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ABSTRACT 

 

 Often developers build luxury buildings near shores, where foundations are built in or 

near slopes. Designers in this case face not only the determination of the bearing capacity and the 

settlement of the foundation but also the stability of a system made of foundation and slope. Design 

of foundation under these conditions is complex and the studies available in this regard are limited 

and concerned mostly about determination of the reduction of the bearing capacity coefficients 

associated with the presence of the slope except for Meyerhof who was a pioneer in developing a 

theory in 1957 to determine the ultimate bearing capacity of a foundation near a slope. However, 

the theory was independent of the slope inclination.  

 

This thesis presents a numerical model using finite element technique together with RS2 9.0 

software to simulate the case of a foundation near a slope, in terms of examining the bearing 

capacity of the foundation for given slope features, soil characteristics and geometry conditions 

and extends to determine the distance required to achieve reasonable factor of safety.  

 

It’s found that the theory of Meyerhof, 1957 has underestimated the effect of the distance to the 

slope which the bearing capacity is independent of the inclination of the slope. Design guidelines 

and design charts are presented for practicing purposes. 

  

 

 

 

 

 

 

 



 

iv 
 

 

ACKNOWLEDGEMENT 

 

  I would like to express my deepest gratitude and great respect to my thesis co-

supervisor, Prof. Dr. Adel M. Hanna. I had the honor and pleasure to be his student. His 

constant guidance, encouragement, patience, support, generosity and foresight made it 

possible to complete my thesis. 

I’d also like to give my sincere thankfulness to Prof. Dr. Lan Lin, for her valuable 

suggestions, advice, by offering me unlimited of her precious time. 

Thanks to my thesis co-supervisor Dr. Attila M. Zsaki. 

 Words can not express how much I’m grateful to my husband Mr. Basstawrosse, 

who was behind all this, and for my lovely kids Christopher and Anastasia for their 

encouragement and support to complete this work. 

 Finally, yet importantly thanks to my parents Mr. Adel Salib and Mrs. Souzan 

Kamil for believing in me, being always by my side and for their unlimited support. 

 

 



v 

CONTENTS 

CHAPTER 1 INTRODUCTION ....................................................................................................... 1 

CHAPTER 2 LITERATURE REVIEW ............................................................................................. 3 

2.1 General .................................................................................................................................. 3 

2.2 History of slope stability ....................................................................................................... 4 

2.3 Principles of stability analysis ............................................................................................... 4 

2.4 Relevant studies..................................................................................................................... 6 

2.5 Shear strength reduction technique ..................................................................................... 24 

2.5.1 General ...................................................................................................................... 24 

2.5.2 Basic algorithm ......................................................................................................... 25 

2.5.3 Advantages ................................................................................................................ 26 

CHAPTER 3 NUMERICAL MODEL ............................................................................................. 27 

3.1 General ................................................................................................................................ 27 

3.2 Problem definition ............................................................................................................... 27 

3.2.1 Boundary conditions ................................................................................................. 28 

3.2.2 Constitutive law ........................................................................................................ 29 

3.3 Test Procedure ..................................................................................................................... 30 

3.3 Monte Carlo data sampling ................................................................................................. 31 

3.4 Parameters ........................................................................................................................... 32 

3.4.1 Soil unit weight ......................................................................................................... 32 

3.4.2 Soil cohesion ............................................................................................................. 32 

3.4.3 The angle of internal friction .................................................................................... 32 

3.4.4 Slope height and angle .............................................................................................. 32 

3.4.5 Distance from the foundation to the edge of the slope ............................................. 33 

3.5 Summary of problem key parameters range ....................................................................... 34 

3.6 Failure scheme..................................................................................................................... 34 

3.6.1 Allowable settlement ................................................................................................ 35 

3.6.2 Allowable bearing capacity ....................................................................................... 36 

3.7 Mesh convergence study ..................................................................................................... 38 



 

vi 
 

3.8 Validation of the numerical model ...................................................................................... 40 

3.8.1 Bearing capacity........................................................................................................ 40 

3.8.2 Slope Stability ........................................................................................................... 41 

3.9 Input parameters and results ................................................................................................ 44 

CHAPTER 4 ANALYSIS AND RESULTS ....................................................................................... 47 

4.1 General ................................................................................................................................ 47 

4.2 Phase I Analysis: Bearing capacity ..................................................................................... 47 

4.2.1 Bearing capacity failure ............................................................................................ 47 

4.2.2 Bearing capacity failure followed by slope failure ................................................... 53 

4.2.3 Slope failure followed by bearing capacity failure ................................................... 54 

4.3 Allowable load .................................................................................................................... 56 

4.4 Phase II Analysis: Slope stability ........................................................................................ 56 

4.5 Parametric study .................................................................................................................. 58 

4.5.1 Distance to the slope (x) ........................................................................................... 58 

4.5.2 Slope angle (α) and angle of internal friction (φ) ..................................................... 59 

4.5.3 Slope height (H) ........................................................................................................ 60 

4.6 Output .................................................................................................................................. 61 

4.7 Design charts ....................................................................................................................... 67 

4.8 Design example ................................................................................................................... 70 

4.9 Design guideline .................................................................................................................. 71 

CHAPTER 5 CONCLUSION ......................................................................................................... 72 

Recommendations ......................................................................................................................... 73 

References ..................................................................................................................................... 74 

 



vii 

 

LIST OF FIGURES 

Figure 2.1  Plastic zones near rough strip foundation on face of slope ..................................... 7 

Figure 2.2   Failure mechanism adopted of Kusakabe analysis .................................................. 9 

Figure 2.3   Schematic of failure zones for footing at crest of slope ........................................ 11 

Figure 2.4   Log-spiral sliding surface ...................................................................................... 13 

Figure 2.5   Bearing capacity of a rectangular footing acting on slope .................................... 14 

Figure 2.6   Failure mechanism and applied forces adopted in the analysis ............................. 17 

Figure 2.7   Problem definition as Georgiadis .......................................................................... 18 

Figure 2.8   Problem notation and potential failure mechanism as Shiau ................................ 20 

Figure 2.9   Chosen domain and the stress boundary conditions as Kumar ............................. 24 

Figure 3.1  Geometry of the problem and model size.............................................................. 28 

Figure 3.2   Boundary Conditions ............................................................................................. 29 

Figure 3.3   Finite element mesh............................................................................................... 29                     

Figure 3.4  Mohr-Coulomb failure Criteria ............................................................................. 30 

Figure 3.5   Modes of bearing capacity failure ......................................................................... 35  

Figure 3.6  Settlement vs time ................................................................................................. 35 

Figure 3.7  Failure plane for shallow foundation on flat ground ............................................. 37 

Figure 3.8   Failure plane for shallow foundation near slope ................................................... 38 

Figure 3.9   Area of the model with higher element densities .................................................. 38 

Figure 3.10  Bearing capacity deduced by the software .......................................................... 41 

Figure 3.11  Geometry of the problem ..................................................................................... 42 

Figure 3.12  Results produced using SSR shows critical SRF 1.01 ........................................ 43 

Figure 3.13  SSR convergence graph shows critical SRF 1.01 at max. total disp. 0.019m ..... 43 

Figure 4.1  Typical results show bearing capacity failure presented in 1st category ............... 48 

Figure 4.2  Bearing capacity failure (Phase I analysis) ........................................................... 49 

Figure 4.3  Bearing capacity failure followed by slope failure (Phase I analysis) .................. 53 

Figure 4.4  Sketch for the location of the foundation to the failure surface ............................ 54 

Figure 4.5  Slope failure followed by bearing capacity failure (Phase I analysis) .................. 55 

Figure 4.6  Slope stability (Phase II analysis).......................................................................... 57 



 

viii 
 

Figure 4.7  Constant F.S. at 6B and beyond ............................................................................ 59 

Figure 4.8  Effect of slope angle and friction angle ................................................................. 60 

Figure 4.9  Effect of slope height ............................................................................................. 61  

Figure 4.10  Output for H=10m, D/B=1 & x/B=0 ................................................................... 62 

Figure 4.11  Output for H=10m, D/B=1 & x/B=1 ................................................................... 62 

Figure 4.12  Output for H=10m, D/B=1 & x/B=2 ................................................................... 63 

Figure 4.13  Output for H=10m, D/B=1 & x/B=3 ................................................................... 63 

Figure 4.14  Output for H=10m, D/B=1 & x/B=4 ................................................................... 64 

Figure 4.15  Output for H=10m, D/B=1 & x/B=5 ................................................................... 64 

Figure 4.16  Output for H=10m, D/B=1 & x/B=6 ................................................................... 64 

Figure 4.17  Output for H=20m, D/B=1 & x/B=0 ................................................................... 65 

Figure 4.18  Output for H=20m, D/B=1 & x/B=1 ................................................................... 65 

Figure 4.19  Output for H=20m, D/B=1 & x/B=2 ................................................................... 65 

Figure 4.20  Output for H=20m, D/B=1 & x/B=3 ................................................................... 66 

Figure 4.21  Output for H=20m, D/B=1 & x/B=4 ................................................................... 66 

Figure 4.22  Output for H=20m, D/B=1 & x/B=5 ................................................................... 66 

Figure 4.23  Output for H=20m, D/B=1 & x/B=6 ................................................................... 67 

Figure 4.24  Design chart: φ=30ᵒ ............................................................................................. 68 

Figure 4.25  Design chart: φ=35ᵒ ............................................................................................. 69 

Figure 4.26  Design chart: φ=40ᵒ ............................................................................................. 69 

Figure 4.27  Design example ................................................................................................... 70 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF TABLES  

Table 3.1  Classification of the slopes ................................................................................... 33 

