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Abstract 

 

An Evolutionary Stochastic Discrete Time-Cost Trade-Off Optimization 

Method for Repetitive and Non- Repetitive Construction Projects 

Bahaa Hussein, Ph.D. 

Concordia University, 2019 

 

This thesis aims at developing a method for solving the scheduling problem of 

discrete Time-Cost Trade-off (TCT) in an uncertain context. The method 

determines the elite execution mode for each project activity to optimize for 

minimization of the overall project’s cost and/or duration while satisfying a specified 

Joint Confidence Level (JCL) of both time and cost. In this thesis, each resource 

allocation to individual activities is referred to as mode, and each alternative 

solution is referred to as a chromosome.  A new evolutionary method formulation 

is developed. The method is of two-folds, the first is an experimental module where 

generations of chromosomes are developed using a design of experiments and 

blocking techniques based on a novel approach of partitioning the project 

scheduling network. At each generation, a complete enumeration is performed for 

a selection of primary activities, and the elite modes are identified and carried 

forward to successive generations until all elite modes are identified to form the 

elements of the supreme chromosome solution. To provide flexibility and 

practicality, the developed method allows for the end-user interactive selection of 

execution modes. This arises from the bias of project managers in favouring 
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specific modes that may not be optimal. Hence, the second fold of the developed 

method is a random search module that quantifies the effect of changing a mode 

within a chromosome on the total project cost and duration under a targeted JCL 

of both time and cost. The method also accounts for penalties/ incentives as a 

function of time associated with the late/ early project completion depending on the 

contract provisions.  The developed method is also extended for repetitive 

construction projects considering optimization of crew work continuity for typical 

and non-typical repetitive activities, i.e. those having identical work amounts and 

those having a deviation in their work amounts and, therefore, different cost and 

duration in different repetitive units. The supreme chromosome solution and the 

main effect plots provide the decision-maker a guideline for making well-informed 

implementation strategies. The performed computational results demonstrate not 

only the method benefits and accuracy but also its superiority over current methods 

for stochastic TCT optimization. The method has been fully coded using Google 

Apps Script, Google BigQuery SQL statements, and in-line JavaScript functions. 
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CHAPTER 1 :  Introduction 

1.1. General   

On construction projects, the time-cost trade-off problems (TCTP) are often 

practiced for compressing the project duration and/or reducing expenses. This is 

often achieved by utilizing alternative resources referred to here as modes. The 

pool of alternative modes depends mostly on the project topology, flavour, and 

knowledge of the contractor. The alternative selections of modes represent 

discrete strategies that require the project manager’s decision. Figure 1.1 presents 

an illustration of discrete modes of an earthwork activity, where three different 

excavation modes are available; the first is using jackhammers, the second is 

utilizing rock breakers and the third is using more sophisticated equipment like 

surface miners. In general, the more expensive mode leads to a shorter duration. 

Accordingly, the direct cost of those activities increases, whereas the reduction of 

the activity’s duration contributes to less variable cost and the reduction in the 

overall project’s duration reduces the project indirect cost.. Compressing the 

project duration is often achieved by utilizing alternative resources for critical path 

activities such as more productive equipment and higher-skilled labour. 

Conversely, cost reduction is achieved by selecting cheap resources that may lead 

to longer durations. Furthermore, under an uncertain environment, those 

strategies need to account for varying levels of uncertainty in time and cost. Some 

modes are riskier than others and have a broad distribution. For example, modes 

involving innovative technology may be riskier than traditional modes of execution. 
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Figure 1.2 presents an illustration for the discrete modes showing the uncertainty 

of the cost and time parameters for each mode. The uncertainty of the cost and 

time parameters have been represented by a probability distribution function 

(PDF), as indicated by historical data. When the overlaps between the PDFs of 

modes are significant, the problem becomes hard to evaluate using deterministic 

methods and, therefore, necessitates the consideration of uncertainty and leads to 

the so-called stochastic time-cost trade-off problem (STCTP). Simulation 

techniques are powerful to solve such problems; however, a procedure is required 

to guide the analysis towards finding the optimal non-dominated solution. 

Discrete risk events are possible diversions from the original plan due to 

unfavourable events or conditions that become an intrinsic part of a project. Such 

risks have a probability of occurrence, when occur may impact the overall project’s 

duration and cost. Conversely, opportunities are favourable events that may have 

a positive impact on the overall project’s duration and cost. Simulation techniques 

have been used in the assessment of those events in the so-called joint confidence 

level (JCL) risk analysis.   

Construction projects are often classified as non-repetitive; however, those which 

include repetitive sections or units of work are classified as repetitive. Examples of 

repetitive construction projects are high-rise buildings, housing projects, highways, 

pipeline networks, and bridges. Scheduling of such projects needs to consider the 

crew work continuity constraints to allow for crew movement and minimize the 

interruptions and idle times. Repeated activities in the different units of a project 
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can be further classified as typical on non-typical. Typical activities have the same 

scope of work while non-typical have variation in the scope of work.    

In this thesis, we analyze the TCTP, crew work continuity, uncertainties, and risks 

simultaneously to identify the most optimum solution for a specified joint 

confidence level of time and cost. 

 

Figure 1.1 Typical discrete time-cost relationship of an activity. 

 

Figure 1.2 Typical discrete time-cost relationship of an activity with 
uncertainty in time and cost. 
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1.2. Problem Statement 

TCTPs on construction projects is an essential aspect of the decision-making 

process; however, solving for this problem can be quite cumbersome, especially 

on large and complex projects. Solving the TCTP has been intensively researched 

since the 1960s; however, most of these methods are deterministic and consider 

a single cost and duration values for the activities involved. As well, these methods 

generally assume a linear relationship between time and cost and cannot 

adequately solve discrete time-cost trade-off problem (DTCTP) since the 

relationship between discrete modes may not be modelled. Solving the DTCTP 

has been categorized as a non-deterministic polynomial-time hard (NP-Hard) (De 

et al. 1995). The difficulty arises since, for each of the project activities, many 

modes may be available for execution using different resources such as crew 

skills, crew sizes or advanced equipment. Construction managers are then 

challenged with dealing with the classic combinatorial search to find the best 

selection of modes resulting in the minimization of cost and time to complete the 

project; For example, a small project modelled by only 15 activities each having 5 

discrete modes, the number of possible combinations for a complete enumeration 

of modes to solve the problem is more than 30 billion combinations. This number 

increases exponentially with the increase in the number of activities and/or an 

increase in the number of alternative modes at each activity. Conventionally, the 

attributes of time and cost for each mode have been implicit in being deterministic 

with a crisp value, but historical data indicates that those attributes are uncertain 

and follow a probability distribution function. In the real world, the alternative 
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modes, especially those that are new to the construction industry or new 

technologies, are not proven and come with higher uncertainty estimate of their 

time and cost; therefore, some modes for a single activity can be riskier than others 

and have a probability distribution function with a broader range. When the 

overlaps among the modes are significant, the problem becomes hard to solve 

using deterministic methods (Zheng et al. 2005). When incorporating the 

uncertainty of each mode into the equation, the difficulty of solving the DTCTP 

becomes exponentially larger. This is due to now becoming a stochastic problem 

where each mode attribute of time and cost is represented by a probability rather 

than a deterministic value. This uncertain environment increases the complexity 

dimension to the already NP-Hard combinatorial problem.  

It is known that projects are often late and overrun their budgets. Many of the 

reasons for this phenomenon are attributed to risk and uncertainty. Every project 

by nature is unique and has a substantial amount of uncertainty. Nevertheless, 

those are frequently overlooked, and the project manager develops his estimates 

for completion times and cost budgets before any mature uncertainty assessment. 

These estimates then become binding in project contracts, and set the basis for 

target dates and budget, and are carried forward to set the penalties or incentives. 

Such overruns in project time and budget contribute to the diminished profits for 

both contractors and clients. Those contractors and clients are realizing those 

overruns and are becoming further sophisticated and demanding for a higher level 

of project risk analysis and optimization for cost and schedule.  
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The pace of technology is increasingly becoming hectic; this, by nature, is reflected 

in computer processing becoming more sophisticated and powerful. Clients, on the 

other hand, try to interact with this trending environment to be more educated than 

before; however, a mismatch exists between the technological advancements and 

the client’s abilities and demand. Furthermore, the complexity of projects is 

continuously increasing that project managers cannot comprehend the outlook 

required to make suitable decisions. 

The literature extensively addresses TCTP using continuous, most often assume 

a linear relationship between time and cost. Sometimes, this assumption makes 

the model somewhat impractical and cannot adequately solve discrete time-cost 

trade-off problem (DTCTP) since the relationship between discrete modes may not 

be represented by a mathematical equation let alone a linear equation; therefore, 

there is a needed to gain the benefits from integrating the DTCTP with the 

stochastic analysis of uncertainties and risks in the decision-making process; this 

becomes more important on complex projects.  

A class of projects often include repetitive sections or units for repeat work. Many 

techniques have been proposed to solve the crew optimization problem on 

repetitive projects; however, most of the recent techniques have addressed crew 

work continuity but not effectively capture uncertainties in cost and durations and 

furthermore, modelling of non-typical activities. The limitations of existing 

techniques are discussed in Chapter 2. 
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1.3. Research scope and objectives 

This thesis is concerned with analyzing the project cost and time using stochastic 

methods. Much of this research is devoted to the DTCTP, which is inadequately 

addressed in the literature. The identification of activity modes, risks, estimation of 

uncertainty and the qualitative risk analysis is not part of this study.   

The main objective of this study is to provide project managers and decision-

makers a holistic, integrated cost and time analysis tool that can answer enquiries 

such as, what are the optimal modes of construction that result in the multi-

objective solution for schedule minimization, cost minimization or the optimal joint 

cost and schedule minimization that meets a targeted joint confidence level of both 

time and cost. To achieve this objective; this study introduces a new method that: 

 Utilizes Monte Carlo simulation of the project to account for uncertainties 

and estimate the joint confidence level of both time and cost.  

 Find the main effect of interchanging modes and their relationship to the 

optimization objective function.  

 Integrate the discrete risk events and their probability of occurrence into 

the TCTP analysis to gain the benefits of concurrent assessments of 

uncertainties and risks on the decision-making process.  

 Incorporate penalty and/or bonus schemes to account for costs from 

exceeding or meeting defined milestone completion dates and/or 

exceeding or meeting defined budget values. 
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 Application to both traditional and repetitive class projects, accounting for 

crew work continuity as a deciding factor to minimize the crew idle times on 

repetitive construction projects, and  

 Accounts for non-typical activities in repetitive construction projects.  

Answers to those objectives will increase the project manager’s probability of 

making correct decisions that achieve successful project delivery on budget and 

on time. The results from the numerical examples and parametric study will offer 

valuable information and guidelines for potential users of the developed method. 

The scope of this study is bounded by pre-defined construction modes for each 

activity, where each mode is a discrete option. The project manager needs to 

ensure that the details associated with the resources required in each mode are 

well estimated to achieve the time and cost for that mode, for example, the crew 

size, quantities of materials and number of equipment.  

The developed method can be used at the planning phase of the project and at 

any intermediate stage when the project is requested to accelerate the completion 

date and reduce expenditures.  

1.4. Thesis Organization 

The thesis consists of five chapters and an appendix. Chapter 2 provides an 

overview of the different methods in the literature on cost and schedule risk 

analysis, TCTP analysis, repetitive project scheduling optimization methods and a 

brief overview of their advantages and disadvantages. Different sections are 

reviewed to building the theoretical background for the developed method is 
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detailed in Chapter three. Chapter four outlines the developed method for the 

evolutionary stochastic discrete time-cost trade-off and presents the roadmap for 

the simulation model used to achieve the research objectives. The developed 

method is demonstrated using numerical examples drawn from the literature, and 

a comparison is performed with previous studies on TCTP using a hoist of different 

optimization techniques.  

Chapter five outlines the extension of the developed method to accommodate 

repetitive construction projects demonstrated using numerical examples drawn 

from the literature for performance comparison against previous studies in this 

field. 

Chapter six summarizes the contributions, limitations and conclusions of the 

research and proposed future research work. Appendix one includes the computer 

program for the developed method.    
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CHAPTER 2 :  LITERATURE REVIEW 

2.1. Introduction 

In this chapter, the different methods in project scheduling, project cost and time 

risk analysis and TCTP optimization are reviewed. The literature review focuses 

on the advantages and drawbacks of each method. This chapter will also review 

the basic definitions and terms used in the construction project management and 

the statistical analysis methods.  

2.2. What is a project?   

A project is a set of activities with a start date, having specific objectives, 

specifications and conditions, with defined responsibilities between the multiple 

parties involved, it has a budget and a time frame for completion (Turner and Zolin 

2012). Turner and Müller (2005), defined a project as an effort in which people, 

equipment, materials are systematized to assume a scope of certain conditions, 

within the cost and time constraints to accomplish quantitative and qualitative 

goals. 

Jugdev and Müller (2005), found following their extensive research, that the 

definition of project success has evolved from focusing on completing a project 

within time, cost, and scope to expanding the focus by including the requirements 

of stakeholders. Every project has stakeholders , and the primary stakeholder is 

the customer who will benefit from the value-added by the delivered project. The 

second stakeholder is the project manager building the project for the customer. 
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On some projects, external stockholders may come at play including the public 

end-users. 

The success of the project is generally measured in three dimensions what is 

known as the triple constraint, performance, schedule and cost as shown in Figure 

2.1 (Shrnhur et al. 1997). However, the perspective of these three dimensions can 

sometimes be conceived differently by each stakeholder. The project manager 

may have a different take on what constitutes a successful project from that in the 

eyes of the customer; this is commonly due to the distinct roles, responsibilities 

and motivations that drive the people’s behaviour.  

 

Figure 2.1 Project’s Triple Constraints. 

 

Baker et al. (2008) have considered a project successful when it satisfies the 

technical specification and/or performance criteria, and if key stakeholders have 

satisfaction concerning the project outcome. Among those stakeholders are the 

parent organization, the project team and end-users. Many studies have defined 

project success using two criteria, specifically project management criteria and 

product success criteria. Where project management is defined successful when 



 

12 

 

 

 

 

meeting time, cost and quality targets, while a product is named successful when 

it meets the owner’s strategic organizational targets, satisfaction of end-users and 

satisfaction of stakeholders where they relate to the product or future profits or 

improved business process performance (Belassi and Tukel 1996, and de Wit 

1986). Based on the above definitions, the success criteria can be summarized in 

a fishbone diagram, where the success criteria are the effect driven by the cause 

of success factors, as shown in Figure 2.2.  

In principle, a project is claimed successful when all perspectives and criteria have 

been successfully satisfied; this is often difficult to achieve due to various internal 

or external risks that may impact the project.  

 

Figure 2.2 Project’s Success Criteria. 
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2.3. What is risk?   

Risk is the possible diversion of actual project performance from the original plan 

due to favourable or unfavourable events or conditions that becomes an intrinsic 

part of a project. Several definitions of risk are found in the literature evolving 

around, what it is, and what it involves, who owns the risk and its impact. Many 

studies (e.g. Williams 1995, Miles and Wilson 1998, and Mullins et al. 1999) define 

risk as a probability of occurrence for events that influence the success of an 

objective. Many researchers commonly perceived that risk is a negative attitude 

towards an objective. Miles and Wilson (1998) describe risks as success barriers. 

Webster (1997) defines risk as "the chance of injury, damage, or loss; dangerous 

chance; hazard." Papageorge (1988) describe risk as the possibility of loss or 

damage to people, assets, or interest. The Construction Industry Institute (CII 

1989) describes risk as to the likelihood of a adverse outcome taking place. Many 

researchers, on the other hand, have suggested another meaning for positive 

effect risk. Jaafari (2001) describe risk as “exposure to loss/gain, or the probability 

of the occurrence of loss/gain multiplied by its respective magnitude.” PMBOK 

(2004) describe risk as “an uncertain event or condition that, if it occurs, has a 

positive or negative effect on a project's objectives.”; therefore, risk can have a 

negative or a positive impact on an objective.  

Hertz and Thomas (1984), define risk as an absence of certainty of outcomes or 

consequences for a decision. Their argument introduced the way for other 

researchers to question the differences between uncertainty and risk. Mullins et al. 

(1999) describe risk as “the degree of uncertainty and potential loss that may follow 
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from a given behaviour or set of behaviours.” Yeo (1990) reasons that uncertainty 

and risk are the same and are frequently used interchangeably.  

2.4. Probability theory 

A probability of occurrence is used when future events may have more than one 

outcome. In a given context, only one of these events will happen yet we cannot 

state which ahead of time. Such circumstances are called stochastic, rather than 

deterministic circumstances where the future result is predicted beforehand. The 

likelihood of a future event is a prediction of its possibility of happening measured 

as a value in the interim somewhere more than 0% and less than 100%, where an 

event that is practically sure to happen has a likelihood near 100%, while a 

remarkably improbable event has a likelihood close 0%.  

The outcome of a future event is represented by the value of a function, where the 

function is generated by random variables. The probability measure for all 

associated values is a probability distribution. The probability distributions have a 

significant effect on the results of a risk assessment model; therefore, 

consideration needs to be provided for the choice of probability distributions to be 

utilized, particularly to their parameters. 

Several probability functions work particularly valuable in construction projects. 

Some of the popular distribution functions adopted for an activity duration in 

construction projects include Uniform, Normal, Triangular, and Beta distributions. 

Similarly, for cost modelling, Triangular, Lognormal and Beta distributions are the 

favoured.  
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The Normal distribution function has assumed a focal part in probability and 

statistics. The numerical estimations of numerous different events can be 

displayed with this function. Experimental confirmation demonstrates that the 

Normal distribution function gives decent representation to numerous cases such 

as estimations on weight, length, instrument errors and rate of return in economics. 

Many studies examined utilizing various distribution functions. For instance, Fente 

et al. (2000) demonstrated that construction projects fell in a beta function and 

introduced a technique for estimating the beta parameter values. Wilson et al. 

(1982) examined the triangular versus beta functions; his findings concluded no 

noteworthy contrasts in results. Another case introduced by Touran (1997) 

investigated the utilization of Normal and lognormal distributions; his statistical 

analysis concluded no noteworthy differences in the average project durations. 

Back et al. (2000) assert that beta and triangular distributions are more fit for 

modelling historical cost values. The authors favoured the triangular distribution to 

avoid the complexity of determining the beta parameters.  

2.5. Time-cost trade-off in construction projects 

The diversity of available means, resources, materials, technologies and methods 

for executing an activity provides alternative implementation modes that can be 

assigned to individual activities in construction projects. In other words, an activity 

may be executed using alternative materials or with different forms of resources. 

For example, methods and materials used in earth backfilling activities and 

dewatering methods for deep excavations. Selection amongst those available 
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modes requires the project manager’s decision. The choice of mode may have a 

different duration for that activity and different direct and indirect costs. Time-cost 

trade-off problem (TCTP) analysis on construction projects is often used to explore 

available alternative modes in an attempt to find the optimal non-dominated 

solution that yields the least overall project’s duration and/or total cost. Solving this 

problem can be quite cumbersome, especially on large and complex projects. 

Solving the TCTP has been intensively researched since the 1960s. Early methods 

had a weakness in  solving a discrete time-cost trade-off problem (DTCTP) since 

the relationship between discrete modes may not be represented by a 

mathematical equation, let alone a linear equation. Instead, the solution space for 

a DTCTP is a factorial design for the combinatorial nature between the different 

activities and each of their assigned modes. Hence, the complete enumeration in 

the solution space of the problem exponentially increases for medium and large 

size problems. These trade-off problems are known as non-deterministic 

polynomial-time hard (NP-Hard) (De et al. 1995). 

There exist many techniques for the TCTP. Those can be categorized into three 

areas, namely, mathematical programming, heuristics and simulation. Examples 

of mathematical techniques that have used linear programming were introduced 

by Kelley(1961). Patterson and Huber (1974), and Sakellaropoulos and 

Chassiakos (2004) used the integer programming technique to tackle discrete 

relationships; however, integer programming requires an extensive computational 

effort and fail to be applied on large project networks. Elmaghraby (1993) and De 
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et al. (1995) introduced dynamic programming techniques for special class 

projects that can be decomposed into parallel or a series of sub-projects.  

Heuristic methods have dominated much of the research efforts because of their 

ability to find a good solution within a reasonable computational effort; however, 

such methods lack mathematical rigour and finding the optimal non-dominated 

solution is not guaranteed. Examples of heuristic techniques include the structural 

stiffness method introduced by Moselhi (1993), a branch-and-bound approach 

introduced by Demeulemeester et al. (1996), and an optimization method using 

the maximal flow theory introduced by Liu and Rahbar (2004). Some of the more 

recent researches that have implemented heuristic methods in TCTP and decision-

making problems are Chiu and Chiu (2005), Vanhoucke and Debels (2005), and 

Pendharkar (2015).  

Most of the studies in the literature on DTCTP techniques have assumed a certain 

environment and have represented a single cost and duration value for each 

activity mode. In real world, those alternative modes, especially those that are new 

to the construction industry or new technologies, are not proven and come with 

higher uncertainty estimate of their time and cost; therefore, some modes for a 

single activity can be riskier than others and have a probability distribution function 

with a larger range. When the overlaps among the modes are significant, the 

problem becomes hard to solve using deterministic methods. Solving for the 

stochastic network has been proven to be a hard problem, as the problem would 

include an extensive amount of computations for numerical integration from a 

complete enumeration of all viable solutions; therefore, simulation techniques have 
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become more prevalent in recent researches; however, most of those studies have 

been focused on either the project duration or costs while fewer studies have been 

conducted to optimize the project in a multi-objective approach for simultaneous 

cost and schedule optimization. Furthermore, even fewer of those researches tried 

to tackle the consideration of uncertainties in TCTP. Zheng et al. (2005), Moselhi 

and Roofigari (2013), Moselhi and Alshibani (2013), and Kalhor et al. (2011) 

proposed a fuzzy method for a stochastic TCT problem. Fuzzy set theory 

dominated those researches due to its capacity to produce the results in fewer 

runs; on the other hand, Monte Carlo simulation techniques can provide more 

statistical information exploring the uncertainties of activity durations and costs.  

2.6. Discrete-event optimization approaches 

Computer simulation is a powerful mean for the evaluation of complex problems, 

especially when the possible solution space expands. This evaluation is performed 

as responses to “What If” scenarios. Recently, this has been further extended to 

provide additional answers to “How to” questions. The "What if" scenarios requires 

collecting the responses of a problem for a set of variables. While the "How to" 

questions, attempts to find the optimum values of the variables to maximize or 

minimize the response. Many studies have been carried out towards establishing 

procedures for simulation optimization of complex problems that are influenced by 

several variables. The past twenty-five years have been a rapid development in 

this field mainly due to the increased computational speed, and the decrease in 

modelling costs; however, in the construction management industry the literature 
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indicates a lack of integration between the simulation models, optimization and 

accommodation of program change. Ultimately the objective of modelling 

construction projects is to better the decision-making process to maximize or 

minimize selected variables to achieve the desired response.  

Solving optimization problems have been carried out using several diverse 

algorithms, from conventional to recent metaheuristic algorithms (Riley 2013). 

These algorithms are classified as deterministic or stochastic. Mainly, the 

conventional algorithms are deterministic, and further can be classified into 

gradient/ derivative such as the Newton-Raphson algorithm or gradient-

free/derivative-free algorithms such as the Hooke-Jeeves pattern search and 

Nelder-Mead downhill simplex (Yang 2011). The stochastic algorithms, on the 

other hand, can be heuristic or metaheuristic algorithms. The heuristic algorithms 

are based on trial and error. The metaheuristic algorithms are based on a partial 

search algorithm that may provide an approximate solution; those are used 

primarily when complex, incomplete or imperfect information of the problem exists 

or when the computation capacity is limited (Manda et al. 2012). Metaheuristics 

algorithms cannot guarantee to find the optimal solution for complex problems; 

however, good near-optimal solutions are found faster than other optimization 

algorithms (Blum and Roli 2003). More details on Metaheuristics algorithms can 

be found in (Glover and Kochenberger 2006,   Talbi 2009). 

Meta-heuristic optimization algorithms begin by defining a function for a set of 

independent variables to obtain a global minimum or maximum for the objective 

function output. The function is solved by assigning initial values for the variables, 
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which then evolve by iteration of those variables to determine various solutions 

from the search space. The iterative process is run until a stopping criterion is 

reached. This stopping criterion can be the number of iterations, the execution time 

elapsed, reaching the data storage capacity limits, etc. Depending on the function 

complexity and the total size of the search space, the meta-heuristic approach may 

only visit some of the possible solutions; therefore, there is no guarantee that the 

optimal solution found by this approach is the best solution (de Freitas et al. 2010).  

The general process steps of a typical meta-heuristic optimization method can be 

summarized, as shown in Figure 2.3. 

 

Figure 2.3 General process steps for Meta-heuristic optimization. 

There are many types of meta-heuristic algorithms; all use a way to trade-off local 

search from global search. Yang (2011) concluded in his study that randomization 

offers a good global search moving away from local solution searches. Blum and 

Roli (2003) categorized meta-heuristic algorithms into two concepts, 

‘intensification and diversification’; where the diversification concept tends to 

explore the global search space, while intensification focus on local search space 

when finding a good solution in that space. A balance between the two concepts 

is important to achieve an efficient and fast algorithm. Too much intensification 

yields the process to be trapped in local optima, which may be far from the global 

optima. Too much diversification, on the other hand, may result in a hard to 
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converge system and thus, slow performance (Yang 2011).  The means to achieve 

this balance is the main difference between the various meta-heuristic algorithms. 

The meta-heuristic algorithms are used to tackle optimization problems where 

traditional simple methods have failed to be effective. These algorithms are 

becoming more recognized and applied in many complex fields in machine 

learning and artificial intelligence. The main advantages of meta-heuristic 

algorithms can be summarized in the following points (Gholizadeh and Barati 

2012): 

 Ease to understand.  

 Wide-ranging applicability in any field where the problem can be formulated 

as a function of variables.  

 They can be hybridized with other traditional optimization methods.  

 They can solve large problems faster than traditional methods. 

The method, on the other hand, has disadvantages that can be summarized as: 

 Does not promise to find the most optimal solution.  

 It lacks a strong mathematical foundation.  

 The results accuracy is highly negatively correlated with the number of 

variables and the fine tune of the variable’s parameters; the more refined 

parameters, the less the optimization performance.  

 Different optimization solutions may result when repeated for the same 

problem with the same initial condition settings. 
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However, the algorithm can be justified despite its disadvantages by the following 

points (Talbi 2009): 

 Failure of exact techniques to solve optimization due to the complexity of 

the problem 

 Slow performance of exact techniques due to the large number of variables 

and the fine tune of the variable’s parameters.  

A brief description of the research pertaining to some of the most popular discrete 

event simulation optimization algorithms is summarized below with a focus on their 

advantages and disadvantages reported in the literature.    

The Tabu search, created by Fred W. Glover in 1986, is a meta-heuristic algorithm. 

In this algorithm, the feasible solution space is explored by taking a potential 

possible solution and moving to its best candidate neighbours. Movement occurs 

despite degradation in the objective function. Tested solutions are used in 

Intensification and diversifications strategies to advance the exploration path. The 

algorithm is used for solution spaces that are characterized by local optima and is 

only used for discrete event optimization models. Few studies in the literature have 

compared the accuracy and precision of its results (Glover 1977, Lopez-Garcia et 

al. 1999).  

The Pattern Search method originally published by Hooke and Jeeves in 1961, 

also known as direct search, is based on stepwise moves towards the direction 

where the objective function is increasingly improving until failure to find a better 

solution surrounding the current search point; hence it must be the optimum point. 

The search is made using two types of movements, the first is exploratory, where 
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the direction and size of the steps are made in small amounts and observing 

whether the objective function value betters or worsens. When a better solution is 

found the method then increments the steps in a pattern movement at the 

improvement direction, this is repeated until failure to find a better solution, at this 

stage, the search moves backwards to the last memorized solution from which 

exploratory steps are further performed until stopped by a user-defined 

convergence test or a tolerance criterion. This heuristic search method is easy to 

understand and implement; however, its main disadvantage appears in complex 

functions were an improving direction is not able to be found even when one exists.  

The Genetic Algorithm (GA) is a heuristic search optimization method inspired by 

Charles Darwin’s theory of evolution of genetic selections. The method was first 

proposed by Holland in 1975 to find good solutions to complex problems fast and 

relatively at low computational cost. The algorithm adopts medical terms such as 

“Chromosomes”, where a chromosome is a possible solution that has a set of 

parameters for the problem variables (or genes). The combination of the best 

genes is then called the optimal chromosome (or the optimal non-dominated 

solution). The algorithm starts from randomly generated chromosomes selected 

from the total population of possible chromosomes. The process is then iterated to 

produce a new generation by mutating the elite genes defined for their fitness 

towards generating a better solution for the problem objective. The process 

continues to evolve until terminated when exceeding a user-defined maximum 

number of generations, or when a satisfactory fitness level is reached. Figure 2.4 

shows the process steps for the traditional GA. Many studies in the literature have 
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concluded that the method is good at identifying the global optimum solution in 

problems having multiple local optima; however, those studies have also criticized 

the method for being hard to analyze and difficult to design for complex problems; 

furthermore, many studies have recommended the need for more theoretical work 

to test the accuracy of its results. (Michalewiez 1994, Goldberg 1994). The main 

recognition of the method is crossing the boundaries of medical and mathematical 

research communities to achieve a fruitful combination. The success of GAs has 

led to the advancement of wider optimization approaches such as Neural 

Networks, Ant Colony Optimization, Particle Swarm Optimization and Artificial 

Immunology (Engelbrecht 2007).  

 

Figure 2.4 Process steps for Genetic Algorithm optimization. 

 

The Simulated Anneal (SA) method, originally proposed by Kirkpatrick et al. in 

1983, is inspired by annealing in metallurgy where the metal is gradually cooled 

until reaching a state of low energy where they are in solid and strong state. The 

method is a random search in the possible solution space of the objective function. 
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The search process goes by gradually changing a parameter in resemblance to 

the temperature. As the temperature decreases in each iteration, the random 

search becomes likely to move in the direction of better solutions that result in 

better objective value of the problem. The optimum solution is then found by 

terminating the process when a pre-defined state is achieved or when the user-

defined maximum number of iterations is reached. Many studies have concluded 

that the SA method is efficient in avoiding getting stuck in local optima. The method 

is also characterized to have a relatively low computational time at each iteration; 

however, the large number of iterations may be needed depending on the rate of 

temperature change and could significantly increase the total time to find the 

optimal solution (Liu, 1999, Zolfaghari and Liang 1998, Bailey et al.1997, Aarts et 

al. 1997) 

Ant Colony Optimization algorithm (ACO), originally proposed by Dorigo in his 

Ph.D. thesis in 1992, is a Meta-heuristic optimization technique inspired by the 

behaviour of ants seeking a path between their colony and source of food. The 

method starts with applying generations of artificial ants to search for a good 

solution. A good solution is defined by the shortest path that is discovered via 

pheromone trails. Each ant moves on a random path and dispose of pheromone, 

the more pheromone found on a path increases the probability of being followed.  

Hybrid Techniques have also been studied by many researchers; those techniques 

are built on a combination of established techniques such as those described in 

the previous sections or others. This is generally done to cartel each of their 
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desired features and better the computational cost and speed and the search for 

the near-optimal solution.   

Examples of recent research including stochastic analysis are those by 

Eshtehardian et al. (2009) and Zahraie and Tavakolan 2009 using fuzzy set theory 

and genetic algorithms, Gutjahr et al. (2000) using a stochastic model based on a 

branch-and-bound approach, Aghaie and Mokhtari (2009) and Kalhor et al. (2011) 

applying a modified ant colony optimization and Monte Carlo simulation,  Yang et 

al. (2013) using the particle swarm optimization approach, and Ke (2014) using a 

stochastic simulation hybridized model with genetic algorithms. 

2.7. Repetitive Construction Projects Optimization 

 

Repetitive construction projects are a class of projects which include repetitive 

sections or units of work. Common repetitive construction projects are high-rise 

buildings, housing projects, highways, pipeline networks, and bridges. Scheduling 

of such projects needs to allow for crew movement and consider crew work 

continuity constraints. Repeated activities in the different units of a project can be 

typical or non-typical. Typical activities have the same work amounts; in contrast, 

non-typical have variation in the work amounts and, therefore, different duration 

and cost values for different repetitive units. A considerable body of the literature 

exists for the scheduling optimization of repetitive class projects. These methods 

differ in their unique characteristics and capabilities; whether they account for the 

two types of activities referred to above, consider uncertainty, optimized crew 

formations, allow for interruptions and whether they consider time and/or cost in 
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the optimization process. Table 2.1 summarizes the capabilities and limitations of 

commonly referred to methods in that domain. 

Table 2.1 Capabilities and limitations of existing optimization methods for repetitive 

class projects. 

Reference 
  

Optimization 
method 

  

Characteristics and capabilities 

Activities 
types 

Crew work 
continuity 

Optimization  
Time-cost 
trade-off 

Uncertainty 

Selinger 
(1980)  

Dynamic 
programming  

Typical 
activities 
only 

No idle time is 
allowed for 
any crew 

Least 
schedule 
Cost is not 
considered 

Not 
considered 

Deterministic 
 

Russell and 
Caselton 
(1988) 

Dynamic 
programming  

Typical and 
non-typical 
actives 

Predetermined 
(User 
specified) 
possibilities of 
interruptions to 
work continuity 

Least 
schedule 
Cost is not 
considered 

Not 
considered 

Deterministic 
 

Reda (1990) Linear 
programming 

Typical 
activities 
only 

No idle time is 
allowed for 
any crew 

Least cost 
schedule 

A continuous 
linear equation 
is used 
between time 
cost trade-off 
at the activity 
level. 

Deterministic 

Moselhi and 
El-Rayes 
(1993) 

Dynamic 
programming  

Typical and 
non-typical 
actives 

No idle time is 
allowed for 
any crew 

Least 
schedule 
accounting for 
cost as a 
decision 
variable in the 
optimization 
process  

Trade-off for 
discrete 
modes of time-
cost pairs is 
considered  

Deterministic 
 

El-Rayes and 
Moselhi 
(2001) 

Dynamic 
programming 

Typical and 
non-typical 
actives 

System 
calculated set 
of interruption 
vectors are 
considered 
during 
scheduling 

Least 
schedule 

Not 
considered 

Deterministic 
 

Hegazy and 
Wassef 
(2001) 

Genetic 
algorithms  

Typical 
activities 
only 

System 
calculated set 
of interruption 
vectors are 
considered 
during 
scheduling 

Least cost A continuous 
linear equation 
is used 
between time 
cost trade-off 
at the activity 
level. 

Deterministic 
 

Moselhi and 
Hassanein 
(2003) 

Dynamic 
programming 
coupled with 
heuristic rules  

Typical and 
non-typical 
actives  

No idle time is 
allowed for 
any crew 

Time, cost or 
both 

Not 
considered 

Deterministic 
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Reference 
  

Optimization 
method 

  

Characteristics and capabilities 

Activities 
types 

Crew work 
continuity 

Optimization  
Time-cost 
trade-off 

Uncertainty 

Nassar 
(2005) 

Genetic 
algorithms  

Typical and 
non-typical 
actives  

System 
calculated 
interruption 
vectors are 
considered 
during 
scheduling 

Least 
schedule 
Cost is not 
considered 

Not 
considered 

Deterministic 
 

Liu et al. 
(2005)  

Simulation and 
genetic 
algorithm  

Typical and 
non-typical 
actives 

System 
calculated set 
of interruption 
vectors are 
considered 
during 
scheduling 

Time, cost or 
both 

Trade-off for 
discrete 
modes of time-
cost pairs is 
considered  

Deterministic 
 

Ipsilandis 
(2007) 

Linear 
programming 

Typical 
activities 
only 

System 
calculated set 
of interruption 
vectors are 
considered 
during 
scheduling 

Least 
schedule 
accounting for 
cost as a 
decision 
variable in the 
optimization 
process 

Not 
considered 

Deterministic 
 

Senouci and 
AlDerham 
(2008) 

Genetic 
algorithms  

Typical 
activities 
only  

No idle time is 
allowed for 
any crew 

Time, cost or 
both 

Trade-off for 
discrete 
modes of time-
cost pairs is 
considered  

Deterministic 
 

Srisuwanrat 
et al. (2008) 

Simulation Typical and 
non-typical 
actives 

Allow for crew 
work 
interruptions 
using 
simulation 

Least 
schedule 
Cost is not 
considered 

Not 
considered 

Probabilistic 
schedule only. 

Hyari et al. 
(2009) 

Genetic 
algorithms  

Typical and 
non-typical 
actives 

System 
calculated set 
of interruption 
vectors are 
considered 
during 
scheduling 

Time, cost or 
both 

Trade-off for 
discrete 
modes of time-
cost pairs is 
considered  

Deterministic 
 

Long and 
Ohsato 
(2009) 

Genetic 
algorithms  

Typical and 
non-typical 
actives 

System 
calculated set 
of interruption 
vectors are 
considered 
during 
scheduling 

Time, cost or 
both 

Trade-off 
based on 
linear, non-
linear, 
continuous, or 
discrete 
relationship 
models of 
direct cost 
relationship to 
the duration  

Deterministic 
 

Maravas and 
Pantouvakis 
(2010) 

Dynamic 
programming 
with fuzzy set 
theory  

Typical 
activities 
only 

No idle time is 
allowed for 
any crew 

Least 
schedule 
Cost is not 
considered 

Not 
considered 

Schedule 
uncertainties 
only. 
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Reference 
  

Optimization 
method 

  

Characteristics and capabilities 

Activities 
types 

Crew work 
continuity 

Optimization  
Time-cost 
trade-off 

Uncertainty 

Bakry et al. 
(2016) 

Dynamic 
programming 
with fuzzy set 
theory  

Typical and 
non-typical 
actives 

No idle time is 
allowed for 
any crew 

Time, cost or 
both 

Trade-off for 
discrete 
modes of time-
cost pairs is 
considered  

Fuzzy cost and 
schedule 

Zou et al. 
(2018) 

Dynamic 
programming 

Typical 
activities 
only 

Allow for crew 
work 
interruptions 
using an 
automated 
procedure to 
reduce the 
number of 
interruptions 

Time, cost or 
both 

Not 
considered 

Deterministic 
 

Salama and 
Moselhi 
(2019) 

Dynamic 
programming 
with fuzzy set 
theory  

Typical and 
non-typical 
actives 

System 
calculated set 
of interruption 
vectors are 
considered 
during 
scheduling 

Time, cost or 
both 

Trade-off for 
discrete 
modes of time-
cost pairs is 
considered  

Fuzzy cost and 
schedule 

Developed 
method 

Simulation and 
optimization 

Typical and 
non-typical 
actives 

Allow for crew 
work 
interruptions 

Time, cost or 
both 

Trade-off for 
discrete 
modes of time-
cost pairs is 
considered  

Probabilistic 
schedule and 
cost. 

 

The literature in this domain reveals that there are many methods proposed to 

solve the crew optimization problem on repetitive projects; however, most of the 

recent techniques have addressed crew work continuity but did not effectively 

account for uncertainties in cost and durations. Most of the early methods 

considered a single optimization objective of either time or cost, while, more resent 

methods accounted for a multi-objective optimization. The literature review in this 

domain also showed that only a few studies accounted for uncertainties into the 

optimization function. Those limitations have been addressed in the developed 

method.  
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2.8. Existing forecasting methods 

Forecasting is crucial for decision making on construction projects. There are two 

general types of forecasting, deterministic and probabilistic approaches. 

Deterministic forecasting is a network of tasks connected with dependencies that 

describe the sequence of work to be performed and the total cost and duration of 

the project. While probabilistic forecasting are networks with all the elements of a 

deterministic plan, but the cost and durations of the tasks are modelled with 

uncertainties. 

2.8.1. Deterministic forecasting methods 

Critical Path Method (CPM) is a network method originally developed by DuPont 

in the 1950s to assist in planning, forecasting and control of projects. The method 

requires careful planning, scheduling and management of interconnected 

activities. The method initially recognizes critical and non-critical activities and 

aims to improve work efficiency. By emphasizing the efforts on critical activities, 

the total project duration is shortened. Many introductions of the CPM can be found 

(see Oberlender 2000, Winter 2003, Meredith and Mantel 2009, Woolf 2012, Del 

Pico 2013).  

The critical path method performs a forward and backward pass for the project 

network for calculating the theoretical early dates, and late dates, disregarding 

limitations of resources, given the durations, relationship logic, lags, and 

constraints. The resulting early and late start and finish dates are the times where 

the tasks can be scheduled. The CPM is built on a work breakdown structure 
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(WBS). The WBS divides the project into discrete tasks. The essential part of CPM 

is the knowledge that some activities cannot start until others finish. Thus, a 

sequence of activities can be identified in which each stage must be completed 

until the next stage can begin. These activities are called sequential activities. 

Other activities may not depend on the completion of other activities and can be 

conducted at any time; these activities are called parallel tasks.   

The CPM approach has several underlying assumptions. It assumes that a project 

can be divided into distinguishable activities; the activities are then arranged on a 

timescale. Each activity is allocated a duration. The activities may also be loaded 

with resources, such as personnel, cost, equipment, facilities and support services. 

The best way to present those activities is to draw them as bars over a horizontal 

time axis what is known as a Gantt chart (Clark et al. 1922).  

The CPM is the most popular method used on projects today for the following 

reasons: 

 CPM enables project managers to display the activities graphically and identify 

the sequence of activities that are required to be completed.  

 Identifying the critical path for the project provides project managers focus 

areas to pave the way for successful completion of critical activities.  

 The CPM schedules are updated periodically and hence; the critical paths may 

change throughout the life of a project due to internal and external issues 

upsetting the project. the updated CPM schedule offers to identify problem 

areas where further attention is required due to those changes.  
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The shortcomings inherent in the CPM have been criticized by many researchers 

(Cottrell 1999, Lu and AbouRizk 2000). Several disadvantages and assumption 

surrounding the CPM can be summarized: 

 One of the fundamental assumptions of the CPM techniques is the project 

team’s capability to foresee the scope and estimate the duration and costs of 

each activity; unfortunately, practical experience showed that it is often beyond 

control (Knoke and Garza 2003). 

 The CPM is deterministic in nature and estimating the duration of tasks is most 

often based on historical information that is conserved within an organization 

or found in reliable external sources. 

 The overall duration of a project is calculated with the assumption that tasks 

will progress according to plan irrespective of past performance. 

The traditional CPM is not the best means for repetitive projects, and the 

shortcomings of the CPM has led to the reappearance of interest in linear 

scheduling techniques (Handa and Barcia 1986). Previous work on repetitive 

project scheduling and optimization is further detailed in section 2.7.  

The Earned Value Method (EVM) was developed in the 1960s and has proven its 

use in projects forecasting differing in size and complexity (Abba 2000). The 

Project Management Institute (2013) recommends the EVM and is mandated by 

NASA, DoD, and world-leading contractors. The EVM integrates the cost, schedule 

and technical parameters for a project.  In the planning phase, the baseline can be 

established by distributing the cost over the duration of the associated work 

activity.  As the activity is performed, the cost value of the activity is earned.  The 
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calculated earned value is then used to analyze the cost and schedule variations 

to enable forecasting the remaining project cost and schedule. The forecasting 

methods using the traditional EVM have been criticized for unrealistic forecasting 

of the project status at completion.  Short (1993) discussed the undesirable 

performance of the EVM when non-critical tasks cause the schedule variances and 

when tasks are executed in a different sequence as opposed to the baseline.  To 

enhance the EVM, several forecasting equations were developed by previous 

researchers. Lipke (1999) introduced a method for managing the cost and 

schedule reserves using a cost ratio and a schedule ratio. Later Lipke (2003) 

presented the Earned Schedule (ES) as a new technique to calculate the schedule 

variance and schedule performance index. The author concluded that the method 

provides reliable forecasting results. Henderson (2003, 2004) and later 

Vandevoorde and Vanhoucke (2006) studied the practicality and consistency of 

the ES method. In their studies, they concluded that the method is the most 

suitable way to estimate the project completion time. Moselhi (2011) 

recommended using the critical activities solely to establish the project baseline 

curve for the EVM and subsequently for calculating the schedule variances and 

indices. In his study, the author demonstrated that the method provides realistic 

forecasting results, particularly in forecasting project durations. 

