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The process planning of a manufacturing method is the key
to ensure the quality of the fabricated part. In Additive Man-
ufacturing (AM), slicing is a crucial step in process plan-
ning to convert a Computer-Aided Design (CAD) model to a
machine-specific format. If the slicing results were incor-
rect, the manufacturing quality would have no way to be
assured. Therefore, it is important to understand the per-
formance of different slicing technologies for AM. Digital
Light Processing (DLP) printing is an important AM pro-
cess that has a good surface finish, high accuracy and fabri-
cation speed, and is widely applied in many dental and en-
gineering industries. However, while most other AM pro-
cesses are toolpath-based, as a process that uses images as
the fabrication tool, the DLP printing has its process plan-
ning understudied. Therefore, the main goal of this paper
is to study, compare and benchmark the slicing technologies
for DLP printing. Three slicing technologies are compared:
contour, voxelization, and ray-tracing. They are tested with
some common defects in slicing, and their usage in computa-
tional resources is also reported. The summary and sugges-
tion are given at the end.

1 Introduction
Additive manufacturing (AM) or layered manufacturing

is named by the nature of its process, that adds material to
build object layer by layer. The most attractive part of the
AM is that it can fabricate a three-dimensional (3D) part di-
rectly from a computer-aided design (CAD) model without
the need of specific tooling or fixture. However, as the object
is fabricated layer by layer, the CAD model must be sliced
into layers as well, so that the process planning can be done
for printing. Slicing acts as the middleman between the CAD
model and the 3D printer, and the slicing result is one of the
important factors determines the quality of the object. If the
slicing is incorrect, the fabrication process is messed up due
to the incorrect toolpath planning and the fabricated layer is
inaccurate, and thus the shape of the entire piece is ruined.
The quality can not be assured, no matter how much toler-
ance analysis or dimensional control is done on the CAD

model. For example, if an object is modeled as an assem-
bly, the mesh may look healthy but there are parts that over-
lap. If this model is sliced directly to print, the intersection
regions are going to have redundant toolpaths. If it is a se-
lective laser sintering (SLS) process, the laser will go over
the regions multiple times, resulting in material failures due
to different heating effect over the structure. If it is a fused
filament fabrication (FFF) process, the nozzle will print in
the same place, which will create non-uniform thickness of a
layer or even damage the nozzle due to crashing. Therefore,
to improve the repeatability and reliability in AM, the ca-
pability and limitation of different slicing technologies must
be understood and taken into consideration during the design
phase.

The first 3D printing technology being commercialized
in 1980s is the stereolithography (SLA) process, which is
also one of the most important technologies applied in many
dental and engineering industries. The Digital Light Process-
ing (DLP) process shares the same principle to cure liquid
resin to solid by vat polymerization. While SLA uses a laser
tool to draw out the layer line by line, DLP cures the entire
layer using a projector [1]. Because of this difference in the
processes, their planning is also different, i.e., toolpaths for
SLA and images for DLP. Toolpath planning is a common
technique for most 3D printing processes like SLS and FFF,
so SLA can share the same slicing technologies that create
contours from the CAD model. However, DLP is quite a spe-
cific process that makes use of images as the media to trans-
fer the shape of designed model into the shape of actually
fabricated part using projection, and thus the slicing technol-
ogy for DLP needs to generate the images. One way is to use
the contours generated by the traditional slicing methods as
a boundary on an image to separate the regions with/without
material. There are also other ways to generate the images
directly. Despite the difference, DLP has a remarkable fabri-
cation speed on top of high accuracy and good surface finish
in the SLA/DLP process. As one of the most promising tech-
nologies for the future of AM, it is important to study and
benchmark different slicing technologies for DLP 3D print-
ing, which is the focus of this paper.
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The organization of this paper is as follows. The rest
of this section will review the related works of slicing. Sec-
tion 2 will summarize and discuss the slicing technologies
for DLP that are selected in this paper. The study consists
of two parts: one is the comparison of their performance in
handling different defects commonly seen in slicing (Section
3), another one is the comparison of computational resources
needed in each technology (Section 4). The paper will be
concluded in Section 5.