Table 3.2  Limits of variable parameters ............................................................................... 34 

Table 3.3  F.S. and computation time corresponding to different number of elements ......... 39 

Table 3.4  Meyerhof's bearing capacity coefficients .............................................................. 40 

Table 3.5  Results of different methods for slope stability analysis ...................................... 42 

Table 3.6  Input parameters and results ................................................................................. 44 

Table 4.1  Design charts values.............................................................................................. 67 

 

 



x 

SYMBOLS 

α Angle of slope, degree ᵒ 

β Slope inclination, degree ᵒ 

γ Unit weight of soil, kN/m3 

γt Total unit weight of soil, kN/m3 

ϴ Angle of radial shear zone, ᵒ 

μ = tan ϕ Coefficient of internal friction 

𝜏 Shear stress on plane, kN/m2 

σf Normal stress on failure plane, kN/m2  

φ Angle of internal friction of soil, degree ᵒ  

B Width of footing, m 

c Cohesion parameter of soil, kN/m2 

cu Undrained shear strength of soil,  

D Depth of footing below ground surface, m 

H Slope Height, m 

Nc Bearing capacity factor due to cohesion of soil  

Nq Bearing capacity factor due to overburden pressure 

Nγ Bearing capacity factor due to weight of soil below the footing  

Ncq Bearing capacity factor due to effect of cohesion and overburden pressure 

Nγq Bearing capacity factor due to effect of weight of soil and overburden pressure 

Q Allowable load, kN/m2 

x Distance from the edge of slope, m 

  

 
  



 

1 
 

CHAPTER 1 

1. INTRODUCTION 

 

 Luxurious resorts built on foothills or located near shores are enjoyable and desirable by 

people, while it’s problematic for engineers. Because in the case of building near or in slopes, the 

bearing capacity of the foundation is not only function in the soil condition but also in the geometry 

of the slope, in this case, the ultimate bearing capacity is governed by either the bearing capacity 

of the foundation or by the overall stability of the slope, the combination of these two factors 

complicate modeling of the problem.  Despite the importance of the subject of building near slopes, 

there are limited studies available in this regard except for Meyerhof, who was prominent in 

developing a theory in 1957 to determine the ultimate bearing capacity for foundations built near 

slopes and predict the reduction in the bearing capacity coefficients associated with the presence 

of the slope, thus, define the distance at which the bearing capacity of the foundation is independent 

of the inclined ground. 

 In fact, the issue of building near or in slopes is of great importance in that it is often 

unavoidable for many reasons such as land limitation or architectural purposes, this automatically 

necessitates the study of several factors that may affect the safety of the building and/ or the safety 

of the slope and this is an inherent part of geotechnical engineering and it’s frequently required 

from the engineers to determine the location and depth of foundation to be built near slopes. 

In this matter, this research destined to trace two important and fundamental parts regarding 

building near slopes; examining the ultimate bearing capacity of a shallow foundation placed near 

slope, taking into account the inevitable reduction in the bearing capacity coefficient due to the 

existence of the slope. Thus, study the stability of the slope considering the presence of the 

foundation, the objective of the research was accomplished through two phases of the analysis in 

view of a typical strip foundation of equal width and depth of 1m placed near slope in different 

soil and geometry conditions to determine the allowable load, Q in phase I of the analysis. Then 

determining the minimum distance required to locate a foundation near a slope in order to maintain 

the stability of the whole system and achieve an acceptable factor of safety. 



 

2 
 

 Numerical model was developed using Finite Element technique to simulate the problem 

mentioned. Parametric study was conducted to study the parameters believed to govern the 

problem. The software used to carry out the analysis is RS2 9.0. Design guidelines and charts were 

developed for practicing use. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 General 

Avalanches and landslides, earthquakes, sinkholes, volcanic eruptions, floods, tsunami etc. 

are natural disasters which cannot be prevented from occurrence as no one is able to stop a natural 

disaster to happen. What an engineer can do is to predict the happening of the disaster therefore 

reduce its consequences scientifically, safely and economically.  

One of the most important problems in geotechnical engineering is the slope instability 

which broadly known as an ever-exhibit risk. 

We will focus here on the problems associated with the gravity-empowered mass 

movement as they are important, costly and persistent wellspring of worry for geotechnical 

engineers and geologists around the world, particularly in topographically dynamic regions. For 

better understanding, we will display a brief idea about the cost and recurrence of events of slope 

failures of natural and of man-made slopes.  Data gathered in the United States proposes that the 

yearly costs keep running into billions of dollars, and records of this by Schuster (1978) assess add 

up to misfortunes because of slope movement in California alone at about $330 M yearly. 

Likewise, notwithstanding monetary expenses, there is death toll at around 25 every year on 

average in the United States. The Japanese are especially extremely influenced via landslide: theirs 

is a thickly populated arrangement of islands, susceptible to landslide and shaken by earthquakes. 

The loss of life there reached 171 in 1971 and 239 in the next year. Then again, in the event that 

we need to see the effect of those fiascos on information, we will find that the consideration was 

centered around the issue of the stability of tips and heaps of spoil and other wastes resulting from 

mining and quarrying in 1966 when a slide beginning in a colliery tip in South Wales (UK) brought 

about the demise of 144 inhabitants. Different mass movements originating from deficient 

treatment of dig waste were in charge of serious death toll at Buffalo Creek, West Virginia, USA 

and at Stava in northern Italy. At Jupille in Belgium, a comparative mass movement from a tip of 

fly-ash debris created broad death toll. The principal which apply to the stability of such waste tips 

are precisely the same as those applying to regular slopes or to man-made earth works. 
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2.2 History of slope stability 

The French military engineers were first to make some empirical advances in the scope of 

the stability of slopes (Bromhead 1992). 

The initial serious work on the stability of slopes, has been done by the French canal 

engineer Alexander Collin (1808-1890) who has recognized the curved shape of sliding surface in 

both cut and fill slopes in 1846. In addition, he attempted some stability analyses. 

Toward the finish of nineteenth century, British interest swung more to earth pressure than 

to the stability of slopes, despite early work of considerable significance. The landslide at 

Folkestone Warren in December 1915 had some effect on the investigation of slopes as well as the 

extensive persistent landslide struck Panama Canal under development begun in May 1910. The 

timber piles extracted after the failure occurred in quay and jetty in Gothenburg, demonstrated that 

the surface on which the slide occurred was approximately a circular arc in section. 

Afterward, the Swedish slip circle has turned into a universal solution to the slope stability 

problems. Terzaghi 1925 has built up the principal of effective stress and its impact on shear 

strength behavior.  

The program of new road construction in 1950s and 1960s enlarged the number of the 

stability problems. The finding of the slip surface in cut and fill slopes was the key to establish the 

theory of the residual strength. 

2.3 Principles of stability analysis  

Many large rockfalls start with an initial shear failure and sliding phase before the debris 

entirely parts company with the parent rock mass, while many landslides remain in contact even 

though they move considerable distances. Simple sliding models fall into the category of limit 

equilibrium methods which the destabilizing force is less than or equal to the force that resists 

motion, the ratio between those forces gives an index of relative stability which known as the 

factor of safety.  

The known methods for the analysis of the stability of slopes based on the limit equilibrium 

technique are; φ=0 method which the soil strength is assumed to be purely cohesive. Bishop’s 

method (1955); which utilizes the method of slices to discretize the assumed slip surface into slices 
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and determine the factor of safety. This technique fulfills vertical force equilibrium for each slice 

and overall moment equilibrium about the center of the circular trial surface since horizontal forces 

are not considered at each slice. It also assumes zero interslice shear forces, while the complete 

method of Bishop considers all the components of the interslice forces. Spencer’s method (1967); 

is an extension to the routine method of Bishop, assuming that the resultant interslice forces have 

constant slope throughout the sliding mass. Graphical wedge method; unlike Bishop and Spencer’s 

technique, the graphical wedge method ignores the equilibrium of moments and concentrates on 

force equilibrium. There is a relinquish in accuracy and increase in uncertainty about the outcome, 

yet that there is a gain in calculation simplicity. Janbu’s method; it was important to develop 

method with similar theory of the routine method of Bishop, but in meantime applicable to slides 

with any shapes of slip surface. Janbu’s simplified method assumes that the interslice forces are 

horizontal an empirical correction factor is used, while Janbu’s generalized assumes a line of thrust 

is used to define the location of the interslice normal force. Morgenstren and Price’s (1965-1967); 

the substance of strategy is to separate the sliding mass into a generally modest number of linear 

areas or wedges which are vertical sided in the regular way. The states of force equilibrium can be 

fulfilled taking headings normal and parallel to the slip surface. The direction of the resultant 

interslice force is characterized using a discretionary function. The portions of the function value 

required for force and moment balance is processed. Maksumovic’s method; this method is not 

perfectly suited to routine stability- calculation work, but the main advantage in this method is the 

possibility of including external concentrated forces. Sarma’s method; which adopted a 

fundamentally unique approach to deal with the estimation of the stability of slopes. This technique 

can be embraced to find a conventional static factor of safety by simply factoring(reducing) the 

soil strength parameters until a zero horizontal acceleration is required for failure. 

This leads us to question why engineers build on slopes. In fact, building on or near slopes 

is unavoidable, like what we have for highways, bridges and subways, in addition to some touristic 

reasons or due to land impediments. Hence, a foundation built on slope conducts a reduction in the 

bearing capacity of the foundation and threatening the stability of the slope itself. In that case we 

have two modes of failure; bearing capacity failure when the shear surface does not intersect the 

slopes, where bearing capacity theories for horizontal ground surface are applicable to such modes 

of failure. The second mode of failure is the slope failure, where the critical shear surface extends 

beyond the crest and therefore involves part of the slope.        
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2.4 Relevant studies 

Meyerhof (1957) presented a paper to study the ultimate bearing capacity of foundation 

on slopes, he reasoned that the bearing capacity theory published by him in 1951 can be combined 

with the theory of the stability of slopes to cover that loading condition (Meyerhof 1957). 