2.8.2. Probabilistic forecasting methods 

An extensive amount of studies has been focused on introducing probabilistic 

capabilities to cost and scheduling forecasting techniques. Program Evaluation 

and Review Technique (PERT) was one of the first attempts to probabilistic activity 
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cost and durations. Then came the Monte Carlo simulation (MCS) to handle the 

merge-event bias and account for stochastic task duration (Van Slyke 1963). The 

Graphical Evaluation and Review Technique (GERT) (Pritsker 1966) was 

developed to model the uncertainty of precedence activities by allowing 

probabilistic routing and feedback loops. The Venture Evaluation and Review 

Technique (VERT) (Moeller and Digman 1981) assesses the risks involved in time, 

cost, and performance of projects. The Model for Uncertainty Determination (MUD) 

(Carr 1979) and the Dynamic-Strategy (DYNASTRAT) (Morua Padilla 1986) 

handles interdependencies of activity durations and the evaluation of the project 

progress. 

PERT was introduced on the Polaris missile program by the U.S. Navy in 1958. 

The Navy pulled in the Lockheed Aircraft Corporation and the Booz, Allen, and 

Hamilton management-consulting firms to develop this technique to deal with the 

variations in the project cost and time. PERT incorporates the element of 

uncertainty by adding the requirement of three estimates, unlike the CPM, where 

each activity has a single estimated duration. The three estimates are optimistic, 

most likely, and pessimistic. PERT uses the critical path to evaluate the total 

project duration under uncertain activity durations; the expected total project 

duration is then calculated as the summation of expected durations for all the 

critical path activities, the computations are made with the assumption that each 

activity duration follows a beta probability distribution (Sasieni 1986). PERT can 

calculate the probability of completing a project within a given time frame and the 

variability in the project completion time. For the purpose of computing the 
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expected total cost, all the activities in the project network are considered to 

calculate the probability of completing a project within a given cost frame and the 

variability in the total project cost. Littlefield and Randolph (1991) questioned the 

validity of the mathematical assumptions used in estimating PERT activity time; 

they concluded that the estimation process and communication between the 

project manager and those involved in estimating activity times is more important 

than the mathematics used for the estimate.  Cottrell (1999) proposed a modified 

technique for estimating the PERT activity durations by using only two durations 

(most likely and pessimistic) to generate a normal distribution. According to 

Cottrell, his simplified procedure reduces the level of effort required by 

conventional PERT because only two estimates, rather than three, are required for 

each activity. He also concluded that the three-point estimation adds little to the 

accuracy of deterministic equivalents of stochastic activity times in distributions 

that are not highly skewed. The PERT method typically underestimates the actual 

project duration because of the procedure limitation considering one single critical 

path, where several paths can turn out to be critical due to fluctuations (Diaz and 

Hadipriono 1993, Hendrickson and Au 2000, and Trietsch et al. 2012). The method 

also assumes that the task’s duration are uncorrelated random variables 

(Elmaghraby 1977).  To overcome this limitation; several research efforts were 

made. Ang and Tang (1975) developed a Probabilistic Network Evaluation 

Technique (PNET) for predicting the project duration by representing several paths 

that are highly correlated by the longest path in the group. The PNET method 

accuracy was criticized for being varying from “liberal or conservative” that 
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depends on the threshold value of the correlation coefficient, which was left 

subjective to the scheduler (Diaz and Hadipriono 1993). 

Kim (2010) introduced a probabilistic approach to the earned value method by 

combining the ES method introduced by Lipke (2003) with the Kalman filter 

algorithm to provide a probabilistic prediction of project duration at completion. 

The Monte Carlo simulation (MCS) is the most common technique used to simulate 

uncertainty. The method simulates a model containing several variables many 

times by randomly selecting a value from a probability distribution function (PDF) 

for each variable. The PDF of the resulting overall values is then determined by 

the iterations until a statistically significant result is obtained. The term Monte Carlo 

was presented in World War II used as a code name for the atomic bomb program 

simulation (Eckhardt 1987). The method is used to improve the quantification of 

risks impacting cost and schedule on construction projects. Project managers can 

then quantify a schedule contingency, budget contingency, or both to manage the 

problems that could unfavourably disturb the project. MCS is only as good as the 

model used for the simulation and the data provided. If the model is weak, the 

simulation may result in miss-leading information. Newton (1991) reviewed cost 

modelling in construction; in his research, he explained that the MCS has evolved 

as a popular tool for the management of construction projects.  The MCS of project 

schedules has been widely studied by many researchers mainly due to the relative 

complexity in the scheduling techniques for the calculation of the total project 

duration with probabilistic durations (Lee 2005, Lu and AbouRizk 2000). Williams 

(2004) explained a drawback on the Monte Carlo simulations stating that the 
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method “simply carry through each iteration unintelligently, assuming no 

management action”. In real life, management will take measures to recover 

delays; such measures may be a change in the execution sequence, methods and 

tools. Graves (2001) discussed the types of probability distributions to simulate the 

activity duration. He also proposed using open-ended distributions explaining that 

the closed-ended distribution denies the possibility of an activity finishing with a 

shorter duration than the minimum duration or taking longer than the maximum 

duration. In practice, issues could arise that were never expected and impact 

activity durations. The open-ended distributions allow the activity to possibly 

exceed the activity duration boundaries, resulting in a more realistic simulation. 

Bennet and Ormerod (1984) summarized the advantages asserted for the method 

as it offers a boundless capacity for modelling costs and schedules of construction 

projects.  

The MCS can offer the project manager an understanding of factors that are most 

important and how they interact. Further, The MCS iterative process demonstrates 

that uncertainties significantly add to the project costs and schedule, and basic 

additive of the bill of quantities can result in underestimation of costs. 

Nevertheless, the traditional MCS method has also been described as incomplete 

for its application on construction projects due to the difficulties to accommodate 

interdependency (or correlations) between variables (Perry and Hayes 1985). 

Moselhi and Dimitrov (1993) used real-life data of building projects and proposed 

a simplified MCS method to quantify the effect of correlation between the discrete 

cost elements on the estimated cost of construction projects. Many useful 
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references can be found that outline the MCS theory and implementation such as 

(Clemen et al. 2004, Bedford and Cooke 2001, Raftery 1994, Hartford and Baecher 

2004, Vose 2008, Barraza 2010, Kroese et al. 2013). 

Another line of research was made to model the uncertainty in the activity durations 

using a fuzzy set-based theory.  Fuzzy set theory was developed by Zadeh (1965) 

in an effort to provide a basis to handle the uncertainty that is non-statistical in 

nature. On construction projects, some activities may have been rarely or never 

done before, and hence no statistical data exists; therefore, the activity durations 

are described using fuzzy variables through expert opinions. This method uses 

linguistic terms such as “good” or “bad” that are subjectively quantified (Wu and 

Hadipriono 1994). Prade (1979) was the first researcher to propose the application 

of fuzzy set theory in scheduling problems. The Fuzzy set theory has also been 

used to model the relationship between the activity durations and the factors 

affecting those durations such as site conditions, weather, labour performance, 

etc. (AbouRizk and Sawhney 1993, Wu and Hadipriono 1994). Chanas and 

Kamburowski (1981) developed a fuzzy version of PERT which they named 

FPERT. The method models the project completion time in the form of a fuzzy set 

in the time-space. McCahon and Lee (1988) presented a new methodology to 

calculate the fuzzy completion project time. AbouRizk and Sawhney (1993) 

developed a computer system called “SIDES” that takes into consideration user 

subjective factors affecting the duration of activities and their likelihood of 

occurrence and consequences on the activity. The system then computes the 

mean, variance and the shape parameters of the beta distribution.  Wu and 
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Hadipriono, (1994) used a technique called “the fuzzy modus ponens deduction” 

(FMPD) to assess the impacts of factors on activity durations by using the most 

likely activity durations to calculate the optimistic and pessimistic durations using 

the angular fuzzy concept; the calculated durations are then used in probabilistic 

scheduling methods such as PERT (Hadipriono and Sun 1990). Lorterapong and 

Moselhi (1996) presented a scheduling method built on the fuzzy set theory; the 

method integrates several techniques for the representation of inexact duration of 

activities, the calculation of scheduling parameters, and the interpretation of the 

fuzzy results generated. Chen (2007) proposed an approach for networks with 

fuzzy activity durations based on the linear programming solutions to the critical 

path analysis. Yakhchali and Ghodsypour (2010) presented a method for 

calculating the likely values of the early and late start of an activity using 

approximate fuzzy durations. Naeni et al. (2011) introduced a fuzzy-based earned 

value model to incorporate uncertainty in the analysis of the earned value indices 

and estimating the duration and the cost at completion. The main advantage of the 

fuzzy set theory as compared to the MCS that it requires less computations; 

however, it requires an extensive knowledge for the model formulation. 

Furthermore, the advancement of computing power lessened the fuzzy set theory 

over the MCS. 

2.9. Risk analysis 

Projects in the construction industry often overrun their budget and schedule 

baseline, to some degree in light of the fact that uncertainties and risks are 
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unaccounted for in the cost and schedule estimations. This problem has been 

addressed in many researches and practices, often by using the MCS.  

During project execution, the project is rarely executed as it was planned due to 

uncertainty resulting from human subjective estimate errors and variability arising 

from unexpected events. Choi and Mahadevan (2008) arrest that risk evaluations 

are hard because of the data required for variables. They argue that if historical 

data is available, it can facilitate a practical application. 

Every project is unique and may have different risks impacting cost and schedule. 

Common examples of such risks in the construction industry are summarized in a 

fishbone diagram in Figure 2.5. For an in-depth definition of those risks see 

(Brenner et al. 1996, Eyers 2001, Nasir et al. 2003, Hulett 2015). 

The Schedule Risk Analysis (SRA) translates the risk of the various activity 

durations to offer sensitivity analysis for those activities and evaluate any possible 

impact caused by the uncertainty on the overall project’s duration. Schedule risk 

analysis provides information to project managers that aids in determining the 

probability of accomplishing the project objectives on time, determination and 

monitoring of the schedule reserve, the likelihood of potential problems and the 

identification of critical and sensitive activities and priorities. Several analysis 

approaches are present in the literature for performing the schedule risk analysis; 

those can be grouped into two methods, Qualitative and Quantitative risk analysis. 

A qualitative risk analysis focuses on quality by prioritizing the risks with an 

established scale. Risks are ranked according to their impact significance and to 

the probability of occurrence. The quantitative risk analysis, on the other hand, is 
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a quantitative rating and statistics analysis of risks based on probabilistic inputs. 

The most common quantitative risk analysis is modelling, and simulation typically 

performed using the MCS technique. (Neil and Diekmann 1989).  

Conventional methods of cost estimating are deterministic and neglect to account 

for the uncertainties experienced in the real world. The Cost Risk Analysis (CRA) 

accounts for the uncertainty in cost estimations with the use of probability 

distribution profiles. Each cost element with a possible variability is represented as 

a random value; the summation of the random values is then the total cost of the 

project. The MCS is used to perform iterations representing different scenarios; 

the probability distribution of the overall outcome value is calculated through the 

iterations until a statistically significant result is obtained. 

Using the three-point estimates to represent the risk profile is common in the 

construction industry in the absence of historical data. Many studies have 

concluded that the most recommended distributions for modelling cost are the 

Normal, lognormal, triangular, beta, and uniform distributions. (Touran and Suphot 

1997, Wall 1997, Back et al. 2000, Yang 2005, Hulett 2002). 
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Figure 2.5 Risks affecting construction projects.

Environmental  Owner
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The impact of correlation among cost components on the total cost variance of a 

construction project may have a significant impact on the simulation results. 

Conventional construction cost estimates are developed with the assumption of 

independence to avoid the trouble of modelling correlation. (Curran 1990); 

however, when positive dependence exists, the simulation output is an 

underestimation of the variable’s variance. An approximation method to avoid 

complex correlation modelling is to roll up the cost elements by grouping correlated 

items into a single item; however, this approach might produce complications 

regarding the estimation for large and complex projects (Chau 1995). Among the 

commonly used measures of dependence are the Pearson correlation coefficient 

and Spearman’s correlation coefficient, where the coefficient represents the 

degree of association between two cost items. More details can be found (see 

Chau 1995, Touran and Suphot 1997, Yang 2005). 

Cost-Schedule integration is the concurrent consideration of uncertainty arising 

from the schedule and cost and their combined effect to recognize the risk 

impacting a project. The analysis offers a betterment for the development of cost 

and schedule baselines as oppose to independent analysis and can also be 

adopted for measuring the project performance.  Hulett (2002) recommends taking 

the cost values and apportioning them to the schedule activities to enable an 

integrated analysis of cost and schedule. 

Cost and duration are inter-related; however, in most practices, this relationship is 

usually not accounted for due to the breakdown structures that differ when 

developing the cost and schedule of a project. (Poh and Tah 2006, Feng et al. 
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2010). Isidore and Back (2001 and 2002) introduced the multi-simulation analysis 

technique (MSAT) for the simultaneous simulation of cost and schedule. The 

authors joint the results of independent cost and schedule simulation results; 

however, they do not take into consideration the combined variation in cost and 

schedule. 

The Joint Cost and Schedule Confidence Level (JCL) is an integrated uncertainty 

analysis of cost and schedule developed by NASA (Coonce 2009). The method 

integrates the analysis of a project cost, schedule, risk, and uncertainty. The 

objective result is to estimate the project’s cost and schedule for a targeted 

probability confidence level. For example, a 50% confidence represents the 

probability for mutually estimating 50% confidence in cost and 50% confidence in 

schedule. This is unlike estimating independently the 50% cost confidence or 

estimating the 50% schedule confidence. For large projects, the difference 

between the 50% cost confidence independent of schedule and joint 50% cost and 

schedule confidence can be significant. The National Aeronautics and Space 

Administration (NASA) Cost Estimating Handbook (Version 4.0) recommends the 

implementation of the JCL, in fact, NASA JCL policy (NPR 7120.5E), mandates 

projects to perform a JCL with a recommended 70% probability for estimating both 

cost and schedule (Hulett et al. 2011, Hoffpauir 2015). The methodology for 

developing a JCL starts with building a probabilistic cost-loaded schedule and 

systematically integrating cost, schedule, and risk. The method facilitates the 

establishment of expectations and probabilities of meeting those expectations. It 
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also offers a holistic view to achieve cost and schedule goals and the determination 

of contingency for cost and schedule for the selected confidence level.  

2.10. Project costs 

A fundamental relationship exists between a project schedule and its cost. This 

relationship is vital for the project manager to estimate the project cost; however, 

it is often hard to quantify this relationship and model. The correlation between the 

project cost growth and schedule growth is mostly obvious, and many studies have 

concluded that schedule growth generally leads to growth in cost. It is for this 

reason that the integrated project schedule is required to correspond to cost 

estimates to satisfy enough resources assigned to activities to achieve completion 

within the expected duration. As stated previously, the relationship between the 

project cost and schedule are often hard to quantify. Typically, a large project takes 

more time to complete than a small project and most often, accelerating a project 

schedule can lead to large cost overruns. Figure 2.6 shows the relationship 

between project cost and schedule based on 50 completed NASA programs. The 

data analysis shows that when the project is cost-driven, cost and schedule will be 

more highly correlated, and when the project is schedule driven, the correlation is 

lower and possibly even negative. 
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Figure 2.6  Cost and Schedule Interrelationships. Source: Smart, C.B., 2007 
NASA Cost Symposium.  

 

In construction projects, costs can be classified as time-independent costs (TIC) 

and time-dependent costs (TDC). TICs may include material and plant permanent 

equipment; such costs are referred to in this study as fixed costs (FC). TDC, on 

the other hand, maybe split into two types, those associated with a project activity 

or a group of activities according to the project WBS are referred to in this study 

as variable costs (VC) while costs that are not associated with an activity but rather 

to the overall project are referred as indirect costs (IC). TDCs are applied as a rate 

per unit of time and are determined by the length of the activity or the project 

duration; examples of such costs are those associated with tools and equipment 

rentals, labour wages, land rentals, insurance, finance expenses and office 

expenses.  The TDC increases with the increased project duration; however, 

depending on the project complexity, this relationship is not always linear such as 

in the case where the size of the staff is not constant over the life of the project or 

the case were the loan interest has complex payment terms.  



 

47 

 

 

 

 

Other type of costs may be present depending on the contract provisions; such 

costs that are considered in this study are penalties for schedule delays or bonus 

payments for early completion. Typical language used in the construction project 

contract for a liquidated damage clause reads (Halpin et al. 2017): 

“Liquidated Damages In case of failure on the part of the Contractor 

to complete the work within the time fixed in the contract or any 

extensions thereof, the Contractor shall pay the owner as liquidated 

damages the sum of $3000 for each calendar day of delay until the work 

is completed or accepted.” 

However, in real-life cases, the amount of the liquidated damage cannot be 

specified arbitrarily and must be justified for actual damage incurred. Therefore, 

uncertainty in the application of those amounts may also exist.  

Some owners have exercised including an arbitrary high penalty amount, instead 

of liquidated damages, to scare the contractor into completion, however, a legal 

precedent was established in the form that when an owner desires to specify a 

penalty for overrun, a bonus must be offered in the same amount for early 

completion (Tyler 1994). Figure 2.7 shows the breakdown of the project costs that 

are considered in this study.  

          

Figure 2.7 Types of project costs 

Project cost

Fixed cost Variable cost Indirect cost
Penalties / 

Bonus
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2.11. Design of Experiments 

Design of experiments (DOE) is a method used to find the relationship between 

factors (modes) affecting a system and the response of that system to identify the 

factors most influential in optimizing the response as shown in Figure 2.8. DOE is 

a statistical experimental method originally developed by Fisher in 1926. Later Box 

and Wilson (1951) applied the method on industrial experiments producing the 

response surface designs; however, it was only in the 1980s with the work of 

Taguchi (1986) that made statistical experimental design popular and stressed its 

significance for quality improvement.  

 

 

Figure 2.8 Factors and Responses. 

The first step to perform a DOE is to define the objective function of the problem 

and select the variables otherwise known as factors or parameters. The factors 

can be either discrete qualitative variables or discrete quantitative variables. The 

number of discrete values for each factor is called levels. Early studies on the DOE 

assumed the same number of levels for each factor, mainly two levels denoting 

the high and low range of each factor as [-1, 1]; this was mostly to minimize the 

problem complexity and reduce the computational requirements; however, the 

number of levels can be different for each factor.  

Different techniques have been developed all evolving around reducing the costs 

associated with performing the required number of experiments to determine the 

Response Factors System 



 

49 

 

 

 

 

optimal response of the objective function. The following sections briefly highlights 

the most popular DOE techniques advantages and disadvantages.  

The Randomized Complete Block Design (RCBD) is a DOE technique originally 

developed by Bernstein (1927), the technique is based on blocking of factors by 

focusing on a controllable factor (primary factor) and makes it more relevant; while 

the other factors are considered nuisance factors that may affect the measured 

result but are not of primary interest. A blocking technique is used to keeps the 

nuisance factors constant in value. A batch of experiments is made where the 

primary factor adopts all its possible values. The randomized block design 

performs a batch of experiments for every possible combination of the nuisance 

factors. For example, if an objective function has 𝑘  controllable factors 

{𝑥1, 𝑥1, … . . , 𝑥𝐾}  where one of them is of primary importance. Let each factor have 

a number of levels {𝐿1, 𝐿1, … . . , 𝐿𝑘}. Let 𝑁 be the number of replications for each 

experiment, then the sample size for the number of experiments needed to 

complete an RCBD is 𝑁 = (𝐿1 × 𝐿2 ×… × 𝐿𝑘) · The RCBD technique has an 

advantage of complete flexibility in the number of variables and blocks. It is a 

relatively easy statistical method and allows a calculation of unbiased error for 

specific variables; however, the technique has been criticized for being impractical 

for large and complex problems and an increased error in the interactions between 

factors over other DOE methods.     

The Latin Square Design (LSD) is built on the RCBD technique with the aim of 

reducing the total number of experimental runs required. The technique involves 

selecting a single experiment in each block without confounding the significance 
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of the primary factor. The LSD necessitates certain conditions for applicability, 

namely the controllable factors k = 3, where 𝑥1 and 𝑥2  are the nuisance factors, 

and 𝑥3  is the primary factor. The second condition is all factors must have the 

same number of levels. The LSD is also known as the Graeco-Latin square for 𝑘 =

4, and Hyper-Graeco-Latin square for 𝑘 = 5 and had remained nameless in the 

literature for any 𝑘 > 5. The advantage of the LSD is its relatively inexpensive in 

terms of sample size; however, there are disadvantages to the technique due to 

its pre-requisite conditions and is less flexible compared to the RCBD.  

The full factorial experimental design; also known as the Brute force approach; is 

the most popular technique originally developed in the 19th century by John 

Bennet Lawes and Joseph Henry Gilbert. In a simple case for a two-level full 

factorial where there are 𝑘 factors and two discrete possible level values per factor, 

the number of experiments is then all possible combinations of the factors. This 

method does not distinguish between nuisance and primary factors. Typically, the 

two levels are denoted as (“h” or +1) for high values and (“l” or -1) for low values. 

For example, if an objective function has 4 factors {𝑥1, 𝑥2, 𝑥3 and 𝑥4} each factor 

has two discrete levels (𝐿1, 𝐿2) of +1 and -1, then the sample size for the number 

of experiments needed to complete a full factorial design is 𝑁 = 𝐿𝑘  (24 = 16), 

Table 2.2 shows the 24 full factorial experimental design matrix with all possible 

combinations of the factors.  

The full factorial experimental designs can also be extended to the general case 

to account for a different number of levels for each factor, also known as a mixed-

level design. The sample size for the number of experiments needed to complete 
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a mixed-level full factorial design is 𝑁 = ∏ 𝐿𝑖
𝑘
𝑖=1 . The full factorial experimental 

designs have the advantage of being efficient to estimate the interactions that may 

be present between the factors at several levels on other factors, however, as the 

number of factors and levels increase the sample size grows exponentially which 

in turn increases the experimental cost and makes it difficult to interpret; especially 

when interactions between the factors exist. Those disadvantages have led the 

way for the development of fractional factorial designs where only a subset of the 

sample size is examined. 

Table 2.2 Example of 24 full factorial experimental design. 

Experiment runs 
Factors 

X1 X2 X3 X4 

1 -1 -1 -1 -1 

2 1 -1 -1 -1 

3 -1 1 -1 -1 

4 1 1 -1 -1 

5 -1 -1 1 -1 

6 1 -1 1 -1 

7 -1 1 1 -1 

8 1 1 1 -1 

9 -1 -1 -1 1 

10 1 -1 -1 1 

11 -1 1 -1 1 

12 1 1 -1 1 

13 -1 -1 1 1 

14 1 -1 1 1 

15 -1 1 1 1 

16 1 1 1 1 

 

Fractional factorial designs were introduced by Finney (1943). In this approach, 

the sample size is a subset from the full factorial design and is selected at one half 

or one quarter, and so forth. The sample size is appropriately selected to have the 

same number of samples for each of its levels. Various strategies are used to 

ensure an appropriate choice of the sample size. The main advantage is the 
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reduced sample size while doing so, the problem losses on the possibility to 

distinguish between the main effects and interaction effects between the factors. 

Several fractional factorial design methods exists in the literature amongst which, 

some of the most popular are the Homogenous fractional design method used 

when a large number of factors is required to be explored, The mixed-level 

fractional design is used when many factors are needed to be assessed for their 

main effects and when higher-level interactions are considered negligible, the Box-

hunter fractional design is used with more than two-level factors or mixed level 

factors, Plackett-Burman is an efficient screening fractional design used when all 

interactions are considered negligible, and Taguchi fractional design estimates the 

main effects concurrently with  minimizing variances. The Latin square is a 

fractional factorial design in the case where one factor is of interest while others 

are blocking factors. 

The Random DOE techniques, also known as “space-filling” techniques depend 

on uniformly filling the solution space. Such techniques are generally used for 

creating a response surface especially for large and complex problems; however, 

due to the fact that space-filling techniques are not level-based, the main effects 

are not as complete as is the case with full factorial designs. This technique, 

however, has a drawback in the sense that some samples may be clustered near 

to each other and fail to fill the solution space uniformly. 

Many DOE methods are available to choose from, but there is no best choice. The 

selection is dependent on the complexity of the problem at hand. The key items to 

consider are: 
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 the number of experiments which can be afforded in terms of time and costs 

required to perform the experiments,  

 the number of factors involved in an experiment,  

 the number of levels for each factor, and 

 the ultimate objective of the experimental design.  

Cheap techniques may result in inaccurate results; however, they could jointly be 

used with other techniques as a preliminary study for estimating the main effects. 

A good introduction and examples of the various techniques described above can 

be found in Cavazzuti (2013).  

2.12. Findings of the Literature Review 

Literature was reviewed in search of existing methods and techniques that perform 

the processes of scheduling, cost and schedule risk analysis, and optimization for 

time-cost trade-off in repetitive and non-repetitive class construction projects. The 

existing scheduling techniques were categorized as deterministic and stochastic 

techniques. The principles, capabilities and limitations associated with those 

techniques were highlighted. From the literature review, the following facts can be 

established:  

1. It is a fact that deterministic scheduling is dominantly used due to simplicity; 

however, it is not as realistic as probabilistic scheduling and could result in 

misleading information when it comes to setting the basis for target 

contractual dates and thus the leading cause why projects are often late. 
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2. Conventional methods of cost estimating are deterministic and neglect to 

account for the uncertainties experienced in the real world 

3. Most established probabilistic techniques; while accounting for estimate 

uncertainties, fail to account for probable discrete risk events. This 

ignorance is, in general, a main factor to the cause why projects often 

overrun their budget. 

4. Most established probabilistic forecasting techniques perform either cost or 

schedule analysis independently in a siloed approach. Only a few of the 

established techniques account for the joint cost and schedule analysis thus 

by default neglecting the cost impact of time uncertainty. 

5. The fuzzy set theory is developed based on sound theory and provides a 

tempting approach for stochastic forecasting. When compared to the MCS, 

it requires less computational efforts; however, it requires an extensive 

knowledge for the model formulation and interpretations of results which 

may lack in construction management professionals in the real world. 

Furthermore, the advancement of computing power lessened the 

application of fuzzy set theory over the MCS approach. 

6. Deterministic time-cost trade-off analysis has dominated the studies in the 

literature, while only a few and most recent of the studies tackle stochastic 

analysis; however, it is common sense that different trade-off strategies 

come with different levels of uncertainties that need to be analyzed 

simultaneously.  
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CHAPTER 3 :  THEORETICAL BACKGROUND 

3.1. Introduction 

The purpose of this chapter is to review different sections appropriate for building 

the theoretical background for the proposed research method.  

3.2. Theoretical critical path method 

The Critical Path Method (CPM) is a deterministic technique to calculate the 

earliest time for project completion, by use of dependencies between tasks having 

a deterministic duration. The method is described using the following steps: 

1. Identification of the individual project activity in accordance with the scope 

of work, size and complexity of the project. This is generally done by the 

use of a work breakdown structure. 

2. Identification of the dependency between activities. This requires listing all 

predecessors, and the estimation of the lead time.  

3. Estimate activities durations. A deterministic duration is estimated usually 

with the help of historical data of production rates or subject matter expert 

judgement. 

4. Calculate the critical path, which is defined as the longest path that drives 

the project completion. 

Some of the basic definitions used in the method are:  

 duration (d): The amount of time the activity takes from start to finish.  
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 Early Start Time (EST): The earliest possible point in time on which a task can 

start.  

 Early Finish Time (EFT): The earliest possible point in time on which a task can 

finish.  

 Late Start Time (LST): The latest possible point in time on which a task can 

start.  

 Late Finish Time (LFT): The latest possible point in time on which a task can 

finish. 

 Total Float (TF): The total amount of time the activity can slip from its early start 

without delaying the project finish date.  

 Free Float (FF): The amount of time the activity can slip from its early start 

without delaying the early start of its immediately following activity. 

 Critical Path (CP): The sequence of schedule activities that determines the 

duration of the project. It is the longest path throughout the project.  

 Lag: The amount of time delaying the succeeding task. 

 Lead (or negative Lag): The amount of time accelerating the succeeding task. 

(Note that the use of Leeds is uncommon in the construction industry). 

 Immediate predecessor: is the activity that must be completed immediately 

before a given activity can begin. 

 Forward pass: is a calculation method to determine the EST and EFT of each 

activity based on the network logic, the duration of the activities and any 

imposed constraints and lags. The calculation starts at the start activity or 
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milestone and works each activity forward through the network, considering all 

its predecessor activities. 

 Backward pass: is a calculation method to calculate the LST and LFT of each 

activity without delaying the overall project’s completion date and any of the 

imposed constraints. 

 Logic links: represent the logical work relationship for an activity and its 

immediate predecessor. An activity may have several logical links to other 

project activities. There are four types of relationships used in combination with 

the lags or leads: 

1. Finish-to-Start (FS), where an activity cannot start until after the finish of 

the preceding activity. 

2. Start-to-Start (SS), where an activity start time is delayed until after the 

start of the preceding activity. 

3. Finish-to-Finish (FF), where the activity completion is delayed until the 

completion of all predecessor activity. 

4. Start-to-Finish (SF), where the activity completion is constrained by the 

start of the preceding activity. 

Figure 3.1 shows an illustration of the four types of relationships. 
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Figure 3.1 Type of logic relationships between the project activities. 

 

The forward pass calculations can be formulated for an activity 𝑖  having an 

immediate precedence relationship to activity 𝑗 using equations (3-1) and (3-2) 

where j ∈ the set of predecessor activities Pi. Equations (3-3) computes the overall 

project’s duration 𝐷. 

𝐸𝑆𝑇𝑖 = 𝑚𝑎𝑥
∀ 𝑗 ∈𝑃𝑖

{
 
 

 
 𝐸𝐹𝑇𝑗 + 𝑙𝑎𝑔𝑖,𝑗 + 1                  ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡  

𝐸𝑆𝑇𝑗 + 𝑙𝑎𝑔𝑖,𝑗                           ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡

𝐸𝐹𝑇𝑗 + 𝑙𝑎𝑔(𝑖,𝑗) − 𝑑𝑖 + 1     ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

𝐸𝑆𝑇𝑗 + 𝐿𝑎𝑔(𝑖,𝑗) − 𝑑𝑖            ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

  3-1 

𝐸𝐹𝑇𝑖 = 𝐸𝑆𝑇𝑖 + 𝑑𝑖 − 1            3-2 

𝐷 =  𝑚𝑎𝑥
∀ 𝑖

{𝐸𝑆𝑇𝑖 + 𝑑𝑖 − 1}        3-3 

After completing the forward pass for the entire network, the backward pass 

calculations are performed to determine the latest start and finish times for each 

activity without delaying the completion of the overall project. The backward pass 

calculation starts at the finish activity and logically works back to the beginning. 

The backward pass calculations can be formulated for an activity 𝑖  having an 
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immediate successor relationship to activity 𝑗  using equations (3-4) and (3-5) 

where j ∈  the set of successor activities Si. 

𝐿𝐹𝑇𝑖 = 𝑚𝑖𝑛
∀ 𝑗 ∈𝑆𝑖

{
 
 

 
 𝐿𝑆𝑇𝑗 − 𝑙𝑎𝑔𝑖,𝑗 − 1                  ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡  

𝐿𝑆𝑇𝑗 − 𝑙𝑎𝑔(𝑖,𝑗) + 𝑑𝑖 − 1     ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡

𝐿𝐹𝑇𝑗 − 𝑙𝑎𝑔(𝑖,𝑗)                      ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

𝐿𝐹𝑇𝑗 − 𝑙𝑎𝑔(𝑖,𝑗) + 1              ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

  3-4 

𝐿𝑆𝑇𝑖 = 𝐿𝐹𝑇𝑖 − 𝑑𝑖 + 1            3-5 

Once the forward and backward pass calculations are complete, the 𝑇𝐹 for each 

activity can be calculated using equation (3-6).  

𝑇𝐹𝑖 = (𝐿𝐹𝑇𝑖 − 𝐸𝑆𝑇𝑖) − 𝑑𝑖 + 1       3-6 

A critical activity is one with zero 𝑇𝐹 and the critical path is determined by the path 

that runs through the critical activities. 

The value of ‘1’ that is added or deducted in equations (3-1 to 3-6) is needed to 

adjust for the ‘beginning and end of day’ to account for the continuum time 

calculations as opposed to the calculation using numbers.  

3.3. Modelling type of costs 

As described in section 2.10, four types of project costs are considered in the 

present study; those are fixed, variable, indirect and penalty/bonus costs. In 

preparation for modelling such costs, the estimates should be naked of any 

contingency as contingency estimates will be the results obtained from the 

simulation for the specified confidence level. The uncertainty in fixed cost is 

modelled using equation (3-7): 

𝐸[𝐹𝐶𝑖] =   [𝐹𝐶𝑖]𝑀𝐿 ∗ ∅         3-7 



 

60 

 

 

 

 

Where 𝐸[𝐹𝐶𝑖]  is the expected value of fixed cost for the activity 𝑖, [𝐹𝐶𝑖]ML is the 

activity most likely estimate of the fixed cost, and ∅ = 𝑓(𝑝) is a multiplier obtained 

from the assigned uncertainty PDF using a random probability number 𝑝. 

To account for the uncertainty in the variable cost, equation (3-8) is used: 

𝐸[𝑉𝐶𝑖] =   [𝑉𝐶𝑟𝑖]𝑀𝐿 ∗ 𝜕 ∗ [𝑑𝑖]𝑀𝐿 ∗ 𝛾       3-8 

Where 𝐸[𝑉𝐶𝑖] is the expected value of variable cost for the activity 𝑖, [𝑉𝐶𝑟𝑖]ML is 

the most likely estimated variable cost rate per unit of time for an activity or a group 

of activities under a common work breakdown structure, [𝑑𝑖]ML is the most likely 

estimated value for the activity duration, and  𝜕 = 𝑓(𝑝) is the multiplier obtained 

from the assigned uncertainty PDF using a random probability number 𝑝. 

𝛾 = 𝑔(𝑝) is the activity duration multiplier obtained from the assigned duration 

uncertainty PDF using a random probability number 𝑝. 

Similarly, to account for the uncertainty in the Indirect cost the following equation 

is used: 

𝐸[𝐼𝐶] =   [𝐼𝐶𝑟]𝑀𝐿 ∗ 𝜔 ∗ 𝐸[𝐷]        3-9 

Where 𝐸[𝐼𝐶] is the expected value of indirect cost for the entire project duration 

(D), [ICR]ML is the project most likely estimated indirect cost rate per unit of time, 

and  𝜔 = 𝑓(𝑝) is the multiplier obtained from the assigned ICr uncertainty PDF 

using a random probability number 𝑝. Figure 3.2 shows an illustration for a linear 

cumulative distribution of IC cost for a work activity.  
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Figure 3.2 Uncertainty modelling of variable and indirect costs. 

Depending on the contract provisions, penalties are often used by clients in order 

to help achieve a certain deadline on schedule-driven projects or meet a targeted 

budget on budget-driven projects. Such cost only exists if pre-defined conditions 

are satisfied. Penalty cost (PC) may be applied by the client to cover costs 

stemming from liquidated damages. Such costs may also be self-applied by the 

contractor to cover for double handling and storage cost of materials due to self-

generated delays in site readiness. Similarly, there is an opportunity for earning 

bonus costs (BC) for meeting contract milestones or target budgets.  

The PC and BC is a form of risk and opportunities (loss / profit); they are treated 

using the same modelling technique but differ in their sign (+/-) and in their 

triggering condition. In the case of a penalty, cost accumulates and increases the 

project total cost estimate, where a negative cost value is accumulated in the case 

of BC where the earned costs reduce the overall project’s cost estimate.  

PC and BC can be continuous, applied as a cost rate on a time unit bases, or 

discrete and applied as a one-time cost. Uncertainty in those costs may also exist, 

such as uncertainty in the cost estimates for double handling and storage cost. To 
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account for such costs and uncertainty in the developed model, both PC and BC 

are modelled using the set of equations (3-10 to 3-13): 

For schedule-driven projects: 

𝐸(𝑃𝐶) =

{
{
𝑃𝐶𝑟 ∗ ∅ ∗ (𝐷 − 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒)          , 𝐷 > 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒
0                                                         , 𝐷 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒

  }    , 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛     

{
𝑃𝐶 ∗ ∅                                               , 𝐷 > 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒
0                                                         , 𝐷 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒

  }    , 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛          
3-10 

𝐸(𝐵𝐶) =

{
{
𝐵𝐶𝑟 ∗ ∅ ∗ (𝐷 − 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒) , 𝐷 > 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒
0                                                 , 𝐷 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒

  }    , 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛     

{
𝐵𝐶 ∗ ∅                                     , 𝐷 > 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒
0                                                , 𝐷 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒

  }     , 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛          
 3-11 

The following equations are used for budget-driven projects: 

𝐸(𝑃𝐶) =

{
{
𝑃𝐶𝑟 ∗ ∅ ∗ (𝐵𝑢𝑑𝑔𝑒𝑡 − 𝐶) , 𝐷 > 𝐵𝑢𝑑𝑔𝑒𝑡
0                                                , 𝐶 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

  }         , 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛     

{
𝑃𝐶 ∗ ∅                                    , 𝐶 > 𝐵𝑢𝑑𝑔𝑒𝑡
0                                               , 𝐶 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

  }         , 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛          
3-12 

𝐸(𝐵𝐶) =

{
{
𝐵𝐶𝑟 ∗ ∅ ∗ (𝐵𝑢𝑑𝑔𝑒𝑡 − 𝐶)    , 𝐶 > 𝐵𝑢𝑑𝑔𝑒𝑡
0                                                , 𝐶 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

  }         , 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛     

{
𝐵𝐶 ∗ ∅                                     , 𝐶 > 𝐵𝑢𝑑𝑔𝑒𝑡
0                                                , 𝐶 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

  }         , 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛          
3-13 

Where 𝐸[𝑃𝐶] and 𝐸[𝐵𝐶] is the expected value of penalty and bonus cost, 𝑃𝐶𝑟 and 

𝐵𝐶𝑟 is the penalty and bonus cost rate per unit of time, ∅ = 𝑓(𝑝) is a multiplier 

obtained from the uncertainty PDF for penalty and bonus costs using a random 

probability number 𝑝 . Figure 3.3 shows an illustration for a linear cumulative 

distribution of PC and BC cost for a schedule-driven project.  
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Figure 3.3 Modelling penalty and bonus cost for the schedule-driven 
project. 

For simplicity, a linear function is considered for the VC, IC, PC and BC relationship 

to time in order to reduce the input required for the analysis model. Non-linear 

relationships may be considered subject to future enhancements. 

3.4. Modelling uncertainty 

The Probability Density Function (PDF) is the most common way to model 

uncertainty. Several PDFs have been concluded adequate for modelling durations 

and costs of construction projects, the most popular are Normal, Triangular, Beta 

and Uniform distributions, as shown in Figure 3.4. 

 

Figure 3.4 Popular probability distribution functions PDFs. 

The Normal distribution is the best-known PDF that has significantly contributed to 

the theories of probability and statistics. The Normal distribution has a probability 

density function given by: 



 

64 

 

 

 

 

𝑓(𝑥, 𝜇, 𝜎) =  
𝑒
−
(𝑥−𝜇)2

2𝜎2

𝜎√2𝜋
        3-14 

where μ and σ are the mean and standard deviation parameters of the distribution, 

respectively. The standard Normal distribution has the parameters μ = 0 and σ =1. 

The probability density function PDF and the cumulative density function CDF, 

accordingly, are represented by equations (3-15 and 3-16) : 

PDF      𝑓(𝑥) =  
𝑒
−
𝑥2

2

√2𝜋
         3-15 

CDF      𝐹(𝑥) =  ∫
𝑒
−
𝑥2

2

√2𝜋

𝑥

−∞
         3-16 

The mean and standard deviation of the distribution can be represented by: 

Mean      𝜇 =
∑𝑥

𝑁
        where N = sample size     3-17 

Standard deviation     𝜎 = √
∑(𝑥−𝜇)2

𝑁
      3-18 

The Normal distribution PDF and CDF is illustrated in Figure 3.5. 

 

Figure 3.5 Normal probability distribution functions. 

The Triangular distribution is a subjective description of a population where limited 

sample data is available. The Triangular distribution requires 3 parameters for its 

definition: Optimistic (a): The minimum time or cost at which the task can be 
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completed. Most likely (m): The time or cost required to complete a task based on 

known conditions and available resources. It is also the mode of distribution, and 

Pessimistic (b): The maximum time or cost the task to be completed. The triangular 

distribution PDF is illustrated in Figure 3.6.  

The Triangular distribution probability density function PDF and the cumulative 

density function CDF can be represented by: 

PDF       𝑓(𝑥) = {

2 (𝑥−𝑎)

(𝑏−𝑎)(𝑚−𝑎)
       𝑓𝑜𝑟 𝑎 ≤ 𝑥 < 𝑚

2(𝑏−𝑥)

(𝑏−𝑎)(𝑏−𝑚)
       𝑓𝑜𝑟 𝑚 ≤ 𝑥 ≤ 𝑏

     3-19 

CDF       𝐹(𝑥) = {

(𝑥−𝑎)2

(𝑏−𝑎)(𝑚−𝑎)
       𝑓𝑜𝑟 𝑎 ≤ 𝑥 < 𝑚

1 −
(𝑏−𝑥)2

(𝑏−𝑎)(𝑏−𝑚)
         𝑓𝑜𝑟 𝑚 ≤ 𝑥 ≤ 𝑏

    3-20 

 

Figure 3.6 Triangular probability distribution functions. 

The mean and standard deviation of the distribution can be represented by: 

Mean      𝜇 =
𝑎+𝑚+𝑏

3
          3-21 

Standard deviation    𝜎 = √
𝑎2+𝑚2+𝑏2−𝑎𝑏−𝑎𝑚−𝑚𝑏

18
     3-22 

To allow calculation of sampling from a triangular distribution, the inverse 

transformation of the CDF is formulated as follows: 
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Inverse CDF =  𝐹−1(𝑥) = {
𝑎 + √𝑝 (𝑚 − 𝑎)(𝑏 − 𝑎)                    𝑓𝑜𝑟 0 ≤ 𝑝 <

𝑚−𝑎

𝑏−𝑎

𝑏 − √ (1 − 𝑝)(𝑏 − 𝑚)(𝑏 − 𝑎)         𝑓𝑜𝑟 
𝑚−𝑎

𝑏−𝑎
≤ 𝑝 ≤ 1

  3-23 

Where 𝑝 is uniformly distributed on (0,1). 

Studies have proposed a modification to the triangular function (Vose 2008), which 

include the Trigen probability distribution function and the Double Triangular 

probability distribution function. Such modifications were developed to account for 

the biased estimations of optimistic and pessimistic values to accommodate for 

optimism bias when needed. The Trigen function short for “triangle generation” 

requires specifying an optimistic percentage 𝑝𝑎 and a pessimistic percentage 𝑝𝑏 

such as 10% and 90%. Figure 3.7 illustrates the Trigen function. This probability 

distribution allows to widen the function boundaries to allow for a preselected 

probability percentage to occur outside those boundaries. 

 

Figure 3.7 Trigen probability distribution functions. 

 

The Double Triangular function is another alternative to the triangular function. In 

addition to the optimistic, most likely, and pessimistic values, a probability value p 

between 0 and 1 is also selected for the probability of occurrence from the left side 
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of the triangle, and (1-p) is the probability of occurrence from the right side of the 

triangle. Figure 3.8 illustrates the Double Triangular function. 

 

Figure 3.8 Double Triangular probability distribution functions. 

The Beta-PERT distribution is a special form of the Beta distribution useful for 

modelling expert data. The function can be used in a MCS to model uncertainties 

in cost elements of a project. The fit of the Beta-PERT distribution, like any other 

distribution, is bounded by the quality of the expert estimates of the parameters. 

