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Abstract

Generating Embroidery Patterns using Image-to-Image Translation

Mohammad Akif Beg

In many scenarios in computer vision, machine learning, and computer graphics, there

is a requirement to learn the mapping from an image of one domain to an image of

another domain, called Image-to-image translation. For example, style transfer, object

transfiguration, visually altering the appearance of weather conditions in an image,

changing the appearance of a day image into a night image or vice versa, photo

enhancement, to name a few. In this paper, we propose two machine learning tech-

niques to solve the embroidery image-to-image translation. Our goal is to generate

a preview image which looks similar to an embroidered image, from a user-uploaded

image. Our techniques are modifications of two existing techniques, neural style trans-

fer, and cycle-consistent generative-adversarial network. Neural style transfer renders

the semantic content of an image from one domain in the style of a different image

in another domain, whereas a cycle-consistent generative adversarial network learns

the mapping from an input image to output image without any paired training data,

and also learn a loss function to train this mapping. Furthermore, the techniques

we propose are independent of any embroidery attributes, such as elevation of the

image, light-source, start, and endpoints of a stitch, type of stitch used, fabric type,

etc. Given the user image, our techniques can generate a preview image which looks

similar to an embroidered image. We train and test our propose techniques on an

embroidery dataset which consist of simple 2D images. To do so, we prepare an

unpaired embroidery dataset with more than 8000 user-uploaded images along with

embroidered images. Empirical results show that these techniques successfully gen-

erate an approximate preview of an embroidered version of a user image, which can

help users in decision making.
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Chapter 1

Introduction

Customizable fashion is on the rise in industry. Customization creates a deeper

connection between the customer and the product. Embroidery customization is

considered to be the most popular type of embroidery in comparison to the coun-

terparts, screenprint and digital print. For this work we partnered with a firm that

personalize apparels with custom embroidery. A customer uploads an image to be

embroidered and selects clothing and other details like the positioning and size of the

image. Having a real-time approximate preview of their design is a significant factor

in the decision making of the client. Based on our industry research and knowledge,

we did not find any work which simulates an approximate embroidered version of a

user-uploaded image automatically to facilitate the customization experience. The

image-to-image translation is one of the techniques that can help us in providing an

approximate embroidered version of an image

The image-to-image translation is a process of translating one possible represen-

tation of an image to another. In other words, it means to transform an image from

its original form to another form while keeping the original structure and semantics

of the image (such as a change in style, design alteration, colorization, and others)

intact. Before the introduction of this technique, to achieve a similar task a combina-

tion of different image processing techniques were required [1] like image quilting [2],

image analogies [3], image denoising [4], depth prediction [5], semantic labeling [5],

surface normal estimation [5], image colorization [6] and many others [7, 8, 9, 10].

In this work, we propose to solve this problem by modification of two existing
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techniques, neural style transfer [11] and cycle-consistent generative adversarial net-

works (CycleGAN) [12]. Both of these techniques have shown remarkable results in

solving different image-to-image translation problems. Gatys et al. [11] introduced

neural style transfer to solve an image-to-image translation problem for art. They

used a convolutional neural network (CNN) [13] to transfer the style of a painting on

a photograph. Since then, many different researchers have proposed different modi-

fications and advancements to the original algorithm, and all of them have achieved

groundbreaking results. Our work is directly related to the line of work initiated by

Gatys. Another technique that we propose to solve the embroidery image-to-image

translation problem is using cycle-consistent generative adversarial networks. Good-

fellow et al. [14] introduced generative adversarial networks (GAN). They proposed

a framework which uses an adversarial process for estimating the generative model.

Different architectures and modification of generative adversarial networks are used

to solve image-to-image translation problems. Isola et al. [1] as a general-purpose

solution to image-to-image translation problem proposed conditional adversarial net-

works. They have tested this framework on a paired set of images, and the results

were quite remarkable. Zhu et al. [12] used an unpaired set of images and cycle-

consistent adversarial network to solve the image-to-image translation problem. The

use of an unpaired set of images has given this framework an advantage to be widely

used in different applications. Though there are many different approaches to solving

an image-to-image translation problem, our work is closely related to the work of Zhu

et al. [12] because of the freedom of using unpaired images.

In the following chapters of this document, we discuss how we can use these tech-

niques to solve our problem and to transform an image to its subsequent embroidered

version. The document is divided into different chapters, namely prerequisites, im-

age preprocessing techniques, neural style transfer, generative adversarial network,

training details and results, future work and conclusions. In the second chapter (2),

we have explained some essential machine learning and deep learning concepts which

are useful in understanding the rest of the document. In the third chapter (3), we

explained the neural style transfer. Neural style transfer is the first image-to-image

translation technique that we have used to solve our embroidery translation problem.

The chapter explains neural style transfer and the loss functions of neural style trans-

fer. We have also explained the modification we propose to neural style transfer to

2



solve the embroidery translation problem. In the fourth chapter (4), we have intro-

duced the generative adversarial network. GANs are the second technique we have

used to solve our problem. We first explain a generative adversarial network. Then

we explain its architecture and the objective function. We also explain the cycle-

consistent adversarial network (CycleGAN) which is the baseline architecture we use

for our problem and lastly, our modified CycleGAN for the embroidery problem, em-

broidery cycle-consistent adversarial network (EmbGAN). In the fifth chapter (5) we

explain the dataset that we prepare for this project, the preprocessing techniques we

use and we also provide the training details and the results of both the techniques. In

the last chapter (6), we propose some future work and the conclusions of this research.
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Chapter 2

Prerequisites

To have a proper understanding of the technologies used in the research to achieve

our task, we need to have some basic knowledge about a few concepts of machine

learning and deep learning. This chapter introduces these concepts in detail, along

with examples. The content of the chapter is a compressed version of the resources

like the deep learning book [15], Introduction to Statistical Learning book [16], and

many other books like [17, 16, 18]

Figure 1: An Artificial Neuron with n input values x1, · · · , xn and n corresponding
weights w1, · · · , wn and b is the bias node. The

∑
is the summation symbol and f is

the activation function.
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2.1 Neural Network

To understand the proper functioning of an artificial neural network (ANN), we first

have to know the building block of an ANN, that is a neuron. Simon hayken [19]

defined an artificial neuron as a processing unit that follows the paradigm of a neuron

in a human brain and is interconnected by synapses . In other words, a neuron

is a computational block that performs some sort of operation on the inputs and

forwards the result to another neuron. In Figure (1), there are n inputs to the

neuron, it performs some operation on these values and then passes the output value

forward. When a neuron or a node receives an input value, it goes through two steps

of computation. First, all the input values are multiplied to the weights assigned to

the synapses and a bias is added, and then a summation over the number of input

values is perfomed. Second, the summation is applied to an activation function, and

the output is then propagate to a forward node. Let i = {1, · · · , n} be the number

of nodes in a neuron, xi ∈ R be an input of a neuron, wi ∈ R is the weight of the

edge, b ∈ R be a bias, y ∈ R be the output of a neuron in a layer, φ(x) : R → R is

an activation function, which is applied componentwise. f(x) : R → R be an affine

function defined as f(x) = wi · xi + b. The notation ◦ denotes the composition of

functions. Mathematically, we can represent an output of a neuron, as a function

g : R0 → Rn:

y = g = φ ◦ f(x) ∀i ∈ {1, · · · , n}.

Table 1: Types of Activation Function

Sigmoid Function φ(x) = 1
1+exp−x

Step Function φ(x) =

{
1 if x ≥ 0,

0 if x < 0,

Rectifier Linear Unit (ReLU) φ(x) = max(x, 0)

Hyperbolic Tangent Function φ(x) = tanh(x) = ex−e−x

ex+e−x

5



(1)

(2)

(3)
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(4)

Figure 2: Different types of activation function : (1) is the hyperbolic tangent func-
tion, tanh. (2) is the step activation function. (3) is the sigmoid activation function,
and (4) is the ReLU activation function

Activation Function

The activation function φ(x) = R → R, is a function used to delimit or bound the

output of a neuron, and it is applied componentwise. In [19], the author Simon

Hayken has referred to it as a squashing function as it squashed the amplitude range

of the output signal to a finite value. It can be linear or non-linear depending upon

the function it is representing [20]. Table (1) and Figure (2) shows the most widely

used activation functions.

2.1.1 Artificial Neural Network

An artificial neural network is a weighted directed graph of neurons that have inter-

connecting synaptic and activation link [19], where each neuron represents a node in

the graph. These nodes are clustered into different layers, namely one input layer,

one or more hidden layer, and one output layer. The input value of every node can

either be a binary, integer, or floating point number. In cases where the inputs are

not numerical, they are usually encoded with a set of integer values. The practice

of scaling the input and output values is to make computation easy for the neural

network and to ensure stability.