Meyerhof investigated two different cases for the bearing capacity of the foundation on slope. 

First, bearing capacity of foundation on face of slope, and second, bearing capacity of foundation 

on top of slope. 

According to Meyerhof, when a foundation located on the face of a slope is loaded to 

failure, the zone of plastic flow in the soil on the side of the slope is smaller than those of a similar 

foundation on level ground and the ultimate bearing capacity is correspondingly reduced. For a 

material, the shearing strength is given by:  

𝜏𝑓=𝑐+𝜎𝑡𝑎𝑛𝜑……………………………………………………………………………….. Eq. 2.1 

The bearing capacity of a foundation on slope of inclination β can be presented by (Terzaghi 

1943).   

𝑞=c𝑁𝑐+𝑃 𝑜𝑁𝑞+ɣ(𝐵𝑁/2) ɣ ………………………………………………………………….. Eq. 2.2 

Or, more generally (Meyerhof, 1951)  

𝑞= c𝑁𝑐𝑞+ɣ(𝐵𝑁/2)ɣ𝑞……………………………………………………………………....… Eq. 2.3 

 

 

Figure 2.1 Plastic zones near rough strip foundation on face of slope 

(foundation failure) as Meyerhof (1957). 
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The study to find bearing capacity factors for foundation placed on or near slope has been 

done for a strip foundation in purely cohesive (φ=0) and cohesionless (c=0) materials, respectively. 

The bearing capacity factors decrease with greater inclination of the slope to a minimum for β=90° 

on purely cohesive material, and β=φ for cohesionless soils. For slopes with slope angle β less than 

30°, the decrease in bearing capacity is small in the case of clays but is considerable for sands and 

gravels because the bearing capacity of cohesionless soils decreases approximately parabolically 

with increase in slope angle. For the case of submerged soil, we replace ɣ by ɣ’ (submerged unit 

weight of soil). For the case of rapid drawdown of water table, the bearing capacity can be obtained 

from Meyerhof’s equation using a reduced angle of friction as for unloaded slopes (Terzaghi 1943)  

Φ′ =  tan−1((
𝛾′

𝛾⁄ ) tan 𝜑) …………………………………………………………………Eq. 2.4  

In cohesive materials with a small or no angle of shearing resistance, the bearing capacity 

of a foundation may be limited by the stability of the whole slope with a slip surface intersecting 

the toe or base of the slope. For slopes in purely cohesive soil of great depth, base failure of 

unloaded slope occurs along a critical mid-point circle (Fellenius 1927). So that foundations below 

the mid-point section increase the overall stability of the slope and vice-versa. The upper limit of 

the bearing capacity can then be estimated from the equation;  

𝑞 = 𝑐𝑁𝑐𝑞 + ɣ𝐷……………………………………………………………………………Eq. 2.5  

In the same study Meyerhof has presented the bearing capacity of foundation on top of a slope 

by his well-known equation;  

𝑞 =  𝑐𝑁𝑐𝑞 + ɣ (
𝐵𝑁

2
)

𝛾𝑞
……………………………………………………………………….Eq. 2.6  

Where the resultant bearing capacity factors Ncq and Nɣq depend on the distance (b) from 

the edge of slope as well as β, φ and D/B of the foundation (where D& B are the embedment depth 

and the foundation width, respectively). Bearing capacity factors decrease with greater inclination 

of slope, they increase rapidly with greater distance from the foundation to the edge of the slope. 

Beyond a distance of about 2 to 6 times the foundation width (depending on φ and D/B), the 
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bearing capacity is independent of the inclination of the slope and becomes the same as that of a 

foundation on an extensive horizontal ground surface.  

The bearing capacity theory of the foundation on level ground can be extended and 

combined with the theory of the stability of slopes to cover the stability of foundations on slopes. 

The bearing capacity of foundations on the face of a slope or near the top edge of a slope, decreases 

with greater inclination of the slope especially for cohesionless soils. At a greater distance from 

the edge of a slope, the bearing capacity decreases considerably with greater height of the slope 

and is governed by overall slope failure.  

 Kusakabe et al. (1981) approached the bearing capacity of slopes under strip loads on the 

top surfaces using the upper bound theorem. The lower bound analysis was also attempted.  

Comparison has been made with other methods such as; the conventional circular arc 

methods and stress characteristics equations by Kӧtter. The upper bound solutions are found to be 

useful because of its simplicity.  

The paper showed that the factor c/B (where c: cohesion of soil, : unit weight of soil and 

(B) is the width of the strip load) cannot be neglected when constructing the slip line, thus the 

results obtained by Meyerhof need some correction. They also found that in some of the previous 

work for others, the effect of the distance between the slope shoulder and the edge of load has been 

ignored.  

It’s been found from the study that the proposed failure mechanism by using the upper 

bound technique is in a good agreement with actual failure surfaces for various combinations of 

values of β and α (the slope angle and the distance from the edge of a slope normalized by the 

width of a footing, respectively). It’s also been found that the results obtained the upper bound 

theorem are fairly close to those obtained from lower bound, which implies that the upper bound 

solutions are good approximations of exact solutions. The study found that the failure mechanism 

and the bearing capacity factors Nc and N vary significantly with the parameter C/B, additionally 

the model tests showed that the upper bound solutions underestimate the bearing capacity with 

average deviation of 30%.   
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Figure 2.2 Failure mechanism as Kusakabe analysis (Kusakabe et al., 1981). 

 

Azzouz and Baligh (1983) proposed a study for the loaded areas on cohesive slopes, they found 

that most studies for the undrained stability analysis of cohesive slopes subjected to surcharge are 

done on two-dimensional modes of failure, while their study showed that the magnitude of the 

critical surcharge load causing failure can be significantly influenced by taking into account the 

effect of the three dimensions of the problem. Two-dimensional (plane-strain) solutions 

corresponding to a strip load of infinite extent are first considered. Three-dimensional stability 

analyses of slopes subjected to square loaded areas are then made and the results compared to two-

dimensional solutions in order to ascertain the influence of the end effects on the magnitude of the 

surcharge causing failure. 

The paper studied the strip loads of infinite extent, it investigated the undrained bearing 

capacity of cohesive slope of height H and angle β with the horizontal on saturated clay with a 

total unit weight γt and undrained shear strength cu. The slope is subjected to an infinitely long 

strip load of width B and intensity of qo, this in addition to gravity forces.  

Two modes of failure have been detected, first; bearing capacity failure where the shear 

surface does not intersect the slope (bearing capacity theories for horizontal ground surface are 

applicable to such modes of failure). Second; slope failure where the critical shear surface extends 

beyond the crest and involves part of slope.  

Then, Azzouz and Baligh (1983) continued to study square loaded areas. In that part of 

study, the stability of slopes subjected to square loaded areas has been investigated assuming the 
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shear surface is of an ellipsoid attached to a cylinder whose length is assumed to be equal to that 

of the load Lp. The critical shear surface is found numerically.  

The paper concluded the study of the undrained stability of slopes subjected to strip loads 

and square loaded areas in two major conclusions; the three-dimensional effect would increase the 

plane strain critical load causing failure by a factor of 5 to 10. The importance of this effect appears 

when the factor of safety of the slope due to its own weight is close to unity. Second; the strip load 

solutions presented in the paper were developed for different values of normalized width ratios, 

B/H (0.25, 0.5 and 1) which could extend the solution presented by Meyerhof (1957) which has 

been developed for B/H of infinity and zero, respectively.  

Graham et al. (1988) proposed an analysis for bearing capacity of shallow foundations 

placed in cohesionless slopes considering the stress conditions immediately beneath the footing. 

The method of stress characteristics uses sand properties defined by a critical state model. This 

method considers different stress levels, different placement densities, the sand compressibility 

and the transition from strain softening to strain hardening behavior accompanies increased 

stresses (Graham 1986).   

 

Figure 2.3 Schematic of failure zones for footing at crest of slope  

                                            as Graham et al. (1988). 

Swami Saran et al. (1989) worked out an analytical solution to obtain the ultimate bearing 

capacity of footings adjacent to slopes by applying limit equilibrium and limit analysis approaches. 
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The study assumed one-sided rupture failure on the side of slope and partial mobilization was 

considered on the side of flat ground.  

The results have been presented in the form of non-dimensional bearing capacity 

parameters Nc, Nq and N for different values of the angle of internal friction (φ), slope inclination 

and distance of footing from slope edge.  

The study showed that the two approaches (limit equilibrium and limit analysis) used to 

obtain the ultimate bearing capacity for shallow strip footing placed adjacent to a slope give almost 

same values. The minimum distance at which the bearing capacity factors become independent of 

slope increases with the increase in value of (φ) for same slope angle. Further, the results gave a 

good agreement with model test data, but the values obtained from the study, in most cases, are 

higher than those of previous investigations.  

Narita and Yamaguchi (1990) had presented a study on finding out the bearing capacity 

of foundations near slopes by use of log-spiral sliding surfaces.  

The study is considered an extension of the work presented by the authors earlier, for strip 

foundations placed on level ground using same method of analysis. They also had done comparison 

study with other analytical and experimental results to examine the validity of the presented 

technique to practical problems.  

Toe and slope failure, for a strip footing of width B = 2b located at distance L = λB from 

the edge of a slope with an inclination β, the sliding surface is assumed to be a log spiral.   

