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Abstract 

 

A systematic approach to evaluate energy behavior in residential buildings 

based on mining occupants’ behavioral data 

Sajad Mohammadrezakhani 

 

In this study, a new data mining-based methodology is developed to evaluate energy-related 

behavior of occupants in residential buildings. In sections 3.1 and 3.2 Occupant Activity 

Indicator (OAI) and Residential Energy Intensity Indicator (REII) are introduced as two new 

definitions which are used in this study. The proposed methodology to evaluate the energy-

related behavior of the buildings’ residents is based on the difference between the target REII 

and actual REII. The dissimilarity, which is found between the target and the actual REII, can 

be used to calculate the potential energy wastage/saving by occupants in different zones and 

different times in the building. The practicality of the proposed data mining framework is 

tested by applying it to a one-year dataset collected in a three-bedroom apartment in Lyon, 

France. The methodology applied to all zones of the apartment to evaluate the occupants’ 

energy-related behavior in different zones. As a result, the time and location for potential 

energy savings by occupants is identified.  

The obtained results show that occupants need to be more cautious about their energy 

consumption in zones 2 and 3 of the apartment. Moreover, the possible energy-wastage 

behavior in zones 1 and 4 is less than zones 2 and 3, even though the contribution of zone 4 to 

the energy consumption is significantly higher than the other zones. Besides, by the developed 

methodology location and time for the best and the worst energy-related behavior by the 
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building's occupants are defined. Furthermore, the variations of occupants' energy-related 

behavior in the apartment, are identified by time of day, day of week, and months. 

Employing the proposed methodology is beneficial for buildings’ occupants to raise their 

awareness regarding energy consumption. Also, it gives the decision-makers a practical insight 

into the system behavior, enabling them to create incentives/charges for residential buildings’ 

inhabitants to modify their energy-related behavior. 
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1. Introduction 

1.1. Energy usage awareness in buildings 

Due to environmental issues, demands for energy saving and improved energy efficiency are 

becoming increasingly important. As it is illustrated in Figure 1, the building sector has a 

significant contribution to the world’s total energy consumption [1], [2]. Thus, researchers are 

working on employing different methods to enhance buildings’ energy performance. 

 

  

a.  Global status of residential energy consumption b. Canada status of residential energy consumption 

Figure 1. contribution of the building’s energy use to the total energy consumption [2] 
 

Knowing the role of different influencing factors and the importance of the type of end-use 

in energy performance of buildings is essential to solving energy-related problems in this 

sector. As an example, among different energy consumers in residential buildings, the most 
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important one is the HVAC1 system, which uses around half of the total energy in buildings in 

the USA [1]. This is the reason behind the increasing interests for studies on the development 

of passive and low-energy air conditioning system in buildings [3]–[7].  

1.2. Energy-related data 

A wide range of parameters must be taken into consideration to analyze energy behavior of 

buildings [8]. These factors, which are influencing energy performance of buildings, can be 

used as the inputs in the analyses. Parameters which are influencing energy performance in 

building engineering can be classified into three major categories, including weather-related 

parameters, occupant related parameters, and physical parameters. Physical parameters 

group includes building-related factor and building services system parameters. Table 1 shows 

examples for the above mentioned three categories. 

Table 1. Important variables in energy analysis in building engineering 

Examples of driving factors 

Weather-related 
parameters 

Physical parameters 
Occupant related parameters Building services 

system 
Building related 

parameters 

Outdoor air 
temperature & 

humidity 
Household appliances 

Conductivity of 
building envelope Occupant presence 

Wind speed Lighting ELA2 
Air pressure HVAC3 HLC4 Their energy-related 

behavior Solar radiation Control system Size and orientation 

The effects of these parameters have well recognized 
The effects of these parameters 

are still oversimplified 

The effects of weather-related factors and physical parameters are well recognized [9], [10]. 

However, due to the highly stochastic nature of occupants’ effects on energy use in buildings, 

these parameters are still oversimplified. For this reason, in recent years several studies have 

been conducted to find a more accurate answer to the question of how occupants can affect 

energy consumption in buildings [3], [11]–[31]. 

                                                      
1 HAVC: heating, ventilating, and air conditioning 
2 Equivalent leakage area 
3 Heating, ventilating, and air conditioning 
4 Heat loss coefficient 
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1.3. Methods of analyzing energy performance of buildings 

Generally, methods of investigating energy performance of buildings can be classified into 

three major categories, including engineering method, statistical techniques, and data mining. 

For the engineering methods, which is also called as simulation, fluid mechanics and heat 

transfer equations are employed to analyze the energy performance of the buildings. For the 

statistical methods and data mining, historical data is mostly used. Benefits and limitations of 

these three groups of approaches are discussed adequately in several studies [12], [30]. 

Employing simulation techniques enables researchers to analyze buildings’ energy 

performance under different conditions. Also, these methods are adequately developed during 

the past decades, and several software tools are available for engineers [32]. However, 

according to the literature, due to the highly stochastic nature of occupants' behavior and their 

presence in buildings, the performance of these methods in dealing with occupied buildings is 

not as high as with unoccupied ones [12], [26], [28], [30]. 

Regarding statistical methods, these techniques are helpful in estimating useful energy 

indexes such as energy intensity index (EII) or energy use intensity (EUI). Also, they can be used 

to evaluate some important driving factors in energy performance of buildings such as 

equivalent leakage area (ELA) and heat loss coefficient (HLC). A significant advantage of these 

methods is their simplicity and widespread familiarity [12], [30]. For this reason, energy experts 

usually employ statistical techniques for energy auditing based on EnMS1 standards. 

Developing data mining frameworks to analyze energy-related data is the third method. By 

definition, data mining is “The analysis of large observational datasets to find unsuspected 

relationships and to summarize the data in novel ways so that data owners can fully 

understand and make use of the data” [33]. The limitations of other methods and capability of 

data mining paved the way for DM to become an emerging method to solve energy-related 

                                                      
1 EnMS: Energy Management System 
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problems in building engineering. In the next section, more details on data mining and its 

application in building engineering is going to be discussed. 

Having a higher accuracy in the estimation of energy use patterns enables building owners 

to take appropriate measures to reduce energy consumption in buildings. For this reason, 

several studies have been conducted to predict energy demand in buildings. In this regard, 

Zhao and Magoulès reviewed advantages and limitations of different prediction methods using 

in building engineering, including statistical tactics, engineering methods (both simplified 

simulation and detailed simulation) and the two most widely supervised machine learning 

techniques, artificial neural networks (ANN) and support vector machines (SVM) [12]. They 

reported that due to the capability of ANN and SVM in dealing with non-linear problems, these 

techniques are very applicable for predicting energy demand in buildings. 

In Table 2, the advantages and limitations of different methods of working on energy-related 

data are presented. In the following, a brief introduction to the most commonly used data 

mining techniques in building engineering is also provided. 

Table 2. Methods of working on energy-related data 

Exploring building’s Energy- Related Data 

 Statistical Methods Engineering Methods Data Mining 
Frameworks 

 
Regression 

analysis 
Correlation 

analysis 
Detailed 

simulation 
Simplified 
simulation 

Strengths 

Simplicity and 
widespread familiarity 
Comparatively efficient 

Ability to analyze building energy 
performance under various 
conditions 
Are adequately developed in the 
past decades and several tools 
are available 

Can be used to extract 
interesting, useful, and 
previously unknown and 
unexpected knowledge from 
the dataset 

Limitations 

Unable to exploit 
unexpected hidden 
information 
Not understandable and 
interpretable for common 
users 

Unable to exploit unexpected 
useful information 
can only imitate some typical 
activities in a rigid way 
Comparing to unoccupied 
buildings, does not perform well 
in dealing with occupied buildings 

Lack of enough experience in 
the application of DM in 
building engineering 



 

5 

1.4. Knowledge Discovery in Database (KDD) 

Data mining or Knowledge Discovery in Database (KDD) is the process of extracting 

previously unknown and profitable knowledge in big data streams. In building engineering, the 

extracted information about energy behavior of the system can be highly beneficial for building 

owners and decision-makers. 

Although in many research fields, such as medicine, marketing, and social science data 

mining have been largely used, the application of DM in building energy-related issues is still 

in its elementary phases [22]. Data mining frameworks are developed to find out hidden-useful 

information from energy-related data. The extracted practical knowledge can be used in 

improving energy performance of buildings and modification of occupants’ energy-related 

behavior. In recent years, energy experts and researchers developed data mining frameworks 

to exploit the capability of machine learning techniques to understand hidden correlations and 

associations in energy-related data and predict energy performance of buildings [11], [15], 

[22], [27], [29], [30], [34], [35]. The application of data mining in building engineering includes 

four major steps that must be taken. These steps are data selection, data preprocessing, 

machine learning, and data interpretation and knowledge extraction.  

 

1.4.1. Data selection 

Data selection is performed based on the goal of the task. In this step, a target dataset is 

created in the form that is shown in Table 3. In Table 3, each row of the dataset is one example 

(e.g. one building), and the columns represent influencing factors1. In this example, energy-

related data for 10 houses (yj (X_i) and Y(X_i) j=1 to 5, i=1 to 10) is presented. Here, the goal 

could be developing a model, which is able to learn from the example set how to predict energy 

consumption of new buildings Y(Xnew) (e. g. house 11), or to extract hidden relationships 

between attributes. 

                                                      
1 also called variables, attributes, features, etc. 
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Table 3. Example of a dataset 

 Attributes 

 y1 y2 y3 y4 y5 Y 

Examples 

Floor area 
(A) 

Number of 
inhabitants 

(N) 

Outside 
Temperature 

(T) 

Solar 
Radiation 

(R) 

Equivalent 
leakage area 

(ELA) 

Annual 
energy 

consumption 

House 1 X_1 y1 (X_1) y2 (X_1) y3 (X_1) y4 (X_1) y5 (X_1) Y (X_1) 

House 2 X_2 y1 (X_2) y2 (X_2) y3 (X_2) y4 (X_2) y5 (X_2) Y (X_2) 

House 3 X_3 y1 (X_3) y2 (X_3) y3 (X_3) y4 (X_3) y5 (X_3) Y (X_3) 

House 4 X_4 y1 (X_4) y2 (X_4) y3 (X_4) y4 (X_4) y5 (X_4) Y (X_4) 

House 5 X_5 y1 (X_5) y2 (X_5) y3 (X_5) y4 (X_5) y5 (X_5) Y (X_5) 

House 6 X_6 y1 (X_6) y2 (X_6) y3 (X_6) y4 (X_6) y5 (X_6) Y (X_6) 

House 7 X_7 y1 (X_7) y2 (X_7) y3 (X_7) y4 (X_7) y5 (X_7) Y (X_7) 

House 8 X_8 y1 (X_8) y2 (X_8) y3 (X_8) y4 (X_8) y5 (X_8) Y (X_8) 

House 9 X_9 y1 (X_9) y2 (X_9) y3 (X_9) y4 (X_9) y5 (X_9) Y (X_9) 

House 10 X_10 y1 (X_10) y2 (X_10) y3 (X_10) y4 (X_10) y5 (X_10) Y (X_10) 

 

 

1.4.2. Data preprocessing 

Data preprocessing is the process of preparing a dataset for machine learning step and 

generally includes two sublevels, which are data cleaning and data transformation. Data 

cleaning is removing noises and outliers from the dataset. Due to incompatibility in the dataset, 

data transformation must be performed in many cases. For example, when we have a different 

range of variables, a normalization technique is usually used to homogenize the range of 

distribution. For instance, in the dataset mentioned above in Table 3, y1 (floor area) could be 

in the order of 100 square meters and y2 (number of inhabitants) is in mostly less than 5. In 

such cases, it is recommended to normalize the data before starting the processing step. One 

of the most commonly used normalization techniques is min-max normalization, which 

enables the user to scale values in predetermined ranges (e.g. [0,1]).  

y′1 − y′1_min
y′1_max − y′1_min

=
y1 − y1_min

y1_max − y1_min

  y′1_min=0  

  y′1_max=1  
⇒        y′1 =

y1 − y1_min
y1_max − y1_min

 
Equation 1 
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1.4.3. Machin learning step 

This step is matching one or more machine learning techniques to process transformed-data 

from the preprocessing step. Based on the goal of the task, the data analyst selects and 

combines different machine learning techniques to develop an algorithm to extract knowledge 

from the dataset. 

Generally, machine learning techniques are classified into two categories, supervised 

learning and unsupervised learning.  

1.4.3.1. Supervised machine learning 

In supervised learning, the data analyst is aware of existing dependencies between input 

and output. In other words, the user knows that there might be a relationship between input 

and output. Generally, supervised learning techniques are aimed to do classification or 

regression (Figure 2), which means that by employing supervised machine learning, the data 

analyst can either find regression among variables or classify parameters into different 

predefined groups. Regression is used to predict the results in the form of continuous output, 

and by classification, we can deal with the categorical output. Among various supervised 

learning techniques, researchers in the field of building engineering prefer three techniques, 

which are artificial neural networks (ANN), support vector machine (SVM), and decision tree 

(DT). 

1.4.3.2. Unsupervised machine learning 

Employing unsupervised learning techniques, the data analyst can deal with unlabeled data. 

These techniques are employed when the user has no or limited idea about the potential 

results. The most popular unsupervised techniques are cluster analysis and association rule 

mining. In the following, a concise introduction to ANN, SVM, DT, Clustering, and ARM is 

presented. Besides, the strengths and limitations of each technique are going to be discussed. 
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Figure 2. Supervised and unsupervised machine learning techniques [36] 

1.4.3.3. Artificial neural network (ANN) 

ANN is a supervised machine learning technique based on the neural structure of the brain. 

Three kinds of layers exist in the architecture of ANNs: they are input layer, hidden layer(s), 

and the output one (Figure 3). Each unit in the network is connected to all units in previous 

and next layers. This connection is by the matrix of weights (Ө(j)), which is controlling the 

function mapping from one layer to the next layer [37].  

 

 

 

 

Artificial neural networks algorithms are the most widely used artificial intelligence in the 

application of building energy assessment. Employing ANN enables the user to model complex 

relationships between different influencing variables [37]. Also, in comparison to other 
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Figure 3. Artificial Neural Networks Architecture [37] 
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models, ANN shows a better performance in predicting a large set of variables [38]. Commonly 

used ANN algorithms in building engineering are feed forward back propagation neural 

network (FFBPNN), General regression neural network (GRNN), and radial basis function neural 

network (RBFNN).  

