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Abstract 

Liquid Metal Jet Printing (LMJP) is a revolutionary 3D printing technique in fast but low-cost additive 

manufacturing. The driving force is produced by magneto-hydrodynamic property of liquid metal in 

an alternating magnetic field. Due to its integrated melting and ink-jetting process, it can achieve 10x 

faster speed at 1/10th of the cost as compared to current metal 3D printing techniques. However, the 

jetting process is influenced by many uncertain factors, which impose a significant challenge to its 

process stability and product quality. To address this challenge, we present a closed-loop control 

framework by seamlessly integrating vision-based technique and neural network tool to inspect 

droplet behaviours and accordingly stabilize the printing process. This system automatically tunes the 

drive voltage applied to compensate the uncertain influence based on vision inspection result. To 

realize this, we first extract multiple features and properties from images to capture the droplet 

behaviour. Second, we use a neural network together with PID control process to determine how the 

drive voltage should be adjusted. We test this system on a piezoelectric-based ink-jetting emulator, 

which has a very similar jetting mechanism to the LMJP. Results show that significantly more stable 

jetting behaviour can be obtained in real-time. This system can also be applied to other droplet related 

applications owing to its universally applicable characteristics. 
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1 Introduction 

1.1 Background 

Additive manufacturing (AM) or 3D printing has been hailed as the third industrial revolution in 

the unique way that products are designed and manufactured [1]. Due to the elegant concept of the 

layer by layer fabrication, AM can build complex objects with a wide variety of materials and 

functions. This opens up tremendous opportunities for a wide range of applications including 

aerospace, automotive, defence, and biomedical industries [2]. With the advancement of material, 

machine, and process, metal 3D printing is now the fastest growing segment among 3D printing 

technologies [3]. However, most of the current metal 3D printing applications involve high cost and 
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low-speed metal powder sintering or melting [4-7]. Recently, a revolutionary liquid metal jet printing 

(LMJP) alternative [8, 9] has been explored and recognized as a promising emerging process that can 

drastically lower manufacturing part costs while doubling existing printing speed. This game-changing 

technology is opening unprecedented opportunities in advanced manufacturing. 

Vader Systems, a startup company in Buffalo, 

NY, is developing and commercializing the world’s 

first molten metal 3D printer using proprietary 

LMJP technology based on magneto-hydrodynamic 

inkjet printing process [8]. The LMJP technology 

patterns magneto-hydrodynamic liquid metal into 

complex 3D parts 10x faster at 1/10th of the part 

cost as compared to current methods [8]. This 

includes the earth’s most abundant metal – 

Aluminum, which has been widely used in mission-

critical heavy industries, yet extremely challenging 

to handle by other metal printing technologies. The 

molten solid metal in LMJP rather than sintered 

powder leads to dense metal parts with much finer micro-structure that have 30% or greater increase in 

ultimate tensile strength [11]. The main structure of this system is shown in Figure 1. 

Though tremendous efforts and progress have been made in the LMJP process during the past few 

years, as a brand-new technology, there are still multiple challenges such as the limited choice of 

material, e.g., has to be conductive or pre-charged, low melting point (660℃), and the difficulty in 

controlling the wetting property and coalescence behavior of the jetted metal droplet, which handicap 

its large-scale commercialization in practice. One of the major challenges is that LMJP process suffers 

from low process reliability and product quality issues. Physics-based modeling approaches have been 

proposed to predict the process drift and suggest corrective actions. However, the complex printing 

process (energy-matter interaction, phase changing, thermal-mechanical interaction) and the limitation 

of current computational tools hinders its practical applications in 3D printing processes [12, 13]. This 

gap has been reported in recent additive manufacturing roadmap reports by both the government 

agencies and industrial stockholders [14-17]. Given the layer-by-layer nature of 3D printing, if the 

process drifts are not corrected in a timely manner, defects will propagate into subsequent layers, and 

thus deleteriously affect the function integrity (fatigue, strength, geometric integrity) of the part. 