The equation of a log spiral is written as:  

𝑟 = 𝑟𝑜exp(𝜇𝜃) …………………………………………………………………………... Eq. 2.7  

Where µ=𝑡𝑎𝑛 φ (φ is the angle of internal friction) and 𝑟𝑜 = OA  

The log-spiral sliding surface can be defined by specifying sets of values about footing 

condition (β, λ) and the location of the pole O (𝑟𝑜, α)  
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Generally, the ultimate bearing capacity of a strip footing is presented as a linear 

combination of cohesion of the soil C, the surcharge load Po and the unit weight of soil .  

In the log- spiral method of analysis, each component of ultimate load Q (Qc, Qq and Q) 

is determined by minimizing corresponding footing load that is derived individually from the 

equilibrium of moments about pole O.  

Base Failure, for relatively small fills of height H=hB where base failure might be 

dominant, the equations for toe and slope failure could be applied with some modifications.  

They have concluded their work into three major points;  

• The log spiral analysis tends to overestimate bearing capacity values comparing to the 

upper bound and simplified Bishop solutions. The involved errors are around 20% at 

maximum and vary with the angle of internal friction ø and slope inclination β.  

• For purely cohesive soils, the log spiral solution becomes close to other analytical solutions 

with 5% error at most.  

• For cohesionless soils, both the log spiral and the upper bound solutions give successive 

increase in N value as the footing distance to the edge of slope increases.  

Generally, the log spiral solution gives acceptable correspondence with other analytical 

solutions, particularly, when base failure is expected to occur, giving lower value of the ultimate 

load than the upper bound solutions in a certain range of the slope height.  
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Figure 2.4 Log-spiral sliding surface as Narita and Yamaguchi (1990). 

De Buhan and Garnier (1998) have studied the bearing capacity of a rectangular shallow 

foundation near a slope or an excavation using the yield design theory, considering the true three 

dimensions of the problem. The difficulty of solving the problem of a footing placed near a slope 

is coming from the impossibility of examining the bearing capacity of the foundation separately 

from the analysis of the stability of a slope. This kind of combination between the bearing capacity 

and the slope stability problem can be treated either as a classical bearing capacity problem with 

reduced bearing factors due to the existence of the slope, or as slope stability problem considering 

the load from the foundation as a surcharge acting on the top of the slope.  

The problem is a slope of height 𝐻 and angle 𝛽, subjected to a vertical load 𝑄 acting on the 

top of it, resulting from a rigid rectangular foundation of length L and width B located at distance 

D from the edge of the slope. The soil was assumed to be dry, homogeneous with parameters of 𝑐, 

and .  
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Figure 2.5 Bearing capacity of a rectangular footing acting on slope  

                                         as De Buhan and Garnier (1998). 

The paper showed that the yield design method is an appropriate technique to deal with a 

three-dimensional problem of evaluating bearing capacity of a rectangular footing located near a 

slope or an excavation. Implementing the upper bound kinematic approach of this theory, two 

kinds of failure mechanisms have been devised to a.) Instability failure mechanism: This failure 

mechanism has no deformation, only velocity discontinuity surfaces. The volume of soil mass 

bounded by an arc of log spiral of angle 𝜑 rotates about the focus of the spiral. b.) Punching failure 

mechanism: This failure mechanism is obtained from the 3D generalization of the “plane-strain” 

Prandtl-type mechanism used by (Kusakabe et al. 1981) in a simplified form.  

Castelli and Motta (2010) have found that number of studies have been done of the two-

dimensional case of a strip footing resting either on a horizontal or inclined slope surface. The 

bearing capacity of a shallow foundation in plane-strain condition is generally evaluated using the 

superposition method proposed by Terzaghi (1943). Further solutions of the bearing capacity were 

given in a more general form, considering the shape of a foundation, the shape of a load, ground 

inclination and depth and inclination of the bearing surface (Hansen 1970) and (Vesic 1973). 

Castelli and Motta studied the static and seismic bearing capacity of a strip footing located at some 

distance from a sloping ground considering the effect of soil inertia by using a limit equilibrium 

technique, assuming a circular failure mechanism. A simple equation to evaluate the seismic 

bearing capacity has been derived by them and also a comparison between the proposed method 

and available theories was presented. Castelli and Motta (2008) found that the distance (d) of the 

foundation from the edge of a sloping ground plays a significant role on the bearing capacity of 

the soil foundation system. If the footing is far enough from the edge, then the failure mechanism 
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will not be affected by the slope Castelli and Motta (2008). They have conducted a parametric 

study in which they have concluded the following; first for static analysis, the ground slope 

factors (gc, gq, g) were evaluated for a distance of the footing from the edge of a slope varying 

from 0 to 6D, where D is the embedded depth of a foundation, and for inclinations of a slope 

varying in the range 0° up to 40°. The maximum reduction of bearing capacity was obtained when 

the footing is placed at the edge of the slope. When the distance of the footing from the edge of a 

slope was increased, correction factors to be applied to the bearing capacity factors for not 

embedded footing, become closer to 1. For an embedded footing (𝐻/𝐵>0), the correction factors 

may become greater than unity because of the depth effect increases the limit load. When the 

friction angle of the soil was increased, the distance (at which the effect of the sloping ground is 

negligible), increased as well. There will be a distance at which the effect of the sloping ground 

will completely fade. They named this distance threshold distance dt. The threshold distance is 

affected by the slope angle. The study also shows that an embedment ratio 𝐻/𝐵=0.5 (in which H 

is the embedment depth and B is the footing width) does not affect the threshold distance 

significantly, however it is slightly increased. Then second for seismic analysis, the bearing 

capacity of a shallow foundation should consider the load inclination and eccentricity arising from 

the inertia forces of the structure and the effect of the inertia of the soil (kinematic inertia) 

according to Eurocode 8-Part 5 (2003). The reduction in bearing capacity due to the soil inertia 

can be more significant than that caused by the inertia of the structure.  

The study found that the threshold distance at which the sloping ground no longer affects 

the bearing capacity increases, first, with the increase of the friction angle, second, with the 

increase of the seismic coefficients and the slope angle. For the static case, the embedment depth 

of the footing does not affect the threshold distance significantly. However, the embedment depth 

may cause a considerable increase of the bearing capacity. Also, for the static case, the maximum 

reduction of the bearing capacity occurred when the footing is placed directly at the edge of the 

slope. The study found that there is no significant difference in the threshold distance when the 

inertia of structure or soil mass was considered. The combined effect of both inertias can be 

considered using the superposition principle presented by Paolucci and Pecker (1997) and Cascone 

et al. (2004).  
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It can be concluded that in the work of Castelli and Motta (2010), the effect of sloping 

ground near footing has been evaluated using the limit equilibrium technique. The analysis studied 

several distances of the footing to the edge to find what they called the threshold distance at which 

the effect of the sloping ground is vanishes. Their analysis showed that the threshold distance 

increases with the increasing of the friction angle and varies from 𝑑/𝐵=1 for 𝜑𝑢 =0 to 𝑑/𝐵=6 for a 

value of 𝜑’=40°. The embedment of the footing H does not affect the normalized threshold 

distance d/B significantly; however, it may affect the vertical limit load of the footing. In some 

cases, the seismic reduction in the bearing capacity due to the soil inertia can be of the same amount 

of the reduction produced by the inertia of the structure. The superposition of the effects can be 

used to consider the reduction caused by both seismic actions, but if the reduction is great due to 

the high seismic coefficient, the superposition principle will lead to unconservative design.  

The limit separates at which the inclining ground never again influences the bearing limit 

builds, in the first place, with the expansion of the grating edge, second, with the expansion of the 

seismic coefficients and the slant point. For the static case, the implant profundity of the balance 

does not influence the limit separate fundamentally. In any case, the insertion profundity may bring 

about a significant increment of the bearing limit. Additionally, for the static case, the greatest 

lessening of the bearing limit happened when the balance is put straightforwardly at the edge of 

the incline. The review found that there is no critical contrast in the edge remove when the 

inactivity of structure or soil mass was considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Failure mechanism and applied forces adopted in the analysis  

                                     as Castelli and Motta (2010). 
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Georgiadis (2010) said that the undrained bearing capacity 𝑞𝑢 of a foundation on level ground can 

obtained from the bearing capacity equation presented by Meyerhof (1963). In contrast to the horizontal 

ground surface case, no exact solution is found for the bearing capacity of a foundation on a slope. The 

equation presented by Hansen (1961), and Vesic (1975) includes empirical factors for the case of sloping 

ground. There is also an empirical solution, that has been developed by Bowles (1996) considering the 

effect of distance from the edge of the slope but neither the slope height nor the soil properties.    

In the work of Georgiadis (2010), three footing widths (B=1,2 and 4m) and three slope angles 

β=15°,30° and 45° were considered. Different slope heights H and normalized footing distances λ= (footing 

distance/footing width) were used to evaluate the influence of these two parameters. According to the study, 

depending on the combination of the parameters, three failure modes have been found. The first two failure 

modes are bearing capacity failure, and the third one is overall slope failure.  

 

 

Figure 2.7 Problem definition as Georgiadis (2010). 

 

In summary, Georgiadis (2010) made the following observations:  

• Footing at the crest of slope  

The results presented in the study were compared to solutions available in the literature for 

the same case, like Hansen (1961), Vesic (1975), Bowles (1996) and Kusakabe et al. (1981). All 

those solutions gave a linear decrease of the undrained bearing capacity factor with the increase of 

the slope angle. For the low Cu/B value of 0.5 it was not possible to obtain a bearing capacity type 

of failure; overall slope failure was always observed using finite element analysis.  