1.4.3.4. Support vector machine (SVM)  

SVM is a supervised machine learning technique is used for both classification and 

regression. SVM is a highly effective technique in dealing with nonlinear problems, especially 

when the number of training examples is small. Due to the large-margin-classifier characteristic 

of the optimization problem of SVM, by employing support vector machine we have extra 

safety factor in the results of classification. In other words, by employing SVM there is no 

probability for the output classes [37]. Another strength of SVM is that the optimization 

problem is a convex problem. Therefore, the possibility of entrapping in local minimums during 

the optimization process can be considered zero (Figure 4). However, a serious limitation of 

support vector machine is its slow operation, especially when the number of attributes is more 

than the number of training set, and if the training set is very large. 

 

Figure 4. convex and non-convex optimization problems1 

1.4.3.5. Decision tree  

DT is a supervised machine learning model that can be used for both categorical and 

continuous outputs. A significant strength of decision tree lies in its understandability and 

interpretability, even for users without high level of knowledge [36]. Employing DT enables the 

                                                      
1 Photos: https://www.coursera.org 
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data analyst to provide clear and useful information about the dependencies between outputs 

and influencing factors. Also, by DT decision rules can be easily obtained without needing high 

computational efforts. Researchers employ three commonly-used algorithms to generate 

decision tree, including ID3 [39], classification and regression trees (CART) [40], and C4.5 [41]. 

However, due to the ability of C4.5 algorithm in avoiding bias/variance (overfitting/ 

underfitting), it is the recommended algorithm in generating decision tree [42].     

1.4.3.6. Cluster analysis 

Clustering is an unsupervised classification technique which enables the users to group 

examples in previously unknown categories. The classification is done based on the similarity 

and dissimilarity of the instances. In the unsupervised classification (clustering), there are no 

predefined groups, and the machine finds the optimum number of groups. In contrary, in the 

supervised classification (e.g. DT, SVM, ANN, etc.) the user defines the output classes.  Figure 

5 shows examples of supervised and unsupervised classification.  

 

 

Figure 5. Supervised and unsupervised classification 

K-means algorithm, along with the Euclidean distance measure is the widely used algorithm 

for clustering in building engineering. However, other algorithms (e.g. k-medoids, density-

based, hierarchical clustering, etc.) are used in some problems as well.  To find out the 

optimum number of clusters, usually two techniques are recommended, the Davies-Bouldin 

index (DBI) [36] and the elbow method [37]. Also, a combination of these two techniques can 

be used, as well. Interested readers are referred to the introduced references for more 

information.  
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1.4.3.7. Association rule mining (ARM) 

ARM is an unsupervised machine learning technique with high performance in finding 

correlations and associations among different variables in the dataset. Implementation of ARM 

enables the data analyst to conduct the process by changing the amount for thresholds 

(support and confidence) to find unexpected and interesting relationships between variables. 

The output of ARM is a set of rules that are used to indicate patterns of variables which are 

frequently associated together. The ARM algorithms which are mostly used in the field of 

building engineering are Apriori and the FP-growth algorithms [36]. 

Table 4 summarizes the advantages and disadvantages of commonly used data mining 

techniques in building engineering.  
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Table 4. Popular data mining techniques used in building engineering 

Technique 

Commonly 
used 

algorithm 

 

Benefits Limitations 

Decision 
tree 

C4.5 
ID3 
Cart 

its ease of use; 
able to generate accurate predictive models 
understandable and interpretable structures 
provide clear and useful information on 
corresponding domains 
perform classification and prediction tasks rapidly 
without requiring much computation efforts 
decision rules can be easily generated by 
traversing a path from the root node to a leaf 
node 
represent the rules visually and explicitly 

is more appropriate to predict 
categorical variables than 
numerical variables 
the performance in dealing with 
non-linear problems is not as good 
as linear ones 
 

ANNs 
BPNN 
RBFNN 
GRNN 

ability to model complex relationships between 
inputs and outputs 
is more suitable to predict a large set of 
parameters 
is the most widely used artificial intelligence in 
the application of building energy prediction 
Lots of previous works can be found 
good performance in solving non-linear problems 

operate like a “black box” 
the process is not understandable 
and interpretable, especially for 
common users 
justifying the operation is not easy 
the relationship between an 
individual influencing factor and 
output cannot be observed directly 

SVMs 
Gaussian 
kernel 

highly effective models in solving non-linear 
problems even with small quantities of training 
data 
extra safety factor by large margin classification 
no probability for classification 
the optimization problem is a convex problem 

very slow operation comparing to 
other methods, especially if the 
number of attributes is more than 
number of training set, and the 
training set is very large 
operates like a “black box” 
is not understandable and 
interpretable especially for 
common users 
 

Clustering 
K-means 
k-Medoid 
CLARANS 

its ease of use 
high performance in unsupervised classification 
high performance in removing the influences of 
some attributes on the dataset to see the effects 
of especial driving factors  

chance of entrapping in local 
optimums 
need domain knowledge to 
interpret the classification results 

ARM 
FP-growth 
Apriori 

data analyst is able to conduct the process by 
changing the thresholds (support and confidence)  

needs expertise in the field of study 
to choose suitable thresholds 
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1.4.4. Data interpretation and knowledge extraction 

Data interpretation is the final step. Here researchers with domain knowledge analyze the 

output of machine learning step to extract profitable and interesting knowledge from the 

framework. 

1.5. Research objectives 

The main objectives and specific objectives of the current work are presented in the 

following. 

1.5.1. Main objectives 

i. Developing a data mining framework to explore the patterns of energy consumption 

and its drivers in each zone of a residential apartment. 

ii. Finding a proper indicator for evaluating occupants’ energy-related behavior. 

iii. Identifying the location and time for potential energy saving by occupants. 

1.5.2. Specific objectives 

i. Identifying the occupant activity indicator (OAI) as the driver for energy consumption 

by occupants. 

ii. Identification of the zones in the apartment. 

iii. By clustering, grouping the example set based on the similarities in energy 

consumption and level of activity by occupants in each zone. 

iv. Finding target residential energy intensity indicator (target REII) as the baseline to 

evaluate energy consumption in each cluster of every zone of the apartment. 

1.6. Thesis outline 

Chapter 2 presents a literature review on the application of data mining in building 

engineering. The methodology and the developed data mining framework are explained in 

chapter 3. Chapter 4 discusses the results obtained for different zones of the apartment. 
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Finally, the conclusions of this research and recommendations for future studies are presented 

in Chapter 5. 
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2. Literature review 

In this chapter, literature review is carried out on various application of data mining in 

building engineering. Section 2.1 reports how researchers employ data mining in buildings’ 

energy problems. Sections 2.2 and 2.3 review the two main groups of studies on the application 

of data mining in building engineering. Finally, section 2.4 presents a summary of the literature 

review and describes the gap in the research. 

2.1. Data mining in building engineering 

A comprehensive classification of the application of data mining in building engineering is 

reported by Yu, Haghighat, and Fung in 2016 [22]. In this study, the related works are separated 

into two primary tasks, predictive and descriptive. In the predictive task, studies about energy 

demand estimation, building occupancy and occupant behavior, and fault detection 

diagnostics for building systems are grouped together. The descriptive task includes works on 

developing data mining framework, investigating the effects of occupants’ energy-related 

behavior, building modeling and optimal control, and discovering and understanding energy 

use patterns. 

Since in building engineering, data mining is mostly used for predicting energy consumption 

and evaluating energy behavior of the system, in this review, the focus is placed on the 

application of data mining in energy evaluation of buildings. In the estimation of energy 

performance of buildings, influencing parameters defined in Table 1 (section 1.2) are used as 

input. Considering the main goal of the reviewed studies, the studied-works are classified into 
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two tasks. In the first task, the spotlight is put on occupant-related data as input, and in the 

second one, other influencing parameters are considered in the analysis (Figure 6). The first 

category (investigation of occupant-related data) is divided into two groups: (1) Investigating 

the effects of occupants’ actions on the building energy consumption, and (2) discovering 

occupancy patterns, especially in buildings where the fluctuation rate is high. In sections 2.2 

and 2.3 these two classes of research-works are studied in detail. 

 

 

 

 

Figure 6. Classification of the reviewed studies 

 

2.2. Energy evaluation without focusing on occupant-related data 

2.2.1. Capability of data mining 

Neto and Fiorelli compared the prediction performance of detailed simulation method, using 

EnergyPlus, with an artificial neural networks model for building energy consumption 

estimation [43]. They reported that the accuracy of prediction of both models is reasonable, 

while the ANNs shows a better performance in short-term predictions. They employed two 
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ANNs models, a simpler one which the only input is temperature, and the more complex model 

in which inputs are temperature, relative humidity, and solar radiation. Comparing the results 

to the measured data, they reported that ANN shows a fair agreement between estimated 

energy consumption and the actual one. They concluded that the average error for ANN is 

about 10% while the average error of the results of the simulation is around 13%. With regards 

to the accuracy of machine learning techniques in long-term prediction, credible accuracy of 

the artificial neural networks in annual energy consumption forecasting in energy-intensive 

manufacturing industries was investigated by Azadeh, Ghaderi, and Sohrabkhani [44]. They 

reported that ANN is highly capable of predicting long-term electricity consumption in 

manufacturing industries where a high rate of fluctuation exists in their energy consumption. 

Comparing the accuracy of data mining with statistical models, data mining shows a better 

performance in predicting a large set of parameters. In this regard, Kumar et al. employed back 

propagation neural network (BPNN) and a conventional statistic method to evaluate energy 

performance and predict energy consumption in a large number of datasets [38]. The results 

show that the average relative percentage errors of BPNN are always lower than the average 

relative percentage of least square method (the statistical method). Another significant 

advantage of ANNs is that they are more suitable in providing predictions for multivariable 

problems, involving both integers and continuous variables [30].  

Among different machine learning techniques, support vector machine (SVM) shows a more 

accurate prediction performance in comparison to others. Based on the investigation of 59 

residential buildings in China, Li, Ren, and Meng compared the prediction accuracy of three 

common ANN algorithms to support vector machine in estimating the annual electricity 

consumption of the buildings  [45]. In the study, Back Propagation Neural Networks (BPNN), 

Radial Basis Function Neural Networks (RBFNN), General Regression Neural Networks (GRNN), 

and SVM are employed to forecast the buildings’ energy consumption. Root mean square error 

(RMSE) and mean relative error (MRE) were used as comparative scales.  The results indicated 

that the prediction accuracy of SVM is significantly higher than the three ANN algorithms. It 

could be because of the high performance of SVM in learning, even when the size of the 

training dataset is small. However, it should be mentioned that despite the high efficiency of 
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SVM in the projection of energy behavior, in building engineering, ANN is the most commonly 

used artificial intelligence technique [12]. One reason could be the low-speed operation and 

high computational cost of SVM in comparison with ANN [37]. 

2.2.2. Interpreting the results 

Although studies show that ANN and SVM both have good performances in energy behavior 

prediction, describing the operation process in these two models is not easy. In other words, 

because of the role of hidden layer(s) in ANN and similarity functions in SVM, the calculation 

process of both artificial neural networks and support vector machine is like a “black box” 

(Figure 7) [36], [37], meaning that justification of the process needs high domain of expertise 

in computer science, mathematics, and building engineering. Therefore, interpreting how 

individual parameters are influencing the results is not plainly understandable for many users 

[29].  

 

Figure 7. The operation of the hidden layers in ANN and similarity functions in SVM is not easy to interpret1.  

Considering the black-box characteristic of artificial neural networks and support vector 

machine, developing a more understandable data mining model seems to be reasonable. In 

this regard, Tso and Yau [46] employed three different models to predict electricity 

consumption. The models are regression, neural networks, and decision tree (Figure 8). The 

results demonstrated that the prediction performance of decision tree, with its more 

straightforward structure, is higher than other models for their case. Therefore, since DT 

                                                      

1 The SVM picture: https://medium.com  
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procedure is significantly easier to understand and interpret than SVM and ANN, decision tree 

could be a good substitute for ANN and SVM in many cases. 

 

Figure 8. A comparison of regression analysis, decision tree and neural networks [46] 

Considering the understandability and interpretability of decision tree Yu and Haghighat 

developed a DT-based model to predict EUI1 level of buildings [28]. In their investigation, six 

categorical and four numerical influencing factors are grouped into four classes, climatic 

parameters, building characteristics, household characteristics, and energy resource. By 

employing these ten attributes, the decision tree is generated using C4.5 algorithm, results in 

obtaining eleven decision rules. The most significant advantage of the proposed model is its 

ability to predict and classify buildings’ EUI level in an understandable way. The generated 

decision tree has an interpretable flowchart-like structure which enables users to extrapolate 

useful knowledge. The other advantage of the proposed model is that the importance of the 

influencing parameters on buildings energy consumption can be ranked for further decision 

making. The knowledge extrapolated from the study is helpful for building owners and building 

designers to indicate the parameters that deserve more attention. Also, it enables them to find 

out which energy source should be used to save energy. The proposed model provides a fast 

estimation of energy performance of newly constructed buildings as well. 

                                                      
1 EUI: Energy Use Intensity 
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2.2.3. Improved models 

In order to increase the accuracy of the predictive models, ensemble models are developed 

by researchers as well. Considering the ensemble data mining models, Fan et al. [47] examined 

a model which is made from a combination of eight different data mining methods to forecast 

the next-day energy consumption and peak power demand [47]. They concluded that the 

ensemble model shows a higher prediction performance than every individual one. In another 

study, Jovanović et al. predicted heating energy consumption of a university campus [48]. For 

this purpose, three different ANN algorithms are employed, including Feed Forward Back 

Propagation Neural Network (FFBPNN), Radial Basis Function Networks (RBFN), and Adaptive 

Neuro-Fuzzy Inference System (ANFIS). The estimation results illustrated that all the three 

individual networks have excellent agreement with measured values. Moreover, to improve 

the prediction performance, an ensemble model of these three neural networks is developed. 

Root mean square error and mean absolute percentage error are used to compare the results 

of the predictions by three individual networks and the ensemble model. Comparison of the 

results shows that the ensemble model has a higher prediction accuracy than the individual 

technique. 

2.3. Energy evaluation by analyzing occupant-related data 

To simulate a building’s energy performance, modelers need inputs such as building 

envelope characteristics, construction materials, HVAC system size and type, interior and 

exterior lighting, weather information and other physical parameters, which most of them can 

be found in the architectural and engineering plans. However, some of these inputs are time 

variable and depend on the buildings’ occupancy and occupants’ behavior. In fact, occupants’ 

energy-related behavior constitutes a significant portion of total discrepancies between 

simulated and actual energy consumption. Considering the importance of the subject, 

researchers developed new models to discover more accurate occupancy patterns and to 

analyze occupants’ energy-related behavior in buildings. The results obtained from such 

studies are useful for prioritization of efforts of modification of occupants’ behavior to reduce 
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building energy consumption. Also, decision-makers would be able to estimate buildings’ 

energy-saving potential by enhancing users’ energy-related actions. 