Currently, the metal 3D printing systems are in an open-loop configuration, and the measurement of 

part quality is done offline, leading to material and energy waste and even devastatingly affect the 

structural health conditions and infrastructural integrity of many important engineering systems, 

especially for mission-critical applications such as aerospace, defence, and automobile areas. In-situ 

process-monitoring and process-control are promising to address this challenge. To fill in this research 

gap and advance the technology development, we develop and validate a novel closed-loop control 

system which has a vision-based droplet inspection and a neural network based proportional–integral–

derivative (PID) technology. Specifically, droplet formation is one of the most important factors 

associated with the printing quality and reliability in the inkjet metal 3D printing process. It is vital to 

on-line monitor and in-situ control the jetting behavior including the droplet volume, speed, and 

location in jetting history, which would affect the geometrical and functional integrity of the printed 

part. The aim of this paper is to design and verify a sensing and detection module that can capture 

high-fidelity data of the droplet and extract critical information for the downstream decision making 

for in-situ correction, and ultimately improve the process reliability, reproducibility, and printing 

quality of LMJP process. The result from this paper will be a feedback control system that 

continuously monitors the pattern of the droplets in the LMJP process using the stroboscopic imaging 

technique and adjusts the applied voltage level to compensate the difference between the observed 

pattern and the desired pattern due to environmental changes and unexpected events. We acknowledge 

Figure 1: Liquid metal jet printing system 



 

 

that these individual techniques (image processing, neural network, and closed-loop control) are well 

established and widely used in various applications. However, to the best of our knowledge, we for the 

first time seamlessly integrate these techniques by taking advantage of the unique merits of each 

technique to effectively solve the pressing problem encountered in 3D printing. We believe the 

research outcome opens up a new avenue for the research in the quality control area in additive 

manufacturing and other advanced manufacturing domain. More specifically, the integration and 

interaction between the key techniques provide valuable guidance to the researchers to explore new 

means to solve the process control and in-situ quality certification problems, which have been proven 

a grand challenge in the past years. 

1.2 Related work 

Image- and video-based approaches have been widely used for monitoring the 3D printing process 

to improve the printing quality. Mazumder [18] used cameras to monitor the height of metal 

deposition in a laser cladding 3D printing system, through which the layer height can be controlled 

and better printing quality can be obtained. However, this technology can only control the dimension 

in the vertical direction of the printed part, and the quality improvement is rather limited.  Hu [19] 

built a closed-loop control system for the heat input based on infrared images of the molten pool in a 

laser-based additive manufacturing system. Toyserkani [20] developed a pattern recognition algorithm 

to obtain the clad’s height and angle, and a PID controller is developed based on that. The results 

show an effective improvement of the geometrical integrity. Salehi [21] developed a PID closed-loop 

controller on LabVIEW to control the temperature of the melt pool, but the results show that 

controlling temperature alone cannot produce expected quality improvement due to the complexity of 

the laser cladding process. Faes [22] demonstrated a way to use laser scan to monitor the printed part 

shape on an extrusion based 3D printer prototype, but the application of this technique is limited to 

extrusion-based 3D printing, and the measurement error is related to the printing materials due to its 

interaction with the laser. Cheng [23] presented a closed-loop online system where the feedback is 

obtained from 3D images, and a fuzzy controller is developed to fulfill the process. Regarding vision 

and image processing for studying droplet behavior, there are different image processing technologies 

developed in different areas. Hijazi [24] used cameras to detect the small droplet from a spray nozzle 

to quantify the process in precision agriculture, and shape matching and contour tracking are used to 

detect the droplet. However, the high-speed camera is required for precision monitoring and detection, 

which limits its wide application in cost sensitive area. Pfeifer et al. [25] used camera coupled with 

pulse laser to characterize the fuel droplet from a spray system in high-pressure conditions. The 

droplet velocity, size, and spatial distribution are particularly studied. Kwon [26] used the camera to 

detect the droplet speed of ink printing. By image processing, Cabezas [27] shows that the surface 

tension of the liquid material can be measured. Blaisot [28] applied image processing to identify 

droplet size and morphology, which can be used to analyze the diesel spray behavior. Kwon [26] 

demonstrated that by using edge detection techniques, the speed of ink droplet can be measured, and 

this technology can be used for in-situ measurement. For the stereolithography-based 3D printing 

process, Xu et al. used a thermal camera to study the shape deformation [29] and also used a 3D 

scanner-based close loop framework for shape deformation control [30]. The research works reviewed 

above show that the image processing is promising for droplet characteristic analysis. However, the 

in-situ closed-loop control is still missing due to complex and dynamic droplet formation and 

propagation process. This paper proposes a holistic framework that seamlessly integrates online 

monitoring by image processing technique and in-situ closed-loop control module to effectively detect 

and subsequently correct the process drift and anomalies toward high-quality metal 3D printing. 



 

 

2 Setup and Framework  

In LMJP process, the metal filament is melted by a resistive heater, and the liquefied metal is then 

propelled by alternative inductive force in a drop-on-demand manner. In this research, we first 

prototype a piezo inkjet printing emulator which applies the same drop-on-demand principle as LMJP, 

and develop a vision system to study the in-situ detection and correction problem. 

