). One early benefit of CO2-only ZEC scenarios is that they can capture climate 

inertia (dominated by the ocean response) and with it can be used to estimate the maximum (or 

peak) temperature reached as a result of past emissions (Solomon et al., 2009; Matthew &Zickfeld, 

2012; Ehlert & Zickfeld, 2017). Though highly idealized, ZEC scenarios are important measures 

of the current status of climate change, a strong approach for projecting and determining climate 

system baselines, and a simple metric against which to benchmark the effectiveness of mitigation 

strategies.   

Under ZEC scenarios forced by lower quantities of CO2-only, the temperature change 

resultant from past emissions remains approximately constant for multiple centuries (Solomon et 

al., 2009; Ehlert & Zickfeld, 2017). This constant temperature is the result of a balance between 

the efficacy of carbon sinks and the capacity of the ocean to uptake heat from the atmosphere 

(Ehlert & Zickfeld, 2017). After emissions cease CO2 is initially removed from the atmosphere by 

                                                      
1The term “warming commitment” has also been applied to other climate commitment methodologies, such as the 

constant composition commitment and has been used to classify both positive or negative temperature changes (e.g. 

Zickfeld et al., 2013). Here, however, I use different terms to distinguish between a positive or negative temperature 

change and apply the terms climate commitment or temperature change when referring to either or.  
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a fast response from land sinks through photosynthesis as well as through as slow response from 

ocean dissolution. This process of CO2 removal (or uptake) causes a decline in atmospheric CO2 

concentration, which by itself would cause surface temperatures to decrease (Ehlert & Zickfeld, 

2017). At the same time, the ocean continues to take up radiative forcing (heat) from the 

atmosphere, storing it as a temperature change in the deep ocean via convection processes (Ehlert 

& Zickfeld, 2017, Zickfeld et al., 2017). Initially following zeroed emissions, the ocean will take 

up heat a higher rate but as this rate declines, less heat is taken out of the atmosphere (Ehlert & 

Zickfeld, 2017). This balance of declining CO2 in the atmosphere, combined with a declining rate 

of ocean heat uptake, leads to approximately constant atmospheric temperatures for at least several 

centuries (Solomon et al., 2009; Ehlert & Zickfeld, 2017).   

Despite the nearly constant atmospheric temperature following zero CO2 emissions, the 

climatological effects of those emissions persist in other components of the system. Ocean heat 

uptake, for example, does not stop with CO2 emissions: rather, the ocean continues to take up heat 

from the atmosphere for many centuries following ZEC, albeit at a reduced rate over time 

(Matthews & Zickfeld, 2013; Frolicher et al., 2014, Zickfeld et al., 2017). Because thermal sea-

level rise results from thermal expansion of the ocean, which is driven by increases in ocean heat, 

sea-level rise will also continue for many centuries after CO2 emissions cease (Solomon et al., 

2009; Matthew & Zickfeld, 2012; Ehlert & Zickfeld, 2017; Zickfeld et al., 2017). At the time of 

stopping CO2 emissions, the level of ocean temperature change is determined by the level of 

atmospheric temperature change, which is related to the cumulative CO2 emissions (Matthews et 

al., 2012). Therefore, by an association to atmospheric temperature change, ocean temperature 

change and with it thermal sea-level rise are dependent on the cumulative CO2 emissions prior to 
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zero emissions, and can be augmented by additional warming from non-CO2 forcers before 

emissions stop.  

 At a simple understanding, responses in the climate system to external forcing can be 

induced by setting a given quantity of emissions from a forcer to a one-off pulse, then observing 

how the system reacts. Such emission pulse scenarios do not align exactly with ZEC scenarios, but 

they do offer a means to investigate the fast and slow responses of the climate system in a manner 

that is similar to the response from a ZEC scenario. Using an 1800 GtC pulse (representative of 

CO2), Frolicher et al. (2014) calculated climate commitments from three different models yielding 

temperature change ranging from -0.06 to 0.37 °C following the emissions pulse. In a CO2 pulse 

experiment driving temperature to 2 °C, Williams et al. (2017), found that after 600 years of zeroed 

emissions, temperature increases by approximately 0.6 °C. For these experiments, all three models 

used were Earth System Models with high resolution ocean structures, enabling observations of 

the geographic structure of ocean heat uptake. Between the poles, ocean heat uptake was shown to 

have higher rates in high latitudes and lower rate in low latitudes, meaning there is an exacerbated 

regional structure to ocean heat change (Frolicher et al., 2014).    

This result has consequences when considering how of high levels of warming before 

zeroed emissions drive changes in the climate system. Higher levels of global warming are known 

to influence the poles greater than the tropics (Partenen et al., 2016), meaning under high warming 

scenarios the ocean should have a reduced potential to uptake carbon and possibly heat. Both 

Frolicher & Paynter (2015) and Ehlert & Zickfeld (2017) examined this impact using an idealized 

scenario where CO2 concentration is increased by 1% per year until 2 °C temperature change was 

reached or until concentration was doubled, respectively. In Frolicher & Paynter’s 2 °C analysis, 

the rate of ocean heat uptake was shown to decline faster than the decline in heat uptake from land 
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and ocean CO2 uptake, leading to additional warming after emissions were zeroed. Here, the time 

until atmosphere-ocean thermal equilibrium (i.e. the point at which temperatures stabilized) was 

observed at approximately 1000 years after zeroed emissions (Frolicher & Paynter, 2015). Over 

that time period, the warming commitment from past emissions was reported at 0.5 °C, leading to 

peak warming of approximately 2.5 °C above pre-industrial temperature (Frolicher & Paynter, 

2015). 

Though applying the ZEC concept to forcing from CO2 yields the climate commitment 

resultant from the most dominant greenhouse gas, other greenhouse gas emissions and aerosols 

lead to a positive or negative additional radiative forcing on the climate system (Myhre et al., 

2013). To address the climate commitment from historic forcing of all pollutants, ZEC scenarios 

have been used to show that the magnitude and sign of temperature change (warming or 

reversibility) are dependent on the combination of pollutants for which emissions cease (Matthews 

&Zickfeld, 2012; Allen et al., 2018b). Taking present-day as 2010, Matthews & Zickfeld (2012) 

calculated a warming commitment of approximately 0.1°C at 190 years (2200) after cessation of 

CO2, aggregated non-CO2 GHGs, and aerosol emissions. On a shorter, decadal timescale, this same 

simulation yielded a temperature increase of 0.3 °C, which was the peak temperature following 

zeroed emissions (Matthews & Zickfeld, 2012). This brief decadal warming period leading to peak 

temperature was caused by the immediate decline of aerosol concentrations (Matthews & Zickfeld, 

2012). The subsequent warming reversibility of approximately 0.2 °C, leading to the long-term 

0.1 °C warming commitment, was driven by diminishing concentrations of non-CO2 GHGs 

(namely methane).  
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On an end-of-century (2100) timescale and by driving historic climate forcing from the 

same set of pollutants but setting those emissions to zero in 2018, Smith et al. (2019)2 found a 

long-term warming reversibility of 0.2 °C. Similar to Matthews & Zickfeld (2012), they assessed 

the peak warming following zeroing all emissions at approximately 0.1 °C, thus yielding a long-

term cooling relative to peak temperature of approximately 0.3 °C (Smith et al., 2019). The 

difference in these results is partially due to the differences in how the ERFs of CH4 and N2O were 

calculated as well as to internal differences in model structures (UVic-ESCM2.9 vs FAIR1.3) and 

length of ZEC. These studies are important because they describe the systems response, not only 

as a function of CO2, but also by accounting for non-CO2 GHGs and negative forcers such as 

aerosols.  

Studies which model historical forcing rely on concentrations and emissions datasets from 

the historical, homogenized representative concentration pathways (RCPs) (van Vuuren et al., 

2011; Meinshausen et al., 2011). A different historical modelling method to calculate the climate 

commitment is to use forcing output from a reanalysis dataset. From the HadCRUT4 reanalysis 

run to 2016, Mauritsen & Pincus (2017) developed a simple calculation based on the parameters 

that represent the Earth’s climate system energy imbalance to estimate the climate commitment. 

Their results are therefore not reported after a length of time following zero emissions, but rather 

as measure of climate system equilibrium (Mauritsen & Pincus, 2017). When considering ocean 

carbon uptake after zero emissions of CO2, aerosols and SLCFs, they estimated an equilibrium 

warming commitment of 0.26 ºC (Mauritsen & Pincus, 2017). Compared to the equilibrium 

                                                      
2This refers to results shown in Smith et al. (2019), Supplementary Figure 6, which is the same as from Allen et al., 

2018b, Figure 1.5. The major difference between these studies is that Smith et al. (2019) directly compare their 

results to Matthews & Zickfeld (2012). 
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warming commitment of CO2 alone, their estimated warming decreased after removing SLCFs and 

accounting for ocean carbon uptake (Mauritsen & Pincus, 2017). 

 

2.4 The importance of non-CO2 GHGs 

 

 

Due to the variant lifetimes of non-CO2 GHGs and the capacity of historical non-CO2 GHG 

emissions to augment temperature change (Smith et al., 2012; Bowerman et al., 2013; MacDougall 

& Knutti, 2016), there is a need to better understand how non-CO2 gases affect the ZEC on 

centennial timescales. Aside from their own source and sink cycles (see Chapter 2.2) one 

complication to warming driven by non-CO2 GHGs increases atmospheric and ocean temperatures 

without participating directly in the carbon cycle (MacDougall & Knutti, 2016). This is 

problematic because their sinks are less sensitive than CO2 to weakening from climate change. 

Reduced sensitivity to climate change is the result of the atmospheric sink of most non-CO2 GHGs. 

That sink is a process of chemical reactions involving the hydroxyl radical (OH-), whose 

abundance in the atmosphere is not directly influenced by temperature change (Levy, 1979; 

Seinfeld & Pandis, 2016). Some consequences for the carbon cycle by additional radiative forcing 

from non-CO2 GHGs are: 1) increasing atmospheric temperature can inhibit plant growth without 

enhancing CO2 fertilization (MacDougall & Knutti, 2016); 2) increasing temperature can increase 

soil organic carbon decomposition (MacDougall & Knutti, 2016); 3) this additional warming leads 

to lower rates of ocean CO2 dissolution (MacDougall & Knutti, 2016); and 4) increased warming 

can reduce the capacity of the ocean to uptake heat from the atmosphere (Frolicher & Paynter, 

2015). 