1.1 Related Works
From CAD model to 3D printing, it requires a number

of steps in the process planning [2], including tessellation,
orientation, support generation, slicing, and toolpath genera-
tion. Among which, slicing is the key step to convert a CAD
representation to a machine-specific format, including the
computation of profiles and infills for each slice. Slicing was
originated in Computer Numeric Control (CNC) machining,
and it is the basis to generate 3D cutting toolpaths from CAD
model. In 3D printing, the toolpath generation is similar or
even simpler as each layer is just a two-dimensional (2D)
plane, so the slicing technologies for CNC are applied in 3D
printing. The most common slicing algorithm is the contour
slicing, which intersects the CAD model with slice planes at
different heights and constructs the contours of the surface.
There are two ways in contour slicing. One is the closest
point method [3, 4] which does the face-plane intersection
first, and then retrieves the connectivity for the intersection
points using nearest neighbor search. Another one is the
topology method [5, 6] which reconstructs the topology of
the model first, and then does the intersections with the con-
nectivity. They have different time complexity depending on
the mesh size and the number of layers. To speed up the
slicing process, the mesh faces can be sorted to reduce the
number of faces need to be intersected [7], and others devel-
oped information reuse in the context of customization [8] or
applied adaptive slicing to reduce the number of layers [9].
After the contours are generated, the infill pattern can be gen-
erated within them [10, 11].

The contour slicing requires the mesh connectivity and
quite a number of intersection operations, but there are also
other technologies developed as alternatives. Instead of com-
puting face-plane intersections, some use voxelization [12]
– 3D pixels – to find out the volume with/out material,
and some even do not work on mesh, but directly slice on
the CAD model [13], point clouds [14], fitted moving least
square surfaces [15] or other implicit surfaces [16, 17]. A
similar voxelization strategy has been developed at the 2016
Formlabs Hackathon [18], which essentially is a ray-tracing
algorithm that uses a stencil buffer to determine the in/out of
the model. Wang et al. [19] has also developed a ray repre-
sentation called Layered Depth Normal Image (LDNI) that
can be used for slicing purpose [20, 21]. A LDNI is a 2D
image, and each pixel shoots a ray to intersect the model and
stores a sequence of intersected points. Therefore, the CAD
model is sparsely represented by a set of sampling points,
which is a compact representation. As this representation

Fig. 1. Three slicing technologies for DLP are tested: Contour [28],
Voxelization, and Ray-Tracing.

can solve various defects in mesh model [22], many usages
have been developed with LDNI, including offsetting oper-
ation [23] and adaptive slicing [24]. With the volumetric or
implicit representation of the object, the infill pattern can also
be defined as a function [25]. One of the advantages is that
the infill can be determined upon demand [26], without the
need of reconstructing the internal structures in a CAD for-
mat first. Representing objects with multiple materials or
functionally graded material is also possible [27].

2 Slicing Technologies for DLP
Although there are methods slicing a CAD model with-

out tessellation, slicing a triangulated mesh model is still the
commonly used method in 3D printing caused by its for-
mat (i.e., STL) is widely adopted in software and machine.
Therefore, this paper mainly focuses on the slicing technolo-
gies that take meshes as input, and specifically those for DLP
3D printing. These technologies can be summarized into
three categories (see Fig.1), and they are listed in the fol-
lowing with the online-available software used as the repre-
sentative of the category for comparison.

1. Contour (RayWare Version 1.4.1 [29])
2. Voxelization (Voxelizer Version 2.0.0 [30])
3. Ray-tracing (LDNI-based Solid Modeling [31])

First, the contour method is the traditional slicing pro-
cess that generates the cross-sectional information by inter-
secting the input model with a set of horizontal planes. As
the input model is tessellated into faces (e.g., triangles de-
fined in the STL), the slicing operation is actually a number
of face-plane intersections, each of which is a segment. In a
layer, the intersection between the model and a slicing plane
is one or more polygons (contours), which are constituted by
the segments. These contours define the 2D profile of the
model, and material should be put inside them. For DLP 3D
printing, the contours are converted into images by rasteriza-
tion. The software RayWare [29] using the contour method
is developed by SprintRay Inc. for their MoonRay DLP 3D
printer, and thus it is very qualified to serve as a representa-
tive of the contour technology.

