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Abstract 
 
 

Student-Centered Learning in Undergraduate Level Science Post-Secondary 
Education and Academic Achievement: A Meta-Analysis 

 
 

Brian Mihov 
 
 

This meta-analysis assesses the overall impact on undergraduate level science post-

secondary student achievement outcomes of instructional environments that are more 

student-centered versus less student-centered (more teacher-centered). It also considers in 

which of four instructional events (dimensions) – Pacing, Teacher�s Role, Flexibility and 

Adaptation – the application of more student-centered pedagogy is more optimal for 

increasing student achievement outcomes, as well as considers the strength of student-

centered pedagogy in each of these four instructional dimensions. Additionally, this 

meta-analysis considers the impact of a set of instructional and demographic moderator 

variables – technology use, subject matter, and treatment group class size – on student 

achievement. Out of an initial pool of 9759 abstracts, 96 full-text sources were chosen for 

analysis, yielding 141 independent effect sizes. The random effects model weighted 

average effect size was  = 0.34, k = 141, SE = 0.04, z = 8.58, p < .001, suggesting that 

on average more student-centered classroom studies produce better results on 

achievement outcomes than do less student-centered classroom studies. However, the 

non-significant meta-regression result (p = 0.40) compromises the strength of this 

conclusion. Of the four instructional dimensions, based on simple meta-regression, only 

Flexibility produced a significant (negative) relationship ( = -0.09, p ≤ .05). Mixed 

moderator variable analysis yielded the subject matter of chemistry ( = 0.23, p = 0.03) 

 g
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as the best predictor of effect size; studies in which both groups used technology had a 

significantly lower average effect size ( = -0.18, p = 0.04) than the reference group of 

studies in which both groups did not use technology; and in studies in which the 

treatment group used technology and the control group did not, the result was not 

significantly different from studies in which both groups did not use technology ( = 

0.07, p = 0.53). Recommendations include attending to more nuanced moderator 

variables when introducing student-centered strategies. 
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Background 
 
 

In order to provide students with optimal opportunities to learn and to apply knowledge, 

the appropriate educational environments need to be present. Two particular environments, 

teacher-centered (T-C) and student-centered (S-C) learning, have enjoyed extensive research and 

application across K-12 and post-secondary education. Additionally, a decades-spanning 

dichotomy has existed between these two approaches to learning, with a large body of literature 

characterized by an “either/or” stance.  

 T-C learning, alternatively referred to as the more traditional approach to instruction, sees 

the instructor assuming the main responsibilities regarding course planning and objectives, as 

well as applying more direct instructional methods. Observational studies of classroom 

instruction, such as the research conducted by Rosenshine and Stevens (1986), explored 

correlations between teacher behaviour and student achievement outcomes, and identified 

instructional behaviours and patterns that ran parallel to those described via terms such as “direct 

instruction” (Rosenshine, 1976), “explicit teaching” (Stanovich, 1980), and “systematic 

teaching” (Morrison, 1926). Specifically, Rosenshine and Stevens (1986) described and grouped 

their results into six sequential teaching functions reflecting a direct instruction approach: 1) 

daily review; 2) presenting new material; 3) guiding student practice; 4) providing feedback and 

corrections; 5) conducting independent practice; and 6) weekly and monthly reviews. 

Throughout the T-C instructional process, students’ learning experience flows through the 

instructional conditions and parameters implemented by the teacher.  

 S-C learning, on the other hand, sees the teacher taking on more of a facilitator role. 

More indirect instructional methods are implemented, as individual students, small groups of 

students or students within classrooms as a whole, experience a more individualized learning 
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environment. Jonassen (1991) proposed S-C instructional design principles that included: 1) 

creating real-world environments that employ the context in which learning is relevant; 2) 

focusing on realistic approaches to solving real-world problems with the instructor acting as a 

coach and analyzer of the strategies used to solve these problems; 3) stressing conceptual 

interrelatedness, providing multiple representations or perspectives on the content; 4) defining 

instructional goals and objectives as negotiated and not imposed; 5) designing evaluations that 

serve as a self-analysis tool; 6) providing tools and environments that help students interpret 

multiple perspectives upon the world; and 7) favouring learning that is internally controlled and 

mediated by the student.  

While T-C learning has been depicted as representing the predominant approach, S-C 

learning has been present and exerting influence in research and in classrooms for some time. As 

an educational paradigm, S-C learning has roots in the writings and ideas of influential educators 

such as John Dewey (1938), Lev Vygotsky (1962, 1978) and others, as well as roots in 

constructivist learning theories. A main tenet of constructivist theory, as it pertains to learning, is 

that knowledge is situated in the activity of the learner, and that knowledge is a product not only 

of that activity, but also of the context and culture in which it occurs (Brown, Collins, & Duguid, 

1989). Notable literature on the S-C approach to learning includes the twenty-nine school, eight-

year study on the effectiveness of progressive education (Aiken, 1942), as well as the Plowden 

Report (1967) in Britain advocating a child-centered approach to primary education. 

 In terms of notable literature on T-C learning, the U.S. President Lyndon Johnson 

administration’s 1960’s Project Follow Through was a large-scale research project exploring the 

effectiveness of educational strategies spanning from direct instruction to open education. The 

main findings centered on direct instruction outperforming other models on achievement and 
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affect measures by as much as 1.5sd. The findings, which, along with the conducting of the 

study, were seen as controversial, nevertheless were instrumental in positioning T-C learning as 

the predominant learning approach in educational circles. While Project Follow Through 

remains an influential research project advocating for direct instruction, other work, such as 

Brophy and Good (1986) explored pretest-posttest designs of classroom instruction, and the 

classes in which students attained the highest achievement gains were found to be led by teachers 

exhibiting more of a direct instructional approach. It should be noted that the assessments were 

typically in reading and mathematics. Other research has looked into drill and practice programs, 

including a meta-analysis on computer-based instruction (CBI) by Kulik (1994) exploring drill 

and practice CBI programs on arithmetic, spelling, and vocabulary in beginning reading. The 

questions all had one unambiguous correct answer, and effect sizes for correct answers were 

shown to be 0.50 and higher (Kulik, 1994).   

While the above literature examples pertain more to an “either/or” approach, there has been 

literature opting for a more non-mutually exclusive approach by attempting to identify 

combinations of T-C and S-C learning in educational settings. A prominent example is Gersten 

et al. (2008), who conducted a meta-analysis of T-C and S-C mathematics teaching practices. 

Their concluding remarks reflected on the fact that no studies contained examples of students 

teaching themselves or others without any teacher guidance, nor were there any examples of 

teachers not taking into account, or not paying attention to, students’ understanding and 

responses to the content being taught (Gersten et al., 2008). Similar findings were also reported 

in the 2008 National Mathematics Advisory Panel Final Report, and which also noted that the 

approach of teachers was more representative of a blended approach of T-C and S-C, rather than 

a distinct “either/or” approach (National Mathematics Advisory Panel, 2008). Gersten et al. 



 4

(2008) also pointed to the role of operationalization in the inability to ascertain which 

instructional approach is superior by stating that, “the fact that these [T-C and S-C] terms, in 

practice, are neither clearly nor uniformly defined, nor are they true opposites, complicates the 

challenge of providing a review and synthesis of the literature…” (p. 12). 

The concluding remarks by Gersten et al. (2008) additionally point to the variety of 

instructional events taking place in a given instructional setting, as well as to how these different 

instructional events require different learning approaches as a function of the instructional 

environment. 

In this project, instructional events (also referred throughout the project as ‘instructional 

dimensions’) are different aspects within an instructional environment that are combined to 

characterize the teaching and learning processes occurring. 

In an attempt to capture the combinations of T-C and S-C learning methods occurring in 

instructional environments, Bernard et al. (2013) developed a literature-based set of 11 

instructional events (dimensions) that can be found in a given instructional environment, as well 

as a five-point scale ranging from 1 (mostly T-C learning) to 5 (mostly S-C learning) in order to 

code each instructional dimension separately on amount of T-C/S-C learning. These 11 

dimensions can serve as moderator variables for student learning achievement outcomes, and 

their scores can be added in order to determine the overall relationship between T-C and S-C 

learning for a given instructional environment. 

Bernard et al. (2013) identified the following 11 instructional dimensions:  

Instructional Dimensions Description of Dimensions 

Course Design 

 
Degree to which teachers/students 
participate in course design. 
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Learning Objectives 

 
Degree to which teachers/students set 
learning objectives. 

Learning Materials 

 
Degree to which teachers/students 
select/prepare study materials. 

Adaptation of Materials 

 
Depicts the extent to which materials and 
learning activities are generic and 
unmodified or individualized to account for 
differences in students’ interests and 
abilities. 

Pacing of Instruction 

 
Degree to which students are involved in 
determining the pace of instruction/learning 
activities. 

Anchored Instruction 

 
Degree to which the instruction/exercises 
are authentic or anchored in realistic 
scenarios. 

Type of Problems 

 
Specifies cognitive processes tapped for 
successfully solving different problems – 
roughly corresponds to Bloom’s Taxonomy 
– from well-structured algorithmic tasks to 
ill-structured creative problem-solving. 

Conceptual Level 

 
Describes cognitive/meta-cognitive level of 
the objectives being achieved (e.g., 
memorization, analyses, understanding, 
explanation, self-regulation). 

Teacher’s Role 

 
Describes the teacher’s role in the 
classroom (from lecturer and authority 
figure to facilitator and partner). 

Peer Collaboration 
 
Identifies the extent to which students work 
collaboratively/cooperatively in groups or 
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teams. 

Peer assessment 

 
Degree to which students participate in 
feedback provision and assessment of each 
other’s learning. 

  

 With not only a large number of, but also interactions among, different moderator 

variables for the amount and type of T-C and S-C learning in instructional settings and how they 

subsequently influence student learning achievement outcomes, an overarching approach that 

views and deconstructs teaching and learning according to the events associated with 

instructional conditions is required (Bernard et al., 2019). Such an approach veers away from an 

“either/or” view of T-C and S-C learning, and towards a “greater-to-lesser” S-C learning scale 

along a continuum of instructional practices. By examining instructional events in isolation, a 

greater understanding of the interactions among those events is possible, and a subsequent 

greater understanding of what combinations of T-C and S-C learning will lead to optimal 

learning environments also becomes more probable. 

Bernard, Borokhovski, Schmid, Waddington, & Pickup (2019) applied a process of 

examining K-12 instruction practices and processes as a combination of T-C and S-C methods 

via a meta-analysis that sought to: 1) summarize research on the effectiveness (learning 

achievement outcomes) of more S-C pedagogical approaches; and 2) explore what combinations 

of T-C and S-C qualities of instructional interventions influence learning outcomes the most and 

what moderator variables either improve or reduce these learning outcomes. The authors used a 

literature-based set of 4 instructional dimensions (Pacing, Teacher�s Role, Flexibility, and 

Adaptation), taken from the 11 instructional dimensions developed by Bernard et al. (2013), and 

coded them on a five-point scale ranging from predominantly T-C to predominantly S-C. They 
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applied these dimensions and coding to experimental studies (quasi-experimental and random 

assignment) and extracted effect sizes for achievement outcomes (k = 365) from those studies 

where the treatment condition(s) were coded as more S-C. An average weighted effect size of 

0.444sd was found, indicating that, on average, classroom studies with more S-C learning 

produce better results on achievement outcomes than do classroom studies with less S-C learning 

(Bernard et al., 2019). Additionally, meta-regression analysis of the four instructional 

dimensions resulted in two of the four dimensions (Pacing and Teacher�s Role) being significant 

predictors of effect size. An interesting finding was that Pacing was a negative predictor of effect 

size, while Teacher�s Role was positive. 