2.1 Piezo inkjet printing emulator 

The jetting force in LMJP system is produced by magnetic field constructed by a coil around the 

melted metal, and the current in the coil changes and creates a time-varying magnetic field. When the 

liquid metal is exposed in a time-varying magnetic field, eddy currents are induced in the metal and 

create a repulsive magnetic field which pulls the liquid metal apart from the coil. When enough liquid 

metal is pushed out from the nozzle, a droplet will be formed and ejected caused by Rayleigh 

instability [31, 32]. The print head structure is shown in Figure 2(a). LMJP has proven to be a feasible 

and promising metal 3D printing technology, and complex parts have been successfully printed in 

current LMJP prototype machine. However, as an emerging technology, LMJP is still in early R&D 

stage, and the accessibility to the prototype machine is very limited. Because LMJP is based on the 

same drop-on-demand mechanism as the piezo-driven inkjet printing which is widely used in 2D 

printing and 3D printing industries, in this paper we use a piezo-based ink jet device as an emulator to 

study the proposed online monitoring and in-situ correction system. Specifically, the piezo-driven 

micro-inkjet device is used in this work. Its main component is a glass tube covered by piezoelectric 

(PZT) material with a pair of inner and outer electrodes. When a differential voltage is applied to the 

electrode pair, the tubular PZT expands and squeezes the glass tube. This process generates an 

extrusion force to move the liquid material out of the glass tube, and then produces droplets. Its 

structure is shown in Figure 2(c). Zhou et al. developed a simulator for the control of droplet jetting in 

the piezo-based multi-jet modeling process [33]. The processes of these two devices are very similar, 

and they both use electricity to generate extrusion force. By controlling the voltage or the current, they 

can achieve different jetting behavior of the liquid material, and both processes use trapezoid 

waveform to drive the device. In addition, the jetting behavior (droplet initiation and propagation) in 

Figure 2(b) and Figure 2(d) show that the two processes have very similar jetting properties. 

Furthermore, several researchers in the early 1990’s investigated liquid metal jetting process for both 

printing and spherical balls fabrication applications. In these early studies, the same drop-on-demand 

printing mechanism and similar jetting behavior between LMJP and piezo-driven inkjet printing were 

demonstrated [10, 34-39]. Based on this similarity, we argue that the developed monitoring and 

control system can be readily deployed in the LMJP metal printer once it is accessible. Improving the 

process reliability and part quality for the LMJP process using the proposed monitoring and correction 

approach is left for our future work. 



 

 

 

 

 Figure 2: The LMJP system (a, b [8]) compared with the 3D printing emulator of piezoelectric model (c, d). 

2.2  Hardware setup 

The LMJP process is a powerful but a relatively complex process. For a complete understanding of 

the process, it would be helpful to formulate a mathematical model to study the jetting process and 

predicate the printing behavior and the characteristics of the fabricated parts. However, for LMJP 

process, it is very challenging if not impossible to formulate such model, due to the nature of the 

process complexity. Direct measurement of the quality criteria during the building process is also not 

possible, therefore an indirect measurement becomes promising to study and predict the complex 

jetting process. The patterns of droplets jetted by the nozzle are such indirect measurements and 

contain several characteristics that can serve as features to indicate the process state. The crucial point 

is to identify those characteristics that serve as good features for process and part quality. These 

features are measured from the droplet patterns in a first step, and in a second step they are used for 

quality evaluation and to decide how to respond to observed defects in the process. 

We develop a vision system on a piezo-based emulator as shown in Figure 3. The emulator system 

includes a piezo dispenser, piezo driver, computer, CCD camera (STC-MB33USB, Sensor 

Technologies), and strobing LED. The piezo and strobing LED is controlled by the piezo driver. The 

piezo driver generates two digital pulses, where the first one is used as a trigger signal to generate the 

trapezoid waveform and the second one is used to control the strobing LED light. The second pulse is 

synchronized with the first pulse, and the delay time between the first and the second pulse is adjusted 

so that the images can be captured at certain desired time instants. As the LED light and the CCD 

camera are triggered together to shine and capture at the same time, the jetting images appear to be 

frozen and clear. Therefore, we can apply image processing and analysis to the jetting images, and the 

droplet patterns can be studied and understood. When we extend the delay time between these two 

pulses, the image will show the droplet of a later time after dropping. With a continuously swept delay 

time, dynamic droplet behavior can be obtained from a sequence of images correspondingly. It is 

remarked that the print head and the camera is fixed in the setup, but the printing platform is moving, 

so that the droplet properties will not be affected by the movement of the print head. 