Similar to the Triangular distribution, the Beta-PERT distribution requires the 3 

parameters for its definition: Optimistic (a), Most likely (m), and Pessimistic (b). An 

illustration of the Beta-PERT distribution PDF is shown in Figure 3.9. 

 

Figure 3.9 Beta-PERT probability distribution functions. 
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The Beta-PERT function is preferred over the normal function due to its ability to 

be symmetrical, skewed right towards the pessimistic, or skewed left towards the 

optimistic (Schexnayder 2005). AbouRizk and Halpin (1992) and Meredith and 

Mantel (2009) found in their studies that the Beta-PERT distribution is the most 

suitable in project management models to denote activity duration times given the 

fact that it allows the portrayal of biases to the right or to the left (Vose 2008). 

The Beta-PERT distribution is a special case of the Beta distribution specified by 

the parameters 𝛼, 𝛽. Where: 

𝛼 = 
4𝑚+𝑏−5𝑎

𝑏−𝑎
          3-24 

𝛽 =  
5𝑏−𝑎−4𝑚

𝑏−𝑎
          3-25 

The Beta-PERT distribution probability density function PDF and the cumulative 

density function CDF can be represented by: 

PDF       𝑓(𝑥) =
(𝑥−𝑎)𝛼−1∗ (𝑏−𝑥)𝛽−1

𝐵𝑒𝑡𝑎 (𝛼,𝛽)∗(𝑏−𝑎)𝛼+𝛽−1
            3-26 

CDF      𝐹(𝑥) =  𝐼𝑧(𝛼, 𝛽)        3-27 

Where 𝐵𝑒𝑡𝑎 (𝛼, 𝛽) is the Beta function; 𝛼 𝑎𝑛𝑑 𝛽 are the shape factors of the function 

and 𝐼𝑧 is the incomplete beta function.  

The mean and standard deviation of the distribution can be represented by: 

Mean      𝜇 =
𝑎+4𝑚+𝑏

6
        3-28 

Standard deviation     𝜎 =
𝑏−𝑎

6
       3-29 

Experts are generally more confident to guess the most likely duration than the 

pessimistic and optimistic values; hence, the Beta-PERT distribution has four times 

the weighting on the most likely time (m). 
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The Uniform distribution is applied where quantities vary uniformly between two 

values. This distribution is only recommended to be used to model less sensitive 

variables to be conservative for accounting of extreme values of the variable 

(Pouliquen 1970). The Uniform distribution probability density function PDF and 

the cumulative density function CDF can be represented by: 

PDF       𝑓(𝑥) = {
1

(𝑏−𝑎)
       𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

0                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
      3-30 

CDF      𝐹(𝑥) = {

1, 𝑥 ≥ 𝑏
𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

       3-31 

The mean and standard deviation of the distribution can be represented by: 

Mean      𝜇 =
𝑎+𝑏

2
         3-32 

Standard deviation     𝜎 = √
(𝑏−𝑎)2

12
       3-33 

The inverse transformation of the CDF is calculated as follows: 

From the CDF, set  𝐹(𝑥) = (𝑋 − 𝑎)/ ((𝑏 − 𝑎) = 𝑝 

Solving for 𝑋 in terms of 𝑝 yields:  

𝑋 = 𝑎 + (𝑏 − 𝑎)𝑝         3-34 

Where 𝑝 is uniformly distributed on (0,1). 



 

70 

 

 

 

 

 

Figure 3.10 Uniform probability distribution functions. 

3.5. Joint cost and schedule confidence level 

This section outlines a summary of the joint cost and schedule confidence level 

(JCL) process steps and results as presented by NASA (Hoffpauir 2015). The JLC 

process requires 5 essential steps that need to be executed in order, as shown in 

Figure 3.11.  

 

Figure 3.11 Joint Cost and Schedule Confidence Level (JCL) process steps. 

The first step is the development of the project schedule with a solid logic network 

that models the project execution strategy. The schedule is required to be built with 

the consideration of the goals and objectives of the JCL analysis. Figure 3.12 

shows a simple schedule for illustration purposes. 
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Figure 3.12 A simple schedule network illustration. 

 

The second step is to load the cost estimates. Cost loading is accomplished by 

mapping the cost to the schedule. Each activity may be loaded with FC and VC. 

The VC cost are attributed to the duration of activities, where the duration will 

determine the value of the cost of such activity (unit cost per unit of time). The IC 

may also be loaded and associated with the overall project duration. The total 

project cost (C) is then the sum of all FC, VC and IC. Figure 3.13 shows the 

assignment of FC and VC to the network activities. At this step, the project 

deterministic schedule and cost can be calculated.  

 

Figure 3.13 Assignment of FC, VC and IC costs on project activities. 
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The third step is to incorporate the risk events. The identified risks from the project 

risk register is realized and integrated into the model. The risk events are modelled 

by adjusting the project schedule network to add a risk activity with its most likely 

impact duration and cost. This activity represents the additional work required 

resulting from reacting to the occurrence of the risk. In a deterministic scheduling 

technique, those activities do not exist and adds nothing to the project cost and 

schedule. Each activity is then assigned a Bernoulli distribution to model the 

occurrence of the risk event represented by either True or False (e.g. a risk with a 

50% probability of occurrence means it will show an impact in 50% of the 

simulation runs). Figure 3.14 shows the risk-adjusted model, where Risk events 1 

and 2 are added to the network as activities. Risk 1, for example, has a 50% 

probability of occurrence and when occurs is modelled to extend activity B and will 

delay the start of activity C by the duration assigned to the risk event. The risk also 

is loaded with a TIC. The TIC may be for purchasing replacements to damaged 

plant equipment. To this step in the JCL process, we can perform a quantities risk 

assessment and its impact on the overall project’s schedule and cost. 

It is worth noting here that the discrete risk events need to be distinguished from 

the uncertainties in the cost and duration values of scope activities; therefore, 

careful consideration of those risk events is required by the project manager to 

avoid double-dipping in the modelling the impact of risks and uncertainty.   

The discrete risk events considered in this study are associated to activities; such 

risks are not introduced randomly, instead, they incorporate the experience and 

judgment of the experts to position those risks in the project network.  Other types 
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of risks that are not specific to an activity may also exist, such as severe weather 

conditions; those risks are not considered in the modeling of the developed method 

and are subject for inclusion in future work.  

 

Figure 3.14 Risk-adjusted schedule. 

 

The fourth step is to incorporate the uncertainty in the project cost and schedule 

estimations. This uncertainty is considered to cover two key facets that can 

potentially drive cost and schedule: 

 Un-identified risks that may have been missed.  

 Uncertainty in the estimate of activity duration and costs. 

The JLC process calls to distinguish and segregate between risks and uncertainty 

to avoid double-counting uncertainty caused by risks that are already modelled. 

Risk is an event that is not part of the base plan; it has a probability of occurrence, 

and if occurs will have an undesirable impact on the project cost and schedule 

whereas uncertainty represents the imperfect ability to predict a future event. 
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The uncertainty is modelled using a probability distribution function. Typically, and 

for simplicity, the triangular distribution is used. Figure 3.15 shows the uncertainty 

assigned to the activity durations and costs.  

It is worth nothing that not all cost and duration parameters are uncertain. 

Therefore, the developed method allows a mix between deterministic and 

uncertain estimations for the activity’s duration and cost values.  

 

Figure 3.15 Uncertainty assignment to the activity durations and costs. 

Step Five: Calculate and view results 

In the fifth step in the JLC process, a Monte Carlo simulation is applied, and an 

extensive risk analysis is made. The discrete risks, cost and schedule, are 

simulated and iterated many times. The estimates of durations and costs are 

selected at random for each simulation trial from probability distributions. At each 

iteration, different finish dates and costs may occur, and the data for cost, duration, 

start and finish dates and float are collected. From this data, a variety of reports 

can be generated to analyze the outputs. The most popular report used is the JCL 

scatterplot chart. An example of this plot is shown in Figure 3.16. The frontier curve 
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joining all the yellow points represents all results that satisfy a 70% joint cost and 

schedule confidence level.  

As expected, the more the selected overall project cost values, the more the 

confidence level; similarly, for selecting a higher overall project duration. 

Therefore, the joint confidence distribution is expected to have an positive 

correlation between time and cost; which, in turn, will result in an increasing 

concave-up frontier curve. The mathematical proof of this relationship is well 

detailed in Xu et al. (2014). An illustration of this relationship is provided in Figure 

3.17. 

 

Figure 3.16. JCL Scatterplot.1 

 

                                                 
1 Source (Hoffpauir 2015). 
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Figure 3.17. The marginal probability distribution and marginal risk 

probability distribution of total duration and total cost.2 

3.6. Sensitivity analysis 

Another set of outputs of the cost and schedule risk analysis are indices for the 

degree of an activity criticality and sensitivity that offers an indication for sensitive 

activities and its effect on the overall project’s duration and cost. The most popular 

indices related to schedule risk analysis are: 

 Criticality Index (CI): This index is a measure of the frequency for an activity 

when observed on the critical path to the total number of iterations as a ratio 

(between 0 and 1). 

 Significance Index (SI): is a measure of the importance of an activity with 

regards to its influence on the overall project’s completion. The follows can be 

used to calculate the SI: 

𝑆𝐼 =  𝐸 {
(𝐴𝐷 ∗ 𝑆𝐷)

((𝐴𝐷 + 𝑆𝐿)∗ 𝐸(𝑆𝐷))
}        3-35 

                                                 
2 Source (Xe et al. 2014). 
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Where SD is the project duration resulting from the simulation, AD is the activity 

duration, SL is the activity slack, and E(x) is the expected value of x (i.e. E(SD) is the 

mean of SD from all simulation runs). 

 Schedule Sensitivity Index (SSI): is a measure of the importance for an activity 

with regards to the overall project’s completion, taking into account the activity 

criticality index, and is determined as follows: 

𝑆𝑆𝐼 =
(𝜎(𝐴𝐷)∗ 𝐶𝐼)

𝜎(𝑆𝐷)
         3-36 

Where σ(AD) is the standard deviation of the activity duration, σ(SD) is the standard 

deviation of the simulated activity duration, and CI is the criticality index described 

above. 

 Cruciality Index (CRI): is a measure for correlation between the activity duration 

and the overall project’s duration. 

𝐶𝑅𝐼 =  |𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐴𝑣𝑔(𝐴𝐷), 𝐴𝑣𝑔(𝑆𝐷))|     3-37 

Where Avg(AD) is the average activity duration, and Avg(SD) is the average 

simulated overall project’s duration. 

 There are three ways to calculate the CRI:  

o CRI(r): Pearson’s product-moment correlation coefficient. 

o CRI(ρ): Spearman’s rank correlation coefficient. 

o CRI(τ): Kendall’s tau rank correlation coefficient. 

Sensitivity analysis in the scheduling context has been studied by several authors. 

For an overview, see (Hall and Posner 2004). 
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Similarly, a popular index related to cost risk analysis is the Cruciality Index for 

cost (CRIc) that measure the correlation between the cost elements and the overall 

project’s cost and is computed using the following equation: 

𝐶𝑅𝐼 𝑐 = |𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐴𝑣𝑔(𝐴𝐶), 𝐴𝑣𝑔(𝑆𝐶))|     3-38 

Where Avg(AC): Average activity cost and Avg(SC): Average simulated total project 

cost. 

3.7. Time-Cost Trade-off Analysis 

This section outlines a summary of the traditional linear time-cost trade-off process 

steps and results. The trade-off process requires 5 essential steps that need to be 

executed in its order, as shown in Figure 3.18.  

 

Figure 3.18 Time – Cost trade-off process steps. 

The first step is to construct the summary schedule for the project and calculate 

the start and finish times for each task, taking into account the network logic and 

known constraints. At this step, each activity duration is estimated at the base case 

plan, otherwise known as the normal duration ( Dn ). For the same bases, 

assumptions, execution methodology and resources, the activities are then loaded 

with the normal cost estimate (Cn). In the second step, the activities are studied to 
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determine a possible acceleration of the individual activities; this may be done by 

using alternative execution methods, technologies, additional resources or by 

extended hours in the workweek. Any change may result in additional costs; this 

cost is estimated and assigned to the activities as crashed cost (Cc) at its crashed 

duration (Dc).  There are several time-cost relationships; those relationships can 

be categorized as discrete or continuous. The continuous relationships can, in turn, 

be linear or nonlinear. Figure 3.19 shows the various relationships that may exist 

between normal and crashed costs and durations. 

The cost slope for each activity is then calculated using the following equation: 

𝐶𝑜𝑠𝑡 𝑆𝑙𝑜𝑝𝑒 = (𝐶𝑐 – 𝐶𝑛)/(𝐷𝑛 – 𝐷𝑐)       3-39 

The third step is to incrementally crash the activities in an iterative process based 

on a priority basis. The priority is set for activities that lie on the critical path and 

have the lease cost slope.  At this step, a recalculation for the project network is 

made to re-determine the critical path for every incremental crash. Several critical 

paths may evolve, and the simultaneous crashing of critical activities at a given 

iteration is required to achieve a shorter overall project’s duration. Step three and 

four are repeated until the project can no longer be shortened. 
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Figure 3.19 Relationships between the normal and crashed time and cost. 

The total project cost (C) is the sum of the FC and the IC. The FC is calculated for 

each crashing step as the sum of the costs for all activities. The IC, on the other 

hand, is usually calculated as the IC rate per unit of time multiplied by the resulting 

overall project’s duration. Steps one to Step five is to develop the cost summary 

with different project durations as shown graphically for illustration purposes in 

Figure 3.20. 



 

81 

 

 

 

 

 

Figure 3.20. Time – cost trade-off relationship. 

 

The deterministic discrete TCTP can be formulated for the multi-objective function 

to minimize the total project duration and minimize the total project cost using the 

following set of equations:  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =

{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 ⋀   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷 , 𝑓𝑜𝑟  𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 ,                                                                      𝑓𝑜𝑟  𝑐𝑜𝑠𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷,                                                              𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 3-40 

Subject to: 

𝐸𝑆𝑇𝑖 = 𝑚𝑎𝑥{𝐸𝐹𝑇𝑗 + 1}      ∀ 𝑗 ∈ 𝑃𝑖        3-41 

𝐷 =  𝑚𝑎𝑥
∀ 𝑖

{𝐸𝑆𝑇𝑖 + 𝑑𝑖 − 1}        3-42 

𝐶 = ∑ (𝐹𝐶𝑖)∀ 𝑖 + (𝐼𝐶𝑟 × 𝐷)           3-43 

𝑑𝑖 = ∑ 𝑀𝑖,𝑘𝑑𝑖,𝑘    ∀ 𝑖 
𝑛𝑖
𝑘=1         3-44 

𝐹𝐶𝑖 = ∑ 𝑀𝑖,𝑘𝐹𝐶𝑖,𝑘    ∀ 𝑖 
𝑛𝑖
𝑘=1         3-45 

∑ 𝑀𝑖,𝑘 = 1     ∀ 𝑖 
𝑛𝑖
𝑘=1          3-46 

Duration
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𝑀𝑖,𝑘  ∈ {1,2,3, … 𝑛𝑖}      ∀ 𝑖, 𝑘         3-47 

Equation (3-49) defines the objective of the problem. The objective can be set for 

one of three cases, the first is the minimization of both total project duration D and 

the total project cost C to determine the joint cost and schedule minimization. The 

second is to minimize C where the total project cost reduction is of interest, and 

the third is to minimize D when the total project schedule minimization is of interest. 

Equation (3-50) provides the early start time 𝐸𝑆𝑇 for all activities based on the 

CPM forward pass calculations taking into account the relationships between 

activity 𝑖 and all of the activities in its precedence set 𝑃𝑖, in this case, for simplicity, 

the FS relationships are considered with no precedence lags, 𝑑𝑖 is the duration for 

activity 𝑖 . Equations (3-51) and (3-52) computes the overall project’s duration 𝐷 

and the total project cost 𝐶 taking into account the fixed cost (FC) and the indirect 

cost rate 𝐼𝐶𝑟. Equations (3-53) and (3-54) selects the time-cost pair for an activity 

from the set of defined execution modes 𝑀𝑖,𝑘, where the number of modes for 

activity 𝑖 is 𝑛𝑖. Equations (3-55) and (3-56) ensures that only one mode is selected 

at a given solution.  
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CHAPTER 4 :  IMPLEMENTATION OF THE DEVELOPED 

METHOD ON TRADITIONAL NON-REPETITIVE CLASS 

PROJECTS 

4.1. Introduction 

This chapter presents the developed object-oriented programming for the 

Evolutionary Stochastic Discrete Time-Cost Trade-Off Method ESDTCT. The 

method is implemented in Google Sheets which is a spreadsheet-based 

application and one of the core components of Google Cloud applications. The 

Google Apps Script (GAS) is a JavaScript programming language used for the 

developed procedure. Google BigQuery SQL is used to facilitate the calculation of 

the method. Google BigQuery is an enterprise data warehouse that “enables 

super-fast SQL queries, using the processing power of Google's infrastructure” 

(Fernandes 2015). GAS and BigQuery are executed, not in the browser but 

remotely on the Google cloud. The application can be executed using any modern 

browser (preferably Chrome and Firefox), an internet connection running on 

Windows, Mac OS X or Linux. As mentioned before; Instead of running on the 

client computer, the program script is executed in the Google Cloud; therefore, the 

speed of executing the code is not limited by the client computer specifications, 

instead by the capacity of google servers, which in turn has undergone significant 

development since a major upgrade in March 2014. 
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The interrelationship between schedule and cost is critical and is required to be 

prudently considered before making promises and announcements. Previously, 

some companies and organizations use separate departments for the cost 

estimates and schedules of the same project. Sometimes those departments act 

autonomously of each other and may disagree on key results vital to the success 

of the project. Figure 4.1 illustrates the siloed risk and contingency assessment 

processes. Accordingly, a process for the integration of cost, schedule, and risk is 

gradually recognized as a crucial business practice. Effective integration of cost, 

schedule and risk necessitates the project manager, scheduler and estimator to 

collaborate in identifying the execution strategy, methods, activity durations, 

sequencing, workforce requirements, resources, and constraints. The result in a 

range of possibilities must be understood to reach the desired objective. Decisions 

relative to those possibilities are made in an iterative manner, evaluating 

alternatives on the basis of cost, schedule, in order to reach an agreed-upon 

schedule and budget solution. Figure 4.2 below outlines of the proposed integrated 

process. 

 

Figure 4.1. Illustration of siloed cost and schedule risk and trade-off 
assessments. 
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Figure 4.2. Illustration of proposed integrated process. 

 

To overcome the complexity of solving the TCT problem with uncertainty, the 

proposed method attempts to solve the multi-objective optimization by partitioning 

the gigantic design of experiment matrix of a full factorial design through blocking 

of activities. The problem is treated as an experimental design problem where all 

combinations of possible solutions are determined in a Cartesian product matrix. 

The major constraint in solving this problem is the large amount of possible 

combinations. Computation power for this massive data-processing formulation is 

not only time consuming but also was not available for public use until 2011 where 

Google BigQuery was rolled out for public utilization, enabling further advanced 

services and integration with Google Sheets in 2016 (Jordan 2016).  

The developed method is composed of two modules, as shown in Figure 4.3. The 

first identifies the supreme solution (non-dominated solution) representing the 

combination of modes that yields the bi-objective optimization for cost and/or 

schedule minimization for the specified joint confidence level of both time and cost. 

This combination is compared to a chromosome where the genes are the modes 

of the different activities; while the second module is a random stochastic search 

that depicts the main effect of changing a mode within a chromosome on the total 
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cost and overall duration of the project for the specified joint confidence level of 

both time and cost. The following sections provide the background for the set of 

procedures used simultaneously in setting the computations for the developed 

evolutionary stochastic discrete time-cost trade-off method (ESDTCT). 

 

Figure 4.3. Flow chart for the Integration of the developed ESDTCT 
modules. 

4.2. Cloud application used in the ESDTCT method 

Due to the fact that most user desktop computers are limited in specifications for 

hard drive storage capacity, processing power and random-access memory, it was 

necessary to code the application on a cloud platform. Google Cloud was selected 

due to its ability to scale seamlessly as computation power demand increases and 

decreases. Another reason for selecting this platform is its cost-efficiency. The free 

quota available for the public was found sufficient to solve large instances of 

project networks. The run time for several test problems will be discussed in 

section 4.8.  
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BigQuery has been developed and used by Google for Search engines, Google 

maps, YouTube, Gmail and Google Docs. To take advantage of Google’s powerful 

computing engine, the project network CPM is coded using standard SQL 

statements and in-line JavaScript User-Defined-Functions (UDF) to calculate the 

start and finish dates of the activities. This novel code computes a large network 

within milliseconds; this, in turn, will enable computing the gigantic number of 

simulations generated by the developed method in a reasonable short time. 

Similarly, the uncertainty probability distribution functions are coded in the UDF, 

taking advantage of the built-in random and other mathematical functions. 

There exist many third-party tools and Add-ons for performing CPM calculations, 

the probability distribution functions and Monte Carlo simulation. However, in this 

study all computations are coded and executed in one cloud application. By doing 

so, we are able to eliminate the time necessary to transfer data between different 

applications, and thus, increasing the computation performance. Furthermore, we 

were able to avoid the subscription costs to the third-party add-ons. 

Google sheets (GS) is a web-based spreadsheet software offered by Google within 

its Google Drive service.  GS is used as the front-end user interface where 

templates are created for the user data input to describe the project network 

activities, logic, risks, selection of modes and its respective uncertain cost and time 

attributes. A GAP code is developed to prepare the BigQuery SQL statements and 

make Application Program Interface (API) calls to BigQuery which, in turn, is set 

to perform procedures and protocols.  
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The design of experiments matrix is decomposed into segments, and parallel 

Interactive query APIs are concurrently performed. The output of each query is 

then appended to a master BigQuery table. Using the cloud storage enabled 

removing the restrictions when scaling the computations to a large network in 

contrast to using a personal hard drive on a local computer. The concurrent 

interactive queries significantly contributed to reducing the overall run time.  

The purpose of this section is not to explain the coding script but to summarize the 

use and integration of the variance Google Cloud applications adopted in the 

developed method. More details are available on GAP, BigQuery and Google 

quotas and limits in (Ferreira 2014 and Maharana et al. 2015). Figure 4.4 shows 

the developed method network configuration diagram and the integration of 

Google Cloud apps.   

 

Figure 4.4. ESDTCT cloud network diagram. 
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4.3. Definition of terms used in the ESDTCT method 

 

The developed method adopts biomedical terms amongst others such as 

“Evolution”, “Generation” and, “Chromosomes”. Those terms have been 

interchangeably used in Genetic Algorithm optimization methods and are further 

defined here to put those terms in the context of the developed method. Figure 4.6 

shows a graphical representation of those terms.  

Activity (Gene): is an element position of a chromosome. Where this element 

represents an individual activity within the project network.  

Mode: is a variant form of a gene. It represents the resources that are available for 

use to execute an individual activity. 

Elite mode: is the best mode assigned to an activity that results in the optimal 

solution of the problem. Where the term “best” is defined by the optimality definition 

for the objective function. 

Chromosome: represents the combination of a string of modes for each activity in 

the network. Accordingly, it depicts one possible solution in the solution space. 

Supreme chromosome: is the chromosome that results in the optimal (non-

dominated) solution of the problem. 

Population: is all the possible chromosomes available in the problem solution 

space.  

Generation: is a sample of the population that represents a set of chromosomes 

sharing common modes. 
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Evolution: is the gradual crossover of elite modes to the next generation. The 

evolutionary technique is used to evolve the elite modes surfacing from previous 

generations.  

Blocking: is a design of experiments (DOE) technique used to eliminate the 

influence of extraneous factors when running an experiment and focus the analysis 

on a set of factors having more relevant influence on the objective in a particular 

generation.  

Primary mode activity: is an element position in the project network being 

investigated for the inclusion of its elite mode in a particular generation. A set of 

primary activities are identified at each generation using the immediate reverse 

dominator tree (IRDT) described later. 

Observed mode activity: is an element position in the project network where its 

elite mode has been identified from the previous generation. 

Base mode activity: is the base case admitted mode for an activity. 

Immediate reverse dominator tree (IRDT): is the set of activities that immediately 

precedes primary activities from a previous generation. The finish activity is the 

root of the reversed tree. An illustrative example of the IRDT is shown in Figure 

4.5 where a total of two IRDT generations exist to walk backwards through the 

entire network activities. 
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Figure 4.5. Immediate reverse dominator tree. 

 

 

  Figure 4.6. Definition and structure of terms. 

4.4. Implementation of design of experiments  

Design of experiments (DOE) is a process used to find the relationship between 

factors (modes) affecting a process and the output of that process to identify the 

factors most influential in optimizing the output. A full factorial design of 

experiments is the matrix of all combinations of possible modes, also known as the 

Cartesian product matrix, where each combination can be in resemblance to a 

chromosome. As illustrated by El-Rayes (1997), a project comprising 20 activities, 



 

92 

 

 

 

 

each having 5 possible crew formations, would result in over ninety-five trillion 

possible project schedules each represented by a chromosome of discrete 

selection of modes. The number of chromosomes increases exponentially as the 

project network activities increase and/or the number of alternative delivery modes 

at each activity increases; therefore, blocking and randomization techniques are 

used in the developed method. The blocking technique is used to create 

homogeneous groups or blocks in which a selection of primary factors can vary 

while holding the other factors constant, thus allows greater precision in the 

estimation of primary factors. Randomized designs, on the other hand, allow us to 

study the effects of factor and compares the values of a response variable based 

on the discrete levels of the factors. One of the useful plots generated from the 

output of the randomized designs are the Main Effect Plots. The plot enables to 

study changes between means among different variables. The plot graphs the 

mean of all responses for each variable connected by a line. When the line is flat, 

this demonstrates that there is no main effect and the response is anticipated to 

be the same over all the levels. When the line not flat, there is a main effect. The 

more extreme the slope of the line, the more prominent the magnitude of the effect. 

An illustrative example for four activities each having two modes is shown in Figure 

4.5. From visual interrogation of the plot, the change in modes in activity D appears 

to have more influence on the response. while the change in modes on activity B 

seems to have a smaller influence.  
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Figure 4.7 Main Effect Plot.  

4.5. Fundamentals of the partitioning process   

A novel partitioning method is developed. The purpose of this method is to reduce 

the number of experiments as oppose to a full factorial design of experiments. The 

blocking technique is based on partitioning the project network activities into three 

partitions, namely (𝔹,ℙ,𝕆) as shown in Figure 4.8. In this technique, the project 

network is resembled as a structure, where activities in partition 𝔹 apply logical 

forces to drive the activities in partition ℙ and so on carried forward to drive the 

activities in partition 𝕆. The set of activities in the intermediate partition ℙ are 

labeled as “Primary mode” activities, while the set of activities in its precedence 

partition 𝔹 are labeled as “Base case mode” activities and its successive partition 

𝕆 are labeled as “Observed mode” activities. 

The partitioning procedure is repeated to identify the label of each activity at each 

generation Gg, where g is the generation number. To establish the partitions for the 
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first generation Gg=1, let 𝔸 be the set of all activities in a project network having a 

total number of activities I , where 𝑖 = (1 → 𝐼); activity 𝑖 = 1 is the start activity and 

𝑖 = 𝐼 is the finish activity. Then at any generation (g), 𝔸 = (𝔹Gg  ∪ ℙGg  ∪ 𝕆Gg). Let 

Pi be the sets of all immediate predecessors of activity 𝑖 where 𝑃𝑖  ∈  𝔸 then (ℙG1 =

[𝑛, 𝑃𝑖] ∶ 𝑖 = 𝐼)  and 𝔹G1 = 𝔸 ∉  ℙG1 . For successive generations ( Gg+1 ), the 

partitions are defined as (ℙGg = [Pi] ∀ 𝑖 ∈  ℙGg−1) , (𝕆Gg = ℙGg−1  ∪  𝕆G∀ g→1)  and 

(𝔹Gg = 𝔸 ∩ ( 𝕆Gg  ∪ ℙGg)),  Refer to the illustrative  network example in Figure 

4.9(a to d) , In the first generation of partitions, ℙ𝐺1 is the set of activities {K, J, I, 

H} which is a selection of the finish activity K and all its immediate predecessor 

activities. While 𝔹G1 are all remaining activities in the network {A, B, C, D, E, F, G}. 

In the second generation, the ℙ𝐺2 partition is the set of activities {D, E, F, G}. The 

𝕆G2 is the set of activities {K, J, I, H} and the 𝔹G2 are all remaining activities in the 

network {A, B, C}. In third generation, ℙ𝐺3 is the set of activities {A, B, C, D}. The 

𝕆G3 is the set of activities {E, F, G, H, I, J, K} and, hence, the 𝔹G3 = 0 as there are 

no remaining activities.. It should be noted that one or more activities can overlap 

in several successive parts of the petitioned network. Notice that activity D was 

categorized as a primary activity in generation 2 and 3; such activities are called 

here as a multi-generation primary activity as they satisfy the precedence 

relationship to a primary activity in the previous generation. We continue this 

process to identify the partitions at each generation until we reach a stage where 

all activities in the network have been labeled as a primary activity throughout all 

generations.   
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In the context of TCTP analysis, the project network is segregated into the 

partitions described above so as to analyze and solve for the elite modes of 

“Primary mode” activities at a given generation. The blocked design of experiments 

matrix is then generated as the Cartesian product where “Primary mode” activities 

can assume all assigned modes while blocking “Base case” activities to their 

admitted base case mode (or mode 1). A complete enumeration of the resultant 

matrix is then performed, and the elite modes for the “Primary mode” activities are 

then determined as the modes returning the best fit to the objective function. Those 

elite modes are carried forward in successive generations where Öbserved mode’ 

activities are blocked to the elite modes in building the design of experiments 

matrix.  This process allows narrowing the experiment enumeration by focusing 

the analysis on evaluating the “Primary mode” activities only at each generation. 

For the illustrative network example in Figure 4.9, if each activity 𝑖  have five 

modes, then the complete full factorial design of experiments matrix for the 

population in the solution space is (511 = 48,828,125 experiments). The developed 

partitioning method will allow us to reduce this number. The total number of 

experiments needed for the first generation is the Cartesian product for the four 

“Primary mode” activities only (i.e. 54 = 625) and so on 625 for each of generation 

2 and 3 adding to a total of 1875 experiments (0.0038% of the total population of 

experiments).  

Figure 4.10 shows an illustration of all possible combinations of activity modes at 

each generation of the illustrative example in hand, where each activity is admitted 

with k number of modes. 
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When blocking the modes at a given generation, we sacrifice the ability to estimate 

the interaction effects between the modes. This is referred to as confounding in 

building the factorial design of experiments. A detailed explanation on the concept 

of confounding can be found in Douglas (2019). 

 

Figure 4.8 Illustration for the project network partitioning.  
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Figure 4.9 Illustrative example for the project network partitioning at each 
generation.  
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Figure 4.10 Illustrative example for mode combinations – chromosomes of 
each generation. 
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4.6. Formulation of the bi-objective fitness function 

The developed ESDTCT is tailored to identify the supreme solution (non-

dominated solution) representing the combination of modes that yields the single-

objective optimization for cost or schedule minimization, or a bi-objective 

optimization method for cost and schedule minimization; all in an uncertain 

environment to identify the optimal solution satisfying the specified joint confidence 

level of both time and cost. 

The methodology for formulating the problem objective fitness function starts with 

building a JCL as detailed in section 3.5. The JCL starts with building a probabilistic 

cost-loaded schedule and systematically integrating cost, schedule, and 

uncertainty. The method facilitates the establishment of expectations and 

probabilities of meeting those expectations. It also offers a holistic view to achieve 

cost and schedule goals as well as contingency estimation for cost and schedule 

under a specified confidence level. A frontier curve is developed by joining all the 

possible combinations of cost and schedule solutions that satisfy a selected 

confidence level. Figure 4.11 shows a typical scatter plot for all possible solutions 

resulting from the Monte Carlo simulation of the cost loaded project schedule 

iterated for the possible values represented by the uncertainty profiles of the 

individual activity costs and durations; the chart also shows a 50% JCL frontier 

curve. 
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Figure 4.11. Typical JCL scatter plot and the frontier curve showing the 
different optimization objectives. 

 

The developed ESDTCT method objective fitness function requires reducing the 

JCL analysis to a single solution. This single solution is determined based on the 

ultimate objective set forth by the analyst as follows: 

1. Cost minimization: this is selected when the objective of the analysis is set 

to solve for the least cost solution falling on the frontier curve. 

2. Schedule minimization: this is selected when the objective of the analysis is 

set to solve for the least project duration solution falling on the frontier curve. 

3. Joint costs and schedule minimization: this is selected when the objective 

of the analysis is set to solve for the optimal non-dominated solution on the frontier 

curve while concurrently minimizing the project cost and schedule. This value is 

defined as the vertex solution on the frontier curve. The calculation method for 

finding the vertex is further detailed in the following sections. Figure 4.11 shows 

an illustration of the three objectives.  
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A calculation procedure is developed to determine the reduced vertex solution in 

the case of joint costs and schedule minimization as follows: 

The cost and duration values are of different units of measurement and 

magnitudes; therefore, it is necessary to normalize the values so that each is 

scaled to values in the same range. The solutions found on the frontier are 

normalized to the range [0,1]. To do this, the nadir and ideal objective vectors can 

be used to normalize the objective values. The nadir objective vector was 

recognized and used by the multiple criteria decision-making researchers since 

the early 1970s. The nadir objective vector is a point constructed from the 

intersection of the maximum cost and schedule values from all the solutions falling 

on the frontier curve; similarly, the ideal objective vector is a point constructed from 

the intersection of the minimum cost and schedule values. The frontier curve cost 

and schedule values are then normalized to the range [0,1] using the equation 

(4-1): 

𝐷𝑗
𝑛𝑜𝑟𝑚 = (𝐷𝑗  − 𝐷

𝑖𝑑𝑒𝑎𝑙)/  (𝐷𝑛𝑎𝑑𝑖𝑟 − 𝐷𝑖𝑑𝑒𝑎𝑙)      4-1 

Where Dj
norm is the normalized time value for solution 𝑗 ∈  𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 , Dideal 

and Dnadir  are the minimum and maximum time value respectively among the 

frontier curve solutions.  

Similarly, the cost values are normalized using equation (4-2): 

𝐶𝑗
𝑛𝑜𝑟𝑚 = (𝐶𝑗  −  𝐶

𝑖𝑑𝑒𝑎𝑙)/  (𝐶𝑛𝑎𝑑𝑖𝑟 − 𝐶𝑖𝑑𝑒𝑎𝑙)     4-2 

The reduced solution of the JCL is the vertex point of the normalized frontier curve. 

The vertex point is defined as the solution providing the optimal balance between 

time and cost minimizations and is determined as the point having the shortest 
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vector length connecting to the ideal vector point using the Pythagorean Theorem 

in equation (4-3). 

𝑙𝑗 = √(𝐷𝑗
𝑛𝑜𝑟𝑚)

2
+ (𝐶𝑗

𝑛𝑜𝑟𝑚)
2
 )         4-3 

Where 𝑙𝑗 is the solution response vector length for solution 𝑖 ∈ 𝑝𝑎𝑟𝑒𝑡𝑜 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟. 

Then the optimal solution 𝑗𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is the vertex point solution that has the least 

response vector length. Figure 4.12 shows an illustration for the nadir and ideal 

vector points for a selected frontier curve and, Figure 4.13 shows an illustration of 

the normalized frontier curve. 

 

Figure 4.12. Nadir and Ideal vector points for the frontier curve. 
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Figure 4.13. Normalized frontier curve. 

 

Throughout the study, a total of 1000 Monte Carlo simulation runs are chosen to 

represent the solution space at each individual experiment run. This number is 

selected for the purpose of minimizing the amount of computations and is found to 

provide good accuracy of results as demonstrated in the test examples. The 

number of simulation runs can be adjusted according to user preference. The 

number of simulation runs have a direct relationship with the total execution run 

time.  

4.7. Computational procedure and formulation 

The ESDTCT method has two distinct modules; the first is performing a full factorial 

design of experiments with a blocking technique designated here as ESDTCTExp. 

The second module performs a random search of the solution space designated 

here as ESDTCTRand. Each of those modules provides answers and insights to the 
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solution space for the stochastic time-cost trade-off problem. The computational 

procedure and outputs from those modules are explained in the following sections. 

The flow charts in Figure 4.14 and Figure 4.15 summarizes the ESDTCTEXP and 

ESDTCTRand modules procedures developed in this study and coded in Google 

App Script and Google BigQuery SQL. 
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Figure 4.14. Flow chart of ESDTCTEXP method. 
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Figure 4.15. Flow chart of ESDTCTRand method. 

4.7.1. Evolutionary experiment enumeration module: ESDTCTExp 

A systematic approach is developed to find the supreme chromosome 

representing the combination of elite modes that result in the best overall project’s 

cost and/or time minimization for a specified joint confidence level. The method 

intelligently reduces the number of experiments that are required to search for the 

supreme chromosome as opposed to the total number of experiments in a 

complete enumeration of the total solution space. This is achieved by dividing the 
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computation steps into several generations, where each generation is a full 

factorial DOE matrix with a blocking technique that allows a full enumeration of all 

possible combinations of modes for primary activities while all other activities in 

the project network are blocked to a static mode. The primary activities in a 

generation are selected using the immediate reverse dominator tree (IRDT). The 

initial generation starts with the completion activity and all its IRDT activities as 

primary activity and runs backwards in the project network logic to select the next 

generation of primary activities; by doing so, the number of experiments is reduced 

to the Cartesian product of the primary activities. The methodology behind this 

process is to experiment on the mode interchangeability for activities immediately 

driving the completion activity to determine their elite modes that result in an 

optimum objective value. Those elite modes are memorized and carried forward 

as static modes in successive generations. However, the method ignores the 

higher-level interactions between the modes. In example, the selection of mode A 

in activity 1 is not correlated to the selection of mode B in activity 2. In an ideal 

situation, the entire population of the solution space should be studied to estimate 

those higher-level interactions, but this is almost impossible on large and complex 

projects. Such interactions will be further studied in future works. 

The ESDTCTExp method can be formulated using the following set of equations:  

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =

 {

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 ̃  ⋀   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  �̃� ,   𝑓𝑜𝑟  𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 ̃ ,                                                                             𝑓𝑜𝑟  𝑐𝑜𝑠𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �̃� ,                                                                 𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

           4-4 

Constraints: 
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𝔼(𝐸𝑆𝑇𝑖) =  𝑚𝑎𝑥
∀ 𝑗 ∈𝑃𝑖

{
 
 

 
 
𝔼(𝐸𝐹𝑇𝑗) + 𝑙𝑎𝑔𝑖,𝑗 + 1                  ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡  

𝔼(𝐸𝑆𝑇𝑗) + 𝑙𝑎𝑔𝑖,𝑗                          ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡

𝔼(𝐸𝐹𝑇𝑗) + 𝑙𝑎𝑔(𝑖,𝑗) − 𝑑 ̃𝑖 + 1     ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

𝔼(𝐸𝑆𝑇𝑗) + 𝑙𝑎𝑔(𝑖,𝑗) − 𝑑 ̃𝑖             ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

 4-5 

𝔼(𝐸𝐹𝑇𝑖)  =  𝔼(𝐸𝑆𝑇𝑖) + 𝑑�̃� − 1       4-6 

𝑑�̃� = {

∑ 𝑔𝑖,𝑘𝔼(𝑑𝑖,𝑘 | 𝑝, 𝑎𝑑(𝑖,𝑘), 𝑚𝑑(𝑖,𝑘), 𝑏𝑑(𝑖,𝑘))             ∀ 𝑖 ∈ ℙ 
𝐾𝑖
𝑘=1

𝑔𝑖,𝑒𝑘𝔼(𝑑𝑖,𝑒𝑘| 𝑝, 𝑎𝑑(𝑖,𝑒𝑘), 𝑚𝑑(𝑖,𝑒𝑘), 𝑏𝑑(𝑖,𝑒𝑘))              ∀ 𝑖 ∈ 𝕆

𝑔𝑖,𝑘1𝔼(𝑑𝑖,𝑘1| 𝑝, ∀𝑎𝑑, 𝑏𝑑 =  𝑚𝑑(𝑖,𝑘1))                        ∀ 𝑖 ∈ 𝔹

   4-7 

𝐹�̃�𝑖 = {

∑ 𝑔𝑖,𝑘𝔼(𝐹𝐶𝑖,𝑘 | 𝑝, 𝑎𝐹𝐶(𝑖,𝑘), 𝑚𝐹𝐶(𝑖,𝑘), 𝑏𝐹𝐶(𝑖,𝑘))             ∀ 𝑖 ∈ ℙ 
𝐾𝑖
𝑘=1

𝔼(𝐹𝐶𝑖,𝑒𝑘| 𝑝, 𝑎𝐹𝐶(𝑖,𝑒𝑘), 𝑚𝐹𝐶(𝑖,𝑒𝑘), 𝑏𝐹𝐶(𝑖,𝑒𝑘))                   ∀ 𝑖 ∈ 𝕆

𝔼(𝐹𝐶𝑖,𝑘1| 𝑝, ∀𝑎𝐹𝐶 , 𝑏𝐹𝐶 =  𝑚𝐹𝐶(𝑖,𝑘1))                               ∀ 𝑖 ∈ 𝔹

  4-8 

𝑉�̃�𝑖 = 

{
 

 
∑ 𝑔𝑖,𝑘𝔼(𝑉𝐶𝑟𝑖,𝑘 | 𝑝, 𝑎𝑉𝐶𝑟(𝑖,𝑘), 𝑚𝑉𝐶𝑟(𝑖,𝑘), 𝑏𝑉𝐶𝑟(𝑖,𝑘)). 𝑑�̃�         ∀ 𝑖 ∈ ℙ
𝐾𝑖
𝑘=1

𝔼(𝑉𝐶𝑟𝑖,𝑒𝑘| 𝑝, 𝑎𝑉𝐶𝑟(𝑖,𝑒𝑘), 𝑚𝑉𝐶𝑟(𝑖,𝑒𝑘), 𝑏𝑉𝐶𝑟(𝑖,𝑒𝑘)). 𝑑�̃�               ∀ 𝑖 ∈ 𝕆

𝔼(𝑉𝐶𝑟𝑖,𝑘1 | 𝑝, ∀𝑎𝑉𝐶𝑟 , 𝑏𝑉𝐶𝑟 =  𝑚𝑉𝐶𝑟(𝑖,𝑘1)) . 𝑑�̃�                         ∀ 𝑖 ∈ 𝔹

 4-9 

∑ 𝑔𝑖,𝑘 = 1     ∀ 𝑖 
𝐾𝑖
𝑘=1          4-10 

𝑔𝑖,𝑘  ∈ {1,2,3, …𝐾𝑖}      ∀ 𝑖, 𝑘          4-11 

�⃛�  =  𝑚𝑎𝑥
∀ 𝑖

{𝔼(𝐸𝐹𝑇
𝑖
)}         4-12 

𝐶 = ∑ (𝐹𝐶�̃�)∀ 𝑖 +∑ (𝑉�̃�𝑖)∀ 𝑖 + (𝔼(𝐼𝐶𝑟 |𝑝, 𝑎,𝑚, 𝑏) . �⃛�)       4-13 

𝐶 = 𝐶 + 𝑃𝐶 + 𝐵𝐶            4-14 

ℚ = ∏ ∏ 𝐷(𝑔,𝑠)⃛ , 𝐶(𝑔,𝑠)⃛  𝑆
𝑠=1

𝐺
𝑔=1  |  (𝑃 { �⃛� } ≤ 𝛼 ⋀   𝑃 { 𝐶} ≤ 𝛼)   4-15 

ℚ̂ = ∏ �⃛� , 𝐶   ∀ 𝑠 ∈

  ℚ  | {

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶   ⋀   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  �⃛� , 𝑓𝑜𝑟  𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶  ,                                                                         𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �⃛�  ,                                                              𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

  4-16 

�̃� =  𝑚𝑖𝑛 {�⃛�}  ∀ 𝑠 ∈ ℚ̂                             4-17 

𝐶 ̃ =  𝑚𝑖𝑛 {𝐶}  ∀ 𝑠 ∈ ℚ̂              4-18 
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The mathematical model is described by Equations (4-5 to 4-18) as constraints 

and Equations (4-4) for the objective functions. The objective can be set for one of 

three cases, the first is the minimization of the expected value of both the total 

project duration �̃�  and the total project cost 𝐶 ̃  given a confidence level α  to 

determine the joint cost and schedule. The second is to minimize 𝐶 ̃  where the 

expected value of the total project cost minimization is of interest and the third is 

to minimize �̃�  when the expected value for the total project schedule minimization 

is of interest. In equation (4-5 to 4-7), 𝔼(ESTi) is the expected value of the early 

start time for activity 𝑖; 𝔼(EFTj) is the expected value of the early finish time for its 

predecessor activity 𝑗  that belongs in the predecessor set 𝑃𝑖 . While 𝑑 ̃  is the 

expected value for the activity duration resulting from random sampling of the 

probability distribution function (PDF). To allow calculation of the expected value, 

the inverse transformation of the cumulative distribution function is calculated. In 

the case of triangular PDF, the parameters are (𝑝, 𝑎,𝑚, 𝑏). Where 𝑝 is a pseudo-

random number generator of a uniform random variable ∈  [0,1], and 𝑎,𝑚, 𝑏 are 

the optimistic, most likely and pessimistic values. Other PDFs can be used as 

detailed in section 3.4. The calculation for the EST and the EFT in equation (4-5) 

allow for the four types of logical relationships between the activities. Equation 

(4-7) computes the value of �̃� based on labeling the activity at a given generation. 

