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DNSS: Dual-Normal Space Sampling
for 3D ICP Registration

Tsz-Ho Kwok

Abstract—Rigid registration is a fundamental process in
many applications that require alignment of different datasets.
Iterative Closest Point (ICP) is a widely used algorithm that
iteratively finds point correspondences and updates the rigid
transformation. One of the key variants of ICP to its success
is the selection of points, which is directly related to the
convergence and robustness of the ICP algorithm. Besides
uniform sampling, there are a number of normal-based and
feature-based approaches that consider normal, curvature,
and/or other signals in the point selection. Among them,
Normal Space Sampling (NSS) is one of the most popular
techniques due to its simplicity and low computational cost.
The rationale of NSS is to sample enough constraints to
determine all the components of transformation, but this study
finds that NSS actually can constrain the translational normal
space only. This paper extends the fundamental idea of NSS
and proposes Dual-Normal Space Sampling (DNSS) to sample
points in both translational and rotational normal spaces.
Compared with NSS, this approach has similar simplicity and
efficiency without any need of additional information, but
has a much better effectiveness. Experimental results show
that DNSS can outperform the normal-based and feature-
based methods in terms of convergence and robustness. For
example, DNSS can achieve convergence from an orthogonal
initial position while no other methods can achieve.

Note to Practitioners—ICP is commonly used to align
different data to a same coordination system. While
NSS is often used to speed up the alignment process
by down-sampling the data uniformly in the normal-
space. The implementation of NSS only has three steps:
(1) construct a set of buckets in the normal-space; (2)
put all points of the data into buckets based on their
normal direction; and (3) uniformly pick points from
all the buckets until the desired number of points are
selected. The algorithm is simple and fast, so that it
is still the common practice. However, the weakness
of NSS comes from the reason that it cannot handle
rotational uncertainties. In this paper, a new algorithm
called DNSS is developed to constrain both translation
and rotation at the same time by introducing a dual-
normal space. With a new definition of the normal
space, the algorithm complexity of DNSS is the same
as that of NSS, and it can be readily implemented in
all types of application that are currently using ICP.
The experimental results show that DNSS has better
efficiency, quality, and reliability than both normal-
based and feature-based methods.

Index Terms—Iterative closest point (ICP), Fine Registra-
tion, Point Sampling, Point Selection, Normal Space
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I. INTRODUCTION

REGISTRATION is a process to align three-
dimensional (3D) shapes of either different parts of

an object or two different but similar objects. It is a funda-
mental task in many applications in computer vision, object
recognition, computer graphics, robotics, medical imaging,
statistical learning, etc. This is also referred to as scene-to-
model registration that finds a rigid-body transformation to
align a model (M) to a scene (S). Model and scene are the
aliases for two 3D shapes, where scene stands for the static
one and model stands for the moving one. The registration
can be formulated as minimizing this energy function

E(R, t) =
1

n

n∑
i=1

d(Rpi + t,S), (1)

where the model is represented by a set of sampling points
M = {pi ∈ M, i = 1 . . . n}, R is a rotation matrix, t is
a translation vector, and the metric d measures the error of
distance to S. Many practical applications still rely on the
Iterative Closest Point (ICP) algorithm for fine registration
when an initial transformation is given. ICP can efficiently
align two datasets by alternating between matching cor-
responding points and updating the rigid transformation.
ICP has been widely applied in face recognition [1],
robot navigation [2], autonomous driving [3], terrain map-
ping [4], etc. ICP has many different elements, which can
be summarized into these categories: point selection, point
matching, pair weighting, outlier removal, error metric, and
energy minimization. In general, these steps are applied
sequentially in an ICP process, but each step is performed
only if necessary. Among which, point selection is usually
performed for the sake of convergence and computational
complexity. This is because indiscriminately using all the
points for registration will inordinately slow down the
ICP convergence or even find a wrong pose. For instance,
using the full set for the two-dimensional (2D) teeth shape
shown in Fig. 1 results in multiple local minimums of
energy along the X-axis because of the repeated tooth
patterns. It has been shown that ICP is a gradient descent
method [5] and proved to converge monotonically to a local
minimum [6], and thus the range of convergence for the
full set is (−50, 50) along X-axis (the width of a tooth is
100). If points are properly selected (e.g., by dual-normal
space sampling), the range of convergence is extended even
wider than [−225, 255] along X-axis, i.e., only one global
optimum. Although it may not be always possible to have
only one global optimum in all motions, this paper focus
on the category of point selection in ICP and aims to look
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Fig. 1: A 2D teeth shape is used for illustration of the relation between the choice of points and the range of convergence
in registration. Three different point sets are used: full set, normal space sampling (NSS), and dual-normal space sampling
(DNSS). The surface charts in the top row show the energy levels against translation along X-axis and rotation. The
three line charts in bottom row show the energy levels against translation in X-axis, Y -axis, and rotation respectively. It
is clear that different sets of points give different ranges of convergence. Using the full set of points or the set from NSS
has multiple local optimums shown in the surface charts, and it is more clear in the line charts that they give the range
of convergence (−50, 50) along the X-axis. Conversely, the set from DNSS gives only one global optimal as shown in
the surface chart as well as the line charts. The success of registration is highly related to the choice of points.

for better strategies to pick points such that the range of
convergence is enhanced.