 

 

 

Figure 3: Hardware setup of the piezo-based LMJP emulator. 

In a later experiment, a pressure adjustment system is used to simulate the pressure change applied 

to the printing material, which is realized by a syringe and a glass tube. By changing the position of 

the cylinder in the syringe, the liquid material will be pumped into the glass tube. The liquid level in 

the glass tube will reflect the pressure applied to the printing material. The changing pressure acts as 

an uncontrollable external variable.  

2.3 Framework overview 

The jetting behaviour depends on many features of the whole system including the drive voltage 

applied, orifice size of the nozzle, external pressure, liquid viscosity, surface tension, etc. To control 

the manufacturing process to minimize defects, we first classify the process parameters into two 

categories: “random” and “assignable”. Some defects are of assignable causes, such as inappropriate 

parameter settings, which are of repetitive nature unless some corrective actions are taken. Other 

defects are random disturbances or uncontrollable effects, e.g., the external pressure decreases with the 

consumption of the materials; for the aqueous colloidal suspension materials, the viscosity and density 

may change during the printing process due to local aggregation. These changing parameters make it 

very difficult to obtain stable jetting behaviour. The purpose of process control is to adjust the 

controllable parameters to minimize the predicted defects (assignable causes) and also to compensate 

the random defects in subsequent processes. Specifically, the pattern of the droplet is essential for the 

creation of defects, we need to adjust process parameters to create appropriate droplets and thus 

achieve better product quality. For the uncontrollable effects that cannot be compensated by parameter 

adjustment and can only be removed by hardware modification based on the flashing synchronous 

image capture mechanism, they should be understood and should not mislead the process control. 

Several factors could affect the pattern of the droplet, including material, drive voltage, frequency, 

temperature, pressure, and distance between the nozzle and the surface. Among all the parameters, the 

drive voltage is the key, as it is applicable to different materials over different nozzle size and has 

much smaller inertia than air pressure that gives shorter reaction time, which is critical in the online 

control system. We will focus on voltage control in this paper, but the same approach can be extended 

to other parameters once they can be controlled reliably and accurately by the precision control 

system, such as pressure/vacuum using the pneumatic controller. 

In this paper, we build a novel closed-loop controller which integrates image processing and neural 

network technology. As the ink jetting process is very complex and may be influenced by multiple 

parameters, where most of these influences are non-linear, the major challenge is how to use the 

captured images from the vision system to make decisions on adjusting piezo drive voltage. As the 

first step toward the corrective decision making, we formulate a neural network model to establish the 

complex relation between the controllable variable and the droplet features. By inferring the functions 



 

 

of the network from labeled training data, each of which is a pair consisting of an input vector (droplet 

features) and an output value (voltage level), the system can map the jetting behaviour to a 

corresponding value of the controllable variable. In this way, simple control strategy like PID process 

can be used to compare the jetting behaviour to the target point to address the complex non-linear 

control problem in an on-line and in-situ manner without human interaction and specific expertise, 

which otherwise would be extremely challenging for traditional model-driven controller design. The 

structure of the system is shown in Figure 4. The reference input is the desired jetting behaviour. In 

this case, the ideal jetting behaviour is that each pulse of the input signal only generates one single 

droplet with sufficient volume, and without satellite following behind it. The image sequence of the 

droplets captured by CCD camera is fed back to the controller, and then the droplet features are 

extracted by image processing. By mapping these features into a virtual voltage value using the neural 

network, and then comparing with the target features, a PID process is used to adjust the drive voltage, 

which is then applied to the piezo driver. Such iterative process is the essential components of the 

closed-loop control system to achieve more stable and reliable jetting behaviour.  

 
Figure 4: The proposed online monitoring and in-situ correction system 

3 Vision-based Droplet Features Extraction  

The goal of the vision system is to capture the droplet patterns and extract some features of the 

droplets from the images. Typical features from inkjet techniques [26, 40] can be used, e.g., satellite, 

ligament, speed, volume, which can be measured in real time. Among these features, the volume and 

ligament convey the geometric information of the droplet, the satellite represents its morphologic 

status and the speed infers its kinematical behavior. Although the droplet patterns obtained from 2D 

images can reveal the quality characteristics, a single feature is not sufficient to determine the process 

state, and we have to utilize more features to distinguish between inappropriate parameter settings and 

random defects and thus increase the sensitivity and accuracy of the inspection system. For instance, 

the effect of the drive voltage on the droplet size and velocity has been studied in Li’s thesis [41]. The 

research shows that when the amplitude of the drive voltage increases, both of the droplet volume and 

the velocity will increase. This can be explained by volume changes of the piezo due to the 

piezoelectric effect: 
Δ𝑉𝑝

𝑉𝑝
= −𝑑31

𝑈

𝑡
, where 𝑉p  is the volume of the piezoelectric actuator, 𝑑31 is the 

piezoelectric strain constant, 𝑈 is the drive voltage and 𝑡 is the thickness of the piezoelectric tube. 