The classification of the network activities is ℙ for “primary mode” activities, 𝕆 for 

“Observed mode“ activities and 𝔹 for “Base case mode” activities. Those labels 

are described in Section 4.5.  The expected value of �̃� is sampled depending on 

the activity mode assignment, where each activity 𝑖 can assume a different mode 
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𝑘 amongst the total number of modes 𝐾  available for the activity. Similarly, 

equation (4-8) and (4-9) computes the expected value for the fixed cost (FC̃) and 

the variable cost (VC̃) for each activity. The resultant matrix from equations (4-7 to 

4-9) is a full factorial design of experiments with a blocking technique. Where the 

activity label belongs to ℙ, the set of parameter values for 𝑑 ̃, FC̃ , VC̃ assume the 

probabilistic values for all the admitted modes 𝑘 = 1 → 𝐾𝑖. When the activity label 

belongs to 𝕆, the parameters are blocked to assume only the probabilistic values 

of the elite mode 𝑒𝑚 and, when the activity label belongs to 𝔹, the parameters are 

blocked to assume only the deterministic values for the base case mode (or mode 

1) 𝑘1. The reasoning behind this blocking technique is further described in Section 

4.5. Binary variables 𝑔𝑖,𝑘 in equations (4-10) and (4-11) expresses that only one 

mode must be admitted for each activity. Equations (4-12) and (4-13) computes 

the total project duration �⃛�  and total project cost 𝐶 at any given simulation run 

taking into account the expected value of the indirect cost rate per day (𝐼𝐶𝑟). 

Equation (4-14) adds the penalty cost (PC) and the bonus costs (BC), formulation 

for such costs were detailed in section 3.3.  Equation (4-15) is a matrix ℚ of all 

solutions falling on the frontier curve defined by a specified joint cost – schedule 

confidence level α. Equation (4-16) provides the matrix ℚ̂ which is a subset of ℚ 

for all solutions 𝑠 satisfying the defined minimization objective function.  Equations 

(4-17) and (4-18) reduces the matrix ℚ̂ to the single optimum solution satisfying 

the objective function.  
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4.7.2. Complete Random experiments module: ESDTCTRand            

The systematic approach in this module is developed to explore the solution space 

through a completely randomized DOE sample from the total solution space. The 

objective here is to predict, approximately, the impact of mode changes on the 

overall project’s cost and time for a specified joint confidence level of time and 

cost. This provides the decision-maker with an approximate indication of how the 

project cost and duration will react to alternate modes that may not be the optimal 

modes but selected based on the project manager’s judgement. A typical main 

effect plot is illustrated in Figure 4.7. This procedure is concurrently computed with 

the experiment generation module procedure.  

The ESDTCTRand method can be formulated using the following set of equations:  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 

 {

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 ̃  ⋀   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  �̃� , 𝑓𝑜𝑟  𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 ̃ ,                                                                       𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �̃� ,                                                              𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

  4-19 

Constraints: 

𝔼(𝐸𝑆𝑇𝑖) =  𝑚𝑎𝑥
∀ 𝑗 ∈𝑃𝑖

{
 
 

 
 
𝔼(𝐸𝐹𝑇𝑗) + 𝑙𝑎𝑔𝑖,𝑗 + 1                  ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡  

𝔼(𝐸𝑆𝑇𝑗) + 𝑙𝑎𝑔𝑖,𝑗                          ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡

𝔼(𝐸𝐹𝑇𝑗) + 𝑙𝑎𝑔(𝑖,𝑗) − �̃�𝑖 + 1     ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

𝔼(𝐸𝑆𝑇𝑗) + 𝑙𝑎𝑔(𝑖,𝑗) − �̃�𝑖             ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

 4-20 

𝔼(𝐸𝐹𝑇𝑖)  =  𝔼(𝐸𝑆𝑇𝑖) + 𝑑�̃� − 1       4-21 

𝑑�̃� = 𝑔𝑖,𝑘𝜇𝔼(𝑑𝑖,𝑘𝜇  | 𝑝, 𝑎𝑑(𝑖,𝑘𝜇), 𝑚𝑑(𝑖,𝑘𝜇)
, 𝑏𝑑(𝑖,𝑘𝜇))     4-22 

𝐹�̃�𝑖 = 𝑔𝑖,𝑘𝜇𝔼(𝐹𝐶𝑖,𝑘𝜇  | 𝑝, 𝑎𝐹𝐶(𝑖,𝑘𝜇), 𝑚𝐹𝐶(𝑖,𝑘𝜇)
, 𝑏𝐹𝐶(𝑖,𝑘𝜇))    4-23 

𝑉�̃�𝑖 = 𝑔𝑖,𝑘𝜇𝔼(𝑉𝐶𝑟𝑖,𝑘𝜇  | 𝑝, 𝑎𝑉𝐶𝑟(𝑖,𝑘𝜇), 𝑚𝑉𝐶𝑟(𝑖,𝑘𝜇)
, 𝑏𝑉𝐶𝑟(𝑖,𝑘𝜇)) . 𝑑�̃�    4-24 

∑ 𝑔𝑖,𝑘 = 1     ∀ 𝑖 
𝐾𝑖
𝑘=1          4-25 
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𝑔𝑖,𝑘  ∈ {1,2,3, …𝐾𝑖}      ∀ 𝑖, 𝑘          4-26 

�⃛�  =  𝑚𝑎𝑥
∀ 𝑖

{𝔼(𝐸𝐹𝑇
𝑖
)}         4-27 

𝐶 = ∑ (𝐹𝐶�̃�)∀ 𝑖 +∑ (𝑉�̃�𝑖)∀ 𝑖 + (𝔼(𝐼𝐶𝑟 |𝑝, 𝑎,𝑚, 𝑏) . �⃛�)       4-28 

𝐶 = 𝐶 + 𝑃𝐶 + 𝐵𝐶            4-29 

ℚ = ∏ 𝐷(𝑠)⃛  , 𝐶(𝑠)⃛
𝑆
𝑠=1  |  (𝑃 { �⃛� } ≤ 𝛼 ⋀   𝑃 { 𝐶} ≤ 𝛼)     4-30 

ℚ̂ = ∏ �⃛� , 𝐶   ∀ 𝑠 ∈

 ℚ  | {

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶   ⋀   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  �⃛� , 𝑓𝑜𝑟  𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶  ,                                                                         𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �⃛�  ,                                                              𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

  4-31 

The mathematical model is described by Equations (4-20 to 4-31) as constraints 

and Equations (4-19) for the objective functions. The formulation is similar to that 

of ESDTCTExp method detailed in section (4.7.1) with the difference in equations 

(4-22 to 4-24) where the expected values for �̃�, 𝐷�̃� 𝑎𝑛𝑑 𝑉�̃� are calculated based 

on a complete random design of experiments where 𝜇 is a random general location 

parameter for a discrete mode 𝑘𝑖 . The experimental runs are generated until an 

execution user-defined time or a computational cost threshold is reached.  The 

resulting matrix ℚ̂ provides a data set to generate the main effect plot from the 

following pseudocode: 

1. FOR EACH Activity i    
2.   FOR Mode j = 1 TO M // M = total number of modes assigned to 
3.                              the activity.    
4.     CASE: optimization is set for cost minimization: THEN    
5.       Response (i,j) = Average (total cost (i,j))   
6.    
7.     CASE: optimization is set for schedule minimization: THEN    
8.       Response (i,j) = Average (total duration (i,j))    
9.    
10.  CASE: optimization is set for       
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11.           Joint cost and schedule minimization: THEN    
12.    Response (i,j) = Average (response vector (i,j))    
13.    
14.   NEXT Mode    
15. Next Activity    
16. Plot the Main Effect Charts   
17. END  

To enable the objective of this module, the developed procedure produces two 

charts. The first is the main effect chart; while, the second is a tornado chart for 

the activity relative importance factor (𝐴𝑅𝐼)  with regards to its effect on the 

objective function. The chart shows a measure for the correlation between the 

activity mode interchangeability to the overall project’s response vector. The factor 

describes the likelihood that a change in the selection of an activity mode will cause 

a proportional change in the objective response. An activity with a high 𝐴𝑅𝐼 

suggests that the decision-maker should make careful selection amongst the 

activity admitted modes. The correlation factor (𝐴𝑅𝐼)  is calculated using the 

absolute value of Parsons correlation factor formulated using equations (4-32 to 

4-34) with 𝑥 representing the numerical number value of the admitted modes for 

the activity 𝑖 of and 𝑦 representing the response values of the objective function. 

An example of the tornado chart is shown in Figure 4.23.  

𝐴𝑅𝐼𝑖  =  |𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑖, 𝑦)|       4-32 

𝐴𝑅𝐼𝑖  =  |
∑(𝑥𝑖−𝑥�̅�)(𝑦−�̅�)

√∑(𝑥𝑖−𝑥�̅�)
2(𝑦−�̅�)2

|        4-33 

𝑤ℎ𝑒𝑟𝑒     𝑦 = {

𝑙, 𝑓𝑜𝑟  𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑠𝑒𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4-3)
𝐶, 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
�⃛�, 𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

  4-34 
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4.8. Numerical Examples 

The following series of numerical examples is set to illustrate the basic concept 

and test the performance and accuracy of the developed ESDTCT modules. The 

results are compared against those published by other researches using meta-

heuristic optimization algorithms for the discrete time-cost trade-off problem.  The 

examples 1 to 3 are performed on a relatively small project having 18 activities 

network. This example is drawn from the literature and was solved by several 

researchers under certain and uncertain TCTP optimization algorithms. The rich 

data obtained from the literature will allow us to validate and compare performance 

and accuracy for the developed method.  

Examples 4 and 5 are performed on a large size 63 activity project also drawn from 

the literature. Previous researchers solved this example under certain 

environment, and to the best knowledge on the literature research made in this 

field, no attempt has previously been made to solve this size problem under 

uncertain environment due to the excessive solution space. The sixth and seventh 

examples are solved for the 18-activities network of example 1 to incorporate and 

test the effect of discrete risk events. 

4.8.1. Example 1: Testing ESDTCTExp module on a small size project 

under uncertain environment. 

To demonstrate the application of the developed method, a simple 18 activities 

network example is used. The example was originally developed by Feng et al. 

(1997) and Hegazy (1999) who solved the TCTP in GA-based application under 
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crisp cost and time values, i.e., deterministic solution. The same example was later 

extended to account for uncertainty by Eshtehardian et al. (2009) and solved using 

a multi-objective genetic algorithm (MOGA) using fuzzy time and cost values. 

Kalhor et al. (2011) also solved the same example using a fuzzy non-dominated 

archiving ant colony approach (NA-ACO) and confirmed the same results obtained 

by the aforementioned MOGA approach. The network configuration of the example 

is shown in Figure 4.16. For each activity, there are two to five alternative modes 

making a total number of 5,9 billion possible mode alternatives. Each mode has a 

time and associated cost of which their uncertainties are expressed by a triangular 

function defined by the optimistic, most likely and, pessimistic estimates as 

presented in Table 4.1. The indirect cost is identical to that of Eshtehardian et al. 

(2009), i.e., triangular probability function with $185 optimistic, $200 most likely, 

and $235 pessimistic values. The variable cost for the activities was not considered 

by Eshtehardian; therefore, has been set to zero to allow for proper comparison of 

the results. The objective of the problem is to identify the supreme chromosome 

solution that results in schedule minimization that satisfies a 50% joint cost and 

schedule confidence level. The performance criteria are set such that the optimal 

chromosome result should be no worse than the aforementioned optimal values 

using the MOGA and the NA-ACO approaches. 
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Figure 4.16 Example 1: Network configuration 

The ESDTCTExp procedure took five generations to calculate the supreme mode 

of all the activities and accordingly arrive at the supreme chromosome. The overall 

number of experimental chromosome runs is 844 as compared to the total size of 

the solution space of 5,9 billion possible chromosomes. The example was solved 

in under 3 min using the programing approach described earlier in section 4.2. The 

selection of primary activities at each generation is shown in Figure 4.17. The 

summary results of each generation are included in Table 4.2. Due to the extensive 

size of data, the details about results from each generation are not presented for 

which a cumulatively 850 thousand simulation iterations were performed.  

 

Figure 4.17 Example 1: Network configuration showing primary activities at 
each generation in the ESDTCT method. 
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The developed evolutionary experiment enumeration module starts with 

partitioning the project network to identify the first generation of blocked activities. 

The primary activities in the first generation are identified by the project completion 

activity and all its immediate predecessors. In this case, activities 18,17 and 16 are 

considered primary and assume all their respective admitted modes, while all other 

activities are blocked at their deterministic duration and cost of their base case 

mode (mode 1). By doing so, we can evaluate the effects of mode variability of 

primary activities on the overall project’s time and cost. The resulting design of 

experiment matrix is then the multiplications of the number of modes for the 

primary activities. i.e., 5 x 3 x 3 = 45 runs. The MCS is performed using 1000 

iterations for each of the 45-design experiment runs. At each run, the results of the 

MCS are collected, and the solutions that fall on the 50% joint confidence level 

frontier are then analyzed to obtain the supreme chromosome using equation 4.1 

and 4.2. The modes of the supreme chromosome for the primary activities are then 

defined as the elite modes. The second generation is then developed by blocking 

the immediate predecessor activities for the activities that were considered primary 

in the previous generation, in this case, activities 11,13,14 and 15. Those activities 

assume all their respective admitted modes while the elite modes found from the 

previous generation are held constant for their respective activity and the balance 

of activities are held constant and taken at their most likely duration and cost of 

their respective mode 1. This process is repeated to produce successive 

generations until all the project activities are solved for their elite modes. The 

supreme chromosome is then determined as the solution that holds all elite modes.  
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The developed ESDTCT is completely coded in google app script and integrated 

to google sheets and the computational power of Google BigQuery. By using the 

free – quota limits of Google BigQuery, the example in hand was solved in under 

3 minutes. This duration may decrease significantly by linking the BigQuery to a 

billable account where quota limits can increase significantly.  

Table 4.1 Example 1: Data input (adapted from Eshtehardian et al. 2009) 

  Mode 
Duration in days (Optimistic, Most Likely, Pessimistic) 
Fixed cost $ (Optimistic, Most Likely, Pessimistic) 
  

Triangular Probability 
Distribution Function selected 
for both time and cost 

Activity Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

1 (10,14,19)  
(2100,2400,2890) 

(11,15,20)  
(1900,2150,2560) 

(13,16,20)  
(1720,1900,2280) 

(16,21,24)  
(1250,1500,2000) 

(19,24,31)  
(985,1200,1750) 

2 (12,15,21)  
(2870,3000,3420) 

(16,18,23)  
(2185,2400,2850) 

(18,20,25)  
(1650,1800,2255) 

(20,23,28)  
(1300,1500,1950) 

(19,25,30)  
(900,1000,1190) 

3 (11,15,23)  
(4250,4500,4990) 

(17,22,29)  
(3850,4000,4460) 

(29,33,40)  
(2985,3200,3560) 

    

4 (10,12,16)  
(42050,45000,48800) 

(13,16,21)  
(38500,35000,39000) 

(17,20,28)  
(28500,30000,33550) 

    

5 (19,22,25)  
(18500,20000,22550) 

(22,24,27)  
(16000,17500,19950) 

(24,28,33)  
(14150,15000,17050) 

(29,30,34)  
(8500,10000,12600) 

  

6 (12,14,17)  
(38500,40000,42860) 

(17,18,21)  
(29800,32000,34550) 

(21,24,29)  
(16550,18000,21000) 

    

7 (8,9,10)  
(28500,30000,33670) 

(11,15,19)  
(21670,24000,28560) 

(16,18,23)  
(20000,22000,23560) 

    

8 (11,14,16)  
(185,220,282) 

(13,15,19)  
(182,215,255) 

(13,16,21)  
(182,200,245) 

(17,21,25)  
(175,208,234) 

(21,24,29)  
(110,120,132) 

9 (11,15,20)  
(290,300,313) 

(16,18,23)  
(212,240,288) 

(18,20,22)  
(165,180,225) 

(20,23,28)  
(125,150,196) 

(21,25,28)  
(85,100,124) 

10 (13,15,19)  
(420,450,492) 

(21,22,27)  
(385,400,485) 

(30,33,39)  
(290,320,356) 

    

11 (10,12,16)  
(410,450,510) 

(14,16,20)  
(313,350,395) 

(16,20,26)  
(284,300,352) 

    

12 (18,22,29)  
(1850,2000,2450) 

(19,24,30)  
(1565,1750,2050) 

(20,28,36)  
(1325,1500,1880) 

(21,30,45)  
(915,1000,1350) 

  

13 (12,14,18)  
(3650,4000,4540) 

(16,18,20)  
(2970,3200,3385) 

(23,24,26)  
(1595,1800,2160) 

    

14 (7,9,11)  
(2580,3000,3685) 

(13,15,19)  
(2200,2400,2880) 

(16,18,23)  
(2080,2200,2850) 

    

15 (10,12,15)  
(4385,4500,4850) 

(13,16,18)  
(3200,3500,3750) 

      

16 (18,20,23)  
(2650,3000,3850) 

(19,22,26)  
(1850,2000,2480) 

(20,24,30)  
(1340,1750,2240) 

(22,28,34)  
(1250,1500,1950) 

(23,30,39)  
(860,1000,1320) 

17 (12,14,18)  
(3750,4000,4670) 

(15,18,22)  
(3000,3200,3530) 

(22,24,29)  
(1650,1800,2140) 

    

18 (8,9,12)  
(2850,3000,3575) 

(11,15,20)  
(2030,2400,2950) 

(14,18,22)  
(1950,2200,2660) 

    

Indirect cost $ (185, 200, 235)    
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Table 4.2 Example 1: ESDTCTExp supreme chromosome results at each 
generation (for a JCL = 50%) 

    Activity ID >> 1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1 0
 

1 1
 

1 2
 

1 3
 

1 4
 

1 5
 

1 6
 

1 7
 

1 8
 

Number of admitted modes>> 5 5 3 3 4 3 3 5 5 3 3 4 3 3 2 5 3 3 

Generation 
No. of 

Experimental 
runs 

Total 
duration 

Total cost 
<< Chromosome >> 

1 45 102 $191,053  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 

2 54 102 $188,518  1 1 1 1 1 1 1 1 1 1 3 1 3 2 1 5 1 1 

3 540 103 $165,896  1 1 3 3 1 1 3 4 1 1 3 1 3 2 1 5 1 1 

4 180 115 $138,555  1 1 3 3 4 3 3 4 1 1 3 1 3 2 1 5 1 1 

5 75  118 $134,795  1 5 3 3 4 3 3 4 1 1 3 1 3 2 1 5 1 1 
  

 
                                     

Supreme Chromosome  118 $134,795  1 5 3 3 4 3 3 4 1 1 3 1 3 2 1 5 1 1 

 ∑ = 894 runs                     
      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝕆, elite mode 

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ ℙ, variable modes 

     𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝔹 , Most likely value of mode 1 

      
 

Interpretation of results: 

It is noted that the supreme chromosome generated by the developed ESDTCTExp 

method is different from that reported by Kalhor et al. (2011) using the NA-ACO 

method referenced in Figure 4.18, where activities 1, 8, 14, 15 and 17 have 

resulted in a different elite mode. To compare the two results, a hypothesis is made 

here that the supreme chromosome resulting from ESDTCTExp is better than that 

produced by the MOGA and NA-ACO methods. To test the hypothesis, the Monte 

Carlo simulation is performed to identify the JCL frontier curve for the optimal 

chromosome reported from the MOGA and NA-ACO methods. Figure 4.18 shows 

the difference in those results where the ESDTCTExp supreme chromosome 

resulted in a solution with a slightly different cost but a significantly lower overall 

project’s duration; therefore, it can be concluded here that the performance of the 

developed ESDTCTExp is superior to that of the MOGA and NA-ACO methods.  
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The effect of the decision-maker's appetite for risk acceptance is represented by 

his/her selection of a joint confidence level (JCL). The higher the JCL, the more 

confidence the project is in meeting the resultant cost and schedule values. The 

effect of diverse selection of JCL is tested. Results of using a JCL value of 20%, 

50%, and 80% are listed in Table 4.3. The analysis shows that solving the problem 

for the objective of joint cost and schedule minimization resulted in different 

supreme chromosome combination for different JCL values as noticed in differing 

modes for activities 2,3,8 and 11.  

 

Figure 4.18 Example 1: ESDTCT supreme chromosome frontier curve 
results verses NA-ACO method optimal chromosome reported by (Kalhor 
et al. 2011). 
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Another parametric study is also made to test the effect of the decision-maker's 

objective settings for the optimization problem. The problem is solved for the three 

objectives of cost minimization, schedule minimization, and joint cost-schedule 

minimization. The analysis results are listed in Table 4.3. It can be noticed that 

different objectives produced different supreme chromosome combinations. For 

example, the supreme chromosome at the specified 50% JCL is almost entirely 

different for each optimization objective. In other words, different supreme 

chromosome solutions are found more fitting as a result of the objective settings 

and the specified JCL.    

Presumably, the “base case” is the one with the initial mode assignment for each 

activity. To compare against the base case scenario the mode identifier 1 for each 

activity is assigned here as the base case mode. The deterministic and 

probabilistic analysis is performed on the base case chromosome. The results of 

the probabilistic JCL analysis for a JCL percentage of (20%, 50%, and 80%) and 

the results of the deterministic analysis based on the most likely cost and schedule 

values of the activity respective base case mode (1) are listed in Table 4.3.   Figure 

4.20 shows the cost and schedule contingency calculations for the base case 

scenario for the three objective settings at the 50% JCL. Figure 4.21 shows that 

the probabilistic time-cost trade-off resulted in better chromosomes to that of the 

base case with lower project costs. For example, the supreme chromosome from 

the joint cost-schedule minimization objective at a 50% JCL resulted in a $62,209 

(31%) less cost than the base case with an additional 12 days.  
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Table 4.3 Example 1: ESDTCT optimal chromosome for different JCL and different optimization objectives. 

      Activity ID >> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

     Num of available modes >> 5 5 3 3 4 3 3 5 5 3 3 4 3 3 2 5 3 3 

Study Type 
Optimization 
objective 

Selected 
joint cost 

and 
schedule 

confidence 
level % 

Total 
duration 

Total cost 
<< Chromosome >> 
 

                                           

Probabilistic 
Trade-off 

Schedule 
minimization  

20% 100 $198,356  1 3 1 1 1 1 1 5 1 1 3 1 2 3 1 3 1 1 

50% 104 $181,280  1 4 1 1 3 1 3 1 1 1 1 1 2 1 1 5 1 1 

80% 107 $174,272  1 3 1 3 2 1 2 1 1 1 3 1 2 3 1 3 1 1 

     
                                      

Probabilistic 
Trade-off 

Cost 
minimization  

20% 125 $132,310  2 5 3 3 4 3 3 5 2 1 3 2 3 3 2 5 1 1 

50% 128 $133,786  3 5 3 3 4 3 3 2 1 1 3 1 3 3 2 5 2 1 

80% 129 $135,690  2 5 3 3 4 3 3 3 1 1 3 1 3 3 2 5 2 1 

     
                                      

Probabilistic 
Trade-off 

Joint cost - 
schedule 
Minimization 

20% 111 $134,177  1 5 2 3 4 3 3 4 1 1 1 1 3 2 1 5 1 1 

50% 118 $134,795  1 5 3 3 4 3 3 4 1 1 3 1 3 2 1 5 1 1 

80% 118 $138,458  1 4 3 3 4 3 3 1 1 1 1 1 3 2 1 5 1 1 

     
                    

Base case - 
Probabilistic 

Schedule 
minimization  

20% 103 $195,279  

<< (Mode 1 of each activity) >> 

50% 104 $200,537  

80% 108 $200,245  

Cost 
minimization  

20% 107 $194,321  

50% 108 $196,660  

80% 113 $199,095  

Joint cost - 
schedule 
Minimization 

20% 103 $195,004  

50% 106 $197,004  

80% 108 $199,408  
                         
Base case - Deterministic 100% 100 $189,820  << (Mode 1 of each activity at Most Likely cost and duration values) >> 
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Figure 4.19 Example 1: ESDTCTExp optimal chromosome for different JCL 
and different optimization objectives 

 

Figure 4.20 Example 1: base case 50% JCL frontier curve showing cost and 
schedule contingency calculations. 
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Figure 4.21 Example 1: ESDTCTExp optimal chromosome for different JCL 
and different optimization objectives. 

 

4.8.2. Example 2: Testing ESDTCTRand module on a small size project 

under uncertain environment. 

To test the developed ESDTCTRand module, the example is solved to obtain the 

main effect plot that represents the most influential activities and variables (modes) 

for the total project cost and time at the specified 50% joint confidence level for the 

objective of joint overall time and cost minimization. A random search of the total 

solution space is performed, and a total of 75 million iterations were made for a 

750 thousand random selection of chromosomes in under 4 minutes. This random 

selection represents 0.01% of the total solution space. The results of this 

simulation were collected, and the main effect plot is generated by taking the 

average of the response vector length against each variable mode. The main effect 

plot is a tool that can indicate to the project manager what would be the effect of 
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choosing an alternative mode for an activity for convenience. The project manager 

can then decide the desired chromosome of modes that results in an acceptable 

objective which may not be the most optimal chromosome. The main effect plot for 

the example in hand is shown in Figure 4.22. 

Interpretation of the ESDTCT main effect plot 

By visual analysis of the plot, it can be noticed, for example, that there are 

insignificant differences between choosing any of the 5 modes associated with 

activities 8. The reason for these insignificance differences could be related to any 

or a combination of the following three items:  

 The activity in hand has a relatively small cost value assigned to the modes of 

this activity as compared to the other project activities or as compared to the 

overall project’s cost,  

 Another reason can be due to the non-criticality of this activity, which does not 

significantly affect the overall project’s duration,  

 A third reason may be due to the significant overlap of the probability 

distributions among the different mode’s cost and duration estimates; in other 

words, there are insignificant differences in time and cost distributions between 

the activity modes. 

Conversely, activity 4 is observed to have a wide range influence on the objective 

response vector where the small response vector value indicates a more optimal 

solution resulting in an expected lower cost and duration of the project. Similarly, 

the interpretations of this influence can be explained by the following items: 
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 The activity has a relatively significant cost value over the entire project,  

 A small overlap or no overlap in some cost and duration estimates among the 

different modes.  

 The activity is on the critical path and variations in durations are highly 

correlated to the increased project duration and hence, the indirect cost.     

While there is a more significant reduction in cost and duration when choosing 

mode 3 for the said activity, it is worth noting here that the main effect plot only 

explored a small sample of the total solution space and can only provide a rough 

indication of the effects. For the example in hand, the optimal modes found using 

the ESDTCTExp module are generally matching to those modes showing the least 

response vector visualized in the main effect plot in Figure 4.22. However, this 

rough indication from the main effect plots may be more accurate for small projects 

and less accurate for large projects; therefore, once the final selection of the 

desired modes is made, it is recommended to perform a final simulation run to 

validate the impact on the objectives of total cost and time. Figure 4.23 shows a 

tornado chart for the activity relative importance with regards to its mode 

interchangeability.  
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Figure 4.22 Example 2: Main effect plot for response vectors 

 

 

Figure 4.23 Example 2: Tornado chart for activity relative importance. 

 

 

 

 



 

128 

 

 

 

 

4.8.3. Example 3: Testing ESDTCT under certain environment. 

This example is set to test the accuracy of the developed ESDTCTExp module in 

comparison with previous solutions obtained from the literature. Feng et al. 1997 

and Hegazy (1999) solved this example for the TCTP in GA-based application 

under crisp cost and time values, i.e. deterministic solution. Later, Kalhor et al. 

(2011) solved the same example using a fuzzy non-dominated archiving ant colony 

approach (NA-ACO) under a certain deterministic environment and confirmed the 

same results obtained by Feng and Hegazy. Table 4.4 summarizes those optimal 

results showing the optimal time and cost pairs and their corresponding 

chromosome structure.  

The project network configuration is the same as that of example 1 shown in Figure 

4.16. The time and cost data of activities are the same as those used in example 

1, taking into consideration only the most likely duration and fixed cost of each 

mode. Presumably, when the minimum and maximum values for time and cost are 

the same as that of most likely, the ESDTCT method is converted to a deterministic 

approach. The indirect cost is the same as the aforementioned literature studies 

at $200 per day.  

The example is solved using the ESDTCTExp method to determine the optimal 

solution falling on the frontier curve at the deterministic 100% confidence level. 

The example is repeatedly solved with three objectives. (1) cost minimization, (2) 

schedule minimization, and (3) joint cost and schedule minimization. The results 

of each generation are tabulated in Table 4.5 to Table 4.7. The results show the 

supreme chromosome from the ESDTCTExp method firmly confirms to those 
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reported using the GA model and the NA-ACO model in a certain context. Using 

Google Cloud BigQuery applications, the results were produced in under 2 

minutes.    

The main effect plot is generated from the ESDTCTRand module as shown in Figure 

4.24 to Figure 4.26 respectively for the three objectives. By visual analysis of the 

plot in Figure 4.24, it can be noticed that interchanging of modes amongst activities 

4,5,6 and 7 have the most sensitivity effect on the objective of cost minimization; 

therefore, careful decisions should be made towards those activities; while a 

different set of sensitive activities are found when setting the objective for schedule 

minimization as seen visually in Figure 4.25 and similarly for the objective of joint 

cost and schedule minimization as seen visually in Figure 4.26.  

Table 4.4 Optimal results for certain TCTP adapted from Kalhor et al. (2011). 

Activity ID >> 1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

1
1

 

1
2

 

1
3

 

1
4

 

1
5

 

1
6

 

1
7

 

1
8

 

Number of admitted 
modes>> 

5 5 3 3 4 3 3 5 5 3 3 4 3 3 2 5 3 3 

No Duration Cost << Chromosome >> 

1a 100 $153,320  1 5 3 3 3 1 3 5 1 1 2 1 3 3 1 5 1 1 

2 101 $148,520  1 5 3 3 4 1 3 5 1 1 2 1 3 3 1 5 1 1 

3 102 $148,470  2 5 3 3 4 1 3 5 1 1 2 1 3 3 1 5 1 1 

4 103 $148,420  3 5 3 3 4 1 3 5 1 1 2 1 3 3 1 5 1 1 

5 104 $141,120  1 5 3 3 4 2 3 5 1 1 2 1 3 3 1 5 1 1 

6 105 $141,070  2 5 3 3 4 2 3 5 1 1 2 1 3 3 1 5 1 1 

7 106 $141,020  3 5 3 3 4 2 3 5 1 1 2 1 3 3 1 5 1 1 

8 108 $140,870  1 5 3 3 4 2 3 5 1 1 3 1 3 3 2 5 1 1 

9 109 $140,820  2 5 3 3 4 2 3 5 1 1 3 1 3 3 2 5 1 1 

10b 110 $128,270  1 5 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1 

11 111 $128,220  2 5 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1 

12 112 $128,170  3 5 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1 

13 114 $128,070  1 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 1 1 

14 115 $128,020  2 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 1 1 

15 116 $127,970  3 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 1 1 

16 124 $127,870  1 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 3 1 

17 125 $127,820  2 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 3 1 

18c 126 $127,770  3 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 3 1 
a Chromosome solution at minimum duration 
b Chromosome solution at minimum cost and duration 
c Chromosome solution at minimum cost 
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Table 4.5 Example 3: ESDTCTExp supreme chromosome results at each 
generation for cost minimization. 

    Activity ID >> 1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

1
1

 

1
2

 

1
3

 

1
4

 

1
5

 

1
6

 

1
7

 

1
8

 

Number of admitted modes>> 5 5 3 3 4 3 3 5 5 3 3 4 3 3 2 5 3 3 

Generation 
No. of 

Experimental 
runs 

Total 
duration 

Total cost 
<< Chromosome >> 

1 45 110 $187,620  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 3 1 

2 54 114 $184,070  1 1 1 1 1 1 1 1 1 1 3 1 3 3 2 5 3 1 

3 540 114 $159,870  1 1 3 3 1 1 3 5 1 1 3 1 3 3 2 5 3 1 

4 180 124 $129,870  1 1 3 3 4 3 3 5 1 1 3 1 3 3 2 5 3 1 

5 75 126 $127,770  3 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 3 1 
   

                                     

Supreme Chromosome  126 $127,770  3 5 3 3 4 3 3 5 1 1 3 1 3 3 2 5 3 1 

 ∑ = 894 runs                     
                      

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝕆, elite mode 

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ ℙ, variable modes 

     𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝔹 , Most likely value of mode 1 

       

 

Table 4.6 Example 3: ESDTCTExp supreme chromosome results at each 
generation for schedule minimization. 

    Activity ID >> 1
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Number of admitted modes>> 5 5 3 3 4 3 3 5 5 3 3 4 3 3 2 5 3 3 

Generation 
No. of 

Experimental 
runs 

Total 
duration 

Total cost 
<< Chromosome >> 

1 45 100 $187,820  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 

2 54 100 $184,720  1 1 1 1 1 1 1 1 1 1 2 1 3 3 1 5 1 1 

3 540 100 $160,120  1 1 3 3 1 1 3 5 1 1 2 1 3 3 1 5 3 1 

4 180 100 $154,920  1 1 3 3 3 1 3 5 1 1 2 1 3 3 1 5 3 1 

5 75 100 $153,320  1 5 3 3 3 1 3 5 1 1 2 1 3 3 1 5 1 1 
   

                                     

Supreme Chromosome  100 $153,320  1 5 3 3 3 1 3 5 1 1 2 1 3 3 1 5 1 1 

 ∑ = 894 runs                     

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝕆, elite mode 

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ ℙ, variable modes 

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝔹 , Most likely value of mode 1 
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Table 4.7 Example 3: ESDTCTExp supreme chromosome results at each 
generation for joint cost and schedule minimization. 

    Activity ID >> 1
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Number of admitted modes>> 5 5 3 3 4 3 3 5 5 3 3 4 3 3 2 5 3 3 

Generation 
No. of 

Experimental 
runs 

Total 
duration 

Total cost 
<< Chromosome >> 

1 45 100 $187,820  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 

2 54 100 $184,670  1 1 1 1 1 1 1 1 1 1 3 1 3 3 1 5 1 1 

3 540 100 $160,270  1 1 3 3 1 1 3 5 1 1 3 1 3 3 1 5 1 1 

4 180 110 $130,270  1 1 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1 

5 75 110 $128,270  1 5 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1 
                                        

Supreme Chromosome  110 $128,270 1 5 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1 

 ∑ = 894 runs                     

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝕆, elite mode 

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ ℙ, variable modes 

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝔹 / Most likely value of mode 1 

      

 

 

Figure 4.24 Example 3: Main effect plot for response vectors for the 
objective of cost minimization. 
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Figure 4.25 Example 3: Main effect plot for response vectors for the 
objective of schedule minimization. 

 

 

Figure 4.26 Example 3: Main effect plot for response vectors for the 
objective of joint cost and schedule minimization. 
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4.8.4. Example 4: Testing ESDTCT on a large size project under certain 

environment. 

This example is set to test the performance and accuracy of the developed method 

on a large size project composed of 63-activities each having between 3 to 5 

different modes; as a result, the problem has a total solution space of 1.373 

tredecillion possible chromosome combinations (1.373 x 1042) making the problem 

impossible to perform exhaustive enumeration. The network configuration of the 

example is shown in Figure 4.27, and the cost and duration values for each mode 

is listed in Table 4.8. The constant daily indirect cost is taken at $2,300. This data 

and network configuration for the project is adopted from Bettemir 2009; in his 

Ph.D. thesis the problem was solved in eight different meta-heuristic algorithms all 

under certain cost and time values. The data from Bettemir’s research solving for 

the most optimum cost and time values for the objective of cost minimization are 

depicted in Table 4.11. To allow for comparison of the results, the developed 

ESDTCT method is converted to a certain environment by parsing the minimum 

and maximum values for time and cost as the same as that of most likely.  

The ESDTCT took 11 generations to solve for the supreme chromosome. The 

primary activities at each generation is indicated in Figure 4.27. The primary 

activities at each generation are simply selected as the immediate predecessor 

activities to the previous generation. Starting with the project finish milestone and 

walking backwards through the project network. It can be noticed here that some 

activities are varied in multiple generations; this phenomenon increases as the 

logic complexity increases as some of the activities have more than one 
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predecessor. For example, activity 52 is varied in generation 2 to solve for its elite 

mode; however, because this activity is also a predecessor to activity 55 that 

belongs in the same generation, the activity is put back into the experimental 

analysis for the search of its elite mode. Activities (1,10,24 and 36) are similarly 

analyzed.  

The ESDTCTExp module results are listed at each generation and for the final 

supreme chromosome in Table 4.10. The ESDTCT method was able to reduce the 

total solution space of 1.373 x 1042 experiments to only 677649 experiments (i.e. 

4.94 x 10-35 %), which is extremely low and efficient. The supreme chromosome to 

achieve the cost minimization resulted in a total project cost of $5,421,320 for a 

total project duration of 633 days. The supreme chromosome cost and duration 

values firmly confirm to the aforementioned optimal lowest cost using the particle 

swarm optimization and the genetic algorithm simulated annealing optimization 

methods which in turn returned the lowest cost among other referenced 

optimization methods. The ESDTCT experimental module took less than 9 minutes 

to solve for the 11 generations and arrive at the supreme chromosome solution.  

The main effect plot is generated from the developed ESDTCTRand module to allow 

predicting the effect of the decision-maker's favouring one mode over another on 

the objective cost minimization solution. Results for a total of 3 million random 

experiments were computed in parallel time to the ESDTCTExp module and shown 

in Figure 4.28. The greater slope on the main effect plot for an activity, the more 

inclination of results to influence the total project cost value. Conversely, the low 

slope has less influence. A decision-maker can then choose to assign preferred 



 

135 

 

 

 

 

modes knowing how the problem will likely react.  As data depicts, despite the 

small number of experiments representing at random only 2.18 x 10-34 % of the 

total solution space, nearly all the activities having the least response vector are 

consistent with that elite mode from the ESDTCTExp module. Figure 4.29 shows a 

tornado chart for the activity relative importance with regards to its mode 

interchangeability. 

The base case scenario is defined by mode 1 of each activity. The base case is 

solved to have a total cost of $5,487,020 and a total duration of 708 days. The 

supreme chromosome resulted in a cost minimization of 1.21% of the base case 

and a 11.85% of the total duration. 
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Figure 4.27 Example 4: Network configuration showing primary activities at each generation in the ESDTCT 
method.
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Table 4.8 Example 4: Data input activities 1 to 46) (adapted from Bettemir 
2009) 

 A
c
ti

v
it

y
 Mode 

(Duration (day), cost ($)) 
Triangular Probability Distribution Function selected 
for both time and cost 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

1 (14, $3750) (12, $4250) (10, $5400) (9, $6250)   

2 (21, $11250) (18, $14800) (17, $16200) (15, $19650)   

3 (24, $22450) (22, $24900) (19, $27950) (17, $31650)   

4 (19, $17800) (17, $19400) (15, $21600)     

5 (28, $31180) (26, $34200) (23, $38250) (21, $41400)   

6 (44, $54260) (42, $58450) (38, $63225) (35, $68150)   

7 (39, $47600) (36, $50750) (33, $54800) (30, $59750)   

8 (52, $62140) (47, $69700) (44, $72600) (39, $81750)   

9 (63, $72750) (59, $79450) (55, $86250) (51, $91500) (49, $99500) 

10 (57, $66500) (53, $70250) (50, $75800) (46, $80750) (41, $86450) 

11 (63, $83100) (59, $89450) (55, $97800) (50, $104250) (45, $112400) 

12 (68, $75500) (62, $82000) (58, $87500) (53, $91800) (49, $96550) 

13 (40, $34250) (37, $38500) (33, $43950) (31, $48750)   

14 (33, $52750) (30, $58450) (27, $63400) (25, $66250)   

15 (47, $38140) (40, $41500) (35, $47650) (32, $54100)   

16 (75, $94600) (70, $101250) (66, $112750) (61, $124500) (57, $132850) 

17 (60, $78450) (55, $84500) (49, $91250) (47, $94640)   

18 (81, $127150) (73, $143250) (66, $154600) (61, $161900)   

19 (36, $82500) (34, $94800) (30, $101700)     

20 (41, $48350) (37, $53250) (34, $59450) (32, $66800)   

21 (64, $85250) (60, $92600) (57, $99800) (53, $107500) (49, $113750) 

22 (58, $74250) (53, $79100) (50, $86700) (47, $91500) (42, $97400) 

23 (43, $66450) (41, $69800) (37, $75800) (33, $81400) (30, $88450) 

24 (66, $72500) (62, $78500) (58, $83700) (53, $89350) (49, $96400) 

25 (54, $66650) (50, $70100) (47, $74800) (43, $79500) (40, $86800) 

26 (84, $93500) (79, $102500) (73, $111250) (68, $119750) (62, $128500) 

27 (67, $78500) (60, $86450) (57, $89100) (56, $91500) (53, $94750) 

28 (66, $85000) (63, $89750) (60, $92500) (58, $96800) (54, $100500) 

29 (76, $92700) (71, $98500) (67, $104600) (64, $109900) (60, $115600) 

30 (34, $27500) (32, $29800) (29, $31750) (27, $33800) (26, $36200) 

31 (96, $145000) (89, $154800) (83, $168650) (77, $179500) (72, $189100) 

32 (43, $43150) (40, $48300) (37, $51450) (35, $54600) (33, $61450) 

33 (52, $61250) (49, $64350) (44, $68750) (41, $74500) (38, $79500) 

34 (74, $89250) (71, $93800) (66, $99750) (62, $105100) (57, $114250) 

35 (138, $183000) (126, $201500) (115, $238000) (103, $283750) (98, $297500) 

36 (54, $47500) (49, $50750) (42, $56800) (38, $62750) (33, $68250) 

37 (34, $22500) (32, $24100) (29, $26750) (27, $29800) (24, $31600) 

38 (51, $61250) (47, $65800) (44, $71250) (41, $76500) (38, $80400) 

39 (67, $81150) (61, $87600) (57, $92100) (52, $97450) (49, $102800) 

40 (41, $45250) (39, $48400) (36, $51200) (33, $54700) (31, $58200) 

41 (37, $17500) (31, $21200) (27, $26850) (23, $32300)   

42 (44, $36400) (41, $39750) (38, $42800) (32, $48300) (30, $50250) 

43 (75, $66800) (69, $71200) (63, $76400) (59, $81300) (54, $86200) 

44 (82, $102750) (76, $109500) (70, $127000) (66, $136800) (63, $146000) 

45 (59, $84750) (55, $91400) (51, $101300) (47, $126500) (43, $142750) 

46 (66, $94250) (63, $99500) (59, $108250) (55, $118500) (50, $136000) 
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Table 4.9 Example 4: Data input activities 53 to 63) (adapted from Bettemir 
2009) 

 A
c
ti

v
it

y
 Mode 

(Duration (day), cost ($)) 
Triangular Probability Distribution Function selected 
for both time and cost 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

47 (54, $73500) (51, $78500) (47, $83600) (44, $88700) (41, $93400) 

48 (41, $36750) (39, $39800) (37, $43800) (34, $48500) (31, $53950) 

49 (173, $267500) (159, $289700) (147, $312000) (138, $352500) (121, $397750) 

50 (101, $47800) (74, $61300) (63, $76800) (49, $91500)    

51 (83, $84600) (77, $93650) (72, $98500) (65, $104600) (61, $113200) 

52 (31, $23150) (28, $27600) (26, $29800) (24, $32750) (21, $35200) 

53 (39, $31500) (36, $34250) (33, $37800) (29, $41250) (26, $44600) 

59 (27, $34600) (24, $37500) (22, $41250) (19, $46750) (17, $50750) 

60 (31, $28500) (29, $30500) (27, $33250) (25, $38000) (21, $43800) 

61 (29, $22500) (27, $24750) (25, $27250) (22, $29800) (20, $33500) 

62 (25, $38750) (23, $41200) (21, $44750) (19, $49800) (17, $51100) 

63 (27, $9500) (26, $9700) (25, $10100) (24, $10800) (22, $12700) 

Indirect cost $ ($2300)  
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Table 4.10 Example 4: ESDTCTExp supreme chromosome results at each generation under certain environment. 
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Figure 4.28 Example 4: Main effect plot for response vectors 
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Figure 4.29 Example 4: Tornado chart for activity relative importance 
towards trade-off.  
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Table 4.11 Time and cost optimal solution using various meta-heuristic 
optimization methods (reported by Bettemir 2009).  