There are different strategies proposed for point selec-
tion: uniform sampling, random sampling, normal space
sampling [7], curvature sampling [8], sampling on intensity
or color, etc. While the feature-based methods [9] normally
have a higher robustness, they require addition information
like curvature or color. The normal-based approaches are
intuitive to understand and straightforward to implement,
so they remain the most commonly used point selection
algorithm. For example, the Normal Space Sampling (NSS)
chooses a certain number of points such that the distribution
of normals among selected points is as-large-as-possible.
The rationale is to sample enough constraints to determine
all the components of transformation. However, it can
primarily deal with translational components, but not rota-
tional ones. The approach is further extended by covariance
sampling [10], [11] that performs stability analysis to select
geometrically stable points that can bind the rotational
components as well. The method bases on kinematics to
find six orthogonal axes and immobilizes the object in those
axes, which is promising but not always robust. This is
because the initial position is arbitrary and may not fall
into one of the axes, so the covariance sampling may not be
able to account for all translations and rotations. Following
the idea, this paper affirms the importance of binding the
rotational components and finds that the selected points
constrains the rotational space very differently from the
translational, due to the special structure of SO(3). There
are even points that always diverge the results in the
rotational space. A novel point selection method called
Dual-Normal Space Sampling (DNSS) is developed to

sample points carefully, such that both the translational
and rotational components are properly constrained. The
contributions of this paper are summarized as follows:

1) This study analyzes convergence and theoretically
shows that points can have a negative return from
a rotation, so the convergence is highly related to the
selection of points.

2) The rotational convergence is derived as a quantitative
measure of how a point constrains the rotational
components, and it is used to determine the selection
of points.

3) A uniform sampling in dual-normal space is devel-
oped to determine all the translational and rotational
components, and its computational complexity is
close to NSS.

The developed dual-space space sampling (DNSS) is sim-
ple, neat, and effective. Surprisingly, experimental results
show that DNSS as a normal-based method can even out-
perform the feature-based methods in terms of robustness.
There is an example showing that DNSS can achieve con-
vergence from an orthogonal initial position while no other
methods can achieve. As a result, DNSS is reliable and
promising as it can widen the range of convergence without
the need of identifying features or additional information.

The rest of the paper is structured as follows. Section
II briefs the related works, and Section III analyzes the
convergence for translational and rotational components.
After that, the details of dual-normal space sampling are
given in Section IV. Experimental results and analyses are
presented in Section V, and the paper is concluded in
Section VI.
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II. RELATED WORKS

Registration is a very popular research topic due to
its numerous applications, and there are too many related
works to be included here. Interested readers are referred to
some survey papers [12]–[14]. This section mainly reviews
the works related to ICP and the point selection methods.

A. Registration methods

When the inputs have arbitrary positions and orientations,
global registration methods are used to find a rigid trans-
formation to roughly align the inputs. Some popular global
alignment methods, e.g., 4PCS [15], [16], use RANSAC
method to find a set of candidate correspondences from two
datasets and choose the best alignment. When the inputs are
initialized closely to each other, fine registration is done to
refine the alignment. Iterative Closest Point (ICP) and its
variants [7] are widely used and there are many applications
relying on ICP for fine registration. Recently, there are a
number of globally optimal methods [17], [18] proposed
to combine both global and fine registration based on the
branch-and-bound (BnB) framework. The BnB optimiza-
tion for registration has a theoretical optimality guarantee,
but it is usually time-consuming. To speed up the opti-
mization, Go-ICP [17] integrates ICP into the BnB scheme
as an inner loop. Therefore, ICP takes a very important
role in registration problems. Some other methods intend to
improve the robustness of ICP by modeling the distribution
of the points. For example, Jian et al. [19] modeled each
point set using Gaussian mixture models (GMMs) directly
to align two distance functions. Myronenko and Song [20]
considered the points of the first dataset as the centroids
of the GMMs and fitted them to the second dataset as a
probability density estimation problem. Horaud et al [21]
developed an Expectation Conditional Maximization for
Point Registration (ECMPR) algorithm, which is an EM-
like algorithm, to handle unknown correspondences via
mixture models. These methods are generally computa-
tional and memory demanding, and some of them even
could not be solved in closed-form.

B. Point selection

The performance of ICP heavily depends on the selection
of points because sub-sampling can speed up the algorithm
and more importantly the selected points determine the
convergence of registration. In fact, there are many different
sampling variants appeared in literature. Besides those
have been already mentioned in the Introduction, Iterative
Closest Normal Point (ICNP) [22] shows that the normals
contain more discriminatory information than the coordi-
nates of the points, and directly finds correspondence and
alignment by the normals. There are works using different
local shape descriptors to select points for registration (see
survey [23]); for example, curvature map [24], integral
volume descriptor [25], intrinsic wave descriptor [26], poly-
nomial descriptor [27]. Based on the descriptors, the points
that have rare descriptor values are selected for registration.

These approaches expect the rare points can uniquely define
the transformation between the input datasets. Although
using rare points may be a good strategy for registration,
not every model has distinguishable features, and it is
computationally expensive to compute the descriptors for
every point in the datasets.