• Footing at a distance from the slope  
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What Georgiadis (2010) did throughout his study was a comparison between his solution 

to the existing solutions of Meyerhof (1957), upper bound solutions by Kusakabe et al. (1981), 

and Azzouz and Baligh (1983).  

- Comparison to Meyerhof’s Method  

Meyerhof (1957) presented a chart for the calculation of the undrained bearing capacity 

factor. For slope heights H smaller than the foundation width B, overall slope failure was assumed, 

and Nc was calculated as a function of the slope angle β, the stability number Ns=H/Cu and the 

ratio λB/H. For H≥B, bearing capacity failure was assumed and Nc was calculated from the slope 

angle β and the normalized footing distance λ. For H/B=1, B=2m, and the distance from zero to 

2m from the crest of slope, with β=30°, =20 kN/m3and Cu=40 kPa, it’s been found that 

Meyerhof’s solution for the overall variation of Nc with H/B was unrealistic and doesn’t compare 

well with a FE solution (FE shows initial reduction of Nc starting from horizontal ground value, 

followed by horizontal section of constant Nc presenting a bearing capacity failure, then final drop 

reflecting an overall slope failure. For H/B>1, β=30° and Cu/B= 2.5, it was found that Meyerhof’s 

solution overestimates the value of Nc by up to 6.5%, as compared to the FE results.   

- Comparison to Upper Bound solutions  

For the case of footing at the crest of slope (λ=0), the study found that the upper bound and 

FE solutions are in excellent agreement. But for λ>0, the upper bound solutions overestimate the 

value of Nc by 4.4% for β=30° and 10% for β=45°.  

- Comparison to Azzouz and Baligh’s (1983) Method    

Azzouz and Baligh used a circular arc analysis. Their study found that at low values of λ 

the FE analysis predicts bearing capacity failure while for higher values, overall slope failure is 

predicted. The circular arc calculations by Azzouz and Baligh generally overestimate the 

undrained bearing capacity factor by up to 30% compared to the FE analysis. The study provided 

design charts, design equations and a suggested design procedure.  

In conclusion, Azzouz and Baligh’s results have been compared to the available solutions, 

and it was found that those solutions do not take into account some important parameters such as 

the distance of footing from the slope, the slope height and soil properties. The other solutions 

based on limit equilibrium and upper bound techniques, which are taking account of those 
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important parameters, were found to be less conservative than the FE method presented in their 

paper. The results in the paper showed that three failure modes identified, depending on H/B 

(normalized height to width ratio);  

• At low H/B, the failure surface is restricted by the slope height, and the undrained bearing 

capacity factor Nc decreases with the increase of H/B.  

• Bearing capacity failure occurs with a failure surface extending to the slope at a value of 

H/B between 0.25 and 0.75 depending on the slope angle.  

• At high values of H/B, overall slope failure was detected, and the undrained bearing 

capacity factor Nc decreased in this failure mode to zero at the ultimate slope height.  

• In most cases an increase of the distance of the footing from the slope increases the value 

of Nc.        

Shiau et al. (2011) studied the undrained stability of footings on slope, they found that for 

a footing-on-slope system, the ultimate bearing capacity of the footing is governed by either the 

foundation bearing capacity or the overall stability of the slope. The combination of these two 

factors makes the problem difficult to solve.  

There are various methods to solve this combined problem such as;  

• Slip-line methods (Sokolovski 1960).  

• Limit equilibrium techniques (Meyerhof 1957; Narita et al. 1990).  

• Yield design theory.  

• Upper and lower bounds (Davis and Booker 1973).  

• Analytical upper bound solutions (Kusakabe et al. 1981).  
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Figure 2.8 Problem notation and potential failure mechanism as Shiau et al. (2011). 

 

In more detail, these methods can be characterized as follows;  

The slip-line analysis is mathematically rigorous, but difficult to apply, especially for 

problems with complex geometry or complicated loading. While, limit equilibrium methods are 

less strict and can deal with a variety of complex boundary conditions, soil properties and loading 

conditions, but their accuracy is sometimes questioned (Shiau et al. 2011). The lower and upper 

bound theorems are based on statically admissible stress fields and kinematically admissible 

velocity fields. Most applications of limit theorems are based on the upper bound alone, because 

it is easier to develop a kinematically admissible failure mechanism than a statically admissible 

stress field. Using a very different approach, the finite element-based methods have been 

introduced by Sloan (1988, 1989), Sloan and Kleeman (1995) and Lyamin and Sloan (2002a, b) 

which allow large two-dimensional problems to be solved on a standard personal computer. This 

paper studied the undrained bearing capacity of a rigid strip footing of width (B) resting near a 

slope on a homogeneous clay soil with a slope angle (β) and slope height (H) at distance (L) from 

the edge of the slope using FE limit analysis formulations of the lower and upper bound theorems. 

The soil behavior is assumed to be undrained with shear strength (Cu). For foundations near slopes, 

Shiau et al. (2011) found that the soil’s unit weight has a great effect on the bearing capacity, 

conversely the bearing capacity of same foundation on level ground, where the soil unit weight 

has no effect on the ultimate bearing capacity. Through his study, H/B ratio was considered to be 

(3) at all times which caused above toe failure. In detail, the paper considered the effect of several 

factors on the bearing capacity of the foundation separately as follows; 
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- Effect of footing roughness   

The study found that the footing roughness may or may not be significant depending on 

the relative movement between the footing and the bearing soil. For the smooth case, the rigid 

footing tends to tilt and slide also discontinuous velocity was observed at the base of the footing. 

In contrast, for the rough case, both the footing and soil displace together, and little relative 

movement was observed at the soil/footing interface. A larger failure zone was obtained, indicating 

greater bearing capacity for rough footings. It was noted; however, that true footing roughness is 

likely to lie between the perfectly smooth and perfectly rough extremes.  

- Effect of the dimensionless strength ratio Cu/B  

It was found that for L/B ranging between 0 and 6 and Cu/B up to 10, the dimensionless 

bearing capacity P/B decreases linearly with the strength ratio until it becomes non-linear and 

rapidly approaches zero at a particular value of Cu/B in which no feasible solution is available 

from the numerical analysis. The linear portion of the curve indicates bearing capacity failure, 

which is contained within the face of the slope, where the ratio H/B has no effect. The non-linear 

portion shows a complex interaction between the footing bearing capacity and the overall slope 

stability. The transition from bearing capacity failure to overall slope stability failure occurs when 

P/B=0.  

- Effect of the slope angle β  

It was observed that the footing capacity decreases as the slope angle increases or the 

strength ratio Cu/B reduced because of reduction in Cu or an increase in .  

- Effect of the footing distance to the crest (L/B) 

The increase in footing capacity tends to stop at certain value of L/B. For Cu/B =1, the 

value of P/B reaches a constant value of 5.06 (an average value between the lower and the upper 

bound). According to the study, for a vertical cut with Cu/B and L/B=5, the pattern of the velocity 

diagram is essentially identical to that for a footing placed on level ground, indicating that the 

vertical cut does not influence the footing performance.  



 

22 
 

- Effect of surcharge (q/B)  

Shiau et al. (2011) observed that the existence of surcharge on the slope surface could either 

increase or decrease the footing capacity depending on both β and L/B. An increase in q/B tends 

to increase the footing capacity for all ratios of L/B. On the other hand, for a vertical cut, an 

increase in q/B will reduce the bearing capacity for all ratios of L/B.  

- Effect of H/B 

The results developed during Shiau et al.’s study (2011) were completed for a value of 

H/B=3 to ensure that a bearing failure mechanism is developed without influence of the bottom or 

toe of the slope. It was found that all failure mechanisms are essentially unaffected by the toe of 

the slope when H/B≥3. For slopes in which β =90° and is L/B=1 to 4, the location of the toe was 

found to affect the collapse load only very slightly. It can be concluded that the results in the study 

are applicable for all values of H/B≥3. For values of H/B < 3, further upper bound analyses were 

performed to investigate the effect of H/B for a range of slopes and values of L/B. It was found, 

provided that overall slope failure does not occur, that the normalized bearing capacity p/B will 

remain unchanged as H/B is decreased below 3 until reaching a critical value of H/B. This critical 

value of H/B was found to be a function of the problem geometry. At a very small critical value 

of H/B, there exists a sharp increase in the normalized bearing capacity as the value approaches 

that for a surface footing with no slope present. Physically, this makes perfect sense.  

For very small values of H/B, the influence of the slope on the collapse mechanism 

becomes negligible, and, in fact, the slope becomes part of the bearing capacity failure mechanism 

itself.  

Chakraborty and Kumar (2013) also provided a paper to study the bearing capacity of 

foundations on slopes. They found that for footings placed on level ground, the bearing capacity 

factor due to soil unit weight N is affected by the footing roughness, while Nc and Nq remain 

invariant with respect to the roughness condition. It’s not known how the footing roughness 

condition affects the value of bearing capacity factors Nc, Nq and N for foundation laid on sloping 

ground. Most of the available analysis for footings on sloping ground often requires assumptions 

related to the geometry of failure surface, except for those which using the displacement-based FE 

limit analyses technique. The solution determined from limit analysis in combination with finite 
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elements is very close to the true solution for a material following an associated flow rule. In 

Chakraborty and Kumar’s paper, the bearing capacity factors Nc, Nq and N have been calculated 

for smooth and rough strip footings with width B placed on a sloping ground with a slope angle β 

with the horizontal, using the lower bound FE limit analysis in combination with non-linear 

programming. The soil was assumed to be plastic and followed the Mohr-Coulomb failure criterion 

and an associated flow rule.  