Method Cost Duration 

 GMASA  Genetic Memetic Algorithm Simulated Annealing.   $5,421,120  630 

 HGAQSA  
Hybrid Genetic Algorithm with Quantum Simulated 
Annealing.  

 $5,421,120  630 

 GASAVNS  
Genetic algorithm with Simulated Annealing and 
Variable Neighborhood Search.  

 $5,421,120  630 

 ACO  Any Colony Optimization   $5,492,210  635 

 EMS  Electromagnetic Scatter Search.   $5,532,920  622 

 PSO  Particle Swarm Optimization.   $5,421,320  633 

 GASA  Genetic Algorithm Simulated Annealing    $5,421,620  633 

 GA  Genetic Algorithm   $5,690,790  623 

4.8.5. Example 5: Testing ESDTCT on a large size project under uncertain 

environment. 

Example 4 is extended here to solve the TCT problem under uncertain 

environment. To the best of our knowledge, this problem exceeds the largest and 

hardest test cases found in the literature that was solved for the TCT with 

uncertainty in both cost and schedule. The problem is solved to optimize for cost 

minimization with a 50% JCL. The uncertainty in the cost and duration values of 

each activity at each mode is listed in Table 4.12. The uncertainty in the indirect 

daily cost is ($2070, $2300, $2760) for the optimistic, most likely and pessimistic 

values respectively. The triangular PDF is used to represent the uncertainty profile 

for all cost and duration values. The ESDTCT experimental module run time took 

11 minutes to solve for the 11 generations and arrive at the supreme chromosome 

solution. The ESDTCT experimental module results are listed at each generation 

and for the final supreme chromosome in Table 4.13. As data depicts, the 
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uncertainty parameters resulted in 20 of the activities having different elite mode 

within the supreme chromosome structure as compared to the solution from 

example 4 performed under a certain environment. Those differences indicated 

that different modes of an activity are more fit for supremacy influenced by the 

uncertainty parameters. The optimum total cost is $5,954,231 for a total duration 

of 665 days at 50% JCL. For comparison purposes, the base case is solved for 

cost minimization and resulted in a probabilistic 50% JCL of $5,997,035 and 712 

days. In contrast, optimal cost minimization is only $42,804 (0.72%) less than the 

probabilistic base case and a more significant 7.07% schedule savings.  

The main effect plot is generated from the developed ESDTCTRand method to allow 

predicting the effect of mode selection on the objective of cost minimization at 50% 

JCL. The main effect plot from a total of 3 million random experiments was 

computed in parallel time to the ESDTCTExp module and shown in Figure 4.30. It 

can be noted from the plot that 52 of the 63 of the elite modes from the ESDTCTExp 

experimental module are confirming to the mode having the lowest cost from the 

ESDTCTRand. When selecting those modes from the main effect plot, the 

chromosome structure will be [1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 

2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 

1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 1, 5]  for activities 1 to 63 respectively. The balance 11 

differing modes are those for activities [6, 10, 11, 13, 20, 27, 31, 42, 45, 48, 63]. 

To test if those differing modes are truly more superior to those obtained from the 

ESDTCTExp module, the probabilistic analysis is performed on this chromosome 

structure for the lowest cost on the 50% JCL frontier. The results where a total cost 
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of $5,955,177 and a total duration of 668. This cost and schedule are higher than 

that of the ESDTCTExp supreme chromosome by only $946 and 3 days. This 

proximity of the two solutions indicates the accuracy of the ESDTCTRand and the 

main effect of modes. The ESDTCTRand searched an extremely low of only 2.18 x 

10-34 % of the total solution space. Presumably, the ESDTCTRand can provide a 

decision guide for the selection of appropriate modes; however, the final solution 

resulting from the selected mode combination needs to be verified using the JCL 

analysis. Figure 4.31 shows a tornado chart for the activity relative importance with 

regards to its mode interchangeability. 
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Table 4.12 Example 5: Data input 
A

c
ti

v
it

y
 

Mode 
Duration in days (Optimistic, Most Likely, Pessimistic) 
Fixed cost $ (Optimistic, Most Likely, Pessimistic) 
  

Triangular Probability Distribution Function 
selected for both time and cost 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

1 (13,14,17) 
(2813,3750,4200) 

(9,12,15) (3825,4250,5525) (9,10,13) (4860,5400,6372) (6,9,11) (5625,6250,8625)   

2 (17,21,26) 
(10125,11250,12825) 

(13,18,24) 
(13320,14800,17612) 

(13,17,20) 
(14580,16200,18792) 

(13,15,20) 
(17685,19650,26135) 

  

3 (20,24,30) 
(20205,22450,28736) 

(20,22,30) 
(22410,24900,34860) 

(17,19,24) 
(25155,27950,35217) 

(15,17,23) 
(28485,31650,34815) 

  

4 (16,19,22) 
(16020,17800,22962) 

(15,17,20) 
(17460,19400,21340) 

(11,15,18) 
(19440,21600,27864) 

      

5 (24,28,33) 
(28062,31180,37728) 

(22,26,36) 
(30780,34200,40356) 

(20,23,31) 
(34425,38250,44370) 

(17,21,26) 
(37260,41400,55062) 

  

6 (33,44,55) 
(48834,54260,61856) 

(30,42,58) 
(52605,58450,66633) 

(33,38,43) 
(56903,63225,85354) 

(28,35,44) 
(61335,68150,86551) 

  

7 (33,39,43) 
(42840,47600,56644) 

(30,36,46) 
(45675,50750,56840) 

(29,33,36) 
(49320,54800,71240) 

(27,30,40) 
(53775,59750,81260) 

  

8 (36,52,65) 
(55926,62140,83268) 

(37,47,53) 
(62730,69700,92004) 

(37,44,51) 
(65340,72600,101640) 

(28,39,48) 
(73575,81750,94830) 

  

9 (45,63,83) 
(65475,72750,97485) 

(45,59,69) 
(71505,79450,90573) 

(48,55,63) 
(77625,86250,108675) 

(41,51,62) 
(82350,91500,115290) 

(40,49,68) 
(89550,99500,125370) 

10 (51,57,80) 
(59850,66500,91105) 

(43,53,59) 
(63225,70250,82193) 

(38,50,59) 
(68220,75800,103088) 

(35,46,56) 
(72675,80750,112243) 

(36,41,54) 
(77805,86450,111521) 

11 (55,63,85) 
(74790,83100,108030) 

(44,59,66) 
(80505,89450,108235) 

(39,55,63) 
(88020,97800,134964) 

(39,50,58) 
(93825,104250,115718) 

(34,45,50) 
(101160,112400,157360) 

12 (53,68,80) 
(67950,75500,83050) 

(45,62,73) 
(73800,82000,100040) 

(45,58,68) 
(78750,87500,120750) 

(39,53,66) 
(82620,91800,119340) 

(42,49,64) 
(86895,96550,106205) 

13 (32,40,47) 
(30825,34250,40758) 

(30,37,46) 
(34650,38500,44275) 

(26,33,44) 
(39555,43950,61530) 

(27,31,36) 
(43875,48750,56550) 

  

14 (29,33,37) 
(47475,52750,59080) 

(22,30,40) 
(52605,58450,76570) 

(20,27,31) 
(57060,63400,84956) 

(18,25,34) 
(59625,66250,88775) 

  

15 (35,47,59) 
(34326,38140,44242) 

(28,40,48) 
(37350,41500,56440) 

(31,35,44) 
(42885,47650,53368) 

(26,32,44) 
(48690,54100,61674) 

  

16 (56,75,96) 
(85140,94600,116358) 

(58,70,88) 
(91125,101250,123525) 

(53,66,75) 
(101475,112750,129663) 

(44,61,82) 
(112050,124500,160605) 

(43,57,68) 
(119565,132850,152778) 
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A
c
ti

v
it

y
 

Mode 
Duration in days (Optimistic, Most Likely, Pessimistic) 
Fixed cost $ (Optimistic, Most Likely, Pessimistic) 
  

Triangular Probability Distribution Function 
selected for both time and cost 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

17 (44,60,70) 
(70605,78450,108261) 

(43,55,74) 
(76050,84500,100555) 

(39,49,58) 
(82125,91250,122275) 

(39,47,54) 
(85176,94640,104104) 

  

18 (73,81,109) 
(114435,127150,170381) 

(58,73,86) 
(128925,143250,180495) 

(47,66,81) 
(139140,154600,177790) 

(53,61,82) 
(145710,161900,192661) 

  

19 (28,36,46) 
(74250,82500,95700) 

(26,34,46) 
(85320,94800,104280) 

(24,30,39) 
(91530,101700,126108) 

    

20 (29,41,50) 
(43515,48350,57537) 

(30,37,50) 
(47925,53250,68693) 

(31,34,45) 
(53505,59450,70746) 

(24,32,37) 
(60120,66800,79492) 

  

21 (54,64,70) 
(76725,85250,108268) 

(46,60,81) 
(83340,92600,108342) 

(43,57,75) 
(89820,99800,130738) 

(45,53,70) 
(96750,107500,123625) 

(44,49,69) 
(102375,113750,126263) 

22 (50,58,79) 
(66825,74250,95040) 

(39,53,67) 
(71190,79100,99666) 

(42,50,67) 
(78030,86700,120513) 

(40,47,64) 
(82350,91500,111630) 

(33,42,58) 
(87660,97400,130516) 

23 (34,43,52) 
(59805,66450,79740) 

(34,41,45) 
(62820,69800,88646) 

(30,37,42) 
(68220,75800,105362) 

(23,33,45) 
(73260,81400,100122) 

(26,30,35) 
(79605,88450,118523) 

24 (55,66,75) 
(65250,72500,80475) 

(50,62,77) 
(70650,78500,91060) 

(45,58,78) 
(75330,83700,97092) 

(44,53,66) 
(80415,89350,122410) 

(43,49,56) 
(86760,96400,124356) 

25 (41,54,59) 
(59985,66650,85979) 

(37,50,67) 
(63090,70100,81316) 

(39,47,54) 
(67320,74800,86768) 

(36,43,49) 
(71550,79500,90630) 

(32,40,53) 
(78120,86800,104160) 

26 (71,84,117) 
(84150,93500,105655) 

(64,79,109) 
(92250,102500,112750) 

(63,73,86) 
(100125,111250,145738) 

(52,68,95) 
(107775,119750,167650) 

(54,62,75) 
(115650,128500,165765) 

27 (59,67,93) 
(70650,78500,91845) 

(47,60,67) 
(77805,86450,118437) 

(41,57,74) 
(80190,89100,116721) 

(50,56,74) 
(82350,91500,113460) 

(43,53,59) 
(85275,94750,131703) 

28 (51,66,85) 
(76500,85000,119000) 

(47,63,83) 
(80775,89750,123855) 

(53,60,73) 
(83250,92500,125800) 

(44,58,67) 
(87120,96800,127776) 

(38,54,65) 
(90450,100500,111555) 

29 (53,76,90) 
(83430,92700,127926) 

(55,71,79) 
(88650,98500,137900) 

(48,67,92) 
(94140,104600,116106) 

(56,64,70) 
(98910,109900,121989) 

(52,60,79) 
(104040,115600,147968) 

30 (24,34,44) 
(24750,27500,30800) 

(25,32,41) 
(26820,29800,39038) 

(26,29,39) 
(28575,31750,43498) 

(23,27,33) 
(30420,33800,41574) 

(19,26,31) 
(32580,36200,42716) 

31 (74,96,132) 
(130500,145000,189950) 

(74,89,117) 
(139320,154800,185760) 

(70,83,110) 
(151785,168650,219245) 

(55,77,89) 
(161550,179500,233350) 

(55,72,80) 
(170190,189100,219356) 

32 (37,43,52) 
(38835,43150,56527) 

(33,40,51) 
(43470,48300,61824) 

(26,37,44) 
(46305,51450,57110) 

(29,35,44) 
(49140,54600,69342) 

(27,33,46) 
(55305,61450,78042) 

33 (37,52,59) 
(55125,61250,71050) 

(44,49,60) 
(57915,64350,74646) 

(33,44,59) 
(61875,68750,83188) 

(33,41,54) 
(67050,74500,96850) 

(29,38,46) 
(71550,79500,88245) 
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Mode 
Duration in days (Optimistic, Most Likely, Pessimistic) 
Fixed cost $ (Optimistic, Most Likely, Pessimistic) 
  

Triangular Probability Distribution Function 
selected for both time and cost 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

34 (54,74,99) 
(80325,89250,124058) 

(51,71,94) 
(84420,93800,105994) 

(57,66,74) 
(89775,99750,123690) 

(51,62,76) 
(94590,105100,147140) 

(48,57,71) 
(102825,114250,155380) 

35 (104,138,157) 
(164700,183000,203130) 

(102,126,160) 
(181350,201500,227695) 

(83,115,150) 
(214200,238000,271320) 

(87,103,123) 
(255375,283750,380225) 

(73,98,113) 
(267750,297500,330225) 

36 (41,54,63) 
(42750,47500,58425) 

(44,49,68) 
(45675,50750,70035) 

(38,42,53) 
(51120,56800,76112) 

(29,38,42) 
(56475,62750,84713) 

(27,33,37) 
(61425,68250,94868) 

37 (29,34,46) 
(20250,22500,28575) 

(23,32,36) 
(21690,24100,27956) 

(21,29,39) 
(24075,26750,33438) 

(21,27,33) 
(26820,29800,33972) 

(22,24,30) 
(28440,31600,43924) 

38 (36,51,68) 
(55125,61250,85138) 

(41,47,63) 
(59220,65800,86856) 

(33,44,49) 
(64125,71250,88350) 

(30,41,53) 
(68850,76500,104040) 

(32,38,48) 
(72360,80400,105324) 

39 (54,67,75) 
(73035,81150,108741) 

(43,61,79) 
(78840,87600,106872) 

(40,57,79) 
(82890,92100,113283) 

(37,52,60) 
(87705,97450,131558) 

(43,49,61) 
(92520,102800,117192) 

40 (34,41,55) 
(40725,45250,55205) 

(32,39,53) 
(43560,48400,58080) 

(27,36,46) 
(46080,51200,57856) 

(27,33,46) 
(49230,54700,65093) 

(23,31,35) 
(52380,58200,79734) 

41 (26,37,43) 
(15750,17500,23450) 

(26,31,42) 
(19080,21200,26288) 

(22,27,30) 
(24165,26850,34368) 

(18,23,30) 
(29070,32300,40375) 

  

42 (37,44,61) 
(32760,36400,49504) 

(36,41,54) 
(35775,39750,50880) 

(32,38,46) 
(38520,42800,55212) 

(29,32,39) 
(43470,48300,53130) 

(24,30,41) 
(45225,50250,60300) 

43 (54,75,103) 
(60120,66800,90180) 

(62,69,84) 
(64080,71200,90424) 

(52,63,75) 
(68760,76400,105432) 

(48,59,72) 
(73170,81300,111381) 

(41,54,64) 
(77580,86200,120680) 

44 (65,82,93) 
(92475,102750,136658) 

(68,76,104) 
(98550,109500,148920) 

(56,70,79) 
(114300,127000,173990) 

(57,66,89) 
(123120,136800,184680) 

(55,63,81) 
(131400,146000,167900) 

45 (53,59,70) 
(76275,84750,105938) 

(45,55,73) 
(82260,91400,117906) 

(38,51,67) 
(91170,101300,123586) 

(42,47,65) 
(113850,126500,174570) 

(34,43,60) 
(128475,142750,161308) 

46 (59,66,92) 
(84825,94250,112158) 

(55,63,77) 
(89550,99500,117410) 

(51,59,71) 
(97425,108250,125570) 

(46,55,77) 
(106650,118500,159975) 

(43,50,65) 
(122400,136000,156400) 

47 (44,54,70) 
(66150,73500,97020) 

(39,51,64) 
(70650,78500,91060) 

(37,47,52) 
(75240,83600,94468) 

(33,44,50) 
(79830,88700,116197) 

(32,41,50) 
(84060,93400,110212) 

48 (30,41,56) 
(33075,36750,46305) 

(33,39,48) 
(35820,39800,43780) 

(31,37,51) 
(39420,43800,60882) 

(27,34,41) 
(43650,48500,66930) 

(25,31,38) 
(48555,53950,73372) 

49 (133,173,202) 
(240750,267500,358450) 

(129,159,202) 
(260730,289700,393992) 

(125,147,168) 
(280800,312000,374400) 

(120,138,163) 
(317250,352500,412425) 

(90,121,146) 
(357975,397750,505143) 

50 (90,101,118) 
(43020,47800,53058) 

(63,74,86) 
(55170,61300,74786) 

(44,63,77) 
(69120,76800,89856) 

(37,49,57) 
(82350,91500,128100) 
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Mode 
Duration in days (Optimistic, Most Likely, Pessimistic) 
Fixed cost $ (Optimistic, Most Likely, Pessimistic) 
  

Triangular Probability Distribution Function 
selected for both time and cost 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

51 (71,83,109) 
(76140,84600,94752) 

(55,77,93) 
(84285,93650,113317) 

(60,72,81) 
(88650,98500,136915) 

(52,65,88) 
(94140,104600,128658) 

(43,61,84) 
(101880,113200,155084) 

52 (28,31,42) 
(20835,23150,26623) 

(20,28,33) 
(24840,27600,37812) 

(23,26,35) 
(26820,29800,35760) 

(18,24,31) 
(29475,32750,38973) 

(17,21,26) 
(31680,35200,48224) 

53 (34,39,46) 
(28350,31500,34965) 

(26,36,50) 
(30825,34250,44525) 

(29,33,45) 
(34020,37800,51786) 

(21,29,35) 
(37125,41250,45788) 

(19,26,32) 
(40140,44600,57980) 

54 (17,23,30) 
(14850,16500,22110) 

(17,22,25) 
(16020,17800,23496) 

(15,21,29) 
(17775,19750,24885) 

(16,20,25) 
(19080,21200,28832) 

(16,18,21) 
(21870,24300,27945) 

55 (23,29,33) 
(21060,23400,26676) 

(20,27,36) 
(22725,25250,32825) 

(21,26,30) 
(24210,26900,33356) 

(21,24,31) 
(26460,29400,37632) 

(15,22,26) 
(29250,32500,42900) 

56 (29,38,42) 
(37125,41250,53625) 

(31,35,48) 
(40185,44650,60724) 

(29,33,37) 
(43020,47800,64052) 

(23,31,36) 
(46260,51400,65278) 

(22,29,34) 
(49905,55450,69867) 

57 (29,41,47) 
(34020,37800,51030) 

(33,38,45) 
(37125,41250,55688) 

(25,35,46) 
(41040,45600,50616) 

(28,32,44) 
(44775,49750,69153) 

(23,30,40) 
(48060,53400,58740) 

58 (19,24,30) 
(11250,12500,16375) 

(16,22,28) 
(12240,13600,17816) 

(18,20,27) 
(13725,15250,16928) 

(13,18,25) 
(15120,16800,18648) 

(13,16,19) 
(17505,19450,24702) 

59 (23,27,37) 
(31140,34600,43596) 

(17,24,27) 
(33750,37500,49500) 

(19,22,29) 
(37125,41250,53213) 

(16,19,23) 
(42075,46750,52360) 

(14,17,20) 
(45675,50750,69020) 

60 (27,31,39) 
(25650,28500,31920) 

(20,29,33) 
(27450,30500,36905) 

(23,27,31) 
(29925,33250,41563) 

(18,25,35) 
(34200,38000,42560) 

(16,21,28) 
(39420,43800,56064) 

61 (23,29,34) 
(20250,22500,31050) 

(20,27,38) 
(22275,24750,29453) 

(20,25,29) 
(24525,27250,34335) 

(16,22,26) 
(26820,29800,33674) 

(16,20,23) 
(30150,33500,40535) 

62 (21,25,30) 
(34875,38750,44563) 

(20,23,28) 
(37080,41200,45320) 

(18,21,25) 
(40275,44750,52805) 

(14,19,26) 
(44820,49800,67230) 

(12,17,23) 
(45990,51100,70518) 

63 (24,27,33) 
(8550,9500,12160) 

(18,26,35) 
(8730,9700,12610) 

(19,25,31) 
(9090,10100,13938) 

(17,24,29) 
(9720,10800,14364) 

(19,22,29) 
(11430,12700,17145) 

Indirect cost $ ($2070, $2300, $2760)  
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Table 4.13 Example 5: ESDTCTExp supreme chromosome results at each generation under uncertain environment. 
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Figure 4.30 Example 5: Main effect plot for response vectors 
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Figure 4.31 Example 5: Tornado chart for activity relative importance 
towards trade-off.  
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4.8.6. Example 6: Testing with discrete risk events. 

This example is set to test the incorporation of discrete risk events into the TCT 

optimization model. The project network configuration and data of example 2 are 

extended to incorporate 3 discrete risk events denoted as R1, R2 and R3, each of 

which has a probability of occurrence. The time and cost data of risk events and 

their assigned probability of occurrence are listed in Table 4.14. The indirect cost 

is also a triangular probability function with $185 optimistic, $200 most likely, and 

$235 pessimistic values. The table also lists the different modes of execution for 

treating the risk event when it occurs. Presumably, the activities in the network are 

assigned a probability of occurrence of 100% as those represent defined scope for 

the project in hand, while a discrete risk event may or may not occur, however, 

when the risk occurs it will have an impact on the project schedule and cost as per 

the network configuration.  

The first step is to adjust the project network to incorporate the risk event, as shown 

in Figure 4.32. Risk event 1 when occurs is modelled to delay the start of activity 

13. Similarly, risk event 2 delays the start of activity 15, while risk event 3 is 

modelled to possibly delay the start of activity 18 depending on the criticality of the 

path leading to activity 16. It is worth noting that this design is arbitrary for 

illustration purposes and more complex designs can be introduced when more 

than one predecessor and successor can be logically linked to the risk event to 

model the risk situation and possible impacts.  

The ESDTCTExp module is used to solve for the supreme chromosome resulting in 

the most optimal joint cost and schedule minimization for a JCL of 50%.     
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The total solution space of the problem is the product function of the number of 

modes for each activity and risk; this equates to 1.41718 x 1011 possible 

chromosome solutions. The ESDTCTExp took 5 generations to solve for the 

supreme chromosome. The primary activities at each generation is indicated in 

Figure 4.33. The total number of experiments is 9,075, which is an extremely 

efficient low number of only 6.403 x 10-8 % of the total solution space. The total 

run time for this example was under 3.5 minutes.  The results of each generation 

are tabulated in Table 4.15.  

The main effect plot generated from the ESDTCTRand module is showing in Figure 

4.34. Amongst the discrete risk events, R1 is observed to have a main effect on 

the optimization objective function. Figure 4.35 shows a tornado chart for the 

activity relative importance with regards to its mode interchangeability. 

The supreme chromosome from the ESDTCTExp is slightly different than that 

solved in example 1 where no risk events are considered. Only 4 of the 18 activities 

have different elite modes. Those differences are found in activities 1,2,3 and 14. 

The optimal total cost is found 14% higher than that of example 1 due to the effect 

of discrete risk events; the optimal treatment of the risk events are modes 3,1 and 

2 for risks R1, R2 and R3 respectively.  
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Table 4.14 Numerical example 6: Data input for discrete risk events. 
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Mode 
Duration in days (Optimistic, Most Likely, Pessimistic) 
Fixed cost $ (Optimistic, Most Likely, Pessimistic) 
  

Triangular Probability 
Distribution Function 
selected for both time 
and cost 

Mode 1 Mode 2 Mode 3 Mode 4 

R1 50% (8,9,12) 
(38500,40000,42860) 

(21,22,27) 
(29800,32000,34550) 

(30,33,39) 
(16550,18000,21000) 

  

R2 20% (10,12,15) 
(42050,45000,48800) 

(13,16,21) 
(38500,35000,39000) 

(17,20,28) 
(28500,30000,33550) 

(19,22,25) 
(18500,20000,22550) 

R3 30% (14,18,22) 
(14150,15000,17050) 

(29,30,34) 
(8500,10000,12600) 

    

 

 

Figure 4.32. Numerical example 6: Risk adjusted network configuration. 

 

Figure 4.33 Example 6: Network configuration showing primary activities at 
each generation in the ESDTCT method. 
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Table 4.15 Example 6: ESDTCTExp supreme chromosome results at each 
generation (for a JCL = 50%) 

    Activity ID >> 1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

1
1
 

1
2
 

1
3
 

1
4
 

1
5
 

1
6
 

1
7
 

1
8
 

R
1

 

R
2

 

R
3

 

Number of admitted modes>> 5 5 3 3 4 3 3 5 5 3 3 4 3 3 2 5 3 3 3 4 2 

Generation 
No. of 

Experimental 
runs 

Total 
duration 

Total cost 
   

<< Chromosome >> 

1 45 102 $231,653  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 2 

2 270 103 $228,885  1 1 1 1 1 1 1 1 1 1 3 1 3 3 1 5 1 1 1 1 2 

3 2160 112 $202,143  1 1 1 1 1 1 3 4 1 1 3 1 3 3 1 5 1 1 3 1 2 

4 6480 118 $158,297  1 1 1 3 4 3 3 4 1 1 3 1 3 3 1 5 1 1 3 1 2 

5 75 118 $157,255  1 4 1 3 4 3 3 4 1 1 3 1 3 3 1 5 1 1 3 1 2 
  

 
                           

 
             

Supreme Chromosome  118 $157,255  1 4 1 3 4 3 3 4 1 1 3 1 3 3 1 5 1 1 3 1 2 

 ∑ = 9075 runs                      
      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝕆, elite mode 

      𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ ℙ, variable modes 

     𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 ∈ 𝔹 , Most likely value of mode 1 

         
 

 

 

 

Figure 4.34 Example 6: Main effect plot for response vectors 
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Figure 4.35 Example 6: Tornado chart for activity relative importance 
towards trade-off. 
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CHAPTER 5 :  IMPLEMENTATION OF THE DEVELOPED 

METHOD ON REPETITIVE CLASS PROJECTS 

5.1.  Introduction 

A particular type of construction projects is repetitive in nature consisting of a 

number of similar or identical units, most of which have their own sets of possible 

crew formations, the challenge on such projects is to determine which is the 

optimum crew formation for each repetitive activity that results in the best overall 

project’s cost and/or time minimization? The objective of this chapter is to introduce 

a systematic approach method that provides an answer to this crucial question, 

taking into considerations for:  

 Optimization for crew work formation.  

 Optimization for crew work continuity; i.e. minimization of crew idle times. 

 Non-typical activities in repetitive units,  

 Uncertainty in crew productivity factors and cost estimates. 

Non-typical activities in repetitive projects are in general attributed to dissimilarities 

in the quantities of work or productivity of crews and machinery used to execute 

the work. For example, the quantity of earthwork can vary from one unit to another 

due to site topography or the soil conditions; other variables can be the learning 

curve effect and weather change from one season to another. Consequently, 

activity durations in non-typical activities can be varied along the repeated units.  
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Figure 5.1 shows an illustration of a repetitive project consisting of typical and non-

typical activities. 

Idle time is the duration where no work is performed for an employed crew and 

their equipment, i.e. the crew is interrupted from achieving a product output. Most 

often, those interruptions result in a cost burden on the project. Eliminating crew 

work interruptions by minimizing the idle time of each crew also leads to 

maximizing the learning curve and momentum of the crew; however, its strict 

application may result in a longer overall project’s duration. Work interruptions are 

permitted in the developed method. The present method incorporates cost as a 

decision variable in the optimization of crew interruption times and uses traditional 

CPM calculations and, therefore, can be easily developed for any project. 

 

 

Figure 5.1 Typical and Non-typical activities in repetitive projects. 
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5.2. Computational procedure 

 

A systematic approach method for discrete time-cost trade-off optimization of 

repetitive activities in construction projects is developed. This method is an 

extension to the developed ESDTCTEXP method, explained in the previous chapter 

(see section 4.6), to account for repetitive projects, and named here as Repetitive 

Project Evolutionary Stochastic Discrete Time-Cost Trade-off - Experiment 

enumeration module (RP-ESDTCTEXP). The method extends the ESDTCTEXP 

method from a bi-objective optimization of time and cost minimization to a tri-

objective optimization adding the crew work continuity vector as a decision factor. 

The method is composed of five stages:  

1. Setup stage: in this stage, the project network is developed in a CPM-like 

schedule. The CPM network naturally has a ladder-like appearance due to the 

repetitive character of the activities. The logic within a typical unit is used to 

maintain continuity of workflow, abbreviated here as workflow logic (WFL). The 

project network is then extended to account for resource flow logic to 

successive repetitive units, abbreviated here as (RFL).  The RFL logic is 

considered a finish-to-start relationship to ensure a timely movement of the 

crew from one unit to the next. Figure 5.2 shows a representation of the WFL 

and RFL logic. 

2. Forward stage:  In this stage a CPM forward pass calculation is performed 

throughout the project network starting with the first activity in the first unit and 

ending with the last activity in the last unit in compliance with the WFL logic and 
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RFL Logic and thus resulting in computing the early start dates for each activity 

and the overall project’s early completion date.  

3. Optimization stage for crew work formation. In this stage, the computational 

procedure described in section 4.7 is performed for the discrete crew formation 

modes to search for the optimal crew work formation for each activity. The 

assumption made here is that a selected crew formation will continue to be 

deployed on the project to work on the specific activity in a typical unit with 

movement of the crew from one unit to the next. This assumption was 

necessary to minimize the matrix size of the full factorial design of experiment 

runs and to reduce the total search space. Furthermore, this assumption 

reasonable simulates practical applications in the real world, as this is clearly 

inefficient since it requires the demobilization and restarting of the alternative 

crew. 

4. Backward stage: In this stage, the computation procedure propagates 

throughout the project to compute the idle (interruption) time between the finish 

time of an activity 𝑖 in a given unit 𝑛 and the start of the similar activity in the 

successive repetitive unit (𝑛 + 1) in compliance with the crew work continuity 

constraint. The summation of all idle time in activity 𝑖 throughout all repetitive 

units is then the total idle time for the crew assigned to this repetitive activity.  

5.  Optimization stage for crew work continuity.  In this stage, the optimal solution 

obtained from the third stage is further analyzed. An iterative nested 

enumeration method is developed to search for the optimal crew work 

continuity. A shift variable is considered for each activity which represented the 
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amount of time that the activity in the first repetitive unit could be delayed 

beyond its early start date. The shifts were defined to range from zero, that 

represented an early start schedule for all activities, to a maximum value 

calculated as the summation of all idle time between an activity and its 

matching in successive repetitive units.  

 

 

Figure 5.2 Repetitive project network logic. 

 

5.3. Calculations for crew work interruption time. 

On construction projects, an interruption in resource continuity may be required to 

meet some known or anticipated conditions or most often to reduce and account 

for the costs associated with such interruptions. In such instances, those 

interruptions need to be incorporated in the baseline schedule and budget. Figure 
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5.3 (a to e) shows a simplified example to demonstrate the various feasible 

schedules and the calculation for interruptions allowing the shift in the activity start 

date. The example is a representation of a simple project having three activities 

(A, B and C) with a finish to start relationship. Figure 5.3b shows the feasible 

schedule for the earliest start and finish dates. This schedule clearly shows idle 

time in activity B as the assigned crew moves from one unit to another. The total 

idle time for crew B is 3 days. Figure 5.3 (c to e) shows all feasible schedules 

allowing for shifting the start dates of activity B incrementally to the maximum value 

of the total idle time of 3 days. Figure 5.3e shows strict compliance with the rule of 

no work interruption; however, applying this rule clearly shows an extension to the 

overall project duration. 

The shift vector 𝑆𝑉𝑖 for each activity 𝑖 at the first typical unit can assume the various 

shift values 𝑇𝑖 ranging from zero to the total idle time by an increment of one day. 

In this simplified example, 𝑆𝑉 for activity A and C can assume one value equals to 

zero, while 𝑆𝑉 for activity B can assume four values equal to {0,1,2,3}. Accordingly, 

the total number of all feasible combinations of shift vectors (NSV) can be identified 

as follows: 

𝑁𝑆𝑉 =  ∏ 𝑚𝑎𝑥
𝑇 ∈ 𝑆𝑉𝑖

(𝑇𝑖
𝐼
𝑖=1 )          5-1 

Where 𝐼 is the total number of activities in a typical unit. (for this oversimplified 

example, 𝑁𝑆𝑉 = 4); however, in a real-life project, there are many more activities 

in a typical unit with a more complex WFL. For example, an 𝑆𝑉𝑖 of 5 days in a 

project comprising of 20 activities in a typical unit can result in more than ninety-

five trillion possible combinations of shift vectors (205). This vast search space 
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renders the optimization problem practically infeasible in polynomial time; 

therefore, an innovative method is developed to reduce the search space.  

 

Figure 5.3 Iterative shift of start dates to reduce crew interruption times.  
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5.4. Formulation of the tri-objective fitness function 

This section presents an extension to previously described bi-objective fitness 

function (see section 4.6) to include simultaneous optimizing of cost, schedule and 

the third dimension for resource interruption in repetitive construction and thus 

allowing for crew work continuity.  

A vector 𝑅 is calculated representing the total project interruption days for all crews 

using Equation (5-10):  

As previously described, the cost and schedule vectors are of different magnitudes 

and thus normalized to the range [0,1] using equations (4-1 and 4-2) Similarly; the 

interruption vectors can be normalized using equation (5-2): 

𝑅𝑛𝑜𝑟𝑚 = (𝑅 − 𝑅𝑖𝑑𝑒𝑎𝑙)/  (𝑅𝑛𝑎𝑑𝑖𝑟 − 𝑅𝑖𝑑𝑒𝑎𝑙)      5-2 

A frontier surface is developed by joining all the possible combinations of cost, 

schedule and interruption solutions that satisfy a selected JCL confidence level. 

The vertex point of the normalized frontier surface is the solution having the least 

vector length �⃗�, providing the optimal balance between time, cost and interruption 

minimizations. The vector magnitude can be calculated using equation (5-3). 

�⃗�𝑗 = √((𝐷𝑗
𝑛𝑜𝑟𝑚)

2
+ (𝐶𝑗

𝑛𝑜𝑟𝑚)
2
 + (𝑅𝑗

𝑛𝑜𝑟𝑚)
2
)       5-3 

Then, the optimal solution 𝑗𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is the vertex point solution that has the least 

response vector length. Figure 5.4 shows an illustration for the frontier surface and 

the response vector for a feasible solution.  
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Figure 5.4. Normalized frontier surface. 

5.5. Optimization for crew work continuity. 

The developed method is based on the blocking technique explained in section 4.5 

with a modification for the context of crew work continuity optimization. The project 

network is segregated into the partitions (𝔹,ℙ,𝕆) to analyze and solve for the elite 

𝑇 of primary activities at a given generation. The blocked design of experiments 

matrix is then generated as the Cartesian product where primary activities can 

assume all 𝑇𝑖 values ∈ 𝑆𝑉𝑖 while blocking all other activities to the maximum 𝑆𝑉𝑖 

value. A complete enumeration of the resultant matrix is then performed and the 

elite 𝑆𝑉𝑖  shift value for the primary activities are then determined as the shifts 

satisfying the ultimate tri-objective optimization fitness function, the formation of 

which will be detailed in the next section. Those elite shift values are carried 

forward in successive generations where observed activities are blocked to the 

elite shift values in building the design of experiments matrix.  This process allows 
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narrowing the experiment enumeration by focusing the analysis on evaluating the 

primary activities at each generation. 

The data type of the 𝑆𝑉 parameters is a continuous time factor, and thus by nature, 

it can be divided into an infinite number of time increments; therefore, for simplicity 

and for practicality in the application for construction projects, the Interruption days 

increment are limited to integer values with a minimum of one complete time unit. 

In this study, the time unit is 1 day. By doing this, the level of factors will not assume 

part days and thus reducing the search space from an infinite to a finite number of 

values.  

On complex projects, where 𝑆𝑉 can assume large numbers for a primary activity 

at a given generation, an iterative method is proposed to further reduce the 

combinatorial space for the search of the optimal 𝑇 value. The method segregates 

the continuous 𝑆𝑉  parameters into domains and then iteratively narrow the 

domains until the single elite 𝑇 value is determined. For example, when the total 

idle time for a given crew is 10 days, then the 𝑆𝑉 vector can assume 11 values 

equal to {0,1,2,3, … . . ,10}. The 𝑆𝑉 in such a case is then segregated into 2 domains 

using the equation 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 = {℧: ⌈
𝑆𝑉𝑖

2
 ⌉  ,   Ω: 𝑆𝑉𝑖}  where the lower factor ℧ is the 

smallest integer greater than or equal to half the 𝑆𝑉𝑖 value while the upper factor Ω 

is equal to the total 𝑆𝑉𝑖. The two domains in this example is then {℧: 5 ,   Ω: 10}. 