The authors also explored a number of substantive and demographic moderator variables 

in an attempt to further learn about the conditions under which higher learning outcomes occur. 

Among the substantive moderator variables were treatment duration, instructor’s experience, 

provision of professional development for teachers, and training for students, and demographic 

moderator variables included learners’ age, educational background and ability level, and subject 

matter studied (Bernard et al., 2019). Mixed moderator variable analysis for demographics found 

only one significant difference – Ability Profile – with an effect size of 0.42sd (k = 338) for 

General Population, and 0.80sd (k = 26) for Special Education. The only other demographic 

variable that was close to a significant difference was Subject Matter, with an effect size of 

0.40sd (k = 260) for STEM and 0.52sd (k = 93) for Non-STEM.  

While the meta-analysis by Bernard et al. (2019) focused on a variety of instructional 

events and additional substantive and demographic moderator variables that influence learning 

achievement outcomes as a function of the amount and type of T-C and S-C learning in K-12, 

undergraduate level post-secondary instructional environments also include similar, and 
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different, moderator variables, which in turn also influence the “greater-to-lesser” S-C learning 

continuum found across these particular instructional settings. Like in K-12 settings, these 

variables and their combinations, along with the overall degree of S-C learning, also have the 

ability to influence achievement outcomes in undergraduate level post-secondary settings.  

Post-secondary education is education after high school, and for the purposes of this 

project only undergraduate level post-secondary education leading to a Bachelor’s degree will be 

explored, also by means of meta-analysis. More specifically, this meta-analysis seeks to explore 

undergraduate level science education and its relationship with T-C and S-C learning. While 

there are numerous subject matters that fall under the “science” umbrella, for the purposes of 

operationalization this meta-analysis will delve into five specific subject matters: chemistry, 

physics, biology, geology and psychology (clinical and experimental). Regarding the literature 

advocating for a spectrum-based approach to T-C and S-C learning, the subject matter of 

undergraduate level science has not been exclusively researched at a systematic review level. 

Aiello and Wolfle (1980) did conduct a 30-study meta-analysis on individualized instruction in 

science compared with a traditional lecture method, however individualized instruction was 

operationalized and separated into particular methods of instruction (audio-tutorial, computer-

assisted, personalized system, programmed, and a combination category) rather than into 

particular instructional dimensions. Furthermore, as has been the general theme regarding T-C/S-

C literature, the meta-analysis by Aiello and Wolfle (1980) was more centered around which 

method of instruction was superior, rather than framing the research questions from a “which,” 

“when,” and “for what purpose” perspective. 

To once again reference the remarks by Gersten et al. (2008), there are a variety of 

instructional events taking place in a given instructional setting, and this same notion can be 
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applied to an undergraduate level instructional setting, and more specifically to an undergraduate 

level science setting. Undergraduate level science post-secondary instructional settings are also 

made up of various instructional events, including the four dimensions (Pacing, Teacher�s Role, 

Flexibility, and Adaptation) explored by Bernard et al. (2019). Like in K-12, the amount and type 

of T-C and S-C learning in each dimension is a function of the given instructional environment 

being explored. 

A number of additional moderator variables – both instructional and demographic – fall 

under the undergraduate level science post-secondary education umbrella, and as a result a better 

understanding of how primary predictor moderator variables (Pacing, Teacher�s Role, 

Flexibility, and Adaptation), and additional moderator variables, influence learning outcomes is 

worth investigating at a systematic review level as it falls under the overarching pursuit of a 

better understanding of what types of instructional environments (“which,” “when,” and “for 

what purpose”) are most optimal for improving learning outcomes in a given instructional 

setting. 

In this systematic review, the spectrum-based approach to K-12 T-C and S-C learning, 

and their inevitable combinations, by Bernard et al. (2019) will be applied to undergraduate level 

science post-secondary education in an attempt to delve further into the questions of “which,” 

“when,” and “for what purpose” regarding combinations of both learning approaches. Like in K-

12, undergraduate level science post-secondary T-C and S-C learning approaches are not a 

dichotomy, but rather combinations as a function of the particular learning environment.  

By applying the approach used by Bernard et al. (2019) to undergraduate level science 

post-secondary education, this systematic review hopes to answer the following research 

questions: 
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1) Does undergraduate level science post-secondary more S-C learning result in higher 

achievement outcomes (as measured by effect size) than undergraduate level science 

post-secondary less S-C (more T-C) learning, and does the degree of S-C (amount of S-C 

difference between treatment and control) predict the degree of achievement (amount of 

achievement outcome difference between treatment and control)? 

2) Which primary predictor variables of student achievement (Pacing, Teacher�s Role, 

Flexibility, and Adaptation) to what extent predict effect size, and what is the magnitude 

of effect as a function of the degree of S-C (amount of S-C difference between treatment 

and control) of each primary predictor variable? 

3) What combinations of primary predictor variables of student achievement (Pacing, 

Teacher�s Role, Flexibility, and Adaptation) better predict effect size? 

4) Which moderator variables (technology use, subject matter, and treatment group class 

size) to what extent predict effect size, as well as which combinations of moderator 

variables predict effect size? 

 

The outcomes of this meta-analysis will inform educational practitioners and the research 

community of the similarities and differences between T-C and S-C learning in K-12 and 

undergraduate level science post-secondary education, as well as what the more effective and 

less effective combinations are as a function of the specific undergraduate level science post-

secondary learning environment. 
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Methods 

 

Literature Search Strategy 

Comprehensive literature searches were carried out by a fulltime Information Specialist 

(MLS level) and member of the Systematic Review Team at the Centre for the Study of Learning 

and Performance (CSLP) at Concordia University in Montréal, QC, Canada. The sources used 

for this systematic review were taken from a larger database that was created to explore S-C 

learning at various levels of education – from pre-kindergarten to post-secondary education. The 

same database was used for the literature search and retrieval process performed by Bernard et 

al. (2019) for their systematic review on S-C learning in K-12. 

 

Inclusion/Exclusion Criteria 

In order to be included in the meta-analysis, an individual study had to meet the following 

inclusion/exclusion requirements: 

 Be publicly available (or archived) and encompass sources no earlier than 1960; 

 Be conducted in formal undergraduate level post-secondary educational settings and 

address any of the following formal undergraduate level post-secondary education 

science subject matters: Biology, Chemistry, Physics, Geology or Psychology (Clinical 

and Experimental); 

 Contain legitimate measures of academic achievement (i.e., instructor-made/researcher-

made, standardized); 

 Contain at least two groups of students receiving different instructional 

strategies/practices that can be compared as more S-C and less S-C instruction; 
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 Include course content and outcome measures that are compatible in the groups that form 

these comparisons; 

 Contain sufficient descriptions of major instructional events that occurred in all 

instructional conditions; 

 Fulfill requirements of either experimental or high-quality quasi-experimental design 

(QED); and 

 Contain sufficient statistical information for effect size extraction. 

 

As a result the studies included in the current meta-analysis could be characterized as follows. 

 

Types of Studies 

 Only studies that considered the difference between two groups were eligible for 

inclusion. These studies were either experimental (i.e., RCTs) or high-quality QEDs (i.e., 

statistically verified group equivalence or adjustment) in design that adequately addressed the 

more S-C/less S-C group comparisons from the research questions, featured interventions that 

covered the same content (required knowledge acquisition and/or skill development) along with 

legitimate measures of academic achievement (i.e., instructor-made, standardized), and reported 

sufficient statistical information for effect size extraction. 

 

Participants and Settings 

 The participants are undergraduate level science post-secondary students in formal 

educational settings eventually leading to a certificate, diploma, degree, or promotion to a higher 

level. The subject matter covered is science (biology, chemistry, physics, geology, and 
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psychology). Educational interventions may take place either in the classroom/lecture hall (CI), 

via distance education (DE), or as a blended intervention (BL – various combinations of CI and 

DE). 

 

Outcome Measures 

 All types of objective measures of academic achievements were considered. This 

included both standardized and non-standardized instructor/research-made assessment tools, as 

well as both cumulative final examinations and averages of several performance tasks covering 

various components of the course/unit content. Self- assessments were excluded, as well as 

attitudinal and behavioral measures. Data of their prevalence in the reviewed primary literature 

was collected to inform further reviews in the area with a potential focus on those types of 

outcomes. 

 

Types of Interventions 

 The intervention in question (a treatment condition) was considered to be any 

combination of instructional events that is rated higher in S-C qualities than a comparison 

(control) condition. As such, the phenomenon being investigated in this meta-analysis is not an 

intervention in the typical way that this word is used in experimental literature. In this case, it is a 

set of instructional practices that have been rated along a continuum from extremely T-C to 

extremely S-C via scores on the four instructional events (i.e., dimensions) presented earlier, and 

used by, Bernard et al. (2019): Pacing, Teacher�s Role, Flexibility, and Adaptation.  

In this meta-analysis, teaching and learning have been deconstructed according to the 

events associated with them – a more S-C learning environment is one in which students play a 



 14

more central role in the conduct of instructional events, and a more T-C learning environment is 

one in which instructional events are dominated by the instructors. As a result, any classroom 

research, regardless of the intervention being investigated, is eligible for inclusion as long as 

there is sufficient information provided as to what each participation group did. 

 

Primary Predictor Variables 

Two experienced reviewers working independently coded each participation group in 

each study from 1 (more T-C) to 5 (more S-C) on the same four primary predictor variables of 

student achievement (i.e., effect size-defining dimensions) presented earlier, and used by, 

Bernard et al. (2019): Pacing, Teacher�s Role, Flexibility, and Adaptation. The reviewers had 

extensive experience from working on the coding for the Bernard et al. (2019) systematic review, 

as well as prior extensive training involving multiple practice runs on studies previously judged 

to have been accurately and reliably coded. Additionally, these same reviewers had both prior 

training and prior experience with the overall inclusion/exclusion criteria, and as a result were 

also assigned the task of determining which studies to include in this systematic review based on 

the requirements.  

After the reviewers independently coded each participation group in each study (from 1 

to 5 on each primary predictor variable), they met with a third member of the research team and 

proceeded to go over the coding. If there were any disagreements in coding (e.g., Reviewer #1 

coded one participation group in one study as a 4 on Pacing, and Reviewer #2 coded that same 

participation group as a 2 on Pacing), the reviewers and the additional research team member 

would discuss the discrepancy until a consensus was reached. This procedure of independent 
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coding followed by joint discussion and appropriate changes to the coding was employed at all 

stages of this systematic review. 

 Within each eligible comparative study, all participation groups were coded for the four 

effect size-defining dimensions using a five-point scale, as follows: 

 

Pacing. 

Encompasses the course design, as well as the selection and provision of study materials and the 

setting up of learning objectives. 

 Degree to which instructors/students participate in various aspects of course planning 

(e.g., selection of study materials or setting learning objectives): 

1. No student involvement (most is determined by the instructor or 

program/curriculum) 

2. Student involvement in at least one of the components of course planning is present, 

but limited 

3. Instructors and students collaborate in the course planning, but instructor’s role is 

still dominant 

4. Instructors and students collaborate in the course planning equally 

5. High student involvement – students play a leading role in course planning 

 

Teacher’s Role. 

Represents a continuum of an instructor’s major responsibilities for organizing/delivering 

instruction. 

 Degree to which an instructor plays a predominant role in the teaching/learning process: 
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1. Instructor almost exclusively lectures, is the main source of content-relevant 

information and/or an authority figure 

2. Instructor provides some guidance, feedback, initiates and supports discussions, etc. 

3. Instructor functions as a guide, coach, tutor, provocateur of thinking 

4. Instructor functions as a colleague, partner in learning 

5. Instructor almost exclusively acts as a facilitator of learning, responding to students’ 

specific needs (follows students’ lead, consults, clarifies, encourages, etc.) 