Comparing how non-CO2 GHGs and CO2 emission affect temperature change, there is a 

difference in how temperature peaks before and after zero emissions. From CO2 emissions alone, 
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peak temperatures are shown to occur within a decade after emissions cease and the delay is largely 

a result of the slow response of atmospheric temperature to ocean thermal inertia (Baede et. al, 

2001; Hansen et al., 2005; Ricke & Caldiera, 2014; Zickfeld & Herrington, 2015). The timing of 

peak temperature following a single emission of CO2 has been estimated at 10.1 years (Ricke & 

Caldiera, 2014), or decades longer for larger emissions (Zickfeld & Herrington, 2015).  The 

relatively short lifetime of certain non-CO2 GHGs, however, means their emissions cause warming 

prior to being zeroed (or prior to deep mitigation), but can lead to a decrease in temperature almost 

immediately afterwards (Bowerman et al., 2013). One of the consequences of this difference is 

that the rate of non-CO2 emissions prior to peak CO2 concentration can cause a temperature change 

threshold overshoot, where temperature changes exceed a target (e.g. 1.5 oC) and decline 

afterwards (Smith et al., 2012; Bowerman et al., 2013). That potential is highly relevant for policies 

seeking to stabilize temperature changes below a target and for mitigation scenarios involving net-

negative emissions. 

Looking specifically at how source sectors, including emissions from non-CO2 GHGs, 

influence temperature change leading to the 1.5 oC threshold, the work from Mengis & Matthews 

(2019), assessed the individual net warming from fossil fuel combustion and land-use change 

/agriculture by partitioning emissions per source. Their results yielded a method where non-CO2 

GHG emissions can be partitioned to account for a specific sectors total emissions. Combining this 

idea with the principles of ZEC scenarios can yield estimates of the climate commitment associated 

with all CO2 and non-CO2 GHG emissions produced by fossil fuels and/or land-use change, giving 

results that are more accurately attributable to human activities. By assuming that groups of 

activities (for example LUC, including agriculture, and other anthropogenic activities) continues 

in the future and by zeroing emissions at present-day in the other sector (i.e. fossil fuel 
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combustion), the potential for past emissions from the eliminated sector and projected emissions 

from the continued sectors to increase temperature can be determined. Such analysis would render 

a baseline of the feasibility to continue activities in certain sectors while phasing out activities in 

the other. 
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CHAPTER 3 

RESEARCH QUESTIONS 

 

3.1 Research questions 

 

My goal is to assess the contribution of non-CO2 GHGs to the climate changes after 

emissions are set to zero, focussing both potential committed climate warming, as well as the 

reversibility of peak temperature changes caused by non-CO2 emissions. I will expand on previous 

studies on this topic who have looked only at the aggregate effect of all non-CO2 gases together 

(Matthews & Zickfeld, 2012; Allen et al., 2018b); given that non-CO2 GHGs have a large range 

of both forcing strength and persistence in the atmosphere, I will disaggregate non-CO2 GHG 

warming to determine the climate commitment attributable to individual species as well as selected 

groupings of non-CO2 GHGs. I will also expand on previous work that analyzed carbon cycle 

feedbacks from a methane-like gas, to further disaggregate those feedbacks by the non-CO2 

groupings (MacDougall & Knutti, 2016). In an attempt to capture climate system and carbon cycle 

feedbacks, I will use ZEC scenarios to simulate how climate changes over multiple centuries after 

the point of zero emissions. 

Following the work of Mengis & Matthews (2019), I will further investigate the future 

climate changes that result from the all CO2 and non-CO2 emissions grouped by source category: 

(1) Fossil Fuel Combustion (FFC) and (2) land-use change (LUC, including agricultural activities). 

This analysis will yield a by-source analysis of the contribution of projected emissions from each 

of these two sector groupings (in the context of zeroed emissions in the other) to temperature 

change over long-term timescales 
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CHAPTER 4 

METHODS 

 

4.1 UVic-ESCM 

All simulations were run using an updated version of the UVic-ESCM 2.9. Model tuning 

and forcing updates to align with CMIP6 protocols were performed by Nadine Mengis and Nesha 

Wright. To disaggregate non-CO2 GHG forcing, a simple atmospheric chemistry module was 

implemented and constructed in the UVic-ESCM. This module follows the chemistry formulas 

used in FAIR 1.3, described by Smith et al. (2018) and includes new updates of methane and 

nitrous oxide forcing presented by Etminan et al. (2016). Additionally, the forcing parameters for 

CO2 concentrations were updated to reflect these recent forcing changes.  

 For my atmospheric chemistry module, emissions from gases listed in Table 3.1 were used 

as input to calculate the atmospheric concentration of non-CO2 GHGs over time. Each non-CO2 

GHG emissions time series was supplied in units mass per year (Meinshausen et al., 2011), which 

does not align with the UVic-ESCM emissions input units of mass per second. To align emissions 

time series to UVic-ESCM parameters, emissions were first converted into grams per second and 

then included as input data. 

 

4.2 Atmospheric chemistry Module 

 

In this atmospheric chemistry module, described in the following paragraphs and equations 

adapted from Smith et al. (2018)to fit UVic-ESCM parameters, a simple one-box atmosphere 

design was employed, with the sink of each non-CO2 GHG calculated by an exponential decay of 

concentration anomaly as a function of gas lifetime. The radiative forcing for each gas was 

determined by its effective radiative forcing (ERF), which was calculated by the change in 
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concentration relative to pre-industrial scaled by the gases radiative efficiency. All emissions of 

non-CO2 GHGs are assumed to be immediately well-mixed in the atmosphere.  

This happens using the molar mixing ratio of each gas to convert emissions to atmospheric 

concentration (𝛿𝐶) via,  

𝛿𝐶𝑡 =
𝐸𝑡

𝐴𝑎

1

(𝜔𝑓/𝜔𝑎)𝜌𝑎𝑑𝑧
𝛿𝑡                                                                                              (Eq. 4.1) where 

𝐸𝑡 is the emissions of each gas (in units g s-1), 𝐴𝑎 is the atmospheric surface area (cm2), 𝜔𝑓 is the 

molecular mass of the greenhouse gas, 𝜔𝑎 is the molecular mass of the dry atmosphere (28.97 

g/mol) from Seinfeld & Pandis (2016), 𝜌𝑎 is the density of the atmosphere at sea-level, 𝑑𝑧 is the 

scale height of carbon (or height of the one-box atmosphere), and 𝛿𝑡 is the timestep (five days, in 

seconds).  

The module updates the atmospheric concentration of each gas as a function of the input 

of new emissions, the concentration at the last time step and concentration decay by,  

𝐶𝑡 = 𝐶𝑡−1 +
1

2
(𝛿𝐶𝑡−1 +  𝛿𝐶𝑡) − 𝐶𝑡−1(1 − exp(−1 𝜏⁄ ))                                                    (Eq. 4.2) 

where, 𝜏 is the lifetime of each gas (Table 3.2), 
1

2
(𝛿𝐶𝑡−1 +  𝛿𝐶𝑡) is the average of emissions input 

between the last timestep and the current timestep, and 𝐶𝑡−1(1 − exp(−1 𝜏⁄ ) is the decay fucntion.  

A difference between my module and that of Smith et al. (2018) is the treatment of CH4 

and N2O natural emissions prior to 2005 (the RCP homogenization year). Smith et al. (2018) 

calculate time-varying natural emissions over the historical period to match observations from 

Meinshausen et al. (2011). After 2005, natural emissions are held constant at 202 Mt CH4 yr-1 for 

CH4 and 8.99 Mt N2-eq yr-1 for N2O. For simplicity and because historical natural emissions of 

methane and nitrous oxide are uncertain, I followed the method of Meinshausen et al. (2011) and 

prescribed atmospheric concentrations for CH4 and N2O, as well as all other non-CO2 GHGs, over  
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Table 4.1: Reproduced from Smith et al. (2018). GHG emissions modelled in this study. NI = not included. Index and 

unit (original) are based on the RCP datasets in Meinshausen et al. (2011). Unit (UVic-ESCM) is the conversion into 

UVic-ESCM units. 
Index Species Unit (original) Unit (UVic-ESCM) Remark 

0 Year Year Year  

1 CO2 fossil Gt C yr-1 g C s-1  

2 CO2 land use Gt C yr-1 g C s-1  

3 CH4 Mt yr-1 g s-1  

4 N2O Mt N2 yr-1 g N2 s-1  

5 SOx Mt S yr-1 g S s-1 NI 

6 CO Mt yr-1 g s-1  

7 NMVOC Mt yr-1 g s-1  

8 NOx Mt N yr-1 g N s-1  

9 BC Mt yr-1 g s-1 NI 

10 OC Mt yr-1 g s-1 NI 

11 NH3 Mt yr-1 g s-1 NI 

Florinated gases (F-gases) or Kyoto Protocol substances 

12 CF4 kt yr-1 g s-1  

13 C2F6 kt yr-1 g s-1  

14 C6F14 kt yr-1 g s-1  

15 HFC23 kt yr-1 g s-1  

16 HFC32 kt yr-1 g s-1  

17 HFC43-10 kt yr-1 g s-1  

18 HFC125 kt yr-1 g s-1  

19 HFC134a kt yr-1 g s-1  

20 HFC143a kt yr-1 g s-1  

21 HFC227ea kt yr-1 g s-1  

22 HFC245fa kt yr-1 g s-1  

23 SF6 kt yr-1 g s-1  

Ozone depleting substances (ODS) or Montreal Protocol gases 

24 CFC-11 kt yr-1 g s-1  

25 CFC-12 kt yr-1 g s-1  

26 CFC-113 kt yr-1 g s-1  

27 CFC-114 kt yr-1 g s-1  

28 CFC-115 kt yr-1 g s-1  

29 CCl4 (carb-tet) kt yr-1 g s-1  

30 Methyl chloroform (mcf) kt yr-1 g s-1  

31 HCFC22 kt yr-1 g s-1  

32 HCFC141b kt yr-1 g s-1  

33 HCFC142b kt yr-1 g s-1  

34 Halon 1211 kt yr-1 g s-1  

35 Halon 1202 kt yr-1 g s-1  

36 Halon 1301 kt yr-1 g s-1  

37 Halon 2402 kt yr-1 g s-1  

38 CH3Br kt yr-1 g s-1  

39 CH3Cl kt yr-1 g s-1  

the historical period. Beyond 2005, I adopted the constant natural emissions of CH4 and N2O from 

Smith et al. (2018) and included those as an addition to atmospheric concentration at each time 

step, thus rendering,  
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𝐶𝑡 = 𝐶𝑡−1 +
1

2
(𝛿𝐶𝑡−1 +  𝛿𝐶𝑡) − 𝐶𝑡−1(1 − exp(−1 𝜏⁄ )) + 𝛿𝐶𝑛𝑎𝑡                                   (Eq. 4.2b) 

where 𝐶𝑛𝑎𝑡 is the natural emissions converted to atmospheric concentration via Eq. 1.  