From this equation, we can understand that a higher voltage can lead to a larger volume change of the 

piezoelectric actuator, as it is attached to the glass tube. The glass tube will be squeezed 

simultaneously, and this will cause more liquid ejected. Similarly, larger induced acoustic waves will 

generate a higher velocity of the droplet. Therefore, one can calculate the velocity of a droplet and find 

out if the voltage is optimal. However, it is far more complicated in practice, and the same 

phenomenon may be caused by different assignable factors and random disturbances. One example is 

that the abnormal speed of droplet in Figure 5(a) is caused by the instability of back pressure, which is 

an uncontrollable random deflect but not because of the voltage. Another example is shown in Figure 

5(c), the number of satellite can be increased because of a low voltage and thus low deposition rate 



 

 

that the volume is not enough to form a sharp drop, or a high voltage and thus high deposition rate that 

the volume is too much to form a single drop.  

 

Figure 5: (a) The speed of droplet is increased by the instability of vacuum. (b) The detected volume of droplet is 

kept changing. (c) The number of satellites can be increased because of the voltage is too low or too high. 

Because the droplet is subjected to fluid dynamics, 

the same droplet at different time instances may 

appear to be having different volume as shown in 

Figure 5(b). To incorporate the droplet dynamics in 

the system, in this paper we present a solution with a 

hierarchical scheme for defect detection as shown in 

Figure 6. Each input image is analyzed individually 

first, and features from each frozen image are 

extracted.  The extracted features from the images in 

different time steps are then summarized as properties 

through a set of rules. After all, the process state is 

deduced from the properties. The process state here is 

the voltage level. 

3.1 Feature extraction 

Given a frozen image, we define a region of interest (RoI) right below the nozzle of a jet image as 

shown in Figure 7, which can be specified manually if the hardware setup is always fixed, or 

automatically by detecting the position of the nozzle (using the same method for detecting droplets). 

In general case, the background is clear and has a good enough contrast to the foreground (i.e., 

droplets), so simple thresholding can segment the RoI into foreground and background easily. 

However, Otsu's method [42] can be used to choose a threshold more intelligently through a histogram 

of the RoI. The connected components on the resultant binary image are the droplets or the ligaments, 

and if there are internal holes surrounded by foreground after segmentation, they are automatically 

filled. After that, the features can be extracted. The features are the number of connected components 

(#seg), the maximum width (wi) and height (hi), area (Ai), and the largest position in the y-axis of 

each component (yi). The subscript i indicates the features are extracted separately for each of the 

connected components ordered from top to bottom. All these features can be extracted easily by a 

simple flood-fill algorithm [43] in each connected region, and can be done in real-time. 

Figure 6: Defect detection architecture 



 

 

 
Figure 7: Feature extraction from frozen jet image. Right: {Area} represents the area of the extracted droplet, (w, 

h) represents the width and height of the droplet. 

3.2 Dynamic analysis 

The extracted features from the frozen images are summarized to properties of the droplet pattern. 

The properties are the satellite, ligament, volume, and speed. Instead of generating a large number of 

samples to train a system to learn the relationship between the features, the properties, and the voltage 

level, we define a set of knowledge-based rules by our understanding on the droplet system to deduce 

the properties from the features, which are simple but effective. Assume there are m  images at 

different time instants {tm} and there are ct (∀t = t1 … tm) connected components sorted in an order 

from top to bottom in each image, the rules are defined as follows: 

1. The number of satellites is equal to the maximum value of the number of connected 

components among all frozen images, i.e., Satellite (N) = max {#segt}. e.g. N = 5 as shown 

in Figure 7. 

2. The size of ligament is defined as the maximum value of height-to-width ratio for each 

connected component among all images, i.e., Ligament (L) = max {hi,t/wi,t}. (∀i = 1 … ct). 

e.g. L = 24/17 = 1.41 as shown in Figure 7. 