In a study by Wei et al. [14], the complexity of occupants’ space-heating behavior in 

residential buildings is highlighted. They focused on 27 influencing parameters in heating 

behavior, which are suggested in previous studies. They reported that the influence of some 

factors on space-heating behavior of the occupants is well accepted by users. Outdoor 

temperature and dwelling type are examples of the mentioned factors which have been 

analyzed in many studies. However, some other parameters are considered by only a limited 

number of surveys and need to be investigated further. Heating price and social grade are 

examples of this group. It should be mentioned that based on the current body of knowledge, 

none of these variables can be identified as having no influence on space heating behavior. 

In Figure 6, it is indicated that analyzing occupant-related data in energy evaluation of 

occupied buildings can be categorized into two tasks: 

i. Investigating the influences of occupants’ actions on energy consumption in buildings. 

The goal of this task is estimating energy-saving potential in buildings by improving 

occupants’ behavior. Also, this kind of investigation helps decision-makers to acquire 

a real insight into energy behavior of the buildings. 

ii. Studying and understanding occupancy patterns, especially in commercial and office 

buildings in which the fluctuation rate is usually high. The goal of the second task is 

acquiring more accurate energy use estimation. Therefore, decision-makers and 

building owners can have more practical information for further decision-making. 

2.3.1. Occupants’ energy related behavior data 

In order to describe the large discrepancies between estimated energy consumption and the 

actual one in buildings, among various factors contributed to the discrepancies, researchers 

found that the effect of occupants’ behavior on energy consumption is a notable driving factor 

[21], [24]. Therefore, occupant behavior is known as the most significant source of uncertainty 

in estimating buildings’ energy consumption by simulation tools [21]. How occupants use 

household appliances, how they interact with building energy and system services, and how to 
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set the comfort criteria (thermal comfort, visual comfort, and acoustic comfort), and likewise 

their reaction to environmental discomfort play significant roles in the operation of buildings’ 

energy system and occupants’ energy use. With regard to office buildings, how occupants use 

the appliances and computers [20], how they adjust thermal and visual comfort [49], and how 

they leave the office in non-working-hours and weekends [24] are important occupant-related 

factors which significantly affect energy behavior of the system.  

Hong and Lin studied building energy consumption in three different climates to understand 

and categorize occupant behavior impacts on the energy use of private offices. Moreover, they 

evaluate how different types of occupant behavior affects the buildings’ energy consumption 

[21]. First, occupant behavior in private offices is categorized into three types of workstyle: 1) 

the austerity workstyle; 2) the standard workstyle; and 3) the wasteful workstyle. Then, by 

comparing to the standard workstyle, the obtained results show that the austerity one uses up 

to 50% less energy, while the wasteful workstyle consumes up to 90% more energy. Another 

study to show the importance of user behavior in the energy performance of buildings was 

conducted on six randomly selected commercial buildings in South Africa, by comparing energy 

consumption during working hours with non-working hours [24]. The results of energy audit 

surprisingly demonstrated that more than 50% of total energy is used during non-working 

hours than official working hours.   

As an indicator of occupant-energy-related behavior, D’Oca and Hong studied the patterns 

of window opening in 16 office buildings [49]. Logistic regression is employed to find out the 

most influencing factors on window opening and closing behavior of the occupants. Then, 

cluster analysis was used to disaggregate occupant behavior into different patterns. By 

analyzing the results, the top drivers for window opening/closing in the building are found. 

Also, the clustering analysis results in extracting useful knowledge about occupant behavior on 

window opening/closing patterns, which can be used in simulation programs. As an example, 

the patterns of window tilting angle preferences can be used in designing and estimating 

energy consumption in buildings and thus can be incorporated into building simulation 

software. 
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Considering the capability of clustering in isolating the effects of some selected features on 

instances while the impacts of other influencing factors can be eliminated, Yu et al. developed 

a data mining model to investigate the influences of user-related variables on energy 

consumption in buildings. In the developed model, first, all influencing parameters on energy 

consumption are taken into consideration. Then user-related parameters are isolated from 

other variables, and clustering performed based on the influencing factors unrelated to user 

behavior. As a result, four clusters are detected which physical and weather-related 

parameters are roughly similar in each of them. Accordingly, comparing the energy 

consumption of buildings in one cluster results in identifying the effects of occupant behavior 

on energy consumption. The comparison is made based on five different statistical measures. 

In another work, to segregate the effects of occupant behavior on building energy 

consumption, Yu, Haghighat et al. proposed another novel data mining framework. The 

proposed procedure consists of three steps, including clustering, decision tree, and association 

rule mining [26]. First, cluster analysis is performed to eliminate the effects of non-occupant 

related factors on the energy consumption of the buildings. After that, decision tree is 

employed to predict the cluster attribution of new buildings according to the main end-use 

loads.  Finally, association rule mining is used, results in finding interesting rules, associations, 

and correlations among different user activities. According to the discovered rules, 

recommendations were proposed to highlight energy-saving opportunities for the buildings’ 

occupants. The considerable advantage of the proposed framework is its high efficiency in 

occupant behavior modification. Moreover, the identification of energy-inefficient behavior is 

helpful for building owners to be aware of avoidable energy waste and motivate them to 

modify their activities. 

Ashouri, Haghighat et al. developed a building advisory system to alert the building 

occupants in case of any abnormal behavior [27]. Their methodology emphasizes quantitative 

energy savings or losses in home appliances. In the developed framework, they used different 

techniques of data mining, including clustering, association rule mining, and neural networks. 

The system scrutinizes the historical data to find good and bad energy consumption patterns. 
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By examining the real stream of data, any behavior opposite to the aforementioned patterns 

is flagged as loss of heat or saving, respectively. 

2.3.2. Discovering occupancy patterns 

With respect to the occupancy schedule, many modelers use simplified occupancy patterns 

which are available in standards, in their energy simulation programs. Designers usually refer 

back to ASHRAE 90.1-2004 [50], which provides standardized hourly occupancy diversity 

factors for different types of buildings. The recommended occupancy diversity factor by 

ASHRAE is shown in Figure 9. However, the issue in office buildings is that the recommended 

occupancy patterns in standards do not differentiate between different types of offices (e.g. 

private offices and multi-tenant office types). Moreover, the last update in most of these 

recommended schedules occurs in 1989 [51]. These are the reasons that researchers are 

working on developing new methods and frameworks to discover more actual schedules to 

use in their simulations.   

 

Figure 9. Recommended occupancy pattern when actual schedules are not known [50] 

  Studying office buildings, the arriving and leaving time, the number of occupants, the 

lunchtime, and the occupant presence in non-working-hours and weekends are noticeable 

issues in terms of energy consumption. Due to the importance of the number of users in the 

regulation of energy-saving after retrofit, the results of discovering more accurate occupancy 

schedule can facilitate energy efficiency retrofit in buildings. In this regard, Duarte et al. 

performed clustering on two-year collected data of a multi-tenant commercial building to find 
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the occupancy diversity factor for different zones and office types, by time of day, day of week, 

month, weekdays, holidays and weekends [18]. By clustering, the results of mining occupant 

presence data in private offices are divided into three clusters, including high level (January, 

March, April, June, September, October), medium level (December, February, July), and low 

level (November, August). The results show that the investigated occupancy diversity factors 

for that building are noticeably lower than the recommended occupancy schedule in the 

standard.  

 Considering the capability of developed data mining approaches in comparison with 

stochastic occupancy models to build an accurate occupancy schedule, Chen and Soh analyzed 

performance of six different models, including a traditional baseline model (SDP), two most 

widely used multi-occupant models (IMC1 and MG2), and three data mining approaches 

(ARIMA3, ANN4, SVR5) [17]. Two evaluation criteria, including Root Mean Square Error (RMSE) 

and Mean Error (ME), were employed to calculate the magnitude of occupancy prediction 

error and overestimation/underestimation of occupancy prediction, respectively. The results 

indicate that the accuracy of data mining approaches is significantly higher than stochastic 

occupancy models, which are highly limited for predicting regular occupancy in commercial 

buildings. In consideration of the calculated errors, ARIMA and SVR are defined as the best 

models for short-term and long-term predictions, respectively. 

To discover more accurate occupancy schedule in buildings, Liang, Hong, and Shen 

developed a data mining framework, results in introducing a novel formulation to predict 

occupant presence in buildings [35]. The considerable advantage of the proposed framework 

is that only simple input data (accessing records of the building) is required for the process. In 

the proposed methodology, first, four occupant presence patterns are discovered by 

unsupervised classification. Then, decision tree is used to induce the rules of the four defined-

patterns. They concluded that there is a strong relationship between the obtained patterns 

                                                      
1 Inhomogeneous Markov Chain 
2 Multivariate Gaussian 
3 Autoregressive Integrated Moving Average 
4 Artificial Neural Networks 
5 Support Vector Regression 
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and three factors, which are outdoor temperature, daylight saving time (DST), and weekdays. 

Therefore, these three attributes are used to generate the decision tree. Based on the induced 

rules from decision tree, the occupancy schedule is predicted by a proposed equation: 

Prediction (day, t) = Mp1(t) . Pp1  + Mp2(t) . Pp2  +  Mp3(t) . Pp3  +  Mp4(t) . Pp4 Equation 2 

Where Mpi (i=1,2,3,4) denotes the mean value of the Pattern i and Ppi denotes the probability 

of Pattern i.  

The prediction performance of the obtained equation is compared with two other 

commonly-used methods, including mean-day method and mean-week method. Root mean 

square error, mean absolute error, and median error are used for the comparison. According 

to the results of the comparison, they found that the proposed method can increase the 

prediction accuracy by around 30%. Also, the new model has a lower systematic tendency to 

overpredict or under-predict. 

2.4. Summary 

The classification of the reviewed literature is summarized in Figure 6. In addition, Table 5 

recapitulated the reviewed literature according to the classification brought in Figure 6. 

Table 5. A summary of the reviewed literature 

Energy evaluation without focusing on occupant-related data 

Reference Subject of the work Findings 

(Tso, Yau 
2007) 

Prediction performance of 
regression, neural network, and 
decision tree are compered in 
estimating energy consumption. 
 

The precision of decision tree model, with 
its simpler structure, is higher than other 
models. 

(Kumar, 
Aggarwal et 
al. 2013) 

Prediction accuracy of back 
propagation neural network and a 
conventional statistic method (least 
square) are compared in predicting 
a broad set of parameters.  
 

The average relative percentage error of 
BPNN is always lower than the average 
relative percentage of least square 
method. 



 

27 

(Zhao, 
Magoulès 
2012) 

Different methods of predicting 
energy consumption in buildings 
were reviewed and compared.1 

ANNs and SVMs are very applicable for 
predicting energy demand in buildings. 
If the training dataset is small, SVMs is a 
highly effective model in dealing with 
non-linear problems. 

(Neto, Fiorelli 
2008) 

Prediction performance of detailed 
simulation method2 is compared 
with two ANNs models3 in 
estimating energy consumption in 
buildings. 

The ANN shows a better performance in 
short-term prediction. 

(Azadeh, 
Ghaderi et al. 
2008) 

Investigating the accuracy of ANN in 
annual energy consumption 
forecasting.  

ANN is highly capable of predicting long-
term electricity consumption in energy-
intensive cases where the fluctuation rate 
is high. 

(Li, Ren et al. 
2010) 

Prediction accuracy of three 
common ANN models4 is compared 
with SVM in estimating annual 
electricity consumption of buildings. 

SVMs has the best performance among 
these four models. 

(Yu, 
Haghighat et 
al. 2010) 

Developing a decision tree model to 
predict EUI5 level of residential 
buildings in different types of 
districts. 

The proposed model is non-complex with 
high accuracy. The advantage of the 
model is its interpretability. The 
importance of influencing factors is 
ranked. 

(Fan, Xiao et 
al. 2014) and 
(Jovanović, 
Sretenović et 
al. 2015) 

Different data mining techniques 
were combined to investigate 
prediction performance of an 
ensemble model in forecasting 
energy consumption.  

The ensemble model has more accurate 
prediction performance in comparison 
with every individual technique. 

Energy evaluation by analyzing occupant-related data 

Occupants’ energy related behavior data 
Reference Subject of the work Findings 

(Hong, Lin 
2013) 

How occupant behavior can affect 
energy consumption in private 
offices by comparing different 
workstyles with defined-standard 
workstyle.  

There is up to 90% potential for saving 
energy only by modifying occupants’ 
workstyle. 

                                                      
1   The methods are detailed simulation, simplified simulation, statistical method, artificial neural 

networks, and support vector machine. 
2 Using EnergyPlus 
3 A simpler model (only input is temperature) and a more complex model (inputs are weather condition) 
4 Including Back Propagation Neural Networks (BPNN), Radial Basis Function Neural Networks (RBFNN), 

and General Regression Neural Networks (GRNN) 
5 Energy Use Intensity 
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(Masoso, 
Grobler 2010) 

Analyzing the results of energy 
auditing in commercial buildings 
and comparing energy consumption 
during working hours with non-
working hours.  
 

More than 50% of total energy is used 
during non-working hours than official 
working hours. 

(D'Oca, Hong 
2014) 

Mining data of 16 private offices to 
discover the effects of occupant 
behavior in window 
opening/closing1. 
 

The top drivers for window 
opening/closing in the building were 
defined.  

(Yu, 
Haghighat et 
al. 2011) 

A novel methodology for mining 
energy-related data of residential 
buildings in different districts is 
introduced for analyzing the effects 
of occupant behavior on energy 
consumption by isolating the 
occupant-related factors. 
Discovering association and 
correlation among different energy-
related occupant behavior. 
 

High capability of the proposed method 
to improve occupant behavior to save 
energy. Identification of energy-
inefficient behavior of occupants to avoid 
energy waste. 

(Yu, Fung, 
Haghighat et 
al. 2011) 

Mining energy-related data of 
residential buildings in order to 
investigate the contribution of 
occupant behavior to the buildings’ 
EUI and analyzing five defined 
cases2 to improve energy 
consumption in buildings.  
 

By the proposed methodology, profitable 
knowledge related to energy 
consumption is obtained.  
Energy-saving potential for every building 
can be calculated. 
Practical recommendations can be made 
to reduce energy consumption.  

(Ashouri, 
Haghighat, et 
al. 2018) 

Proposing a framework for building 
occupants energy consumption 
Investigation and quantification of 
potential and achieved savings. 

The data mining process is able to reveal 
potential and achieved savings that were 
not noticed before by conventional 
analysis. The model flags any abnormal 
energy consumption pattern and 
quantifies the losses. Recommendations 
are used to bring occupants attention to 
certain end-use loads that require more 
concern. 