As described above (Chapter 2.4), the sink of many non-CO2 GHGs is an oxidation process 

involving the hydroxyl radicle (OH-). From fossil fuel sources, the oxidation of CH4 produces 

small quantities of CO2. This process constitutes a positive feedback of CH4 concentration to CO2 

concentration by,  

𝐸𝐶𝐻4→𝐶𝑂2
= 0.61𝑓𝐶𝐻4𝑓𝑜𝑠(𝐶𝐶𝐻4

−  𝐶𝐶𝐻4,𝑝𝑖)(1 − exp (−1 𝜏𝐶𝐻4
⁄ )                                         (Eq. 4.3) 

where 𝑓𝐶𝐻4𝑓𝑜𝑠is the fraction of methane emissions from fossil fuel sources, taken as 32.1% as per 

the Global Methane Budget (Saunois et al., 2016), and 0.61 is the percentage of methane 

concentration anomaly oxidized into carbon dioxide. In my module, this feedback is applied when 

the option to include CH4 emissions is turned on and is always greater than or equal to zero. 

Another product of CH4 decay is stratospheric water vapor. Here this decay leads to an 

additional radiative forcing that is modelled as 12% of the methane ERF in a given time step. 

 A recent update by Etminan et al. (2016) showed that CO2, CH4, and N2O share radiative 

forcing band overlaps. These updates were included in my module and are reproduced here. In Eqs 

4-6, C represents CO2 concentration (ppmv), and M and N represent CH4 and N2O concentration 

(ppbv).  

𝐹𝐶𝑂2
= [(−2.4 × 10−7)(𝐶 − 𝐶𝑝𝑖)

2
+ (7.2 × 10−4)|𝐶 − 𝐶𝑝𝑖| − (1.05 × 10−4)(𝑁 + 𝑁𝑝𝑖) +

5.36] × log (
𝐶

𝐶𝑝𝑖
)                                                                                                                  (Eq. 4.4)  

 

𝐹𝑁2𝑂 = [(−4.0 × 10−6)(𝐶 + 𝐶𝑝𝑖) + (2.1 × 10−6)( 𝑁 + 𝑁𝑝𝑖) − (2.45 × 10−6)(𝑀 + 𝑀𝑝𝑖) +

              0.117] × (√𝑁 − √𝑁𝑝𝑖)                                                                                          (Eq. 4.5) 

 

𝐹𝐶𝐻4
= [−(6.5 × 10−7)( 𝑀 + 𝑀𝑝𝑖) − (4.1 × 10−6)(𝑁 + 𝑁𝑝𝑖) + 0.043] × (√𝑀 − √𝑀𝑝𝑖)                                                          

(Eq. 4.6) 
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Table 4.2: Reproduced from Smith et al. (2018). All lifetimes and radiative efficiencies, except methane, are from 

AR5 (Myhre et al., 2013, Table 8.A.1). For gases with a listed radiative efficiency, the effective radiative forcing is 

calculated using a linear function of concentration. 
Gas Molecular weight  

𝜔𝑓  (g mol-1) 

Radiative efficiency 

𝜂(W m-2 ppb-1) 

Lifetime 

𝜏(yr) 

 

ri 

 

nCl 

 

nBr 

Major gases 

CH4 16.04 N/A 9.6  

N2O 44.01 N/A 121  

F-gases 

CF4 88.00 0.09 50 000  

C2F6 138.01 0.25 10 000  

C6F14 338.04 0.44 3100  

HFC23 70.01 0.18 222  

HFC32 52.02 0.11 5.2  

HFC43-10 252.06 0.42 16.1  

HFC125 120.02 0.23 28.2  

HFC134a 102.03 0.16 13.4  

HFC143a 84.04 0.16 47.1  

HFC227ea 170.03 0.26 38.9  

HFC245fa 134.05 0.24 7.7  

SF6 146.06 0.57 3200  

ODS 

CFC-11 137.37 0.26 45 0.47 3 0 

CFC-12 120.91 0.32 100 0.23 2 0 

CFC-113 187.38 0.30 85 0.29 3 0 

CFC-114 170.92 0.31 190 0.12 2 0 

CFC-115 154.47 0.20 1020 0.04 1 0 

carb-tet 153.81 0.17 26 0.56 4 0 

mcf 133.40 0.07 5 0.67 3 0 

HCFC22 86.47 0.21 11.9 0.13 1 0 

HCFC141b 116.94 0.16 9.2 0.34 2 0 

HCFC142b 100.49 0.19 17.2 0.17 1 0 

Halon 1211 165.36 0.29 16.0 0.62 1 1 

Halon 1202 209.82 0.27 2.9 0.62 0 2 

Halon 1301 148.91 0.30 65 0.28 0 1 

Halon 2402 259.82 0.30 20 0.65 0 2 

CH3Br 94.94 0.004 0.8 0.60 0 1 

CH3Cl 50.49 0.01 1 0.44 1 0 

 

 

For all other non-CO2 GHGs a linear equation was used to describe their effective radiative 

forcing. This equation is dependent on the change in concentration since pre-industrial for each 

gas, where 𝜂𝑖 is the radiative efficiency for each gas listed in Table 4.2. 

𝐹𝑖 = 𝜂𝑖(𝐶𝑖 − 𝐶𝑖,𝑝𝑖); 𝑖 ∈                                                                                                        (Eq. 4.7) 
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The modelling of radiative forcing from tropospheric ozone was here calculated via ozone 

forming pre-cursor concentration of CH4, and emissions of carbon monoxide (CO), non-methane 

volatile organic compounds (NMVOC), and nitrogen oxides (NOx). A linearity was assumed 

between atmospheric concentration of methane and ozone forcing.  

𝐹𝑂3𝑡𝑟 = 𝛽𝐶𝐻4
(𝐶𝐶𝐻4

− 𝐶𝐶𝐻4,𝑝𝑖) +  𝛽𝑁𝑂𝑥
(𝐸𝑁𝑂𝑥

− 𝐸𝑁𝑂𝑥,𝑝𝑖) + 𝛽𝐶𝑂(𝐸𝐶𝑂 − 𝐸𝐶𝑂,𝑝𝑖) +

               𝛽𝑁𝑀𝑉𝑂𝐶(𝐸𝑁𝑀𝑉𝑂𝐶 − 𝐸𝑁𝑀𝑉𝑂𝐶,𝑝𝑖)                                                                               (Eq. 4.8) 

 

The coefficients 𝛽 are provided in Table 4.3. Smith et al. (2018) employ a switch for coefficient 

values in 1850. Since my simulations all began in year 1850, only the post-1850 coefficients were 

employed in my module. 

The ERF for stratospheric ozone was calculated using the exponential relationship:  

𝐹𝑂3𝑠𝑡 = 𝑎(𝑏 𝑠)𝑐                                                                                                                    (Eq. 4.9) 

where a = -1.46x10-5, b = 2.05x10-3, and c = 1.03. s represents the equivalent effective stratospheric 

chlorine, and is a measure of the contribution of each ozone depleting substance to chlorine and 

bromine atoms in the stratosphere, calculated by 

𝑠 =  𝑟𝐶𝐹𝐶−11 ∑ (𝑛𝐶𝑙(𝑖)𝐶𝑖
𝑟𝑖

𝑟𝐶𝐹𝐶−11
+ 45𝑛𝐵𝑟(𝑖)𝐶𝑖

𝑟𝑖

𝑟𝐶𝐹𝐶−11
)𝑖∈𝑂𝐷𝑆                                            (Eq. 4.10) 

where 𝑟𝑖 is the fractional release of each compound, and 𝑛𝐶𝑙 and 𝑛𝐵𝑟 are the number of chlorine 

and bromine atoms in each gas. The factor 45 is included to represent that bromine is 45 times 

more effective at reducing stratospheric ozone than chlorine.  

 

Table 4.3: Parameters for contribution to tropospheric ozone ERF from each precursor (adapted from Smith et al. 

(2018). Coefficient and pre-industrial values are here reported as is in Smith et al. (2018) but were converted to UVic-

ESCM units.  

Ozone forcing efficiency (Eq. 8) 

Species Post-1850 ( 𝛽𝑖) Pre-industrial value 

CH4 1.73 x 10-4 W m-2 ppb-1 722 ppb 

CO 8.51 x 10-5 W m-2 (Mt yr-1)-1 170 Mt CO yr-1 

NMVOC 2.25 x 10-4 W m-2 (Mt yr-1)-1 5 Mt NMVOC yr-1 

NOx 9.08 x 10-4 W m-2 (Mt yr-1)-1 2 Mt N yr-1 
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4.3 Atmospheric chemistry module validation 

 

 Because the atmospheric chemistry module does not include feedbacks from other 

components of the UVic-ESCM a full model validation is not necessary. With respect to the 

atmospheric chemistry module, over the historic period (1850-2005) in all simulations the model 

was driven by prescribed concentrations of greenhouse gases. Theses concentrations were input 

from yearly data as per the RCP historical GHG concentrations dataset (Meinshausen et al., 2011). 

In the UVic-ESCM this yearly input data was interpolated to five-day time steps internally in the 

model. For each time step the concentration anomaly from pre-industrial value was used to 

calculate radiative forcing of each non-CO2 GHG. Except for the time step difference, this 

procedure is the same as that used to simulate and validate historical forcing in FaIR 1.3 (Smith et 

al., 2018). Over the historical period, the non-CO2 GHGs showed radiative forcing in line with 

that of FaIR 1.3 and as such the radiative forcing equations should be viewed as valid.  

 In the near-present (2005-2019) most simulations (expect the by-source simulations) were 

driven by input of non-CO2 GHG emissions under RCP4.5. The atmospheric chemistry module 

then calculated the concentration in each time step, which was used to calculate the effective 

radiative forcing for each gas per time step. Owing to the difference in time steps between the 

UVic-ESCM and FaIR 1.3 a slight difference in the calculated yearly concentration of non-CO2 

GHGs was observed between these two models. This difference, however, is fractional which 

means the values of atmospheric concentration are almost the same, or as expected.  

 

4.4 Land-use change and agriculture 

 

 In the by-source simulations (see Chapter 5.2.2), I model how the climate system would 

evolve in the absence of land-use change and agriculture emissions. Due to how the UVic-ESCM 
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models the spatial components of agriculture, there are some limitations to this simulation. In the 

UVic-ESCM agriculture activities are modelled from an input of a spatial dataset where each grid 

cell in the dataset represents the fraction of that land area which is used for agriculture. Under 

natural circumstances, if land-use change and agriculture activities were to stop, crop land would 

return to forest. Greater tree cover would draw more carbon out of the atmosphere and increase 

the land carbon pool. In my simulations, I assume there is no change in the spatial portion of land-

use change and agriculture since their pre-industrial levels. Only the emissions of land-use change 

and agriculture activities, taken as a portion of emissions under RCP4.5 are modelled in my 

simulations.  
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CHAPTER 5 

MANUSCRIPT 

 

5.1 Introduction 

 

An objective of the Paris Agreement is to attempt to prevent global temperature from 

exceeding 1.5 °C above pre-industrial levels (UNFCCC, 2015). Current understanding of the 

climate system and carbon cycle suggests such global warming is driven primarily by cumulative 

carbon dioxide (CO2) emissions (Solomon et al., 2009; Gillett et al., 2013; Matthews & Solomon, 

2013; Allen & Stocker, 2014; Millar et al., 2016; Matthews et al, 2017; Millar et al., 2017). 