A similar problem in finding critical points is appeared
in the fixture and grasping problem, which immobilizes
a workpiece accurately and securely during machining
or in robotic applications (see surveys [28], [29]). Most
of the works in Computer-Aided Fixture Design (CAFD)
minimize the number of contacts needed for form closure
(four in 2D, and seven in 3D), i.e., seven contacts are used
to impede all the degrees of freedom of a workpiece purely
based on the geometrical placement. The efforts in this
field have resulted in numerous CAFD applications using
various methods, such as expert system [30], Case-Based
Reasoning (CBR) [31], and Genetic Algorithm (GA) [32],
etc. Nevertheless, similar to the problem of covariance
sampling, even having only seven points may be sufficient
to constrain an object from leaving the current position,
it may not be enough to attract an object to the desired
position from an arbitrary initial position.

III. CONVERGENCE ANALYSIS

Before discussing the details of dual-normal space sam-
pling, this section first analyzes the convergence and shows
the difference between translation and rotation. The deriva-
tion will be used as a quantitative measurement in point
selection. The convergence is studied by measuring how
much a point returns back from a rigid motion in one iter-
ation. In mathematics, rigid motions in 3D Euclidean space
<3 generate a special Euclidean group denoted SE(3).
It has as subgroups the translational group T (3) and the
special orthogonal group SO(3) – rotational group. The
translational group is presented first, and it is followed by
the rotational one. Without loss of generality, the motion is
assumed to be small, and thus the surface is flat locally, e.g.,
the point-to-tangent [33] surface approximation is applied.

A. Translational group

A translation changes the position of an object by moving
every point by the same amount in a given direction, and
thus an element from the translation group T (3) can be
solely described by a vector v ∈ T (3). Take Fig. 2(a) as
an example, a point p is translated by v to a new position
p′ = (p+v). Let the point normal as n (‖n‖ = 1) and the
closest point of p′ on the surface is q, the distance error
can be minimized by moving p′ to q by a translation vector

−→
p′q = (−v · n)n.

If p is the only sample point,
−→
p′q will minimize the energy

to zero, i.e., d(q,S) = 0. It is not in the optimal position,
and more points are needed in practice. Here, the return
of the motion is measured by how much it compensates
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Fig. 2: (a) A point p with normal n is translated by a
vector v to p′. The closest point of p′ on the surface S
is q, and the translational return µt(v) is defined with q′,
which is the projected point of q on v. (b) The return µt(v)
is plotted against the angle α.

the translation v. Projecting
−→
p′q onto the vector v, the

translational return is defined as:

µt(v) =
‖
−−→
p′q′‖
‖v‖

= − (
−→
p′q) · v
‖v‖2

=
(v · n)2

‖v‖2
= cos2 α, (2)

where α is the angle between the translation v and the point
normal n. It can be seen that µt(v) only depends on the
angle α, which is plotted in Fig. 2(b). The return is at its
maximum when α = 0 or π, i.e., the normal is parallel to
the translation.

Remark 1. When the point normal aligns with the trans-
lation vector, the translational return is maximized.

If the direction of a translation is known, the best choice
is to sample points with normal parallel to that direction, so
that the return can be maximized. Nevertheless, when the
direction is unknown, points should be picked to account
for all possible directions. This is a trade-off strategy as
the minimization is done for all the points. If some of the
directions have more points than others, the results will be
biased and some directions might be omitted. Therefore,
a balance way is to select points with normal equally in
all directions, so that the return is equalized in the whole
normal space. This agrees with the strategy of Normal
Space Sampling (NSS) that samples points uniformly across
the normal space.

Conjecture 1. An effective sampling is to pick points
uniformly to equalize the returns in the normal space.

B. Rotational group

While a translation can be interpreted as shifting the
origin of the coordinate system, a rotation is a transfor-
mation that preserves the origin. Every non-trivial rotation
is determined by its axis of rotation (a line a through the
origin o) and its angle of rotation (θ). Therefore, optimizing
the rotation parameters by definition is more challenging
than the translation parameters, due to the special structure
of SO(3).

An element in the translational group T (3) is a vector v,
and the translational return can be described by the included

Fig. 3: (a) A point p with normal n is rotated around a
center o by an angle θ to p′. The closest point of p′ on the
surface S is q, and the rotational return µr(θ) is defined
with an angle γ. (b) The rotational return µr(θ) is plotted
against the angle β. Region A visualized in (c) gives a
negative return, and region B visualized in (d) gives a return
greater than 1.

angle (α) between v and n. In contrast, an element in the
rotational group SO(3) is a couple (a,p), where a is the
rotational axis and p is the radius – a center-to-point vector
with the origin is the center, i.e., p ≡ −→op. The rotational
return is thus related to the three vectors a, p and n. The
vectors form a 3D space and the return can be described
by two angles. One is the angle β between p and n, and
the other one is the angle α between a and p × n (later
named as rotational normal). The angle α here shares the
same meaning as the one in the translational return, between
the axis of motion and the normal, and its effect to the
return is a factor of cos2 α as studied in Eq.2. The following
discussion mainly focuses on β and assumes α = 0, i.e.,
the motion and its return are on the same rotational plane.