Those are then evaluated for fitness in the objective function. If for example, ℧ was 

found more fit, then the domain representing the values from {0 to 5} is dominate 

to that of the values {6 to 10}. The domain ℧  is then classified as elite and 

considered for the next iteration. In the next iteration the 𝑆𝑉𝑖 is adjusted to the elite 
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domain. Accordingly, the upper and lower values are then {℧: 3 ,   Ω: 5}. If Ω is 

found elite, then the next iteration will be {℧: 4 ,   Ω: 5}. If ℧ is elite, then that will 

conclude the optimal 𝑇 as no further division is foreseen for the value of 4. Figure 

5.5 shows a flow chart diagram for the developed crew work interruption time 

optimization. 
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Figure 5.5. Flow chart of proposed crew work interruption time 
optimization. 
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5.6. Formulation of the RP-ESDTCTExp  

The RP-ESDTCT method can be formulated using the following set of equations:  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =

 {

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 ̃ ,                                                                                𝑓𝑜𝑟  𝑐𝑜𝑠𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �̃� ,                                                                       𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �⃗� ,              𝑓𝑜𝑟 𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑎𝑛𝑑 𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

  5-4 

Constraints: 

𝔼(𝐸𝑆𝑇𝑖
𝑛) =

 𝑚𝑎𝑥
∀ 𝑗 ∈𝑃𝑖

{
 
 

 
 
(𝔼(𝐸𝐹𝑇𝑗

𝑛) + 𝑙𝑎𝑔(𝑖,𝑗) + 1  ,  𝔼(𝐸𝐹𝑇𝑖
𝑛−1) + 1 + 𝑇𝑖)           ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡  

(𝔼(𝐸𝑆𝑇𝑗
𝑛) + 𝑙𝑎𝑔(𝑖,𝑗)    ,  𝔼(𝐸𝐹𝑇𝑖

𝑛−1) + 1 + 𝑇𝑖)                  ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝑆𝑡𝑎𝑟𝑡

(𝔼(𝐸𝐹𝑇𝑗
𝑛) +  𝑙𝑎𝑔(𝑖,𝑗) − 𝑑 ̃𝑖

𝑛 + 1 ,  𝔼(𝐸𝐹𝑇𝑖
𝑛−1) + 1 + 𝑇𝑖) ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

(𝔼(𝐸𝑆𝑇𝑗
𝑛) + 𝑙𝑎𝑔(𝑖,𝑗) − 𝑑 ̃𝑖

𝑛  ,  𝔼(𝐸𝐹𝑇𝑖
𝑛−1) + 1 + 𝑇𝑖)       ,  𝑙𝑜𝑔𝑖𝑐𝑖,𝑗 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑜 𝐹𝑖𝑛𝑖𝑠ℎ

   5-5 

𝔼(𝐸𝐹𝑇𝑖
𝑛)  =  𝔼(𝐸𝑆𝑇𝑖

𝑛) + 𝑑 ̃𝑖
𝑛 − 1       5-6 

𝑑 ̃𝑖
𝑛 = 

{
 
 

 
 ∑ 𝑔𝑖,𝑘𝔼 (

𝑞𝑡𝑦𝑖,𝑘
𝑛  

𝑃𝐹𝑖,𝑘 
|𝑝, 𝑎𝑃𝐹𝑖,𝑘 ,𝑚𝑃𝐹𝑖,𝑘 , 𝑏𝑃𝐹𝑖,𝑘)∀𝑖 ∈ ℙ

𝐾𝑖
𝑘=1

𝔼 (
𝑞𝑡𝑦𝑖,𝑒𝑘

𝑛  

𝑃𝐹𝑖,𝑒𝑘 
|𝑝, 𝑎𝑃𝐹𝑖,𝑒𝑘 ,𝑚𝑃𝐹𝑖,𝑒𝑘 , 𝑏𝑃𝐹𝑖,𝑒𝑘)        ∀𝑖 ∈ 𝕆

𝔼 (
𝑞𝑡𝑦𝑖,𝑘1

𝑛  

𝑃𝐹𝑖,𝑘1 
|𝑝,∀𝑎𝑃𝐹𝑖 , 𝑏𝑃𝐹𝑖 =  𝑚𝑃𝐹𝑖,𝑘1

)        ∀𝑖 ∈ 𝔹

    5-7 

𝑠𝑑𝑖
𝑛 = 𝔼(𝐸𝑆𝑇

𝑖

𝑛+1) −  𝔼(𝐸𝐹𝑇𝑖
𝑛 )       2 ≤ 𝑛 ≤ 𝑁      5-8 

𝑆𝑑𝑖
𝑁 = ∑ 𝑠𝑑𝑖

𝑛 𝑁
𝑛=1            5-9 

𝑅 =  ∑ ∑ 𝑠𝑑𝑖
𝑛 𝑁

𝑛=1  𝐼
𝑖=1           5-10 

𝑆𝑉𝑖  ∈ {0 → 𝑆𝑑𝑖
𝑁}      ∀ 𝑖          5-11 

𝑇𝑖 =

{
 
 

 
 
{
∑ ℎ𝑖,𝑘𝑆𝑉𝑖,𝑘    
𝑟=𝑆𝑑𝑖

𝑁

𝑟=0 ∀ 𝑖 ∈ ℙ

𝑆𝑉𝑖,𝑒𝑟                        ∀ 𝑖 ∈ 𝕊

𝑆𝑑𝑖
𝑁                           ∀ 𝑖 ∈ ℕ

}          , 𝑛 = 1

0                                                           , 𝑛 ≠ 1

     5-12 

ℎ𝑖  ∈ {1 → 𝑆𝑑𝑖
𝑁 + 1}      ∀ 𝑖          5-13 

∑ ℎ𝑖,𝑟 = 1     ∀ 𝑖 
𝑆𝑑𝑖

𝑁

𝑟=1          5-14 
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𝐹𝐶𝑖
�̃� = 

{
 

 
∑ 𝑔𝑖,𝑘𝔼(𝐹𝐶𝑖,𝑘

𝑛  | 𝑝, 𝑎𝐹𝐶𝑖,𝑘
𝑛 , 𝑚𝐹𝐶𝑖,𝑘

𝑛 , 𝑏𝐹𝐶𝑖,𝑘
𝑛 )             ∀ 𝑖 ∈ ℙ 

𝐾𝑖
𝑘=1

𝔼(𝐹𝐶𝑖,𝑒𝑘
𝑛 | 𝑝, 𝑎𝐹𝐶𝑖,𝑒𝑘

𝑛 , 𝑚𝐹𝐶𝑖,𝑒𝑘
𝑛 , 𝑏𝐹𝐶𝑖,𝑒𝑘

𝑛 )                  ∀ 𝑖 ∈ 𝕆

𝔼(𝐹𝐶𝑖,𝑘1
𝑛 | 𝑝, ∀  𝑎𝐹𝐶𝑖

𝑛 , 𝑏𝐹𝐶𝑖
𝑛 =  𝑚𝐹𝐶𝑖,𝑘1

𝑛 )              ∀ 𝑖 ∈ 𝔹

  5-15 

𝑉𝐶𝑖
�̃� = 

{
 
 

 
 ∑ 𝑔𝑖,𝑘𝔼(𝑉𝐶𝑟𝑖,𝑘

𝑛  | 𝑝, 𝑎𝑉𝐶𝑟𝑖,𝑘
𝑛 , 𝑚𝑉𝐶𝑟𝑖,𝑘

𝑛 , 𝑏𝑉𝐶𝑟𝑖,𝑘
𝑛 ) .𝑑 ̃𝑖

𝑛
            ∀ 𝑖 ∈ ℙ 

𝐾𝑖
𝑘=1

𝔼(𝑉𝐶𝑟𝑖,𝑒𝑘
𝑛 | 𝑝, 𝑎𝑉𝐶𝑟𝑖,𝑒𝑘

𝑛 , 𝑚𝑉𝐶𝑟𝑖,𝑒𝑘
𝑛 , 𝑏𝑉𝐶𝑟𝑖,𝑒𝑘

𝑛 ).𝑑 ̃𝑖
𝑛
                      ∀ 𝑖 ∈ 𝕆

𝔼(𝑉𝐶𝑟𝑖,𝑘1
𝑛 | 𝑝, ∀  𝑎𝑉𝐶𝑟𝑖

𝑛 , 𝑏𝑉𝐶𝑟𝑖
𝑛 =  𝑚𝑉𝐶𝑟𝑖,𝑘1

𝑛 ). 𝑑 ̃𝑖
𝑛
               ∀ 𝑖 ∈ 𝔹

  5-16 

∑ 𝑔𝑖,𝑘 = 1     ∀ 𝑖 
𝐾𝑖
𝑘=1          5-17 

𝑔𝑖,𝑘  ∈ {1,2,3, …𝐾𝑖}      ∀ 𝑖, 𝑘          5-18 

𝑠𝑐𝑖
𝑁 = 𝑠𝑑𝑖

𝑛 × 𝑉𝐶𝑖
�̃�         5-19 

𝑆𝑐𝑖
𝑁 = ∑ 𝑠𝑐𝑖

𝑛 𝑁
𝑛=1          5-20 

�⃛�  =  𝑚𝑎𝑥
∀ 𝑖,𝑛 

{𝔼(𝐸𝐹𝑇
𝑖
𝑛)}         5-21 

𝐶 = ∑ (𝐹𝐶𝑖
�̃�)∀ 𝑖,𝑛 + ∑ (𝑉𝐶𝑖

�̃�)∀ 𝑖,𝑛 + (𝐼𝐶𝑟 . �⃛�) + ∑ (𝑆𝑐𝑖
𝑁)∀ 𝑖  )      5-22 

𝐶 = 𝐶 + 𝑃𝐶 + 𝐵𝐶            5-23 

ℚ = ∏ ∏ 𝐷(𝑔,𝑠)⃛ , 𝐶(𝑔,𝑠)⃛  |  (𝑃 { �⃛� } ≤ 𝛼 ⋀   𝑃 { 𝐶} ≤ 𝛼)𝑆
𝑠=1

⃛𝐺
𝑔=1    5-24 

ℚ̂ = ∏ �⃛� , 𝐶   ∀ 𝑠 ∈

 ℚ  | {

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶   ⋀   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  �⃛� , 𝑓𝑜𝑟 𝐽𝑜𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶  ,                                                                       𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �⃛�  ,                                                              𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

  5-25 

�̃� =  𝑚𝑖𝑛 {�⃛�}  ∀ 𝑞 ∈ ℚ̂                             5-26 

�̃� =  𝑚𝑖𝑛 {𝐶}  ∀ 𝑞 ∈ ℚ̂              5-27 

�̃� =  𝑚𝑖𝑛 {𝑅}  ∀ 𝑞 ∈ ℚ̂              5-28 

�⃗� = √((�̃�𝑛𝑜𝑟𝑚)
2
+ (𝐶 ̃𝑛𝑜𝑟𝑚)

2
 + (𝑅 ̃𝑛𝑜𝑟𝑚)

2
)     5-29 
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The mathematical model is described by Equations (5-5 to 5-28) as constraints 

and Equation (5-4) for the objective functions. The objective can be set for one of 

three cases. The first is to minimize the 𝐶 ̃ when the value of the total project cost 

minimization is of interest, the second is to minimize �̃�  when the value for the total 

project schedule minimization is of interest and, the third is the tri-objective 

minimization �̃�, 𝐶 ̃ and, vector 𝑅 representing the total interruption time.  

In equation (5-5 to 5-6), 𝔼(𝐸𝑆𝑇𝑖), 𝔼(𝐸𝐹𝑇𝑗) are the expected value of the early start 

time for activity 𝑖 and the expected value of the early finish time for its predecessor 

activity 𝑗. While �̃� is the expected value for the activity duration. To account for 

non-typical repetitive activities, �̃� is taken as a function of the activity quantities 𝑞𝑡𝑦 

and the productivity factor 𝑃𝐹 for the assigned crew, then 𝑑 = 𝑞𝑡𝑦/𝑃𝐹. The value 

𝑇i represent a shift to the early start of an activity to allow for work interruptions. 

The calculation for the EST in equation (5-5) allows for the four types of logical 

relationships between the activities and allows for the logic between the repetitive 

units 𝑛 and (n − 1) as finish-to-start relationship to ensure a timely movement of 

the crew from one unit to the next. Equation (5-7) computes the value of 𝑑 ̃ based 

on the activity classification at a given generation. The labeling of the network 

activities is ℙ for primary mode activities, 𝕆 for observed activities and 𝔹 for base 

case mode activities. Those labeling of activities at a given generation is described 

in Section 4.5.  Where each activity 𝑖 can assume a different mode 𝑘 amongst the 

total number of modes 𝐾 available for the activity. The activity mode assignment 

is applied to all similar activities 𝑖 across all repetitive units 𝑛 → 𝑁. The reasoning 

behind this application is that the selected crew formation option and its 
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characteristics for cost and schedule performance will be the same carried through 

from one unit to another throughout the life span of the project; further reasoning 

is also explained in section 5.2. To account for uncertainty in 𝑑 ̃, the expected value 

is taken as a random sampling of the probability distribution function applied to the 

uncertainty in the crew 𝑃𝐹. To allow calculation of the expected value, the inverse 

transformation of the cumulative distribution function is calculated. In the case of 

triangular PDF, the parameters are (𝑝, 𝑎,𝑚, 𝑏) . Where 𝑝  is a pseudo-random 

number generator of a uniform random variable on [0,1], and 𝑎,𝑚, 𝑏  are the 

optimistic, most likely and pessimistic values. The value for 𝑇i is calculated using 

Equations (5-8 to 5-12) where the idle time 𝑠𝑑 for activity 𝑖 in unit 𝑛 is calculated in 

Equation (5-8) as simply the time between the finish date and the start date of the 

matching activity in unit 𝑛 + 1. The overall project’s idle time 𝑆𝑑 for a given crew 

assigned to activity 𝑖  is then calculated in Equation (5-9). Equation (5-10) 

calculates the magnitude of the vector 𝑅 representing the total interruption time for 

all crews. Equation (5-12) applies the shift in start dates at the activities in the first 

unit. ℎi is an arbitrary decimal value ranging between 1 and 𝑆𝑑𝑖
𝑁 + 1. This value is 

used here to tag the increment value 𝑆𝑉𝑖 as a discrete option that is in turn used in 

the developed method to perform the enumeration experiments to shift the start 

time of activity 𝑖 until full compliance to work continuity with zero interruptions is 

achieved. Equation (5-14) expresses that only one shift value must be admitted for 

each activity at any given experiment run. The resultant matrix from equation 

(5-12) is a full factorial design of experiments with a blocking technique. Where the 

activity classification belongs to ℙ , the values for 𝑇𝑖  assume all the admitted 
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options (ℎ𝑖 = 1 → (𝑆𝑑𝑖
𝑁 + 1)). When the activity classification belongs to 𝕊, the 

shift value 𝑇i are blocked to assume only the value of the elite option 𝑆𝑉𝑖,𝑒𝑟 and 

when the activity classification belongs to ℕ , the parameters are blocked to 

assume only the total idle time values for the activities 𝑆𝑑𝑖
𝑁. The reasoning behind 

this blocking technique is further described in Section 4.5. 

Similarly, equation (5-15) and (5-16) computes the expected value for the fixed 

cost (FC̃)  and the expected value for the variable cost (VC̃) for each activity.  

The resultant matrix from equations (5-7), (5-15) and (5-16) is a full factorial design 

of experiments with a blocking technique. Where the activity classification belongs 

to ℙ , the set of parameter values for 𝑑, FC̃ , VC̃  assume the values for all the 

admitted modes 𝑘 → 𝐾 . When the activity classification belongs to 𝕊 , the 

parameters are blocked to assume only the values of the elite mode 𝑒𝑘 and when 

the activity classification belongs to ℕ, the parameters are blocked to assume only 

the values for the base case mode  𝑘1(or mode 1). The reasoning behind this 

blocking technique is further described in Section 4.5. Binary variables 𝑔𝑖,𝑘  in 

equations (5-17) and (5-18) expresses that only one mode must be admitted for 

each activity. Equations (5-19) and (5-20) computes the cost resultant from a crew 

idle time. The assumption made here is that the (VC̃) will still be incurred on the 

project during the idle time. The reasoning behind this assumption is the project 

will need to bear the cost associated with tools, equipment and the labour salaries 

during the idle times.   

Equation (5-22) computes the total project cost 𝐶 at any given experiment run 

taking into account the expected value of the indirect cost rate per day (IC) over 
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the overall project’s duration �⃛� computed in equation (5-21) . Equation (5-23) adds 

the penalty cost (PC) and the bonus costs (BC), the formulation for such costs 

were detailed in section 3.3.  Equation (5-24) is a matrix ℚ of all solutions falling 

on the frontier curve defined by a specified joint cost – schedule confidence level 

α. Equation (5-25) provides the matrix ℚ̂ which is a subset of ℚ for all solutions 𝑞 

satisfying the defined minimization objective function.  Equations (5-26, 5-27 and 

5-28) reduces the matrix ℚ̂ to the single optimum solution satisfying the objective 

function. Equation (5-29) computes the magnitude of the response vector �⃗� 

required for the joint optimization of time, cost and interruptions.   
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Figure 5.6. Flow chart of RP-ESDTCTEXP method. 
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5.7. Numerical examples of repetitive projects  

5.7.1. Example 7: Testing RP-ESDTCTExp module under certain 

environment. 

This example is set for the purpose of verification against a deterministic scenario 

to solve for crew formation chromosome optimization. In this scenario, the input 

data parameters are modelled by converting the adopted triangular probability 

distribution to a deterministic single value, where (a, m and b) are equal values 

equal to the most likely value m.  By doing so, the data input for the example is 

matched to the basic data input and thus allows for comparative studies with other 

deterministic approaches introduced by previous researchers. The example is 

drawn from the literature known as the three-span concrete bridge is analyzed to 

demonstrate the capabilities of the developed method in searching the optimal time 

– cost trade-offs for non-typical activities in repetitive projects. The project consists 

of four typical units each having five non-typical activities; those activities are 

excavation, foundation, columns, beams and slabs. The precedence relationships 

among these successive activities are finish-to-start with no lag time. The non-

typical activities are due to different quantities associated with the different units. 

Figure 5.7 shows an illustration of the example. 
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Figure 5.7 Three-span concrete bridge illustration (Selinger 1980). 

This example was adopted in many research efforts in the past forty years for 

validation of a wide range of schedule optimization methods for linear repetitive 

projects. The example was originally developed by Selinger (1980) using 

deterministic dynamic programming to solve for reducing the project duration while 

maintaining resource continuity. Russell and Caselton (1988) used this example 

to verify their model that extended the work of Selinger (1980) and added the ability 

to accommodate typical and non-typical actives and to allow for the possibility of 

having user-specified work interruptions using deterministic dynamic 

programming. Moselhi and El-Rayes (1993) and El-Rayes (1997) adopted this 

example in their deterministic dynamic programming method; technique while 

accounting for cost as an important decision variable in the optimization process 

for crew work formation. El-Rayes (1997) used this example with modifications to 

solve for optimization of crew formations using a deterministic dynamic 

programming technique. Later, El-Rayes and Moselhi (2001) further developed 

their deterministic dynamic programming technique to automate the generation of 

interruptions during scheduling to make the interruption more feasible and 

bounded; the authors used this example to solve for the optimization of resource 
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utilization. Hyari and El- Rayes (2004) and Hyari et. al (2009) also used this 

example to validate their deterministic multi-objective genetic algorithm and 

scheduling algorithm introducing the capability of simultaneous minimization of 

both project duration and work interruptions for construction crews. Nassar (2005) 

solved this example using a deterministic genetic algorithm to optimally assign 

resources for repetitive construction projects with the aim to find the optimal crew 

formations and interruption times that results in least project duration while 

simultaneously reducing the number of interruption days. Liu and Wang (2007) 

solved the example using a constraint programming backtracking approach to 

optimize as the searching algorithm for model formulation for deterministic 

optimization of either total project cost is or project duration. Long and Ohsato 

(2009) analyzed this example using a genetic algorithm-based method to solve for 

the minimization of project duration, project cost, or both of them. Bakry et al. 

(2016) also used this example to validate their fuzzy dynamic programming model 

accounting for schedule and cost uncertainties. Lately, Eid et al. (2018) used this 

example to validate their deterministic genetic algorithms and Pareto front sorting 

model. Salama and Moselhi (2019) used the example to validate their uncertain 

multi-objective optimization model using an integration of linear scheduling with 

the critical chain scheduling method.  

The extensive utilization of the selected example in the literature provides a sound 

basis for the validation of the developed method. The network configuration of the 

example is shown in Figure 5.8. Each mode represents a crew formation in which 
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the labour cost and productivity are presented in Table 5.1 along with quantities of 

work.  

 

Figure 5.8 Example 7: Network configuration.
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Table 5.1 Example 7: Data input (adapted from El-Rayes (1997)) 

 
Activity 

Quantity of work 
 (qty) in m3 

Material 
cost 

rate in 
$/m3 

Material cost ($) =  
qty * Material cost rate 

or (fixed cost) 

Repetitive 
unit (n) 

1 2 3 4 1 1 2 3 4 

A) 
Excavation  

1147 1434 994 1529 0 0 0 0 0 

B) 
Foundation 

1032 1077 943 896 92 94944 99084 86756 82432 

C) Columns 104 86 129 100 479 49816 41194 61791 47900 

D) Beams 85 92 101 80 195 16575 17940 19695 15600 

E) Slabs 0 138 114 145 186 0 25668 21204 26970 

Activity 

Crew 
Formation 

No. 
(Mode) 

Productivity 
Factor 

( PF ) in 
m3/day  

Duration of work in days  
=     qty / PF  

Lab. and 
equip. cost 
rate ($/day)  
or (variable 
cost rate) 

Repetitive 
unit (n) 

  
  

1 2 3 4 
  

A) 
Excavation  

1 91.75 12.50 15.63 10.83 16.66 906 

B) 
Foundation 

1 89.77 11.50 12.00 10.50 9.98 4678 

  2 71.81 14.37 15.00 13.13 12.48 3508 

  3 53.86 19.16 20.00 17.51 16.64 2338 

C) Columns 1 5.73 18.15 15.01 22.51 17.45 2160 

  2 6.88 15.12 12.50 18.75 14.53 2809 

  3 8.03 12.95 10.71 16.06 12.45 3456 

D) Beams 1 9.9 8.59 9.29 10.20 8.08 4246 

  2 8.49 10.01 10.84 11.90 9.42 3497 

  3 7.07 12.02 13.01 14.29 11.32 2748 

  4 5.66 15.02 16.25 17.84 14.13 1998 

E) Slabs 1 8.73 0.00 15.81 13.06 16.61 2407 

  2 7.76 0.00 17.78 14.69 18.69 2027 

 

The performance criteria for the present method are set such that the supreme 

chromosome result should be no worse than that reported by Hyari et al. (2009) 

solved using a genetic algorithm approach.  

The present method is run with two scenarios. The first scenario is for the purpose 

of verification against deterministic approaches to solve for crew formation 
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chromosome optimization. In this scenario, the input data parameters are modelled 

by converting the adopted triangular probability distribution function to a 

deterministic single value, where (a, m and b) are equal values equal to the most 

likely value m.  By doing so, the data input for the example is matched to the basic 

data input presented by El-Rayes (1997) and thus allows for comparative studies 

with other deterministic approaches introduced by previous researchers.  

Table 5.3 lists the comparative results for optimum crew formation chromosomes 

having the objective function set for schedule minimization. The total duration, 

crew formations and total crews interruption time are found firmly confirming the 

best solutions reported by Long and Ohsato (2009) and Hyari et al. (2009). 

Selinger (1980) formulation was with a strict no crews interruption time; for this 

reason, the total duration was extended to 117.9 days; resulting in a different crew 

formation chromosome. Russell and Caselton (1988) formulation allowed for a 

user prespecified set of interruption times and resulted in an improvement for the 

total project duration; however, it was unable to obtain the optimum solution.     

A daily project indirect cost of $2,500 is used and identical to that used by El-Rayes 

and Moselhi (2001) and Hyari et al. (2009). 



 

182 

 

 

 

 

Table 5.2 Example 7: RP-ESDTCTEXP supreme chromosome different optimization objectives under certain 
environment. 

Activity ID >> A B C D E A B C D E A B C D E 

T
o

ta
l 
In

te
rr

u
p

ti
o

n
 (

d
a
y

s
) 

Num of available modes >> 1 3 3 4 2           

Optimization 
objective 

T
o

ta
l 
d

u
ra

ti
o

n
 

T
o

ta
l 
c
o

s
t 

T
o

ta
l 
M

a
te

ri
a
l 

c
o

s
t 

($
) 

 

(F
ix

e
d

 c
o

s
t)

 

T
o

ta
l 
L

a
b

. 
a
n

d
 e

q
u
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. 

C
o

s
t 

($
) 

 

(V
a
ri
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b

le
 c

o
s
t)

 

T
o

ta
l 

in
d

ir
e
c
t 

c
o

s
t 

T
o

ta
l 
c
o

s
t 

fo
r 

id
le

 

c
re

w
 t

im
e

   
  
Chromosome 

  
  

Shift Time 
(Delayed start of 
activity at unit 1) 

(days)  

Total Crew 
Idle Time 

(Interruption) 
(days) 

a) Schedule 
minimization  

106.8 $1,740,753 $707,753  $699,572  $266,931  $66,497  1 1 3 1 1 0 3 0 3 9 0 6 0 8 0 14 

b) Cost 
minimization  

123.6 $1,667,018 $707,753  $650,268  $308,997  $0  1 2 2 4 1 0 1 0 0 20 0 0 0 0 0 0 

c) Joint cost 
- schedule - 
Interruption 
minimization 

134.2 $1,726,357 $707,753  $642,814  $335,416  $40,374  1 3 1 1 1 0 0 3 18 9 0 0 1 9 1 11 
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Table 5.3 Example 7: Comparative results for the schedule minimization 
under certain environment. 

Activity ID >> A B C D E A B C D E 

Total 
Interruption 

(days) 

Num of available modes >> 1 3 3 4 2           

Author 
Total 

duration 
Chromosome 

Total Crew Idle 
Time 

(Interruption) 
(days) 

Selinger (1980) 
One state variable 
formulation  

117.9 1 2 3 3 1 0 0 0 0 0 0 

Russell and Caselton 
(1988) 
Two state variable 
formulation  

110.4 1 1 3 1 1 0 4 0 12 0 16 

El-Rayes and Moselhi 
(2001) 
Two state variable 
formulation 

106.8 1 1 3 1 1 0 6 0 9 0 15 

Long and Ohsato (2009)  
Genetic algorithm-based 
formulation  

106.8 1 1 3 1 1 0 6 0 8 0 14 

Hyari et al. (2009)  
Two state variable 
formulation 

106.8 1 1 3 1 1 Not reported 14 

Present method 106.8 1 1 3 1 1 0 6 0 8 0 14 

 

Table 5.4 lists the comparative results for optimum crew formation chromosomes 

having the objective function set for cost minimization. The total cost, duration, 

crew formations and total crews interruption time is found confirming to that 

reported by El-Rayes and Moselhi (2001) and Hyari et al. (2009). There is a 0.11% 

difference in cost values between the different results generally attributed to 

rounding of numbers exercised by previous studies.  

 



 

184 

 

 

 

 

Table 5.4 Example 7: Comparative results for the cost minimization under certain environment. 

     Activity ID >> A B C D E A B C D E 

T
o

ta
l 
In
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)     Num of available modes >> 1 3 3 4 2      

Author 
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 c
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Chromosome 

Total Crew Idle 
Time 

(Interruption) 
(days) 

El-Rayes and 
Moselhi (2001) 
Two state dynamic 
programming 
formulation 

123.6 $1,665,247 $1,356,348 $308,899  NA*  1 2 2 4 1 

  
  

NA* 
  
  

NA* 

Hyari et al. (2009)  
Two state variable 
formulation 

124 $1,668,021 $1,358,021 $310,000   1 2 2 4 1 0 0 0 0 0 0 

Present model 123.6 $1,667,018 $707,753 $650,268 $308,997  $ -             1 2 2 4 1 0 0 0 0 0 0 

* Data was not reported by the author  
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The example was also solved to find a solution satisfying the joint cost, schedule 

and Interruption minimization as listed in Table 5.2. It is noted that this solution 

was not available in previous studies. The solution resulted in a different crew 

formation that, together with permitted crew interruptions, provide a balance 

between the cost, schedule and interruption vectors. 

The developed method is coded in a spreadsheet-based application using Google 

sheets cloud applications using Google Apps Script. The application was not run 

in the browser but rather remotely on the Google cloud. Google BigQuery SQL is 

used to facilitate the calculation procedure. The total run time to obtain the 

supreme chromosome solution for the desired objective averaged at 41 seconds 

using the Google cloud application and the free BigQuery quota limitations 

(Maharana et al. 2015). 

5.7.2. Example 8: Testing RP-ESDTCTExp module under uncertain 

environment. 

The example is aimed to illustrate the developed method capability to account for 

uncertainties in the cost and schedule parameters and solved to find a solution 

satisfying the joint cost, schedule and Interruption minimization. The same project 

network and details of example 7 is used. The first step was to transform the 

deterministic data into uncertain data represented by a triangular PDF. The original 

deterministic value was used as the most likely (m) value. The deterministic value 

was once multiplied by a factor less than 1.0 to get the optimistic (a) value, and 

once by a factor greater than 1.0 to get the pessimistic (b) value. The uncertainty 
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multiplier factors were generated randomly between 70% and 130% of the 

deterministic value and applied to material cost, productivity factors and labour and 

equipment costs rates.  Table 5.5 lists the generated multiplier factors, and the 

produced uncertain data numbers are listed in Table 5.6. Uncertainty is also 

presented in the daily project indirect cost represented by the triangular PDF 

($2,125, $2,500, $3,000).  The present model was run for a selected JCL = 70% 

to find the supreme crew formation chromosome satisfying the objectives a) 

schedule minimization, b) cost minimization and c) Joint cost, schedule and 

interruption minimization. Run outputs are summarized in Table 5.7. The results 

produced higher schedule and cost values in comparison to those produced in 

example 7 under a deterministic environment. Also, it is noticed that except for the 

schedule minimization objective, the supreme chromosome is found different in 

certain gens, where different crew formation selections are more fit for an objective 

function than the other. In the case of schedule minimization objective, the 

supreme chromosome is found to be [1,1,3,1,1] for activities A to E, respectively. 

This chromosome is the same in both the deterministic and uncertain scenarios 

and constantly produced the minimum project duration.   

In order to study the sensitivity of the different targeted JCL, the same numerical 

example is analyzed after setting the JCL at different values ranging from 10% to 

90% confidence levels; several scenario runs were analyzed under different 

optimization objectives. For each scenario, the supreme chromosome solution is 

identified as shown in Table 5.8. This illustrates that different crew formation 
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selections are more fit for an objective function than the other and vary according 

to the targeted JCL.  

The total run time to obtain the supreme chromosome solution for the desired 

objective averaged at 65 seconds. It can be noticed that the average run execution 

time for the developed method is not that significantly different from that in a 

deterministic scenario in spite of the fact that the execution under uncertainty 

resulted in an exponential increase in computations required to simulate each 

experiment and furthermore the solutions are examined for optimum crew work 

continuity. The reason for this is the expandable nature of the selected 

computational platform (BigQuery) being executed online on Google servers. 

BigQuery automates the computational power needed depending on the query 

size and complexity. The query is divided and then concurred for parallel 

executions.     
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Table 5.5 Example 8: Uncertainty multiplier factors for cost and 
productivity factors. 

Activity 

Uncertainty multipliers for total material cost ($)  

(Fixed cost) (a, m, b) 
    

Repetitive unit (n) 1 2 3 4     
A) Excavation  0 0 0 0     

B) Foundation 
a: 0.88 

m: 1.00  

b: 1.13 

a: 0.87 

m: 1.00  

b: 1.29 

a: 0.84 

m: 1.00  

b: 1.22 

a: 0.91 

m: 1.00  

b: 1.22     

C) Columns 
a: 0.91 
m: 1.00  

b: 1.29 

a: 0.73 
m: 1.00  

b: 1.2 

a: 0.95 
m: 1.00  

b: 1.13 

a: 0.84 
m: 1.00  

b: 1.1     

D) Beams 
a: 0.7 

m: 1.00  
b: 1.15 

a: 0.94 

m: 1.00  
b: 1.13 

a: 0.88 

m: 1.00  
b: 1.13 

a: 0.87 

m: 1.00  
b: 1.25     

E) Slabs 
a: 0.74 

m: 1.00  

b: 1.14 

a: 0.83 

m: 1.00  

b: 1.06 

a: 0.93 

m: 1.00  

b: 1.12 

a: 0.8 

m: 1.00  

b: 1.26     

Activity 

Crew 

form

ation 

No. 

Uncertainty multipliers for 

productivity factor 

( PF ) in m3/day  

 (a, m, b) 

Lab. and equip. 

Variable cost rate ($/day)  

(a, m, b) 

Repetitive unit (n)   1 2 3 4 1 2 3 4 

A) Excavation  1 
a: 0.8 

m: 1.00  

b: 1.08 

a: 0.78 

m: 1.00  

b: 1.29 

a: 0.78 

m: 1.00  

b: 1.13 

a: 0.93 

m: 1.00  

b: 1.18 

a: 0.76 

m: 1.00  

b: 1.23 

a: 0.89 

m: 1.00  

b: 1.19 

a: 0.74 

m: 1.00  

b: 1.27 

a: 0.81 

m: 1.00  

b: 1.28 

B) Foundation 1 
a: 0.7 

m: 1.00  

b: 1.05 

a: 0.82 
m: 1.00  

b: 1.19 

a: 0.82 
m: 1.00  

b: 1.07 

a: 0.93 
m: 1.00  

b: 1.28 

a: 0.84 
m: 1.00  

b: 1.26 

a: 0.73 
m: 1.00  

b: 1.12 

a: 0.71 
m: 1.00  

b: 1.05 

a: 0.73 
m: 1.00  

b: 1.28 

  2 
a: 0.91 
m: 1.00  

b: 1.1 

a: 0.87 
m: 1.00  

b: 1.27 

a: 0.87 
m: 1.00  

b: 1.23 

a: 0.7 
m: 1.00  

b: 1.23 

a: 0.92 
m: 1.00  

b: 1.2 

a: 0.82 
m: 1.00  

b: 1.15 

a: 0.78 
m: 1.00  

b: 1.3 

a: 0.82 
m: 1.00  

b: 1.16 

  3 
a: 0.84 

m: 1.00  
b: 1.09 

a: 0.72 

m: 1.00  
b: 1.3 

a: 0.95 

m: 1.00  
b: 1.13 

a: 0.78 

m: 1.00  
b: 1.14 

a: 0.84 

m: 1.00  
b: 1.13 

a: 0.71 

m: 1.00  
b: 1.27 

a: 0.73 

m: 1.00  
b: 1.21 

a: 0.82 

m: 1.00  
b: 1.24 

C) Columns 1 
a: 0.85 

m: 1.00  

b: 1.21 

a: 0.84 

m: 1.00  

b: 1.18 

a: 0.78 

m: 1.00  

b: 1.27 

a: 0.75 

m: 1.00  

b: 1.12 

a: 0.71 

m: 1.00  

b: 1.2 

a: 0.86 

m: 1.00  

b: 1.15 

a: 0.85 

m: 1.00  

b: 1.09 

a: 0.89 

m: 1.00  

b: 1.06 

  2 
a: 0.84 

m: 1.00  

b: 1.26 

a: 0.92 

m: 1.00  

b: 1.3 

a: 0.75 

m: 1.00  

b: 1.21 

a: 0.9 

m: 1.00  

b: 1.06 

a: 0.85 

m: 1.00  

b: 1.3 

a: 0.91 

m: 1.00  

b: 1.18 

a: 0.7 

m: 1.00  

b: 1.23 

a: 0.87 

m: 1.00  

b: 1.27 

  3 
a: 0.82 
m: 1.00  

b: 1.11 

a: 0.9 
m: 1.00  

b: 1.09 

a: 0.92 
m: 1.00  

b: 1.11 

a: 0.95 
m: 1.00  

b: 1.12 

a: 0.93 
m: 1.00  

b: 1.13 

a: 0.71 
m: 1.00  

b: 1.06 

a: 0.73 
m: 1.00  

b: 1.05 

a: 0.84 
m: 1.00  

b: 1.17 

D) Beams 1 
a: 0.84 

m: 1.00  
b: 1.06 

a: 0.88 

m: 1.00  
b: 1.1 

a: 0.81 

m: 1.00  
b: 1.05 

a: 0.91 

m: 1.00  
b: 1.13 

a: 0.9 

m: 1.00  
b: 1.25 

a: 0.75 

m: 1.00  
b: 1.13 

a: 0.91 

m: 1.00  
b: 1.24 

a: 0.72 

m: 1.00  
b: 1.07 

  2 
a: 0.72 

m: 1.00  
b: 1.25 

a: 0.72 

m: 1.00  
b: 1.12 

a: 0.8 

m: 1.00  
b: 1.15 

a: 0.83 

m: 1.00  
b: 1.19 

a: 0.88 

m: 1.00  
b: 1.24 

a: 0.85 

m: 1.00  
b: 1.13 

a: 0.89 

m: 1.00  
b: 1.3 

a: 0.94 

m: 1.00  
b: 1.14 

  3 
a: 0.82 

m: 1.00  
b: 1.09 

a: 0.87 

m: 1.00  
b: 1.05 

a: 0.84 

m: 1.00  
b: 1.06 

a: 0.93 

m: 1.00  
b: 1.08 

a: 0.91 

m: 1.00  
b: 1.27 

a: 0.9 

m: 1.00  
b: 1.24 

a: 0.84 

m: 1.00  
b: 1.12 

a: 0.94 

m: 1.00  
b: 1.11 

  4 
a: 0.7 

m: 1.00  

b: 1.21 

a: 0.71 

m: 1.00  

b: 1.05 

a: 0.93 

m: 1.00  

b: 1.15 

a: 0.82 

m: 1.00  

b: 1.11 

a: 0.91 

m: 1.00  

b: 1.12 

a: 0.86 

m: 1.00  

b: 1.18 

a: 0.94 

m: 1.00  

b: 1.09 

a: 0.89 

m: 1.00  

b: 1.05 

E) Slabs 1 
a: 0.82 
m: 1.00  

b: 1.21 

a: 0.8 
m: 1.00  

b: 1.13 

a: 0.7 
m: 1.00  

b: 1.1 

a: 0.91 
m: 1.00  

b: 1.27 

a: 0.82 
m: 1.00  

b: 1.27 

a: 0.9 
m: 1.00  

b: 1.15 

a: 0.7 
m: 1.00  

b: 1.25 

a: 0.83 
m: 1.00  

b: 1.19 

  2 
a: 0.79 
m: 1.00  

b: 1.14 

a: 0.8 
m: 1.00  

b: 1.21 

a: 0.74 
m: 1.00  

b: 1.11 

a: 0.75 
m: 1.00  

b: 1.23 

a: 0.89 
m: 1.00  

b: 1.17 

a: 0.89 
m: 1.00  

b: 1.19 

a: 0.71 
m: 1.00  

b: 1.15 

a: 0.7 
m: 1.00  

b: 1.15 
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Table 5.6 Example 8: Uncertain Data input. 

A
ct

iv
it

y
 

ID
 

C
re

w
 

F
o

rm
a

ti
o

n
 

R
ep

et
it

iv
e 

U
n

it
 

Activity 

duration 
Activity fixed cost Activity variable cost 

a m b a m b a m b 

A 1 1 10.0 12.5 13.5 $0  $0  $0  $689  $906  $1,114  

A 1 2 12.2 15.6 20.2 $0  $0  $0  $806  $906  $1,078  

A 1 3 8.4 10.8 12.2 $0  $0  $0  $670  $906  $1,151  

A 1 4 15.5 16.7 19.7 $0  $0  $0  $734  $906  $1,160  

B 1 1 8.1 11.5 12.1 $83,551  $94,944  $107,287  $3,930  $4,678  $5,894  

B 1 2 9.8 12.0 14.3 $87,194  $99,084  $111,965  $3,415  $4,678  $5,239  

B 1 3 8.6 10.5 11.2 $76,345  $86,756  $98,034  $3,321  $4,678  $4,912  

B 1 4 9.3 10.0 12.8 $72,702  $82,616  $93,356  $3,415  $4,678  $5,988  

B 2 1 13.1 14.4 15.8 $83,551  $94,944  $107,287  $3,227  $3,508  $4,210  

B 2 2 13.1 15.0 19.1 $87,194  $99,084  $111,965  $2,877  $3,508  $4,034  

B 2 3 11.4 13.1 16.1 $76,345  $86,756  $98,034  $2,736  $3,508  $4,560  

B 2 4 8.8 12.5 15.4 $72,702  $82,616  $93,356  $2,877  $3,508  $4,069  

B 3 1 16.1 19.2 20.9 $83,551  $94,944  $107,287  $1,964  $2,338  $2,642  

B 3 2 14.4 20.0 26.0 $87,194  $99,084  $111,965  $1,660  $2,338  $2,969  

B 3 3 16.6 17.5 19.8 $76,345  $86,756  $98,034  $1,707  $2,338  $2,829  

B 3 4 13.0 16.7 19.0 $72,702  $82,616  $93,356  $1,917  $2,338  $2,899  

C 1 1 15.5 18.2 22.0 $45,333  $49,816  $64,263  $1,534  $2,160  $2,592  

C 1 2 12.6 15.0 17.7 $37,487  $41,194  $53,140  $1,858  $2,160  $2,484  

C 1 3 17.6 22.5 28.6 $56,230  $61,791  $79,710  $1,836  $2,160  $2,354  

C 1 4 13.1 17.5 19.6 $43,589  $47,900  $61,791  $1,922  $2,160  $2,290  

C 2 1 12.7 15.1 19.0 $45,333  $49,816  $64,263  $2,388  $2,809  $3,652  

C 2 2 11.5 12.5 16.3 $37,487  $41,194  $53,140  $2,556  $2,809  $3,315  

C 2 3 14.1 18.8 22.7 $56,230  $61,791  $79,710  $1,966  $2,809  $3,455  

C 2 4 13.1 14.5 15.4 $43,589  $47,900  $61,791  $2,444  $2,809  $3,567  

C 3 1 10.7 13.0 14.4 $45,333  $49,816  $64,263  $3,214  $3,456  $3,905  

C 3 2 9.6 10.7 11.7 $37,487  $41,194  $53,140  $2,454  $3,456  $3,663  

C 3 3 14.8 16.1 17.9 $56,230  $61,791  $79,710  $2,523  $3,456  $3,629  

C 3 4 11.9 12.5 14.0 $43,589  $47,900  $61,791  $2,903  $3,456  $4,044  

D 1 1 7.2 8.6 9.1 $11,603  $16,575  $19,061  $3,821  $4,246  $5,308  

D 1 2 8.2 9.3 10.2 $12,558  $17,940  $20,631  $3,185  $4,246  $4,798  

D 1 3 8.3 10.2 10.7 $13,787  $19,695  $22,649  $3,864  $4,246  $5,265  

D 1 4 7.4 8.1 9.2 $10,920  $15,600  $17,940  $3,057  $4,246  $4,543  

D 2 1 7.2 10.0 12.5 $11,603  $16,575  $19,061  $3,077  $3,497  $4,336  

D 2 2 7.8 10.8 12.1 $12,558  $17,940  $20,631  $2,972  $3,497  $3,952  

D 2 3 9.5 11.9 13.7 $13,787  $19,695  $22,649  $3,112  $3,497  $4,546  

D 2 4 7.8 9.4 11.2 $10,920  $15,600  $17,940  $3,287  $3,497  $3,987  

D 3 1 9.8 12.0 13.1 $11,603  $16,575  $19,061  $2,501  $2,748  $3,490  

D 3 2 11.3 13.0 13.7 $12,558  $17,940  $20,631  $2,473  $2,748  $3,408  

D 3 3 12.0 14.3 15.2 $13,787  $19,695  $22,649  $2,308  $2,748  $3,078  

D 3 4 10.5 11.3 12.2 $10,920  $15,600  $17,940  $2,583  $2,748  $3,050  

D 4 1 10.5 15.0 18.2 $11,603  $16,575  $19,061  $1,818  $1,998  $2,238  

D 4 2 11.6 16.3 17.1 $12,558  $17,940  $20,631  $1,718  $1,998  $2,358  

D 4 3 16.6 17.8 20.5 $13,787  $19,695  $22,649  $1,878  $1,998  $2,178  

D 4 4 11.6 14.1 15.7 $10,920  $15,600  $17,940  $1,778  $1,998  $2,098  

E 1 1 0.0 0.0 0.0 $0  $0  $0  $1,974  $2,407  $3,057  

E 1 2 12.6 15.8 17.9 $18,994  $25,668  $29,262  $2,166  $2,407  $2,768  

E 1 3 9.2 13.1 14.4 $15,691  $21,204  $24,173  $1,685  $2,407  $3,009  

E 1 4 15.1 16.6 21.1 $19,958  $26,970  $30,746  $1,998  $2,407  $2,864  

E 2 1 0.0 0.0 0.0 $0  $0  $0  $1,804  $2,027  $2,372  

E 2 2 14.2 17.8 21.5 $18,994  $25,668  $29,262  $1,804  $2,027  $2,412  

E 2 3 10.9 14.7 16.3 $15,691  $21,204  $24,173  $1,439  $2,027  $2,331  

E 2 4 14.0 18.7 23.0 $19,958  $26,970  $30,746  $1,419  $2,027  $2,331  
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Table 5.7 Example 8: RP-ESDTCTEXP supreme chromosome different optimization objectives under Uncertain 
environment. 

Activity ID >> A B C D E A B C D E A B C D E 

T
o

ta
l 

In
te

r
ru

p
ti

o
n

 (
d

a
y

s)
 

Num of available modes >> 1 3 3 4 2           

Optimization 

objective 

T
o

ta
l 

d
u

ra
ti

o
n

 

T
o

ta
l 

c
o

st
 

T
o

ta
l 

M
a

te
r
ia

l 
c
o

st
 (

$
) 

 

(F
ix

ed
 c

o
st

) 

T
o

ta
l 

L
a

b
. 

a
n

d
 e

q
u

ip
. 

C
o

st
 (

$
) 

 

(V
a

ri
a

b
le

 c
o

st
) 

T
o

ta
l 

in
d

ir
ec

t 
co

st
 

T
o

ta
l 

c
o

st
 f

o
r 

id
le

 c
r
ew

 

ti
m

e 

  

  

Chromosome 

  

  

Shift Time 

(Delayed start of 

activity at unit 1) 

(days)  

Total Crew Idle 

Time 

(Interruption) 

(days) 

a) Schedule 

minimization  
109.7 $1,808,853  $709,744  $730,527  $313,857  $54,727  1 1 3 1 1 0 1 0 3 9 0 2 0 10 1 13 

b) Cost 

minimization  
129.1 $1,753,842  $735,179  $697,543  $302,653  $18,468  1 1 3 4 1 0 9 1 0 19 0 4 0 0 1 5 

c) Joint cost - 

schedule - 

Interruption 

minimization 

137.8 $1,831,851  $737,696  $701,643  $354,619  $37,891  1 3 1 1 1 0 0 0 26 9 0 0 3 7 1 11 
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Table 5.8 Example 8: Impact of different JCL %. 

           Activity ID >> A B C D E A B C D E A B C D E 

T
o

ta
l 

In
te

r
r
u

p
ti

o
n

 (
d

a
y

s)
            Num of available modes >> 1 3 3 4 2                     

Optimization 

objective 
JCL % 

T
o

ta
l 

d
u

ra
ti

o
n

 

T
o

ta
l 

c
o

st
 

T
o

ta
l 

M
a

te
r
ia

l 
c
o

st
 (

$
) 

 

(F
ix

ed
 c

o
st

) 

T
o

ta
l 

L
a

b
. 

a
n

d
 e

q
u

ip
. 