However, non-CO2 greenhouse gases and aerosols are also significant drivers of global 

temperature changes (Smith et al., 2012; Bowerman et al., 2013). CO2-induced warming has been 

shown to persist on timescales of a century to multiple-millennia, meaning the global temperature 

change caused by past and current CO2 emissions does not decline during the foreseeable future 

(Matthews & Zickfeld, 2012; Allen et al., 2018b). In contrast, warming caused by non-CO2 

greenhouse gases with shorter atmospheric lifetimes, does not persist as long as that caused by 

CO2 and can therefore be reversed with ambitious mitigation efforts (Matthews & Zickfeld, 2012; 

Bowerman et al., 2013).  

In effect, the future climate system is committed to warming, and other impacts, from past 

emissions, which is referred to as the warming commitment from past emissions (Matthews & 

Zickfeld, 2012). This warming commitment can be estimated by modelling how the climate system 

reacts to a given amount of human induced climate forcing from greenhouse gases (GHGs) and 

aerosols, then setting emissions from those pollutants to zero and continuing the model for 

centuries or multiple-millennia in the absence of additional emissions (Matthews et al., 2012; 

Zickfeld et al., 2017; Allen et al., 2018b). This approach yields an estimate of the “Zero Emissions 
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Commitment” (ZEC), which defines the change in future temperature that results after zero 

emissions. In the case of CO2-only emissions, when emissions are zeroed, the physical processes 

of ocean heat uptake and the efficacy of sinks for atmospheric CO2 strike a balance to yield a 

nearly constant global temperature (Solomon et al., 2009; Matthews & Zickfeld et al., 2012; 

Frolicher et al., 2014; Ehlert & Zickfeld, 2015). 

Estimates of the CO2-only ZEC typically vary between 0.5 C (Solomon et al., 2009; 

Matthews & Zickfeld, Allen et al., 2018b). Two drivers behind these differing values are: the 

cumulative carbon emissions at the time of ZEC; and the combination of human induced emissions 

that are zeroed or not. For example, in a study assessing high atmospheric CO2 burden, Ehlert & 

Zickfeld (2017) found a maximum warming commitment from a CO2-only ZEC scenario of 0.9 

C with the remaining simulations yielding a climate commitment between 0 and 0.5 C. Analyses 

of the influence of aerosols on warming commitment, where aerosol emissions are zeroed along 

with CO2, have shown a long-term warming commitment of 1.2 or 0.5 C (Matthews & Zickfeld, 

2012; Allen et al., 2018b, respectively). In experiments where non-CO2 GHGs are zeroed along 

with CO2 and aerosols emissions are held constant, a negative ZEC has been reported (Matthews 

& Zickfeld, 2012; Allen et al., 2018b). 

A limitation of the studies that zero non-CO2 GHGs is that the contribution to global 

temperature change from each gas is aggregated into one parameter (Matthews & Zickfeld, 2012; 

Allen et al., 2018b). These gases exhibit unique atmospheric lifetimes, concentrations, and 

radiative efficiencies, which are the factors of a gases effective radiative forcing (ERF) (Smith et 

al., 2012; Allen et al., 2018a; Smith et al., 2018). Aggregating non-CO2 GHGs into a single climate 

forcing parameter masks the ERF of certain gases and thus their influence on the climate system. 

Some non-CO2 GHGs, for example, have low atmospheric concentrations but long lifetimes, 
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meaning an emission marginally affects global temperature over multiple-millennia (Smith et al., 

2012). Others exhibit shorter lifetimes but higher radiative efficiency and concentration, meaning 

an emission causes significant immediate temperature change but might not cause lasting change 

to climate system (Bowerman et al., 2013; MacDougall et al., 2015). 

Coinciding with the differentiating influence of specific non-CO2 GHGs on global 

warming is the fact that GHGs are often co-emitted by the same source (Rogelj et al., 2014; Mengis 

& Matthews, 2019). At a broad level, the two main sources of emissions are from fossil fuel 

combustion (FFC) and land-use change including agriculture (LUC) (Baede et al., 2001; Myhre et 

al., 2013; Saunois et al., 2016; Le Quere et al., 2018). Recent work has shown that by partitioning 

emissions by source, the net influence of these human activities on global warming can be captured 

(Mengis & Matthews, 2019). That influence was shown by Mengis & Matthews (2019) to have a 

substantial impact on the size of the remaining carbon budget for the 1.5 C temperature target.  

As policy measures to keep global temperature below 1.5 C will require multi-faceted 

reductions in emissions, there is a need to better assess the ZEC and reversibility of peak 

temperature change from non-CO2 GHGs. My study fills this gap by investigating the ZEC from 

individual and policy-relevant groupings of non-CO2 GHGs. I further partition GHGs by sector to 

examine the future warming associated with all emissions from fossil fuel combustion and land-

use change and agriculture. In these analyses I use different terms to differential between the sign 

(positive or negative) of temperature change following zero emissions. Here I use the term 

warming commitment refer to a positive temperature change after zero emissions, warming 

reversibility to refer to a negative temperature change after zero emissions, and climate 

commitment to refer more generally to either of these two cases. 

 

5.2 Model and Simulations 
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5.2.1    Model 

 

All simulations were carried out using an updated version of the University of Victoria Earth 

System Model version 2.9 (UVic-ESMC 2.9), an Earth-system model of intermediate complexity 

(EMIC). The UVic-ESCM 2.9 includes an atmospheric energy-moisture balance model, general 

ocean circulation model, land surface model, and dynamic sea-ice model (Weaver et al., 2001; Eby 

et al., 2009; Wania et al., 2013). It simulates an integrated global carbon cycle with carbon fluxes 

coupled between land, ocean, and ocean sediment. The energy-moisture balance model is a 

vertically integrated representation of the atmosphere, housing feedbacks from water vapour, 

planetary long wave radiation, and dynamic wind. A resolution of 1.8 (longitudinal) x 3.6 

(latitudinal) is used in all components.  

The version of the UVic-ESCM 2.9 used here has been updated to include a description of 

the permafrost carbon pool (MacDougall & Knutti, 2016), with updated forcing following CMIP6 

protocols (Mengis, 2019). For the simulations carried out here, a simple non-CO2 GHG 

atmospheric chemistry module was added to the UVic-ESCM. This module represents the 

effective radiative forcing (ERF) from non-CO2 GHGs either using prescribed concentrations, or 

with prescribed emissions which are then used to calculate concentrations and radiative forcing. 

For each gas an ERF parameter is applied as a function of changes in atmospheric concentration 

relative to pre-industrial levels and radiative efficiency to yield the radiative forcing for that species 

(Etminan et al., 2016; Smith et al., 2018). These equations cover forcing from methane (CH4), 

nitrous oxide (N2O), fluorinated gases (F-gases, or Kyoto Protocol gases), ozone depleting 

substance (ODS, or Montreal gases), stratospheric ozone, stratospheric water vapour via CH4 

decay, and tropospheric ozone via carbon monoxide (CO), non-methane volatile organic carbon 
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(NMVOC), nitrogen oxides (NOx) emissions, and change in CH4 concentration (Smith et al, 

2018). In these equations, the sink of non-CO2 GHGs is described by their atmospheric lifetime, 

where a fraction of (CH4) emissions decay into CO2, thus increasing atmospheric CO2 

concentration.  

Effective radiative forcing (ERF) for each gas is calculated as a function of the change in 

atmospheric concentration relative to pre-industrial and given values of radiative efficiency 

(Etiman et al., 2016; Smith et al., 2018). Since, in the simple model setup, the atmospheric decay 

of these species is by means of their lifetime; as a result, gases with shorter lifetimes exhibit faster 

decreases in concentration after zeroed emissions (Smith et al., 2018). The response of ERF per 

gas to zeroed emissions is thus directly related to the atmospheric lifetime of the gas in question. 

One exception is CH4 and N2O, which are known exhibit a long-wave radiation absorption 

overlap. Nitrous oxide shares an additional absorption band overlap with CO2 (Etminan et al., 

2016). This absorption band overlap means the ERFs of methane and nitrous oxide are co-

dependent on the concentration changes of either gas. If CH4 concentration is higher, as is the case 

immediately following zero emissions, there should be a reduction in the ERF of N2O over that 

period. Compared to the CH4& N2O simulation, the ERF of N2O in the N2O alone simulation 

shows an average 1.4% increase between 2020 and 2030. This average percent increase declines 

to negligible by the end of the century, when CH4 has returned to pre-industrial and when the 

addition of CH4 decay into CO2 is no longer a factor of CO2 concentration. Despite this small 

reduction in the individual ERF of N2O, the CH4& N2O simulation shows higher combined 

effective radiative forcing than the simulation for either gas alone. 

 

5.2.2 Simulations 
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My analysis uses ZEC scenarios to investigate the long-term climate commitment from 

past non-CO2 emissions. Climate commitments on the century timescale looked at here can be 

used to relate past non-CO2 emissions to the reversibility of peak temperature. On these timescales 

the impact of aerosol emissions on temperature change is less important. The effect of historic 

aerosol emissions is to reduce peak warming (Myhre et al., 2013), but long-term temperature 

change is driven by CO2 and long-lived non-CO2 GHGs (Matthews & Zickfeld, 2012; Allen et al., 

2018b). In ZEC scenarios where historical aerosol emissions are included and zeroed along with 

CO2 and other gases, models show an initial warming period during the first decade after zero 

emissions caused by the rapid decline in atmospheric aerosol concentration (Matthews & Zickfeld, 

2012; Allen et al., 2018b). To limit the noise from that initial warming and to focus on long-term 

temperature change, the historical aerosol forcing was removed from my scenarios. 

To disaggregate the ZECs of non-CO2 GHGs, separate simulations were carried out for 

individual and groups of gases. Non-CO2 GHGs were grouped as follows: CH4-only, N2O-only, 

CH4 and N2O together, F-gases, ODSs, and tropospheric ozone (trop-ozone). Each non-CO2 GHG 

simulation also includes prescribed concentrations or emissions of CO2 to yield a forcing relative 

to CO2 and similar to that of present-day (Haustein et al., 2017). As a control, a simulation with 

anthropogenic forcing from prescribed CO2 concentrations was also run. The climate commitment 

of each individual gas or grouping of gases is therefore represented as the difference between their 

respective simulation and the CO2-only simulation.  

Additionally, two further simulations were run, where emissions of CO2 and co-emitted 

non-CO2 emissions were prescribed according to source category: one for FFC emissions and the 

other for LUC emissions. In these, emissions from CH4, N2O and tropospheric ozone were 

partitioned using mean estimates of proportional contribution to total forcing per gas from Mengis 
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& Matthews (2019) (see Table 5.1), while CO2 emissions were taken from historical and RCP4.5 

partitions (Meinshaunsen et al., 2011). 