In Fig. 3(a), a point p is transformed to p′ in a clockwise
direction by a rotational angle (θ) at a rotational center (o)
around a rotational axis (a) perpendicular to paper. The
closest point of p′ on the surface is q, and the optimization
is to rotate in an anticlockwise direction to align p′ to
the point q. Assume the returning angle is γ measured
in an opposite direction of θ, the amount of return is the
arc length ‖p̂′q′‖ = ‖p‖γ, and thus the rotational return
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Fig. 4: The rotational return µr(θ) is plotted against (a) β
and (b) θ with different values of the other.

referenced to θ is defined as

µr(θ) =
‖p‖γ
θ

. (3)

Based on trigonometry and chord, γ is calculated by

γ = (θ − tan−1(
‖−→pq‖ sinβ

‖p‖ − ‖−→pq‖ cosβ
)), (4)

where
‖−→pq‖ = ‖

−−→
pp′‖ cos(β − θ/2)

‖
−−→
pp′‖ = 2‖p‖ sin(θ/2).

Therefore, µr(θ) depends on the rotational radius ‖p‖, the
rotational angle θ, and the angle β between the normal
n and p, i.e., µr(θ) = fr(‖p‖, θ, β). In Fig. 3(b), µr(θ)
is plotted against β for ‖p‖ = 1 and θ = π/4. Unlike
the translational return that always falls in the range of
[0, 1], the rotational return can be less than 0 (indicated
as A) or greater than 1 (indicated as B), where zone A is
β = (θ/2, θ) and zone B is β = (π/2, (π + θ)/2). This
phenomenon is demonstrated in Fig. 3(c) and (d), where
the circle is the locus of the closest point q according to
different values of β. The figure shows that there are two
parts of the circle out of the spectral angle between p and p′

(≡
−→
op′). One is beyond p′ resulting γ < 0, the other one is

behind p resulting γ > θ. It is a critical difference between
translation and rotation. If the return is negative µr(θ) < 0,
the optimization fails to returns from the induced rotation
θ and will never be able to align the datasets unless they
are already aligned, i.e., θ = 0.

Observation 1. The rotational component can be diverged
even the registration energy is decreasing.

Based on the observation, this research makes the following
hypothesis.

Hypothesis 1. Sampling points for both the translational
and the rotational components gives better convergence to
registration than only for the translational one.

In terms of point selection, it is desired to pick the points
with the return close to or even greater than 1, but certainly
not to pick points that give negative returns. Therefore,
µr(θ) = fr(‖p‖, θ, β) can be utilized to guide the selection
of points for registration, where ‖p‖ is the point-to-center
distance that is well-defined with the center, e.g., the mass

center, and β is the angle between p and the normal n.
The angle θ stands for the angle difference between the
two datasets around a rotational axis, which can be a used
to control the sensitivity of registration. It is desired to set θ
as large as possible, so that the registration can work for a
larger range of initial positions and orientations. Figure 3(b)
shows the return for the clockwise rotational motion, and it
is similar for the anticlockwise motion, which is a mirror
copy of the clockwise one. By considering both directions
at the same time, zone A in one direction and zone B in the
other one will touch each other when π/2− θ/2 = θ, i.e.,
θ = π/3. Therefore, the maximum value of θ that can be
chosen without doing any harm to other direction is π/3.

During the optimization, the angle difference θ between
datasets is expected to be decreasing, from far to close.
Therefore, the contribution of each point to the rotational
return µr(θ) is changing throughout the registration. Fig-
ure 4(a) shows the mirrored rotational return against the
angle β between p and n, and the maximum value is taken,
i.e.,

µr(θ) = max(fr(‖p‖, θ, β), fr(‖p‖, θ,−β)). (5)

It is plotted with different values of θ (from π/64 to π/3)
to illustrate different stages during registration. Correspond-
ingly, the returns against the angle θ with different values
of β are plotted in Fig. 4(b). It can be seen from the figures
that when β = π/2, the return is always 1, otherwise the
return is varying from less than 1 to greater than 1, such as
the case of β = 5π/12. It is good that the return is always
1, but it is even better that the return is greater than 1 to
achieve higher convergence. However, there is a trade-off in
the convergence between the far-mode and the near-mode.
Takes β = π/3 in Fig. 4(b) as an example, its return is 1
when θ = π/3 but degrades to ∼ 0.75 when θ = 0. It is not
comparable to β = π/2 that always gives a return of 1, and
thus µr(θ) should have a smaller value for β = π/3 than
β = π/2, where setting θ = π/3 is obviously not a good
choice as it gives a same value to both cases. To balance
both far and near modes, the ideal case is that the return
is greater than 1 when the datasets are far away and close
to 1 when the datasets are close. In this paper, θ = π/4 is
selected for point selection.

Next section will present the details of the point selection
method considering the rotational component.

IV. DUAL-NORMAL SPACE SAMPLING

The above discussion gives the Observation 1 that the
rotational component can be diverged and makes the Hy-
pothesis 1 that the points should be selected for both
translational and rotational components. Unfortunately, the
widely used NSS method only considers the translational
component as discussed in Section III-A, and feature-
based methods locating rare points generally do not follow
Conjecture 1 to balance the convergences in different
directions. To test the hypothesis, this section presents a
new point selection method to sample points uniformly in
a dual-normal space, which includes both translational and
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Fig. 5: Point contribution and equalized return among the
normal space in 2D.

rotational components. Before that, the strategy used in
NSS is revisited to demonstrate the underlying axiom of
uniform sampling.