                                                      
1 Specifically, 1) motivational patterns, 2) opening duration patterns, 3) interactivity patterns, and 4) 

window position patterns were discovered. 
2 1) End-use load shapes; 2) Variability in annual EUI of different end-use loads induced by occupant 

behavior; 3) Reference building and energy-saving potential; 4) Monthly variations of end-use loads induced by 
occupant behavior; 5) Monthly average indoor temperature of air-conditioned room 
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Energy evaluation by analyzing occupant-related data 

Discovering occupancy patterns 
Reference Subject of the work Findings 

(Duarte, Van 
Den 
Wymelenberg 
et al. 2013) 

Analyzing occupant presence data 
to find the occupancy diversity 
factors for different zones and office 
types, by time of day, day of week, 
month, weekdays, holidays, and 
weekends. 
 

The investigated occupancy diversity 
factors are considerably lower than the 
recommended diversity factors in 
standards. Thus, significant potential for 
saving energy is existing.  

(Chen, Soh 
2017) 

Comparing the accuracy of three 
data mining models1 with two 
stochastic occupancy models2 in 
different time horizons to discover 
the most accurate occupancy 
schedule. 

The accuracy of data mining models is 
significantly higher than stochastic 
occupancy models. Regular stochastic 
occupancy models are highly limited for 
predicting occupancy in commercial 
buildings. ARIMA and SVR are the best 
models for short-term and long-term 
predictions, respectively. 
 

(Liang, Hong 
et al. 2016) 

A data mining framework and a 
novel formulation are developed to 
discover occupancy patterns. 

The newly proposed formulation to 
predict occupant presence in buildings 
increases the prediction accuracy by 
around 30%. Also, it has a lower 
systematic tendency to overpredict or 
underpredict. 

 

2.4.1. Inference from the literature 

- There is a high potential for understanding the correlation between occupants’ behavior 

and energy consumption in buildings. 

- There is a high interest in acquiring practical insight into the system behavior. 

- There is a high interest in evaluating behavior of the system and modifying energy-

related behavior of buildings’ occupants. 

                                                      
1 Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANN), and Support 

Vector Regression (SVR) 
2 Inhomogeneous Markov Chain (IMC) and Multivariate Gaussian (MG) 
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2.4.2. Summary of the reviewed literature and challenges found in the previous works 

- The objective of the previous works is either analyzing occupancy patterns or energy 

prediction. 

- Regarding occupancy patterns, most of the works are done in office buildings where the 

occupancy schedule is routine, and a few numbers of studies are done in residential 

buildings [52]. Also, the studies which are done in residential buildings mostly address 

either occupancy patterns or energy consumption separately [53]. Alternatively, they 

wanted to predict energy consumption based on the occupancy patterns [54], [55]. 

- However, except the paper published recently by Li et.al. [31], no study is done to 

identify the energy wastage in residential buildings by considering the dynamic 

occupancy patterns. 

2.4.3. Explanation of research gap to support the objectives of current work 

To evaluate energy behavior of a residential building, it is clear that only using energy 

consumption amount, without considering the drivers for energy consumption is not enough. 

As a simple example, comparing energy consumption of a house in Montreal with an 

apartment in Vancouver is not rational, and from an energy-expert point of view, no one can 

say that the inhabitants of the house in Montreal are wasting energy and occupants of the 

apartment in Vancouver are saving energy, only because of considering the amount of energy 

consumption in these two cases. 

Therefore, firstly, we need to distinguish the driving factors for energy consumption in 

residential buildings from other parameters. After considering the influencing parameters, we 

are able to make logical comments on the energy performance of the buildings. 

To evaluate energy behavior of a system, having a target energy consumption is essential. In 

many cases, the target energy use is called baseline for energy consumption. To draw a proper 

baseline for energy consumption, we need to know what the influencing parameters in energy 

consumption are. In many cases, three groups of parameters are considered as drivers for 

energy consumption in residential buildings, including weather-related features, building’s 

physical parameters, and number of occupants (Figure 10) [9], [21], [28].  
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Figure 10. Parameters to draw a baseline for energy consumption in residential buildings. 
Building physical parameters including HLC1, ELA2, conductivity of the building envelope, building’s size and 

orientation, operation of HVAC3 system, household appliances, building’s control system, etc. Weather-related 
group includes temperature, humidity, wind speed, air pressure, solar radiation, etc. 

Therefore, if we consider the effects of the three groups of parameters (i.e. physical 

parameters, weather-related parameters, no. of occupants) on energy consumption in 

residential buildings, the results of comparing energy behavior of buildings are less 

controversial (Figure 11).  

 

Figure 11.Energy evaluation in residential buildings 

Now consider another scenario: two apartments with the same plan in the same building 

with two inhabitants each. In this case, considering building physical parameters and weather-

related parameters as drivers for energy consumption to evaluate energy behavior of the two 

apartments results in the same baseline for them. 

Now suppose that in apt.1, an aged retired couple is living and the occupants of apt.2 are a 

single parent working at home with his/her kid (Figure 12).  

                                                      
1 Heat Loss Coefficient 
2 Equivalent Leakage Area 
3 Heating, Ventilating, and Air Conditioning 

Energy 
consuption

Driver for 
energy 

consumption

Building 
physical 

parameters

Weather-
related 

parameters

No. of 
occupants

Energy Evaluation 
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Figure 12. Problem to be solved 

Based on daily needs, aged-retired people usually consume less energy than kids and adults. 

However, since these two apartments seem to have the same baseline for energy evaluation, 

in this scenario, energy consumption in apt.2 is mostly more than energy consumption in apt.1. 

However, it is not fair to say occupants in apt.1 are saving energy, and people in apt.2 are 

wasting energy, without perceiving occupants’ behavioral patterns, which comes from their 

needs. 

Therefore, for such cases, we need to define a driver for energy consumption, based on the 

occupants’ behavioral patterns and their daily needs. Two new definitions, OAI and REII, are 

introduced in this study to approach this problem. In the next chapter, the developed 

methodology to fill the mentioned gap, and the two new definitions are going to be described. 
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3. Methodology 

To solve the mentioned problem in section 2.4.3, a novel data mining framework is 

developed. The purpose of this study is to evaluate energy behavior in residential buildings 

based on the available data. This process will be done by identifying the location and time for 

potential energy-wastage/saving. The results of this work can be useful in providing the 

inhabitants with practical advice to save energy. 

In the following, two new definitions (OAI and REII) are introduced in sections 3.1 and 3.2. 

Then the whole methodology is shown in section 3.3, and sections 3.4 up to 3.8 present the 

developed data mining framework in detail. The practicality of the proposed data mining 

framework is by applying to a one-year dataset collected in a three-bedroom apartment in 

Lyon, France. The case study dataset is presented in section 3.9. 

3.1. Occupant Activity Indicator (OAI) 

Occupant Activity Indicator (OAI) is defined to represent the level of activity by occupants 

in a building. To take the occupancy patterns into account while evaluating energy 

consumption in residential buildings, OAI can be employed as an important driver for energy 

use. 

When OAI is high, it is indicated that inhabitants are highly active, or there are more 

people. Low OAI shows that people are relatively inactive, or there is less number of people 

at home. 
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Based on the available data, occupant activity indicator is built by parameters which are 

indicating what the level of activeness of people is (e.g. motion detected data and indoor 

CO2 level). 

Before generating OAI, it is essential to find the weights of its components. For this reason, 

we can find how the selected features for OAI are contributing to energy consumption. Also, 

since the range of the selected features can be different, to avoid skewed distribution, it is 

necessary to normalize the data before generating OAI. 

The suggested formulation for OAI is shown by equation 3: 

OAI = √a1. D1
2 + a2. D2

2 +⋯+ an. Dn
2 Equation 3 

 

where 

Di : the normalized occupant behavioral drivers which are contributing to energy 

consumption in residential buildings (e.g. motion and CO2 generation) 

(0 ≤ 𝐷𝑖 ≤ 1) 

ai : the weight of driver i in energy consumption (0 ≤ 𝑎𝑖 ≤ 1) 

3.2. Residential Energy Intensity Indicator (REII) 

Energy Intensity Indicator or EII is a measure to compare energy consumption by two 

systems and usually considered as energy use per driver (for the energy use). The driver is 

determined by the subject and can be Gross Domestic Product (GDP) and Gross Product (for 

industries). 

Following this intuition, Residential Energy Intensity Indicator or REII is defined to provide a 

fair evaluation of energy behavior for a residential building (as a system). REII can be used to 

find the time and location for potential energy wastage in residential buildings. REII is 

formulated as it is shown in equation 4: 
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REII =
NNEC

OAI
 Equation 4 

where 

NNEC is the Normalized Non-steady Energy Consumption and OAI is the Occupant Activity 

Indicator. 

NNEC is the energy use by appliances and other end-uses, which are following a non-steady 

pattern. For some end-uses, the pattern of energy consumption follows a constant trend with 

negligible fluctuations, even when there is no one at home (no motion is detected). For this 

reason, in the REII formulation, non-steady energy consumption is used instead of total energy 

consumption. Therefore, we can emphasize what kinds of behavior can be modified to reduce 

energy consumption. However, if all the end-use appliances are non-steady, NNEC = total 

energy consumption. 

OAI shows the level of activity by people in the house. Here OAI plays the role of the driver 

for energy consumption in residential buildings. 

High residential energy intensity indicator represents high energy consumption with a 

relatively low level of activity by people. Therefore, if we could find times that actual REII is 

higher than target REII (baseline), we can mention these moments as potential energy 

wastage. Contrarily, if the target REII is less than the actual one, it shows that we have a 

potential energy saving at that moment. 

3.3. The developed framework 

The developed data mining framework includes the following steps (Figure 13): 
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Figure 13. The whole data mining framework 

i. Preprocessing step, includes missing value prediction, feature selection, data 

aggregation, normalization, and feature generation; 

ii. Zoning step, based on the plan of the apartment, separating it to different 

zones; 

iii. Clustering step, to find energy use patterns for each zone of the building; 

iv. Baseline step, to fine target residential energy intensity indicator (REII) or 

baseline for each cluster in every zone of the building; 

v. Energy wastage identification step, to find potential energy-wastage by 

comparing the actual residential energy intensity indicator (actual REII) to the 

target REII (baseline) for each cluster in every zone. 

3.4. Data Preprocessing 

Data preprocessing is an essential step in the process of data mining. The importance of 

data preprocessing is emphasized when we know that the phrase “garbage in garbage out” is 

particularly applicable to data mining projects. The data format must be in a proper manner to 

achieve better results from the applied model in data-mining problems [36]. 

In this study, the following data-preprocessing tasks are implemented:  
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3.4.1. Missing values prediction 

Missing values, which can have significant impacts on the expected outcomes of the 

data mining, are a common phenomenon in data collection. In statistics, missing values 

happen when, in an observation, no information is recorded for the feature. Two kinds of 

missing values can be found in the datasets: 

i. Sparse missing values, where the missing values happen sparsely. In this case, 

statistical techniques can be employed to estimate the unknown values (e.g. 

average of neighboring values).  

ii. Continuous missing values, where we have missing data for a feature during a 

considerable period (e.g. one-third of total data recording period). Here, if the 

feature with missing values is crucial that it can not be ignored, the data analyst 

can deal with it as a label feature. Then, try to find a proper machine learning 

procedure to predict the missing values. In this study, we have the same problem. 

For one important sensor, three months of data is missed. Thus, different machine 

learning models are tested to find the missing values with the lowest possible 

error. In section 4.1, the procedure is provided in detail. 

 

3.4.2. Data aggregation 

Data aggregation1 is a process in data mining where data is searched, gathered, and 

presented in a report-based summarized format, to achieve specific objectives [56]. 

Aggregation is done by climbing up hierarchically or by dimension reduction. An example of 

data aggregation is provided in Appendix F. Data aggregation helps the user have a good insight 

into the data and understand how the trends are changing.  

3.4.3. Normalization: 

Before performing cluster analysis, it should be noted that the parameters of our dataset in 

this study have different ranges. Also, in this work, the features were considered to be of equal 

                                                      
1 Also called roll-up or drill-up in some references 
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importance. To prevent the features with large ranges (e.g. CO2) from outweighing those with 

comparatively smaller ranges (Motion), min-max normalization is applied to the selected 

parameters before the clustering step. Because the min-max normalization performs linear 

normalization, its most key advantage is the ability to reserve the relationships between the 

initial data. 

3.5. Zoning step 

Knowing the location of energy wastage helps the building occupants to have a better insight 

into their energy-related behavior. Since one of the objectives of this research is investigating 

the place where the energy wastage has occurred, separating the building into zones is 

essential. Zoning the apartment is done based on its plan, and the investigations are done for 

each zone separately. As a result, occupants can identify what kind of behavior needs to be 

modified to reduce energy consumption. 

3.6. Clustering step 

The goal of this step is eliminating the effects of time, date, and season on energy 

consumption by buildings’ occupants. Since the main purpose of this work is studying energy 

use patterns and occupants’ activity patterns to analyze energy-related behavior of inhabitants 

in residential buildings, finding the time and location for potential energy wastage is necessary.  

Therefore, two groups of attributes are chosen to perform clustering. The variables which 

represent how much the occupants are active in the building (e.g. motion and CO2) are 

gathered together in the first group, and features which are showing the amount of non-steady 

energy consumption (plug power consumption and lighting power consumption) forming the 

second group. 

The k-means algorithm is used to perform clustering. k-means determines a set of k clusters 

and assigns each example to one cluster. The clusters consist of similar examples. The similarity 

between examples is based on a distance measure between them. The position of the center 
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in n-dimensional space of the n attributes of an example set determines a cluster in the k-

means algorithm. This position is called centroid. It can, but do not have to be the position of 

an example of the example set. The k-means algorithm starts with k points which are treated 

as the centroid of k potential clusters. These start-points are either the position of k randomly 

drawn examples of the input example set or are determined by the k-means. All examples are 

assigned to their nearest cluster (the measure type defines the nearest). Next, the centroids of 

the clusters are recalculated by averaging over all examples of one cluster. The previous steps 

are repeated for the new centroids until the centroids no longer move or max optimization 

step is reached. The procedure is repeated with different sets of start-points. The set of clusters 

that is delivered has the minimal sum of squared distances of all examples to their 

corresponding centroids [36], [57].  