Table 5.1: The partitioning of anthropogenic non-CO2 GHGs. Table is a partial re-production of Table 1 from 

Mengis& Matthews (2019). Reported are only the means and excluding the uncertainty ranges.  

Partitioning of anthropogenic non-CO2 forcing in % 

Emission 

Source 

FFC LUC (agriculture + 

biomass burning) 

Other anthropogenic 

activities 

CH4 28 38 + 11 23 

Stratospheric water vapor from CH4 28 38 + 11 23 

N2O 10 60 + 10 20 

Tropospheric-ozone 51 39 10 

 

Simulations were run over the historical period (1850-2005) using prescribed GHG 

concentrations from the RCP historical concentration dataset (Meinshaunsen et al., 2011). GHG 

emissions from RCP4.5 were used to approximate anthropogenic radiative forcing to the present-

day period (2005-2019), which closely follows current emissions trends (Haustein et al., 2017; Le 

Quéré et al. 2018). Starting in 2020 radiative forcing was projected by setting relevant GHG 

emissions to zero and allowing their concentrations to decline according to the results of the carbon 

cycle and atmospheric chemistry modules. For the FFC and LUC simulations, both source 

emissions and emissions from other anthropogenic activities were included during the historic-to-

present-day period. In the FFC run, starting in 2020, LUC emissions were set zero and the FFC 

and other anthropogenic emissions were allowed to continue following RCP4.5 projections. 

Similarly, in the LUC run, FFC emissions were set to zero and the LUC and other anthropogenic 

emissions were allowed to continue. I did not include aerosol emissions in any simulations; as a 

result, these results quantify the warming commitment associated with CO2 and non-CO2 

greenhouse gas emissions only.  

 

5.2.3 Calculations 
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To assess the long-term climate commitment from historical non-CO2 GHG emissions, the percent 

temperature change from peak temperature remaining was calculated. This is defined as the 

fraction of peak warming remaining for each individual gas or gas grouping relative to CO2. It was 

calculated by, 

%T(𝑡) =  
(𝑆𝐴𝑇𝑖,𝑡−𝑆𝐴𝑇𝐶𝑂2,𝑡)

(𝑆𝐴𝑇𝑖,𝑚𝑎𝑥−𝑆𝐴𝑇𝐶𝑂2,𝑚𝑎𝑥)
× 100%                                                                             (Eq. 5.1) 

where, 𝑆𝐴𝑇𝑖,𝑡 is the temperature per simulation (i) in time (t), and 𝑆𝐴𝑇𝑖,𝑚𝑎𝑥 is the peak temperature 

during simulation (i) 

 

5.3 Results 

 

5.3.1 Historical and zero emissions temperature commitment 

 

Figure 5.1 shows the change in ERF after zero emissions for the two dominant non-CO2 GHGs 

(CH4 and N2O) (Myhre et al., 2013), as well as specific gases from the other main GHG groups 

(F-gases and ODS’s) and tropospheric-ozone. Additionally, these gases cover the range of 

atmospheric lifetimes of non-CO2 GHGs (Smith et al., 2012; Smith et al., 2018), with the exception 

of tropospheric ozone, whose atmospheric lifetime is on the order of days (Myhre et al., 2013) and 

whose concentration is not calculated in this model (see Eq. 8). Atmospheric lifetimes for the gases 

shown in Figure 5.1 span decades to multiple millennia; with CH4 at 9.3 years, N2O at 121 years, 

CF4 at 50,000 years, and CFC-11 at 45 years. 
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Figure 5.1: Historical and projected effective radiative forcing (W/m2) of CH4, N2O, CH4& N2O, CF4, CFC-11, and tropospheric-ozone. 
Plots show the change in radiative forcing relative to 1850. Dotted lines (1850-2005) represent forcing from prescribed 
concentration; dashed lines (2005-2019) represent forcing from concentrations calculated as a function of emissions from the 
RCP4.5 scenario; and solid lines represent projected forcing from concentrations calculated as a function zero emissions 

Though CH4 produces the most ERF over the historical to present-day period (excluding the CH4& 

N2O ERF), its shorter atmospheric lifetime results in a return of atmospheric abundance to pre-

industrial levels for the species within less than half a century after zeroed emissions thereby 

causing a steep decline in ERF following zeroed emissions.  

In contrast, the multi-millennial atmospheric lifetime of CF4 yields an ERF that remains 

approximately constant in the centuries after emissions cessation. The difference in rates of decline 

in ERF (solid lines) between N2O and CFC-11 can be explained by both the difference in the pre-

industrial concentrations of those gases and the difference in the rate of increase in concentration 

over the historical to present-day period (dotted line). N2O has a pre-industrial concentration of 

approximately 272 parts per billion by volume (ppbv) and increases to 316 ppbv by 2000, whereas 
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CFC-11 has no pre-industrial concentration and increases to approximately 264 parts per trillion 

by volume (pptv) between 1950 and 2000 (Meinshausen et al., 2011). 

The inclusion of CO2 in all simulations both yields a temperature approximate to the 

present-day and functions as a control against which to calculate the effect of individual and groups 

of non-CO2 gases. Figure 5.2 displays the change in SAT relative to 1850 for each non-CO2 

scenario and for CO2 alone.   

Over the historical to present-day period, the most dominant change in SAT is in scenarios 

forced by CH4.The difference in the historical change in SAT between scenarios with CH4 and 

those without is primarily a difference in the change in historical concentration of CH4 compared 

to the other GHG species, which follows the same trend as seen in Figure 5.1. Due, again, to the 

short atmospheric lifetime of CH4, in scenarios with CH4 SAT declines rapidly following zero 

Figure 5.2: The change in SAT relative to 1850 for individual and groups of non-CO2 GHGs. For a control reference the change in 
SAT in a simulation forced only by CO2 is displayed on each plot. Dotted lines represent change in SAT as a function of prescribed 
concentrations, dashed lines represent change in SAT as a function of emissions from RCP4.5, and solid lines represent change in 
SAT as a function of zeroed emissions. Each non-CO2 GHG scenario is also forced by CO2. 



 
 

 
 

41 

emissions. In the remaining scenarios, the long-term trajectory of SAT change after zeroed 

emissions more closely follows that of CO2. 

 

Figure 5.3: Historical and projected temperature change per gas or gas grouping relative to the historic and projected temperature 
change of a simulation forced by CO2 only. Dotted lines show historic temperature change to 2005, dashed lines show temperature 
change from 2005 to 2019 (when emissions were zeroed), and solid lines show temperature change following zeroed emissions. 

 Figure 5.3 shows the historical and long-term temperature change following zero emissions 

for individual and groupings of non-CO2 GHGs relative CO2. Over the historical period, CH4 alone 

is responsible for approximately 0.4 oC warming, where N2O alone accounts for 0.1 oC warming. 

Owing to the absorption band overlap reducing the historical ERF of CH4 and N2O in the CH4& 

N2O simulation, the historical temperature change from CH4 and N2O combined is 0.48 oC, 

marginally less than if SAT change was aggregated between the CH4 and N2O only simulations. 
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Tropospheric-ozone here yields 0.33 oC historical warming, with ODSs yielding 0.16 oC historic 

warming and F-gases yield negligible historic warming. 

Table 5.2 displays the average historical warming per individual and gas groupings in each 

decade between 1950 to 2019. Gases with greater emissions over the historical period, CO2, CH4, 

trop-ozone are the most responsible for historical warming. Both, CH4 and trop-ozone have short 

atmospheric lifetimes, and as a result the historical warming caused by those gases rapidly declines 

following zero emissions. Evident from Figure 5.3, the rate of temperature decline in CH4 driven 

scenarios is higher than all scenarios other than trop-ozone. This rate of temperature decline is the 

highest for CH4in the second decade after ZEC, where temperatures decline at approximately 0.01 

oC per year in that decade. 

Table 5.2: Average SAT change per gas or gas groupings relative to 1850. Temperature change for Non-CO2 gases is 

reported relative to CO2 

Average SAT change per decade oC 

Gases 

Year ranges 

1950-1960 1960-1970 1970-1980 1980-1990 1990-2000 2000-2010 2010-2019 

CO2 0.26 0.31 0.39 0.50 0.64 0.78 0.92 

CH4 0.16 0.20 0.26 0.30 0.32 0.36 0.39 

N2O 0.03 0.03 0.04 0.05 0.07 0.07 0.09 

CH4 & N2O 0.19 0.23 0.30 0.34 0.39 0.42 0.48 

F-gases 0.0 0.0 0.0 0.0 0.0 0.0 0.01 

ODSs 0.0 0.0 0.02 0.07 0.11 0.13 0.14 

Trop-ozone 0.11 0.14 0.19 0.26 0.26 0.30 0.31 

 

Over the long-term, 2020-2300, the temperature commitment for each gas and gas 

grouping declines to zero. This net cooling after zero emissions ranges between 0.45 and 0 oC. The 

greatest cooling following zeroed emissions is from scenarios including CH4, where again the brief 

atmospheric lifetime of CH4 leads to a rapid reduction concentration after emissions cessation. 

 

5.3.2    Peak temperature reversibility  
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With the exception of tropospheric-ozone, all simulations show an increase in warming up 

to or shortly after the point of zero emissions and all simulations show cooling afterwards. This 

indicates that the historical temperature increase of each non-CO2 GHG and gas grouping reported 

in Table 5.2 can be reversed. The difference with the tropospheric ozone simulation is that 

following RCP4.5, precursor emissions from CO, NMVOCs and NOx begin to decline in 2012 

and SAT is thus declining by the time of ZEC (Meinshausen et al., 2011). Additionally, because 

the tropospheric ozone ERF is calculated as a function of precursor emissions and not 

concentrations of those pollutants, the ERF begins a sharp decline in the first time step after ZEC, 

therefore causing the highest rate of cooling as shown in Figure 5.3. 

 

Figure 5.4: Present-day and future SAT change following zeroed emissions per individual or groups of non-CO2 GHGs and CO2. Solid 
lines represent the change in SAT after zero emissions and dashed lines represent the present-day (2005-2019) temperature 
change. By 2300, all simulations (with the exception of the CH4& N2O simulation converge on the temperature of the CO2 
simulation. 

Figures 5.4 and 5.5 demonstrate the peak temperature change and reversibility of that 

increase in each scenario (including CO2) from two different angles. In Figure 5.4 peak 
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temperature change is shown relative to 1850, with the dashed vertical line representing the year 

in which temperatures peak during the CO2 only simulation. Because aerosols, which constitute a 

net cooling effect, are excluded in these simulations, peak temperature changes are higher in Figure 

5.4 than has actually occurred. In all non-CO2 GHG simulations, except F-gases, emissions prior 

to 2019 (dashed coloured lines) result in an increase in temperature compared to the CO2 only 

simulation. Following zero emissions, temperature change in all simulations converges on the 

temperature change in the CO2 only simulation. As CO2 is included in the non-CO2 GHG 

simulations, this shows that long-term temperature change is driven primarily by CO2. 