 

Flexibility.  

Reflects the degree of student control over the time of instruction/learning (i.e., logistical 

flexibility) and over progression through the course content (i.e., pedagogical flexibility – 

revisiting/selecting/skipping/reordering topics and tasks). 

 Degree to which students are given control over course progression: 

1. Highly structured instruction (no flexibility is allowed) 

2. Minor degree of either logistical or pedagogical flexibility is available to students 

3. Program/instructor’s control over course progression is balanced with that of students 

4. Students have a substantial amount of flexibility in course progression 

5. High degree of flexibility (up to the point of completely self-paced and/or self-

planned/self-managed learning) 

 

Adaptation. 

Describes the amount of modification in instructional process that is provided to accommodate 

individual students. 
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 Degree to which instruction takes into account students’ needs/interests/level of 

knowledge: 

1. Learning materials, settings, activities and other work arrangements are 

predetermined and unchanged throughout the instruction (e.g., standardized or 

required curriculum) 

2. Minor modifications are allowed to either learning materials, group composition, or 

the context of instruction 

3. Elements of either individualized feedback, or role assignments and tasks, based on 

students’ interests and/or previous achievements, etc. 

4. Adapting several instructional components (in combinations) to students’ individual 

needs/interests/levels of knowledge 

5. High levels of joint adaptability of several components of instruction 

 

Research Question 1 

Does undergraduate level science post-secondary more S-C learning result in higher 

achievement outcomes (as measured by effect size) than undergraduate level science post-

secondary less S-C (more T-C) learning, and does the degree of S-C (amount of S-C difference 

between treatment and control) predict the degree of achievement (amount of achievement 

outcome difference between treatment and control)? 

 

Based on the results of the Primary Predictor Variable coding described above, numeric 

values were assigned to each participation group. The minimum score a group could receive was 

4 (1 out of 5 on each of the four dimensions) and the maximum was 20 (5 out of 5 on each of the 
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four dimensions). The sum of these values determined treatment (higher total out of 20 and 

therefore more S-C) and control (lower total out of 20 and therefore less S-C) conditions in every 

included study. While in any given participation group some dimensions might have been rated 

as more T-C (a score of either 1/5 or 2/5), more S-C (a score of 4/5 or 5/5), or equal (3/5), as 

long as one of the groups scored higher out of the total score of 20, a distinction between a more 

S-C group and a less S-C group was able to be made. Effect sizes of d-family (that is 

standardized mean differences) were then extracted from each individual study in order to 

measure the amount of difference in achievement outcomes between treatment and control (see 

“Extracting and Calculating Effect Sizes” section below). Afterwards, all effect sizes were 

averaged to determine the overall magnitude of impact of more S-C learning on undergraduate 

level science post-secondary student achievement outcomes.  

A differential score between treatment and control was then calculated, with a range from 1 

(one point difference in coding on only a single dimension, with the other three dimensions 

receiving equal scores for each group) to 16 (maximum difference between groups on all four 

coded dimensions, with one group receiving 1 out of 5 on each dimension, and the other group 

receiving 5 out of 5 on each dimension). Meta-regression analysis was then used to compare 

these differential scores with the student achievement outcomes reported for each participation 

group in order to explore whether degree of S-C predicted achievement outcomes across all 

studies. 

 

Research Question 2 

Which primary predictor variables of student achievement (Pacing, Teacher�s Role, Flexibility, 

and Adaptation) to what extent predict effect size, and what is the magnitude of effect as a 
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function of the degree of S-C (amount of S-C difference between treatment and control) of each 

primary predictor variable? 

 

Based on the results of the Primary Predictor Variable coding described above, a differential 

score was calculated between the results of each participation group in a study on each of the 

four primary predictor variables (Treatment Group Score – Control Group Score = Differential 

Score). For each study, four differential scores were calculated – one for each dimension. In each 

study, a dimension was deemed more T-C if the differential score was between -1 and -4 

(Treatment Group Score < Control Group Score), and was deemed more S-C if the differential 

score was between +1 and +4 (Treatment Group Score > Control Group Score). A score of 0 was 

interpreted as equality between conditions (Treatment Group Score = Control Group Score). 

While some participation groups might have scored more S-C on some dimensions and more T-

C, or equal, on others, it is important to remember that the participation group with the higher 

total score out of 20 was deemed the treatment (more S-C) condition in each study. Meta-

regression analysis was then used to compare the differential scores of each dimension with the 

student achievement outcomes reported for each participation group in order to explore the 

relationship between degree of S-C in each dimension and achievement outcomes (with 

achievement outcomes being the outcome variable and defined as the average effect size of all 

the studies).  

Mixed moderator variable analysis was then used to explore the degree of S-C (amount of S-

C difference between treatment and control) of each of the four primary predictor variables and 

their individual magnitude of effect on post-secondary student achievement outcomes. For each 

dimension, the degree (level) of S-C ranged from 0 (S-C = T-C) to 4 (S-C >>>> T-C). For each 
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degree of S-C being examined, achievement outcomes were the outcome variable and were 

defined as the average effect size of all the studies that contained the same degree of S-C on the 

dimension in question (e.g., When examining the dimension of Flexibility at level 2 (S-C >> T-

C), only studies that contained level 2 Flexibility were included in the analysis). 

 

Research Question 3 

What combinations of primary predictor variables of student achievement (Pacing, Teacher�s 

Role, Flexibility, and Adaptation) better predict effect size? 

 

Meta-regression analysis was used to compare primary predictor variables alone (i.e., 

Pacing; Teacher�s Role) with the primary predictor variables paired (e.g. Pacing + Teacher�s 

Role).  

 

Instructional and Demographic Moderator Variables 

The same two experienced reviewers who independently coded the primary predictor 

variables also coded the following three moderator variables: Technology Use (instructional 

moderator variable), Subject Matter (demographic moderator variable), and Treatment Group 

Class Size (demographic moderator variable). Technology Use was coded as either Yes or No; 

Subject Matter as either Biology, Chemistry, Physics, Geology or Psychology; and Treatment 

Group Class Size as either Small (15 students or under), Medium (16 to 49 students), Large (50 

to 99 students) or Very Large (100+ students), regardless what the class size of the control group 

was. 
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Research Question 4 

Which moderator variables (technology use, subject matter, and treatment group class size) to 

what extent predict effect size, as well as which combinations of moderator variables predict 

effect size? 

 

Following the moderator variable coding, mixed moderator variable analysis and multiple 

meta-regression analysis were used to explore which variables on their own, as well as which 

combinations of variables, influenced student learning achievement outcomes. 

 

Extracting and Calculating Effect Sizes 

In order for studies to contain sufficient information for effect size extraction, the following 

statistical information was considered (in all cases sample size data were required): 

 Means and standard deviations for each treatment and control group; 

 Exact t-value, F-value, with an indication of the ± direction of the effect; 

 Exact p-value (e.g., p = .012), with an indication of the ± direction of the effect; 

 Effect sizes converted from correlations or log odds ratios; 

 Estimates of the mean difference (e.g., adjusted means, regression  weight, gain score 

means when r is unknown); 

 Estimates of the pooled standard deviation (e.g., gain score standard deviation, one-way 

ANOVA with three or more groups); 

 Estimates based on a probability of a significant t-test using � (e.g., p < .05); and 

 Approximations based on dichotomous data (e.g., percentages of students who succeeded 

or failed the course requirements). 
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Effect sizes were initially calculated as Cohen’s d and then converted to Hedges’ g (i.e., 

correction for small samples). Standard errors ( ) were calculated for and then converted to 

standard errors of  applying the correction formula for g. Hedges’ g,  and sample sizes 

(i.e., treatment and control) were entered into Comprehensive Meta-Analysis 3.3.07 (Borenstein, 

Hedges, Higgins, & Rothstein, 2014) where statistical analyses were performed. 

In all of these analyses, including the multiple regression, the inverse-weighted random 

effects model was used for interpretation. Average effect sizes, therefore, are symbolized as

g
Random

. Under the tenets of this model, as contrasted with the fixed effect model, between-

study variation is not collected and analyzed separately (i.e., QTotal), but instead is incorporated 

into each inverse-variance weighted (W) effect size as  2 (tau-squared) that make up g
Random

, 

thus,W
Random

 1
v
within

 2
. This tends to make the overall average effect size (

g
Random

) more conservative and the overall standard ( SEg ) larger, and also more 

conservative. Other overall statistics, such as the significance tests z and p, also tend to be more 

conservative.  

The effect sizes were coded for precision of calculations and analyzed in subsequent 

moderator variable analysis. 

 

SE
d

d

SE
g

SE
g
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Results 

 

The Results section begins with a description of the literature search and retrieval process, 

followed by an analysis of bias. The subsequent synthesis of results provides results for each of 

the four research questions. The moderator variable analysis for research question #4 begins with 

categorical-level analysis, followed by multiple meta-regression analysis.  

 

Description of Studies 

 

Results of the search. 

Literature search and retrieval was performed by a fulltime Information Specialist (MLS 

level) and member of the Systematic Review Team at the Centre for the Study of Learning and 

Performance at Concordia University in Montréal, QC, Canada. The sources used for this 

systematic review were taken from a larger database that was created to explore S-C learning at 

various levels of education – from pre-kindergarten to post-secondary education. The same 

database was used for the literature search and retrieval process performed by Bernard et al. 

(2019) for their systematic review on S-C learning in K-12. 

The database as a whole initially contained 9759 total search results obtained from searching 

through 14 different databases and using both the Google and Bing search engines. Duplicate 

sources were removed (1285) and the remaining 8474 sources were subjected to an abstract 

screening process, which yielded 3749 sources for subsequent full-text retrieval and review. Of 

those, 167 were not retrievable, 2751 were excluded, and the remaining 831 were included. 

Examination of these 831 full-text sources proceeded according to the details described in the 
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Methods section. A total of 735 sources were excluded due to the inclusion/exclusion criteria in 

the Methods section, results in 96 included sources. Sources containing Technology, Engineering 

and Mathematics as the subject matter were also part of the 735 excluded sources – the 96 

included sources were all Science (S of STEM included; TEM of STEM excluded). The final 

stage consisted of the extraction, coding, and analysis of 141 independent effect sizes from these 

96 included sources. References to these 96 individual sources appear in the section References 

to included sources. Statistical information for the 141 independent effect sizes appears in 

Appendix 1 – Descriptive Statistics for Each Study. 

 

Bias Analysis: Research Design, Publication and Sensitivity 

 

Regarding research design, only quasi-experimental (QED) and random assignment (RCT) 

experiments were included (Table 1), with QED producing a slightly higher moderate effect size 

( = 0.40 vs. 0.25) from a larger pool of studies (k = 85 vs. 56). The model produced a 

statistically non-significant result (Q-Between = 3.15, df = 1, p = 0.08). 

 

Table 1 

Research design bias analysis 

Codes k  SE 
Lower 
95th 

Upper 
95th 

z-value p-value Q-B df p-value

QED 85 0.40 0.05 0.30 0.50 7.94 < .001    

RCT 56 0.25 0.07 0.12 0.38 3.68 < .001    

Total between  3.15 1 .08 

 

 g

 g
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Publication date was subjected to an analysis containing five options (Table 2): 1960-1979; 

1980-1989; 1990-1999; 2000-2009; and 2010-2012. 1960-1979 and 2010-2012 both produced 

non-significant results (p = 0.45 and p = 0.12). 2000-2009 produced a statistically significant 

moderate effect size ( = 0.34) from the largest sample of effect sizes (k = 81 out of 141). While 

1980-1989 produced the highest effect size ( = 0.65), it only contained k = 12 out of the 

possible 141 effect sizes. The overall model produced a statistically significant result (Q-

Between = 20.46, df = 4, p < .001). 