After performing min-max normalization to the selected features for clustering, a 

combination of Davies-Bouldin index (DBI) and Elbow method is used to find the optimum 

number of clusters for each zone. By definition, DBI is “the ratio of the sum of average distance 

inside clusters to distance between clusters” and calculated by equation 5 [58]:  

DBI =
1

k
∑maxi≠j [

di + dj

Ci,j
]

k

i=1

 Equation 5 

 

where: 

k: the number of clusters; 

di : the average distance inside the clusters i, in other words, it is the average 

distance between each object in the cluster i and the centroid of cluster i; 

dj : the average distance inside the clusters j, in other words, it is the average 

distance between each object in the cluster j and the centroid of cluster j; 

Cij : the distance between the cluster centroids. 

As a consequence, a smaller DBI represents a higher quality of the clustering. The k = n 

algorithm that carries out clusters with high intra-class similarity and low inter-class similarity 
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has a small Davies–Bouldin index and can be considered the optimum number of clusters for 

the data set. 

After finding the optimum number of clusters, we can perform the clustering. As a result, 

items in each cluster have close similarity in energy consumption, total motion, and CO2 

concentration. 

3.7. Baseline step 

In the baseline step, a target hourly REII1 is generated for each cluster and is used later as 

the baseline for that cluster. As it is shown in equation 4 (section 3.2), REII is calculated by a 

fraction which the numerator is NNEC2, and the denominator is OAI3. 

To calculate NNEC, the energy use patterns of each end-use load (different plug powers and 

lights) must be taken into consideration. Then, those with non-steady energy consumption 

pattern are selected to add together. After performing min-max normalization, NNEC is ready 

to be used in equation 4. The process of calculating NNEC is shown in Figure 14. 

Base on the available data, OAI is built by its components, which are representing the human 

activity (e.g. motion, CO2 level, window change). Before calculating OAI, it is necessary to find 

the weight of each variable contributing to energy consumption. Also, the values must be 

normalized before using in OAI formulation.  

The hourly average of NNEC and OAI are utilized to calculate the target residential energy 

intensity indicator. In the next step (energy wastage identification step), target REII is 

employed to estimate the potential energy wastage/saving. 

                                                      
1 Residential Energy Intensity Indicator 
2 Non-steady Normalized Energy Consumption 
3 Occupant Activity Indicator 
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Figure 14. The Process to calculate NNEC 

3.8. Energy wastage identification step 

The actual residential energy intensity indicator (actual REII) for every ten-minute is 

calculated by the same process, as illustrated in Figure 14. Then, a comparison is made 

between the target REII and the actual one. 

Equation 6 shows the formulation which is used to evaluate occupants’ energy-related 

behavior in this study. 

finding out energy use patterns for

each end-use

eliminating steady enegy consumers

adding non-steady energy uses together

normalizing total non-staedy

energy consumption

NNEC

finding features which are representing 
occupant activity level in the dataset

finding the weight of each selected 
parameter in energy consumption

normalizing the contributing factors

and build the OAI by its components

OAI

REII
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𝐸𝐵𝐼 =∑(𝑅𝐸𝐼𝐼𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑅𝐸𝐼𝐼𝑡𝑎𝑟𝑔𝑒𝑡) Equation 6. 

where: 

EBI is Energy-related Behavior Index. 

When EBI > 0 (actual REII > target REII) it is assumed that there is possible energy-wastage 

behavior by occupants. Contrarily, if EBI < 0 (actual REII < target REII) it indicates efficient 

energy-related behavior of occupants. The procedure is shown in figure 15. 

Target 
REII

Actual 
REII

Comparison

Is
Actual REII
less than

Target REII

Yes

No

Efficient
energy-behavior

Possible energy-

wastage behavior

 

Figure 15. Energy wastage identification step 

3.9. Case study 

This research uses the data set collected from a high-performance building in Lyon, France. 

The summers are warm, and the winters are very cold in Lyon. Also, the sky is partly cloudy 

year-round. The temperature typically ranges from 1 °C to 28 °C over the course of the year 

and is rarely below -5 °C or above 34 °C [59]. 
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Home energy management system (HEMS) is available for all apartments in this building, 

monitoring the indoor environment and energy efficiency, and data on both occupancy 

motion, plug power consumption and lighting power usage for every one-minute data row. A 

one-year data of a three-bedroom apartment is used in this study. Although individual power 

sensors have been installed in this apartment, because of the privacy issues, the information 

regarding their connected appliances and the place that the sensors are located is unknown. 

Table 6 shows the available parameters in the dataset. Also, the sensors’ information located 

in each part of the apartment is presented in appendix B. 

Table 6. all attributes available in the dataset 

Parameter name Type Range 

Ti
m

e 
an

d
 D

at
e 

Hour integer [0 – 23] 
Day integer [1 – 31] 

Day of Week Categorical [Mon - Sun] 
Weekday / weekend Categorical [Weekday - Weekend] 

Month integer [1 – 12] 
index 10 min integer [1 – 144] 

Time date_time 
[Jan 1, 12:00:00 AM EST –   
Dec 31, 11:50:00 PM EST] 

In
d

o
o

r 
en

vi
ro

n
m

en
t 

4 CO2 sensors integer [249 – 3205] 
4 Temperature sensors integer [12 – 28] 

4 Relative Humidity sensors integer [27 – 81] 
14 LUX sensors integer [0 – 987] 

O
cc

u
p

an
t 

b
eh

av
io

r 

14 Motion sensors Binary [0 – 1] 
6 Thermostat setpoints integer [0 – 50] 

10 window-blinds integer [0 – 100] 
10 window-shades integer [0 – 100] 

7 Window Open/Close Binary [0 – 1] 
14 Light on/off Binary [0 – 1] 

En
er

gy
 

C
o

n
su

m
p

ti
o

n
  14 Lighting Power sensors integer [0 – 33] 

17 Plug Power sensors integer [0 – 546] 

The academic version of RapidMiner Studio1 is used to mine data in this study. A brief 

introduction about RapidMiner Studio and its advantages are presented in Appendix E. 

 

                                                      
1 https://rapidminer.com/  

https://rapidminer.com/products/studio/
https://rapidminer.com/products/studio/
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4. Results and Discussion 

This chapter presents the results of applying the proposed methodology to the introduced 

dataset in the previous chapter (section 3.9). Preprocessing and missing value prediction is 

presented in Section 4.1. In section 4.2, zoning step is described. Sections 4.3 to 4.6 represent 

the implementation of the developed methodology on different zones of the apartment. 

Finally, a summary of the obtained results from the investigation is presented in section 4.7. 

4.1. Preprocessing 

i. Roll-up: In the initial dataset, the time step is one-minute. Before starting the process 

of analyzing data, the time step is changed from 1-minute to 10-minute for this study. 

ii. Missing values: according to the types of missing values discussed in section 3.4.1, in 

this step, both groups of missing values are estimated. For the sparse missing data, 

the average of neighboring values is used. 

Continuous missing values: for one of the plug power sensors in the kitchen (sensor 

code: ZTPG001E5E09020469D3) 12673 values are missed. From August 1st to 

November 1st. This sensor is considered as the label feature to calculate the missing 

data. First, a subset of data is created by removing the rows (examples) with missing 

values. Then different machine learning techniques are employed to find the most 

proper method to predict the class label missing values. For this reason, artificial 

neural networks (ANN), support vector machine (SVM), decision tree (DT), deep 

learning (DL), and generalized linear model (GLM) are tested. Cross validation is 
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employed to have a more accurate model for predicting the missing values. RMSE1 is 

used to compare the prediction performance of the techniques. Comparing the 

performance of the techniques results in choosing deep learning as the best model 

for our case. The calculated RMSE for the results of deep learning is 0.647 +/- 0.158.  

Figure 16 shows the whole procedure of predicting missing values, and Figure 17 

shows this process in RapidMiner Studio. Also, in appendix A, the detailed-

information about the performance of deep learning is presented. The results of cross 

validation for predicting values for sensor ZTPG001E5E09020469D3 (the class label) 

is shown in Figure 18 (visualization of prediction performance of deep learning). 

 

Dataset

Learning 
Subset

Missing 
values 
Subset

Define 
class 
label

DL

GLM

DT

ANN

SVM

C
ro

ss
 V

al
id

at
io

n

Performance
Comparison

DL

Apply 
model

Defined 
missing 
values

 

Figure 16. The procedure of predicting missing values 

 

                                                      
1 RMSE: root mean square error 
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a. The main process 

 

b. The sub-process: cross validation 
Figure 17. The Procedure to predict missing values in RapidMiner 
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Figure 18. Visualization of prediction performance of deep learning 

iii. Attribute selection: In this study, among all available parameters which are shown in 

Table 6, some features are selected to use in the investigation. In this dataset, we 

have 125 columns (attributes). To understand the influence of each attribute on the 

lighting power consumption and plug power use, the attributes are analyzed 

separately. In addition, 20 new attributes were generated in the dataset: 

- 10 Blind change: to see if the number of changing the window-blinds influence 

energy consumption. 

- 10 Shade change: to see if the number of changing the window-shades influence 

energy consumption. 

Then, based on the goal of the task, among all 145 attributes, 55 parameters are 

chosen to use for this study. These attributes are shown in Table 7. 

Table 7. the selected features 

Parameter name Type Range 
Hour integer [0 – 23] 
Day integer [1 – 31] 

Day of Week Categorical [Mon - Sun] 
Weekday / weekend Categorical [Weekday - Weekend] 

Month integer [1 – 12] 
index 10 min integer [1 – 144] 
4 CO2 sensors integer [249 – 3205] 

14 Motion sensors Binary [0 – 1] 
 14 Lighting Power sensors integer [0 – 33] 

17 Plug Power sensors integer [0 – 546] 

4.2. Zones of the apartment 

To be able to inform the occupants about the location for potential energy wastage/saving, 

before the energy analysis step, the apartment is separated into four zones. Zoning the 
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apartment is done based on its plan. Figure 19 shows the plan of the case-study apartment of 

this research. Zones are illustrated in different colors. Also, in  Appendix B more details about 

the installed sensors are provided. 

 

Figure 19. The plan of the case-study 
apartment. 

4.3. Zone one (bedroom 1) 

As it is mentioned before, the first zone we are going to work on is bedroom one. In this 

zone, we have data for 14 sensors which are introduced in Appendix B. Six sensors have been 

chosen to use in this study, which are CO2, motion, lighting power, plug power 1, plug power 

2, and plug power 3. 
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4.3.1. Energy use patterns investigation - Zone one (bedroom 1) 

The following images illustrate the variation of energy consumption and its drivers for zone 

one of the apartment. The data is normalized and aggregated hourly. Also, to understand the 

effects of time on the trends, the whole year data is separated into weekdays/weekends, 

months, and day of the week. Also, the RapidMiner procedure for this investigation is provided 

in appendix C. 

Figure 20 shows how the hourly plug power consumption is following occupants’ motion in 

zone one. Figure 21 illustrates how hourly lighting power consumption follows occupants’ 

motion.  

 
Figure 20. Aggregated-hourly variation of total plug power consumption and total motion detected in zone 1 

 
Figure 21. Aggregated-hourly variation of total lighting power consumption and total motion detected in zone 1 

 

Figures 22 to 25 show the hourly variations for different days of the week (Sunday to 

Saturday). Figure 22 shows the aggregated hourly occupant’s motion detected by the motion 

detector in zone one. 

As it is shown in Figure 23, which is illustrating the hourly variation of normalized CO2 

concentration in zone one, the carbon dioxide amount in this bedroom is significantly higher 

during nights comparing to day times. One reason is that the window was mostly kept closed 
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during night times. Because of this inconstancy, we cannot consider CO2 as an indicator of 

occupants’ activity-level in this zone. Therefore, for bedroom one, equation 3 (section 3.1) is 

simplified to equation 7: 

OAIzone1 = √(0 × 𝑁𝐶𝐺
2) + (1 × RoM2) = RoM𝑧𝑜𝑛𝑒1 Equation 7 

where RoM is the rate of motion detected by motion detector in bedroom one (normalized-

aggregated data).  

Figures 24 and 25 show the daily variation of hourly energy consumption in zone one. 

 

Figure 22. Aggregated-hourly variation of total motion detected in zone 1 per weekday 

 

Figure 23. Aggregated-hourly variation of total CO2 concentration in zone 1 per weekday 
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Figure 24. Aggregated-hourly variation of total plug power consumption in zone 1 per weekday 

 

Figure 25. Aggregated-hourly variation of total lighting power consumption in zone 1 per weekday 

Figures 26 to 29 show the hourly variations for all months (January to December). Figure 26 

shows the aggregated hourly occupant’s motion detected by the motion detector in zone one. 

Similar to Figure 23, as it is shown in Figure 27, the carbon dioxide amount in bedroom one 

is higher during nights comparing to day times. Figures 28 and 29 show the monthly variation 

of hourly energy consumption in zone one. Referring to the monthly aggregated data, it seems 

that this bedroom was unoccupied in most of the days in July and August.  

 

Figure 26. Aggregated-hourly variation of total motion detected in zone 1 per month 
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Figure 27. Aggregated-hourly variation of total CO2 concentration in zone 1 per month 

 

Figure 28. Aggregated-hourly variation of total plug power consumption in zone 1 per month 

 

Figure 29. Aggregated-hourly variation of total lighting power consumption in zone 1 per month 

Figures 30 to 33 show the hourly variations for weekdays/weekends. Figure 30 shows the 

aggregated hourly occupant’s motion detected by the motion detector in zone one. Similar to 

Figures 23 and 27, as it is shown in Figure 31, the carbon dioxide amount in the bedroom is 



 

53 

significantly higher during nights comparing to day times. Figures 32 and 33 show the variation 

of hourly energy consumption in zone one. 

 

Figure 30. Aggregated-hourly variation of total occupants’ motion detected in zone 1, separated for 
weekdays/weekends 

 

Figure 31. Aggregated-hourly variation of total CO2 concentration in zone 1, separated for weekdays/weekends 

 

Figure 32. Aggregated-hourly variation of total plug power consumption in zone 1, separated for 
weekdays/weekends 
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Figure 33. Aggregated-hourly variation of total lighting power consumption in zone 1, separated for 
weekdays/weekends 

 

4.3.2. Clustering step - Zone one (bedroom 1) 

The clustering step includes four sub-steps, which are illustrated in Figure 34. 

 

Figure 34. Clustering sup-steps 

i) Feature selection: 

Based on the goal of the task, the contributing attributes for performing clustering must be 

chosen. Accordingly, aggregated-monthly data for five parameters, including RoM1, LP2, PP_1, 

PP_2, and PP_33 are selected. 