Second, the voxelization method creates a 3D array of
voxels that can cover the whole volume of the input model,
and then decides whether each voxel is inside or outside the
model. The in/out determination is challenging, because the
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mesh is just a set of faces in the 3D space without the in-
formation of inside or outside. The software Voxelizer [30]
developed by ZMorph Inc. is a representative of this method,
which can be seen from its name. It starts a propagation from
the outermost voxels which is stopped by the mesh surface,
so that the regions that are outside the model can be identi-
fied. Voxelizer can theoretically work for different 3D print-
ers, and especially for DLP printing as the voxels from the
same height directly form a slice image. Unfortunately, the
current version doesn’t provide this function. For the exper-
iments in this paper, the infill is set to nearly 100% to mimic
a complete fill and its preview from the software is screen-
captured.

Third, the ray-tracing method starts with a 2D image and
determines in/out for every pixel in a slice, similar to the
point-in-polygon testing. Here, the testing is done by casting
a ray from each pixel to intersect with the model, and finding
out if the ray reaches the interior or exterior of the model at a
particular height. The representative selected for this tech-
nology is the Layered Depth Normal Image (LDNI) [31],
which is an extension of the ray representation in solid mod-
eling. Based on a discrete sampling approach, a structural
set of LDNIs consists of x-, y-, and z-LDNI along their axes
respectively. A LDNI in each axis is a 2D image, and the
three images are located to cover the whole volume of the
input model. Each ray intersects with the model and stores
a sequence of intersection points with its normal. Therefore,
it is a sparse representation of a volumetric model, and any
position that is in between each pair of intersection points
on a ray is inside the model. The original implementation of
LDNI generates the slice images inside the GPU, however it
limits the image resolution due to the GPU memory. As the
source code is available, it is modified to generate images in
CPU in this study.

All the software selected have applied parallel comput-
ing, either multi-core CPU or GPU. The extent of acceler-
ation depends on the ability of the algorithm to be parallel.
Therefore, it is fair to compare them as is.

3 Common Defects and Comparison
Created by 3D Systems, the STL file format (a.k.a. Stan-

dard Tessellation Language) has become the de facto stan-
dard data transmission format, and almost all CAD systems
can generate an STL file. An STL file contains a set of trian-
gular faces to define the shape of a CAD model, which means
that the CAD model needs to be tessellated. The triangulated
faces may look good on the screen, but it could have defects
the user cannot see. The defects could disrupt the slicing
and make it unreliable. For example, the mesh may have bad
connectivity of triangles or small triangle that is flipped over,
which may be not noticeable, but it will cause problems to
manufacture from that data. This section studies and com-
pares the performance of the three slicing technologies in
handling different defects. Following the common STL file
errors defined by Varotsis [32], this paper summarizes and
defines four categories of defects, and they are discussed in
each subsection.

Fig. 2. Three models are designed to test on non-manifolds and
intersections. Left-to-right: Box with an extra internal surface; Two
cones sharing a same vertex; Three tori are put as an assembly. The
slice images are taken at the layers of 800th/1600, 764th/1527,
145th/290, respectively.

3.1 Non-Manifold and Intersection
There are parts that look good at first, but create prob-

lems in slicing. These parts do not have missing data or
wrong normal, and the slicing process can be completed nor-
mally. However, the results are usually not what the designer
intends. In such cases, the problems could be due to the topo-
logical errors, i.e., non-manifolds and intersections. Non-
manifold is a geometry which cannot exist in the real world,
and that is why it is a mesh defect for 3D printing. There
are two common causes of non-manifold geometry. First,
the edges of an intact surface should connect to exactly two
faces, so an edge is non-manifold when there are more than
two faces connected to it. Edge with only one face will be
discussed in the section of hole defect. “Non-manifold edge”
would be found if an extra surface is defined in the interior of
the model. One example is the box shown in Fig.2(left). Sec-
ond, when there is some area with no thickness, it degener-
ates into a point, which is the case of “non-manifold vertex”.
It can also be seen as the vertex is shared by more than one
body, as shown in Fig.2(middle). “Intersections” occur when
two surfaces overlap or cross each other. This error is com-
mon when multiple bodies are occupying the same space, but
they are not combined into a single solid, e.g., assemblies.
Intersection messes up the definition of inside and outside of
the solid model, and thus could lead to failures during slic-
ing. As an example, three ring tori are put together without
combining the mesh as shown in Fig.2(right) for the test.