The magnitudes of the bearing capacity factors Nc, Nq and N reduce with the increase of 

the slope angle and increase with the increasing soil friction angle. For rough footings, bearing 

capacity factors increase significantly compared to the smooth ones.   

It’s been noticed that the lower bound theorem of the limit analysis provides a true lower 

bound solution only if the material satisfies an associated flow rule.  

The conclusions of the study are that; along sloping ground surface, the bearing capacity 

factors become considerably higher for rough footings compared to those with a smooth base. The 

extent of the plastic zone around the footing base also becomes greater for rough footings. As 

expected, the value of the bearing capacity factors reduces extensively with an increase in the 

ground inclination. 

 

Figure 2.9 Chosen domain and the stress boundary conditions as Chakraborty and Kumar (2013) 
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Leshchinsky and Xen (2017) have found that the studies done by Meyerhof to find the 

ultimate bearing capacity for footings placed near or on slopes were carried out for purely 

cohesionless or purely cohesive soils. They found it important to consider the combination of the 

cohesion and internal friction of the soil. Leshchinsky and Xen have done their study by using an 

upper bound limit state plasticity failure discretization scheme known as Discontinuity Layout 

Optimization (DLO) to present revised bearing capacity coefficient for foundation adjacent to c’, 

φ’ slopes by applying revised factors for footings not adjacent but in proximity of slopes.  

Parametric studies of the ultimate bearing capacity for a variety of combinations of c’-φ’ 

soils and geometric configurations for footings placed near slopes were performed. The study 

provides revisions to the current, conservative bearing capacity factors given by Meyerhof (1957) 

as used in AASHTO (2012), covering a gap in available design charts. The results are presented 

in the form of reduction coefficients that can be applied to the classical bearing capacity equation.   

 

2.5 Shear strength reduction technique 

2.5.1 General 

The Finite Element Method ended up noticeably since it initially used in geotechnical 

engineering in 1966. In the mid 1970s, techniques for applying the FEM to slope stability analysis 

started appearing in geotechnical literature. They were for the most part dependent on a 

methodology that streams normally from the definition of slope factor of safety and is currently 

commonly referred to as the Shear Strength Reduction (SSR) technique. By definition, the factor 

of safety of a slope is the “ratio of actual soil shear strength to the minimum shear strength required 

to prevent failure,” or the factor by which the shear strength of the soil should be reduced to bring 

a slope to the verge of failure (Duncan 1996). In the SSR finite element technique, the strength of 

the slope material is assumed to be elasto-plastic. The material shear strengths are gradually 

reduced until collapse occurs. 

For Mohr-Coulomb material shear strength reduced by a factor of safety (F) can be 

determined from the equation: 
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𝜏
𝐹⁄ = 𝐶′

𝐹⁄ + tan
𝜑′

𝐹
⁄  ………………………………………………………………Eq. 2.8 

Where 𝜏= shear stress 

              c’ = apparent cohesion 

                φ’= angle of internal friction  

This equation can be re-written as: 

            𝜏 𝐹⁄ = 𝑐∗ + tan 𝜑∗…………………………………………………………….…..……Eq. 2.9 

Where c*=c’/F 

            𝜑*=arctan(𝑡𝑎𝑛𝜑’/F) 

              

2.5.2 Basic algorithm  

For Mohr-Coulomb materials, the steps for systematically searching for the critical factor 

of safety value, F, which brings a previously stable slope to the verge of failure, are as follow 

Step 1: Develop an FE model of a slope, using the deformation and strength properties 

established for the slope materials.  Compute the model and record the maximum total deformation 

in the slope. 

Step 2: Increase the value of F and calculate factored Mohr-Coulomb material parameters 

as described above. Enter the new strength properties into the slope model and re-compute. Record 

the maximum total deformation. 

Step 3: Repeat Step 2, using systematic increments of F, until the FE model does not 

converge to a solution, i.e. continue to reduce material strength until the slope fails. The critical F 

value just beyond which failure occurs will be the slope factor of safety. 
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2.5.3 Advantages  

The elasto-plastic SSR FE approach offers several advantages over traditional limit-

equilibrium analysis. First, it eliminates the need for a prior assumption on failure mechanisms 

(the type, shape and location of failure surfaces) or for the inter-slice shear force distribution, as 

well as it is applicable to many complex conditions and can give information for stresses, 

movements and pore pressure which is not possible with the limit equilibrium method, and most 

importantly is the critical failure surface is found automatically. 

Generally, in the Finite Element analysis, it is difficult to trace the failure slip surface of a 

slope based on the stress failure criterion. The shear strain failure criterion is employed herein. It’s 

assumed that the failure mechanism of slope is directly related to the development of the shear 

strain in the shear strength reduction technique. Also, the existence of the shear strength 

dependency of the strain is assumed. 
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CHAPTER 3 

3. NUMERICAL MODEL 

3.1 General 

The numerical model was developed using the Finite Element technique provided by the 

computer program Rocscience RS2 9.0. from Rocscience Inc., formerly Phase2, is a 2D finite 

element software for soil and rock applications founded in 1996 in Toronto, Canada. RS2 is a 

powerful software covers most of geotechnical engineering problems and used in 280 universities 

in over 120 countries (RS2 Users’ manual 2019). It can simulate the geometry of the slope and 

foundation as well as the soil and loading conditions. The results proposed by the finite element 

technique are broadly acceptable by current industry. 

The objective is to examine the ultimate bearing capacity of a strip foundation near a slope 

and study the effect of the parameters believed to govern the stability of a system consists of 

foundation and slope such as slope height and angle (H & α), soil properties (c & φ) and the 

distance from the foundation to the slope (x). 

 

3.2 Problem definition 

A typical strip footing of width, B of 1m and embedment depth, D of 1m located at distance 

(x) from an edge of slope has height (H) and angle (α) (figure 3.1). A two-dimensional finite 

element model was used to develop the problem of a continuous foundation near slope. The slope 

angle in this model was assumed to be uniform across the foundation length. 

The size of the model was chosen to be wide enough to ensure that there no additional 

stresses or displacement were developed at the boundaries. Figure 3.1 shows typical dimensions 

of the model. For conservative reasons, the right edge of the slope was constantly changing 

according to the slope angle and the location of the foundation to vary between 130 and 180 m. 

To perform the finite element calculation, the model was divided into finite number of 

triangular elements. A 6-noded triangular elements was used in the finite element mesh, according 
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to the Users’ manual of the software used to develop the problem, RS2, and to carry out an SSR 

analysis (Shear Strength Reduction), a 6-noded triangular element should be used. 

 

 

  

Figure 3.1  Geometry of the problem and model size. 

 

3.2.1 Boundary conditions 

In the model used for the analysis, the boundaries for finite element mesh are shown in 

figure 3.2. The boundaries to determine the slope are virtual boundaries while in reality, the ground 

surface extends infinitely in all directions. It necessary to be mentioned that the boundaries have 

been chosen to be far enough from the area where the failure would take place and the stress 

remained constant during loading. To simulate this case and to limit the size of the model in the 

finite element method, the three edges of the numerical model right, left and bottom were chosen 

to have movement restrain in x and y directions while the top edge of the model was always free.  

The footing in this model was flexible strip footing with dimensions of 1m width, B, and 

1m embedment depth, D, below ground surface. 

 

Q 

(kN/m2) 



 

29 
 

 

Figure 3.2 Boundary conditions. 

 

Figure 3.3 Finite element mesh. 

 

3.2.2 Constitutive law 

Mohr-Coulomb failure criteria has considered to model the shear strength characteristics 

of the soil, this model is generally used in geotechnical applications. The Mohr-Coulomb failure 

criterion can be written as the equation for the line that represents the failure envelope. The general  

equation is, 

𝜏𝑓 = 𝑐 + 𝜎𝑓 tan 𝜑 ………………………………………………………………………………….Eq. 3.1 

Where   f = shear stress on the failure plane  

               c = apparent cohesion 
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                f = normal stress on the failure plane 

                φ = angle of internal friction  

These parameters are well known in engineering practices and obtained from lab tests. 

 

 

Figure 3.4 Mohr-Coulomb failure criteria as Labuz and Zang (2012). 

 

For considering Mohr-Coulomb failure Criteria, certain assumptions have been made; 

1. Soil is elasto-plastic material, 

2. Young’s modulus, E, does not depend on the stress level, 

3. Cohesion, c, is constant with depth, 

4. Soil is homogenous and isotropic. 

3.3 Test Procedure 

For one model has slope geometry of H and α, soil parameters of c, φ and γ, and distance 

x from the foundation to the slope, around 8 different loading stages were generated by RS2 9.0 

starting with no loading case then increasing the load gradually until failure occurs. The three types 
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of failure detected are either slope failure, bearing capacity failure or combination of both. 64 

models with 8 loading stages to make a total number of runs of about 512 runs were developed. 

For each model, the vertical displacement corresponding to each loading stage was computed, then 

one load-settlement curve was drawn for each test individually. From the curve, the allowable load 

was obtained which corresponded to the allowable settlement of the foundation and achieved a 

factor of safety of at least 3 for the whole problem. The resulted load from this phase was used to 

perform phase II which concerned about the distance by applying the load on the foundation and 

change the distance, starting with the foundation sat directly at the edge of the slope with distance 

increasing until the factor of safety remained constant. The target x in this phase is the minimum 

distance to locate a foundation near a slope to maintain the stability of the whole system. 

 

3.3 Monte Carlo Data Sampling 

Monte Carlo is a computational technique dependent on developing a random procedure 

for a problem and functioning a numerical experiment by N-fold sampling from a random 

sequence of numbers with a prescribed probability distribution. The technique originated from the 

complicated diffusion problems that were encountered in the early work on atomic bomb in the 

1940’s. The technique can be used for the problems that are probabilistic or deterministic. 