We can represent a neural network of layers L, with only feed forward propagation

as a composition of L functions gi. The set L = {0, · · · , L} denotes the number of

7



Figure 3: A simplified version of a feed forward neural network with one input, one
hidden and one output layer. The dotted lines followed by a small figure of a neuron
denotes that each node in a layer is a neuron.

layers in a neural network. The set il = {1l, · · · , nl} denotes the number of nodes in a

layer l. Let xi ∈ R, wi ∈ R and b ∈ R , the set Xil = {x1l , x2l , · · · , xnl} represents a set

of input values in a layer l, Wil = {w1l , w2l , · · · , wnl} represents a set of corresponding

weights in a layer l and Bil = {b1l , b2l , · · · , bnl} be a set of bias node in a layer l.

The activation function is represented as φ(x) : R → R is applied componentwise

and fil(x) : Ril−1 → Ril be an affine function, for any l = {1, · · · , L} and for any

i = {1, 2, · · · , n} it is defined as fil(x) = wil · xil + bil . For any l = {1, · · · , L− 1}, let

gl(x) = φ ◦ fil(x). We define a feed forward neural network, a function gl : Ri0 → RiL

as:

g = fL ◦ gL−1 ◦ · · · ◦ g1 (1)

2.1.2 Learning Process

Learning process of a neural network are processes used to update the weights of a

neural network. Almost every learning method in a neural network is dependent on

gradient descent. Gradient descent is a process which iteratively aims to find the

local minima of a loss function by adjusting its coefficients and hence lowering the

prediction error of the model.
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Parameter Initialization

Initialization of parameters is a very important step in the learning process. We

initialize weights and bias. We should randomly initialize all the parameters to non-

zero because initializing them to zero would always result in an equal gradient and

the output after each iteration would be the same, and the algorithm would not learn

anything. All the parameters are randomly initialized with weights between 0 and 1.

Forward Propagation

Forward propagation is the next phase of the learning process. In this phase, the

network is introduced with our input training data, and the data is forwardly propa-

gated to the entire network to make appropriate predictions. Each neuron receives an

input from the previous layer and performs an affine transformation with the already

initialized weights and bias and then applies an activation function to the output of

the affine transformation, elementwise. After the propagation of data through all the

neurons in all the layers, the final layer has a prediction value for the given set of

inputs.

Loss Function

A loss function, also known as an objective function is function which hlps us in

evaluating whether or not an algorithm models our dataset. Let {x(1), ..., x(n)}
be the given input vectors and {y(1), ..., y(n)} be the desired output vectors. To

map each input vector to the corresponding output vector, we need to tune the

hyperparameters that are weight and threshold or bias. The learning rate determines

how quickly these parameters are determined. It is often considered to be the most

important hyperparameter [15]. The higher the value of a loss function, the more our

predictions are not mapping to the desired output vector. In the third chapter (3) and

thhe fourth chapter (4), we explain our proposed solution for the embroidery image

to image translation problem presented in the first chapter (1). Both the techniques

have a loss function that we want to optimize for the algorithm to perform on our

dataset. Two of the most popular loss functions used in a neural network are the sum

of square error and cross entropy, and they are defined as follows:

Sum of Square Error

9



The sum of square error is a loss function that is used to find the difference between

the actual value and the predicted value. In some cases, we also used the mean value

of the error function is known as a mean square error, MSE.

E =
N∑
n=1

E(n),

E(n) = ‖y(n)− ŷ‖2,

where, y(n) is the desired output and ŷ is the output from the network when the

input is x(n).

Cross Entropy

Cross entropy loss measures the performance of a model whose output is a proba-

bility between 0 and 1. These are generally classification models. If the predicted

probability diverges from the actual label, cross entropy loss increases.

E(n) = −
(
y(n)� ln(ŷ) + (1− y(n))� ln(1− ŷ)

)
,

x� y is a Hadamard product which means element-wise product of matrices.

Backpropagation

Rumelhart et al. [21] and Werbos [22] introduced the breakthrough concept of back-

propagation. It is a technique used to find a gradient of a loss function of a network.

Backpropagation is sometimes confused with being a complete learning algorithm,

but it is only a technique to calculate the gradient [15]. The algorithm calculates the

gradient of the loss function with respect to the weights and bias in every layer by us-

ing the chain rule and following the steepest descent manner. We start the algorithm

from the output of the neural network, that means by adjusting the weight and bias

of the last layer and working backward to the hidden layers.

δNj = f(
n−1∑
m=1

wNjmy
N−1
m + bNj )(y(n)− ŷ),

where, δNj is the error term for jth neuron in the last layer. We propogate backwards,

to calculate δnj 's for the following layers:
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δnj = f(
n−2∑
m=1

wn−1jm yn−2m + bn−1j )(
n∑

m=1

δnmw
n
jm),

δnj =
∂E(n)

∂W
,

where, E(n) is the error and W is the weight.

2.1.3 Convolution Neural Network

The Convolution Neural Network or CNN or ConvNet is a particular type of artifi-

cial neural network which uses a mathematical operation known as convolution in at

least one of its layer. They are used for processing data which usually has a gridlike

structure [15] for example, images. CNNs are also known as a space or shift invariant

artificial neural network because they have a property of detecting translation invari-

ance with the help of convolution and pooling layers. CNNs were first discovered

by David Hubel and Torsten Weisel in an experiment where they monitored the cat

visual cortex [23], but it was Yan LeCun et al. in 1998 who used backpropagation and

gradient descent to train a convolution neural network and successfully manage to do

document recognition. The first CNN was named LeNet [24]. Alex Krizhevsky et al.

in 2012 has revolutionized convolution neural network in 2012 with the paper [25],

and improve the image classification task, exponentially. Convolution neural network

has similar architecture rules of an artificial neural network. It also has an input

and an output layer and several hidden layers, but hidden layers in CNNs are very

different. It consists of a convolution layer, a pooling layer, a normalization layer, an

activation layer, and a fully connected layer.

Convolution

The mathematical definitions in this section are heavily inspired by the deep learning

book [15]. Mathematically, convolution is an operation on two functions which shows

how one function has affected the shape of another. The integral of the products

of functions is done after one function is reversed and shifted. In the case of image

processing, one function acts as an input image and the second function is a kernel.
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(f ∗ h)(t) =

∫ ∞
−∞

f(x)h(t− x)dx, (2)

where, the notation ∗, is the symbol of the convolution operation. We can express

the equation (2) in discrete time.

(f ∗ h)(t) =
∞∑

x=−∞

f(x)(t− h), (3)

Since we are discussing convolution neural network and the convolution process is

primarily used in the context of images, we need to express the convolution process

(2) in 2D.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (4)

Equation (4) is commutative, which means (I ∗K) = (K ∗ I) as proved in [15], where

I is a two dimension input and K is the kernel.

2.1.4 Explanation of Convolution Neural Network

For proper understanding and simplicity, let us consider a specific example, where

we are just considering a simple black and white image. Suppose we want to train a

model to classify between an image of X and an image of O.

Representation of an image of X as a matrix in memory. The pixels with value 1
denotes that these pixels represents the image of X while the pixel value −1 denotes
the transparent background of the image.

Figure (4) shows the convolution steps for a part of the image, similarly, the

kernel will convolve through the entire image, the number of pixels we convolve at

every step is known as stride. In this example, the stride is 1 but we can use a stride
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Figure 4: image demonstrates the convolution steps, align the image and the kernel,
then multiply corresponding pixels from the image and the kernel. We then add the
multiplication result and divide it with number of pixels in the filter.

of 2 or 3. The important thing to keep in mind is that the higher value of stride will

downsample the image. The convolution operation results in a feature map, for the

above example the feature map is shown in Figure (5).

ReLU Layer

The feature map for the input is created through convolution layer, the output is

then passed to a non-linear activation function, ReLU. Earlier, sigmoid and Tanh

activation function were used, but later the researchers discovered that ReLU learns a

lot faster in comparison to other functions. The papers [26, 27], are excellent sources
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Figure 5: Feature map for the image of an X after the convolution layer.

to understand the convolution neural network and use of ReLU as an activation

function. Table (1) shows that a ReLU function is φ(x) = max(x, 0), which basically

means it converts all the negative value to 0. After propagating through the ReLU

layer, our feature map looks like (6).

Figure 6: Feature map for the image of an X after the convolution layer and ReLU
layer.

Pooling Layer

The pooling layer in a CNN downsamples the feature map and focuses only on the

important features. This layer makes use of spatial invariance. We know that the

goal in hand is to determine whether or not a feature is present in an image, even if its

positioning is different. The relative positioning of other features is more important

than absolute positioning. There are different pooling techniques available, but the

most popular are maxpooling or average pooling. In maxpooling, we take a filter

and a stride of similar length. The filter then convolves around the input value, and
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Figure 7: Feature map for the image of an X after the convolution layer, ReLU layer
and pooling layer.

Figure 8: Feature map for the image of an X after multiple blocks of convolution,
ReLU and pooling layer.

the output is maximum in that region. The convolution, ReLU, and pooling layers are

often stacked up to downsample an image further and focus on only a few important

features. The number of blocks of these layers present CNN is usually depend upon

the size of the input sample.

Fully Connected Layer

The final layers of a convolution neural network mimic an artificial neural network,

and these are fully connected layers, which means every neuron in a preceding layer is

connected to every neuron in a succeeding layer. The classification process happens

in these fully connected layers but before transmitting the results from the pooling

layer, we flatten the matrices into a vector.
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Flattening of Feature Map for Fully Connected Layer.