“Non-manifold vertex” is treated like two separated bod-
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ies, so all methods do not have any problem in this defect.
“Non-manifold edges” affect the mesh connectivity. As con-
touring method needs to reconstruct the connectivity of the
segments, it could be confused by the non-manifold edges. In
this test case, the contour runs in the internal face and jumps
back to the exterior face, missing a portion of the square in
the image. The voxelization and ray-tracing methods do not
depend on the connectivity, so they are not affected, unless
the extra surface form an enclosed volume inside the model,
which will be similar to the shell case that will be studied in a
later section. In the case of “Intersections” between different
bodies, the contour method treats the bodies separately and
combine them into an image, so the results are good. Noted
that the overlapping is not a issue only for DLP, it could be
a problem for FFF if the planned toolpaths cross over each
other with extra material. The volxelization method consid-
ers all bodies at once. As the outside surfaces of any tori
would stop the propagation of the method, the tori are natu-
rally treated as a larger complete surface without affecting
by the intersections, and it generates correct results. The
ray-tracing method shoots rays to intersect with all bodies,
and the overlapping of the bodies messes up the order of the
intersection points on the rays, which confuse the in/out de-
termination resulting in some portions of the slice images are
flipped. In summary, the voxelization method seems to be the
best in this category of defect. However, as non-manifolds do
not exist in the real world, it is hard to say which extra sur-
face (exterior or interior) in the case “Non-manifold edges”
should be ignored is correct, so it is fair to say that the con-
tour method is also well-performing. The implementation of
ray-tracing method only considers the ray-intersected points,
and it fails in the case “Intersections”, which could be poten-
tially solved by considering the normal of the points to clear
the confusion.

3.2 Flipped Normal and Zero/Negative-Area Face
Each face in a mesh has a normal, which is a vector that

is perpendicular to the plane of the face. The normal is of-
ten used to determine a surface’s orientation, and all faces
have to be oriented the same way with the right-hand rule,
such that the vector is pointing outwards from the model.
When the normal vector (i.e., the order of vertices) of a face
is flipped, it can lead to difficulties in identifying the in-
side/outside of the model, and thus where to lay material. In
addition, if a face has zero-area, mathematically its normal is
undefined. Three models, as shown in Fig.3, are designed to
test the slicing technologies in handling these normal prob-
lems. Note that, there is no connectivity defect in all three
cases and the meshes are intact and complete, but only the
order or the position of vertices is changed. First, a vase
model with all its faces flipped is designed. In other words,
the surface is completely “Inside Out”, and the volume en-
closed by the surface should be empty by definition. Second,
a cup model is designed with only a portion of its faces be-
ing flipped, i.e., “Incoherent Normal”. Third, a Moai model
is designed with some “Bad Faces”. The bad faces are the
zero-area faces by moving some vertices onto other vertices

Fig. 3. Three models designed to test on flipped normal. Inside
Out: all normal vectors are pointing inward. Incoherent Normal: the
normal of the highlighted region is pointing oppositely from other
region. Bad Face: existing some zero/negative-area faces. The
slice images are taken at the layers of 1465th/2559, 204th/1267,
1156th/2972, respectively.

or edges of their associated faces. To make it even worse,
some vertices are moved across other faces, such that some
faces have negative area and their normal vectors point to an
opposite direction from their neighbors’.