 

                                                      
1 Rate of motion 
2 Lighting power consumption 
3 Plug power consumption, no. 1, 2, and 3 
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ii) Normalization: 

Next, the data must be normalized to prevent the features with large ranges from 

outweighing those with comparatively smaller ranges. Min-max normalization is used to 

normalize the data. 

iii) Finding kopt: 

We need to find the optimum number of clusters (k). For this reason, clustering is performed 

for k=2 to k=9, and DBI1 calculated for each k. Elbow method is employed to choose the 

optimum number of clusters (kopt). As it is illustrated in figure 35.a, kopt = 4 for zone one. Also, 

Figure 35.b shows that the amount of DBI reduction is the highest when the number of clusters 

is 4. 

 

 
 

a. b. 
Figure 35. Performance of clustering, a. DBI for different number of clusters, b. reduction in DBI by increasing the 

number of clusters 
 

iv) Implementation:  

After finding the optimum number for clusters, the defined clusters must be analyzed and 

interpreted. The visualization of the clusters’ centroids can be seen in Figure 36. 

                                                      
1 Davies-Bouldin index 
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Figure 36. Visualization of cluster centroids 

 

- Clusters’ specifications: 

Cluster_0: 
 

This cluster represents the moments that the level of activity by occupants 

in zone one is comparable low. Lighting power consumption and usage of 

plug powers 1 and 2 are above average but plug power 3 usage is much less. 

 

Cluster_1: 
 

This cluster represents the moments that the level of activity and lighting 

power consumption by occupants in zone one are the highest. Plug power 1 

consumption is negligible, plug power 2 usage is very high, and plug power 3 

is around average. 

 

Cluster_2: 
 

This cluster represents the moments that the level of activity by occupants 

in zone one is the lowest. Lighting power consumption is much less than 

average and usage of plug powers 2 and 3 are the lowest.  

 

Cluster_3: 
 

This cluster represents the moments that the level of activity by occupants 

in zone one is around average. Lighting power consumption is the lowest, but 

plug power usage is the highest. 
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The RapidMiner procedure for performing the clustering step is provided in appendix D.  

4.3.3. Baseline step - Zone one (bedroom 1) 

Here we are going to calculate target REII1 for zone one. The process is based on the 

procedure which was described in Figure 14 (section 3.7): 

i) Calculation of NNEC2: 

Following the presented introduction about NNEC in section 3.2, all the four 

energy consumers in zone one are considered as non-steady end-use. 

Therefore, a new attribute is generated by summing up the lighting power 

consumption and all plug power consumptions (e.g. LP, PP_1, PP_2, and PP_3). 

This new attribute is called Non-steady-Energy-Consumption (NEC): 

NEC =∑LPi

n

i=1

+∑PPj

m

j=1

 Equation 8 

where: 

- NEC  is non-steady energy consumption (before normalization) 

- LPi    is   ith lighting power consumption 

- PPj    is   jth plug power consumption 

- n and m    are the number of non-steady lighting powers and plug powers, 

respectively. 

Therefore, for zone one equation 8 become: 

NECzone1 = LP + PP1 + PP2 + PP3 Equation 9 

NNECzone1 = normalized (NECzone1) Equation 10 

ii) Calculation of OAI3: 

                                                      
1 REII: Residential Energy Intensity Indicator 
2 Normalized-Non-Steady Energy Consumption 
3 Occupant Activity Indicator 
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According the equation 7 (section 4.3.1), for zone one OAI = RoM. 

iii) Calculation of REII: 

The target REII attribute for zone one for each cluster is generated by     

equation 11: 

REIIzone1 =
NNECzone1
OAIzone1

 Equation 11 

Then the hourly REII is used as the baseline (target REII) to evaluate occupants’ 

energy behavioral patterns and investigate the amount of potential energy 

wastage/saving by occupants in zone one. 

iv) Target REII for zone one: 

Figure 37 shows the baseline (target hourly REII) for the four defined clusters 

in zone one. This chart is used in the next step to identify the potential energy 

wastage/saving in zone one. 

 

Figure 37. Target hourly REII for the four defined clusters 

 

4.3.4. Energy wastage identification step - Zone one (bedroom 1) 

Employing the results of the previous section as the baseline for evaluation of occupants’ 

energy-related behavior in zone one enables us to calculate the potential energy 

wastage/saving by occupants in this zone. Figure 38.a shows both the actual REII and the target 

one (baseline). Considering the concept behind REII definition, which is energy consumption 
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(NNEC) over occupants’ activity (OAI), the moments that the actual REII is higher than the 

baseline can be defined as the possible energy wastage behavior. Similarly, when the actual 

REII is lower than the target one, it indicates efficient energy-related behavior. Figure 38.b 

highlights a part of Figure 38.a for better understanding. The potential energy wastage/saving 

is calculated by the difference between the actual REII and the baseline. Figure 39 indicates 

this difference. 

 
 (a) 

 

(b) 
Figure 38. Actual REII and target REII for the whole year. (a) whole year data, (b) zoom a part of the chart for 

better understanding 
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(a) 

 
(b) 

Figure 39. Difference between the actual REII and target REII for the whole year – potential energy 
wastage/saving. (a) whole year data, (b) zoom a part of the chart for better understanding 

4.4. Zone two (bedroom 2) 

The second zone is bedroom two. In this zone, we have data for 15 sensors which are 

introduced in Appendix B. Four sensors have been chosen to use in this study, which are CO2, 

motion, lighting power, and plug power.  

4.4.1. Energy use patterns investigation - Zone two (bedroom 2) 

The following images illustrate the variation of energy consumption and its drivers for zone 

two of the apartment. Similar to zone 1, the data is normalized and aggregated hourly and is 

separated into weekdays/weekends, months, and day of the week. The RapidMiner procedure 

for this investigation is the same as zone one (appendix C). 

Figure 40 shows how the hourly plug power consumption is following occupants’ motion in 

zone two. Figure 41 illustrates how hourly lighting power consumption follows occupants’ 

motion.  
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Figure 40. Aggregated-hourly variation of total plug power consumption and total motion detected in zone 2 

 

Figure 41. Aggregated-hourly variation of total lighting power consumption and total motion detected in zone 2 

Figures 42 to 45 show the hourly variations for different days of the week (Sunday to 

Saturday). Figure 42 shows the aggregated hourly occupant’s motion detected by the motion 

detector in zone two. 

As it is shown in Figure 43, which is illustrating the hourly variation of normalized CO2 

concentration in zone two, again, the carbon dioxide amount in the bedroom is significantly 

higher during nights comparing to day times. Similar to zone one, because of this inconstancy, 

we cannot consider CO2 as an indicator of occupants’ activity-level in this zone. Therefore, for 

bedroom tow, equation 3 (section 3.1) is simplified to equation 12: 

OAIzone2 = √(0 × 𝑁𝐶𝐺
2) + (1 × RoM2) = RoM𝑧𝑜𝑛𝑒2 Equation 12 

where RoM is rate of motion detected by motion detector in bedroom two (normalized-

aggregated data.  

Figures 44 and 45 show the daily variation of hourly energy consumption in zone two. 
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Figure 42. Aggregated-hourly variation of total motion detected in zone two per weekday 

 

Figure 43. Aggregated-hourly variation of total CO2 concentration in zone two per weekday 

 

Figure 44. Aggregated-hourly variation of total plug power consumption in zone two per weekday 

 

Figure 45. Aggregated-hourly variation of total lighting power consumption in zone two per weekday 
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Figures 46 to 49 show the hourly variations for all months (January to December). Figure 46 

shows the aggregated hourly occupant’s motion detected by the motion detector in zone two. 

Similar to Figure 43, as it is shown in Figure 47, the carbon dioxide amount in bedroom two 

is higher during nights comparing to day times. Figures 48 and 49 show the monthly variation 

of hourly energy consumption in zone two. Referring to the monthly aggregated data, it seems 

that this bedroom was also unoccupied in most of the days in July and August. 

 

Figure 46. Aggregated-hourly variation of total motion detected in zone two per month 

 

Figure 47. Aggregated-hourly variation of total CO2 concentration in zone two per month 
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Figure 48. Aggregated-hourly variation of total plug power consumption in zone two per month 

 

Figure 49. Aggregated-hourly variation of total lighting power consumption in zone two per month 

Figures 50 to 53 show the hourly variations for weekdays/weekends. Figure 50 shows the 

aggregated hourly occupant’s motion detected by the motion detector in zone two. 

Similar to Figures 43 and 47, as it is shown in figure 51, the carbon dioxide amount in this 

bedroom is significantly higher during nights comparing to day times. Figures 52 and 53 show 

the variation of hourly energy consumption in zone two. 
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Figure 50. Aggregated-hourly variation of total occupants’ motion detected in zone two, separated for 
weekdays/weekends 

 

Figure 51. Aggregated-hourly variation of total CO2 concentration in zone two, separated for weekdays/weekends 
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Figure 52. Aggregated-hourly variation of total plug power consumption in zone two, separated for 
weekdays/weekends 

 

Figure 53. Aggregated-hourly variation of total lighting power consumption in zone two, separated for 
weekdays/weekends 

 

4.4.2. Clustering step - Zone two (bedroom 2) 

The clustering step includes four sub-steps, similar to zone one (Figure 34): 

v) Feature selection: 

The contributing attributes to perform clustering in this zone are aggregated-monthly data 

of three parameters, including Rom1, LP2, and PP3. 

                                                      
1 Rate of motion 
2 Lighting power consumption 
3 Plug power consumption 
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vi) Normalization: 

Similar to zone one, here the data is normalized by min-max normalization. 

vii) Finding kopt: 

Figure 54 shows the results of DBI calculation. As it is illustrated in Figure 54.a, kopt = 5 for 

zone two. Also, Figure 54.b shows that the amount of DBI reduction is the highest when the 

number of clusters is 5. 

 

  

a. b. 

Figure 54. Performance of clustering, a. DBI for different number of clusters, b. reduction in DBI by increasing the 
number of clusters 

viii) Implementation:  

The characteristics of clusters’ centroids can be seen in Figure 55. 
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Figure 55. Visualization of cluster centroids 

 

- Clusters’ specifications: 

Cluster_0: 
 

This cluster represents the moments that the level of activity and energy 

consumption by occupants in zone two is very high. In fact, RoM and plug 

power usage are the highest in the dataset.  

Cluster_1: 
 

This cluster represents the moments that the level of activity and energy 

consumption by occupants in zone two is very low. Here, RoM and plug 

power usage are the lowest in the dataset.  

Cluster_2: 
 

This cluster represents the moments that the level of activity by occupants 

in zone two is fairly high. Lighting power consumption is at the highest level 

and plug power usage near the lowest amount in the dataset.  

Cluster_3: 
 

This cluster represents the moments that the level of activity and plug power 

usage by occupants in zone two are fairly high. Lighting power consumption 

is at the lowest level.  

Cluster_4: 
 

This cluster represents the moments that both energy consumption and level 

of activity by occupants in zone two are around average.  
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The RapidMiner procedure for performing the clustering step is similar to zone one and 

presented in appendix D.  

 

4.4.3. Baseline step - Zone two (bedroom 2) 

Similar to zone one, the steps are as follow: 

i) Calculation of NNEC: 

The two energy consumers in zone two are considered as non-steady end-use. 

Therefore, for zone two, equation 8 become: 

NECzone2 = LP + PP Equation 13 

NNECzone2 = normalized (NECzone2) Equation 14 

 

ii) Calculation of OAI: 

According the equation 12 (section 4.4.1), for zone two OAI = RoM. 

iii) Calculation of REII: 

The target REII attribute for zone two for each cluster is generated by     

equation 15: 

REIIzone2 =
NNECzone2
OAIzone2

 Equation 15 

 

iv) Target REII for zone two: 

Figure 56 shows the baseline (target hourly REII) for the five defined clusters in 

zone two. 
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Figure 56. Target hourly REII for the five defined clusters 

 

4.4.4. Energy wastage identification step - Zone two (bedroom 2) 

Figure 57.a shows both the actual REII and the target one (baseline). Figure 57.b highlights 

a part of Figure 57.a for better understanding. Figure 58 shows this difference between the 

actual REII and the baseline. 

 

 
 (a) 

 
(b) 

Figure 57. Actual REII and target REII for the whole year. (a) whole year data, (b) zoom a part of the chart for 
better understanding 
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(a) 

 
(b) 

Figure 58. Difference between the actual REII and target REII for the whole year – Potential energy 
wastage/saving. (a) whole year data, (b) zoom a part of the chart for better understanding 

4.5. Zone three (bedroom 3) 

The third zone is bedroom three. In this zone, we have data for 11 sensors which are 

introduced in Appendix B. three sensors have been chosen to use in this study, which are CO2, 

motion, and lighting power. 

4.5.1. Energy use patterns investigation - Zone three (bedroom 3) 

The following images illustrate the variation of energy consumption and its drivers for zone 

three of the apartment. Similar to zone 1 and 2, the data is normalized and aggregated hourly 

and is separated into weekdays/weekends, months, and day of the week. The RapidMiner 

procedure for this investigation is the same as the other zones (appendix C). 
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Figure 59 shows how hourly lighting power consumption is following CO2 concentration in 

zone three. Figure 60 illustrates how hourly lighting power consumption follows occupants’ 

motion.  

 

Figure 59. Aggregated-hourly variation of total lighting power consumption and CO2 concentration in zone 3 

 

Figure 60. Aggregated-hourly variation of total lighting power consumption and total motion detected in zone 3 

Figures 61 to 62 show the hourly variations for different days of the week (Sunday to 

Saturday). Figure 63 shows the aggregated hourly occupant’s motion detected by the motion 

detector in zone three. 

As it is shown in Figures 59 and 62, which are illustrating the hourly variation of normalized 

CO2 concentration in zone three, the carbon dioxide amount in this bedroom is significantly 

higher during nights comparing to day times. The same as zone one and two, because of this 

inconstancy, we cannot consider CO2 as an indicator of occupants’ activity-level in this zone. 

Therefore, for bedroom three, equation 3 in section 3.1 is simplified to equation 16: 

OAIzone3 = √(0 × NCG)
2 + (1 × RoM)2 = RoM𝑧𝑜𝑛𝑒3 Equation 16 
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where RoM is rate of motion detected by motion detector in bedroom two (normalized-

aggregated data.  

Figure 63 shows the daily variation of hourly lighting power consumption in zone three. 

 

Figure 61. Aggregated-hourly variation of total motion detected in zone three per weekday 

 

Figure 62. Aggregated-hourly variation of total CO2 concentration in zone three per weekday 

 

 

Figure 63. Aggregated-hourly variation of total lighting power consumption in zone three per weekday 
 

Figures 64 to 66 show the hourly variations for all months (January to December). Figure 64 

shows the aggregated hourly occupants’ motion detected by the motion detector in zone 

three. Similar to Figures 59 and 62, as it is shown in Figure 65, the carbon dioxide amount in 



 

74 

bedroom three is higher during nights comparing to day times. Figure 66 shows the monthly 

variation of hourly energy consumption in zone three. Referring to the monthly aggregated 

data, it seems that this bedroom was also unoccupied in most of the days in July and August. 