A. Equalizing returns among normal space

Figure 2 has shown how a point contributes to the
translational return in different directions with respect to
the angle α between normal and translational vector. The
total return in a direction can be calculated by summing up
the contributions from all selected points to that direction.
Due to the translational return in Eq.(2) is a cosine-squared
function, if uniform sampling is used, the total returns
can be equalized among all directions. The value of the
equalized return is calculated as

µ̄ =

n−1∑
i=0

cos2(i× π

n
) =

n

2
,

where n is the number of sampling points. For example, if
points are selected by a separation of π

2 in terms of their
normal, the total return for any direction will be equal to 1
as shown in Fig. 5(left). In other words, uniform sampling
can equalize the returns among normal space and Eq.(2)
needs not to be computed explicitly, i.e., it only needs
to count the number of points selected in each sampling
direction.

Remark 2. As long as the sampling is uniform, Conjec-
ture 1 is satisfied implicitly and the angle α can be ignored.

On the other hand, the value µ̄ can be increased by
increasing the sample size. One example of selecting points
by a separation of π

4 in normal is shown in Fig. 5(right),
in which n = 4 and the total return is increased to 2.

Normal is a unit vector, so uniform sampling in the
normal space is equivalent to sampling points uniformly
on a unit sphere. To sample points on the surface of a unit
sphere, the 2D spherical coordinates (θ, φ) from mathemat-
ics can be used instead of the 3D Cartesian coordinates
(x, y, z), where θ is the azimuthal angle in the xy-plane
from the x-axis with 0 ≤ θ < 2π and φ is the polar angle
from the positive z-axis with 0 ≤ φ ≤ π. Since the area
element (solid angle) dA = (sinφ)dθdφ = −dθd(cosφ)
is a function of θ and cosφ, the spherical coordinates
are selected from uniform distributions θ ∈ [0, 2π) and
φ = cos−1(2u − 1) with u ∈ [0, 1]. All the points
of the dataset are bucketed according to the position of

the normals using the spherical coordinates. For a normal
position (x, y, z), its spherical coordinates can be computed
by φ = 2πz and using the trigonometric ratios in the four
quadrants with the values of x and y for θ. After that, point
selection is done by sampling uniformly across the buckets,
and a point is randomly picked in a bucket that contains
multiple points.

B. Equalizing returns among dual-normal space

Uniformly sampling in normal space constrains the
translational component well, but Observation 1 finds that
sampling for the rotational component is critical to pre-
vent divergence. This paper defines a dual-normal space
to enable the sampling for rotational component. For a
small motion, cross product can be used to describe the
infinitesimal generators of rotation, and the motion can be
expressed linearly as

(r× p + t) · n =
[
t r

] [ n
p× n

]
.

It can be seen that the translational component t is corre-
sponding to the normal n and the rotational component
r is corresponding to (p × n). Because of these corre-
spondences, here gives the new definitions of normal with
respect to translation and rotation.
• Translational normal (t-normal): n
• Rotational normal (r-normal): p× n

The dual-normal space is the combination of t-normal and
r-normal spaces. Following the Conjecture 1, the ideal
sampling is to equally pick points among the normal spaces.
Under the new definition of normal spaces, the sampling
should be done in both the t-normal and r-normal spaces,
and the returns should be equalized on both spaces too.
The cross product p×n is a vector, so the sampling in the
r-normal space is the same as that in the t-normal space by
bucketing the points using the 2D spherical coordinates.

As mentioned in Remark 2, uniform sampling for transla-
tional return is as simple as counting the number of points
in each bucket. However, the rotational return in Eq.(3)
also depends on the angle β and the radius ‖p‖, which
means that the contribution of can be different point-by-
point and the sampling must take each one into account to
make sure the total return can be equalized. Moreover, the
t-normal and r-normal spaces are actually interrelated, i.e.,
one sample point contributes to both spaces. It is therefore
an optimization problem to equalize the returns in both
spaces at the same time. In this paper, a greedy algorithm
is developed that always picks a point with the largest
value of rotational return from the least constrained bucket
sequentially. Specifically, the points in each bucket are
sorted by the value computed using Eq.(5) in descending
order. Each bucket is also associated with a constraint value,
which will be increased whenever a point in the bucket is
picked, and the value is used to record the contributions
of the selected points. The buckets are sorted in ascending
order by the constraint values, and each time a point is
picked from the first bucket. Both the sorting of points and
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Algorithm 1 Dual-Normal Space Sampling

Input: Point cloud P , target number of samples N
Output: Sampling points M

//initialize heaps for points in each bucket
{bt} ← buckets all points in P by t-normal n
{br} ← buckets all points in P by r-normal p× n
for all buckets b ∈ {bt, br} do
b.heap ← create max heap for points p ∈ b with p.µ
from Eq.(5) as key

//initialize heap for buckets
for all buckets b ∈ {br} do
PickPoint(b) //see below

BHeap ← create min heap for buckets ∀b ∈ {bt, br}
with constraint b.constraint as key

//main sampling process
while M.size() < N do
b← BHeap.GetTop()
(bt, br)← PickPoint(b)
BHeap.Update(bt, br)

Function PickPoint(Bucket b)
p← b.heap.GetTop(), add p to M
(bt, br)← Get the buckets where p locates
bt.heap.Remove(p), bt.constraint += 1
br.heap.Remove(p), br.constraint += p.µ
return (bt, br)

buckets are implemented by a heap data structure, and the
pseudo-code of the dual-normal space sampling is given in
Algorithm 1. Before any points are picked, the constraint
values of all buckets are zero, which is not meaningful to
create a heap. Therefore, an optional initialization step can
be performed to select a point from each of the buckets in
the r-normal space.