In the case of “Inside Out”, all slicing technologies give
the same result of having material in the enclosed area, just
like the normal vectors do not matter. However, the con-
tour method gets the wrong neighboring information in the
region with “Incoherent Normal” and has the corresponding
regions flipped in the images. It is not a problem for the vox-
elization and ray-tracing methods, as the implementations
of the selected slicers do not take normal into account, but
only the geometry. In the case “Bad Face”, as the surface is
complete, the slicers treat the shape of the surface as is and
complete the slicing successfully. Even though the surface
is poorly shaped, the images generated are valid. Therefore,
this defect is not a problem for DLP, but it would complicate
the toolpath-based processes. To summarize, if a technol-
ogy does not consider normal during slicing, this category of
defects is not a problem. Nevertheless, taking normal into
account could have richer information that might create new
possibilities (e.g., solving the “Intersections”), and it would
be worth to explore some ways to consider normal but not
suffer these defects.
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Fig. 4. Three cases designed to test on shells and thin walls. Two
cases of shell are using the same model, one with all normal vectors
pointing inward, another one all pointing outward. Thin walls different
thickness are designed, and similarly for the cavities. All the slice
images are taken at the layer of 800th/1400.

3.3 Shell and Thin Wall
A shell is a hollow model that is formed by disconnected

(exterior and interior) surfaces to define the internal voids of
the model. To generate correct slices, the volume of the in-
terior surface needs to be subtracted from that of the exterior
surface, which is mathematically defined as the Boolean op-
eration – Difference. In principle, to define inside and out-
side of the model properly, the exterior surface should have
its normal vectors pointing outward and the normal vectors
of the interior surface should point inward. Otherwise, the
actual volume of the model is not clear to the slicer, and the
slicing result may not be the one intended. Another prob-
lem is when a shell gets too small, it becomes redundant
and serves little purpose as the slicer might even not able to
handle it. Therefore, three cases are designed to test for the
shell defects as shown in Fig.4. The first two cases use the
same “Shell with Same Normal Direction” (a bumpy sphere
enclosing a sphere), but both pointing inward for the first
case, and both pointing outward for the second. For the third
case, different “Thin Walls” are designed with the thickness
of 1mm, 500µm, 100µm, 50µm, 10µm, and 5µm. They are
located on the left half of the model. The same setting is also
designed to create thin cavities on the right half.

Similar to the case of “Inside Out”, all methods do not
have a problem dealing with the normal vectors of the ex-

terior surface is flipped. However, because the exterior and
interior surfaces are having the same direction, the contour
method has done a union Boolean operation rather than a
difference operation in both first two cases. Although the
voxelization method is not affected by normal vectors, as it
propagates to identify the region outside the model, it fails to
reach the enclosed volume. The results are the same for both
cases, missing the internal void. Even though both the con-
tour and voxelization methods give the same result, it should
be noted that they are due to different reasons, and the con-
tour method can produce a hollow result if correct normal
directions are given (tested but not shown in this paper), but
the voxelization method still misses the internal void. In con-
trast, the ray-tracing method bases the in/out determination
on the intersection points of the rays, and the changes in nor-
mal directions have no effect on the results. For the third case
“Thin Walls”, 50µm is used for the voxel and pixel sizes, and
the one of slice image is 100µm. The contour and ray-tracing
method intersect the model with slice planes and rays, so
they would not miss the tiny features theoretically. However,
they have different slice images. The contour method stops
to present the features under 100µm, while the ray-tracing
method presents those walls with one-pixel width. The vox-
elization method can only reconstruct the feature as small as
500µm, due to the reason that small features cannot stop the
propagation in identifying the regions outside the model. In
summary, this category of defects is indeed an issue for the
voxelization method, although the shell problem could be po-
tentially solved by an implementation of multi-source prop-
agation (could create problems in the case “Intersection”).
The other two methods can successfully locate the shells
and the thin walls. Depending on the intention, it is really
up to the user to determine whether a union or a difference
Boolean operation should be performed on shells with same
normal direction and whether the walls that have a thickness
smaller than one-pixel size should be printed.