Commonly, Monte Carlo sampling is a followed technique used for modeling of complex 

situations where many random variables are involved and/or analytical or numerical solutions 

don’t exist or are too difficult to implement. It is not a statistical tool, depends on repeated random 

sampling and provides generally approximate solutions. Generally, the technique works through 

certain steps;  

• Determine the statistical properties of possible inputs,  

• Generate many sets of possible inputs, 

• Perform a deterministic calculation with these sets,  

• Analyze statistically the results. 
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3.4 Parameters 

The variable parameters tested in the research are soil parameters (c, φ & γ), slope geometry 

(H & α), distance from the foundation to the slope (x) and the allowable load (Q).  

For phase I of the analysis, the variable parameters were changing constantly for each 

model to examine the ultimate bearing capacity of the foundation, thus, determine the allowable 

load. While for phase II, parametric study was conducted to test the effect of the key parameters 

which are the slope height and angle, the angle of internal friction of the soil and the distance from 

the foundation to the slope on the stability of the problem, hence, determining the minimum 

distance required to locate a foundation near slope in order to preserve the stability of the system. 

The parameters tested in phase II are these of most common for soils and slopes. 

3.4.1 Soil Unit weight  

The unit weight of the soil (γ) varies between 16 kN/m3 for very loose sand until 22 kN/m3 

for hard clay (Peck 1974). 

3.4.2 Soil Cohesion 

The cohesion parameter of the soil (c) is almost zero for cohesionless soils and can increase 

to reach a maximum of 100 kN/m2 for hard dry clayey soils (Peck 1974). 

3.4.3 The angle of internal friction 

Pure clay has almost zero value of internal friction then surges with increasing of sand 

content and density to reach an approximate value of 40ᵒ for compact sandy loam soils, normally 

pure clay soils are not found on topsoils. For very loose sand, φ is less than 29ᵒ and goes up to 

greater than 41ᵒ for very dense sand. Less than 3ᵒ for very soft clay and can go higher than 25ᵒ for 

hard clay soils (Peck 1974). 

3.4.4 Slope Height and angle 

Slopes can be classified to extra high, high, medium and low slope according to the 

Geological Engineering Manual (2006) and depending on the slope height. The slope can also be 

described as steep, medium and gentle slope depending on the slope angle according to the same 
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reference. Table 3.1 below shows the classification of the slope depending on the slope height and 

angle. 

Table 3.1 Classification of slopes (Geological Engineering Manual 2006). 

 

 

3.4.5 Distance from the foundation to the edge of the slope  

The distance range from the foundation to the edge of the slope has been guided by the 

distances stated in Meyerhof theory of 1957 on purely cohesive and cohesionless materials. The 

theory reported that beyond about 2 to 6 times the foundation width and depending on φ and D/B 

(depth and width of foundation, which were always 1m in this research), the bearing capacity of 

the foundation is independent of the inclination of the slope, concluding that the influence of the 

slope on the bearing capacity coefficients of the foundation vanishes at distance 6B, thus the 

foundation acts as on horizontal surfaces. Upon Meyerhof’s conclusion, 1957, the range of the 

distance was taken from 0 to 6B. 
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3.5 Summary of problem key parameters range 

Table 3.2 summarizes the ranges of the parameters used to create the problem. 

 

Table 3.2 Limits of variable parameters 

Slope Geometry 

Distance from slope x 

(m) 

Soil Parameters 

Height H 

(m) 
Angle αᵒ γ (kN/m3) φᵒ  c (kPa) 

min max min max min max min max min max min max 

3 30 10 70 0 6 16 22 6 42 5 60 
 

 

3.6 Failure scheme  

The study tracked two important correlated issues when dealing with a system of a 

foundation and slope which are the bearing capacity of the foundation and the stability of the slope. 

It’s been found that the ultimate bearing capacity of the foundation is governed by either the 

bearing capacity or the overall stability of the slope, the combination of these two factors makes 

the problem difficult to solve (Shiau et al. 2011). 

The types of failure conducted in the study either slope failure which the slope fails while 

the foundation hasn’t reached its ultimate bearing capacity yet or bearing capacity failure where 

the foundation reached its ultimate bearing capacity while the slope still stable and in some cases 

with high factors of safety. The three primary bearing capacity failure according to Vesic (1963) 

are general shear failure, local shear failure and punching shear failure.  
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Figure 3.5 Modes of bearing capacity failure (Vesic 1963). 

3.6.1 Allowable settlement 

Settlement of shallow foundation is divided to two major categories; elastic (immediate) 

settlement and consolidation settlement (primary and secondary). 

 

Figure 3.6 Settlement vs. time.  

http://3.bp.blogspot.com/-VZxLCvIAWms/UKggTYw7QHI/AAAAAAAABAA/XUC1W5GtgaQ/s1600/9.gif
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Skempton and MacDonald (1956) proposed limiting values for maximum settlement to 

be used for building purposes, maximum settlement in sand 32mm and in clay 45mm. 

3.6.2 Allowable bearing capacity 

Loads are transferred from the foundation into the ground so that the ground deforms and 

forms settlement. The allowable bearing capacity of shallow foundation is the maximum loading 

can be applied over a unit area, which the soil is able to resist without undergoing any excessive 

settlement and shear failure. The allowable load can be related to the allowable bearing capacity 

by the following relation. 

  𝑄𝑎𝑙𝑙 = 𝑞𝑎𝑙𝑙 ∙ 𝐴…………………………………………………………………………….  Eq. 3.2 

Where, Qall = allowable load on footing, 

qall = allowable bearing capacity 

A = contact area between the soil and footing. 

 

The allowable bearing capacity can be defined in terms of the ultimate bearing capacity and the 

factor of safety as given below, 

 

𝑞𝑎𝑙𝑙 =
𝑞𝑢𝑙𝑡

𝐹.𝑆.
…………………………………………………………………………………. Eq. 3.3 

 

Where, qult = ultimate bearing capacity, 

F.S. = factor of safety. 

 

The bearing capacity equation for shallow foundation on flat ground formulated by Terzaghi 

(1943). 

𝑄𝑢 = 𝑐𝑁𝑐 + 𝛾𝐷𝑁𝑞 + 0.5𝛾𝐵𝑁𝛾 Eq. 3.4 

Where,  

c =Cohesion of soil, 

 = unit weight of soil 



 

37 
 

 D =depth of footing, 

 B = width of footing, 

Nc, Nq, N:  Terzaghi’s bearing capacity factors depend on soil friction angle, φ. 

 

 

Figure 3.7 Failure plane for shallow foundation on flat ground by Terzaghi (1943). 

 

While the bearing capacity for shallow foundation rested near slope was given by Meyerhof 

(1957). 

𝑞 =  𝑐𝑁𝑐𝑞 + 𝛾 (
𝐵𝑁

2
)

𝛾𝑞
……………………………………………………………………... Eq. 3.5 

Where,  

c =Cohesion of soil, 

 = unit weight of soil, 

 B = width of footing, 

 Ncq, Nq:  bearing capacity factors depend on the distance (b) from the edge of slope as well as 

Slope angle (β), friction angle of the soil (φ) and the foundation depth and width (D/B). 
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Figure 3.8 Failure plane for shallow foundation near slope as Meyerhof (1957). 

 

3.7 Mesh convergence study 

The element used to perform the finite element analysis is 6-noded triangular element as 

recommended by the software developers and explained in the Users’ manual in order to carry out 

a shear strength reduction analysis (SSR), the main analysis tool of the research. The 6-noded 

triangular element is sufficiently accurate and generally used in geotechnical applications. It’s 

important to use a satisfactorily refined mesh to assure the adequacy of the results of the model 

simulation a course meshes may yield inaccurate results. The boundary discretization and element 

densities at the zone believed to be critical area which contains the slope and the foundation were 

manually increased. Figure 3.9 shows the area which had refined mesh bordered by a doted 

rectangle. 

 

Figure 3.9 Area of the model with higher element densities. 
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Generally, with mesh density increasing, the numerical solution produced from the model 

will tend toward a unique value. The mesh is said to be converged when mesh refinement provides 

an insignificant change in the solution. 

Initially, the numerical model shown in figure 3.9 was discretized by approximate number 

of 2438 elements increased up to 56266 elements. Table 3.3 summarizes the factors of safety and 

the computation time corresponding to different number of elements, it’s shown from the table 

that the critical factor of safety was to be found 2.06 used as a referee to compute the differences 

in the factors of safety using the following equation. 

 

𝐹. 𝑆.𝑒𝑟𝑟𝑜𝑟 =
(𝐹. 𝑆. −2.06)

2.06⁄ …………………………………………………………… Eq. 3.6 

 

        Table 3.3 The F.S. and computation time corresponding to different number of elements. 

Number   of 

elements 
F.S. 

F.S. 

Differences 

Computation time 

(min.) 