2.1.5 Mathematical Formulation: Convolutional Neural Net-

work

In the section, we mathematically formulate the architecture of a convolutional neural

network. Let L = {0, · · · , L} denotes the number of layers in the convolutional neural

network. Let u ∈ Z+ be the height, v ∈ Z+ be the width and c ∈ Z+ be the color

channel of an image. We represent the image as x ∈ Ru×v×c. For all i ∈ {1, · · · , n},
W l
i = {wl1, · · · , wln} represents a set of weight matrices in layer l and Bl

i = {bl1, · · · , bln}
represent a vector of biases. An activation function φ(x) : R→ R. Let k × k ∈ R be

the size of square-kernel, we represent a weight kernel wli ∈ W l, such that wli ∈ Rk×k×c.

At any given layer l, dl denotes the number of filters in the layer, ûl and v̂l denotes

the height and width of the feature map, pl denotes the size of the feature, which

is the product of ûl and v̂l. We define the feature map as H(x) ∈ Rdl×pl . The

convolution neural network has different type of layers namely, convolution layer,

pooling layer, and fully connected layer. The first layer, i.e. l = 0 takes an image x

as the input, and given n0 number of weight matrices W 0
i = {w0

1, . . . , w
0
n} and bias

vectors B0
i = (b01, . . . , b

0
n), it computes n feature maps H0

i = {h01, . . . , h0n} using a

convolution and activation function. We can now define the different type of layers

from 2 ≤ l ≤ L. For simplicity, we will be using the same notation f to define every

layer. First, the convolutional layer uses a convolution function, zl(x,wli) : Rk×k → R
on the input image to produce a feature map, h′i. We define the convolution function

in a convolutional layer l as :

zl(x,wli) =
k−1∑
a=0

k−1∑
b=0

C∑
c=1

[x]a,b,c · [wli]a,b,c + bli (5)
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The activation function, φ is then applied to the output of the convolution function

from the Equation (5), we then define the convolutional layer, f l(x,wli) ∈ Rd×d×c as :

f l(x,wli) = φ ◦ z(x,wli) (6)

We can now define the pooling layer which takes the output from the activation

layer as input and then outputs the maximum value of the input at any given position,

that is within the kernel. For all 1 ≤ a ≤ k and 1 ≤ b ≤ k, we defined the output of

pooling layer as:

f l(x,wli) = max(φ ◦ z(x,wli))q,r (7)

The convolutional neural network is a stacking up of all these layers together and

repeating these blocks again as shown in Figure (8). After multiple blocks of convo-

lution, activation, and pooling layer, the final layer of a convolutional neural network

is a fully connected layer similar to that of an artificial neural network defined in

Section (2.1.1). We define the convolutional neural network g(x,wli) : R0 → RL as :

g(x,wli) = fL(fL−1 ◦ fL−2 ◦ · · · ◦ f 1 ◦ x) (8)

where fL is a fully connected layer, f 1, · · · , fL−1 are either convolutional layer, acti-

vation layer, or pooling layer.

Figure 9: A simplified convolution neural network architecture with two blocks of
convolutional and pooling layer and a fully connected layer at the end.
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Chapter 3

Neural Style Transfer

Neural style transfer is a technique proposed by Gatys et al. [11]which apply textures

synthesis from one image onto another image without changing the high-level content

of the original image. Neural style transfer generates a stylized image that contains

the texture style of one image and the semantic content of another image. In [3], the

author presented a technique, image analogies which is one of the earliest solution of

image-to-image translation. The neural style transfer has provided a wide variety of

applications in modern time, changing the appearance of an image from day to night

or from summer to winter [28, 7, 8], texture transfer of a painting [11, 3, 29, 30],

modifying human face attributes [31], changing clothing on a photo of a model [32],

synthesizing streets and building from labels and converting edges to photo [1]. The

basic approach of neural style transfer is to jointly minimize the distance of the

style representation and the content representation learned in different layers of the

convolution neural network. In [33], the author proposed the use of feature maps to

represent the content and Gram matrices to represent the style of another image. The

author used the VGG-16 network to reconstruct the stylized image. The layers of the

convolutional neural network (also known as ConvNet) are learning distinct filtered

features of an image at different layers, and the complexity of learning increases with

every layer. Every layer of ConvNet outputs a feature map unit of the input image.

The feature map [11] at the lower layer of the ConvNet might consist of absolute pixel

values or small features, whereas the higher layers will have more complex content.

They used gradient descent and back propagation to minimize the losses. Neural

style transfer is considered to be successful if the stylized image has the objects of the
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content image and the visual look of the style image. The author of [11] also found

that replacing the max-pooling with average pooling in CNN yields better results.

3.1 Problem Formulation

The feature map of a convolutional neural network are generally a very good repre-

sentation of the features of an image. They capture spatial information of an image

without containing the style information. Flattened feature vectors from a convolu-

tional feature map representing features of the input space, and their dot product

give us the information about the texture of a given image. We have introduced the

feature map in the section (2.1.5) of (2). Let u ∈ Z+ be the height, v ∈ Z+ be the

width and c ∈ Z+ be the color channel of an image. Let x and y represent two im-

ages. x ∈ Nu×v×c represents the content image we want to synthesize, and y ∈ Nu×v×c

represents the image whose style we want to transfer on image x. Let ŷ ∈ Nu×v×c

be the styled image which represents the style of image y and the principal content

of image x. Let dl is the number of filters in the lth layer of the ConvNet. ûl and v̂l

be the height and weight of the feature map at layer l, pl represents the size of the

feature map at layer l. pl is the product of ûl × v̂l. Let z be any given image, we

define the feature map as H l
ij(z) ∈ Rdl×pl . The feature map stores the result of every

layer of the ConvNet as a two-dimensional matrix. H l
ij is the activation of the ith

filter at position j in layer l. These matrices at different layers of the ConvNet are

the filter responses, which helps in representing the image.

3.1.1 Content Reconstruction

The content reconstruction step is visualizing the image information encoded at dif-

ferent layers of hierarchy. The author performs gradient descent on a white noise

image to find another image that matches the feature response of the content im-

age. The author proposed that the feature responses of the deeper layers of VGG-16

convolutional neural network are used to represent the content of an image. For the

styled image ŷ to have the content of the original image y, we need to minimize the

mean squared difference of the feature map H l
ij(z) of both the original and the styled

image. This signifies that the loss is minimal. Given any two images x, ŷ the author
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of [11] define the content loss Llc(x, ŷ) at layer l as:

Llc(x, ŷ) =
1

dlpl

dl∑
i=1

pl∑
j=1

(H(ŷ)lij −H(x)lij)
2. (9)

3.1.2 Style Reconstruction

Style reconstruction is obtained by calculating the correlations between filter re-

sponses across different layers of the convolutional neural network. Similar to content

reconstruction, style reconstruction is performed using gradient descent. The author

uses gradient descent from a white noise image to find another image that matches

the texture of the style image. Our main goal is to extract the embroidery design

from the style image Y and transfer it to our output image ŷ. Every difference in

texture, luminance, stitch pattern, etc. increases the style loss. To formulate the

style loss function, we need to define the gram matrix. Let z be an image, we define

the gram matrix in 10, Gl
ij(z) ∈ Rdl×dl which is the dot product of the feature map,

defined in section (3.1). The mean square difference between the gram matrices of

the output image and the style image is calculated and needs to be minimized for

having a successful style transferred image.

G(y)lij =

pl∑
k=1

H l
ik ·H l

jk. (10)

Given two images y and ŷ, the author defined the style loss Lls(y, ŷ) at layer l as:

Lls(y, ŷ) =
1

(2dl)2

dl∑
i=1

pl∑
j=1

(G(ŷ)lij −G(y)lij)
2. (11)

We can also express the style loss function in respect to (10)

Lls(y, ŷ) =

1

(2dl)2

dl∑
i=1

pl∑
j=1

(
1

pl
(H(ŷ)li ·H(ŷ)lj)−

1

pl
(H(y)li ·H(y)lj))

2.
(12)

Total Loss Function

The total loss function (TCF) for embroidery style transfer is the addition of content

loss Llc and the style loss Lls. α and β are the weights of content and style loss,
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respectively. By controlling α and β we can control the amount of content and style

present in the styled image.

Llt(x, y, ŷ) = αLlc(x, ŷ) + βLls(y, ŷ). (13)

TCF in Matrix Form

From the Equations (9) and (11), we can express the total loss function in the form

of feature matrices :

Llt(x, y, ŷ) = α(
1

dlpl

dl∑
i=1

pl∑
j=1

(H(ŷ)lij −H(x)lij)
2)+

β(
1

(2dl)2

dl∑
i=1

pl∑
j=1

(
1

pl
(H(ŷ)li ·H(ŷ)lj)−

1

pl
(H(y)li.H(y)lj))

2).

To achieve our task of generating an embroidered version of an image, we have used

different stitch patterns as the style image and different logos or images as the content

image. We propose a modification to this framework by segmenting the images into

sub-images of different colors and then applying the style transfer technique. This

has increased the quality of the output image in comparison to neural style transfer.