3.4 Hole and Incomplete Surface
To properly define a solid object, the digital model needs

to be watertight. Watertight means that the mesh of the sur-
face is complete, the lines of the mesh create valid elements,
and the elements are properly connected together at the edges
so that the volume is fully enclosed. When there are holes or
missing data on the surface, the model does not represent
a closed volume. Imagine if this model is filled with wa-
ter inside, the water would leak and thus it is not watertight.
This occurs when some mesh edges are connected to only
one face, or the adjacent faces fail to share two common ver-
tices. The printer could not print the design correctly, since
the model does not have a valid solid volume, so watertight
is normally a requirement of slicing for 3D printing. For-
tunately, the modern technologies can still do the slicing on
non-watertight models under certain assumptions. For ex-
ample, if there is a hole in a slice plane, then the slicing al-
gorithm could connect the points of the void with a linear
line. Nevertheless, it would alter the original design, and it
is hard to predict how the missing data will be interpreted in

5 Copyright c© by ASME



Fig. 5. Three models designed to test on holes. Left-to-right: Nut
with a vertical hole on the inner surface (along the print direction);
Square-torus with a flat hole perpendicular to the print direction;
Triple-torus with multiple small holes. The slice images are taken
at the layers of 630th/1109, 59th/2007, 60th/301, respectively.

different situations or even at different heights.
To understand how different slicing technologies handle

the non-watertight models, three test cases in Fig.5 are used
for the experiment: (1) “Vertical Hole” along the printing
direction in a nut model, (2) “Flat hole” perpendicular to the
printing direction in a square-torus, and (3) “Multiple Holes”
on a triple-tori. In this experiment, there are slicing errors
for the contour and the voxelization methods. Due to the fact
that the voxelization method propagates to identify the in/out
volume, a surface with any holes would result in empty vol-
ume, and thus none of the test cases get any images except
black. The contour method computes the face-plane inter-
sections and connects the segments based on closest-point
searching. As expected, the hole in a slice plane is connected
by a linear line, which can be seen in the case of “Vertical
Hole”. The “Flat Hole” is located and affects only one slice
plane for the contour method, and all other images are nicely
generated. However, when there are “Multiple Holes”, the
topology of segments becomes very complicated, resulting a
fatal error causing the contour program exited without any
images generated. The ray-tracing method can successfully
generate images in all three test cases, but many wrong in/out
determinations occur along the rays (e.g., x-axis for the ver-
tical hole, and z-axis for the flat), due to the missing inter-
section points on the holes. In summary, the hole defects re-
sulting non-watertight models are very challenging to handle
for all slicing technologies. Among which, the ray-tracing

Fig. 6. Spheres of diameter 80mm with 5k, 80k and 500k faces
are used for computational test.

Table 1. Statatics of computation time. s: sec, m: min, h: hour.

Method
Model Layer Thickness

(#Face) 100µm 50µm 20µm

Contour

5k 50s 1.5m 3.8m

80k 1m 1.7m 4.1m

500k 1.3m 2.5m 6m

Voxelization

5k 17s 1.2m >7h

80k 19s 1.2m >7h

500k 23s 1.2m >7h

Ray-Tracing

5k 27s 50s 2m

80k 24s 47s 2m

500k 24s 49s 2.1m

method is the most robust one in handling these defects, but
it still doesn’t produce acceptable results.

4 Computational Resources
Besides the performance in handling different defects,

another factor to consider in slicing technologies is the con-
sumption of computational resources. Two resources are
studied: one is the computation time – the time it takes
to complete the slicing operation, another one is memory
space – the amount of Random-Access Memory (RAM)
needed while slicing. The tests in this section are done
on a Workstation with 64-bit Win-10 operation system, In-
tel(R) Core(TM) i5-6500 CPU @ 3.20GHz, 8.00 GB RAM,
and a graphics card – NVIDIA Quadro K620. To compare
the computational side of the slicing technologies, a 80mm-
diameter sphere is designed with different meshes, which
have 5k, 80k, and 500k faces as shown in Fig.6. Alongside
with the three mesh sizes, three layer thicknesses are tested:
100µm, 50µm, and 20µm. The time statistic is reported first,
and it is followed by the memory.

4.1 Computation Time
The experiments are conducted using the online-

available software by importing the designed STL files. With
the limited access to the source code, the only way to mea-
sure the computation time is to count by a stopwatch from
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the time clicking the button to start slicing till the process
ends. There might be other overhead time in between, and
thus the results might not be exactly the time used for slicing
alone. However, as their differences are not at a level of a
few seconds, it is good enough to provide a mean of compar-
ison, and the overhead or the measurement error is negligible
in this test.