C. Relationship between translational and rotational return
One may notice that the rotational return depends on the

size of model due to the term ‖p‖, and thus the values for
translation and rotation are actually in different scales. Due
to ICP itself is a geometric problem, it is not reasonable that
the size of model affects the importance between translation
and rotation, and it can be easily verified that ICP is scale-
independent. For instance, running ICP on a model and its
scaled-down version (e.g., 10−4 times smaller) will give
identical results. Therefore, the relationship between the
translational and rotational return should be understood and
properly normalized, and this section will test and evaluate
the performances of different normalization methods, from
which the best one is used.

The rotational return or the r-normal space should be
normalized with respect to the object’s size, i.e.,[

n
1
Lp× n

]
∈ <6, (6)

where L is the normalization factor. The problem is how
to set L to give a correct normalization. The most common

Skull Airplane Vase R-Arm

1
I 377 132 146 139
II × 145 157 146
III 583 148 168 150

Lavg

I 338 132 146 152
II × 145 161 161
III 374 148 171 172

Lpn

I 169 159 93 120
II 394 × 122 ×
III × 167 × 146

Lmax

I 310 160 137 152
II 317 172 154 161
III 351 191 165 172

TABLE I: Comparison of the normalization methods.

practices [34] is to set L = Lavg as the average distance
of the points from the center, but there are also other
practices such as setting L = Lmax as the maximum
distance (i.e., scale the object to be inscribed in a unit
ball) or L = Lpn = ‖p × n‖ to normalize the effect on
each point. When normalization is large, e.g., L = Lmax,
the constraints to r-normal space are reduced and more
points are picked from the buckets in r-normal space.
Reciprocally, when normalization is small, e.g. L = 1,
more points are picked from the buckets in t-normal space.
When the normalization is not optimal, the selection of
points from the buckets in t-normal and r-normal space
is not balanced. Although unbalanced point selection may
give better convergence in some cases, it is unstable. In
this paper, an experiment is conducted to test and find the
best one for ICP. Four normalization methods are tested,
including 1, Lavg , Lpn, and Lmax, where 1 stands for no
normalization. The results are recorded by the number of
iteration until ICP is converged. The experiment is done by
testing different cases of artificial misalignment (I, II, II)
by a translation and a rotation. The setting of the levels are:
• I : dx = dy = dz = 0.1b, θ = φ = −10◦

• II : dx = dy = dz = 0.3b, θ = φ = 30◦

• III: dx = dy = dz = −0.5b, θ = φ = 45◦

where dx, dy , dz relate to the size of model, i.e., b is the
radius of circumscribed sphere of the model, and θ and φ
are the polar and azimuthal angles in spherical coordinates.
The sizes of all the testing models are in the scale of 100,
and 100 sample points are used in all of the tests. The
results of this experiment are shown in Table I. From the
table, there are a few observations:

1) L = 1 and Lavg have very similar performance, and
they even fail at the same time.

2) Lpn mostly has the best performance, e.g., for case
I on the Vase model, it takes only 93 iterations to
converge, while others take at least 137.

3) Lpn has the most number of failures, i.e., one per
example, making it the most unstable one.

4) Lmax does not have a big difference compared to
L = 1 or Lavg , but succeeds in all tests.

Since both L = 1 and Lavg result in higher constraints
in r-normal space and more points are picked from the
buckets in t-normal space, their performances are similar
(Observation 1), meaning that Lavg is as small as L = 1 in
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terms of normalization. Lpn is the most tricky one. On one
hand, it is very attractive as it gives the best performance
in terms of convergence (Observation 2). On other hand, it
gives the worst performance in terms of stability (Obser-
vation 3). This is because when the contributions of points
disrespect to their distance to rotational center, the points
selected are not balanced among the normal spaces, and
thus Lpn is more sensitive in some directions but it is worse
or even fails in some others. Among them, although Lmax
does not always have the best convergence, it is the most
stable one (Observation 4). For the sake of generalization,
the most appropriate choice for ICP is found to be Lmax
as the normalization factor.

V. EXPERIMENTAL RESULTS

The proposed method is implemented in C++ and tested
on a standard PC with an Intel i5 3.2 GHz CPU. In
the experiments, mesh surfaces represent the static scene
(S), point clouds represent the moving model (M), and
the highlighted points are the selected points for regis-
tration. Noted that the mesh surfaces are used for better
visualization purpose only, but the registration is done
based on points. The main focus here is to compare the
convergence and robustness of different sampling methods.
They are tested by different ranges of applied translations
(dx, dy, dz) and rotations (θ, φ). The results are compared
by whether the registration can successfully converge and
the number of iterations # taken until ICP converges, where
the termination condition is set as the alignment error being
smaller than 1e− 5.