3.2 Split Style Transfer

We observe that using neural style transfer for translating the embroidery style on

a given image has some limitations. For instance, Figure 10 shows the result of em-

broidery translation using neural style transfer in which the output image has some

qualitative problems. We know that the output image in a neural style transfer is a

blend of the style image and the content image, but the output image has no definite

proportion of the blend but in this example the proportion of style image is more

prominent than the content image. Though there are a few methods available for

hyperparameter tuning to control the proportion of style and content in the output

image, it still is not a probable solution for translating embroidery. The other draw-

back of neural style transfer is that we can only use one style image in the process,

but in reality, an embroidered image usually have multiple distinct stitch patterns in

one single image. Figure (11) shows the split style transfer method we propose to

translate embroidery on a given image.
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Figure 10: Neural Style Transfer: This is the basic example of a neural style transfer
where we translate the style of one image on a given input image.
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Figure 11: Split Style Transfer: this figure demonstrate the technique we propose to
create an embroidered version of an image. The algorithm is separated into 5 steps.
(a) split the image into different sub-images of different colors. (b) select different
types of stitch for each sub-image. (c) perform style transfer on sub-images using
different stitches. (d) styled sub-images using different stitches. (e) combine the
styled sub-images. Note: The sub-image in (b) is made with a black background on
purpose for understanding.
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3.2.1 Problem Formulation

Let u ∈ Z+ be the height, v ∈ Z+ be the width and c ∈ Z+ be the color channel of each

image. For r = {1, · · · , e}, let x be the content image, such that x ∈ Nu×v×c and Y =

{y1, · · · , ye} represents the set of style image (embroidery images in our case), such

that yi ∈ Nu×v×c similar to neural style transfer. In split style transfer, we first split

our content image x, into a set of images of distinct color X ′ = {x′1, · · · , x′e}, where e

is the total number of distinct colors in an image. Then, every sub image x′r is styled

using a different style image, yr ∈ Y . The final styled images, Ŷ ′ = {ŷ1, · · · ŷe} are

then combined to one image ŷ at the end after style transfer is performed separately.

Similar to Equations (9), (11), and (13) of neural style transfer we define the content

Llc, style Lls, and total loss Llt of split style transfer for a layer l as :

Content Loss

Llc(x
′
r, ŷ
′
r) =

e∑
r=1

(
1

dlpl

dl∑
i=1

pl∑
j=1

(H(ŷ′r)
l
ij −H(x′r)

l
ij)

2

)
(14)

Style Loss

Lls(yr, ŷ
′
r) =

e∑
r=1

(
1

dlpl

dl∑
i=1

pl∑
j=1

(G(ŷ′r)
l
ij −G(yd)

l
ij)

2

)
(15)

Total Loss

Llt(x
′
r, yr, ŷ

′
r) = αLlc(x

′
r, ŷ
′
r) + βLls(yr, ŷ

′
r) (16)

The main benefit of using a split style transfer is to provide an option of using

different types of stitches for a single image, which is an ideal scenario in embroidery

customization. Though, in [34], the author has introduced a multi style transfer

(MST) method. Theoretically, multi style transfer can be used to translate more

than one style to an output image, but there is one limitation to this. There is no

spatial control over which area of the given image will receive which style. Splitting

the image into different layers of distinct colors will ensure that there is no overlap

among the different stitch styles. The split style transfer produces some promising

results, but it still has some limitations. Similar to neural style transfer [11], we

can only translate a single image in one iteration, and this could be a costly process

with respect to time. To create an embroidered version of multiple images at a

time, we decided to use a generative algorithm. Since we were able to prepare an

unpaired dataset for embroidery, we chose cyclegan and modified its architecture for
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Algorithm 1: Split Style Transfer

Pre-processing: content images x, set of style images Y = {y1, y2, . . . , ye},
u× v × c← 256× 256× 3, e number of different style of embroidery images
and the number of distinct colors in the input image, split images
X ′ = {x′1, · · · , x′e}.
Z = {z1, z2, . . . , ze} is a random noise image similar to the size of yr.
Input : (x′1, y1), (x

′
2, y2), . . . , (x

′
e, ye), for all r ∈ {1, 2, . . . , e}

Output: styled images ŷ′r = {ŷ1, · · · ŷe}, later combined to one image,
Initialization: Learning rate λ← 1e1, content weight α← 5e0, style weight
β ← 1e2, number of iterations T ← 1000

for i← 1 to e do
for t← 1 to T do

Llc(x
′
r, ŷ
′
r)←

∑e
r=1

(
1
dlpl

∑dl

i=1

∑pl

j=1(H(ŷ′r)
l
ij −H(x′r)

l
ij)

2

)
Lls(yr, ŷ

′
r)←

∑e
r=1

(
1
dlpl

∑dl

i=1

∑pl

j=1(G(ŷ′r)
l
ij −G(yr)

l
ij)

2

)
Llt(x

′
r, yr, ŷ

′
r)← αLlc(x

′
r, ŷ
′
r) + βLls(yr, ŷ

′
r)

end
minimize(Llt(x

′
r, yr, ŷ

′
r))

end

embroidery generation. In the next section, we introduce our modified CycleGAN

which can be used to translate multi-images in a much faster way in comparison to

split style transfer.
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Chapter 4

Generative Adversarial Networks

In this chapter, we first introduce generative adversarial networks (GANs) and its

architecture and the loss functions, we then introduce cycle-consistent generative

adversarial network (CycleGAN) which is the baseline architecture for the model we

propose to solve embroidery image-to-image translation. We introduce its architecture

and loss functions. We then introduce our propose model, the modification we propose

in the architecture and loss function of CycleGAN. GANs are a subset of algorithms

in machine learning known as generative models, which belongs to the domain of

unsupervised learning. The critical feature of algorithms belonging to this domain

is to learn the underlying structure of a given dataset, without specifying a target

value. Goodfellow et al. in [14], extensively formulate and presented a framework of

generative models which is constrained to work through an adversarial process. In an

adversarial technique or methodology, there are two agents, where each has a target

of outrun the other agent, and during this to and fro process of adversary, we reach

an equilibrium where both the agents are at their most exceptional possible state. In

GANs, the two agents are two neural network models, typically convolution neural

networks where one is called a discriminator and the other is called a generator.

The Generative Adversarial Networks consists of two models. The first model is a

generative network model, which is typically a convolution neural network with some

deconvolution layers, takes random noise as an input vector and generates an output

image. During training, the network learns how to improve the image so that it looks

more like the original image, sometimes focusing only on part of images to improve

for multiple iterations or epochs and hence making the work of discriminator difficult
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Figure 12: This is a simplified architecture of a generative adversarial network. The
generator is a deconvolutional network which generates image from a random noise.
The discriminator is a convolutional neural network which takes the input image and
the generated image and classifies them as fake or real.

and hence comes the adversary. The second model is a discriminator network model,

which is also a convolution neural network in most cases, and its task is to classify

between the generated image and the input sample. As you can see in the above

image, the input to the discriminator comes from the original input samples and the

generated images from the generator model. This cycle goes on where the inputs are

mixed from both the samples and the generator had to identify between the fake and

the real image.

Mathematical Formulation

Let the dataset consists of input images from one domain and the output images from

another domain, both of the same dimension. Let u ∈ Z+ be the height, v ∈ Z+ be

the width and c ∈ Z+ be the color channel of each image. Suppose n be the total
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number of images in the dataset and N = {1, 2, · · · , n}. Let X = {x1, x2, · · · , xn} be

the set of user images, where xi ∈ Nu×v×c for i ∈ N . Let Y = {y1, y2, · · · , yn} be the

set of embroidered images, where yi ∈ Nu×v×c for i ∈ N. Let Z = {z1, z2, · · · , zn} be

a set of independent and normally distributed noise vectors with 0 mean 1 variance.

Suppose that G be a generator and D be a discriminator, they consist of neural net-

works with parameters θG and θD, respectively, θG and θD are the set of weights and

biases of neural networks. Let Q × Q be the dimension of the noise vector zi ∈ Z.

We define differentiable function fG : Nu×v×c × RQ×Q → Nu×v×c. We denote the set

of images generated by the generator as Ŷ = {ŷ1, ŷ2, · · · , ŷn}, where ŷk ∈ Nu×v×c for

k ∈ N . Let fD : Nu×v×c × Nu×v×c → [0, 1] represents discriminator functions. GANs

are structured probabilistic models with latent variable zi and observed variable xi.

In mathematical notation, a generator fG(θG) and a discriminator fD(θD) are playing

a 2 player min-max game. The generator is a differentiable function fG(θG, zi). Its

role is mapping input noise variables zi to the desired data space xi (say images).

Conversely, a discriminator is a discriminative function fD(θD, xi) outputs the prob-

ability that the data came from the real dataset, in the range (0,1). For i = {G,D},
θi, represents the weights or parameters that define each neural network. As a result,

the discriminator is trained to classify the input data as either real or fake correctly.