C
o

st
 (

$
) 

 

(V
a

ri
a

b
le

 c
o

st
) 

T
o

ta
l 

in
d

ir
ec

t 
co

st
 

T
o

ta
l 

c
o

st
 f

o
r 

id
le

 

cr
ew

 t
im

e
 

Chromosome 

Shift Time 

(Delayed start of 

activity at 

unit 1) (days)  

Total Crew Idle 

Time 

(Interruption) 

(days) 

a) Schedule 

minimization  

JCL = 0.1 103.5 $1,707,293  $702,387  $695,159  $254,020  $55,728  1 1 3 1 1 0 3 0 2 9 0 4 0 8 1 13 

JCL = 0.3 105.9 $1,759,222  $724,760  $693,460  $287,345  $53,658  1 1 3 1 1 0 4 0 4 9 0 5 0 7 1 13 

JCL = 0.5 107.8 $1,768,941  $744,536  $694,281  $285,328  $44,796  1 1 3 1 1 0 4 1 3 10 0 3 0 7 0 10 

JCL = 0.7 109.7 $1,808,853  $709,744  $730,527  $313,857  $54,727  1 1 3 1 1 0 1 0 3 9 0 2 0 10 1 13 

JCL = 0.9 113.3 $1,838,778  $727,867  $753,632  $280,344  $76,934  1 1 3 1 1 0 6 2 1 10 0 5 2 10 1 18 

b) Cost 

minimization 

JCL = 0.1 143.9 $1,621,230  $676,118  $581,482  $359,627  $4,003  1 3 1 4 2 0 0 7 4 13 0 0 0 2 1 3 

JCL = 0.3 129.9 $1,657,469  $737,314  $626,723  $288,182  $5,250  1 2 3 4 2 0 0 7 0 15 0 0 2 0 1 3 

JCL = 0.5 122.1 $1,738,381  $727,420  $650,238  $331,198  $29,524  1 1 3 4 2 0 3 0 0 14 0 6 0 0 1 7 

JCL = 0.7 129.1 $1,753,842  $735,179  $697,543  $302,653  $18,468  1 1 3 4 1 0 9 1 0 19 0 4 0 0 1 5 

JCL = 0.9 142.6 $1,833,713  $714,636  $712,982  $369,731  $36,365  1 2 1 4 1 0 0 0 4 21 0 0 0 8 8 16 

c) Joint cost - 

schedule - 

Interruption 

Minimization 

JCL = 0.1 117.3 $1,731,494  $718,862  $638,832  $325,202  $48,598  1 1 1 1 1 0 4 0 12 10 0 10 0 6 1 17 

JCL = 0.3 120.2 $1,776,892  $712,519  $675,624  $325,544  $63,206  1 1 1 1 1 0 0 0 19 9 0 8 0 6 1 15 

JCL = 0.5 136.3 $1,743,744  $721,038  $640,198  $349,014  $33,493  1 3 1 1 1 0 0 0 21 9 0 0 0 9 1 10 

JCL = 0.7 137.8 $1,831,851  $737,696  $701,643  $354,619  $37,891  1 3 1 1 1 0 0 0 26 9 0 0 3 7 1 11 

JCL = 0.9 144.4 $1,828,154  $720,288  $696,568  $385,445  $25,854  1 3 1 2 1 0 0 2 23 11 0 0 2 6 8 16 
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5.7.3. Example 9: Testing including penalty costs 

In order to study the sensitivity of the supreme solution to the project penalty costs, 

the same network configuration and data of example 8 is analyzed after setting the 

project penalty costs at different values and different schemes. Additional costs 

are accumulated at any simulation run when the penalty conditions are met. The 

problem is solved to find the solution for the objective of cost minimization at a 

targeted 70% joint confidence level of both time and cost. Scenarios 1 to 3 are set 

for a schedule-driven project where a penalty is set for exceeding a deadline of 

120 days. Scenarios 4 to 6 are set for a budget-driven project where a percentile 

penalty is applied on the cost overrun in excess of $1.7 million. A combination of 

schedule and budget penalties schemes are also analyzed. The deadline and 

budget values are chosen in contrast to the cost and schedule values identified for 

the supreme chromosome solution in example 8 (where no penalties/bonus is 

considered). The model for the penalties at each scenario is capped to a maximum 

value, as is commonly exercised in the contract provisions for construction 

projects. In this example, the maximum schedule penalty is set to $200,000 (i.e. in 

the case of scenario 1, this value will be applicable if the expected schedule from 

a simulation run is late by more than 25 day). For each scenario, the supreme 

chromosome is identified, and the optimum cost and schedule results are shown 

in Table 5.9. As expected, different chromosomes are obtained in this analysis for 

the different scenarios. This phenomenon can be attributed to the fact that penalty 

values are only triggered when the conditions are satisfied and thus affects the 

expected cost values for some of the simulation runs. Depending on the cost and 
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schedule uncertainty profiles, certain crew formations are found more fit to the 

objective function. This illustrates that modelling the penalty cost scheme is an 

important factor in the determination of the supreme chromosome solution. 

Table 5.9 Example 9: Impact of different penalty schemes. 

S
ce

n
a

ri
o

 

Penalty Scheme 

Activity ID >> A B C D E 

T
o

ta
l 

In
te

rr
u

p
ti

o
n

 

(d
a

y
s)

 

Total 

duration 
Total cost Chromosome 

1 

Schedule Penalty of $8,000/day for 

exceeding a deadline of 120days. 

Maximum schedule penalty is $200,000 

122.4 $1,759,181  1 2 3 3 2 1 

2 

Schedule Penalty of $12,000/day for 

exceeding a deadline of 120days. 

Maximum schedule penalty is $200,000 

121.7 $1,774,560  1 1 3 3 2 1 

3 

Schedule Penalty of $16,000/day for 

exceeding a deadline of 120days. 

Maximum schedule penalty is $200,000 

122.7 $1,799,644  1 1 3 3 2 1 

4 

Budget Penalty of 20 %  x Budget overrun in 

excess of $1,700,000. 

Maximum Budget penalty is $100,000 

143.4 $1,792,348  1 2 1 4 2 8 

5 

Budget Penalty of 30 %  x Budget overrun  in 

excess of 

Maximum Budget penalty is $100,000 

134.8 $1,781,130  1 2 2 4 2 2 

6 

Budget Penalty of 40 %  x Budget overrun  in 

excess of 

Maximum Budget penalty is $100,000 

132.6 $1,789,035  1 2 3 4 2 4 

7 Scenario 1 and 4 Combined 125.9 $1,786,859  1 2 3 3 2 4 

8 Scenario 2 and 5 Combined 123.8 $1,772,111  1 1 3 3 2 1 

9 Scenario 3 and 6 Combined 121.7 $1,787,718  1 1 3 3 2 1 
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CHAPTER 6 :  CONCLUSIONS, CONTRIBUTIONS AND 

FUTURE WORK. 

6.1. Conclusions 

Project teams are facing an increasing challenge to deliver the project at the lowest 

time and with the lowest cost.  These conflicting objectives require exploring 

several execution modes for the project activities, each of which has uncertainty 

around its own time and cost attributes, making the decisions about trade-offs for 

these conflicting objectives an essential issue. The complete enumeration in the 

solution space of the problem exponentially increases for medium and large size 

problems; hence, these trade-off problems are known as non-deterministic 

polynomial-time hard (NP-Hard) (De et al. 1995). In this study, we have developed 

a method using a combination of simulation and optimization techniques to solve 

discrete time–cost trade-off problem under uncertainty. The aim of the developed 

method is two-fold. On the one hand, it is to find the optimal chromosome 

representing the combination of activity modes while minimizing the time and/or 

cost of the project and concurrently maintain the joint confidence level of time and 

cost at the specified level. This is achieved by evolving generations of potential 

solutions where each generation is composed by partitioning the project network 

activities to solve for the optimal modes of primary activities, on the other hand, 

the aim is to identify the main effect of mode selection and provides insight into the 

relationship between cost and schedule and its influence on the overall time and 
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cost of the project at the specified joint confidence level. The method was further 

extended to optimize for crew work continuity on repetitive class projects under 

uncertainty with consideration to scheduling typical and non-typical activities. The 

method addresses two main limitations of previous works related to repetitive 

construction projects: these are the shortage of optimization techniques 

accounting for uncertainty in both cost and schedule attributes and the lack of a 

comprehensive crew work interruption optimization methods. The method hence 

presents a comprehensive systematic approach circumventing the limitations of 

previous works.  

Several examples taken from the literature are solved to illustrate the basic 

concept and test the performance and accuracy of the developed method; hence, 

several conclusions were drawn. The method was able to match the optimum 

results by others under a certain environment, which is considered a validation of 

the developed method. The method is capable of accounting for uncertainties 

associated with input variables using the Monte Carlo simulation technique, where 

for large test cases the optimal solution under a stochastic context was unknown 

so far. The outcomes prove that depending on the shapes, range and overlaps of 

the probability distribution functions of each mode and depending on the 

penalty/bonus schemes the method generates different optimal chromosome 

solutions for different joint confidence levels.  

The method provides project managers with a tool to set project schedules and 

budgets that depict project environments more reasonable, accounting for 

uncertainty, thus reducing the potential construction cost and time overruns. 
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Only a small percentage of the solution space was searched to obtain the optimal 

solutions with reasonable execution time. This was achieved utilizing the power of 

the computational engine of Google’s BigQuery with the free BigQuery quota 

limitations. Those limitations are expandable, where users can purchase an 

additional number of slots to use for query processing to improve the performance 

of the developed queries.  The execution time is not linearly proportioned to the 

size of the project since big queries are run concurrently on the server. Since the 

run time is reasonably short, it is safe to say that the developed method can be 

applied for solving larger problems while maintaining the same accuracy.  

6.2. Contributions 

The aim of this thesis was to study the modelling of a discrete time-cost trade-off 

method under a stochastic context. We have developed an evolutionary technique 

for staged enumeration of the solution space.  

The main contribution of this study is the development of a computerized method 

named ESDTCT that efficiently hybridizes the techniques of which (1) The CPM 

algorithm, (2) Monte Carlo simulation, (3) Joint cost and schedule risk analysis, 

and (4) Design of experiments for the enumeration of the solution space.   

In parallel with the need to find the supreme chromosome solution, there is a need 

to apply managerial flexibility towards the selection of execution modes. This 

arises from the bias of the project manager to favour certain modes that may not 

be the optimal modes. The developed method provides a main effect plot that 
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shows the relationship between the mode selection and the objective function;  this 

provides the decision-maker a guideline for making informed decisions.  

The method also brings a number of features representing improvements to 

existing methodologies.  

 Utilizes Monte Carlo simulation to model uncertainties associated with an 

activity duration, and the activity fixed, variable and indirect costs.  

 The joint cost and schedule confidence level (JCL) is used to identify the 

solution satisfying a targeted confidence level in the produced cost and 

schedule frontier curve solutions.  

 identifying the supreme chromosome solution satisfying the tri-objective 

function for cost minimization, schedule minimization and crew work 

interruption minimization. 

 Modelling traditional and repetitive class projects; accounting for non-typical 

activities in repetitive projects.  

 Accounting for penalty/bonus schemes in the simulation model. 

 Integrating the discrete risk events and their probability of occurrence to 

gain the benefits of concurrent assessments of uncertainties and risks on 

the trade-off process.  

 Incorporate the risk or opportunity of incurring a penalty or bonus cost when 

exceeding or meeting defined milestone completion dates and/or exceeding 

or meeting defined budget values. 

 



 

198 

 

 

 

 

6.3. Limitations of the developed method  

Several limitations exist in the developed method and summarized in the following 

sections: 

The ESDTCT method is coded in BigQuery graphical web User-Interface (UI) in 

the Cloud Console using BigQuery resources and standard SQL queries. The 

developed query uses In-line JavaScript User-Defined Functions (UDF) to make 

calls for solving the Monte Carlo simulation at each experimental run. The UDF 

function has a limitation by Google where output data of the function must be 5MB 

or less in size. To put things in context, the query is designed to solve the batch of 

1000 Monte Carlo simulation for each experiment. The output of the function is the 

expected start and finish dates of each activity and its relative expected costs both 

calculated accounting for the uncertainty PDF; therefore, by inheriting this 

limitation from Google BigQuery, the maximum number of activities that can exist 

in a project network is restricted. The larger the number of activities, the longer the 

execution run time; therefore, it is recommended to simplify the project network to 

a management summary, also called a Summary Master Schedule (SMS) which 

depicts the overall project broken down into its major components by area and is 

used for higher-level management reporting. 

Although the developed method can handle a large network schedule, it has 

limitations to the problem complexity. This is mainly determined by the number of 

relationship logic between the network activities. The size of a Cartesian product 

matrix for the full factorial experiment enumeration for primary activities in a single 

generation is governed by the number of primary activities and the number of 
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assigned modes to each activity. The maximum size that can be processed is 

restricted by the Google BigQuery limitation of 2000 maximum bound for 

concurrent slots per project for on-demand pricing. This limitation, however, is the 

current state for the free quota and can be scalable upon request from Google by 

adding instances of virtual machines to the Google compute engine. With the free 

quota limitations, we were able to process 8 primary tasks each having 5 modes 

at any given generation. This equates to approximately 400,000 experimental runs 

at each generation. This was achieved by breaking the Cartesian matrix into the 

Google maximum limit of 50 concurrent “Interactive” queries. More Google “Batch” 

queries can be deployed; however, will increase the execution run time.   For more 

details on Google BigQuery limitations and details on Batch and Interactive 

queries, the reader is referenced to Google quotas and limits (Maharana et al. 

2015). 

Another limitation of the developed method is ignoring the higher-level interactions 

between the modes. In example, the selection of mode A in activity 1 is not 

correlated to the selection of mode B in activity 2. This assumption was necessary 

to minimize the matrix size of the full factorial design of experiments runs. Such 

interactions will be further studied in future works. 

The discrete risk events considered in this study are associated to a project activity 

that may or may not occur, when occur, their impacts are uncertain. However, 

other types of risks that are not specific to an activity may also exist, such as severe 

weather conditions; those risks are not considered in the modeling of the 

developed method and are subject for inclusion in future work.  
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A loss of accuracy is found in the case of the developed complete random 

experiments module (ESDTCTRand) based on statistics of the sample size 

considered in the analysis. In an ideal situation, the entire population of the solution 

space should be studied but this is almost impossible on large and complex 

projects. This loss of accuracy is augmented by the developed Evolutionary 

experiment enumeration module (ESDTCTExp). Therefore, it is recommended to 

perform a final simulation run to validate the impact of selecting the various 

construction modes the objectives of total cost and time.  

6.4. Directions for further research 

Looking to the future, more emphasis is required on blurring the boundaries 

between the simulation model and the optimization techniques.  

Future work will be to further enhance the applicability of the developed method 

by: 

 Adding a knowledge-based component to narrow the search space.  

 Modelling non-discrete risk events that are not associated with a specific 

work activity, such as severe weather conditions.  

 Modelling probabilistic branches of the network to account for different 

network logic for different combination of construction modes.  

 Modelling correlation between the selection of construction modes 

amongst the different activities.  
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APPENDIX A: ESDTCT method script 

a)   ESDTCTExp  

1.   #standardSQL   
2.    
3.    
4. --  ESDTCT_EXP Model   
5.      
6. --####################################################################    
7. -- This code is developed using BigQuery SQL statements with Temporary    
8. -- functions having an in-line Java script programing. Readers of this   
9. -- code need advanced programing skills.   
10. -- The input to this script is two BigQuery tables namely (Tasks_bq    
11. -- , Modes_bq and Experiments). The input tables are created in Google    
12. -- sheets and uploaded to BigQuery using the Google BigQuery API in    
13. -- Apps Script.    
14. -- (Note: This is an advanced service that must be enabled before use.   
15. -- Reference:    
16. -- https://developers.google.com/apps-script/guides/services/advanced)   
17. -- Tasks_bq table contains data input describing the network   
18. -- activities and logic relationship for a typical unit in a repetative   
19. -- project.    
20. -- Modes_bq table contains data input describing the admitted modes to   
21. -- each activity and probabilistic estimates parameters for the cost    
22. -- and duration data.   
23. -- Experiments table contains the cartisian product for the enummeration   
24. -- of primary activities   
25. -- A Number of code parameters, where noted in the script, are modified   
26. -- using the Apps Script before executing the API command.   
27. --####################################################################    
28. -- The Simulation_and_JCL_Calculation_Function performs a Monte Carlo    
29. -- simulation and identify the frontier curve solution satisfying the   
30. -- user defined JCL.    
31. --####################################################################    
32.   CREATE TEMPORARY FUNCTION Simulation_and_JCL_Calculation_Function (arr ARRAY<STRI

NG>)   
33.   RETURNS ARRAY<STRUCT<TRADE_OFF_RUN INT64, SIMULATION_RUN  INT64,    
34.   S_Activity_ID INT64,    
35.   P_Activity_ID INT64, U_Activity_ID INT64,  START FLOAT64 ,     
36.   FINISH FLOAT64, TC FLOAT64 , JCL FLOAT64,    
37.   CHROMOSOME String ,    
38.   Mode_Option INT64,   
39.   Activity_Type string, P1 INT64 , P2 INT64, P3 INT64, P4 INT64,    
40.   P5 INT64, P6 INT64, Ladder_Seq INT64,  RDUR FLOAT64, RFC FLOAT64,    
41.   RVC FLOAT64 , ROHC FLOAT64, FC FLOAT64, VC FLOAT64, OHC FLOAT64,   
42.   PC FLOAT64,  BC FLOAT64,   
43.   Lable STRING, Num_Of_Modes INT64    
44.   >>   
45.   LANGUAGE js AS """   
46.   var result = [];   
47.   for (var i = 0; i < arr.length; i++){    
48.   result.push(JSON.parse(arr[i])) }   
49.   for (var i = 0; i < arr.length; i++){   
50.   if (result[i].Probability_of_Occurrence < Math.random()){   
51.   result[i].RDUR ==  0   
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52.   result[i].RFC ==   0   
53.   result[i].RVC ==  0   
54.   }}   
55.    
56.   result.sort(function (a,b) {   
57.     if (a.SIMULATION_RUN > b.SIMULATION_RUN) return  1;   
58.     if (a.SIMULATION_RUN < b.SIMULATION_RUN) return -1;   
59.     if (a.Ladder_Seq > b.Ladder_Seq) return  1;   
60.     if (a.Ladder_Seq < b.Ladder_Seq) return -1;   
61.     return 0;   
62.   });    
63.   var arry = []   
64.   for (var i = 0; i < result.length; i++) {   
65.   arry.push (result[i].S_Activity_ID)   
66.   }   
67.   for (var i = 0; i < result.length; i++) {   
68.      
69.   var x1 = arry.indexOf(result[i].P1);   
70.   var x2 = arry.indexOf(result[i].P2);   
71.   var x3 = arry.indexOf(result[i].P3);   
72.   var x4 = arry.indexOf(result[i].P4);   
73.   var x5 = arry.indexOf(result[i].P5);   
74.   var x6 = arry.indexOf(result[i].P6);   
75.      
76.    if (x1 == -1) {var FX1 = 0} else {var FX1 = result[x1].FINISH}   
77.    if (x2 == -1) {var FX2 = 0} else {var FX2 = result[x2].FINISH}   
78.    if (x3 == -1) {var FX3 = 0} else {var FX3 = result[x3].FINISH}   
79.    if (x4 == -1) {var FX4 = 0} else {var FX4 = result[x4].FINISH}   
80.    if (x5 == -1) {var FX5 = 0} else {var FX5 = result[x5].FINISH}   
81.    if (x6 == -1) {var FX6 = 0} else {var FX6 = result[x6].FINISH}   
82.    
83.   result[i].START = Math.max( FX1, FX2,FX3,FX4,FX5,FX6)    
84.   + 0  /*continuum_time_calculations*/;   
85.   result[i].FINISH = result[i].START + result[i].RDUR    
86.   - 0  /*continuum_time_calculations*/;   
87.   }   
88.   result.sort(function (a,b) {   
89.     if (a.S_Activity_ID > b.S_Activity_ID) return  1;   
90.     if (a.S_Activity_ID < b.S_Activity_ID) return -1;   
91.     return 0;   
92.   });    
93.   var Num_of_Project_Tasks = 5/* No of Activities in a Typical unit */   
94.     var arry2 = []   
95.   for (var i = 0; i < result.length; i++) {   
96.   arry2.push (result[i].S_Activity_ID)   
97.   }   
98.   var TTC = 0; var TFC = 0 ; var TVC = 0;    
99.   var TOHC = 0 ;    
100.   for (var i = 0; i < result.length; i++) {   
101.    
102.   TFC = TFC + (result[i].RFC)   
103.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
104.   result[i].FC = TFC , TFC = 0}   
105.   TVC = TVC + (result[i].RVC * result[i].RDUR)    
106.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
107.   result[i].VC = TVC , TVC = 0}   
108.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
109.   result[i].OHC = result[i].ROHC * result[i].FINISH}   
110.    
111.   TTC +=     
112.   (result[i].RFC + (result[i].RVC * result[i].RDUR))   
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113.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
114.   result[i].TC = TTC + result[i].ROHC * result[i].FINISH , TTC = 0   
115.      
116. // Adding Penalty / Bonus Cost   
117.    
118. // Linear continous schemes for Penalty / Bonus Cost   
119.    
120. // Schedule deadline driven projects - Penalty Cost scheme:   
121.  if ((result[i].FINISH - Deadline_) > 0){    
122.   result[i].PC =   
123.   Math.min((Schedule_Penalty_Cost * (result[i].FINISH - Deadline_)),   
124.   Max_Schedule_Penalty__Cost )   
125.   }   
126. // Schedule deadline driven projects - Bonus Cost scheme:   
127.  if ((result[i].FINISH - Deadline_) < 0){     
128.   result[i].BC =   
129.   Math.max((Schedule_Bonus_Cost * (result[i].FINISH - Deadline_)),   
130.   - Max_Schedule_Bonus__Cost)   
131.   }   
132.      
133. // Budget driven projects - Penalty Cost scheme:   
134.     
135.  if ((result[i].TC - Budget__) > 0){    
136.   result[i].PC +=   
137.   Math.min((Budget_Penalty_Cost * (result[i].TC - Budget__)),   
138.   Max_Budget_Penalty__Cost )   
139.   }   
140. // Budget driven projects - Bonus Cost scheme:   
141.  if ((result[i].TC - Budget__) < 0){   
142.  result[i].BC +=   
143.   Math.max((Budget_Bonus_Cost * (result[i].TC - Budget__)),   
144.   - Max_Budget_Bonus__Cost)   
145.   }   
146.   result[i].TC += (result[i].PC + result[i].BC)     
147.   }   
148.   }   
149.   var Final_result = result.filter(function (dataRow) {   
150.   return dataRow.TC > 0;   
151.   });   
152.    
153.   for (var i = 0; i < Final_result.length; i++){    
154.   var count = 0        
155.   for (var j = 0; j < Final_result.length; j++){   
156.   if (Final_result[i].TC >= Final_result[j].TC  &&    
157.   Final_result[i].FINISH >= Final_result[j].FINISH ){count +=1 }   
158.   }   
159.   Final_result[i].JCL = count / (Final_result.length )   
160.   }   
161.      
162.     var Final_result1 = Final_result.filter(function (dataRow) {   
163.   return dataRow.JCL > 0.5 && dataRow.JCL < 0.6/* Lower and upper JCL:    
164.   Change Numbers using App Script */;   
165.   });   
166.   return Final_result1   
167.   """;   
168.    
169. --####################################################################    
170. -- The Normalization_of_Frontier_Solutions_Function performs calculations   
171. -- to nomalize the cost and schedule pairs of the frontier solutions to    
172. -- the range [0,1]     
173. --####################################################################    
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174.   CREATE TEMPORARY FUNCTION Normalization_of_Frontier_Solutions_Function (arr AR
RAY<STRING>)   

175.   RETURNS ARRAY<STRUCT<TRADE_OFF_RUN INT64, SIMULATION_RUN INT64,    
176.   S_Activity_ID INT64, P_Activity_ID INT64,   
177.   U_Activity_ID INT64, START FLOAT64 ,  FINISH FLOAT64, TC FLOAT64 ,    
178.   JCL FLOAT64,    
179.   CHROMOSOME String ,    
180.   Mode_Option INT64,   
181.   Activity_Type string, P1 INT64 , P2 INT64, P3 INT64, P4 INT64,    
182.   P5 INT64, P6 INT64, Ladder_Seq INT64, RDUR FLOAT64, RFC FLOAT64,    
183.   RVC FLOAT64 , ROHC FLOAT64, FC FLOAT64, VC FLOAT64,   
184.    OHC FLOAT64, PC FLOAT64,  BC FLOAT64,   
185.    Lable STRING, Num_Of_Modes INT64 ,   
186.    Vector FLOAT64   
187.    >>   
188.   LANGUAGE js AS """   
189.   var Final_result = [];   
190.   for (var i = 0; i < arr.length; i++){    
191.   Final_result.push(JSON.parse(arr[i])) }   
192.   var maxTC = Math.max.apply(Math, Final_result.map(function(v) {   
193.   return v.TC;}));   
194. //  var minTC = Math.min.apply(Math, Final_result.map(function(v){   
195. //  return v.TC;}));   
196.    var minTC = 0    
197.    var maxFinish = Math.max.apply(Math, Final_result.map(function(v)   
198.    { return v.FINISH;}));   
199. // var minFinish = Math.min.apply(Math, Final_result.map(function(v){   
200. // return v.FINISH;}));   
201.    var minFinish = 0   
202.   for (var i = 0; i < Final_result.length; i++){    
203.   Final_result[i].Vector =    
204.   Math.sqrt(Math.pow(((Final_result[i].FINISH - minFinish )/   
205.   (maxFinish - minFinish)), 2)   
206.   + Math.pow((Final_result[i].TC - minTC)/(maxTC - minTC),2) )    
207.       }   
208.   return Final_result   
209.   """;   
210.      
211.    
212.    CREATE TEMP FUNCTION TriDist_Sampling(P FLOAT64 ,    
213.    a FLOAT64, m FLOAT64, b FLOAT64)   
214.   RETURNS FLOAT64   
215.   LANGUAGE js AS """   
216.   var d ;   var x   
217.   d = b - a   
218.   if (d != 0){x = (m - a) / d} else {x = b;}    
219.   if (P <= x){return (a + ((Math.sqrt(P * x)) * d))} else {   
220.   return  (b - ((Math.sqrt((1 - P) * (1 - x))) * d));}   
221.   """;   
222.    
223. -- END OF TEMPORARY FUNCTIONS    
224. --####################################################################    
225. -- The below series of BigQuery SQL Sub Queries are set to perform the    
226. -- data input set up for the described Temporary functions above.     
227. --####################################################################    
228.   WITH    
229.    
230. --####################################################################    
231. -- The sub query Simulation below prepares a replication of the project    
232. -- to a user defined number of simulation scenarios.     
233. --####################################################################    
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234.   Simulation as (   
235.   Select    
236.     SIMULATION_RUN  , rec.*   
237.    , RAND() as P_Dur   
238.    , RAND() as P_FC   
239.    , RAND() as P_VC   
240.    , RAND() as P_OHC   
241.    from    
242.     ESDTCT_Database.Tasks_bq rec   
243.      Cross JOIN   
244.      UNNEST((GENERATE_ARRAY(1,1000) )) AS SIMULATION_RUN    
245. --     Change SIMULATION_RUN Number using App Script   
246. --   order by SIMULATION_RUN ,Activity_ID   
247.      )   
248.   ,   
249. --####################################################################    
250. -- The sub query Tasks below prepares the initial network details for    
251. -- a typical unit and creates the global network for the user defined    
252. -- number of repetitive units.     
253. --####################################################################    
254.     Tasks as (   
255.     Select    
256.     SIMULATION_RUN, Activity_Type,    
257.     Probability_of_Occurrence, Ladder_Seq,    
258.     Lable, Num_Of_Modes,    
259.     Activity_ID as U_Activity_ID  ,   
260.     Activity_ID    as P_Activity_ID   
261.     , (Activity_ID  + (SIMULATION_RUN-1) *    
262.     ( Num))   as S_Activity_ID   
263.     , P1 + (SIMULATION_RUN - 1) *    
264.     ( Num)   as P1   
265.     , P2  + (SIMULATION_RUN - 1) *    
266.     ( Num)   as P2   
267.     , P3  + (SIMULATION_RUN - 1) *    
268.     ( Num)   as P3   
269.     , P4  + (SIMULATION_RUN - 1) *    
270.     ( Num)   as P4   
271.     , P5  + (SIMULATION_RUN - 1) *    
272.     ( Num)   as P5   
273.     , P6  + (SIMULATION_RUN - 1) *    
274.     ( Num)   as P6   
275.      , P_Dur , P_FC , P_VC , P_OHC   
276.      from Simulation rec   
277.     
278.              Cross JOIN   
279.  UNNEST((GENERATE_ARRAY(5/* No of Activities in a Typical unit */,   
280.       5/* No of Activities in a Typical unit */ ) ))   
281.       AS Num /*: Change Number using App Script */   
282.    
283.   --   order by S_Activity_ID   
284.        )   
285. ,   
286. --####################################################################    
287. -- The sub query Modes below reads the user parameter inputs for each    
288. -- activity admitted modes   
289. --####################################################################    
290.   Modes AS (   
291.   SELECT * from `ESDTCT_Database.Modes_bq`    
292.   )   
293.   ,   
294. --####################################################################    
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295. -- The sub query Experiment_run below prepares the activity modes input   
296. -- to activities.   
297. --####################################################################    
298.   Experiment_run AS (   
299.   SELECT TRADE_OFF_RUN ,    
300.   STRING_AGG(Cast( CHROMOSOME as string)) CHROMOSOME    
301.   FROM `ESDTCT_Database.Experiments` rec   
302.   group by TRADE_OFF_RUN   
303.   )   
304.   ,   
305. --####################################################################    
306. -- The sub query SETUP below joins the data input tables and assign a    
307. -- random cost and duration values based on the trinagular probability    
308. -- distribution function.   
309. --####################################################################    
310.   SETUP as (   
311.   SELECT TRADE_OFF_RUN, SIMULATION_RUN, S_Activity_ID ,   
312.   U_Activity_ID, P_Activity_ID,    
313.   Probability_of_Occurrence , Mode_Option,   
314.   Activity_Type, P1, P2, P3, P4, P5, P6, Ladder_Seq, 0.0 START,    
315.   0.0 FINISH, 0 JCL, 0 IDLE,   
316.   TriDist_Sampling( P_Dur, MinDur, MLDur, MaxDur) as RDUR,   
317.   TriDist_Sampling( P_FC, MinFC , MLFC , MaxFC ) as RFC,    
318.   TriDist_Sampling( P_VC, MinVC , MLVC , MaxVC ) as RVC,   
319.   TriDist_Sampling( P_OHC, MinOHC , MLOHC , MaxOHC ) as ROHC,   
320.   0 as TC , 0 as FC, 0 as VC, 0 as OHC, 0 as PC,  0 as BC,   
321.   CHROMOSOME , Lable,  Num_Of_Modes     
322.   FROM    
323.   Experiment_run , UNNEST(SPLIT( CHROMOSOME )) oid WITH OFFSET tid   
324.   JOIN Tasks t1 ON t1.P_Activity_ID = tid + 1   
325.   JOIN Modes t2 ON t2.Activity_IID = t1.U_Activity_ID    
326.    and  CAST(REPT_UNIT AS STRING)  =    
327.    cast(Ceil ((tid + 1)/5/* No of Activities in a Typical unit */)    
328.    as string)   
329.   AND CAST(Mode_Option AS STRING) = oid     
330. -- order by TRADE_OFF_RUN, S_Activity_ID   
331.   )   
332.   ,   
333. --####################################################################    
334. -- The sub querys JCL_Calc and JCL_Calc2 calls the defined temporary    
335. -- functions to determine the supreme chromosome solution.    
336. --####################################################################    
337.   JCL_Calc as (   
338.     SELECT  rec.*    
339.   FROM (  SELECT ARRAY_AGG(TO_JSON_STRING(t)) AS data    
340.   FROM SETUP as t   
341.   GROUP BY TRADE_OFF_RUN   
342.   ) as t    
343.  , UNNEST(Simulation_and_JCL_Calculation_Function(data)) AS rec   
344.  )   
345.    
346.   SELECT  1 as GENERATION,    
347.   FINISH,        TC,        FC,        VC,         
348.   OHC, 0.0 as        IDLE_C,        PC,           
349.   BC, ""        as Shift_Combination_String,   
350.   "" as IDLE_Combination_, 0.0 as         Interruption,    
351.   "" as        Lable_Combination_String,   
352.   CHROMOSOME   
353.   FROM (   
354.   SELECT      
355.   ARRAY_AGG(TO_JSON_STRING(t)) AS data    
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356.   FROM JCL_Calc as t    
357.   ), UNNEST(Normalization_of_Frontier_Solutions_Function(data)) AS rec   
358.      
359.   -- Optimization Method   
360. -- for  Joint cost,schedule,Interruption minimization Change the    
361. --        Order by to: Vector, FINISH, TC   
362. -- for  cost minimization Change the Order by to: TC , FINISH   
363. -- for schedule minimization Change the Order by to: FINISH, TC   
364.      
365. Order by Vector , FINISH, TC    
366. Limit 1   
367.    
368.      
369.      

 

b)  ESDTCTRand  

1.   #standardSQL   
2.    
3. --  ESDTCT_RAND Model   
4. -- Run Number 1   
5.    
6. --####################################################################    
7. -- This code is developed using BigQuery SQL statements with Temporary    
8. -- functions having an in-line Java script programing. Readers of this   
9. -- code need advanced programing skills.   
10. -- The input to this script is two BigQuery tables namely (Tasks_bq    
11. -- and Modes_bq). A sub query is designed to generate a random sample   
12. -- of experiments. The input tables are created in Google    
13. -- sheets and uploaded to BigQuery using the Google BigQuery API in    
14. -- Apps Script.    
15. -- (Note: This is an advanced service that must be enabled before use.   
16. -- Reference:    
17. -- https://developers.google.com/apps-script/guides/services/advanced)   
18. -- The Output Table is saved temporarily in BigQuery Tables.   
19. -- 100 Concurrent Runs of this script is made and all data is apended to    
20. -- the same output table.    
21. -- Tasks_bq table contains data input describing the network   
22. -- activities and logic relationship for a typical unit in a repetative   
23. -- project.    
24. -- Modes_bq table contains data input describing the admitted modes to   
25. -- each activity and probabilistic estimates parameters for the cost    
26. -- and duration data.   
27. -- A Number of code parameters, where noted in the script, are modified   
28. -- using the Apps Script before executing the API command.   
29. --####################################################################    
30. -- The Simulation_and_JCL_Calculation_Function performs a Monte Carlo    
31. -- simulation and identify the frontier curve solution satisfying the   
32. -- user defined JCL.    
33. --####################################################################    
34.   CREATE TEMPORARY FUNCTION Simulation_and_JCL_Calculation_Function (arr ARRAY<STRI

NG>)   
35.   RETURNS ARRAY<STRUCT<TRADE_OFF_RUN INT64, SIMULATION_RUN  INT64,    
36.   S_Activity_ID INT64,    
37.   P_Activity_ID INT64, U_Activity_ID INT64,  START FLOAT64 ,     
38.   FINISH FLOAT64, TC FLOAT64 , JCL FLOAT64,    
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39.   CHROMOSOME String ,    
40.   Mode_Option INT64,   
41.   Activity_Type string, P1 INT64 , P2 INT64, P3 INT64, P4 INT64,    
42.   P5 INT64, P6 INT64, Ladder_Seq INT64,  RDUR FLOAT64, RFC FLOAT64,    
43.   RVC FLOAT64 , ROHC FLOAT64, FC FLOAT64, VC FLOAT64, OHC FLOAT64,   
44.   PC FLOAT64,  BC FLOAT64,   
45.   Lable STRING, Num_Of_Modes INT64    
46.   >>   
47.   LANGUAGE js AS """   
48.   var result = [];   
49.   for (var i = 0; i < arr.length; i++){    
50.   result.push(JSON.parse(arr[i])) }   
51.   for (var i = 0; i < arr.length; i++){   
52.   if (result[i].Probability_of_Occurrence < Math.random()){   
53.   result[i].RDUR ==  0   
54.   result[i].RFC ==   0   
55.   result[i].RVC ==  0   
56.   }}   
57.    
58.   result.sort(function (a,b) {   
59.     if (a.SIMULATION_RUN > b.SIMULATION_RUN) return  1;   
60.     if (a.SIMULATION_RUN < b.SIMULATION_RUN) return -1;   
61.     if (a.Ladder_Seq > b.Ladder_Seq) return  1;   
62.     if (a.Ladder_Seq < b.Ladder_Seq) return -1;   
63.     return 0;   
64.   });    
65.   var arry = []   
66.   for (var i = 0; i < result.length; i++) {   
67.   arry.push (result[i].S_Activity_ID)   
68.   }   
69.   for (var i = 0; i < result.length; i++) {   
70.      
71.   var x1 = arry.indexOf(result[i].P1);   
72.   var x2 = arry.indexOf(result[i].P2);   
73.   var x3 = arry.indexOf(result[i].P3);   
74.   var x4 = arry.indexOf(result[i].P4);   
75.   var x5 = arry.indexOf(result[i].P5);   
76.   var x6 = arry.indexOf(result[i].P6);   
77.      
78.    if (x1 == -1) {var FX1 = 0} else {var FX1 = result[x1].FINISH}   
79.    if (x2 == -1) {var FX2 = 0} else {var FX2 = result[x2].FINISH}   
80.    if (x3 == -1) {var FX3 = 0} else {var FX3 = result[x3].FINISH}   
81.    if (x4 == -1) {var FX4 = 0} else {var FX4 = result[x4].FINISH}   
82.    if (x5 == -1) {var FX5 = 0} else {var FX5 = result[x5].FINISH}   
83.    if (x6 == -1) {var FX6 = 0} else {var FX6 = result[x6].FINISH}   
84.    
85.   result[i].START = Math.max( FX1, FX2,FX3,FX4,FX5,FX6)    
86.   + 0  /*continuum_time_calculations*/;   
87.   result[i].FINISH = result[i].START + result[i].RDUR    
88.   - 0  /*continuum_time_calculations*/;   
89.   }   
90.   result.sort(function (a,b) {   
91.     if (a.S_Activity_ID > b.S_Activity_ID) return  1;   
92.     if (a.S_Activity_ID < b.S_Activity_ID) return -1;   
93.     return 0;   
94.   });    
95.   var Num_of_Project_Tasks = 5/* No of Activities in a Typical unit */   
96.     var arry2 = []   
97.   for (var i = 0; i < result.length; i++) {   
98.   arry2.push (result[i].S_Activity_ID)   
99.   }   
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100.   var TTC = 0; var TFC = 0 ; var TVC = 0;    
101.   var TOHC = 0 ;    
102.   for (var i = 0; i < result.length; i++) {   
103.    
104.   TFC = TFC + (result[i].RFC)   
105.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
106.   result[i].FC = TFC , TFC = 0}   
107.   TVC = TVC + (result[i].RVC * result[i].RDUR)    
108.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
109.   result[i].VC = TVC , TVC = 0}   
110.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
111.   result[i].OHC = result[i].ROHC * result[i].FINISH}   
112.    
113.   TTC +=     
114.   (result[i].RFC + (result[i].RVC * result[i].RDUR))   
115.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
116.   result[i].TC = TTC + result[i].ROHC * result[i].FINISH , TTC = 0   
117.      
118. // Adding Penalty / Bonus Cost   
119.    
120. // Linear continous schemes for Penalty / Bonus Cost   
121.    
122. // Schedule deadline driven projects - Penalty Cost scheme:   
123.  if ((result[i].FINISH - Deadline_) > 0){    
124.   result[i].PC =   
125.   Math.min((Schedule_Penalty_Cost * (result[i].FINISH - Deadline_)),   
126.   Max_Schedule_Penalty__Cost )   
127.   }   
128. // Schedule deadline driven projects - Bonus Cost scheme:   
129.  if ((result[i].FINISH - Deadline_) < 0){     
130.   result[i].BC =   
131.   Math.max((Schedule_Bonus_Cost * (result[i].FINISH - Deadline_)),   
132.   - Max_Schedule_Bonus__Cost)   
133.   }   
134.      
135. // Budget driven projects - Penalty Cost scheme:   
136.     
137.  if ((result[i].TC - Budget__) > 0){    
138.   result[i].PC +=   
139.   Math.min((Budget_Penalty_Cost * (result[i].TC - Budget__)),   
140.   Max_Budget_Penalty__Cost )   
141.   }   
142. // Budget driven projects - Bonus Cost scheme:   
143.  if ((result[i].TC - Budget__) < 0){   
144.  result[i].BC +=   
145.   Math.max((Budget_Bonus_Cost * (result[i].TC - Budget__)),   
146.   - Max_Budget_Bonus__Cost)   
147.   }   
148.   result[i].TC += (result[i].PC + result[i].BC)     
149.   }   
150.   }   
151.   var Final_result = result.filter(function (dataRow) {   
152.   return dataRow.TC > 0;   
153.   });   
154.    
155.   for (var i = 0; i < Final_result.length; i++){    
156.   var count = 0        
157.   for (var j = 0; j < Final_result.length; j++){   
158.   if (Final_result[i].TC >= Final_result[j].TC  &&    
159.   Final_result[i].FINISH >= Final_result[j].FINISH ){count +=1 }   
160.   }   
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161.   Final_result[i].JCL = count / (Final_result.length )   
162.   }   
163.      
164.     var Final_result1 = Final_result.filter(function (dataRow) {   
165.   return dataRow.JCL > 0.5 && dataRow.JCL < 0.6/* Lower and upper JCL:    
166.   Change Numbers using App Script */;   
167.   });   
168.    
169.   return Final_result1   
170.   """;   
171.    
172. --####################################################################    
173. -- The Normalization_of_Frontier_Solutions_Function performs calculations   
174. -- to nomalize the cost and schedule pairs of the Frontier solutions to    
175. -- the range [0,1]     
176. --####################################################################    
177.   CREATE TEMPORARY FUNCTION Normalization_of_Frontier_Solutions_Function (arr AR

RAY<STRING>)   
178.   RETURNS ARRAY<STRUCT<TRADE_OFF_RUN INT64, SIMULATION_RUN INT64,    
179.   S_Activity_ID INT64, P_Activity_ID INT64,   
180.   U_Activity_ID INT64, START FLOAT64 ,  FINISH FLOAT64, TC FLOAT64 ,    
181.   JCL FLOAT64,    
182.   CHROMOSOME String ,    
183.   Mode_Option INT64,   
184.   Activity_Type string, P1 INT64 , P2 INT64, P3 INT64, P4 INT64,    
185.   P5 INT64, P6 INT64, Ladder_Seq INT64, RDUR FLOAT64, RFC FLOAT64,    
186.   RVC FLOAT64 , ROHC FLOAT64, FC FLOAT64, VC FLOAT64,   
187.    OHC FLOAT64, PC FLOAT64,  BC FLOAT64,   
188.    Lable STRING, Num_Of_Modes INT64 ,   
189.    Vector FLOAT64   
190.    >>   
191.   LANGUAGE js AS """   
192.   var Final_result = [];   
193.   for (var i = 0; i < arr.length; i++){    
194.   Final_result.push(JSON.parse(arr[i])) }   
195.   var maxTC = Math.max.apply(Math, Final_result.map(function(v) {   
196.   return v.TC;}));   
197. //  var minTC = Math.min.apply(Math, Final_result.map(function(v){   
198. //  return v.TC;}));   
199.    var minTC = 0    
200.    var maxFinish = Math.max.apply(Math, Final_result.map(function(v)   
201.    { return v.FINISH;}));   
202. // var minFinish = Math.min.apply(Math, Final_result.map(function(v){   
203. // return v.FINISH;}));   
204.    var minFinish = 0   
205.   for (var i = 0; i < Final_result.length; i++){    
206.   Final_result[i].Vector =    
207.   Math.sqrt(Math.pow(((Final_result[i].FINISH - minFinish )/   
208.   (maxFinish - minFinish)), 2)   
209.   + Math.pow((Final_result[i].TC - minTC)/(maxTC - minTC),2) )    
210.       }   
211.   return Final_result   
212.   """;   
213.      
214.    
215.    CREATE TEMP FUNCTION TriDist_Sampling( P FLOAT64 ,    
216.    a FLOAT64, m FLOAT64, b FLOAT64)   
217.   RETURNS FLOAT64   
218.   LANGUAGE js AS """   
219.   var d ;   var x   
220.   d = b - a   
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221.   if (d != 0){x = (m - a) / d} else {x = b;}    
222.   if (P <= x){return (a + ((Math.sqrt(P * x)) * d))} else {   
223.   return  (b - ((Math.sqrt((1 - P) * (1 - x))) * d));}   
224.   """;   
225.    
226. -- END OF TEMPORARY FUNCTIONS    
227. --####################################################################    
228. -- The below series of BigQuery SQL Sub Queries are set to perform the    
229. -- data input set up for the described Temporary functions above.     
230. --####################################################################    
231.   WITH    
232.    
233. --####################################################################    
234. -- The sub query Simulation below prepares a replication of the project    
235. -- to a user defined number of simulation scenarios.     
236. --####################################################################    
237.   Simulation as (   
238.   Select    
239.     SIMULATION_RUN  , rec.*   
240.    , RAND() as P_Dur   
241.    , RAND() as P_FC   
242.    , RAND() as P_VC   
243.    , RAND() as P_OHC   
244.    from    
245.     ESDTCT_Database.Tasks_bq rec   
246.      Cross JOIN   
247.      UNNEST((GENERATE_ARRAY(1,1000) )) AS SIMULATION_RUN    
248. --     Change SIMULATION_RUN Number using App Script   
249. --   order by SIMULATION_RUN ,Activity_ID   
250.      )   
251.   ,   
252. --####################################################################    
253. -- The sub query Tasks below prepares the initial network details for    
254. -- a typical unit and creates the global network for the user defined    
255. -- number of repetitive units.     
256. --####################################################################    
257.     Tasks as (   
258.     Select    
259.     SIMULATION_RUN, Activity_Type,    
260.     Probability_of_Occurrence, Ladder_Seq,    
261.     Lable, Num_Of_Modes,    
262.     Activity_ID as U_Activity_ID  ,   
263.     Activity_ID    as P_Activity_ID   
264.     , (Activity_ID  + (SIMULATION_RUN-1) *    
265.     ( Num))   as S_Activity_ID   
266.     , P1 + (SIMULATION_RUN - 1) *    
267.     ( Num)   as P1   
268.     , P2  + (SIMULATION_RUN - 1) *    
269.     ( Num)   as P2   
270.     , P3  + (SIMULATION_RUN - 1) *    
271.     ( Num)   as P3   
272.     , P4  + (SIMULATION_RUN - 1) *    
273.     ( Num)   as P4   
274.     , P5  + (SIMULATION_RUN - 1) *    
275.     ( Num)   as P5   
276.     , P6  + (SIMULATION_RUN - 1) *    
277.     ( Num)   as P6   
278.      , P_Dur , P_FC , P_VC , P_OHC   
279.      from Simulation rec   
280.     
281.              Cross JOIN   
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282.  UNNEST((GENERATE_ARRAY(5/* No of Activities in a Typical unit */,   
283.       5/* No of Activities in a Typical unit */ ) ))   
284.       AS Num /*: Change Number using App Script */   
285.    
286.   --   order by S_Activity_ID   
287.        )   
288. ,   
289. --####################################################################    
290. -- The sub query Modes below reads the user parameter inputs for each    
291. -- activity admitted modes   
292. --####################################################################    
293.   Modes AS (   
294.   SELECT * from `ESDTCT_Database.Modes_bq`    
295.   )   
296.   ,   
297. --####################################################################    
298. -- The sub query Experiment_run below prepares the activity modes input   
299. -- to activities.   
300. --####################################################################    
301.   Experiment_run_1 AS (    
302.   SELECT TRADE_OFF_RUN, t1.Activity_IID, t1.Mode_Option as MODE , Rand() as filt

er   
303.   FROM Modes  t1   
304.   CROSS JOIN    
305.   UNNEST((GENERATE_ARRAY(1, 10000))) as TRADE_OFF_RUN    
306.     
307.   JOIN Modes t2 ON t2.Activity_IID = t2.Activity_IID and t1.Mode_Option = t2.Mod

e_Option   
308.     
309.      
310. group by TRADE_OFF_RUN, t1.Activity_IID, t1.Mode_Option   
311. Order by TRADE_OFF_RUN, t1.Activity_IID   
312.   )   
313.   ,   
314.      
315.   Experiment_run AS (   
316. SELECT TRADE_OFF_RUN, STRING_AGG(Cast(MODE as string) ORDER BY Activity_IID) as 