 
Figure 5.5: Trajectory of the change in SAT after zeroed emissions per individual or groups of GHGs. Change in SAT is relative to 
the change in SAT value for each simulation at the time of ZEC (grey dotted line). The horizontal grey dashed line represents the 
temperature in the CO2 only simulation at the time of ZEC if that temperature were taken zero. This figure emphasizes the 
marginal cooling from F-gases (teal line) and N2O (green line), and shows the more immediate effect of zeroing CH4 (red and 
blue lines).  

However, Figure 5.5 shows that the historical temperature change caused by individual and 

most groupings of non-CO2 GHGs, can be reversed.  Negative values here indicate a cooling post 

ZEC and reveal the reversibility of the peak temperature shown in Figure 5.4. Simulations with 
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higher historical warming exhibit the greatest reversibility. As well, simulations that include CH4 

display the most rapid temperature reversibility, seen by the steep decline in temperature after zero 

emissions. The simulation forced by N2O alone, however, yields less cooling and therefore the 

reversibility of temperature changes caused by historical N2O emissions is less than that for 

historical CH4 emissions. Relative to 2019, the simulation forced by tropospheric ozone appears 

to yield a reduced rate of cooling compared to the cooling shown from trop-ozone alone in Figure 

5.3. This happens because the results shown in Figure 5.5 include forcing from CO2, which means 

the more tropospheric ozone forcing declines, the greater the influence of CO2 on temperature 

change. Therefore when temperature change stabilize in the trop-ozone simulation shown in Figure 

5.5, it remains higher than for the CO2-only simulation. 

Table 5.3: Percent of peak temperature change remaining from historical emissions of individual and non-CO2 GHGs 

groupings. In each calculate a 20-year average of percent peak temperature change remaining (see, Eq. 5.1) was taken 

centered on the year indicated. *: the 108% of peak temperature change remaining for N2O centered at 2050 is not 

accurate. This erroneous value is the result the climate variability described in Chapter 6.1. Due to internal climate 

variability (see Figure 5.3), the results in 2200 and 2290 for F-gases negligible.  
Percent peak temperature change remaining after ZEC per individual and  

non-CO2 GHG groupings 

Gases 

Year 

2050 2100 2200 2290 

CH4 44.9 14.0 6.4 4.7 

N2O 108.2* 79.6 26.0 28.0 

CH4 & N2O 56.5 27.8 12.0 6.2 

F-gases 130.2 100.8 - - 

ODS 83.9 45.5 8.1 5.6 

Trop-ozone 12.9 6.6 3.4 3.0 

  

    Considering historical temperature reversibility as a percentage of peak temperature change 

remaining (see Chapter 5.3 Eq. 5.1), non-CO2 GHGs exhibits a range of lingering effects on 

temperature change over the long-term timescale. Table 5.3 shows the percent of peak temperature 

change remaining per gas or gas grouping centered on specific years. Over the decadal period 

following zeroed emissions (2050), most gases yield over 40% peak temperature change remaining 

and tropospheric ozone yields 12.9% peak temperature change remaining. This suggests that a 



 
 

 
 

46 

portion of the temperature change caused by non-CO2 GHG emissions prior to ambitious 

downscaling, expect for trop-ozone, remains in the atmosphere in the decades immediately 

following mitigation. Though that portion is highest for the F-gases, the aggregated ERF for F-

gases is marginal and thus the higher percentage of peak temperature change remaining after ZEC 

for F-gases is mostly the result of a low denominator in Eq 5.1. The major gas N2O, however, has 

a high ERF and century-scale lifetime, leading to approximately 80% of the peak temperature 

change caused by historical N2O emissions to remain during this century (2100). At the century 

scale over 90% of the peak temperature change caused by historical CH4 and ODSs have been 

removed from the atmosphere, therefore showing that over long periods this peak temperature 

change can almost entirely be reversed.  

 

5.3.3    Historical and long-term ocean temperature and carbon cycle changes 

 

Despite the reversibility of the historical and peak temperature change caused by past CH4, 

ODS emissions and tropospheric-ozone precursor emissions, over the century timescale, there are 

additional consequences from past emissions on the climate system. In Figure 5.6, I show the 

influence of historical non-CO2 emissions on average ocean temperature change over the long-

term following zero emissions. Where historical emissions from CH4, CH4& N2O, and 

tropospheric-ozone lead to higher historical warming (see Figure 5.3), there is a resultant increase 

in historical average ocean temperature. Meanwhile, in the decades following zeroed emissions, 

simulations driven by gases with short atmospheric lifetimes, show a steep decline in ocean heat 

flux (radiative forcing from the atmosphere to the ocean). Due to the high heat capacity of the 

ocean, however, it can take on this radiative forcing (heat) and gradually retain it as a change in 

average temperature over long timescales. 
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Figure 5.6: Carbon and heat fluxes and average ocean temperature change from time of ZEC to 2300. Each gas or gas grouping 
is shown relative to CO2. Geophysically, past emissions from non-CO2 GHGs do and will not significantly alter select components 
of the carbon cycle. The flux of carbon from the atmosphere to land (surface and vegetation) remains minimally higher under 
scenarios with higher peak temperature, than for CO2, but equilibrates by approximately 2100. Only for average ocean 
temperature change (a proxy for sea-level rise) are differences notable. Despite a warming reversibility, scenarios with CH4 lead 
to the highest levels of ocean temperature continuing out to 2300. From the historical warming caused by CH4 alone (red lines), 
over a 0.06 °C increase in average ocean temperature is expected relative to CO2 alone.    

For past emissions from CH4 and CH4 & N2O together, the fast decline in ocean heat flux 

is followed by a small initial increase in average ocean temperature. For other gases with a more 

stable ocean heat flux, average ocean temperature more gradually rises over for multiple centuries 

following zero emissions. Across the range gases studied here, the commitment of average ocean 

temperature change from past non-CO2 GHG emissions varies between a cooling of 0.02 to a 

warming of 0.01 oC, and in all cases, ocean temperature change at the point of zeroed emissions 

was higher than for CO2 alone. As a result, any average ocean temperature change caused by 

historical or future non-CO2 GHG emissions will persist for multiple centuries after emissions 

cease.   

The impact of past non-CO2 GHG emissions on atmosphere to land and ocean carbon 

fluxes is minimal over the long-term. By the end of this century, 80 years after ZEC, the carbon 
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fluxes from all individual gases and gas groupings fluctuate around 0 Pg C/year, indicating the 

establishment of an equilibrium between carbon pools at that timescale. In the decades after zero 

emissions, a small short-lived increase in atmosphere to land and ocean carbon flux is shown for 

simulations with rapid cooling. This increase in the atmosphere to land and ocean carbon fluxes 

occurs as a response of the land and ocean carbon pools to cooling, which strengthens the carbon 

pools until an approximate equilibrium between the atmosphere and land and ocean carbon pools 

is reached. 

 

Figure 5.7: Atmosphere, land, and ocean carbon pools. Plots A-C show the evolution of the total carbon pool in each simulation 
including CO2. Plots D-F show the same evolution but for individual and groupings of non-CO2 GHGs relative to CO2. Dotted lines 
show the historical (1850-2019) evolution of the carbon pools and solid lines represent the carbon pools after zeroed emissions. 
*: over the historic period in plot D the atmosphere is shown to have a stable carbon pool. This occurs because in all simulations 
CO2 concentration was prescribed over the historic period, therefore the atmosphere carbon pool was not able to evolve naturally. 

 Figure 5.7 plots A and B show that changes to the atmosphere and land carbon pools are 

mostly driven by historical CO2. As a result of past temperature change from individual and 

groupings of non-CO2 GHGs, there is a slight decrease in the land carbon pool (Figure 5.7, plot 

E). This suggests that as historical temperature increases, the land exhibits a reduced capacity to 

uptake carbon from the atmosphere. To a nearly linear approximation (see Figure 5.8), for every 

0.1 oC of past temperature increase attributable to non-CO2 GHGs, there is a 10 Pg C reduction in 
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the land carbon pool. Compared to changes in the total land carbon pool, however, the decrease to 

the land carbon pool caused by historical non-CO2 GHGs is minimal. 

 

Figure 5.8: Historical temperature change per individual and groupings of non-CO2 GHGs against the historical evolution of the 
land carbon pool per individual and groupings of non-CO2 GHGs. This represents Figure 5.3 on the y-axis and Figure 57, plot E on 
the x-axis. The grey dashed line is the linear regression across all simulations, where R2 = 0.98. 

 To a lesser increment, the atmosphere to ocean carbon flux and ocean carbon pool are 

impacted by past non-CO2 GHG temperature change. Where non-CO2 GHG induced temperature 

change increases over the historical period, a small reduction in the ocean carbon pool is observed 

(Figure 5.7, plot F). For the scenarios forced by CH4, during the first two decades after zero 

emissions the ocean absorbs carbon from atmosphere at an increased rate, then returns to the 

baseline (Figure 5.6). 

 

5.3.4    Fossil fuel and land use change 

 

Considering that CO2 and non-CO2 GHGs typically share a common emissions source 

(Rogelj et al., 2014; Rogelj et al., 2015; Mengis & Matthews, 2019), it is possible to use similar 

non-CO2 GHG disaggregation as above to assess how temperature changes in the absence of 
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greenhouse gas emissions from a specific source. The two main sources of GHG emissions are 

fossil fuel combustion (FFC) and land use change and agriculture (LUC).  

 

Figure 5.9: Atmospheric concentration of CO2, CH4, and N2O under historic-to-near-present and RCP4.5 scenarios. Red solid lines 
represent FFC and other anthropogenic emissions continuing under RCP4.5 and LUC emissions stopping at year 2020. Green 
solid lines show LUC and other anthropogenic emissions continuing under RCP4.5 and FFC emissions stopping at year 2020.  

In figure 5.9 I examine the progression of concentration for the main GHG’s included in 

these scenarios – CO2, CH4, and N2O. Due to the positive feedback between the land carbon pool, 

increasing temperature change, and the atmospheric carbon pool (see Chapter 5.3.3), and to a high 

portion of CO2 emissions from FFC sources, CO2 concentration rapidly increases over the 21st 

century and continues increasing over the long-term during the continuation of FFC and other 

anthropogenic emissions and zeroing of LUC emissions. Under either scenario the concentration 
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of methane rapidly decreases after 2020. This is, again, the result of the short atmospheric lifetime 

of CH4, where here the atmospheric sink of CH4 removes CH4 at a greater rate than emissions are 

adding to it. For N2O concentrations, only when LUC emissions are stopped and FFC and other 

anthropogenic emissions continue does the sink outweigh the source. Whereas when FFC 

emissions are stopped and LUC and other anthropogenic emissions continue, the source of N2O to 

the atmosphere is only diminished by 30% (see Table 5.1) and the concentration of N2O continues 

grow in that scenario.  