 

Table 2 

Publication date analysis 

Levels k  SE 
Lower 

95th 
Upper 
95th 

z-value p-value Q-Bet. df p-value

 

1960-1979 9 0.07 0.07 -0.11 0.25 0.75 .45    

1980-1989 12 0.65 0.65 0.28 1.01 3.44 .001    

1990-1999 20 0.16 0.16 -0.00 0.32 1.96 .05    

2000-2009 81 0.34 0.43 0.52 0.52 8.72 < .001    

2010-2012 19 0.15 0.12 -0.09 0.39 1.24 .12    

Total between  20.46 4 < .001

 

Analysis of publication bias seeks to determine if a sizable number of studies might have 

been missed or otherwise not included in a meta-analysis (Rothstein et al., 2005) and that this 

number, if found and included, would nullify the average effect. Publication bias was explored 

via a Funnel Plot, Duval and Tweedies’s Trim and Fill (2000) procedure, as well as Classic and 

Orwin’s fail-safe N procedures. 

 g

g

 g
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The Funnel Plot (Figure 1) indicates that there was no discernable publication bias on the 

negative side of the plot (i.e., left of the mean effect size). The Trim and Fill results suggest a 

similar pattern of inclusiveness. Classic fail-safe N suggests that 9749 additional effect sizes 

would be needed to bring the observed p-value below alpha = .05 (i.e., 69.1 missing studies 

would be needed for every observed study for the effect to be nullified). Lastly, Orwin’s fail-safe 

N (Orwin, 1983) suggests that 113 additional ‘null’ effect sizes would be needed to bring the 

observed average effect size to a trivial level of  = 0.15.  

 

Hedges’ g 

Figure 1. Funnel plot of 141 effect sizes (Hedges’ g – X-Axis; Standard error – Y-Axis).
 

The final analysis of bias, sensitivity analysis, seeks to determine if effect sizes, especially at 

the upper and lower ends of the distribution (where higher and lower effect sizes are sometimes 

paired with anomalously large sample sizes) have any undue influence on the overall random 

effects outcomes (Borenstein et al., 2009). Table 3 shows the six highest and six lowest effect 

g
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sizes and the overall influence when they are systematically removed from the distribution and 

the results effects are recalculated (i.e., one study removed, as exemplified below). The overall 

procedure was conducted using the software Comprehensive Meta-Analysis (Borenstein et al., 

2014). 

Column 1 is the Study Name and Date of Publication. Column 2 is the actual calculated g 

for each of the six highest and six lowest effect sizes. Columns 3 through 8 are the recalculated 

statistics when each study is removed and the statistics recalculated. Column 9 is the relative 

weight that is applied under the random model. Higher weights produce more influence than 

lower weights.  

There appear to be no anomalous results across the 12 studies. This suggests that there is 

little or no ‘effect size by sample size bias’, at least at the extremities. This does not mean that 

there is no bias within the remaining 129 studies, but it is likely that if bias is present in these 

smaller effect size studies the overall results will not be as affected as it would in these 12 

studies. As a result of this analysis no effect sizes were removed as outliers and no study was 

Winsorized (i.e., given the value of the next highest or lowest study). 

 

Table 3 

Sensitivity analysis (random effects) 

Study Names 
Actual 

g 

One Study Removed 
Relative 
Weight

 SE 
Lower 
95th 

Upper 
95th 

z-Value p-value 

Wozniak2012 2.30 0.34 0.04 0.26 0.42 8.53 0.00 0.14 

Okebukola1988 1.99 0.34 0.04 0.26 0.37 8.51 0.00 0.20 

Doymus2008 1.73 0.33 0.03 0.25 0.35 8.46 0.00 0.73 

Okebukola1988 1.66 0.34 0.04 0.26 0.37 8.47 0.00 0.34 

Folconer1988 1.51 0.34 0.04 0.26 0.38 8.49 0.00 0.64 

 g
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Swanson1990 -0.48 0.35 0.04 0.27 0.42 8.68 0.00 0.29 

Kapp2011 -0.69 0.35 0.04 0.28 0.42 9.04 0.00 0.94 

Hulshof2005 -0.72 0.35 0.04 0.27 0.43 8.84 0.00 0.77 

Reinhardt2012 -0.85 0.35 0.04 0.27 0.43 8.84 0.00 0.68 

Martin2009 -1.01 0.35 0.04 0.27 0.43 8.73 0.00 0.41 

Martin2009 -1.04 0.35 0.04 0.27 0.43 8.76 0.00 0.45 

Overall (k = 141) 0.34 — 0.04 0.26 0.42 8.58 0.00 100.00

 

 

Synthesis of Results 

 

Research question 1. 

Does undergraduate level science post-secondary more S-C learning result in higher 

achievement outcomes (as measured by effect size) than undergraduate level science post-

secondary less S-C (more T-C) learning, and does the degree of S-C (amount of S-C difference 

between treatment and control) predict the degree of achievement (amount of achievement 

outcome difference between treatment and control)? 

 

While the first research question considered the overall average effect on achievement 

outcomes of more adaptive science instruction as it is reflected in the difference between more S-

C learning (treatment condition) and less S-C learning (control condition), it is important to 

remember that it is not necessarily a mutually exclusive difference between S-C learning 

environments and T-C environments. Rather, as outlined in the Methods section, it is a 

difference in ratings on four effect size-defining dimensions (Pacing, Teacher�s Role, Flexibility, 

and Adaptation) between each participation group, with the group receiving a higher total score 
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being the treatment condition, and the group receiving a lower total score being the control 

condition. 

One hundred and forty one unadjusted effect sizes were included in the meta-analysis (Table 

4), producing a significant random effects model weighted average effect size of  = 0.34, k = 

141, SE = 0.04, z = 8.58, p < .001. The distribution was significantly heterogeneous (Q-Total = 

618.13, df = 140, p < .001, with an I2 value of 0.77 and a tau-squared ( ) of 0.15), suggesting 

that a large degree of between-study variance was present. The results of this analysis suggest 

that on average more S-C classroom studies produce better results on achievement outcomes 

than do less S-C classroom studies. The average weighted effect size is of moderate size (Cohen, 

1988) and indicates that on average the more S-C condition (treatment) outperformed the less S-

C condition (control) by 0.34sd.  

 

Table 4 

Overall results 

Model Effect size and 95th Confidence Interval Test of null 

Random 
Effects 

k  SE Lower 95th Upper 95th z-value p-value 

Total 
Collection 

141 0.34 0.04 0.26 0.42 8.58 < .001 

Model Between-group Heterogeneity  

Fixed Effect Q-value df p-value        I2 Tau2  

Total 
Collection 

618.13 140 < .001 0.77 0.15  

 

Meta-regression analysis can further provide a sense of the relationship between the degree 

of S-C and achievement outcomes. As outlined in the Methods section, a measure of the degree 

 g

 
2

 g
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of S-C (the quantitative differences between the ratings of the treatment/control) was calculated 

to test this relationship. If this relationship is patterned (either positively or negatively) rather 

than irregular, the result of the meta-regression of achievement on the degree of student-

centeredness should result in a positive, significant slope. If the slope of the regression line is not 

positive and significant, indicating the absence of a positive linear progression, we can assume 

that the relationship between student-centeredness and achievement results is irregular, thereby 

diminishing the argument that more S-C classrooms are more advantageous to attaining higher 

achievement outcomes than less S-C classrooms. 

 The simple meta-regression of the relative difference between more S-C and less S-C 

(Table 5) resulted in a non-significant slope ( = 0.01, SE = 0.01, z = 0.03, p = 0.40). The test of 

the model resulted in Q-Between = 0.70, df = 1, p = 0.40, which is also non-significant. These 

results indicate an extremely weak, non-significant relationship between the degree of S-C and 

student learning achievement outcomes. 

 

Table 5 

Simple meta-regression: Overall strength of the relationship between treatment and 
control (degree of student-centeredness) 

Covariate  SE Lower 95th Upper 95 z-value p-value VIF 

Intercept 0.28 0.08 0.12 0.44 3.43 < .001 4.23 

Total 
difference 
(across 4 
predictors) 

0.01 0.01 -0.01 0.03 0.03 .40 1.00 

Test of Model: QBetween = 0.70, df = 1, p = .40 

Note: This and all subsequent meta-regression analyses use Random Effects Method-of-
Moments Model. 
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Research question 2. 

Which primary predictor variables of student achievement (Pacing, Teacher�s Role, Flexibility, 

and Adaptation) to what extent predict effect size, and what is the magnitude of effect as a 

function of the degree of S-C (amount of S-C difference between treatment and control) of each 

primary predictor variable? 

 

As outlined in the Methods section, a differential score (Treatment Group Score – Control 

Group Score = Differential Score) was calculated between the results of each participation group 

in a study on each of the four dimensions of classroom practice (primary predictor variables). A 

differential score between -1 and -4 meant a dimension was more teacher-centered, and a score 

between +1 and +4 meant a dimension was more student-centered. A score of 0 meant equality. 

The four dimensions (described in detail in the Methods section) are: 

 Teacher�s Role as a lecturer/guide/mentor; 

 Pacing of instruction to meet student needs/preferences; 

 Adaptability of feedback and learning activities to students, individual interests of 

students, etc. 

 Flexibility in the creation/use of study materials, course design, etc.; 

Meta-regression analysis was used to explore which, if any, of these dimensions predict 

effect size (student achievement outcomes). All four dimensions were entered into multiple 

meta-regression (random effects method of moments) in the order that they are described above. 

The dependent, or outcome, variable in this analysis was the average effect size of all the studies 

(i.e., the student achievement outcomes). 
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The overall model, excluding the intercept (Table 6), was non-significant (Q-Between = 6.47, 

df = 4, p = 0.17). Additionally, none of the four dimensions were significant predictors of effect 

size, with Teacher�s Role being the closest to reaching the significance level ( = 0.08, SE = 

0.06, z = 1.50, p = 0.13). It should also be noted that Teacher�s Role was the only dimension to 

have a positive (non-significant) relationship with effect size (student achievement outcomes). 

The other three dimensions – Pacing ( = -0.03, SE = 0.05, z = -0.58, p = 0.56); Adaptability (

= -0.41, SE = 0.07, z = -0.75, p = 0.45); and Flexibility ( = -0.09, SE = 0.05, z = -1.87, p = 0.61) 

– all had negative (non-significant) relationships with effect size. 

 

Table 6 

Meta-regression analysis – All four predictors 

Covariates  SE 
Lower 
95th 

Upper 95 z-value p-value VIF 

Intercept 0.34 0.08 0.18 0.51 4.20 < .001 4.196 

Teacher’s Role 0.08 0.06 -0.03 0.19 1.50 .13 1.06 

Pacing -0.03 0.05 -0.03 0.19 -0.58 .56 1.06 

Adaptation -0.41 0.07 -0.18 0.08 -0.75 .45 1.04 

Flexibility -0.09 0.05 -0.19 0.00 -1.87 .61 1.04 

Test of Model: QBetween = 6.47. df = 4, p = .17 

 

 

The analysis was re-run with only Flexibility (Table 7) and this model produced a significant 

result (Q-Between = 3.80, df = 1, p ≤ ..05). As in the previous analysis, Flexibility also had a 

negative relationship with a negative slope ( = -0.09). 
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Table 7 

Simple meta-regression: Flexibility alone 

Covariate  SE Lower 95th Upper 95 z-value p-value VIF 

Intercept 0.39 0.05 0.30 0.48 8.38 < .001 1.36 

Flexibility -0.09 0.05 -0.19 0.00 -1.95 .05 1.00 

Test of Model: QBetween = 3.80, df = 1, p = .05 

 

Regarding the degree of S-C of each of the four dimensions and their individual magnitude 

of effect on student achievement outcomes, mixed moderator variable analysis was used to 

explore the effect that each degree of S-C for each dimension had on the average effect size of all 

the studies that contained the same degree of S-C on the dimension in question. 