This means its weights are updated as to maximize the probability that any real data

input xi is classified as belonging to the real dataset while minimizing the probability

that any fake image is classified as belonging to the real dataset. In more technical

terms, the loss function used maximizes the function fD(θD, xi), and it also mini-

mizes fD(fG(θG, zi)). Furthermore, the generator is trained to fool the discriminator

by generating data as realistic as possible, which means that the weights of generator

are optimized to maximize the probability that any fake image is classified as be-

longing to the real dataset. In practice, the logarithm of probability (e.g. log fD(·))
is used in the loss functions instead of the raw probabilities, since using a log loss

heavily penalizes classifiers that are confident about an incorrect classification. After

several steps of training, if the generator and discriminator have enough capacity (if

the networks can approximate the objective functions), they will reach a point at

which both cannot improve anymore. At this point, the generator generates realistic

synthetic data, and the discriminator is unable to differentiate between the two types

of input. Since during training, both the discriminator and generator are trying to
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optimize different loss functions, they can be thought of two agents playing a minimax

game with value function V (fG, fD). In this minimax game, the generator is trying

to maximize its probability of having its outputs recognized as real, while the dis-

criminator is trying to minimize this same value[14]. Let the probability distribution

over real data(images) is x ∼ p(x), and probability distribution over generated data

by generator, z ∼ p(z). We define the objective function of a generative adversarial

network as :

min
θG

max
θD

V (fD, fG) =

min
θG

max
θD

Ex∼p(x)[log fD(θD, x)] + Ez∼p(z)[log(1− fD(θD, fG(θG, z)))].

(17)

4.1 Cycle-Consistent Adversarial Network

The second method we propose is inspired by cycle-consistent adversarial network

(CycleGAN) [12]. Zhu et al. introduced CycleGAN, which is an extension of genera-

tive adversarial network (GAN) [14]. CycleGAN has achieved substantial success in

the image-to-image translation problem domain because it uses an unpaired image

dataset. However, Isola et al. [1] have already introduced a conditional adversarial

network which provides promising results, but it requires a paired image dataset and

creating paired image dataset for a new task like ours is a tedious process. Cycle-

GAN uses a pair of generators to achieve the translation problem of images from

input domain X to an output domain Y and also it can translate the images from

output domain Y to input domain X. The main concept of CycleGAN is to provide

translation from the original domain to the target domain and vice versa.

4.1.1 Mathematical Formulation

Similar to the generative adversarial network, let the dataset consists of input images

from one domain and the output images from another domain, both of the same

dimension. Let u ∈ Z+ be the height, v ∈ Z+ be the width and c ∈ Z+ be the color

channel of each image. Suppose n be the total number of images in the dataset and

N = {1, 2, · · · , n}. Let X = {x1, x2, · · · , xn} be the set of user images, where xi ∈
Nu×v×c for i ∈ N . Let Y = {y1, y2, · · · , yn} be the set of embroidered images, where
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yi ∈ Nu×v×c for i ∈ N. For i ∈ {1, 2}, let Gi be a generator and Di be a discriminator,

they consist of neural networks with parameters θGi
and θDi

, respectively, θGi
and

θDi
are the set of weights and biases of neural networks. Let Q×Q be the dimension

of the noise vector zi ∈ Z. For i ∈ {1, 2}, we define differentiable function fGi
:

Nu×v×c × RQ×Q → Nu×v×c. We denote the set of images generated by the generator

as Ŷ = {ŷ1, ŷ2, · · · , ŷn}, where ŷk ∈ Nu×v×c for k ∈ N . Similarly, fDi
: Nu×v×c ×

Nu×v×c → [0, 1] represents discriminator functions. CycleGAN uses two generators,

let fG1(θG1) and fG2(θG2) be the two generators and fD1(θD1) and fD2(θD2) be the two

discriminators. The generators do the inter-domain translation from original domain

to target and vice versa and the model does two separate mapping fG1(θG1) : X → Y

and fG2(θG2) : Y → X. An adversary to these two generators, the two discriminators,

perform an inspection of the generated image. fD1(θD1) try to distinguish between the

image xi ∈ X and the image generated by fG2(θG2 , yi) and the discriminator fD2(θD2)

distinguishes between the image yi ∈ Y and the image generated by fG1(θG1 , xi).

Loss Functions

The CycleGAN model has two type of losses :

1. Adversarial Loss: Each generator in the model tries to minimize its loss, whereas

each discriminator in the model tries to maximize its loss. The adversarial loss

focuses on the fact that the data distribution between the output domain and

generated domain measures up with each other. Let the set of input images be X

= {x1, x2, . . . , xn} and the set of output images be Y = {y1, y2, . . . , yn}. Suppose

Lj(θGj
, θDj

) be the adversarial loss for the generative adversarial network j, for

j ∈ {1, 2} and xi ∈ X, yi ∈ Y, zi ∈ Z for all i ∈ {1, 2, . . . , N}. We define

adversarial loss as follows:

L1(θG1 , θD1) =
1

N

N∑
i=1

log fD1(θD1 , xi, yi)P (Y = yi)

+
1

N

N∑
i=1

log(1− fD1(θD1 , xi, fG1(θG1 , xi)))P (X = xi),

(18)
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for all θD1 and θG1 , and

L2(θG2 , θD2) =
1

N

N∑
i=1

log fD2(θD2 , yi, xi)P (X = xi)

+
1

N

N∑
i=1

log(1− fD2(θD2 , yi, fG2(θG2 , yi)))P (Y = yi),

(19)

for all θD2 and θG2 . The goal here is to find the optimal value of θ∗Gj
and θ∗Dj

,

∀j. We can state the objective as follows:

θ∗Gj
, θ∗Dj

= arg min
θGj

max
θDj

Lj(θGj
, θDj

),∀j. (20)

2. Cycle Consistency Loss: CycleGAN introduces a cyclic approach to converting

the generated image back to its subsequent image from the original domain.

The loss incurred during the process is addressed as Cycle Consistency Loss.

Since we have two generators and discriminator pairs, we also have two cyclic

consistency loss, namely:

(a) Forward Consistency Loss: An image xi ∈ X domain is fed to the genera-

tor fG1(θG1xi, yi) which generates y
′
i and then this is again fed to generator

fG2(θG2 , y
′
i, xi) which generates x

′
i, ideally close to xi∀i. Forward consis-

tency loss is defined as:

Lcyc1(θG1 , θG2) =

1

N

N∑
i=1

|fG2(θG2 , fG1(θG1 , xi, yi), xi)− xi|P (X = xi)
(21)

(b) Backward Consistency Loss : Similarly to forward consistency loss, we

define backward consistency loss as follows:

Lcyc2(θG2 , θG1) =

1

N

N∑
i=1

|fG1(θG1 , fG2(θG2 , yi, xi), yi)− yi|P (Y = yi)
(22)

Our goal is to obtain optimal parameters of the sum of all losses :

θ∗Gj
, θ∗Dj

= arg min
θGj

max
θDj

2∑
j=1

(Lj(θGj
, θDj

) + Lcycj(θGj
, θGk

)

,∀j,∀k ∈ {1, 2} ∧ j 6= k

(23)
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Figure 13: A single residual block. The red layers are convolutional layers. The green
layer is instance normalization, the blue layers are ReLU activation layers. The yellow
addition symbol adds inputs up.

4.2 Modified Cycle Consistent Adversarial Net-

work

Our method is inspired by the architecture of CycleGAN [12]. We propose some

modifications to the architecture of CycleGAN for embroidery translation problem.

Instead of using just instance normalization [35] like the original CycleGAN, we have

added spectral normalization [36] similar to [37] to improve the quality of the gener-

ated image. We also took inspiration from [38], which uses a regularized embedded

channel for both input and output of the generators. The embedded channel helps

the generator memorize the important structures necessary for the reconstruction of

the image. As the embedded channel is regularized, it eliminates the possibility of the

generator learning the entire image and hence not depreciating the cycle-consistency

of CycleGAN. Combining these two modifications to the original architecture of Cy-

cleGAN definitely help a lot in improving the quality of the generated images in com-

parison to original CycleGAN, which we have shown in the following chapter. Let us

mathematically formulate the embroidery translation problem. Each image from the

input domain has multiple visual attributes like color, shape, size, luminance, texture,

and many others. In the CycleGAN [12] paper, the author has mentioned that there

is a primal interconnection between the input image and the generated image. In the

embroidery translation problem, the input image and the generated image have many

similarities. Ideally, almost everything except the texture of the images is similar. We

will introduce the modified loss function in the following section.
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4.2.1 Architecture of Modified CycleGAN

Our network is a modified version of CycleGAN, for generating an embroidered version

of images. The network has two generators fGi
(θGi

),∀i ∈ {1, 2} and two Discrimina-

tors fDi
(θDi

), ∀i ∈ {1, 2}. The generator used in the network is almost similar to the

generator of CycleGAN [12], which is shown in figure 14. The structure is originally

adopted from [39], which showed remarkable results in style transfer and image super

resolution. The network contains two stride-2 convolutions, 9 residual blocks [40] and

two fractionally strided convolutions with stride 1
2
, which is the typical structure for

CycleGAN [39, 12]. In [12], only instance normalization [35] is used in the discrimina-

tor but we have also added spectral normalization [36] similar to [37] which increases

the quality of the generated images. We also propose to add an additional regularized

embedded channel to both the input and the output of the generator similar to [38].