To compare and relate the quality of sampling and per-
formance, a heightmap is used to visualize the constraints
of the selected points in each bucket. In this paper, the
bucket size is set as π/6. As the 2D spherical coordi-
nates are 0 ≤ θ < 2π and 0 ≤ φ ≤ π, there are
12 × 6 buckets for the t-normal space. Due to the reason
that the rotational return needs to be maximized in one
direction without doing any harm to the other direction,
both directions in the rotation are considered together as
shown in Eq.(5). Therefore, the same vectors with different
signs are grouped together, and there are 6 × 6 buckets
for the r-normal space. The heightmaps are rendered as a
12× 6 and 6× 6 grayscale images respectively, with black
representing minimum constraints and white representing
maximum constraints. The quantitative measures in terms
of the mean constraints µ and the percentage of empty
buckets ∅ are also listed together with the heightmaps,
where both of them are highly related to the convergence.
The mean µ is the expected return in one ICP iteration and
the empty ratio ∅ reflects how many different directions
can be covered. When the ratio ∅ is low, the registration
process may oscillate jumping back and forth in the SE(3)
space to find a right way to converge. This results in a poor
convergence, especially when the datasets are far away from
each other (in the far-mode). On the other hand, the mean µ
affects the speed of convergence which is significant near a
minimum, i.e., in the near-mode. It is desired that the mean

µ is high and the empty ratio ∅ is low. In the following, the
proposed DNSS method will be compared with the normal-
based methods first and then the feature-based methods.

A. Comparison with normal-based methods

To test the Hypothesis 1 that proposes sampling points
uniformly across both the t-normal and r-normal spaces
gives better performance, a number of experiments are
done to compare the convergence between DNSS and
other normal-based methods. The normal-based methods
sample the input point cloud by normal directions requiring
only the normal information. The Normal-Space Sampling
(NSS) [7] and Covariance Sampling (CovS) [10], [11] are
two representatives, where NSS samples uniformly across
the angular space according to the position of the normals
and CovS picks points not to form a kinematic surface.

One comparison in 2D case is shown in Fig. 1, where a
teeth shape with repeated features along the X-axis is used.
The figure shows that NSS and Full Set have very similar
performances in terms of the energy patterns shown in the
bottom row by translations along the X-axis and Y -axis
as well as the rotation. From the combined translation and
rotation charts shown in the top row, although Full Set has
a smoother pattern, they have the same number of local
minimums and the same range of convergence. Therefore,
NSS as a subset is a good representative for the Full Set to
speed up the registration process, which makes it the most
commonly used sampling method for ICP. However, using
all points generally does not give the best performance,
and it can be seen that there are multiple minimums along
the X-axis due to the repeated tooth features. In contrast,
the proposed DNSS selects points around the corners so
that it is not affected by the repeated features and gives
only one optimum, which can be seen more clearly from
the chart of combined translation and rotation (top row).
Although DNSS has a slightly lower energy (i.e., slower
convergence) in the range of [−45, 45] along the X-axis,
the enhanced range of convergence [−225, 225] is more
beneficial. Besides, its energies along the Y -axis and in
the rotation are significantly higher, resulting in a better
convergence overall.

The comparisons with NSS and CovS on 3D models
are shown in Fig. 6, and three models (cup, ant, shoe)
with different initial positions are tested. This experiment
aims to compare the convergence of the methods, so the
same number of sample points is used and the initial
positions are picked such that all methods can converge.
The robustness will be tested in the next section with the
feature-based methods together. NSS uniformly samples
points among the t-normal space and CovS picks points
by the constraints that a point can contribute, so they have
quite different characteristics. Generally speaking, NSS has
a lower percentage of empty buckets ∅ and CovS has a
higher mean constraint µ. Recalled that the mean µ and
the empty ratio ∅ affect the convergence in the far-mode
and the near-mode respectively. Therefore, it can be seen
from the examples that NSS converges faster than CovS
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Fig. 6: Comparisons with the normal-based methods: Normal-Space Sampling (NSS) and Covariance Sampling (CovS).
Each result is associated with a 12×6 and a 6×6 heightmaps visualizing the constraints in t-normal and r-normal spaces
respectively, where µ is the mean constraints, ∅ is the percentage of empty buckets, and # is the number of iterations
for ICP to converge. The initial positions are given by the applied translations and rotations, where dx, dy , dz are related
to the size of the model, i.e., b is the radius of the circumscribed sphere of the model, and θ is the polar angle and φ is
the azimuthal angle in spherical coordinates.

Cup Ant Shoe Rabbit Skull Airplane Vase Rocker arm

(dx,y,z , θ & φ) 0.4b, 10◦ −0.5b, 20◦ 0.3b,−15◦ −0.3b,−30◦ 0.1b, 20◦ −0.2b, 45◦ 0.4b,−50◦ 0.5b, 90◦

sample points 75 75 60 57 51 41 76 75

3D-Harris [35] 315 × 772 233 × 518 × ×
3D-SIFT [36] 254 157 164 291 320 × × ×

Mesh Saliency [37] 192 × 210 208 × 199 167 ×
Salient pt [38] 161 × 233 × × 194 145 ×
SD Corner [39] 699 144 284 371 446 × 201 ×

NSS [7] 808 247 232 284 401 × × ×
CovS [10] 774 × 2766 × × 589 × ×

DNSS 150 117 182 206 259 152 241 201

TABLE II: Convergence comparison with the point sampling methods by the number of iterations to converge.

in the early iterations, but CovS catches up from behind
and reaches the termination condition earlier. For instance,
CovS takes #293 and #292 iterations to converge in the
cup and ant models, while NSS takes #1314 and #349
iterations respectively. Especially for the cup model that
does not have many features, although NSS performs better
before iteration #65, it converges slowly at the end due to
its low mean constraint µ. However, the success of CovS
depends on the initial position in the far-mode because
its sampling is not uniform among the normal spaces. If
the initial position does not favor the sampling, e.g., in
the shoe model, it even takes more than #90 iterations to
get the energy down to 0.3, resulting in a total of #1252
iterations to converge. In contrast, DNSS samples points

among all the buckets in both t-normal and r-normal spaces
by their returns, so DNSS has no empty buckets and has
the highest value of µ in all the models. Living up to
expectations, DNSS has the best performance in the tested
models taking only #110 ∼ 160 iterations to converge.
DNSS outperforms NSS and CovS in both far and near
modes, which supports the Hypothesis 1.