 

Figure 5.10: Land-use change and agriculture (LUC-green) and fossil fuel carbon (FFC-red) projected temperature change from 
greenhouse gases only. Both red and green lines include other anthropogenic emissions. Temperature is shown relative to 1850. 
Near-present (2005-2019) and projected temperature change from RCP4.5 forcing including CO2, CH4, N2O, and tropospheric 
ozone is represented by the dashed line. From 2020, the FFC simulation includes RCP4.5 forcing scaled to FFC and other 
anthropogenic emissions. From 2020, the LUC simulation include RCP4.5 forcing scaled to LUC  and other anthropogenic emissions. 

Temperature change after zeroing GHG emissions from each source, while maintaining 

emissions from all other sectors (see Table 5.1), is demonstrated in Figure 5.10. To keep 

consistency with the above work these scenarios do not include emissions from aerosols and 

therefore the temperature change shown here should be viewed as artificially high.  
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Results from Figure 5.10 show a positive multi-century temperature change for both FFC 

and LUC emissions. This happens because under both scenarios, CO2 emissions continue, if at a 

reduced rate, and because of the positive feedback between increasing temperature and increasing 

CO2 concentration. Over the decade following zero FFC GHG emissions (green line), LUC and 

other anthropogenic GHG emissions lead to a small decline in temperature followed by increasing 

temperature over the century timescale. On the other hand, temperature briefly declines following 

zero LUC GHG emissions and continued FFC and other anthropogenic GHG emissions. Here 

continued FFC and other anthropogenic GHG emissions lead to approximately 1.3 oC warming 

relative to 2020, when LUC GHG emissions are stopped. 

Table 5.4: Temperature change avoided by cessation of emissions from a given source, assuming all other GHG 

emissions continue. Calculation is made as the difference between the dashed line (RCP4.5 GHG-only projected 

forcing), and solid lines in the listed years. ‘Red’ indicates LUC GHG emissions are set to zero and FFC and other 

anthropogenic GHG emissions continue under RCP4.5. ‘Green’ indicates FFC GHG emissions are set to zero and 

LUC and other anthropogenic GHG emissions continue under RCP4.5. 

Temperature avoided by cessation of emissions per source  

Simulation 

Year 

2050 2100 2200 2290 

LUC (red) 0.44 0.46 0.45 0.41 

FFC (green) 0.8 1.2 1.4 1.4 

 

Again, as aerosol emissions are not included in these simulations, these temperature 

increases post 2020 are unrealistically high. A more relevant metric is the temperature change 

avoided by cessation of emissions from one sector. Table 5.4 displays this avoided temperature 

change at four intervals over long-term timescale. Stopping GHG emissions from LUC activities 

yields between 0.41-0.46 oC temperature avoided. Over the century timescale that temperature 

change avoided is 10-fold higher if FFC emissions are set to zero and LUC and other anthropogenic 

emissions continue.  

 

5.4    Discussion 
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Over long-term periods following the idealized scenario in which greenhouse gas 

emissions stop, or the zero emissions commitment scenario, past emissions from individual and 

groupings of non-CO2 GHGs do not lead to 1.5 oC temperature change. This follows a similar 

conclusion from Smith et al. (2019). Though their study focused on the concept of future emissions 

commitment resultant from existing fossil fuel infrastructure, they also analyzed the ZEC from 

CO2, aggregated non-CO2 GHGs, and aerosols. From modelling the historical forcing of these 

three pollutants and ceasing emissions in 2018, an end of century (2100) cooling of 0.2 oC was 

reported. Likewise for all pollutants, Matthews & Zickfeld (2012) calculated warming 

commitment in 2200 of approximately 0.1 C, after zero emissions in 2010.The main difference 

between my scenarios and those of Matthews & Zickfeld (2012) and Smith et al. (2019) are that I 

excluded human induced negative forcers from the scenarios. In their experiments where all 

emissions are zeroed, the aerosol concentration in the atmosphere drops to near zero within the 

first few years after ZEC, leading to an initial warming followed by cooling converging on the 

warming commitment from CO2. On the century timescale looked at here, the aerosol effect on 

warming commitment would have quickly dispersed from the atmosphere. 

Studying the effect of non-CO2 GHGs (namely, CH4) on thermal expansion of the ocean, 

Zickfeld et al. (2017) used a similar ZEC scenario where they forced the UVic-ESCM with 

historical and projected emissions to 2050, 2100, and 2150 under RCP8.5 before setting emissions 

to zero. Our results are similar with respect to the how the ocean is effected by past non-CO2 GHG 

emissions. We both show that the amount of average ocean temperature change and thus thermal 

sea-level rise are dependent on the level of atmospheric temperature change (i.e. emissions) prior 

to emissions abatement. Where Zickfeld et al. (2017) focus on how stopping CH4 emissions after 

different levels of historical forcing will impact thermal sea-level rise, I extend their analysis to 
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include the remaining non-CO2 GHGs. For non-CO2 GHGs other than CH4 and tropospheric 

ozone, historical emissions from gases with longer lifetimes such as N2O result in continued ocean 

warming over the coming centuries. There is therefore an increased risk for the ocean from climate 

change resultant from longer-lived non-CO2 GHGs. 

 Though my analysis shows emissions from non-CO2 GHGs will augment the peak 

temperature caused by CO2 emissions and lead to a minor cooling or warming of average ocean 

temperature following zero emissions, the impact on atmospheric temperature is not permanent. 

This observation echoes the argument of Bowerman et al. (2013), who showed that the effect on 

peak temperature of short-lived GHGs dissipates after emissions from those gases are reduced. 

Under a 20-year shorter analysis and zeroing emissions after much less historical temperature 

increase, my results of peak temperature change remaining are consistent with Zickfeld et al. 

(2017), who reported approximately the same percentage of peak warming remaining for CH4, 

N2O, and ODSs. Due to the relatively short lifetime of the strongest non-CO2 GHG, CH4, over half 

of the peak temperature exerted by past emissions is removed from the atmosphere within three 

decades and its historic signal continues as a minor contributor to future warming. As such, the 

influence of methane mitigation on long-term temperature change is maximized when coupled 

with CO2 mitigation. Because under ZEC scenarios, mitigating methane leads to a return to 

temperature change driven by cumulative CO2 emissions within this century, there is little 

additional advantage for atmospheric temperature change to policies favouring mitigation of 

methane in place of CO2. 

This argument counters that of a recent study by Collins et al. (2018), who showed that 

methane mitigation can lead to increases in the carbon pools, which would yield to increased 

allowable carbon emissions (the remaining carbon budget) for ambitious targets to the year 2100. 
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Assessing how high versus low CH4 mitigation scenarios drive changes in the carbon pools, 

Collins et al. (2018) found that for emissions trajectories leading to the 1.5 oC target, high methane 

mitigation results in a 33% increase in the land carbon pool compared to low methane mitigation. 

Under this scenario they showed that the land carbon pool would increase by approximately 75 Pg 

C by the end of the century (Collins et al., 2018). Whereas my results (Figure 5.6, plot E, red line) 

show a land carbon pool recovery of nearly 30 PgC over the same time period. There are two major 

difference between these figures: 1) my results of the land carbon pool recovery are preceded by 

a land carbon pool decline, where no such decline is explicitly stated in Collins et al.’s analysis, 

which should lead to a temperature increase feedback prior to methane mitigation; and 2) Collins 

et al. allow the evolution of emissions to yield temperatures that increase until the 1.5 oC threshold, 

thus meaning the land carbon pool recovers from a higher maximum temperature than my 

simulation with CH4 only. 

Using an atmospheric chemistry design similar to the module employed here, MacDougall 

& Knutti (2016) modelled the climate system responses as a result of constant emissions of a 

methane-like gas. They showed that emissions of non-CO2 GHGs can cause climate system 

feedbacks that disrupt the carbon cycle, without interacting with the carbon cycle (MacDougall & 

Knutti, 2016). One such disruption is an increase in SAT followed by a return to baseline after 

zero emissions of the methane-like gas. 

 With respect to the atmosphere and ocean carbon pools, however, their results are not 

comparable here. The reason the results for the atmosphere carbon pool and ocean carbon pool of 

MacDougall & Knutti (2016) cannot be compared by my results is to do with the simulation 

methods I employed. In my simulations, between 1850 to 2019 the evolution of CO2 concentration 

in the atmosphere was prescribed. This meant that the atmosphere carbon pool was not adjusted 
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by changes in the land carbon pool. As shown by MacDougall & Knutti (2016), increases in 

temperature from emissions that do not directly interact with the carbon cycle, should lead to a 

reduction in the land carbon pool and a related increase in the atmosphere carbon pool. However, 

in the simulations presented here, when non-CO2 GHG emissions caused historical increases in 

temperature, that process was not able to occur. A consequence is that in my simulations, at the 

time of zeroed emissions (2020) the atmosphere carbon pool is not adjusted to historical changes 

in the climate system, which therefore leads to the sharp increases in the atmosphere and ocean 

carbon pool seen in Figure 5.7 plots D& F.  

 My results are, however, in line with the results from MacDougall & Knutti (2016) with 

respect to the land carbon pool. Where MacDougall & Knutti (2016) showed a decrease in the land 

carbon pool from temperature increases caused by a methane-like gas, I expand their analysis to 

show that that during periods of temperature increase caused by non-CO2 GHGs, that relationship 

is approximately linear. Once non-CO2 GHG emissions cease, however, this near-linearity does 

not hold. After zero emissions of individual and groupings of non-CO2 GHGs, temperature change 

is driven by declining CO2 concentrations, declining non-CO2 GHG concentrations, and internal 

climate variability. Whereas, for this relationship, prior to emissions cessation, temperature change 

is driven by increasing concentration changes of non-CO2 GHGs.  

My analysis of the temperature change caused by source sectors follows highly idealized 

scenarios where all emissions from either FFC or LUC are zeroed at 2020. Compared to Smith et 

al. (2019), who found a 67% chance of exceeding 1.5 C under a fast retirement scenario for fossil 

fuels, I find immediate cessation of FFC emissions could lead to an avoidance of 1.4 oC 

temperature change compared to RCP4.5 GHG forcing. The difference between these calculations 

is that where Smith et al. (2019) include continued emissions from existing fossil fuel 
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infrastructure and assume differing rates of infrastructure retirement, my analysis assumes all fossil 

fuel combustion related emissions stop immediately.  

That I exclude aerosols should not mean my results from stopping FFC emissions at 2020 

and allowing LUC and other anthropogenic emissions to continue under RCP4.5 are invalid. 

Mengis & Matthews (2019) report that 97% of sulphate aerosol emissions are from FFC sources, 

which means almost all aerosols emissions would be stopped if they were included in this scenario. 