The reason behind adding an embedding channel is to encourage the generator to

generate an image which has the least amount of structural loss [38]. An embedding

channel of zeros has been added to the input of the generator along with an input

image. The L1 regularized channel of zeros indicates the generator that there are

no restrictions on how the translation should be done. The residual block shown in

figure 13, usually perform better or equal to identity mapping because the input is

available at all times. The residual block represent a function g(x) = f(x) + x. The

residual block also helps reducing the gradient vanishing problem in deep networks.

The discriminator networks used are 70 × 70 PatchGAN classifier [1, 41, 42], which

aims to classify whether a 70 × 70 overlapping image patches are original or gener-

ated. In [1] results, we have seen that a patch-level discriminator outperforms the

full discriminator as it has fewer parameters.

4.2.2 Problem Formulation

Let the dataset consists of user images and embroidered images, both of the same

dimension. Let u ∈ Z+ be the height, v ∈ Z+ be the width and c ∈ Z+ be the color

channel of each image. Suppose n be the total number of images in the dataset and

N = {1, 2, · · · , n}. Let X = {x1, x2, · · · , xn} be the set of user images, where xi ∈
Nu×v×c for i ∈ N . Let Y = {y1, y2, · · · , yn} be the set of embroidered images, where

yi ∈ Nu×v×c for i ∈ N. For i ∈ {1, 2}, let Gi be a generator and Di be a discriminator,

they consist of neural networks with parameters θGi
and θDi

, respectively, θGi
and
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Figure 14: Generator with residual blocks. The red layer is a convolutional layer. The
green layer is an instance normalization node. The blue layer is a ReLU activation
layer. The yellow layer is a residual block. The cyan layer is a tahn activation layer.
Convolutional layers have a kernel of size k×k, f filters and a stride of s. For images
of size 256× 256 or higher, the number of residual blocks is nine. For smaller images
six residual blocks are used.

θDi
are the set of weights and biases of neural networks. Let Q×Q be the dimension

of the noise vector zi ∈ Z. For i ∈ {1, 2}, we define differentiable function function

fGi
: Nu×v×c × RQ×Q → Nu×v×c. We denote the set of images generated by the

generator as Ŷ = {ŷ1, ŷ2, · · · , ŷn}, where ŷk ∈ Nu×v×c for k ∈ N . Similarly, fDi
:

Nu×v×c × Nu×v×c → [0, 1] represents discriminator functions. Here, fDi
(θDi

) and

fGi
(θGi

) are neural networks. fDi
(θDi

) used the sigmoid activation function, and

fGi
θGi

uses the hyperbolic tangent function as activation to get the desired outputs.

We define the sigmoid function to classify the set of data points in two desired labels.

It predicts the probability of occurrence of a particular label say y ∈ {0, 1}. Let x

be the input, w be the weight vector and b be the bias of the neural network. We
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Figure 15: PatchGAN discriminator. The red layer is a convolutional layer with a
kernel of size 4×4, f filters and a stride of s. The blue layer is a LeakyReLU activation
layer with a slope of 0.2. The green layer is an instance normalization node. The
gray layer is a spectral normalization node. The receptive field for every entry in the
output is a 70× 70 patch of the input

defined the sigmoid function s : R→ [0, 1] as

s(z) =
1

1 + exp−z
,

where z = w · x+ b. If the probability of occurrence of the label is 1 is s(z) then the

probability of occurrence of label 0 is 1− s(z). Let x
′

be the input, w
′

be the weight

vector and b
′

be the bias of another neural network, we define the hyperbolic tangent

function tanh : R→ [−1, 1] as following

tanh(u) =
eu − e−u

eu + e−u
,

where u = w
′ · x′ + b

′
[19]. We use cross entropy to compute the similarity measure

between the probability of occurrence of labels based on the true data points from

the training dataset and the probability of occurrence of labels from the generated

data points. Let P = {P1, P2, . . . , Pn} be the visual attributes of an image ∈ {x, y}
and, Q = {Q1, Q2, . . . , Qn} be the values of these attributes. Our goal is to find two
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optimized mappings fG∗1 : X → Y and fG∗2 : Y → X. For ∀x ∈ X, the generated

image ŷ = fG1(θG1 , x), the values Qx and Qy of all attributes P should be kept same

except the embroidery attribute. That means the optimal mapping fG∗1 transferred

only the embroidery attribute without destroying any other attribute [37].

Loss Function

The loss function of our model is different from our baseline CycleGAN [12]. To

achieve better quality results, we have taken inspirations from different researchers

and modified the architecture of CycleGAN to achieve the best results for embroidery

translation problem. The loss function for our model is as follows: The adversarial

loss and the cyclic loss is similar to CycleGAN (18), (19), (21), (22) which we have

previously seen in section 4.1.1. We have also introduced identity loss, and embedded

loss. We have used a L1 norm loss function for the additional channel to the input

image which is defined as the absolute difference between the target value and the

estimated value. For i = {1, 2, · · · , n}, let S be the difference, ti be the target value

and pi be the estimated value, we define L1-norm as:

S =
N∑
i=1

|ti − pi|.

Identity Loss: Identity loss is an optional loss in the original CycleGAN paper, but

during our training process, we learned that adding an identity loss helps in train-

ing the network efficiently similar to [37]. Identity loss helps the generator identify

whether the image is from the input domain or the output domain and hence reducing

the chances of making it just a mapping algorithm. We define identity loss as:

Lidt(θG1 , θG2) =
1

N

N∑
i=1

fG2((θG2 , xi)− xi) + fG1((θG2 , yi)− yi). (24)

Embedding Loss: We have added an embedded channel to the input and output

of both the generators to assist in the process of learning the structure of the input

image as shown in the figure (16), is able to learn a separate channel, which can

be thought of as an embedding, that helps in the reconstruction of the input. The

idea is to encourage the generator to generate a properly translated image and an

embedding of the changes that were made are required to reconstruct the input. An

L1 distance is used with the embedding loss, similar to [12]. The reason of using an
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L1 distance instead of L2 is that L1 produces less blurring images [1]. Also, since a

L2-norm squares the error (increasing by a lot if error > 1), the model will see a much

larger error ( e vs e2 ) than the L1-norm, so the model is much more sensitive to this

example, and adjusts the model to minimize this error. If this example is an outlier,

the model will be adjusted to minimize this single outlier case, at the expense of

many other common examples, since the errors of these common examples are small

compared to that single outlier case. Let the extra embedded channel to the input of

the image is donated by H, we define the embedding loss as

Lemb(θG1 , θG2) =
1

N

N∑
i=1

||fG1(θG1 , (xi +H))||1 + ||fG2(θG2 , yi +H)||1. (25)

Our goal is to obtain optimal parameters for the sum of all losses of original CycleGAN

which is defined in section 4.1.1, equation (23) combined with (24),(25). Our final

loss is defined as:

θ∗Gj
, θ∗Dj

= argmin
θGj

max
θDj

2∑
j=1

(Lj(θGj
, θDj

) + Lcycj(θGj
, θGk

)

+ λ1Lidt(θGj
) + λ2Lemb(θGj

),

∀j,∀k ∈ {1, 2} ∧ j 6= k.

(26)
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Figure 16: A simplified architecture of our Modified CycleGAN. For simplicity, we
have just included one cycle from x to ŷ to x′. The eight zero’s represents the
embedding channel which is added to the input and output of the generator. Ladv
are the adversarial losses, Lemb is the embedding loss, Lidt is the identity loss. The
complete architecture along with loss functions are explained in section (4.2), page
(32).
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Algorithm 2: Algorithm to train the EmbGAN model

Pre-processing: user images X = {x1, x2, . . . , xN}, embroidered images
Y = {y1, y2, . . . , yN}, u× v × c← 256× 256× 3, N number of images in
training dataset.

Input for generator G : (x1), (x2), . . . , (xN), xi ∈ X for all i ∈ {1, 2, . . . , N}
Output: generated embroidery like image Ŷ = {ŷ1, ŷ2, . . . , ŷN},
where ŷi ← fG(xi, zi; θG) for all xi ∈ X, zi ∈ Z, ŷi ∈ Ŷ and i ∈ {1, 2, . . . , N}
Input for discriminator D : {y1, y2, . . . , yN} and {ŷ1, ŷ2, . . . , ŷN}, yi ∈ Y, ŷi ∈ Ŷ
for all i ∈ {1, 2, . . . , N}.