3. The total volume of a jet is the maximum value of the total area of components among all 

images, i.e., Volume (V) =  max {∑ Ai,1i , ∑ Ai,2i , … , ∑ Ai,ti }. e.g. V = 325+124+177+105+145 

= 876, as shown in Figure 7. 

4. The jetting speed is defined as the travel speed of the lowest droplet, which can be calculated 

at two different time instants (ta, t𝑏), i.e., Speedt =
ptb

−pta

tb−ta
, where pt is the largest value of yi 

at time t, i.e., yct
. The jetting speed (S) is the maximum value of  Speedt. The yct

= 285 as 

shown in Figure 7, as we use strobing, this value can be regarded as a measurement of 

distance travel from t = 0 in a simplified case. 

The evaluated values in the steps above are also used for screening purpose. For example, when the 

number of satellites and the jetting speed decrease at time t, it is safe to assume that some droplets 

have left the RoI, and thus the Speed is measured only before t; or when there are abnormal changes 

at time t such as a sudden decrease of satellites (#segt ≪ #segta
), sudden increase of ligament size 

(Ligamentt ≫ Ligamentta
), volume (Volumet ≫ Volumeta

), or speed (Speedt ≫ Speedta
), they are 

most likely caused by some random disturbances that cannot be controlled (e.g., Figure 5(a)), so this 

particular droplet pattern is discarded in the control loop. It is worth to mention that the relationships 

between extracted features and droplet dynamics are linear with one-to-one correspondence, e.g., the 

speed is computed only by the 𝑦 coordinate, and the volume is computed only by the area. Therefore, 

the analysis is efficient yet effective. To analyze the droplet behavior, the imaging system captures 

images of sequential droplets with a dropping frequency of 300Hz. The sequential droplets have 

identical behavior in such a short period. Capturing more images is generally more robust, the 



 

 

minimum number of the image required is three according to our algorithm to examine different stages 

of the jetting process. 

4 Process Control 

The goal of process control is to adjust the drive voltage to minimize the defects caused by 

assignable or random variables. Gathering the properties of a droplet pattern, they are used to 

determine the level of voltage for a particular time and environment. The optimal case is that there is 

only one single droplet with a circular shape, i.e., N = 1 and L = 1, and it has sufficient volume and 

speed. For the volume and speed, a pixel-based unit value can be set, e.g. 𝑉 = 120 pixels, 𝑆 =  1 

pixel/µs. Noted that, there is no need of the calibration between the world coordinate and the image 

coordinate to find the pixel size, because this system focusses on the droplet pattern rather than the 

exact physics. It is straightforward to determine if a droplet pattern is desired, but it is difficult to 

define how far from the optimal a droplet is. The properties vary more or less continuously with the 

voltage level, instead of a well-defined boundary. For example, “if the droplet is fast then the voltage 

is high”. The meanings of the expressions “fast/slow”, “large/small volume”, or “high/low” do not 

have exact evaluations and are represented by functions mapping. To account for these dynamics, we 

employ the neural network to establish the relation between the features and a voltage level. Following 

the neural network training process, all input values are the features extracted from images in the 

training data set, and the target data is the drive voltage level under which each image is captured. 

With this trained neural network, an offset voltage value can be obtained to characterize the jetting 

behavior based on the image, and then this value can be used to adjust the drive voltage applied on the 

print head. 

4.1 Neural network training  

To train the neural network, we need to prepare a set of training data, i.e., images of droplet pattern 

labeled by voltage level. Instead of asking an expert to label the captured images one-by-one, we 

present a practical procedure to generate the training set. First, as an initialization step, the user tunes 

the system setting to obtain a good droplet pattern, i.e., N = 1 and L = 1. In our experiment during the 

training, the voltage is 45V, the pressure is -8mmH2O, and jetting frequency is 300Hz. Note that, the 

values here are just for reference, but the optimal setting varies by time, and it’s also why the control 

system is important. Second, the system captures images and adjusts the drive voltage automatically. 

The voltage is adjusted step by step with an offset value such as ±1, ±2, ±3, … , ±10, and this value is 

used to label the corresponding captured image, which is the output of the network. Third, the feature 

extraction method is used to extract the four features from the images including the number of 

satellite, ligament, volume and speed of the droplet, which are used as the inputs of the network. This 

procedure is repeated for several times to minimize the effect of inaccurate initial setup. We have 

collected 800 sets of data, in which 70% of them are used for training, 15% are used for validation and 

another 15% are used for testing. They are used to train a two-layer feed-forward network with ten 

sigmoid hidden neurons and linear output neurons, using the Levenberg-Marquardt backpropagation 

algorithm. The trained networks performance and error histogram are shown in Figure 8. 