With three mesh sizes, three layer thicknesses, and three
slicing technologies to be compared, there are in total 27
combinations, and the statistics of computation time are
listed in Table 1. It is obvious that the layer thickness is a
parameter for all the methods, and it is because the smaller
the thickness, the more slice images need to be generated,
regardless of how the in/out determination is done. Yet, the
relationships between the layer thickness and different meth-
ods are different. As a geometric approach, increasing the
resolution simply means to increase the number of slices for
the contour method, and thus its computation time increases
pretty linear with the decrease of layer thickness. Both the
voxelization and the ray-tracing methods are the volumetric
techniques, but the former is based on voxels – a 3D array,
while the latter is based on rays shooting out from 2D im-
ages. The voxel resolution needs to be higher in order to have
a smaller layer thickness, and thus the amount of data needs
to be processed in the voxelization method increases expo-
nentially with the resolution. With the layer thickness 20µm,
the data is too large to fit into a computer’s main memory at
one time and out-of-core process is needed resulting an ex-
tremely long computation time. In principle, a ray stacked
with intersection points can generate an infinite number of
layers without the need of any additional data. Therefore,
the time complexity is also linear with the resolution for the
ray-tracing method similar to the contour method.

On the other hand, the mesh size is not always a key
parameter for different slicing technologies in terms of com-
putation time. As the contour method computes the face-
plane intersection on each face, the increasing trend of com-
putation time can be seen with the mesh size. However, the
voxelization method uses the mesh as a stopping condition
of the propagation, and the ray-tracing method intersects the
rays with the mesh through rendering. Although they are
not totally independent of the mesh size, the primary factors
are the voxels and the rays. Therefore, it is demonstrated
by the results that there is not much variation among differ-
ent mesh sizes for both the voxelization and the ray-tracing
methods. The voxelization method tends to be faster than
the ray-tracing method in low resolution, because the voxel
is a direct access data structure, compared with the list data
structure in a ray. That being said, there is a trade-off be-
tween time and memory, which is discussed in the following
section.

4.2 Memory Space
For the same aforementioned reason, it is not possible to

measure the actual memory consumed in each slicing tech-
nology. An alternative way is to use the Task Manager in
Windows to monitor manually the memory usage during the

Table 2. Statistics of memory usage. 1 GB = 1024 MB.

Method
Model Layer Thickness

(#Face) 100µm 50µm 20µm

Contour

5k 30 MB 30 MB 40 MB

80k 40 MB 50 MB 80 MB

500k 120 MB 130 MB 190 MB

Voxelization

5k 900 MB 4 GB 6 GB

80k 900 MB 4 GB 6 GB

500k 900 MB 4 GB 6 GB

Ray-Tracing

5k 170 MB 170 MB 170 MB

80k 190 MB 190 MB 190 MB

500k 200 MB 200 MB 200 MB

slicing process. The memory used by the corresponding pro-
cess is recorded before the slicing, and the highest value of
the memory is also recorded during the slicing process. The
difference between the two values is taken as the memory
needed for each technology. Again, there might be memory
used for purposes other than the slicing itself, but the results
are distinct enough from each other.

Among all, the voxelization method takes up signifi-
cantly much more memory than other methods, which is not
a surprise. For a sphere with diameter 80mm, the dimension
of the 3D array (voxels) with size 100µm is 800×800×800,
which in turns equal to 512 MB memory for 1 byte per voxel
(1 MB = 1 × 106 bytes). It grows exponentially to 4 GB
and 64 GB (1 GB = 1× 109 bytes) when the size is 50µm
and 20µm, respectively. Subtracting the memory reserved for
other Windows processes from the computer’s total memory
8 GB, the maximum available memory for the slicing pro-
cess is about 6 GB. It is far not enough for the voxelization
method to deal with the 64 GB data, and thus extensive data
exchange between RAM and hard-drive is done to complete
the process, which takes more than 7 hours as mentioned
in the previous section. Incorporating an octree data struc-
ture or rectangular voxels in the implementation could re-
duce the memory usage, but the problem would not be com-
pletely solved, especially the 3D printing parts (e.g., lattice
structure) are getting more and more complex externally and
internally nowadays.