B. Comparison with feature-based methods

To test the robustness of the proposed DNSS, it is
compared with the feature-based methods. Feature-based
methods take additional information of mesh surface like
curvature, topology, connectivity, and/or color to select
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Fig. 7: Comparison with the feature-based methods. The top row shows the input modelM (visualized by point cloud) and
scene S (visualized by surface), and their initial positions by translations (dx, dy, dz) and rotations (θ, φ). The registration
results of different methods are shown in the following rows, each of which is associated with the heightmaps, the mean
constraints µ, the empty ratio ∅, and the number of iterations # for ICP to converge.
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rare points for registration, and they normally have a
higher robustness compared with the normal-based meth-
ods [9]. The evaluated methods include 3D-Harris [35], 3D
Scale-Invariant Feature Transform (3D-SIFT) [36], mesh
saliency [37], salient points [38], and Scale-Dependent (SD)
corners [39]. Together with the normal-based methods,
they are tested with different models with various shapes,
features, and initial positions. The convergence comparison
is summarized by the number of iterations taken to converge
in Table II, and some selected results are shown in Fig. 7.
Due to the rich content of the rare points, feature-based
methods generally require few sample points. To have a fair
comparison, these experiments use some smaller numbers
of sample points (40 ∼ 80). Noted that it may not be
enough for the NSS and DNSS methods to pick at least
one point from each of the buckets, but it is actually good
to test the robustness of the methods.

Different initial positions are applied to test the limit of
each method and they are designed in different challenging
levels, i.e., the translations are ranging from ±0.1b to
±0.5b where b is the radius of circumscribed sphere of the
model, and the rotations are ranging from 10◦ to 90◦ (see
Table II). Generally, the success of registration for a model
of translational symmetry is prone to translations and for a
model of axial symmetry is prone to rotations. For example,
the cup model is axially near-symmetry, so all the methods
are quite successful due to small rotations of 10◦, even
translations of 0.4b are large. A similar situation is also
found in the shoe model, where all methods succeed with
the initial position of (0.3b,−15◦). On the other hand, as the
ant model is translational near-symmetry, large translations
of −0.5b make most of the methods failed. Only 3D-
SIFT, SD Corner, NSS, and DNSS are successful in this
example, and DNSS has the best convergence (#117).
Figure 7 shows some more challenging test cases in terms
of model geometry and initial positions, where only 3 ∼ 4
methods can converge in these examples. A skull model
has a spherical shape, and even it has some features on
the surface, registration can be easily trapped in local
minimums in the SO(3) space. Large transformations are
applied to an airplane model (−0.2b, 45◦) and a vase model
(0.4b,−50◦). The most challenging example is in a rocker
arm model, where the highest level of translations and
rotations (0.5b, 90◦) is applied. The initial position can be
seen in Fig. 7 that the model M and the scene S are
basically perpendicular to each other. None of the methods
except DNSS can succeed in this example, and the steps
in registration for the rocker arm model using DNSS are
demonstrated in Fig. 8. In summary, besides DNSS, all
methods work well on some models, but fail in the others.
Among which, SD Corner has the best robustness and fails
only in the airplane and rocker arm models. Surprisingly,
DNSS is successful in all the test cases and it has the best
convergence, except in the shoe and vase models DNSS is
slightly slower. This is because the feature-based methods
may work particularly well in certain initial positions,
but DNSS has a good balance between convergence and
robustness. Therefore, DNSS is promising for registration

Fig. 8: Registration detail for rocker arm using DNSS.

applications, and it also supports the Conjecture 1 that
uniform sampling is an effective way for point selection.

VI. CONCLUSION

This paper presents a novel point selection for 3D ICP
registration. This method is based on the observation of the
structural difference between the translational group and
the special orthogonal group, and the hypothesis proposes
that the point selection should take the difference into
account. Therefore, this paper gives a new definition to the
normal space and separates it to a translational normal and
a rotational normal. Quantitative measurements are derived
to calculate the contributions of each point for the new
normal spaces. A Dual-Normal Space Sampling (DNSS)
is then developed to sample points uniformly across the
two normal spaces, such that the constraints provided by
the sampled points are equalized among the spaces. The
computational cost of DNSS is similar to that of the normal-
based methods, and the experimental results show that the
proposed method is superior to both the normal-based and
feature-based sampling methods. DNSS can even succeed
in an orthogonal initial position where no other methods
can, which supports the hypothesis.

As a variant of ICP under the category of point selection,
DNSS extends the range of convergence and has less
demand on the initial position. It is a very good complemen-
tary to most of the recently developed registration methods
that guarantee global optimum, as well as other ICP variants
such as anisotropic ICP [40] and sparse ICP [41] to deal
with outliers and noises.
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