 

 

 

Figure 8: Neural Network Performance and Error Histogram. Left: Performance, best validation performance is 

0.012388 at epoch 6. Right: Error histogram with 20 Bins.   

4.2 Voltage adjustment 
The output of the neural network is an offset voltage value which is used to characterize the jetting 

behavior. As it has the same unit and dimension with the control variable, it is easy to implement a 

control strategy like PID to adjust the drive voltage applied to the print head. A PID equation is   

Output =  𝐾
𝑃

𝑒𝑟𝑟(𝑡) + 𝐾𝐼 ∫ 𝑒𝑟𝑟(𝑡)𝑑𝑡 + 𝐾𝐷

𝑑

𝑑𝑡
𝑒𝑟𝑟(𝑡), 

where 𝑒𝑟𝑟(𝑡) is the feedback value outputted from the neural network. To implement in a discrete-

time PID algorithm, the integration part is the sum of all the errors, and the derivative part is the 

difference between current error and previous error divided by time period. As the system response 

requirement is at the level of seconds, after tuning the PID parameters in our control system, a 

proportional control is good enough to achieve a stable jetting behavior. 

5 Results 

In this section, we first use our feature extraction method to understand the behavior of the LMJP 

process, and then we describe a case study to demonstrate the feedback control system. 

5.1 Experimental study 

A feedback control system is to adjust the inputs parameters based on the current status to 

compensate the defects in subsequent processes, and thus it is based on an assumption that the process 

is repeatable or at least stable in a short period. To show that the jetting process with the current setup 

is repeatable, we have conducted an experiment with a typical piezo nozzle under the working 

situation: applied voltage 50V, pressure -10mmH2O, jetting frequency 300Hz, and this test lasted for 

approximately 40 minutes with 300 times of jetting. Image capturing and feature extraction are done 

for each jet, and the extracted features are recorded which are plotted in Figure 9. The plots show quite 

consistent results over time with only a little variation, which is mostly caused by the varying 

environment and possibly the hardware. The standard deviations of satellite, ligament, volume and 

speed are 0%, 2.0%, 0.8% and 0.77% to the mean values, respectively. This experiment indicates that 

the jetting behavior and process are stable. 



 

 

 
Figure 9: Repeatability test results. The plot for satellite is not shown as it is just a straight line. 

In process modeling, we know that there are independent variables (controllable) and dependent 

variables (uncontrollable), but there are also unknown unknowns – the ones we do not know we do not 

know (e.g., the environment light may affect the jetting behavior, however, the relation between them 

as well as the existence of such fact itself is unknown to us). To account for the dependent variables 

and unknown unknowns as much as possible, the independent variables have to be significant enough 

that can provide a wide range of available adjustments to the output results. To have a better 

understanding of the variables in the LMJP process and the jetting behavior, we conduct another 

experiment to study the effect of parameters. Although it is impossible to test for unknown unknowns, 

the relationship between variables can still be found with those knowns. Two variables in LMJP are 

used here: voltage and pressure. In practice, the consumption of material, the changes of temperature 

and atmosphere all have influences on the pressure, but we do our best to keep all these variables 

consistent in this experiment. The experiment is performed with the typical working range of the 

voltage from 35V to 60V and the pressure applied from -30mmH2O to 0mmH2O. The results are 

shown in Figure 10. It can be seen that both of the parameters have effects on the jetting behavior 

indicated by the extracted features, but the change in voltage gives a level of difference while the 

change in pressure just gives a relatively mild influence. For example, with the increase of voltage 

from 35V to 60V under the pressure of -30 mmH2O, the ligament is increased from 1 to 2.5 (250%); 

but the ligament is just slightly increased from 1 to 1.2 (20%) when the pressure is increased from -30 

to 0 mmH2O for voltage is 35V. Therefore, for the sake of effectiveness and efficiency, our control 

system adjusts the voltage level to compensate the random and unknown deflects. Nevertheless, there 

are exceptions such as when the pressure is changed from -20 to -15 mmH2O for voltage is 60V, the 

volume has a dramatic increase, which could result in the jetting behavior that cannot be corrected by 

the adjustments in voltage. Similar situations may also happen due to the unknown unknowns. For this 

kind of effects that cannot be compensated by parameter adjustment, it is detected and can only be 

removed by hardware modification. 



 

 

 
Figure 10: Experiments results with varying voltages and pressures. 

5.2 Case study 

Abnormal jetting behavior stabilization. The first experimental test case is carried out to verify 

the effectiveness and efficiency of the proposed control system when jetting process drifting occurs. 