Temperature change would therefore follow a brief (less than a decade) period of warming with a 

return to the temperature change path seen in the green line in Figure 5.10 afterwards. Again, the 

effect of aerosols would be felt in the short period after 2020 and would be much less relevant to 

changes that occur on century timescales. 

 

5.5    Conclusion 

 

Minimal long-term temperature change and reversibility of peak warming from non-CO2 

GHGs agrees with the principle that CO2 is the dominant constituent with respect to global 

warming. By the end of this century (2100), or extending out to 2300, temperature changes 

resulting from past individual and groupings of non-CO2 GHGs emissions converges on the 

temperature change caused by past CO2 emissions. Owing to the short atmospheric lifetime of CH4 

and tropospheric ozone, scenarios including past CH4 emissions and forcing from tropospheric 

ozone show high reversibility of peak temperature change on century timescales.  

 My results suggest that if FFC GHG emissions are brought to zero, approximately 1.4 oC 

of global warming can be avoided, relative to a scenario of moderate mitigation effort as is the 

case of RCP4.5. This implies that there is some room for GHG emissions from LUC and other 
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anthropogenic activities, including agricultural practices, to continue under deep mitigation 

scenarios and ambitious climate target scenarios.  
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CHAPTER 6 

EXPANDED DISCUSSION &CONCLUSIONS 

 

6.1    Climate system response variability  

In my experiments there is variability in temperature change following emissions cessation. 

Though the trend of declining temperature post-2020 is more important than the decadal variability 

seen in Figures 5.2-5, that variability could attribute to an increased uncertainty in my results 

regarding the reversibility of peak temperature, especially with respect to N2O. As such, I will 

address a possible cause of these fluctuations here. To focus the discussion, I’m showcasing results 

from the CH4& N2O simulation, without making results relative to CO2 – i.e. CO2 forcing 

following zero emissions is here included. This simulation is showcased because it yielded the 

highest peak warming and the variability in temperature change continues over the century scale, 

whereas in the remaining simulations temperature change stabilizes after 2200 (see Figure 5.2 and 

5.5). 

Figure 6.1 shows the evolution of sea ice, surface albedo, and average surface air 

temperature (SAT) in the Northern hemisphere following zero emissions. Prior to 2020 (dashed 

lines), the climate system was in a state of increasing forcing, Subsequently, global sea ice area 

and Northern hemisphere sea ice area were in states of decline. After 2020, however, the climate 

system entered a state of cooling or recovery. In this century (up to 2100), peak temperature rapidly 

declines due to the short lifetime of CH4 and only minor fluctuations in global sea ice area and 

hemispheric sea ice area are observed. As the legacy on peak temperature of historical N2O and 

CO2 forcing continues to drive temperature beyond 2100, global sea ice area exhibits increased 

decadal or bi-centennial variability. Those changes are localized to the Northern hemisphere 

(Southern hemisphere sea ice area is approximately stable over this period). 
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Figure 6.1: Sea ice area, global surface albedo and the change in average surface air temperature in the Northern hemisphere 
relative to 1850 for the simulation forced by CH4, N2O, and CO2 from 1850 to 2019. Dashed lines represent forcing from CH4 and 
N2O emissions between 2005 to 2019, while CO2 concentration was prescribed. Solid lines represent forcing following zero 
emissions from all three forcers.  

The effect of increasing and decreasing sea ice area is to oscillate the amount of planetary 

surface area that is highly reflective to incoming solar radiation. This translates to short-lived 

increases in the planetary surface albedo, which decreases the quantity of incoming solar radiation 

that warms surfaces (ocean and land). Despite the minor magnitude of these short-lived increases 

in global surface albedo, they cause short-lived decreases in SAT, which is again localized to the 

Northern hemisphere.   

 The driver of fluctuating Northern hemisphere sea ice area is unknown. One answer could 

be that ocean circulation or average temperature are unstable following rapid temperature decline. 

However, as seen in Figure 5.6, average ocean temperature change is stable over the long-term, 

therefore ocean changes should not cause sea ice area growth and retreat. From a modelling 

perspective, an explanation could be that simulations were started with the climate not in 
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equilibrium. At the time simulations were run, there was little evidence to support this latter 

conclusion, but it remains possible. The most likely answer is that, due to ongoing updates within 

components of the UVic-ESCM that my module does not directly interact with, there is drift in the 

model version I used to run these simulations. As evidence, the CO2 simulation includes no forcing 

from updates I made, yet in the first century following zero CO2 emissions, a similar variability in 

SAT is observed (see Figure 5.4).  

 Where this variability in temperature change post-2020 in the CO2 simulation does not 

align with the variability in temperature change in the non-CO2 GHG simulations post-2020, that 

fluctuation is exasperated per individual or groupings of non-CO2 GHGs. This interdependence on 

temperature change is responsible for the high variability in temperature change from N2O relative 

to CO2 following zero emissions seen in Figure 5.3. That high variability is what caused an average 

108% of peak temperature change to be remaining from historical forcing from N2O after zero 

emissions. Despite the high variability in temperature change after emissions stop for N2O and the 

remaining non-CO2 GHGs, the trend of temperature decline is not irrecoverably disturbed. 

Therefore, these fluctuations in temperature change post-2020 do not cause a strong enough 

disturbance in the climate system to discount my results. 

 

6.2    Conclusions 

 

Global warming represents one of the greatest challenges in human history. To combat this 

problem which our activities has produced, we are seeking to keep global temperature from 

exceeding 1.5 oC above pre-industrial levels (UNFCCC, 2015). Most of this global warming has 

already occurred and is primarily the result of cumulative carbon dioxide emissions (Matthews & 

Solomon, 2013). This historical warming caused by historical cumulative CO2emissions has been 
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previously shown to persist for hundreds of years regardless of future emissions (Solomon et al., 

2009; Matthews & Zickfeld, 2012; Allen et al., 2018b).Past emissions from CO2 and other 

greenhouse gases can further cause lasting climatological impacts such as sea-level rise (Ehlert & 

Zickfeld, 2017; Zickfeld et al., 2017). Here I investigated the addition of non-CO2 greenhouse 

gases into this temperature regime and quantified how their historical forcing effected temperature 

in the absence of future GHG emissions.  

 My analysis made use of the idealized Zero Emissions Commitment scenario where, 

following a spin-up of historical forcing, GHG emissions from CO2 and individual and policy 

relevant groupings of non-CO2 GHGs were assumed to abruptly stop (Solomon et al., 2009; 

Matthews & Zickfeld, 2012). By then allowing the concentrations of CO2 and non-CO2 GHGs to 

evolve based on model results, I was able to quantify the percent of peak temperature change that 

can be reversed over decadal and century timescales. I showed that for non-CO2 GHGs with short 

lifetimes (namely methane and tropospheric ozone), more than half of the peak temperature change 

their historical emissions cause can be reversed within three decades of zero emissions. For gases 

with longer lifetimes, such as nitrous oxide, I showed that nearly 80% of the peak temperature 

change from historical emissions will persist until the end of this century, whereas only 30% will 

persist by the end of the next century (2200).  

 Because global surface air temperature change is not the only important measure of global 

warming, I extended my analysis to assess how historical non-CO2 GHG forcing effected and will 

affect carbon fluxes, carbon pools, and the average ocean temperature change. I calculated that 

past temperature change resultant from non-CO2 GHG emissions could individually and in 

groupings have led to between 0 – 0.08 oC increase in average ocean temperature. This increase 

could already have consequences for sea-level rise resultant from thermal expansion of the ocean, 
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which is an impact of ocean temperature increase. I have showed average ocean temperature will 

remain approximately constant or increase for multiple centuries after zero emissions depending 

on the lifetime of the gas in question. I further confirmed that increases in temperature from past 

non-CO2 GHG emissions will lead to reductions in the land carbon pool, that should (though not 

proven here) lead to a feedback on the atmosphere carbon pool.  

 Considering the warming reversibility and climate impacts from specific and groupings of 

non-CO2 GHGs does not account for the fact that GHG emissions often share the same source. To 

explore the effect of co-emitted gases, I included simulations where I partitioned emissions from 

CO2, CH4, N2O, and tropospheric-ozone by their source to quantify the amount of warming that 

could be avoided if one source sector was to stop emissions immediately. With these simulations 

I demonstrated that eliminating land-use change and agriculture emissions (an impractical scenario 

at best) while continuing fossil fuel combustion and other anthropogenic emissions would lead to 

approximately 0.45 oC of avoided warming over multiple centuries, relative to continued emissions 

from all other sectors following RCP4.5. In the same scenario, eliminating fossil fuel combustion 

while continuing activities from land use change and agriculture and other sectors could lead to 

approximate 1.4 oC of avoided warming over multiple centuries.  

 My analysis covered temperature and climate change from greenhouse gases only. As such 

a key component of the radiative balance of the climate system was missing – aerosols. Emissions 

of aerosols cause a reduction in the net planetary radiative forcing and thus a reduction in 

temperature change (Myhre et al., 2013). Therefore, the total historical warming exhibited in my 

scenarios is artificially inflated. With respect to the by-source scenarios, there is a need for future 

work to include aerosol emissions.  
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 Furthermore, the by-source scenarios and analysis could benefit from expanding to include 

emissions projections from the remaining RCP scenarios as well as the more recent Shared Socio-

economic Pathway scenarios. Simulating these additional emissions paths would yield a range of 

plausible storylines for warming avoidance by removing emissions from one sector. This 

expansion of my work would help to better define the uncertainty of warming avoidance, as well 

as provide a more robust account of baselines for deep mitigation policies.  

 Despite these limitations, my study contributes to the literature in this area by defining the 

percentage of peak warming that can be reversed by mitigating non-CO2 GHGs, which should be 

understood as a maximum warming reversibility. This builds off the knowledge that non-CO2 

GHGs can augment peak temperature change caused by CO2 before deep mitigation takes place 

and that deep mitigation of non-CO2 GHGs, coupled to CO2 mitigation will lead to a short period 

of global cooling (Matthews & Zickfeld, 2012; Bowerman et al., 2013;Zickfeld et al., 2017; Allen 

et al., 2018b). Another advance my study made was to quantify the relationship between warming 

from historical non-CO2 GHGs and reductions in the land carbon pool, which appears to be 

approximately linear over the temperature changes considered here.  

 From my results, it is evident that combined mitigation of non-CO2 GHGs and CO2 will 

have positive (i.e. global cooling) decadal and longer-term effects on the climate system. However, 

non-CO2 GHG mitigation in the absence of CO2 mitigation is not here shown to be an effective 

method for reversing warming over long timescales. My results further indicate that with 

aggressive downscaling of fossil fuel combustion emissions, it is possible within the emissions 

framework studied here, to continue activities from land-use change and agriculture and potentially 

remain in line with ambitious climate targets.   
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