Of the four dimensions, only Flexibility (Table 8) was significant (Q-Between = 9.30, df = 4, 

p = 0.05). Pacing (Q-Between = 0.28, df = 3, p = 0.96), Teacher�s Role (Q-Between = 0.96, df = 

3, p = 0.81), and Adaptability (Q-Between = 0.23, df = 1, p = 0.63) were all far from significant, 

thus indicating no significant relationship between the degree of S-C of each of these three 

dimensions and student achievement outcomes. While Flexibility was the only significant 

dimension, it should be noted that it had a negative relationship between degree of S-C and effect 

size. At differential scores of 0 ( = 0.37), +1 ( = 0.33) and +2 ( = 0.35), Flexibility produced 

positive effect sizes of moderate size, however with higher degrees of Flexibility, a negative 

relationship was present ( = -0.44 at differential score = +3, and = -0.19 at differential score 

= +4). 

 

Table 8 
Levels of flexibility across levels of hedges’  

Levels k  SE 
Lower 
95th 

Upper 
95th 

z-value p-value Q-Bet. df p-value



 g g g

 g g

g
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0 – no 
difference 

95 0.37 0.05 0.27 0.48 7.00 < .001    

+1 – Favors 
SC over TC 

31 0.33 0.07 0.21 0.46 5.10 < .001    

+2 – Favors 
SC over TC 

10 0.35 0.11 0.13 0.56 3.17 .002    

+3 – Favors 
SC over TC 

3 -0.44 0.49 -1.40 0.51 -0.91 .37    

+4 – Favors 
SC over TC 

2 -0.19 0.21 -0.60 0.22 -0.91 .37    

Between groups  9.30 4 .05 

Course Pacing (Q-Between = 0.28, df = 3, p = .96)		
Teacher’s Role (Q-Between = 0.96, df = 3, p = .81) 
Adaptation of Materials and Methods (Q-Between = 0.23, df = 1, p = .63)  
 

 

Research question 3. 

What combinations of primary predictor variables of student achievement (Pacing, Teacher�s 

Role, Flexibility, and Adaptation) better predict effect size? 

 

Meta-regression analysis was used to compare primary predictor variables alone (i.e., 

Pacing; Teacher�s Role) with the primary predictor variables paired (e.g. Pacing + Teacher�s 

Role), however there were no substantial, significant findings. This lends to the conclusion that 

combinations of instructional dimensions are not indicative of influence on student achievement 

outcomes. 
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Research question 4. 

Which moderator variables (technology use, subject matter, and treatment group class size) to 

what extent predict effect size, as well as which combinations of moderator variables predict 

effect size? 

 

Technology use (Table 9) was coded as either “yes” or “no” and three options were 

subjected to analysis: treatment = yes vs. control = yes (1_1); treatment = yes vs. control = no 

(1_2); and treatment = no vs. control = no (2_2). Theoretically a fourth option of treatment = no 

vs. control = yes (2_1) was possible, but it was not present in this data set. All three options 

produced statistically significant effect sizes, however 1_1 produced an effect size of small size (

= 0.19) compared to the two moderate effect sizes produced by 1_2 ( = 0.48) and 2_2 ( = 

0.40). The model itself was also statistically significant (Q-Between = 9.06, df = 2, p = 0.01). 

 

Table 9 

Technology use analysis 

Levels k  SE 
Lower 
95th 

Upper 
95th 

z-value p-value Q-B df p-value

Yes_Yes 51 0.19 0.06 0.00 0.30 3.55  .001    

Yes_No 23 0.48 0.11 0.01 0.70 4.10 < .001    

No_No 67 0.40 0.06 0.28 0.52 6.865 < .001    

Total between  9.06 2 .01 

Post hoc difference between No-No1 & Yes-Yes2 (Q-B = 6.39, df = 1, p = .01). 
Post hoc difference between Yes-Yes1 & Yes-No3 (Q-B = 6.39, df = 1, p = .01). 

 

Technology use was further analyzed across degrees of Flexibility (Table 10). Each of the 

three codes from Table 9 (2_2; 1_1; and 1_2) was analyzed at Flexibility differential scores of 0 

 g g g

 g
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(S-C = T-C), 1 (S-C > T-C), and 2+ (S-C >> T-C; S-C >>> T-C; and S-C >>>> T-C). Of the 

three technology use codes, only 2_2 (neither group used technology by degrees of Flexibility) 

produced a significant model (Q-Between = 6.93, df = 2, p = 0.03). Furthermore, 2_2 also 

produced a significant declining effect size average over levels of Flexibility. While both 1_1 

(both groups used technology by degrees of Flexibility) and 1_2 (treatment group used; control 

group didn’t by degrees of Flexibility) were non-significant, 1_1 also had a negative relationship 

between degree of Flexibility and effect size, whereas 1_2 had a positive relationship. 

 
Table 10 
Levels of technology use by levels of flexibility (Codes 0, 1 and 2+)	

Levels k  SE 
Lower 
95th

Upper 
95th

z-value p-value Q-Bet. df p-value

a) No-No (Neither group used technology by levels of flexibility – Codes 0, 1 and 2+) 

Both groups 
“No” & 0 

39 0.52 0.08 0.35 0.70 6.20 < .001    

Both groups 
“No” & 1 

16 0.34 0.10 0.14 0.54 3.26 .001    

Both groups 
“No” & 2+ 

12 0.11 0.06 -0.154 0.70 .86 < .39    

Between groups  6.93 2 .03 

b) Yes-Yes (Both groups used technology by levels of flexibility – Codes 0 and 1) 

Both groups 
“Yes” & 0 

41 0.20 0.07 0.07 0.33 3.09 .001    

Both groups 
“Yes” & 1 

9 0.13 0.09 -0.04 0.31 1.49 .14    

Between groups  .39 1 .53 

c) Yes-No (Treatment group used; control group didn’t by levels of flexibility – Codes 0 and 1) 

Treat. "Yes," 
Cont. "No" & 0 

15 0.44 0.18 0.15 0.31 2.56 .01    

Treat. "Yes," 
Cont. "No" & 1 

8 0.53 0.11 0.31 0.74 4.82 < .00    

Between groups  .14 1 .71 
Codes for flexibility: 0 means T-C and S-C are equal; 1 means S-C > T-C; 2+ means S-C >> T-C  

 g
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The subject matter covered in this meta-analysis was science-based (Table 11), with the 

subject breakdown consisting of: biology, chemistry, geology, physics and psychology (clinical 

and experimental). The overall model produced a statistically significant result (Q-Between = 

20.93, df = 4, p < .001). Geology ( = -0.05) and psychology ( = 0.06) were the only subjects 

to yield non-significant results (p = 0.85 and p = 0.51, respectively). Biology ( = 0.31) and 

physics ( = 0.45) produced moderate effect sizes, and chemistry ( = 0.58) produced a large 

effect size. Of the five subjects explored, geology was the only one with a negative effect size (

= -0.05). 

 

Table 11 

Subject matter analysis 

Levels k  SE 
Lower 

95th 
Upper 
95th 

z-value p-value Q-Bet. df p-value

Biology 46 0.31 0.06 0.20 0.42 5.56 < .001   

Chemistry 24 0.58 0.01 0.40 0.76 6.26 < .001    

Geology 

Physics 

5 

37 

-0.05 

0.45 

0.26 

0.01 

0.07 

0.28 

-0.55 

0.61 

0.45 

5.27 

.85 

< .001
   

Psychology 20 0.06 0.09 -0.12 0.24 0.65 .51    

Total between 20.93 4 < .001

 

 

Treatment group class size (Table 12) options were: Small (15 students or under); Medium 

(16 to 49 students); Large (50 to 99 students); and Very Large (100+ students). The overall 

model was significant (Q-Between = 15.51, df = 3, p = 0.001). Of the four options, only Medium 

(p < 0.001) and Large (p < 0.000) were significant, as well as both produced the two highest 

effect sizes ( = 0.40 and = 0.46, respectively).  
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Table 12 

Class size of treatment group analysis 

Levels k  SE 
Lower 

95th 
Upper 
95th 

z-value p-value Q-Bet. df p-value

Small 27 0.29 0.16 -0.01 0.61 1.90 .06   

Medium 76 0.40 0.06 0.28 0.51 6.86 < .001    

Large 

Very Large 

20 

18 

0.46 

0.09 

0.08 

0.07 

0.01 

-0.05 

0.62 

-0.23 

5.53 

1.20 

< .000 

.23 
   

Total between 15.51 3 .001 

Note: Small = ≤ 15 students; Medium = 16 to 49 students; Large = 50 to 99 students; Very Large = 100+ 
students. 
 

The above categorical coding produced a number of significant moderator variables, which 

were subsequently subjected to multiple meta-regression analysis to further provide a sense of 

the relationship between the moderator variables and student achievement outcomes. The first 

multiple meta-regression (Table 13) examined the two integer-level variables of treatment group 

class size and flexibility. Both class size ( = -0.001, SE = 0.0001, z = -1.93, p = 0.05) and 

flexibility ( = -0.09, SE = 0.05, z = -2.01, p = 0.05) had a significant, negative relationship with 

effect size – as class size gets smaller average student achievement outcomes go up (Figure 2), 

and as flexibility goes up (greater S-C learning) average student achievement outcomes go down 

(Figure 3). 

 

Table 13 
Multiple meta-regression: Flexibility and treatment group class size (Integer-Level) 

Covariate 
(Predictors) 

 SE 
Lower 
95th 

Upper 
95th 

z-value p-value VIF 

Intercept 0.45 0.06 0.34 0.56 8.03 < .001 2.00 

Class Size 
(*Treatment) 

-0.001 0.0001 -0.002 -0.000 -1.93 .05 1.00 

Flexibility -0.09 0.05 -0.19 0.002 -2.01 .05 1.00 

 g
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Test of Model: Q-Between (predictors) = 7.52, df = 2, p = .02; R2 = 0.02 or 2% 

Homogeneity: Q-Between (studies) = 567.82, df = 138, p < .0001, I2 = 75.70, tau2 = 0.1444 

*Class sizes were taken from treatment groups of 141 effect sizes.  

 

H
e
d
ge

s’
 g
 

  Class Size (Treatment Group) 

Figure 2. Scatterplot showing Hedges’ g by class size. 
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Figure 3. Scatterplot showing Hedges’ g by flexibility. 
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 Multiple meta-regression analysis was also performed for the four predictors of treatment 

group class size, flexibility, subject matter, and technology use (Table 14). Along with the 

integer-level predictors, the overall models for subject matter (Q-Between = 20.71, df = 4, p < 

0.001) and technology use (Q-Between = 6.47, df = 4, p = 0.04) were also significant. The 

overall model (Q-Between (predictors) = 42.24, df = 8, p = < .0001, R2 = 0.26 or 26%; and Q-

Between (studies) = 430.65, df = 132, p = < .0001, I2 = 69.35%, tau2 = 0.011) was also 

significant. It is also important to note that R2 = 0.26, indicating that 26% of the variance is 

accounted for. As in Table 13, both class size and flexibility were negative predictors of effect 

size. Regarding subject matter (Figure 4), chemistry was the best predictor of effect size ( = 

0.23, SE = 0.11, z = 2.13, p = 0.03), with a significantly higher average effect size than the 

reference group of biology. The others (except physics, which is not significant) were negative, 

meaning that they had significantly lower average effect sizes than biology. Regarding 

technology use (Figure 5), “both groups yes” (BGY) had a significantly lower average effect size 

( = -0.18, SE = 0.09, z = -2.09, p = 0.04) than the reference group of “both groups no” (BGN). 