At the beginning, the jetting device is set to exhibit an undesired jetting behavior, and then the 

controller is engaged to stabilize the jetting process. The detailed process is shown in Figure 11. 

 

 

Figure 11: A case study for offset jetting stabilization 



 

 

First, images of the jetting process are captured under the piezo dispenser in each iteration. The 

images show instable droplets and undesirable satellites generated. After the vision inspection, 

features are extracted. In the iteration n-1, the system identifies the following features: satellite (N) = 

3, ligament (L) = 0.88, volume (V) = 432, speed (S) = 278. These features jointly describe the jetting 

behavior, through the neural network, they are mapped to a voltage value 64.1 V.  The control target is 

set based on images which give satellite (N) = 1, ligament (L) = 1, volume (V) = 120, speed (S) = 60. 

These features are mapped to a voltage value of 45 V. When the controller is engaged, the virtual 

voltage 64.1 V is compared to the target value. After the PID process, a voltage adjustment of negative 

9.5V is applied to the printing head. Then the iteration continues, the system keeps monitoring the 

jetting behavior. The test case shows that the vision inspection can provide a proper adjustment of the 

drive voltage based on the captured images.  

Uncontrollable disturbance compensation. The second test case is carried out to test the 

effectiveness of the controller when some uncontrollable variable changes during the jetting process. 

In this test case, the pressure applied to the jetting material decreased which disturbs the jetting 

process. Even though the pressure is not controlled by the proposed system, the drive voltage is 

adjusted by the controller to compensate the disturbing and get a stable desired jetting behavior.  The 

detailed process is shown in Figure 12. 

 

 

Figure 12 A case study for uncontrollable disturbing compensation 

During the printing process, the pressure decreasing caused the jetting behavior changing. The 

features extracted from the images show that the droplet volume and speed decreased from iteration n-

1 to iteration n. Through the neural network, this change can also be reflected from the virtual voltage 

changing from 45V to 43V. With the PID control, the drive voltage was increased by 1.6 V for the 

next droplet. After several iterations, the jetting behavior is restored to the same situation as before the 

disturbance is applied. This test case shows that even the jetting condition is changed by external 

disturbance, the controller can successfully adjust the applied voltage to correct the jetting behavior. It 

should be noted that the monitoring and control process, in general, takes less than one second, which 

is much faster than the fluctuation of uncertain influences such as pressure changes caused by material 

consumption. The detailed in-situ droplet inspection and control process is shown in the following 

video: http://www.acsu.buffalo.edu/~chizhou/video/LMJP_Simulation.mp4. 

http://www.acsu.buffalo.edu/~chizhou/video/LMJP_Simulation.mp4


 

 

6 Conclusions 

In this paper, we present a novel online monitoring and in-situ correction framework for inkjet-

based 3D printing system. This framework seamlessly integrates efficient image processing techniques 

and machine learning technology to solve complex control problem. The central hypothesis of the 

proposed technique is that the random and uncontrollable process variations can be compensated by 

controllable and deterministic design variables. The major components of the proposed system include 

the vision-based droplet feature extraction, neural network and PID control subsystems. The output of 

the system is the optimized voltage level which is used to control the droplet jetting behaviour. In the 

proposed approach, a sequence of dynamic images for the droplet are captured by a CCD camera, and 

four properties (satellite, ligament, volume, and speed) of the droplet are extracted from both frozen 

and dynamic images to quantify the droplet behaviour. A neural network is proposed to identify the 

voltage change, which is then feedback to the current voltage. To verify the effectiveness and 

efficiency of the proposed approach, we implement the system on a piezoelectric inkjet-based 

emulator. The test results show that the proposed closed-loop control system can achieve much more 

stable jetting behaviour, and the process cycle for each droplet takes less than 0.5 seconds. Therefore, 

the proposed approach is promising to achieve online monitoring and in-situ correction for jetting 

based 3D printing processes.  

In the future, we will extend the current prototype module from emulator to in-field LMJP 

machine. We will incorporate parallel computation techniques to further boost the online processing 

speed and feature extraction accuracy. In our current setup, we only considered the amplitude of the 

waveform as the system output, but we will consider other important parameters such the dwell/echo 

time of the waveform, the pressure/vacuum level, and environment temperatures. The significance of 

the extracted features on relationships with different types of droplet dynamics in the nonlinear model 

will also be investigated, where the collected feature values will be presented in a feature space and 

clustering will be applied to learn the correlation. It should be noted that the same strategy can be 

extended to the new process parameters with trivial effort. 
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