 
Figure 64. Aggregated-hourly variation of total motion detected in zone three per month 

 
Figure 65. Aggregated-hourly variation of total CO2 concentration in zone three per month 

 
Figure 66. Aggregated-hourly variation of total lighting power consumption in zone three per month 
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Figures 67 to 69 show the hourly variations for weekdays/weekends. Figure 67 shows the 

aggregated hourly occupant’s motion detected by the motion detector in zone three. Similar 

to Figures 59, 62, and 65, as it is shown in Figure 68, the carbon dioxide amount in this bedroom 

is significantly higher during nights comparing to day times. Figure 69 shows the variation of 

hourly lighting power consumption in zone three. 

 

Figure 67. Aggregated-hourly variation of total occupants’ motion detected in zone three, separated for 
weekdays/weekends 

 

Figure 68. Aggregated-hourly variation of total CO2 concentration in zone three, separated for weekdays/weekends 
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Figure 69. Aggregated-hourly variation of total lighting power consumption in zone three, separated for 
weekdays/weekends 

4.5.2. Clustering step - Zone three (bedroom 3) 

The clustering step includes four sub-steps, similar to other zones (Figure 34): 

i) Feature selection: 

 The contributing attributes to perform clustering in this zone are aggregated-monthly data 

of Rom1 and LP2. 

ii) Normalization: 

Similar to other zones, here the data is normalized by min-max normalization. 

iii) Finding kopt: 

Figure 70 shows the results of DBI calculation. As it is illustrated in Figure 70.a, kopt = 3 for 

zone three. Also, Figure 70.b shows that the amount of DBI reduction is the highest when the 

number of clusters is 3. 

                                                      
1 Rate of motion 
2 Lighting power consumption 
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a. b. 

Figure 70. Performance of clustering, a. DBI for different number of clusters, b. reduction in DBI by increasing the 
number of clusters 

iv) Implementation:  

The characteristics of clusters’ centroids can be seen in Figure 71. 

 

Figure 71. Visualization of cluster centroids 

- Clusters’ specifications: 

Cluster_0: 
 

This cluster represents the moments that the level of activity and energy 

consumption by occupants in zone three are at the highest level.  
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Cluster_1: 
 

This cluster represents the moments that the level of activity and energy 

consumption by occupants in zone three are at the lowest level.  

Cluster_2: 
 

This cluster represents the moments that both energy consumption and level 

of activity by occupants in zone three are around average.  

The RapidMiner procedure for performing the clustering step is similar to zones one and two 

and presented in appendix D.  

4.5.3. Baseline step - Zone three (bedroom 3) 

Similar to zone one, the steps are as follow: 

i) Calculation of NNEC: 

In zone three the only energy consumer is lighting power. Therefore, equation 

8 becomes: 

NECzone3 = LP Equation 17 

NNECzone3 = normalized (NECzone3) Equation 18 

ii) Calculation of OAI1: 

According the equation 16 (section 4.5.1), for zone three OAI = RoM. 

iii) Calculation of REII: 

The target REII attribute for zone three for each cluster is generated by 

equation 19: 

REIIzone3 =
NNECzone3
OAIzone3

 Equation 19 

iv) Target REII for zone three: 

Figure 72 shows the baseline (target hourly REII) for the three defined clusters 

in zone three.  

                                                      
1 Occupant Activity Indicator 
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Figure 72. Target hourly REII for the three defined clusters 

 

4.5.4. Energy wastage identification step - Zone three (bedroom 3) 

Figure 73.a shows both the actual REII and the target one (baseline). Figure 73.b highlights 

a part of Figure 73.a for better understanding. Figure 74 shows this difference between the 

actual REII and the baseline. 

 
 (a) 

 

(b) 
Figure 73. Actual REII and target REII for the whole year. (a) whole year data, (b) zoom a part of the chart for 

better understanding 
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(a) 

 
(b) 

Figure 74. Difference between the actual REII and target REII for the whole year – Potential energy 
wastage/saving. (a) whole year data, (b) zoom a part of the chart for better understanding 

4.6. Zone four (Kitchen & living room) 

The fourth zone is kitchen and living room. In this zone, we have data for 48 sensors which 

are introduced in Appendix B. Twenty-two sensors have been chosen to use in this study, which 

are one CO2 sensor, three motion sensors, five lighting power sensors, and 13 plug power 

sensors.  

4.6.1. Energy use patterns investigation - Zone four (Kitchen & living room) 

The following images illustrate the variation of energy consumption and its drivers for zone 

four of the apartment. Similar to other zones, the data is normalized and aggregated hourly 

and is separated into weekdays/weekends, months, and day of the week. The RapidMiner 

procedure for this investigation is the same as the other zones (appendix C). 
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Figure 75 and 76 show how the hourly plug power consumption is following occupants’ 

motion and CO2 concentration in zone four, respectively. Figure 77 and 78 show how the hourly 

lighting power consumption is following occupants’ motion and CO2 concentration, 

respectively.  

 

Figure 75. Aggregated-hourly variation of total plug power consumption and total motion detected in zone four 

 

Figure 76. Aggregated-hourly variation of total plug power consumption and CO2 concentration in zone four 

 

Figure 77. Aggregated-hourly variation of total lighting power consumption and total motion detected in zone four 
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Figure 78. Aggregated-hourly variation of total lighting power consumption and CO2 concentration in zone four 

Figures 79 to 82 show the hourly variations for different days of the week (Sunday to 

Saturday). Figure 79 shows the aggregated hourly occupant’s motion detected by the motion 

detector in zone four. Figure 80 illustrates the hourly variation of normalized CO2 

concentration in zone four. Figures 81 and 82 show the daily variation of hourly energy 

consumption in zone four. 

 

Figure 79. Aggregated-hourly variation of total motion detected in zone four per weekday 

 

Figure 80. Aggregated-hourly variation of total CO2 concentration in zone four per weekday 
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Figure 81. Aggregated-hourly variation of total plug power consumption in zone four per weekday 

 

Figure 82. Aggregated-hourly variation of total lighting power consumption in zone four per weekday 

Figures 83 to 86 show the hourly variations for all months (January to December). Figure 83 

shows the aggregated hourly occupant’s motion detected by the motion detector in zone four. 

Figure 84 shows the hourly CO2 concentration. Figures 85 and 86 show the monthly variation 

of hourly energy consumption in zone four. Referring to the monthly aggregated data, it seems 

that this zone was also unoccupied in most of the days in August. 

 

 

Figure 83. Aggregated-hourly variation of total motion detected in zone four per month 
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Figure 84. Aggregated-hourly variation of total CO2 concentration in zone four per month 

 

Figure 85. Aggregated-hourly variation of total plug power consumption in zone four per month 

 

Figure 86. Aggregated-hourly variation of total lighting power consumption in zone four per month 

 

Figures 87 to 98 show the hourly variations for weekdays/weekends. Figures 87 to 90 show 

the aggregated hourly occupant’s motion detected by the motion detector, hourly CO2 
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concentration, hourly plug power consumption, and hourly lighting power consumption 

separated for weekends and weekdays, respectively. 

 

Figure 87. Aggregated-hourly variation of total occupants’ motion detected in zone four, separated for 
weekdays/weekends 

 

Figure 88. Aggregated-hourly variation of total CO2 concentration in zone four, separated for weekdays/weekends 

 

Figure 89. Aggregated-hourly variation of total plug power consumption in zone four, separated for 
weekdays/weekends 
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Figure 90. Aggregated-hourly variation of total lighting power consumption in zone four, separated for 
weekdays/weekends 

Figure 91 and 92 show how the plug power consumption follows the total motion detected 

by occupants in zone four for weekdays and weekends, respectively. Figures 93 and 94 show 

how the lighting power consumption follows the occupants’ motion for weekdays and 

weekends, respectively. 

Figure 95 and 96 shows how the plug power consumption follows the CO2 concentration in 

zone four for weekdays and weekends, respectively. Figure 97 and 98 shows how the lighting 

power consumption follows the CO2 concentration in zone four for weekdays and weekends, 

respectively. 

 

Figure 91. Aggregated-hourly variation of total plug power consumption and occupants’ motion detected in zone 
four, separated for weekdays 



 

87 

 

Figure 92. Aggregated-hourly variation of total plug power consumption and occupants’ motion detected in zone 
four, separated for weekends 

 

Figure 93. Aggregated-hourly variation of total lighting power consumption and occupants’ motion detected in 
zone four, separated for weekdays 

 

Figure 94. Aggregated-hourly variation of total plug lighting consumption and occupants’ motion detected in zone 
four, separated for weekends 
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Figure 95. Aggregated-hourly variation of total plug power consumption and CO2 concentration in zone four, 
separated for weekdays 

 

Figure 96. Aggregated-hourly variation of total plug power consumption and CO2 concentration in zone four, 
separated for weekends 

 

Figure 97. Aggregated-hourly variation of total lighting power consumption and CO2 concentration in zone four, 
separated for weekdays 
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Figure 98. Aggregated-hourly variation of total plug lighting consumption and CO2 concentration in zone four, 
separated for weekends 

 

 

4.6.2. Clustering step - Zone four (Kitchen & living room) 

Similar to the other zones, the clustering step includes four sub-steps. 

i) Feature selection: 

The contributing attributes to perform clustering for zone four are aggregated-monthly data 

of seven parameters, including NCG1, Romkit
2, Romliv

3, LPkit
4, LPliv

5, PPkit
6 and PPliv

7. Out of these 

seven features, three of them are components of OAI8 (e.g. NCG, RoMkit, and RoMliv), and the 

rest represent the energy consumption in this zone.  

ii) Normalization: 

Here the data is normalized by min-max normalization, the same as other zones. 

 

                                                      
1 Normalized CO2 Generation 
2 Rate of motion (Kitchen) 
3 Rate of motion (living room) 
4 Lighting power consumption (Kitchen) 
5 Lighting power consumption (living room) 
6 Plug power consumption (Kitchen) 
7 Plug power consumption (living room) 
8 Occupant Activity Indicator 
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iii) Finding kopt: 

Figure 99 shows the results of DBI calculation. As it is illustrated in Figure 99.a, kopt = 5 for 

zone four. Also, Figure 99.b shows that the amount of DBI reduction is the highest when the 

number of clusters is 5. 

 

 
 

a. b. 

Figure 99. Performance of clustering, a. DBI for different number of clusters, b. reduction in DBI by increasing the 
number of clusters 

iv) Implementation:  

Figure 100 represents the characteristics of clusters. 

 

Figure 100. Visualization of cluster centroids 

- Clusters’ specifications: 
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Cluster_0: 
 

This cluster represents the moments that the level of activity and plug power 

consumption by occupants in zone four is very high. However, the lighting 

power consumption is below the average.  

Cluster_1: 
 

This cluster represents the moments that the level of activity and energy 

consumption by occupants are at the lowest level. In fact, except for the plug 

power consumption of the kitchen, which is very low, all other attributes are 

the lowest in the dataset.  

Cluster_2: 
 

This cluster represents the moments that the people produce CO2 much 

more than average. Lighting power consumption is average, and plug power 

usage is fairly at the lowest place.  

Cluster_3: 
 

This cluster represents the moments that the level of activity and energy 

consumption by occupants are at the highest level. In fact, except for the plug 

power consumption of the kitchen, which is very high, all other attributes are 

the highest in the dataset.  

Cluster_4: 
 

This cluster represents the moments that both energy consumption and level 

of activity by occupants in zone four are around average. However, energy 

consumption in the living room is a little more than the kitchen’s energy 

usage. 

The RapidMiner procedure for performing the clustering step is similar to other zones and 

presented in appendix D.  

4.6.3. Baseline step - Zone four (Kitchen & living room) 

Similar to other zones, the steps are as follow: 

i) Calculation of NNEC: 

Out of 18 end-uses in zone four, 17 of them are considered as non-steady end-

use. Therefore, another time equation 8 is employed to generate NEC in the 
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dataset by summing up lightings power consumption and plugs power 

consumption. 

Thus, for zone four equation 8 become: 

NECzone4 = LPkit1 + LPkit2 + LPkit3 + LPliv1 + LPliv2 + PPkit2

+ PPkit3 + PPkit4 + PPkit5 + PPkit6 + PPkit7 + PPliv1

+ PPliv2 + PPliv3 + PPliv4 + PPliv5 + PPliv6 

Equation 20 

where: 

LPkit1_3    are the three lightings power consumption in the kitchen 

LPliv1_2    are the two lightings power consumption in the living room 

PPkit2_7    are the six plugs power consumption in the kitchen 

PPliv1_6    are the six plugs power consumption in the living room 

NNECzone4 = normalized (NECzone4) Equation 21 

 

ii) Calculation of OAI: 

Equation 3 (section 3.1) is used to calculate OAIzone4: 

OAIzone4 = √RoM2 + NCG2 Equation 22 

 

iii) Calculation of REII: 

For each cluster, the REII attribute for zone four is generated by equation 23: 

REIIzone4 =
NNECzone4
OAIzone4

 Equation 23 

iv) Target REII for zone four: 

Figure 101 represent the baseline (target hourly REII) for the five defined 

clusters in zone four.  
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Figure 101. Target hourly REII for the five defined clusters 

4.6.4. Energy wastage identification step - Zone four (Kitchen & living room) 

Figure 102.a shows both the actual REII and the target one (baseline). Figure 102.b highlights 

a part of Figure 102.a for better understanding. Figure 103 shows this difference between the 

actual REII and the baseline. 

 
 (a) 

 

(b) 
Figure 102. Actual REII and target REII for the whole year. (a) whole year data, (b) zoom a part of the chart for 

better understanding 
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(a) 

 
(b) 

Figure 103. Difference between the actual REII and target REII for the whole year – Potential energy 
wastage/saving. (a) whole year data, (b) zoom a part of the chart for better understanding 

 

4.7. Summary 

Figure 104 summarize the energy consumption by occupants in each zone of the apartment. 

As it is illustrated in the figure, the contribution of zone 4 to the total energy consumption in 

the apartment is considerably higher than in other zones. However, as it is shown in Figures 

105, 107, and 108 and Table 8, occupants’ energy-related behavior in this zone is more efficient 

than zones 2 and 3.  

Figure 105 shows the monthly variation of normalized EBI1 for all zones of the apartment. 

When EBI is more than zero, it shows that there is a possible wasteful-behavior by occupants. 

Also, Table 8 shows the location of the worst and the best energy-related behavior by 

occupants in different months. 