Initialization: Learning rate λ← 0.0002, normalization factor α← 10
if network layer is Convolutional then

weights← N (0, 0.02)
biases← 0,

end
else if network layer is normalization then

weights← N (1, 0.02)
biases← 0,
if norm=instance then

use InstanceNormalization
end
else if norm=batch then

use SpatialBatchNormalization
end
use SpectralNormalization

end
// T is the total number of epochs the model is trained for.
for t← 1 to T do

for j ← 1 to N do
update the parameters using stochastic gradient descent (SGD),

θD1 = θD1 − λ
∂L1(θG1

,θD1
)

∂θD1
;

θG1 =

θG1 −λ
∂

(
L1(θG1

,θD1
)+Lcyc1 (θG1

,θG2
)+Lcyc2 (θG2

,θG1
)+Lemb(θG1

,θG2
)+Lidt(θG1

,θG2
)

)
∂θG1

;

θD2 = θD2 − λ
∂L2(θG2

,θD2
)

∂θD2
;

θG2 =

θG2 −λ
∂

(
L2(θG2

,θD2
)+Lcyc1 (θG1

,θG2
)+Lcyc2 (θG2

,θG1
)+Lemb(θG1

,θG2
)+Lidt(θG1

,θG2
)

)
∂θG2

;

end

end
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Chapter 5

Experiment

In this chapter, we briefly explain the dataset we use in this research and a prepro-

cessing technique that we have done on the images in the dataset to improve the

results of image-to-image translation. We prepare an unpaired dataset with images

from two domains. One set of images are user-uploaded images which are the inputs

to our algorithms. The other set of images are the final embroidered version of the

user-uploaded images. These final embroidered version are design using a proprietary

software in the fashion industry. A professional digitize the user-uploaded images and

then make an embroidered version of it manually. CapBeast, a Montreal based firm

has been a part of this research and very helpful in providing these images for this

research 1. We will then breifly describe the training details for style transfer and

then describe details of how we trained our modified CycleGAN (EmbGAN) and in

the end we will see the results generated by our methods and baseline methods, we

have also performed perceptual studies on our result using AMT(Amazon Mechanical

Turk) and compare our architectures with the baseline architectures.

5.1 Dataset

We have prepared a dataset for embroidery image-to-image translation. The image

used in the dataset are simple two dimensional images which can be embroidered

have fairly less complex semantic content. A photographic image of a skyline or an

image with complex semantic content would be feasible for embroidery and hence is

1CapBeast owns a copyright on the dataset used in this research.
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not used in preparing the dataset. Most of the images are simple flags, texts, logs

or other simple structural images as shown in 17. We can broadly divide the dataset

into two categories, one of which is the textual image which consists of word(s) that

a user has uploaded to be customized on their apparel and the other category are any

non-textual images. The other division of the dataset is based on the color of the

images, we have multi-color images, single-color images and gray-scale images. The

total number of images in the dataset is 8668, out of which 4643 are user uploaded

images, and 4025 are manually embroidered version of these images.

Figure 17: Sample images from our dataset. 1st row : User uploaded images, 2nd
row : manually embroidered images using proprietary software.

Table 2: Data distribution in embroidery dataset.

Category Total Train Validation Test

Textual Images 2713 1408 712 593

Non-Textual Images 5955 3212 1433 1310

overall 8668 4620 2145 1903
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Figure 18: Statistics of the embroidery dataset. First piechart denotes the categorical

distribution i.e., the number of textual and non textual images present in the dataset.

The second piechart denotes the train-validation,test distribution i.e., the number of

images used to train, validate and test the model.

30.47%
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Textual Images

Non-textual images

33.2%

66.8%

Textual Images

Non-textual images

31.1%

68.9%

Textual Images
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Figure 19: Statistics of the embroidery dataset

5.2 Preprocessing

The input images in our dataset are user-uploaded and hence, their size is not uniform.

The non-uniformity in the size of the image can be an issue while training the GANs.

We did preprocessing on all the images from our dataset. We run a batch script to

resize all the images to 256× 256. During our research and experiments, we find out

that the non-uniformity in the value of one colored pixel can lead to washed out colors

in the generated image. We know there are many different color representing schemes,
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RGB is one of them and the most popular one. RGB stands for the color component

Figure 20: An image with two visible colors, red and white but the total number of
colors present in the color palette of the above image is 472.

of red, green, and blue in an image. Each component have a value between {0−255},
where 0 represents that absence of the component and 255 represents that maximum

saturation of a color component. Though human eyes cannot discriminate among

all the colors in the RGB system, in total we have 256 × 256 × 256 = 16, 777, 216

colors. In a standard image, the color palette can be extensive in comparison to the

visible colors in the image. A color palette is all the colors that are present in the

image irrespective of their individual percentage. The human eye cannot discriminate

between easily between {255, 0, 0} and {255, 69, 0} because both of them appear to

be red but one of them is red and the other is orange red.

Color Quantization

Figure 20 is an example of the non-uniformity in the value of the colored pixels.

We did preprocessing to remove the non-uniformity in the value of pixels, we use

k-means color quantization to make all the adjacent color values in an image to be

clustered together to one. However, color quantization might reduce the quality of

images by a small fraction k-means manage to keep the quality intact for more than

90% of the images. We have performed k-means color quantization on our dataset 2.

and the following are a few results. We performed the color quantization as a batch

processing for our entire dataset and for uniformity we have decided the value of k

to be 8 almost more than 90% of the images have similar visual appearance as their

original counterpart.

2CapBeast owns a copyright on the dataset used in this research
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K-means Color Quantization

Let H ∈ Z+ be the height, W ∈ Z+ be the width and C ∈ Z+ be the color chan-

nel of each image. Suppose n be the total number of images in the dataset and

N = {1, 2, · · · , n}. Let X = {x1, x2, · · · , xn} be the set of user images, where

xi ∈ NW×H×C for i ∈ N . The k-means clustering algorithm minimized the sum

of squared error (SSE) between the clusters. K-means algorithm divide xi in mutu-

ally exclusive clusters R = {R1, R2, · · · , RK} ∪Kk=1 RK = xi ∈ NW×H×C to perform

pixel-wise vector quantization.

SSE =
K∑
k=1

∑
xi∈RK

||xk − ck||22,

where || · ||2 denotes the Euclidean distance and ck centroid of the cluster [43]. A

heuristic method developed by Lloyd [44] offers a simple solution for k-means. Lloyd’s

algorithm starts with K centers, typically chosen uniformly at random from the data

points [45]. Each point is then assigned to the nearest center, and each center is

recalculated as the mean of all points assigned to it. These two steps are repeated

until a predefined termination criterion is met. The pseudocode for this procedure is

given below. Here, m[i] denotes the membership of point xi, i.e. index of the cluster

center that is nearest to xi.
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Algorithm 3: K-Means Algorithm

input : X = {x1,x2, . . . ,xN} ∈ RD (N ×D input data set)
output: C = {c1, c2, . . . , cK} ∈ RD (K cluster centers)
Select a random subset C of X as the initial set of cluster centers;
while termination criterion is not met do

for (i = 1; i ≤ N ; i = i+ 1) do
Assign xi to the nearest cluster;

m[i] = argmin
k∈{1,2,...,K}

‖xi − ck‖2;

end
Recalculate the cluster centers;
for (k = 1; k ≤ K; k = k + 1) do

Cluster Sk contains the set of points xi that are nearest to

the center ck;
Sk = {xi |m[i] = k};
Calculate the new center ck as the mean of the points that

belong to Sk;
ck = 1

|Sk|
∑

xi∈Sk

xi;

end

end
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Figure 21: A simplified example to explain the k-means algorithm (3). For simplicity,
we have shown an example of an RGB colorspace and we have kept the value of B
channel to be a constant 0. The value of k selected is three and the final output has
three color in the palette, whereas the original had nine.
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Figure 22: K-means color quantization result. Left column: the user uploaded images.
Right column: k-means color quantized version. The value of k is 8.
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5.3 Implementation Details of Style Transfer

We used an NVIDIA GTX GeForce 1080 GPUs to implement the style transfer.

We have used a pretrained VGG-16 convolutional neural network [13] similar to the

original paper [11]. We have compared different optimizers to be used but we finally

choose the L-BFGS optimizer similar to the original paper [11].

Figure 23: Comparison of different optimizers.

Figure 24: Comparison of Adam, Adagrad and L-BFGS optimizers.
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Figure 25: Comparison of Adam with learning rate 1 and L-BFGS optimizers.

For the comparison experiment, we decided to use the learning rate 10, and the

number iterations are 1000. The size of images used is 256× 256. We have compared

Gradient Descent, Adadelta, Adagrad, Adam, RMSProp, L-BFGS. In figure 23, we

can see the comparison of different optimizers. The gradient descent, Adadelta, and

RMSProp were the worst optimizers for this task. They were unable to converge

with this learning. We further compare the three best optimizers in figure 24. We

compared the Adam optimizer and L-BFGS once more but we used lower learning

rate of 1 for Adam to see if it outperforms L-BFGS. But even with a lower learning

rate, L-BFGS performs better than Adam for style transfer 25.

5.4 Training Details for EmbGAN

We used an NVIDIA GTX GeForce 1080 GPUs for the training process. The initial

learning rate is set as 0.0002. The λ1 and λ2 are set as 7 and 3.5, respectively, in

equation [26] from section 4.2.2. To upgrade the parameters, we have used Adam

solver[46], and WGAN gradient penalty [47] during the training process, and the

momentum is set to 0.6. These values and hyperparameters are explicitly tuned

for generating good quality embroidered images, and the results show these values

are most suitable. For comparison, we have some images digitized by a professional
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graphic designer using proprietary software, these images are considered as ground

truth images for the network. The ground truth images are used to have a qualitative

comparison of the generated images with the professionally digitized images from pro-

prietary software. There are some expensive software used by apparel customization

companies to digitize a logo or an image to be ready for machine embroidery.