When the treatment group has technology and the control group doesn’t (EYCN), the result was 

not significantly different from BGN ( = 0.07, SE = 0.11, z = 0.06, p = 0.53). In other words, 

the presence of technology in the treatment group does not outperform studies where no 

technology is in either group. 
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Table 14 
Multiple meta-regression of four predictors: Treatment group class size, flexibility, subject 
matter, and technology use 

Covariates 
(Predictors) 

 SE 
Lower 
95th 

Upper 
95th 

z-value p-value VIF 

Intercept 0.51 0.08 0.34 0.67 6.13 < .00 5.25 

Integer Predictors 

Class Size 
(Treatment) 

-0.001 0.00 -0.002 -0.0001 -2.24 .03 1.02 

Flexibility -0.13 0.05 -0.22 -0.05 -2.83 .005 1.14 

1Subject Matter (Categorical) Q = 20.71, df = 4, p < .0001 

Chemistry 0.23 0.11 -0.18 0.44 2.13 .03 1.34 

Geology -0.45 0.21 -0.86 -0.04 -2.14 .03 1.60 

Physics 0.10 0.098 -0.01 0.29 0.98 .33 1.38 

Psychology -0.25 0.11 -0.47 -0.03 -2.24 .02 1.19 

2Technology Use (Categorical) Q = 6.47, df = 2, p = .039 

Yes-Yes -0.18 0.09 -0.35 -0.11 -2.09 .04 1.34 

Yes-No 0.07 0.11 -0.14 0.28 0.06 .53 1.37 

Test of Model: Q-Between (predictors) = 42.24, df = 8, p = < .0001, R2 = 0.26 or 26%; 
(Between predictors: variance accounted for by the model). 

Homogeneity: Q-Between (studies) = 430.65, df = 132, p = < .0001, I2 = 69.35%, tau2 = 0.011 
(Between Studies: Variance not accounted for). 
1 Reference Group for Subject Matter: Biology. 
2 Reference Group for Technology Use: Both groups used no technology (No-No). 
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Figure 4. Scatterplot showing Hedges’ g by subject matter. 

 

 
No‐No  Yes‐Yes  Yes‐No     

Technology Use 

Figure 5. Scatterplot showing Hedges’ g and technology use.  
Codes: No-No (both groups had no technology); Yes-Yes (both groups had technology); and Yes-No 
(treatment group had technology, control Group didn’t). 
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Discussion 

 

The purpose of this systematic review is to examine the effectiveness of S-C instructional 

practices in undergraduate level science post-secondary settings as it pertains to student 

achievement outcomes. It further seeks to examine the individual/collective influence of four 

instructional dimensions (Pacing, Teacher�s Role, Flexibility, and Adaptation) on achievement. 

Lastly, a set of moderator variables (instructional and demographic) are examined for their 

potential relationship with S-C learning and achievement outcomes. 

 

Summary of Main Results 

The following summarized points will be discussed in the proceeding “Authors’ 

Conclusions” section below. 

 

Overall Test of Student-Centered Instruction. 

Regarding the influence, and effectiveness, of more S-C learning vs. less S-C (more T-C) 

learning, as well as the degree of S-C learning, on undergraduate level science post-secondary 

achievement outcomes, two tests were used: 

 The first examined the overall outcome of 141 effect sizes drawn from 96 sources. 

The results were significant, producing an average random effect of  = 0.34. This 

result would be considered a moderate effect favoring more S-C learning according 

to Cohen’s (1988) interpretative criteria. 

 The second examined the overall strength of the relationship between treatment and 

control (i.e., degree of student-centeredness). The results of the meta-regression 

 g
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analysis were non-significant, producing a weak-to-moderate positive relationship (

= 0.28) between degree of S-C and degree of student achievement. 

While the first test suggests that, on average, more undergraduate level S-C classroom 

environments produce better achievement outcomes than do less S-C classroom ones, the non-

significant meta-regression result (p = 0.40) – even though a somewhat linear relationship – 

takes away from the overall strength of the claim that increasing the degree of S-C in classroom 

environments will subsequently increase the degree of student achievement relative to those 

classrooms engaging in less S-C (more T-C) instructional practices. 

 

Primary Predictor Variables. 

Regarding the predictive power of the four instructional dimensions (Pacing, Teacher�s Role, 

Flexibility, and Adaptation) on achievement outcomes: 

 Only Flexibility (via simple-regression) produced a significant negative relationship (p = 

0.05). 

Regarding the degree of S-C of each of the four dimensions and their individual magnitude of 

effect on student achievement outcomes: 

 Only Flexibility (via mixed moderator variable analysis) produced a significant result (p 

= 0.05). 

 Flexibility produced positive effect sizes at differential scores 0, +1 and +2, but produced 

negative effect sizes at differential scores +3 and +4. 

The results from the mixed moderator variable analysis indicate no significant relationship 

between the other three instructional dimensions – Pacing, Teacher�s Role, and Adaptation – and 

student achievement outcomes. 
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Instructional and Demographic Moderator Variables. 

Three moderator variables – technology use, subject matter, and treatment group class size – 

were added to the analysis and were first analyzed via categorical-level analysis: 

 Technology use: 

o Instructional settings where both participation groups did not use technology (  

= 0.40), and settings where only the treatment group used technology (  = 0.48), 

vastly outperformed instructional settings where both groups used it (  = 0.19). 

o Across degrees of Flexibility, the instructional setting of both groups not using 

technology produced the only significant model (p = 0.03). Within this model 

(i.e., across degrees of Flexibility for both participation groups not using 

technology) a negative relationship was present – as Flexibility increased, student 

achievement outcomes decreased. 

 Subject matter: 

o Only chemistry (  = 0.58), physics (  = 0.45) and biology (  = 0.31) were 

significant. 

 Class size: 

o Medium classes (16 to 49 students) and large classes (50 to 99 students) were 

significant and produced the highest effect sizes (  = 0.40 and  = 0.46, 

respectively). 

o Very large classes (100+ students) had the smallest effect (  = 0.09), which was 

non-significant. 
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The moderator variables were then analyzed via mixed moderator variable analysis: 

 Chemistry was the best predictor of effect size ( = 0.23, SE = 0.11, z = 2.13, p = 0.03), 

with a significantly higher average effect size than the reference group of biology. 

 Studies in which both groups used technology had a significantly lower average effect 

size ( = -0.18, SE = 0.09, z = -2.09, p = 0.04) than the reference group of studies in 

which both groups did not use technology. 

 Studies in which the treatment group used technology and the control group did not, the 

result was not significantly different from studies in which both groups did not use 

technology ( = 0.07, SE = 0.11, z = 0.06, p = 0.53). In other words, the presence of 

technology in the treatment group does not outperform studies where no technology is in 

either group. 

 

The summarized points from the above section will be discussed in the “Authors’ 

Conclusions” section below. 

  

Overall Completeness and Quality of the Evidence 

While this systematic review did explore instructional events occurring within 

undergraduate level science classrooms, it was not able to consider all instances of literature 

covering between-group undergraduate level science classroom comparisons. Such a goal would 

have been extremely ambitious in nature. As a result, the search and retrieval process was 

selective in two important ways. First, we selected for sources that compared two groups and that 

contained enough individual group description to determine if the S-C qualities for which we 

were searching were present. Second, we only selected for high-quality QEDs and RCTs. Based 
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on these two selection criteria, it was deemed that the 96 sources and 141 independent effect 

sizes are an appropriate representation of the larger body of sources that were either excluded or 

not able to be assessed. 

 

Limitations and Potential Biases in the Review Process 

The main limitation and potential bias from the overall review process is the use of high-

inference coding. As outlined in the Methods section, the designation of treatment and control in 

each individual study is not based on the specific designations already provided by the authors, 

but rather two reviewers working independently basing it on a set of judgments on each of the 

four instructional dimensions (Pacing, Teacher�s Role, Flexibility, and Adaptation). The 

condition rated higher in S-C (i.e., a higher total score on the sum of each dimension’s individual 

score) is deemed the treatment, and the condition rated lower the control. It is important to note 

in considering the accuracy of coding, and as explained in the Methods section, that the 

reviewers received extensive training for this task, which included multiple practice runs on 

studies previously judged to have been accurately and reliably coded. The same two reviewers 

also had extensive experience from working on the coding for the Bernard et al. (2019) 

systematic review. The inter-rater agreement rate for the instructional dimensions coding in this 

systematic review was judged to be high with Cohen’s  = 0.89. 

Another important note is that the overall research team under which this meta-analysis falls, 

and whose results will contribute to that research team’s body of student-centered literature, has 

extensive experience with this particular process of establishing the treatment and control 

conditions from individual studies via high-inference coding. In particular, Borokhovski, 
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Bernard, Tamim and Abrami (2009) presented a paper on the subject at the Campbell 

Collaboration’s Ninth Colloquium. 

While this form of high-inference coding does result in greater risk of bias than the standard 

treatment/control designations (i.e., low-inference coding), for the purposes of this systematic 

review it is deemed to be the only way to advance the research literature beyond relatively 

simple comparisons between ‘either this or that’ like the standard treatment/control designations 

that populate the educational research literature. As has been repeatedly mentioned before, this 

systematic review is concerned with the questions of “which,” “when,” and “for what purpose” 

regarding combinations of T-C and S-C learning approaches – thus reflecting a “greater-to-

lesser” S-C learning scale along a continuum of instructional practices, rather than an “either/or” 

view of T-C and S-C learning. 

 

Author’s Conclusions 

This systematic review provides evidence that student-centered instruction leads to increases 

in undergraduate level science student achievement outcomes, and thus to greater increases in 

learning. This is seen by the medium sized overall random effects average of  = 0.34. 

However, the argument is hindered by the fact that a significant, linear relationship between 

degree of S-C and degree of achievement was not found ( = 0.01, SE = 0.01, z = 0.03, p = 

0.40). As a result, the simple argument that increasing the amount of S-C learning in an 

undergraduate level science course will in turn increase student achievement cannot so easily be 

made. The relationship between S-C learning and student achievement in this particular 

instructional setting is more nuanced, and factors such as type of and degree of S-C learning, as 

well as combinations of S-C learning and combinations of S-C and T-C learning, are not without 

 g
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their roles and impact. For instance, and as will be discussed later in this section, variables such 

as class size, specific science subject matters (and their specific course syllabi) within 

undergraduate level science, as well as the type of, and amount of, technology used in 

conjunction with the degree of the flexibility of classroom instruction, all can be shown to 

influence, in different directions, the relationship between S-C learning and student achievement 

outcomes.  

The above two results from the overall test of S-C instruction, as well as variables such as 

the ones mentioned above, also further lend to the importance of the instructional setting in 

determining the specific type(s) of, and impact of, more S-C learning. For example, in the 

systematic review by Bernard et al. (2019) on S-C instruction in K-12, not only was the overall 

effect in favour of S-C learning (  = 0.44), but also a significant (p = 0.03) positive linear 

relationship between degree of S-C and degree of achievement outcomes was present. In that 

particular instructional setting, increasing the amount of S-C learning was more conducive to 

improvements in achievement compared to the improvements in undergraduate level science 

instructional settings. 