                                                      

1 EBI: Energy-related Behavior Index 



 

95 

 

 

 

 

 

a. lighting power consumption c. Non-steady Energy consumption b. Plug power consumption 

Figure 104. contribution of different zones in total energy consumption in the apartment 

 

 
Figure 105. Normalized monthly energy-wastage/saving in different zones 

 

Table 8. The monthly place of the worst and the best energy-related behavior by occupants  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

the worst 
energy-
related 

behavior 

Zone 
1 

Zone 
4 

Zone 
2 

Zone 3 Zone 2 
Zone 

3 
Zone 

2 

the best 
energy-

Zone 
4 

Zone 1 
Zone 

4 
Zone 1 
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related 
behavior 

 

 

Figure 106. Variation of energy-related behavior of the occupants in different zones of the apartment 

 

As it is illustrated in Figure 106, occupants need to pay more attention to their energy-

related behavior in zone 2 and zone 3. Also, occupants behave more efficient in zone 1 than in 

other zones. 

Figures 107 and 108 show the daily variation and hourly variation of EBI in every zone of the 

apartment. Regarding Figure 107, occupants wasteful-behavior on Thursdays and Weekends 

is more than other weekdays. Also, as it is illustrated in Figure 108, occupants show more 

efficient energy-related behavior in the evenings than other times of the day. 
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Figure 107. Total daily REII difference in different zones 

 
Figure 108. Total hourly REII difference in different zones 

EBI is calculated for the whole year data for all zones. The monthly, daily, and hourly 

variations of EBI are illustrated in figures 109, 110, and 111, respectively. As a result, we are 

able to give occupants practical feedback about their energy-related behavior.  

 

 

 

Aug Apr May Jun Nov Mar Sep Feb Dec Oct Jul Jan 
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Figure 109. Monthly variation of EBI 

 (Blue: the best energy-related behavior – Red: the worst energy-related behavior 

 

Tuesday Wednesday Friday Monday Saturday Sunday Thursday 

 

Figure 110. Daily variation of EBI 

(Blue: the best energy-related behavior – Red: the worst energy-related behavior 

 

19 21 18 22 23 1 20 3 0 16 4 11 17 15 2 13 5 12 14 10 9 6 8 7 

 
Figure 111. Hourly variation of EBI 

(Blue: the best energy-related behavior – Red: the worst energy-related behavior 
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5. Conclusion 

In this study, a new data mining-based methodology is developed to evaluate energy-related 

behavior of occupants in residential buildings. An introduction about energy-related data, as 

well as the research objectives, are presented in chapter one. Chapter two reviewed the 

literature on the application of data mining in building energy. In section 2.4, a summary of the 

literature review, as well as the challenges and the gap in research, are discussed. 

Chapter three represents the developed methodology in detail. In sections 3.1 and 3.2 

Occupant Activity Indicator (OAI) and Residential Energy Intensity Indicator (REII) are 

introduced as two new definitions which are used in this study. The proposed methodology to 

evaluate the energy-related behavior of the buildings’ residents is based on the difference 

between the target REII and actual REII. The dissimilarity, which is found between the target 

and the actual REII, can be used to calculate the potential energy wastage/saving by occupants 

in different zones and different times in the building. 

The practicality of the proposed data mining framework is evaluated in chapter four. In this 

chapter, the developed methodology is applied to a one-year dataset collected in a three-

bedroom apartment in Lyon, France. The methodology applied to all zones of the apartment 

to evaluate the occupants’ energy-related behavior. As a result, the time and location for 

potential energy savings by occupants is identified. The obtained results are summarized in 

section 4.7. 

The results show that occupants need to be more cautious about their energy consumption 

in zones 2 and 3. Moreover, the possible energy-wastage behavior in zones 1 and 4 is less than 
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zones 2 and 3, even though the contribution of zone 4 to the energy consumption is 

significantly higher than the other zones. Besides, by the developed methodology location and 

time for the best and the worst energy-related behavior by the building's occupants are 

defined. Furthermore, the variations of occupants' energy-related behavior in the apartment, 

are identified by time of day, day of week, and months. 

Employing the proposed methodology is beneficial for buildings’ occupants to raise their 

awareness regarding energy consumption. Also, it gives the decision-makers a practical insight 

into the system behavior, enabling them to create incentives/charges for residential buildings’ 

inhabitants to modify their energy-related behavior. 
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Appendixes 

Appendix A. 

 

root_mean_squared_error: 0.647 +/- 0.158 (micro average: 0.664 +/- 0.000) 

 

DeepLearning  

Model Metrics Type: Regression 

 Description: Metrics reported on temporary training frame with 10083 

samples 

 model id: rm-h2o-model-deep_learning-562295 

 frame id: rm-h2o-frame-deep_learning-653599.temporary.sample.28.58% 

 MSE: 0.25526237 

 R^2: 0.98830163 

 mean residual deviance: 0.25526237 

Status of Neuron Layers (predicting PP_KITCHEN_ZTPG001E5E09020469D3, 

regression, gaussian distribution, Quadratic loss, 5,651 weights/biases, 

78.6 KB, 361,911 training samples, mini-batch size 1): 

 Layer Units      Type Dropout       L1       L2 Mean Rate Rate RMS 

Momentum Mean Weight Weight RMS Mean Bias Bias RMS 

     1    60     Input  0.00 %                                                                                         

     2    50 Rectifier  0.00 % 0.000010 0.000000  0.029524 0.068504 

0.000000   -0.003628   0.118159  0.525673 0.179313 

     3    50 Rectifier  0.00 % 0.000010 0.000000  0.073157 0.176276 

0.000000   -0.003057   0.134128  0.940528 0.115274 

     4     1    Linear         0.000010 0.000000  0.003273 0.003571 

0.000000    0.046880   0.208012  0.004606 0.000000 

Scoring History: 

           Timestamp   Duration Training Speed   Epochs Iterations       

Samples Training MSE Training Deviance Training R^2 

 2019-04-17 14:45:33  0.000 sec                 0.00000          0      

0.000000          NaN               NaN          NaN 

 2019-04-17 14:45:35  2.739 sec  7738 rows/sec  0.51199          1  

17915.000000     18.34218          18.34218      0.15940 

 2019-04-17 14:45:42  9.833 sec  7798 rows/sec  2.06262          4  

72173.000000      7.73185           7.73185      0.64566 

 2019-04-17 14:45:49 16.831 sec  7873 rows/sec  3.62053          7 

126686.000000      1.25117           1.25117      0.94266 

 2019-04-17 14:45:56 23.877 sec  7870 rows/sec  5.16930         10 

180879.000000      0.79514           0.79514      0.96356 
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 2019-04-17 14:46:04 31.125 sec  7820 rows/sec  6.72119         13 

235181.000000      0.98987           0.98987      0.95464 

 2019-04-17 14:46:11 38.478 sec  7768 rows/sec  8.27364         16 

289503.000000      0.33297           0.33297      0.98474 

 2019-04-17 14:46:16 43.550 sec  7721 rows/sec  9.30705         18 

325663.000000      0.25526           0.25526      0.98830 

 2019-04-17 14:46:21 48.668 sec  7678 rows/sec 10.34297         20 

361911.000000      0.28923           0.28923      0.98674 

 2019-04-17 14:46:21 48.829 sec  7677 rows/sec 10.34297         20 

361911.000000      0.25526           0.25526      0.98830 

 

H2O version: 3.8.2.6-rm9.0.0 
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Appendix B. 

Zone 1: Bedroom 1 

 Sensor code  Sensor code 

CO2 KTCO1145 
WINDOW 
SHADE 

KBLD1107.00_1 

TEMPERATURE KTCO1145_1 
WINDOW 
OPEN/CLOSE 

KOCL1140.00 

RELATIVE 
HUMIDITY 

KTCO1145_2 
LIGHTING 
POWER 

KLGT1102.00 

THERMOSTAT SET 
POINT 

KTMS1148 LIGHT ON/OFF KLGT1102.00_2 

LUX KMVL1209 

PLUG POWER 

ZTPG001E5E090200468F 

MOTION KMVL1209_1 ZTPG001E5E0902004697 

WINDOW BLIND KBLD1107.00 ZTPG001E5E09020048D4 

Zone 2: Bedroom 2 

 Sensor code  Sensor code 

CO2 KTCO1146 
WINDOW 
SHADE 

KBLD1107.01_1 

TEMPERATURE KTCO1146_1 KBLD1107.02_1 

RELATIVE 
HUMIDITY 

KTCO1146_2 
WINDOW 
OPEN/CLOSE 

KOCL1141.00 

THERMOSTAT SET 
POINT 

KTMS1149 KOCL1142.00 

LUX KMVL120A 
LIGHTING 
POWER 

KLGT1103.01 

MOTION KMVL120A_1 LIGHT ON/OFF KLGT1103.01_2 

WINDOW BLIND 

KBLD1107.01 PLUG POWER ZTPG001E5E0902004B03 

KBLD1107.02   
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Zone 3: Bedroom 3 

 Sensor code  Sensor code 

CO2 KTCO1147 WINDOW BLIND KBLD1107.03 

TEMPERATURE KTCO1147_1 
WINDOW 
SHADE 

KBLD1107.03_1 

RELATIVE 
HUMIDITY 

KTCO1147_2 
WINDOW 
OPEN/CLOSE 

KOCL1143.00 

THERMOSTAT SET 
POINT 

KTMS114A 
LIGHTING 
POWER 

KLGT1104.00 

LUX KMVL120B LIGHT ON/OFF KLGT1104.00_2 

MOTION KMVL120B_1   

Zone 4: Kitchen and Living room 

 Sensor code  Sensor code 

CO2 KTCO1144 
THERMOSTAT 
SET POINT 

KTMS1152 

RELATIVE 
HUMIDITY 

KTCO1144_2 

LIGHTING 
POWER 

KLGT1101.01 

Temperature 
TEMPERATURE 
KTCO1144_1 

KLGT1101.02 

LUX 

KMVL1203 KLGT1105.01 

KMVL1201 KLGT1101.00 

KMVL1202 KLGT1105.00 

MOTION 

KMVL1203_1 

LIGHT ON/OFF 

KLGT1101.01_2 

KMVL1201_1 KLGT1101.02_2 

KMVL1202_1 KLGT1105.01_2 

WINDOW BLIND 

KBLD1106.04 KLGT1101.00_2 

KBLD1106.05 KLGT1105.00_2 
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KBLD1106.00 

PLUG POWER 

ZTPG001E5E0902004755 

KBLD1106.01 ZTPG001E5E09020047A7 

KBLD1106.02 ZTPG001E5E09020047F9 

KBLD1106.03 ZTPG001E5E0902004999 

WINDOW SHADE 

KBLD1106.04_1 ZTPG001E5E0902004B26 

KBLD1106.05_1 ZTPG001E5E09020469D3 

KBLD1106.00_1 ZTPG001E5E0902046DD5 

KBLD1106.01_1 ZTPG001E5E0902004885 

KBLD1106.02_1 ZTPG001E5E0902004AFC 

KBLD1106.03_1 ZTPG001E5E0902004B00 

Window 
Open/Close 

KOCL113D.00 ZTPG001E5E0902004B02 

KOCL113E.00 ZTPG001E5E0902004B1A 

KOCL113F.00 ZTPG001E5E0902046A02 

 

Appendix C. 

RapidMiner procedure to investigate the patterns of occupant activity and energy 

consumption in the building. The main process and all sub-process are presented in the 

following images. 
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Appendix D. 

RapidMiner procedure to perform the clustering step. The main process and all sub-process 

are presented in the following images. 
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Appendix E. 

RapidMiner is a data science software platform developed by the company of the same 

name that provides an integrated environment for data preparation, machine learning, deep 

learning, text mining, and predictive analytics. It is used for business and commercial 

applications as well as for research, education, training, rapid prototyping, and application 

development and supports all steps of the machine learning process including data 

preparation, results visualization, model validation, and optimization. RapidMiner is developed 

on an open core model [57]. 

Advantages of RapidMiner: 

i. Visualization: Easy to use visual environment for building analytics processes; 

Every analysis is a process, each transformation or analysis step is an operator, 

making design fast, easy to understand, and fully reusable; 

Convenient set of data exploration tools and visualizations; 

Wizards for Microsoft Excel & Access, CSV, and database connections; 

Repository-based data management on local systems or central servers via 

RapidMiner Server; 

Immediately understand and create a plan to prepare the data automatically to 

extract statistics and key information. 

ii. Data Preprocessing: Basics, Transformations, Data Partitioning, aggregation, 

Binning, Weighting and Selection, Attribute Generation. 

iii. Modeling: Similarity Calculation, Clustering, Market Basket Analysis, Decision Trees, 

Rule Induction, Bayesian Modeling, Regression, Neural networks, Support Vector 

Machines, Memory-Based Reasoning, Model Ensembles. 

iv. Validation. RapidMiner Studio provides the means to accurately and appropriately 

estimate model performance. Where other tools tend to tie modeling and model 

validation closely, RapidMiner Studio follows a stringent modular approach which 

prevents information used in pre-processing steps from leaking from model training 

into the application of the model. This unique approach is the only guarantee that 
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no overfitting is introduced, and no overestimation of prediction performances can 

occur. 

Appendix F. 

  

week Day 
Lighting 
power 
(kWh) 

CO2 
Plug 

power 
(kWh) 

1 Sunday 93 973 90 

1 Monday 11 419 91 

1 Tuesday 63 949 69 

1 Wednesday 3 766 25 

1 Thursday 51 742 50 

1 Friday 78 941 54 

1 Saturday 36 561 46 

2 Sunday 6 530 23 

2 Monday 68 802 4 

 2 Tuesday 56 660 0 

2 Wednesday 51 625 68 

2 Thursday 31 944 57 

2 Friday 49 935 3 

2 Saturday 90 671 59 

3 Sunday 37 617 13 

3 Monday 62 764 74 

3 Tuesday 93 736 59 

3 Wednesday 28 935 46 

3 Thursday 42 461 29 

3 Friday 57 822 46 

3 Saturday 74 859 25 
 

 
 

Day 
Average 

(CO2) 

SUM 
(Lighting 
Power-
kWh) 

SUM 
(Plug 

power-
kWh) 

Sunday 706.7 136 126 

Monday 661.7 141 169 

Tuesday 781.7 212 128 

Wednesday 775.3 82 139 

Thursday 715.7 124 136 

Friday 899.3 184 103 

Saturday 697.0 200 130 
 

 

 

week 
Average 

(CO2) 

SUM 
(Lighting 
Power-
kWh) 

SUM 
(Plug 

power-
kWh) 

1 764.4 335 425 

2 738.1 351 214 

3 742.0 393 292 
 

 

 

 

 

Aggregate 

by Day 

Aggregate 

by week 