The contour and the ray-tracing methods compute in-
tersections on-the-fly. Although they store the intersection
results, those do not take up much memory and require only
less than 200 MB in all cases. The contour method generates
the segments by intersecting the mesh faces with each slice
plane, and thus the total number of segments depends on the
mesh size, the structural complexity, and the number of lay-
ers. It is supported by the results that with the increase in
mesh size or resolution, the memory usage also increases.
The ray-tracing method in general requires more memory
than the contour method, because it needs to generate im-

7 Copyright c© by ASME



ages with the rays covering the whole volume of the model,
while the contour method needs only the surface. However,
because of the same reason, the memory usage of the ray-
tracing method is more controllable and it does not depend
on the structural complexity. The memory usage slightly in-
creases with the mesh size as more memory is used to render
a larger mesh. Recall that a ray can theoretically generate
infinite number of layers without any additional information,
so there are no obvious changes in memory usage with the
smaller layer thickness.

5 Conclusion
To benchmark the slicing technologies for Digital-

Light-Processing (DLP) printing that uses images as fabrica-
tion tool, three implementations: contour, voxelization, and
ray-tracing, are tested in this paper. A number of common
defects found in STL files are designed for the testing, and
they are also put online available to facilitate further devel-
opment and testing of slicing technology. In a nutshell, the
three technologies have their own characteristics. As a geo-
metric approach, the contour method fails in handling non-
manifolds and incoherent normal. The voxelization method
makes use of a 3D array and determine in/out for each voxel,
so that it can process models with topology and normal prob-
lems, but it suffers from the defects of shells and thin wall.
The ray-tracing method shoots rays that penetrate the model
and thus has no problem in locating shells or small features,
but the order of intersection points in the rays are swapped
when there are intersections between different bodies. As
each of them has its own advantages and disadvantages, one
possible solution is to take a step of error detection and de-
cide which slicing technology to apply. Unfortunately, they
all have problems in slicing models with holes. Therefore, it
is highly suggested to fill in the holes before slicing.

That being said, Table 3 summarizes the defects with
the level of difficulty to repair them. The suggested way of
repairing is also described in the table. Some defects could
be fixed easily or even automatically, such as those related
to normal vectors, but some require extensive user intention
like removing extra faces of the non-manifolds. Small holes
are pretty simple to fill as the geometry is very much defined,
but large holes are challenging, especially when there are
complete surfaces missing from a part of questionable data.
By linking the difficulty level in repairing and the capability
of each slicing technology in handling the defects, it could
draw some means of suitability and ways in applying differ-
ent slicing technologies. The contour method was originally
developed for the methods based on toolpath, which requires
the least memory, but it is actually indirect to compute the
contours first and then convert to images for DLP printing.
The shell problem is an important issue for the voxelization
method. While multi-source propagation is a possible solu-
tion, it could create other problems, which requires further
testing to validate different implementations of the voxeliza-
tion method. Moreover, fine resolution is normally needed
for 3D printing, so the high memory usage of voxels should
also be addressed. The ray-tracing method is the fastest in

Table 3. Level of difficulty (L) to repair: 1 (easiest) to 3 (hardest).

Defects L How to repair

Non-
manifold

3 Users carefully select and delete extra
faces or reconnect mesh properly

Intersection 2 Apply union Boolean operation, but
may require further user attention

Inside Out 1 Flip all normal vectors

Incoherent
Normal

1 Automatically flip the normal vectors
to be coherent with their neighbors

Bad Face 3 Users remove bad and add new faces

Shell
(same
normal)

2 Users select the shell with wrong nor-
mal direction and flip all its normal
vectors

Thin Wall 1 Not a defect, but users shouldn’t de-
sign features smaller than print reso-
lution

Large Hole 2 Apply hole filling, smoothing, and
fairing operations

Small Hole 1 Apply hole filling operation

most cases, and it needs a moderate amount of memory (200
MB for a model with 500k faces). It looks to be a good bal-
ance between computation time and memory space. It would
be optimal if the intersection problem can also be handled
without creating other problems.
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