CHROMOSOME   
317. FROM (   
318.   SELECT    
319.     TRADE_OFF_RUN, Activity_IID, MODE,    
320.     RAND() AS rnd, ROW_NUMBER() OVER(PARTITION BY TRADE_OFF_RUN, Activity_IID ) 

AS pos   
321.   FROM Experiment_run_1   
322. )   
323.    
324. WHERE pos <= 1    
325. group by TRADE_OFF_RUN   
326. -- ORDER BY TRADE_OFF_RUN   
327.    
328.   )   
329. ,   
330. --####################################################################    
331. -- The sub query SETUP below joins the data input tables and assign a    
332. -- random cost and duration values based on the trinagular probability    
333. -- distribution function.   
334. --####################################################################    
335.   SETUP as (   
336.   SELECT TRADE_OFF_RUN, SIMULATION_RUN, S_Activity_ID ,   
337.   U_Activity_ID, P_Activity_ID,    
338.   Probability_of_Occurrence , Mode_Option,   
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339.   Activity_Type, P1, P2, P3, P4, P5, P6, Ladder_Seq, 0.0 START,    
340.   0.0 FINISH, 0 JCL, 0 IDLE,   
341.   TriDist_Sampling( P_Dur, MinDur, MLDur, MaxDur) as RDUR,   
342.   TriDist_Sampling( P_FC, MinFC , MLFC , MaxFC ) as RFC,    
343.   TriDist_Sampling( P_VC, MinVC , MLVC , MaxVC ) as RVC,   
344.   TriDist_Sampling( P_OHC, MinOHC , MLOHC , MaxOHC ) as ROHC,   
345.   0 as TC , 0 as FC, 0 as VC, 0 as OHC, 0 as PC,  0 as BC,   
346.   CHROMOSOME , Lable,  Num_Of_Modes     
347.   FROM    
348.   Experiment_run , UNNEST(SPLIT( CHROMOSOME )) oid WITH OFFSET tid   
349.   JOIN Tasks t1 ON t1.P_Activity_ID = tid + 1   
350.   JOIN Modes t2 ON t2.Activity_IID = t1.U_Activity_ID    
351.    and  CAST(REPT_UNIT AS STRING)  =    
352.    cast(Ceil ((tid + 1)/5/* No of Activities in a Typical unit */)    
353.    as string)   
354.   AND CAST(Mode_Option AS STRING) = oid     
355. -- order by TRADE_OFF_RUN, S_Activity_ID   
356.   )   
357.   ,   
358. --####################################################################    
359. -- The sub querys JCL_Calc and JCL_Calc2 calls the defined temporary    
360. -- functions to determine the supreme chromosome solution.    
361. --####################################################################    
362.   JCL_Calc as (   
363.     SELECT  rec.*    
364.   FROM (  SELECT ARRAY_AGG(TO_JSON_STRING(t)) AS data    
365.   FROM SETUP as t   
366.   GROUP BY TRADE_OFF_RUN   
367.   ) as t    
368.  , UNNEST(Simulation_and_JCL_Calculation_Function(data)) AS rec   
369.  )   
370.    
371.   SELECT  TRADE_OFF_RUN, FINISH , TC  , Vector ,   
372.    CHROMOSOME , JCL    
373.   FROM (   
374.   SELECT      
375.   ARRAY_AGG(TO_JSON_STRING(t)) AS data    
376.   FROM JCL_Calc as t    
377.   ), UNNEST(Normalization_of_Frontier_Solutions_Function(data)) AS rec   
378.        
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c)   RP-ESDTCTEXP  

1.   #standardSQL   
2.    
3.    
4. --  RE-ESDTCT_EXP Model   
5.     
6. --####################################################################    
7. -- This code is developed using BigQuery SQL statements with Temporary    
8. -- functions having an in-line Java script programing. Readers of this   
9. -- code need advanced programing skills.   
10. -- The input to this script is two BigQuery tables namely (Tasks_bq    
11. -- , Modes_bq and Experiments). The input tables are created in Google    
12. -- sheets and uploaded to BigQuery using the Google BigQuery API in    
13. -- Apps Script.    
14. -- (Note: This is an advanced service that must be enabled before use.   
15. -- Reference:    
16. -- https://developers.google.com/apps-script/guides/services/advanced)   
17. -- Tasks_bq table contains data input describing the network   
18. -- activities and logic relationship for a typical unit in a repetative   
19. -- project.    
20. -- Modes_bq table contains data input describing the admitted modes to   
21. -- each activity and probabilistic estimates parameters for the cost    
22. -- and duration data.   
23. -- Experiments table contains the cartisian product for the enummeration   
24. -- of primary activities   
25. -- A Number of code parameters, where noted in the script, are modified   
26. -- using the Apps Script before executing the API command.   
27. --####################################################################    
28. -- The Simulation_and_JCL_Calculation_Function performs a Monte Carlo    
29. -- simulation and identify the frontier solution satisfying the   
30. -- user defined JCL.    
31. --####################################################################    
32.    
33.   CREATE TEMPORARY FUNCTION Simulation_and_JCL_Calculation_Function (arr ARRAY<STRI

NG>)   
34.   RETURNS ARRAY<STRUCT<TRADE_OFF_RUN INT64, SIMULATION_RUN  INT64,    
35.   REP_UNIT INT64,  P_Rep INT64, S_Activity_ID INT64,    
36.   P_Activity_ID INT64, U_Activity_ID INT64,  START FLOAT64 ,     
37.   FINISH FLOAT64, TC FLOAT64 , JCL FLOAT64, IDLE FLOAT64,   
38.   IDLE_Combination_String ARRAY<INT64>,    
39.   Lable_Combination_String string , Interruption FLOAT64 ,     
40.   CHROMOSOME String , Opt_Idle_Time_Combination_String string ,   
41.   Mode_Option INT64,Shift_Combination_String string,   
42.   Activity_Type string, P1 INT64 , P2 INT64, P3 INT64, P4 INT64,    
43.   P5 INT64, P6 INT64, Ladder_Seq INT64,  RDUR FLOAT64, RFC FLOAT64,    
44.   RVC FLOAT64 , ROHC FLOAT64, FC FLOAT64, VC FLOAT64, OHC FLOAT64,   
45.   PC FLOAT64,  BC FLOAT64,   
46.   Lable STRING, Num_Of_Modes INT64 ,Opt_Idle_Time Int64   
47.   >>   
48.   LANGUAGE js AS """   
49.   var result = [];   
50.   for (var i = 0; i < arr.length; i++){    
51.   result.push(JSON.parse(arr[i])) }   
52.   for (var i = 0; i < arr.length; i++){   
53.   if (result[i].Probability_of_Occurrence < Math.random()){   
54.   result[i].RDUR ==  0   
55.   result[i].RFC ==   0   
56.   result[i].RVC ==  0   
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57.   }}   
58.    
59.   result.sort(function (a,b) {   
60.     if (a.SIMULATION_RUN > b.SIMULATION_RUN) return  1;   
61.     if (a.SIMULATION_RUN < b.SIMULATION_RUN) return -1;   
62.     if (a.REP_UNIT > b.REP_UNIT) return  1;   
63.     if (a.REP_UNIT < b.REP_UNIT) return -1;   
64.     if (a.Ladder_Seq > b.Ladder_Seq) return  1;   
65.     if (a.Ladder_Seq < b.Ladder_Seq) return -1;   
66.     return 0;   
67.   });    
68.   var arry = []   
69.   for (var i = 0; i < result.length; i++) {   
70.   arry.push (result[i].S_Activity_ID)   
71.   }   
72.   for (var i = 0; i < result.length; i++) {   
73.      
74.   var x1 = arry.indexOf(result[i].P1);   
75.   var x2 = arry.indexOf(result[i].P2);   
76.   var x3 = arry.indexOf(result[i].P3);   
77.   var x4 = arry.indexOf(result[i].P4);   
78.   var x5 = arry.indexOf(result[i].P5);   
79.   var x6 = arry.indexOf(result[i].P6);   
80.   var xR = arry.indexOf(result[i].P_Rep);       
81.      
82.    if (x1 == -1) {var FX1 = 0} else {var FX1 = result[x1].FINISH}   
83.    if (x2 == -1) {var FX2 = 0} else {var FX2 = result[x2].FINISH}   
84.    if (x3 == -1) {var FX3 = 0} else {var FX3 = result[x3].FINISH}   
85.    if (x4 == -1) {var FX4 = 0} else {var FX4 = result[x4].FINISH}   
86.    if (x5 == -1) {var FX5 = 0} else {var FX5 = result[x5].FINISH}   
87.    if (x6 == -1) {var FX6 = 0} else {var FX6 = result[x6].FINISH}   
88.    if (xR == -1) {var FXR = 0} else {var FXR = result[xR].FINISH}   
89.    
90.   result[i].START = Math.max( FX1, FX2,FX3,FX4,FX5,FX6,FXR)    
91.   + 0/*continuum_time_calculations*/;   
92.   result[i].FINISH = result[i].START + result[i].RDUR    
93.   - 0/*continuum_time_calculations*/;   
94.   }   
95.   result.sort(function (a,b) {   
96.     if (a.S_Activity_ID > b.S_Activity_ID) return  1;   
97.     if (a.S_Activity_ID < b.S_Activity_ID) return -1;   
98.     return 0;   
99.   });    
100.   var Num_of_Project_Tasks = 5/* No of Activities in a Typical unit */   
101.   * 4/* number of units : Change Numbers using App Script */   
102.     var arry2 = []   
103.   for (var i = 0; i < result.length; i++) {   
104.   arry2.push (result[i].S_Activity_ID)   
105.   }   
106.   var TInt = 0   
107.   var TTC = 0   
108.   var IDLE_Combination = [0,0,0,0,0]   
109.   var Lable_Combination = []   
110.   var Lable_Combination_String = ""   
111.   var Opt_Idle_Time_Combination = []   
112.   var Opt_Idle_Time_Combination_String = ""   
113.      
114.   for (var i = 0; i < result.length; i++) {   
115.     
116.   if( result[i].REP_UNIT > 1 ){  result[i].IDLE  =   
117.   parseInt(result[i].START -    
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118.   result[arry2.indexOf(result[i].P_Rep)].FINISH)   
119.   - 0/*continuum_time_calculations*/;   
120.   IDLE_Combination[result[i].U_Activity_ID - 1] +=     
121.   parseInt(result[i].IDLE)   
122.   Lable_Combination[result[i].U_Activity_ID - 1] =    
123.   result[i].Lable   
124.   }   
125.     else{ IDLE_Combination[result[i].U_Activity_ID - 1] = 0;   
126.       Opt_Idle_Time_Combination[result[i].U_Activity_ID - 1] =    
127.       result[i]. Opt_Idle_Time   
128.   }    
129.   if( result[i].P_Activity_ID == Num_of_Project_Tasks){   
130.    result[i].IDLE_Combination_String = IDLE_Combination        
131.  result[i].Lable_Combination_String = Lable_Combination.join(", ")   
132.     result[i].Opt_Idle_Time_Combination_String =    
133.     Opt_Idle_Time_Combination.join(", ")   
134.   }    
135.   TTC = TTC + (result[i].RFC + (result[i].RVC * result[i].RDUR))   
136.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
137.   result[i].TC = TTC + result[i].ROHC * result[i].FINISH , TTC = 0   
138.      
139. // Adding Penalty / Bonus Cost   
140.    
141. // Linear continous schemes for Penalty / Bonus Cost   
142.    
143. // Schedule deadline driven projects - Penalty Cost scheme:   
144.  if ((result[i].FINISH - Deadline_) > 0){    
145.   result[i].PC =   
146.   Math.min((Schedule_Penalty_Cost * (result[i].FINISH - Deadline_)),   
147.   Max_Schedule_Penalty__Cost )   
148.   }   
149. // Schedule deadline driven projects - Bonus Cost scheme:   
150.  if ((result[i].FINISH - Deadline_) < 0){     
151.   result[i].BC =   
152.   Math.max((Schedule_Bonus_Cost * (result[i].FINISH - Deadline_)),   
153.   - Max_Schedule_Bonus__Cost)   
154.   }   
155.      
156. // Budget driven projects - Penalty Cost scheme:   
157.     
158.  if ((result[i].TC - Budget__) > 0){    
159.   result[i].PC +=   
160.   Math.min((Budget_Penalty_Cost * (result[i].TC - Budget__)),   
161.   Max_Budget_Penalty__Cost )   
162.   }   
163. // Budget driven projects - Bonus Cost scheme:   
164.  if ((result[i].TC - Budget__) < 0){   
165.  result[i].BC +=   
166.   Math.max((Budget_Bonus_Cost * (result[i].TC - Budget__)),   
167.   - Max_Budget_Bonus__Cost)   
168.   }   
169.   result[i].TC += (result[i].PC + result[i].BC)     
170.   }   
171.   }   
172.   var Final_result = result.filter(function (dataRow) {   
173.   return dataRow.TC > 0;   
174.   });   
175.    
176.   for (var i = 0; i < Final_result.length; i++){    
177.   var count = 0        
178.   for (var j = 0; j < Final_result.length; j++){   
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179.   if (Final_result[i].TC >= Final_result[j].TC  &&    
180.   Final_result[i].FINISH >= Final_result[j].FINISH ){count +=1 }   
181.   }   
182.   Final_result[i].JCL = count / (Final_result.length )   
183.   }   
184.      
185.     var Final_result1 = Final_result.filter(function (dataRow) {   
186.   return dataRow.JCL > 0.5 && dataRow.JCL < 0.6/* Lower and upper JCL:    
187.   Change Numbers using App Script */;   
188.   });   
189.  var Final_result3 = [];   
190.     for(var i = 0; i<Final_result1.length; ++i) {   
191.         var a = Final_result1[i];   
192.         for(var j = 0; j<result.length; ++j) {   
193.                 var b = result[j];   
194.                 if(a.TRADE_OFF_RUN == b.TRADE_OFF_RUN &&    
195.                 a.SIMULATION_RUN == b.SIMULATION_RUN) {                         

  
196.                 Final_result3.push(b);   
197.                 }   
198.         }   
199.     }   
200.   return Final_result3   
201.   """;   
202.    
203. --####################################################################    
204. -- The Normalization_of_Frontier_Solutions_Function performs calculations   
205. -- to nomalize the cost and schedule pairs of the Frontier solutions to    
206. -- the range [0,1]     
207. --####################################################################    
208.   CREATE TEMPORARY FUNCTION Normalization_of_Frontier_Solutions_Function (arr AR

RAY<STRING>)   
209.   RETURNS ARRAY<STRUCT<TRADE_OFF_RUN INT64, SIMULATION_RUN INT64,    
210.   REP_UNIT INT64, P_Rep INT64, S_Activity_ID INT64, P_Activity_ID INT64,   
211.   U_Activity_ID INT64, START FLOAT64 ,  FINISH FLOAT64, TC FLOAT64 ,    
212.   JCL FLOAT64, IDLE FLOAT64, IDLE_Combination_String ARRAY<INT64>,    
213.   Lable_Combination_String string , Interruption FLOAT64 ,   
214.   CHROMOSOME String , Opt_Idle_Time_Combination_String string ,   
215.   Mode_Option INT64,Shift_Combination_String string,    
216.   Activity_Type string, P1 INT64 , P2 INT64, P3 INT64, P4 INT64,    
217.   P5 INT64, P6 INT64, Ladder_Seq INT64, RDUR FLOAT64, RFC FLOAT64,    
218.   RVC FLOAT64 , ROHC FLOAT64, FC FLOAT64, VC FLOAT64,   
219.    OHC FLOAT64, PC FLOAT64,  BC FLOAT64,   
220.    Lable STRING, Num_Of_Modes INT64 ,Opt_Idle_Time Int64,   
221.    Vector FLOAT64   
222.    >>   
223.   LANGUAGE js AS """   
224.   var Final_result = [];   
225.   for (var i = 0; i < arr.length; i++){    
226.   Final_result.push(JSON.parse(arr[i])) }   
227.   var maxTC = Math.max.apply(Math, Final_result.map(function(v) {   
228.   return v.TC;}));   
229. //  var minTC = Math.min.apply(Math, Final_result.map(function(v){   
230. //  return v.TC;}));   
231.    var minTC = 0    
232.    var maxFinish = Math.max.apply(Math, Final_result.map(function(v)   
233.    { return v.FINISH;}));   
234. // var minFinish = Math.min.apply(Math, Final_result.map(function(v){   
235. // return v.FINISH;}));   
236.    var minFinish = 0   
237.   for (var i = 0; i < Final_result.length; i++){    
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238.   Final_result[i].Vector =    
239.   Math.sqrt(Math.pow(((Final_result[i].FINISH - minFinish )/   
240.   (maxFinish - minFinish)), 2)   
241.   + Math.pow((Final_result[i].TC - minTC)/(maxTC - minTC),2) )    
242.       }   
243.   return Final_result   
244.   """;   
245.      
246. --####################################################################    
247. -- The Crew_Idle_Time_Optimization Function performs calculations   
248. -- on the supreme chromosome solution to find the optimal crew    
249. -- interruption times    
250. --####################################################################    
251.   CREATE TEMPORARY FUNCTION Crew_Idle_Time_Optimization_Function(arr ARRAY<STRIN

G>)   
252.   RETURNS ARRAY<STRUCT< FINISH FLOAT64,  TC FLOAT64 , FC FLOAT64 ,   
253.   VC FLOAT64 , OHC FLOAT64, IDLE_C FLOAT64, PC FLOAT64,  BC FLOAT64,   
254.   Shift_Combination_String String , IDLE_Combination_ String,    
255.   Interruption FLOAT64, Lable_Combination_String String,   
256.   CHROMOSOME String , Vector FLOAT64   
257.   >>   
258.   LANGUAGE js AS """   
259.   var result = [];     var TOarr = [];   
260.   var Num_of_Project_Tasks = 5/* No of Activities in a Typical unit */   
261.   * 4/* number of units : Change Numbers using App Script */   
262.    
263.     result.sort(function (a,b) {   
264.     if (a.S_Activity_ID > b.S_Activity_ID) return  1;   
265.     if (a.S_Activity_ID < b.S_Activity_ID) return -1;   
266.     return 0;   
267. });    
268.   for (var i = 0; i < arr.length; i++){    
269.   result.push(JSON.parse(arr[i]))}   
270.  var  Lable_arr = ['N', 'N', 'N', 'P', 'P'];   
271. // Change Lable_arr values using App Script */   
272.  //if (4/* number of units */ == 1) {    
273.  //CPM(result)   
274.  //return result}    
275.  //else {   
276.      
277.   for (var gen = 1; gen < 5; gen++) {   
278.    for (var geninc = 1; geninc < 2; geninc++) {    
279.   if(gen == 1){idle_arr2 =    
280.   result[(Num_of_Project_Tasks - 1)].IDLE_Combination_String}    
281.   else {idle_arr2 = Final_result[0].IDLE_Combination_String}   
282.        
283.  for (var i = 0; i < idle_arr2.length; i++) {     
284.   if(Lable_arr[(gen-1)][i] == 'N'){    
285.   TOarr[i] = []; TOarr[i].push (idle_arr2[i])}   
286.   if(Lable_arr[(gen-1)][i] == 'P'){    
287.    TOarr[i] = [];     
288.   if(geninc == 1){   
289.   var Finish_Domain = parseInt(idle_arr2[i]) + 1 ;    
290.   var Start_Domain = 0;    
291.   var Inc_Domain = Math.max(1,((Finish_Domain - Start_Domain +1)/10))    
292.   }   
293.   if(geninc == 2 || geninc == 3 ){   
294.   var Finish_Domain = parseInt(idle_arr2[i]) + 1 ;    
295.   var Start_Domain =    
296.   Math.max(0,(Finish_Domain-Math.ceil((parseInt(idle_arr2[i]))/10)));   
297.   var Inc_Domain = Math.max(1,((Finish_Domain - Start_Domain +1)/10))    
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298.   }   
299.  for (var p = 0; p < Finish_Domain ; p += Inc_Domain){    
300.  TOarr[i].push (p)}}    
301.   if(Lable_arr[(gen-1)][i] == 'S'){    
302.   TOarr[i] = []; TOarr[i].push (idle_arr2[i])}   
303.   }   
304.    idle_Time_arr = cartesianProduct(TOarr)     
305.   var Final_result = []   
306.   for (var t = 0; t < idle_Time_arr.length; t++) {   
307.    var GENERATION = 1   
308.   for (var i = 0; i < result.length; i++) {   
309.   result[i].Lable_Combination_String =    
310.   Lable_arr[(GENERATION - 1)].join(", ")   
311.   result[i].T_idle = 0   
312.   result[i].T_idle_Sim =+ i+1    
313.      
314.   if( result[i].REP_UNIT == 1){ result[i].T_idle  =   
315.   parseInt(idle_Time_arr[t][result[i].U_Activity_ID - 1])}   
316.   if( result[i].P_Activity_ID == Num_of_Project_Tasks){    
317.   result[i].Shift_Combination_String = idle_Time_arr[t].join(", ")     
318.       result[i].Interruption =    
319.       result[i].IDLE_Combination_String.reduce( function(tt, ss) {    
320.       return parseInt(tt) + parseInt(ss); } );   
321.   result[i].IDLE_Combination_ =    
322.   result[i].IDLE_Combination_String.join(", ")   
323.       }   
324.   }   
325.  CPM(result)   
326. Final_result[t] = []   
327.  Final_result[t] =      
328.  JSON.parse(JSON.stringify(result[(Num_of_Project_Tasks-1)]));   
329.   }    
330. // Activate the script below for the desired objective function   
331. // using Apps Script command lines.   
332.      
333. /* Joint Optimization   
334.   var maxTC = Math.max.apply(Math, Final_result.map(function(v) {    
335.   return v.TC;}));   
336. //  var minTC = Math.min.apply(Math, Final_result.map(function(v) {    
337. //return v.TC;}));   
338.    var minTC = 0    
339.    var maxFinish = Math.max.apply(Math, Final_result.map(function(v) {   
340.    return v.FINISH;}));   
341. //   var minFinish =    
342. //    Math.min.apply(Math,Final_result.map(function(v) {   
343. //    return v.FINISH;}));   
344.    var minFinish = 0   
345.    var maxInterruption =    
346.    Math.max.apply(Math, Final_result.map(function(v) {    
347.    return v.Interruption;}));   
348.   for (var i = 0; i < Final_result.length; i++){    
349.   Final_result[i].Vector =    
350.   Math.sqrt(Math.pow(((Final_result[i].FINISH - minFinish )/   
351.   (maxFinish - minFinish)), 2)   
352.   + Math.pow((Final_result[i].TC - minTC)/(maxTC - minTC),2) +   
353.   Math.pow(((Final_result[i].Interruption )/(maxInterruption)),2) )    
354.       }   
355.    Final_result.sort(function (a,b) {   
356.     if (a.Vector > b.Vector) return  1;   
357.     if (a.Vector < b.Vector) return -1;   
358.     if (a.FINISH > b.FINISH) return  1;   
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359.     if (a.FINISH < b.FINISH) return -1;   
360.     if (a.TC > b.TC) return  1;   
361.     if (a.TC < b.TC) return -1;   
362.     if (a.Interruption > b.Interruption) return  1;   
363.     if (a.Interruption < b.Interruption) return -1;   
364.     return 0;   
365.   });    
366. */ // Joint Optimization     
367.    
368. /* Schedule Minimization   
369.    Final_result.sort(function (a,b) {   
370.     if (a.FINISH > b.FINISH) return  1;   
371.     if (a.FINISH < b.FINISH) return -1;   
372.     if (a.TC > b.TC) return  1;   
373.     if (a.TC < b.TC) return -1;   
374.     if (a.Interruption > b.Interruption) return  1;   
375.     if (a.Interruption < b.Interruption) return -1;   
376.     return 0;   
377. });    
378. */ // Schedule Minimization   
379.    
380. /* Cost Minimization   
381.    Final_result.sort(function (a,b) {   
382.     if (a.TC > b.TC) return  1;   
383.     if (a.TC < b.TC) return -1;   
384.     if (a.FINISH > b.FINISH) return  1;   
385.     if (a.FINISH < b.FINISH) return -1;   
386.     if (a.Interruption > b.Interruption) return  1;   
387.     if (a.Interruption < b.Interruption) return -1;   
388.     return 0;   
389.   });    
390. */ // Cost Minimization   
391.     }   
392.   }   
393.    return Final_result   
394.  //  }   
395. //##################   
396. function cartesianProduct(data) {   
397.     var current = [[]];   
398.     for (var p in data) {   
399.         var arr = data[p];   
400.         var newCurrent = [];   
401.         for (var c = 0; c < current.length; c++) {   
402.             var baseArray = current[c];   
403.             for (var a = 0; a < arr.length; a++) {   
404.                 var clone = baseArray.slice();   
405.                 clone.push(arr[a]);   
406.                 newCurrent.push(clone);   
407.             }   
408.         }   
409.         current = newCurrent;   
410.     }   
411.     return current;   
412. }   
413. //#####################   
414.    function CPM(result){     
415.   result.sort(function (a,b) {   
416.     if (a.SIMULATION_RUN > b.SIMULATION_RUN) return  1;   
417.     if (a.SIMULATION_RUN < b.SIMULATION_RUN) return -1;   
418.     if (a.REP_UNIT > b.REP_UNIT) return  1;   
419.     if (a.REP_UNIT < b.REP_UNIT) return -1;   
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420.     if (a.Ladder_Seq > b.Ladder_Seq) return  1;   
421.     if (a.Ladder_Seq < b.Ladder_Seq) return -1;   
422.     return 0;   
423. });    
424.      
425.   var arry = []   
426.   for (var i = 0; i < result.length; i++) {   
427.   arry.push (result[i].S_Activity_ID)   
428.   }   
429.   for (var i = 0; i < result.length; i++) {   
430.   var x1 = arry.indexOf(result[i].P1);   
431.   var x2 = arry.indexOf(result[i].P2);   
432.   var x3 = arry.indexOf(result[i].P3);   
433.   var x4 = arry.indexOf(result[i].P4);   
434.   var x5 = arry.indexOf(result[i].P5);   
435.   var x6 = arry.indexOf(result[i].P6);   
436.   var xR = arry.indexOf(result[i].P_Rep);       
437.      
438.    if (x1 == -1) {var FX1 = 0} else {var FX1 = result[x1].FINISH}   
439.    if (x2 == -1) {var FX2 = 0} else {var FX2 = result[x2].FINISH}   
440.    if (x3 == -1) {var FX3 = 0} else {var FX3 = result[x3].FINISH}   
441.    if (x4 == -1) {var FX4 = 0} else {var FX4 = result[x4].FINISH}   
442.    if (x5 == -1) {var FX5 = 0} else {var FX5 = result[x5].FINISH}   
443.    if (x6 == -1) {var FX6 = 0} else {var FX6 = result[x6].FINISH}   
444.    if (xR == -1) {var FXR = 0} else {var FXR = result[xR].FINISH}   
445.    
446.   result[i].START = Math.max( FX1, FX2,FX3,FX4,FX5,FX6,FXR)+    
447.   parseFloat(result[i].T_idle) + 0/*continuum_time_calculations*/ ;   
448.   result[i].FINISH = result[i].START +    
449.   result[i].RDUR - 0/*continuum_time_calculations*/ ;   
450.   }   
451.   result.sort(function (a,b) {   
452.     if (a.S_Activity_ID > b.S_Activity_ID) return  1;   
453.     if (a.S_Activity_ID < b.S_Activity_ID) return -1;   
454.     return 0;   
455.   });    
456.   var Num_of_Project_Tasks = 5/* No of Activities in a Typical unit */   
457.   * 4/* number of units : Change Numbers using App Script */   
458.     var arry2 = []   
459.   for (var i = 0; i < result.length; i++) {   
460.   arry2.push (result[i].S_Activity_ID)   
461.   }   
462.   var TTC = 0; var TFC = 0 ; var TVC = 0;    
463.   var TOHC = 0 ; var TIDLE_C = 0   
464.   var IDLE_Combination = [0,0,0,0,0]   
465.   for (var i = 0; i < result.length; i++) {   
466.   if( result[i].REP_UNIT > 1 ){  result[i].IDLE  =    
467.   parseInt(result[i].START -    
468.   result[arry2.indexOf(result[i].P_Rep)].FINISH)    
469.   - 0/*continuum_time_calculations*/;   
470.   IDLE_Combination[result[i].U_Activity_ID - 1] +=     
471.   parseInt(result[i].IDLE)   
472.   }   
473.     else{ IDLE_Combination[result[i].U_Activity_ID - 1] = 0;   
474.   }    
475.   if( result[i].P_Activity_ID == Num_of_Project_Tasks){   
476.    result[i].IDLE_Combination_String = IDLE_Combination     
477.    }   
478.   TFC = TFC + (result[i].RFC)   
479.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
480.   result[i].FC = TFC , TFC = 0}   
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481.   TVC = TVC + (result[i].RVC * result[i].RDUR)    
482.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
483.   result[i].VC = TVC , TVC = 0}   
484.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
485.   result[i].OHC = result[i].ROHC * result[i].FINISH}   
486.      
487.   TIDLE_C = TIDLE_C +     
488.   (result[i].RVC * parseFloat(result[i].IDLE))   
489.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
490.   result[i].IDLE_C = TIDLE_C , TIDLE_C = 0}   
491.    TTC = TTC +    
492.   (result[i].RFC + (result[i].RVC * result[i].RDUR)    
493.   + (result[i].RVC * parseFloat(result[i].IDLE)))   
494.   if ( result[i].P_Activity_ID == Num_of_Project_Tasks){   
495.   result[i].TC = TTC + result[i].ROHC * result[i].FINISH , TTC = 0   
496.      
497.  // Adding Penalty / Bonus Cost   
498.    
499. // Linear continous schemes for Penalty / Bonus Cost   
500.    
501. // Schedule deadline driven projects - Penalty Cost scheme:   
502.  if ((result[i].FINISH - Deadline_) > 0){    
503.   result[i].PC =   
504.   Math.min((Schedule_Penalty_Cost * (result[i].FINISH - Deadline_)),   
505.   Max_Schedule_Penalty__Cost )   
506.   }   
507. // Schedule deadline driven projects - Bonus Cost scheme:   
508.  if ((result[i].FINISH - Deadline_) < 0){     
509.   result[i].BC =   
510.   Math.max((Schedule_Bonus_Cost * (result[i].FINISH - Deadline_)),   
511.   - Max_Schedule_Bonus__Cost)   
512.   }   
513.      
514. // Budget driven projects - Penalty Cost scheme:   
515.     
516.  if ((result[i].TC - Budget__) > 0){    
517.   result[i].PC +=   
518.   Math.min((Budget_Penalty_Cost * (result[i].TC - Budget__)),   
519.   Max_Budget_Penalty__Cost )   
520.   }   
521. // Budget driven projects - Bonus Cost scheme:   
522.  if ((result[i].TC - Budget__) < 0){   
523.  result[i].BC +=   
524.   Math.max((Budget_Bonus_Cost * (result[i].TC - Budget__)),   
525.   - Max_Budget_Bonus__Cost)   
526.   }   
527.   result[i].TC += (result[i].PC + result[i].BC)     
528.   }   
529.    }   
530.   }   
531.   //   
532.   """;   
533.    CREATE TEMP FUNCTION TriDist_Sampling(P FLOAT64 ,    
534.    a FLOAT64, m FLOAT64, b FLOAT64)   
535.   RETURNS FLOAT64   
536.   LANGUAGE js AS """   
537.   var d ;   var x   
538.   d = b - a   
539.   if (d != 0){x = (m - a) / d} else {x = b;}    
540.   if (P <= x){return (a + ((Math.sqrt(P * x)) * d))} else {   
541.   return  (b - ((Math.sqrt((1 - P) * (1 - x))) * d));}   
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542.   """;   
543.    
544. -- END OF TEMPORARY FUNCTIONS    
545. --####################################################################    
546. -- The below series of BigQuery SQL Sub Queries are set to perform the    
547. -- data input set up for the described Temporary functions above.     
548. --####################################################################    
549.   WITH    
550.    
551. --####################################################################    
552. -- The sub query Simulation below prepares a replication of the project    
553. -- to a user defined number of simulation scenarios.     
554. --####################################################################    
555.   Simulation as (   
556.   Select    
557.     SIMULATION_RUN  , rec.*   
558.    , RAND() as P_Dur   
559.    , RAND() as P_FC   
560.    , RAND() as P_VC   
561.    , RAND() as P_OHC   
562.    from    
563.     ESDTCT_Database.Tasks_bq rec   
564.      Cross JOIN   
565.      UNNEST((GENERATE_ARRAY(1,1000) )) AS SIMULATION_RUN    
566. --     Change SIMULATION_RUN Number using App Script   
567. --   order by SIMULATION_RUN ,Activity_ID   
568.      )   
569.   ,   
570. --####################################################################    
571. -- The sub query Tasks below prepares the initial network details for    
572. -- a typical unit and creates the global network for the user defined    
573. -- number of repetitive units.     
574. --####################################################################    
575.     Tasks as (   
576.     Select    
577.     REP_UNIT , SIMULATION_RUN, Activity_Type,    
578.     Probability_of_Occurrence, Ladder_Seq,    
579.     Lable, Num_Of_Modes, Opt_Idle_Time,   
580.     Activity_ID as U_Activity_ID  ,   
581.     Activity_ID + (REP_UNIT - 1) * (Num)   as P_Activity_ID   
582.     , (Activity_ID + (REP_UNIT - 1) * (Num) + (SIMULATION_RUN-1) *    
583.     (Num_of_Units * Num))   as S_Activity_ID   
584.     , P1 + (REP_UNIT - 1) * (Num) + (SIMULATION_RUN - 1) *    
585.     (Num_of_Units * Num)   as P1   
586.     , P2 + (REP_UNIT - 1) * (Num) + (SIMULATION_RUN - 1) *    
587.     (Num_of_Units* Num)   as P2   
588.     , P3 + (REP_UNIT - 1) * (Num) + (SIMULATION_RUN - 1) *    
589.     (Num_of_Units* Num)   as P3   
590.     , P4 + (REP_UNIT - 1) * (Num) + (SIMULATION_RUN - 1) *    
591.     (Num_of_Units* Num)   as P4   
592.     , P5 + (REP_UNIT - 1) * (Num) + (SIMULATION_RUN - 1) *    
593.     (Num_of_Units* Num)   as P5   
594.     , P6 + (REP_UNIT - 1) * (Num) + (SIMULATION_RUN - 1) *    
595.     (Num_of_Units* Num)   as P6   
596.      , CASE WHEN (REP_UNIT >1) THEN  Activity_ID +    
597.      (REP_UNIT-1)*Num+(SIMULATION_RUN-1)*   
598.      (Num_of_Units* Num) - Num   END  as P_Rep   
599.      , P_Dur , P_FC , P_VC , P_OHC   
600.      from Simulation rec   
601.            Cross JOIN   
602.  UNNEST((GENERATE_ARRAY(1,4/* number of units */) ))    
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603.     AS REP_UNIT /*: Change Number using App Script */     
604.              Cross JOIN   
605.  UNNEST((GENERATE_ARRAY(5/* No of Activities in a Typical unit */,   
606.       5/* No of Activities in a Typical unit */ ) ))   
607.       AS Num /*: Change Number using App Script */   
608.              Cross JOIN   
609.  UNNEST(   
610.  (GENERATE_ARRAY(4/* number of units */, 4/* number of units */ ) ))   
611.       AS Num_of_Units /*: Change Number using App Script */   
612.   --   order by S_Activity_ID   
613.        )   
614. ,   
615. --####################################################################    
616. -- The sub query Modes below reads the user parameter inputs for each    
617. -- activity admitted modes   
618. --####################################################################    
619.   Modes AS (   
620.   SELECT * from `ESDTCT_Database.Modes_bq`    
621.   )   
622.   ,   
623. --####################################################################    
624. -- The sub query Experiment_run below prepares the activity modes input   
625. -- to repetitive activities.   
626. --####################################################################    
627.   Experiment_run AS (   
628.   SELECT TRADE_OFF_RUN ,    
629.   STRING_AGG(Cast( CHROMOSOME as string)) CHROMOSOME    
630.   FROM `ESDTCT_Database.Experiments` rec   
631.     Cross JOIN   
632.   UNNEST((GENERATE_ARRAY(1,4/* number of units */) ))    
633.   AS REP_UNIT /*: Change Number using App Script */   
634.   group by TRADE_OFF_RUN   
635.   )   
636.   ,   
637. --####################################################################    
638. -- The sub query SETUP below joins the data input tables and assign a    
639. -- random cost and duration values based on the trinagular probability    
640. -- distribution function.   
641. --####################################################################    
642.   SETUP as (   
643.   SELECT TRADE_OFF_RUN, SIMULATION_RUN, S_Activity_ID ,   
644.   U_Activity_ID, P_Activity_ID,    
645.   REP_UNIT, Probability_of_Occurrence , Mode_Option,   
646.   [0,0,0,0,0] IDLE_Combination_String , "" Shift_Combination_String,   
647.   0 as Interruption,   
648.   Activity_Type, P1, P2, P3, P4, P5, P6, P_Rep, Ladder_Seq, null START,    
649.   null FINISH, 0 JCL, 0 IDLE,   
650.   TriDist_Sampling( P_Dur, MinDur, MLDur, MaxDur) as RDUR,   
651.   TriDist_Sampling( P_FC, MinFC , MLFC , MaxFC ) as RFC,    
652.   TriDist_Sampling( P_VC, MinVC , MLVC , MaxVC ) as RVC,   
653.   TriDist_Sampling( P_OHC, MinOHC , MLOHC , MaxOHC ) as ROHC,   
654.   0 as TC , 0 as FC, 0 as VC, 0 as OHC, 0 as PC,  0 as BC,   
655.   CHROMOSOME , Lable,  Num_Of_Modes  ,Opt_Idle_Time   
656.   FROM    
657.   Experiment_run , UNNEST(SPLIT( CHROMOSOME )) oid WITH OFFSET tid   
658.   JOIN Tasks t1 ON t1.P_Activity_ID = tid + 1   
659.   JOIN Modes t2 ON t2.Activity_IID = t1.U_Activity_ID    
660.    and  CAST(REPT_UNIT AS STRING)  =    
661.    cast(Ceil ((tid + 1)/5/* No of Activities in a Typical unit */)    
662.    as string)   
663.   AND CAST(Mode_Option AS STRING) = oid     
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664. -- order by TRADE_OFF_RUN, S_Activity_ID   
665.   )   
666.   ,   
667. --####################################################################    
668. -- The sub querys JCL_Calc and JCL_Calc2 calls the defined temporary    
669. -- functions to determine the supreme chromosome solution.    
670. --####################################################################    
671.   JCL_Calc as (   
672.     SELECT  rec.*    
673.   FROM (  SELECT ARRAY_AGG(TO_JSON_STRING(t)) AS data    
674.   FROM SETUP as t   
675.   GROUP BY TRADE_OFF_RUN   
676.   ) as t    
677.  , UNNEST(Simulation_and_JCL_Calculation_Function(data)) AS rec   
678.  )   
679.     ,   
680.   JCL_Calc2 as (   
681.   SELECT rec.*   FROM (   
682.   SELECT      
683.   ARRAY_AGG(TO_JSON_STRING(t)) AS data    
684.   FROM JCL_Calc as t    
685.   ), UNNEST(Normalization_of_Frontier_Solutions_Function(data)) AS rec   
686.      
687.   -- Optimization Method   
688. -- for  Joint cost,schedule,Interruption minimization Change the    
689. --        Order by to: Vector, FINISH, TC   
690. -- for  cost minimization Change the Order by to: TC , FINISH   
691. -- for schedule minimization Change the Order by to: FINISH, TC   
692.      
693. Order by FINISH, TC  --- 1   
694. Limit 1   
695.   )   
696. --####################################################################    
697. -- The final query below calls the crew idle time optimization function    
698. -- the final result is the supreme chromosome with the optimal crew   
699. -- interruption times.   
700. --####################################################################     
701.   SELECT  1 as GENERATION, rec.* Except (Vector)   
702.   FROM (   
703.   SELECT ARRAY_AGG(TO_JSON_STRING(t)) AS data    
704.   FROM JCL_Calc as t   
705.   GROUP BY TRADE_OFF_RUN , SIMULATION_RUN   
706.      
707.   ) as t    
708.  , UNNEST(Crew_Idle_Time_Optimization_Function(data)) AS rec   
709.        
710. -- Optimization Method   
711. -- for Joint cost,schedule,Interruption minimization Change the Order   
712. --              by to: Vector, FINISH, TC, Interruption ,   
713. -- for cost minimization Change the Order by to:    
714. --                            TC , FINISH , Interruption   
715. -- for schedule minimization Change the Order by to:    
716. --                            FINISH, TC, Interruption   
717. -- for Interruption minimization Change the Order by to:    
718. --                            Interruption , FINISH, TC    
719.      
720. Order by FINISH, TC  --- 2     
721.   Limit 1   
722.      
723.      