When considering the instructional settings in which undergraduate science courses take 

place, explanations for the results of the primary predictor variable analyses can be inferred. The 

fact that Pacing, Teacher�s Role and Adaptability were all non-significant in both meta-

regression and mixed moderator variable analysis could be indicative of the typical classroom 

structure of undergraduate chemistry, biology, physics, geology, and psychology courses being 

more T-C based. Courses of this nature tend to be larger, particularly in the more introductory 

levels, and they also tend to be predominantly lecture-based. The content in these courses also 

does not drastically change from year to year, as many of the courses are centered on 

 g
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longstanding established theories, principles, and historical findings. As a result, course syllabi 

do not experience major changes year to year in terms of the content covered. Furthermore, the 

syllabus received by students at the start of a semester will seldom see changes, save for perhaps 

the changing of the presentation dates of certain topics, or the rescheduling of a lecture/topic due 

to, for example, a lecture being cancelled because of unforeseen circumstances. Many course 

syllabi are also in conjunction with the official textbook being used for the course, and many 

professors are even provided with official lecture slides by the company who manufactured the 

course textbook. In short, the typical undergraduate level science course might not always afford 

significant opportunities for the insertion of more S-C based instructional dimensions such as 

Pacing, Teacher�s Role and Adaptability, nor might the learning environment be particularly 

conducive to the implementation and success of these dimensions in terms of improving student 

learning achievement outcomes. It is important to note that the majority of the studies in this 

systematic review did not score higher than +2 on the four instructional dimensions, with most 

scoring between 0 to +2. This raises the potential limitation of dealing with a particular sample – 

in this case undergraduate level science – that might be low in S-C to begin with, and as such the 

instances, and potential subsequent positive effects, of high levels of S-C learning (+3 and +4) in 

turn might be negligible. 

While the operationalization of Flexibility in the Methods section also has aspects that 

would enable it to be rated more on the T-C side of the spectrum in undergraduate level science 

settings, there are certain aspects of the science subject matters chosen for this meta-analysis that 

could help explain why, of the four dimensions, it was the only significant (albeit negative) 

predictor of effect size. Flexibility in part reflects the “degree of student control over progression 

through the course content” and the laboratory component of science courses such as chemistry, 
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biology, and physics could provide the particular instructional setting that reflects an increased 

degree of student control in this aspect (i.e., increased S-C learning). Labs are often a mandatory 

component of undergraduate level science courses, especially in more introductory courses, and 

within labs students have the ability to move at their own pace as they work through the assigned 

work. Of course, students are still working within the overall parameters of the length of time 

allotted to finish and hand in work, and labs are still within the overall, pre-established course 

syllabus, however different students (or students and their partners if it is paired work) can finish 

the same work in different times, as well as approach the work in different manners depending 

on their individual preferences and strategies.  

Of the five subject matters that were coded for, chemistry (  = 0.58), physics (  = 0.45) 

and biology (  = 0.31) all had much higher effect sizes than psychology (  = 0.06) and 

geology (  = -0.05). Unlike psychology and geology, the effect sizes of these three subject 

matters were also significant. Of the five subject matters, chemistry, physics and biology tend to 

have the mandatory lab components, which could very well be a key contributing factor to their 

significant, positive effect sizes. An important point to consider however is whether it is the 

actual S-C aspects of labs that are influencing the dependent variable of student achievement 

outcomes, or does the influence stem from the pedagogical nature itself of the use of labs (and 

this very pedagogical nature is actually being drowned out by the general, positive influence of 

S-C learning)? It was not possible to separate out the presence of labs from the overall 

curriculum vis-à-vis S-C, so questions remain as to their role in science courses. This is 

discussed below. 

While a laboratory component could be conducive to increased Flexibility, other aspects of a 

science course setting (i.e., class size, lecture-based, rigid syllabus) could result in that same 

g  g

 g  g

 g



 52

instructional dimension exemplifying T-C components. As mentioned earlier, the significant 

relationship between degree of Flexibility and effect size was negative, thus indicating that only 

up to a certain point will increasing Flexibility benefit student achievement outcomes. 

Implementing too much Flexibility – like with too much Pacing, Teacher�s Role and 

Adaptability – could also render this instructional setting less conducive to increases in student 

achievement outcomes. To once again echo the same point: improving student achievement 

outcomes is more complicated than simply increasing S-C learning.  

Very interesting findings concerned the moderator variable of technology use. Studies in 

which both participation groups used technology (  = 0.19) were significantly outperformed by 

studies in which either both groups did not use technology (  = 0.40) or the treatment group did 

and the control group did not (  = 0.48). Additionally, meta-regression analysis showed no 

significant difference between both groups not using technology and only the treatment group 

using it – the presence of technology only in the treatment group did not outperform studies 

where no technology was present in either group. Lastly, the degree of technology use across 

degrees of Flexibility was only significant (p = 0.03) when both groups did not use technology, 

and there was a negative relationship – more Flexibility resulted in lower achievement outcomes 

when no technology was present in both participation groups.  

The fact that settings in which only the treatment group used technology were not 

significantly different than settings in which both groups did not use technology could be due to 

the type of technology being used. The technology found in typical undergraduate level science 

instructional settings includes PowerPoint slides with the occasional video during lectures, as 

well as some form of an online course management system such as Moodle and Blackboard. A 

meta-analysis conducted by Schmid et al. (2014) on the effects of technology use on 
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achievement in post-secondary education looked into the different pedagogical uses of 

technology, and found that technological applications that simply present information in an 

alternative form, such as PowerPoint, yielded small effects in the range of 0.10 <  < 0.20 (i.e., 

what would be considered ‘trivial’ in social sciences). The fact that this particular application of 

technology does not incur much of an advantage in terms of achievement outcomes could be an 

explanation as to why no significant differences between instructional settings with no 

technology and settings with only treatment using it exist. However, the above does not explain 

why achievement outcomes in instructional settings in which both groups used technology is 

significantly lower than when at least one group (i.e., at least the control group) did not use it. If 

this particular form of technology use does incur benefits, albeit small, as reported by Schmid et 

al. (2014), then why does adding technology to the control group significantly diminish effect 

size so much?  

Another angle from which to approach the relationship between technology use and effect 

size is by considering how the technology supports the selected pedagogy. Does the pedagogical 

use of technology mentioned above  - alternative forms of presenting information – more so 

support S-C learning, or T-C learning? Is this interaction further complicated by the nature of the 

content and learners’ prior knowledge? Again, see the future research section below. 

The finding of undergraduate level science instructional settings with both groups not using 

technology significantly outperforming settings in which both groups used it goes against the 

finding of Schmid et al. (2014) that settings where the control groups used some technology (  

= 0.31) performed better than settings where the control groups used no technology (  = 0.25). 

However, the Schmid et al. (2014) meta-analysis covered a larger range of subject matters, 

including all forms of STEM as well as non-STEM subjects. What does match findings by 
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Schmid et al. (2014) is the fact that STEM settings in which the control group did not use 

technology resulted in a positive relationship with achievement, whereas STEM settings in 

which the control group used only a bit of technology resulted in a negative relationship. This 

goes with the finding that undergraduate level science settings which contain no technology in 

the control group outperformed science settings which did contain technology in the control 

group. However, yet again, the subject matter covered in Schmid et al. (2014) was broader, 

encompassing all of STEM instead of just science. 

In summary, while the overall model suggests that S-C learning does result in student 

learning achievement outcome improvements (  = 0.34), the effects are most pronounced when 

considering the instructional dimension of Flexibility, as well as when considering the potential 

impact of laboratory components in science courses such as biology, physics, and in particular 

chemistry. It is important to remember that the discussion about labs is merely speculation – the 

specific course content, and syllabi, of the science courses in the studies used for this systematic 

review were not examined. It is also important to remember that a consideration of how the 

pedagogy itself in these instructional settings influences student achievement outcomes, as well 

as how factors such as technology support the selected pedagogy, is warranted in the quest to 

better understand the relationship between instructional settings and student learning 

achievement outcomes. 

 

Implications for Practice and Policy 

While this meta-analysis does not provide an instructional design blueprint for creating more 

S-C undergraduate level science classrooms, it does point to certain areas where types of, and 

degree of, S-C learning can be applied for the benefit of increasing student learning achievement 
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outcomes. As previously mentioned, instructional settings favouring the dimension of Flexibility 

(up to a certain point), and courses with lab components, particularly chemistry, could potentially 

be the most conducive to achievement outcome benefits stemming from S-C learning practices. 

As a whole, developing the optimal environments for undergraduate level science learning to 

take place needs to consider the specifics and nuances that go into the creation of these 

environments, rather than simply taking a surface-level, generalized approach and analysis of 

information.  

 

Implications for Future Research 

In line with previous research on examining instructional events in isolation in an attempt to 

veer away from an “either/or” view of T-C and S-C learning, and towards a “greater-to-lesser” S-

C learning scale along a continuum of instructional practices (Bernard et al. 2013; Bernard et al. 

2019), this systematic review also seeks to argue that more nuanced questions in classroom-

based research need to become the norm. Different types of instructional settings present 

different challenges and different opportunities for improving the learning experience, and as 

such future research endeavours, and future research questions, need to be tailored to these 

differences as much as possible. 

Additionally, more tailored future systematic reviews will benefit from primary researchers 

reporting as much of the information from their studies as possible, and in sufficient enough 

detail, for the purpose of their studies in turn being used to advance the research literature. In 

conducting this systematic review, many promising studies were excluded due to there not being 

enough information as to what the treatment and control groups did during their respective 
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classroom interventions. Sufficient detail in reporting can also help future systematic reviews 

explore potential explanations for findings.  

Regarding future implications stemming from this particular meta-analysis, a better 

understanding of the impact of technology use on student achievement outcomes is a worthwhile 

undertaking. A better understanding of not only the different types of technology use, but also 

the degree of technology use as well as the degree of difference in amount of technology use 

between participation groups can further move the narrative of developing optimal 

undergraduate level science instructional settings forward. A better understanding also largely 

involves further delving into technology’s functionality in these particular instructional settings. 

In short, how does the selected technology support the selected pedagogy? 

Regarding the four instructional dimensions explored - Pacing, Teacher�s Role, Flexibility, 

and Adaptation – additional research needs to consider the potential impact of other instructional 

dimensions and their combinations. Bernard et al. (2013) performed a meta-analysis in K-12 

with a total of 11 instructional dimensions, and research in undergraduate level science settings 

can benefit from an exploration of how (or even if) these additional dimensions impact 

achievement. 