5.5 Result

In this section, we will see the results from our proposed methods and compare

them with their baseline counterparts. Our final task is to generate an embroidered

version, Y of any input image, X. We want our results to be as similar to a machine

embroidered image as possible, and hence we have used the machine embroidered

image along with images from domain X to train our model. We have used the

original methods as baselines for the qualitative comparison of our results. We will

first make a qualitative comparison of images from our method Split Style Transfer

to its baseline counterpart Neural Style Transfer and then make a similar comparison

of images from our Modified-CycleGAN with the baseline counterpart CycleGAN.

Table 3: AMT ”Real vs. Fake” Test. We compare the images generated from Cycle-

GAN and EmbGAN with the ground truth. A turker receives a pair of images where

one image is from ground truth, and one is a generated image from either CycleGAN

or EmbGAN. The table displays how many times an algorithm was able to fool the

turkers.

Algorithm % Turkers marked as real

CycleGAN 4.08

EmbGAN 14
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Table 4: AMT Comparison Test. We compare the images styled by neural style
transfer and split style transfer to one another. A turker receives a pair of images
where one image is a styled image by neural style transfer, and the other image is
a styled image by split style transfer. The table displays which results were more
realistic as an embroidered image, according to the turkers.

Algorithm % Turkers marked as real
Neural Style Transfer 32.5
Split Style Transfer 67.5

Table 5: AMT Comparison Test. We compare the images generated from CycleGAN

and EmbGAN to one another. A turker receives a pair of images where one image is

a generated image from CycleGAN, and the other image is a generated image from

EmbGAN. The table displays which results were more realistic as an embroidered

image, according to the turkers.

Algorithm % Turkers marked as real

CycleGAN 8.5

EmbGAN 91.5

5.5.1 Perceptual Studies

The absolute best metric for evaluating the results of any image-to-image translation

problem or any other image synthesization task in the field of computer graphics

and computer vision is to check how compelling the results are to a human observer.

Similar to the baseline architecture, we have run perceptual studies of ”real vs. fake”

on Amazon Mechanical Turk, the protocol used is identical to [[1], [12], [6]]. We have

also run a comparison perceptual studies comparing the results of baseline architecture

and our modified architecture. For the ”real vs. fake” perceptual studies, the turkers

were presented with a series of pair of images, where one of the images is ground truth

which is considered ”real,” and the other image is generated by our algorithm which is

considered as ”fake” in our study. The pair of images appeared for 1 second, and after

the images disappeared, the turkers were given an unlimited amount of time to decide
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which one was real or fake. The Table 3, displays the result of the first perceptual

study. We can see that the images generated from EmbGAN were manage to fool the

turkers 4 times more than the images generated from CycleGAN. For the comparative

perceptual study, we have increased the time to 2 seconds, so that users will have more

time to make the comparison. The Table 5, displays the result of comparison test

between CycleGAN and EmbGAN. 91.5% of the turkers choose the images generated

from EmbGAN to be more realistic as an embroidered image in comparison to the

image generated from CycleGAN. Approximately 50 turkers evaluated each algorithm.

For every algorithm, we provided a pair of 50 images, but for the comparative study

of neural style transfer and split style transfer, we have used a pair of 40 images. The

Table 4, displays the result of the comparison test between neural style transfer and

split style transfer. 67.5% of the turkers choose the images styled by split style transfer

to be more realistic as an embroidered image in comparison to the image styled by

neural style transfer. To ensure that the participants were competent at this task, we

have used the strategy similar to [6], 10% of the trials pitted the ground truth with

the images generated from initial epochs and the turkers were able to identify the

generated image as fake 94% of the time, indicating that the turkers understand the

task in hand. To ensure that there is no bias and all the algorithms were tested in the

similar environment, we ensure that all the experiments were carried out at the same

time of the day and all the sessions were independent and identically distributed to

the turkers simultaneously.

5.6 Split Style Transfer Results

In this section, we display the images styled by neural style transfer and our pro-

pose method split style transfer. Every image has three versions, the first is the user

uploaded image, the second is a styled image using neural style transfer and one em-

broidery image, the third is a style image using split style transfer and three different

embroidery image for each distinct color. The results will help us in perceptually

compare the algorithms based on the visual quality of the styled images.
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(1) (2)

(3)

Figure 26: Style Transfer : (1) is the user uploaded image, (2) is a styled image using
neural style transfer and one embroidery image, (3) is a style image using split style
transfer and three different embroidery image for each distinct color.

(1) (2)

(3)
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(1) (2)

(3)

Figure 28: Style Transfer : (1) is the user uploaded image, (2) is a styled image using

neural style transfer and one embroidery image, (3) is a style image using split style

transfer and three different embroidery image for each distinct color.

5.7 Limitation of Style Transfer

Style transfer whether it is neural style transfer or the modification that we did to

the baseline architecture to propose split style transfer did manage to generate some

embroidery pattern in their final outputs. However, the results from the split style

transfer were better than neural style transfer, the style transfer as a technique to

perform embroidery image-to-image translation is not sufficient. There are some

drawbacks to this approach, as the objective of style transfer is to jointly minimize

the distance between the style representation and content representation of an image,

it fails to capture the spatial detail necessary to generate an approximate embroidery

preview of a given two-dimensional image. Features like the difference in the boundary

stitch pattern and the background stitch pattern were not visible prominently in the

style transfer results. The results did not manage to capture some sort of difference

in the boundaries within the image that will separate two separate regions. Also, the

results from style transfer techniques are like imprints of an image on another image

and blending them, and using some sort of noise to generate the embroidery pattern
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and this for sure will not help the customer in the decision-making process as the

results are far away from a realistic depiction of what an embroidered version of an

image will look like.

5.8 EmbGAN Results

In this section, we will see the images generated by our modified version of CycleGAN

(EmbGAN) and compare them with the images generated by the original CycleGAN.

Also, we will compare both these generated images with the images digitized by pro-

prietary software which is considered to be the ground truth and see how our well

both methods perform in generating an approximate embroidered version of an im-

age. Each subfigure has four versions. One of them is the user-uploaded input image.

Second, is the manually digitized embroidered version of the image used as ground

truth. Third, is the result generated by original CycleGAN. Lastly, the result gener-

ated by our modified EmbGAN. The results will help us in perceptually compare the

algorithms based on the visual quality of the generated images.

(1) user image (2) ground truth

(3) embgan (4) cyclegan
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(5) user image (6) ground truth

(7) embgan (8) cyclegan

(9) user image (10) ground truth

(11) embgan (12) cyclegan
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(13) user image (14) ground truth

(15) embgan (16) cyclegan

(17) user image (18) ground truth

(19) embgan (20) cyclegan
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(21) user image (22) ground truth

(23) embgan (24) cyclegan

Figure 29: EmbGAN Result: Every subfigure has four versions. One of the them
is the user-uploaded input image. Second, is the manually digitized embroidered
version of the image used as ground truth. Third, is the result generated by original
CylceGAN. Lastly, the result generated by our modified EmbGAN.
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Chapter 6

Conclusions and Future Work

In this work, we propose two techniques to solve our embroidery image-to-image

translation problem. The techniques we propose are a modification of two existing

machine learning techniques which are popular in producing good results for any

given image-to-image translation task, neural style transfer and cycle-consistent gen-

erative adversarial network. We have done an embroidery image-to-image translation

to generate an approximate real-time preview for a customer who wants to have

customized embroidery on their apparel. The approximate preview of the final em-

broidered version of their uploaded two-dimensional image will help the customer in

the decision-making process and hence will help in reducing the amount of product

returned because of customer’s dissatisfaction. The results from both the techniques

were very satisfactory. We used perceptual studies to compare the results with the

baseline architectures and the results from the split style transfer were qualitatively

better than neural style transfer, and the generated images from EmbGAN were qual-

itatively better than CycleGAN. We also compared the generated images from both

the techniques which conclude that the modified cyclegan (EmbGAN) generates the

best quality embroidered image for any given image. We have used the digitized em-

broidered version of images using industry software as the baseline for comparison.

After our final comparison between the generated images, we find out that, the style

transfer technique is not the best approach for solving embroidery image-to-image

translation. The images generated by style transfer feel less realistic visually, and

hence, would not be the best approximate preview of the embroidered version of a
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user-uploaded image. Therefore, for future work, we propose to continue with Em-

bGAN to improve the quality of the final generated images. We propose to make

some advancements in the dataset. We propose to develop a better dataset with a

lot more images of higher quality and different semantic content, and we also propose

to structure the dataset in a way that similar type of images are together so that it’s

more feasible for the EmbGAN to learn an embroidery pattern. We also propose to

use different GANs or translation techniques to solve this problem, namely StarGAN,

cyCADA(Cycle-Consistent Adversarial Domain Adaptation), and SPADE (Spatially

Adaptive Normalization).
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