A final avenue for future research concerns a more in-depth look at the role of laboratories 

in undergraduate level science classrooms and the potential types of, and degree of, S-C learning 

taking place within this particular sub-setting of a larger instructional setting (i.e., labs being a 

part of a science course as a whole). The role of labs in science courses, and their potential 

relationship with student achievement outcomes, should also explored from a pedagogical 

perspective to better determine if the dependent variable of achievement outcomes is more a 

function of S-C instruction or pedagogy. Additionally, the instructional dimension of Flexibility 
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and its relationship with labs deserves an in-depth exploration in the quest for the development 

of optimal undergraduate level science post-secondary education learning environments. 
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Appendix 1  

Descriptive Statistics for Each Study 
	

Study Name Date Hedges’ g SE-g 
Confidence Interval and Test Statistics 

Lower CI Upper CI z-Value p-Value 
Alcazar 2005 0.081 0.080 -0.076 0.239 1.010 0.312
Altiparmak 2009 0.893 0.318 0.270 1.517 2.808 0.005
Ambrosio 1993 0.112 0.326 -0.526 0.750 0.344 0.731
Andrews 1984 1.248 0.290 0.680 1.816 4.306 0.000
Arburn 1999 0.085 0.244 -0.392 0.563 0.350 0.726
Armstrong 2007 0.053 0.058 -0.060 0.167 0.922 0.357
Atan 2005 0.358 0.261 -0.154 0.869 1.370 0.171
Azevedo 2004 0.514 0.176 0.170 0.859 2.925 0.003
Azevedo 2004 1.013 0.358 0.312 1.715 2.830 0.005
Barab 2009 1.383 0.439 0.523 2.242 3.152 0.002
Barak 2005 0.696 0.138 0.425 0.968 5.029 0.000
Basili 1991 0.506 0.258 0.000 1.012 1.959 0.050
Beam 2010 -0.114 0.437 -0.971 0.743 -0.261 0.794
Bechtel 1963 -0.258 0.251 -0.750 0.233 -1.032 0.302
Bilgin 2009 0.406 0.228 -0.040 0.852 1.786 0.074
Bilgin 2006 1.050 0.218 0.622 1.478 4.812 0.000
Cacciatore 2009 0.377 0.250 -0.114 0.867 1.504 0.133
Cahyadi_1 2004 1.076 0.184 0.715 1.437 5.839 0.000
Cahyadi_1 2007 0.401 0.205 0.000 0.803 1.958 0.050
Cahyadi_2 2004 0.833 0.166 0.508 1.158 5.027 0.000
Cahyadi_2 2007 0.636 0.206 0.231 1.040 3.082 0.002
Caldwell 1978 0.092 0.136 -0.175 0.360 0.676 0.499
Cayton_1 1975 0.036 0.324 -0.599 0.672 0.112 0.911
Cayton_2 1975 -0.012 0.318 -0.635 0.612 -0.037 0.971
Chou 1998 0.435 0.269 -0.092 0.962 1.618 0.106
Corbalan 2009 0.042 0.260 -0.469 0.552 0.160 0.873
Cox 2002 0.383 0.251 -0.109 0.876 1.527 0.127
Davies_1 1981 0.603 0.212 0.187 1.018 2.845 0.004
Davies_2 1981 0.849 0.290 0.280 1.418 2.924 0.003
Demastes 1995 0.007 0.146 -0.278 0.293 0.051 0.959
Dori_1 2005 0.723 0.283 0.168 1.278 2.555 0.011
Dori_2 2005 0.405 0.161 0.091 0.720 2.524 0.012
Dori_3 2005 0.368 0.150 0.074 0.663 2.449 0.014
Doymus 2010 -0.449 0.228 -0.897 -0.002 -1.968 0.049
Doymus_1 2008 1.000 0.349 0.315 1.685 2.863 0.004
Doymus_2 2008 1.725 0.265 1.206 2.244 6.514 0.000
Elshout_1 1992 0.838 0.751 -0.634 2.310 1.116 0.265
Elshout_2 1992 -0.015 0.632 -1.255 1.224 -0.024 0.981
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Elshout_3 1992 0.063 0.606 -1.124 1.251 0.105 0.917
Elshout_4 1992 -0.340 0.714 -1.741 1.060 -0.477 0.634
Emerson_1 1988 0.572 0.292 -0.001 1.144 1.957 0.050
Emerson_2 1988 -0.193 0.289 -0.760 0.374 -0.668 0.504
Evans 2008 0.421 0.301 -0.168 1.011 1.400 0.162
Ezrailson 2004 0.281 0.265 -0.238 0.800 1.062 0.288
Falconer_1 2001 1.297 0.208 0.888 1.705 6.222 0.000
Falconer_2 2001 0.991 0.173 0.653 1.330 5.746 0.000
Falconer_3 2001 1.452 0.318 0.829 2.074 4.568 0.000
Feldo 2010 0.073 0.126 -0.175 0.320 0.575 0.565
Franklin 1994 0.260 0.137 -0.009 0.530 1.894 0.058
Friedel 2008 0.337 0.290 -0.231 0.905 1.163 0.245
Gifford 1982 0.628 0.226 0.185 1.071 2.778 0.005
Gossman 2007 -0.227 0.361 -0.934 0.480 -0.630 0.529
Hall 1990 0.257 0.184 -0.102 0.617 1.402 0.161
Hill 1999 -0.172 0.448 -1.050 0.706 -0.383 0.701
Hulshof 2005 -0.717 0.241 -1.190 -0.245 -2.977 0.003
Ibrahim 2001 1.214 0.235 0.753 1.674 5.169 0.000
Jones 1980 -0.271 0.182 -0.629 0.086 -1.488 0.137
Kapp 2011 -0.689 0.141 -0.964 -0.413 -4.896 0.000
Knight 2005 0.532 0.169 0.201 0.863 3.153 0.002
Koenig 2007 0.586 0.172 0.249 0.923 3.404 0.001
Kremer 1991 -0.202 0.302 -0.794 0.391 -0.667 0.505
Lee_1 2010 -0.107 0.156 -0.412 0.199 -0.683 0.494
Lee_2 2010 0.654 0.156 0.348 0.961 4.187 0.000
Lee_3 2010 -0.262 0.156 -0.568 0.043 -1.683 0.092
Lee_4 2010 0.069 0.155 -0.235 0.374 0.448 0.654
LeTexier 2009 0.810 0.244 0.332 1.288 3.322 0.001
Levinson_1 2007 0.296 0.263 -0.220 0.812 1.123 0.261
Levinson_2 2007 -0.431 0.264 -0.948 0.087 -1.630 0.103
Lewis 2005 0.381 0.145 0.097 0.665 2.629 0.009
Liang_1 2005 0.138 0.310 -0.469 0.745 0.445 0.656
Liang_2 2005 -0.012 0.323 -0.644 0.620 -0.038 0.970
Liang_3 2005 -0.341 0.333 -0.994 0.313 -1.023 0.306
Lord 2006 0.344 0.205 -0.057 0.746 1.682 0.093
Martin 2007 0.571 0.196 0.187 0.954 2.914 0.004
Martin_1 2009 -1.039 0.453 -1.927 -0.150 -2.291 0.022
Martin_2 2009 -1.006 0.490 -1.966 -0.046 -2.054 0.040
Mathew 2008 1.308 0.329 0.662 1.953 3.971 0.000
McKee_1 2007 0.609 0.399 -0.173 1.392 1.526 0.127
McKee_2 2007 0.274 0.410 -0.529 1.077 0.669 0.503
McKee_3 2007 0.209 0.448 -0.670 1.087 0.466 0.641
McLaren 2009 0.214 0.194 -0.166 0.594 1.104 0.270
Moreno 2009 -0.238 0.266 -0.759 0.283 -0.897 0.370
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Moreno_1 2004 1.002 0.297 0.421 1.584 3.381 0.001
Moreno_2 2004 0.740 0.275 0.201 1.278 2.692 0.007
Morgil_1 2006 1.080 0.225 0.639 1.521 4.797 0.000
Morgil_2 2006 0.718 0.221 0.284 1.152 3.245 0.001
Morris 1978 0.006 0.177 -0.342 0.353 0.031 0.975
Muller_1 2008 0.443 0.172 0.106 0.780 2.578 0.010
Muller_2 2008 0.647 0.244 0.169 1.125 2.650 0.008
Munyofu_1 2008 -0.137 0.256 -0.639 0.366 -0.533 0.594
Munyofu_2 2008 0.330 0.259 -0.178 0.838 1.274 0.203
Munyofu_3 2008 0.360 0.259 -0.148 0.868 1.388 0.165
Munyofu_4 2008 0.455 0.260 -0.055 0.964 1.750 0.080
Munyofu_5 2008 0.423 0.260 -0.086 0.932 1.629 0.103
Munyofu_6 2008 0.372 0.262 -0.141 0.884 1.421 0.155
Nokes 2005 0.295 0.257 -0.209 0.798 1.148 0.251
Nugent 2008 0.754 0.420 -0.069 1.578 1.795 0.073
Nugent 2012 0.404 0.260 -0.106 0.914 1.553 0.120
Okebukola_1 1988 1.512 0.560 0.414 2.610 2.700 0.007
Okebukola_2 1988 1.985 0.806 0.405 3.564 2.463 0.014
Okebukola_3 1988 0.066 0.570 -1.052 1.183 0.115 0.908
Okebukola_4 1988 1.661 0.481 0.719 2.603 3.456 0.001
Olajide_1 2010 0.906 0.294 0.329 1.482 3.079 0.002
Olajide_2 2010 0.846 0.303 0.253 1.440 2.794 0.005
Olson_1 1962 -0.252 0.298 -0.836 0.332 -0.846 0.398
Olson_2 1962 -0.128 0.292 -0.700 0.444 -0.439 0.661
Perry 2008 -0.392 0.289 -0.958 0.174 -1.356 0.175
Phelps 2012 0.253 0.152 -0.045 0.551 1.663 0.096
Proske 2012 0.247 0.313 -0.365 0.860 0.791 0.429
Quitadamo 2008 0.390 0.134 0.127 0.653 2.908 0.004
Quitadamo 2007 0.343 0.114 0.120 0.566 3.010 0.003
Reinhardt 2012 -0.852 0.290 -1.421 -0.283 -2.937 0.003
Ruiter 1971 0.718 0.252 0.224 1.212 2.849 0.004
Selcuk 2010 1.209 0.430 0.367 2.051 2.814 0.005
Senocak 2007 0.181 0.199 -0.209 0.571 0.909 0.363
Slish 2005 0.549 0.280 -0.001 1.099 1.958 0.050
Spivey_1 1995 0.083 0.316 -0.537 0.703 0.261 0.794
Spivey_2 1995 1.398 0.341 0.730 2.065 4.103 0.000
Stark 2009 0.586 0.288 0.021 1.152 2.033 0.042
Stiller_1 2009 0.406 0.274 -0.132 0.944 1.479 0.139
Stiller_2 2009 -0.119 0.267 -0.644 0.405 -0.447 0.655
Stout 1978 0.314 0.265 -0.205 0.833 1.185 0.236
Strawitz 1987 0.401 0.406 -0.395 1.197 0.988 0.323
Struyven 2010 -0.174 0.112 -0.393 0.045 -1.556 0.120
Sturges 2009 0.679 0.132 0.421 0.937 5.154 0.000
Suits 2004 0.554 0.193 0.176 0.931 2.875 0.004
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Swanson_1 1990 -0.283 0.616 -1.490 0.924 -0.460 0.646
Swanson_2 1990 -0.385 0.619 -1.598 0.827 -0.623 0.533
Swanson_3 1990 -0.668 0.631 -1.904 0.569 -1.058 0.290
Tarhan 2012 1.393 0.350 0.706 2.079 3.974 0.000
van den Boom_1 2007 -0.127 0.417 -0.944 0.690 -0.304 0.761
van den Boom_2 2007 0.728 0.433 -0.120 1.576 1.683 0.092
Veenman_1 1994 -0.234 0.283 -0.790 0.321 -0.827 0.408
Veenman_2 1994 0.070 0.286 -0.490 0.630 0.244 0.808
Vreven 2007 -0.137 0.114 -0.360 0.085 -1.208 0.227
Walker 2008 0.242 0.089 0.067 0.417 2.710 0.007
Wittwer 2010 -0.484 0.369 -1.207 0.240 -1.311 0.190
Wozniak 2012 2.286 0.997 0.331 4.240 2.292 0.022
Wright 2008 -0.227 0.149 -0.519 0.065 -1.526 0.127
Wright 2006 -0.227 0.149 -0.519 0.065 -1.526 0.127
Yeo 2002 0.368 0.202 -0.028 0.765 1.820 0.069
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