Normalized 

computation time 

2438 2.1 1.94% 4.04 1.00 

3872 2.07 0.48% 5.49 1.36 

7824 2.06 0.00% 13.29 3.29 

19902 2.06 0.00% 38.47 9.52 

56266 2.06 0.00% 180.05  44.57 

It’s seen from the values of the factor of safety that the mesh was converged at 7824 mesh elements 

at which the factor of safety remained constant for higher numbers of elements and achieved an 

error of 0%. 
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3.8 Validation of the numerical model 

3.8.1 Bearing capacity 

Meyerhof (1963) proposed a formula for calculation of ultimate bearing capacity like the 

one proposed by Terzaghi (1943) but introducing further foundation shape and depth coefficients 

(Sc, Sq, Sγ and Dc, Dq, Dγ). The ultimate bearing capacity can be determined according to Meyerhof 

general equation given below; 

 

𝑞𝑢 =  𝑐𝑁𝑐𝑞 + 𝛾 (
𝐵𝑁

2
)

𝛾𝑞
……………………………………………………………….……. Eq. 3.7 

 

Where, c =Cohesion of soil, 

              = unit weight of soil, 

             B = width of footing, 

             Ncq, Nq:  bearing capacity factors depend on the distance (b) from the edge of slope as          

well as Slope angle (β), friction angle of the soil (φ) and the foundation depth and width (D/B) 

and can be determined from the table below; 

Table 3.4 Meyerhof’s bearing capacity coefficients. 

φ Nc Nq Nγ 

0 5.1 1 0 

5 6.5 1.6 0.1 

10 8.3 2.5 0.4 

15 11 3.9 1.2 

20 14.9 6.4 2.9 

25 20.7 10.7 6.8 

30 30.1 18.4 15.1 

35 46.4 33.5 34.4 

40 75.3 64.1 79.4 
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Figure 3.10 Bearing capacity deduced by the software. 

Bearing capacity by software                                                                           

qall= Qall / A= 200/1= 200 kN/m2 

qu= qall x F.S.= 200x 1.47= 294 kN/m2 

Bearing capacity according to Meyerhof 

(1963) 

qu= 5x30.1+0.5x19x15.1= 294 kN/m2 

 

 
 

3.8.2 Slope Stability 

Giam and Donald (1988) presented a set of slope stability problems to test the abilities of 

computer programs to handle a full range of problems likely to be met in geotechnical practices, 

including complex soil profiles and slope geometries, pore water pressures, seismic effects, earth 

and rock dams, surcharges and non-circular failure surfaces. Results were compared to both Slide 

5.0 limit equilibrium and referee values from published sources found in reference material such 

as journal and conference proceedings.  

 

Figure 3.11 shows a verification example of a simple case of slope stability analysis in a 

homogenous soil. The model was initially established in the software with the geometry and soil 

properties indicated on the figure. The factor of safety and its corresponding failure slip line is 

required. The deduced results are presented in table 3.5 for comparison, as well as in figures 3.12 

& 3.13 respectively. The referee F.S. is 1.00 as per Giam and Donald (1988). 

 

 

 

φ=30ᵒ,  

c=5 kPa 

γ=19kN/m3   
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Figure 3.11 Geometry of the problem. 

 

3.8.2.1 Results  

Table 3.5 Results of different methods for slope stability analysis 

Method 
Factor of 

Safety 

SSR (RS2) 1.01 

Bishop (Slide) 0.987 

Spencer 

(Slide) 
0.986 

Gle (Slide) 0.986 

Janbu 

Corrected 

(Slide) 

0.99 
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Figure 3.12 Results produced using SSR shows critical SRF 1.01. 

 

 

 

Figure 3.13 SSR convergence graph shows critical SRF 1.01 at max. total displacement 0.019m. 
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3.9 Input parameters and results 

 Table 3.6 shows the input parameters for 64 tests performed using RS2 9.0 software, along 

with the output results in terms of the allowable load corresponding to the allowable settlement for 

each test with the total factor of safety (F.S.) for the problem. 

Test 

No. 

Soil parameters 
Slope 

height 

(H)     

(m) 

Slope 

angle 

(α)         

(ᵒ) 

Distance to 

slope (x) 

(m) 

Q 

allowable 

(kN/m2) 

Factor of 

safety 

(F.S.) 
γ 

(kN/m3) 
φ (ᵒ) 

c 

(kPa) 

1 20.00 26.14 26.0 20.0 12.0 0.0 200 3.1 

2 20.01 40.68 18.0 22.0 40.0 5.0 200 2.98 

3 19.90 35.81 33.0 20.0 27.0 5.0 200 2.43 

4 20.10 24.59 31.0 25.0 47.5 2.5 200 1.05 

5 20.30 37.33 15.0 26.0 45.0 2.5 200 1.35 

6 19.98 13.59 45.0 13.0 20.0 1.5 100 2.67 

7 20.02 32.35 15.0 11.0 28.0 3.5 50 2.16 

8 19.91 31.07 12.0 21.0 52.0 4.0 Slope Failure 

9 19.89 29.78 18.0 25.0 12.0 5.0 100 3.43 

10 20.03 26.14 26.0 23.0 18.0 1.0 100 2.36 

11 20.10 36.87 27.0 8.0 13.0 1.0 50 5.6 

12 19.95 24.07 27.0 10.0 55.0 3.5 50 1.49 

13 20.00 35.81 33.0 25.0 48.0 1.0 200 1.4 

14 21.04 6.00 33.8 14.0 30.0 1.5 100 1.32 

15 19.00 40.00 5.0 27.0 20.0 3.0 100 1.9 

16 18.30 20.80 39.0 20.0 26.0 5.5 200 1.83 

17 16.00 19.10 42.0 16.0 58.0 2.0 200 1.31 

18 20.50 29.40 22.0 25.0 47.0 2.3 50 1.07 

19 19.66 13.00 59.2 8.0 56.5 5.0 200 1.93 

20 20.64 18.00 37.5 26.0 23.0 5.0 200 1.56 

21 21.20 24.10 37.0 30.0 28.0 1.5 200 1.55 

22 21.80 36.90 27.0 19.0 14.5 1.0 Slope Failure 

23 22.00 22.40 33.0 21.0 33.0 1.5 200 3.84 

24 20.30 16.00 49.0 14.0 38.0 2.5 200 1.6 

25 19.00 35.00 5.0 18.0 31.0 2.5 200 1.63 

26 18.70 27.31 14.0 23.0 13.5 2.0 Slope Failure 

27 20.60 26.14 26.0 25.0 37.0 3.3 200 1.34 
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Test 

No. 

Soil parameters 
Slope 

height 

(H)     

(m) 

Slope 

angle 

(α)         

(ᵒ) 

Distance to 

slope (x) 

(m) 

Q 

allowable 

(kN/m2) 

Factor of 

safety 

(F.S.) 
γ 

(kN/m3) 
φ (ᵒ) 

c 

(kPa) 

28 22.30 27.50 26.0 12.0 21.0 5.0 50 2.6 

29 20.30 14.50 39.0 8.0 55.5 4.0 200 1.46 

30 20.30 29.80 18.0 16.5 31.0 0.5 200 1.55 

31 20.20 37.30 15.0 14.0 13.0 2.0 50 4.36 

32 20.40 23.90 14.9 11.0 18.0 2.5 50 2.32 

33 20.00 25.78 40.0 14.0 19.0 5.0 200 4.68 

34 19.00 35.81 33.0 25.0 64.0 1.3 Slope Failure 

35 20.00 40.68 18.0 17.0 45.0 6.0 200 1.62 

36 20.02 26.14 26.0 23.0 15.0 0.0 Slope Failure 

37 20.10 36.87 27.0 27.0 66.0 2.3 Slope Failure 

38 19.99 24.07 27.0 24.0 70.0 1.8 Slope Failure 

39 20.04 25.78 40.0 23.0 45.0 4.0 200 1.31 

40 20.01 41.59 15.0 8.0 22.0 4.0 200 3.47 

41 19.99 26.50 16.0 15.0 10.0 6.0 200 3.08 

42 20.02 14.60 48.0 6.0 39.0 1.5 200 2.03 

43 20.10 9.84 44.0 4.0 28.0 4.0 100 3.35 

44 20.03 26.50 16.0 17.0 41.0 3.0 100 1.18 

45 20.00 5.12 43.0 14.0 33.0 6.0 200 1.14 

46 21.00 27.31 14.0 18.0 35.0 4.5 200 1.24 

47 19.68 9.00 36.4 20.0 29.0 5.5 Slope Failure 

48 20.64 18.00 37.5 27.0 51.0 4.0 Slope Failure 

49 19.66 13.00 59.2 20.0 18.0 5.0 200 2.12 

50 20.90 12.00 46.4 8.0 51.0 3.0 200 1.55 

51 21.50 16.80 47.0 12.0 17.5 2.0 50 2.74 

52 21.50 19.60 44.0 12.0 26.0 2.0 Slope Failure 

53 20.50 29.40 22.0 22.0 12.0 2.0 200 3.4 

54 20.00 15.50 46.0 18.0 48.0 5.0 Slope Failure 

55 20.10 19.10 42.0 15.0 64.0 0.0 0 1.36 

56 20.00 22.00 32.0 7.5 36.0 6.0 200 1.46 

57 19.00 20.80 39.0 26.0 41.0 2.5 200 1.39 

58 19.10 20.80 32.0 16.5 50.0 3.0 Slope Failure 

59 19.00 20.00 33.0 21.0 32.0 1.0 200 1.41 
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Test 

No. 

Soil parameters 
Slope 

height 

(H)     

(m) 

Slope 

angle 

(α)         

(ᵒ) 

Distance to 

slope (x) 

(m) 

Q 

allowable 

(kN/m2) 

Factor of 

safety 

(F.S.) 
γ 

(kN/m3) 
φ (ᵒ) 

c 

(kPa) 

60 19.00 30.00 5.0 22.0 28.0 1.5 200 1.69 

61 20.33 15.00 36.0 12.0 19.0 3.0 100 2.18 

62 19.78 26.00 23.3 6.0 64.0 1.5 200 1.21 

63 19.83 21.00 33.0 24.0 26.0 4.0 200 1.56 

64 20.50 26.00 46.4 7.0 28.0 5.0 100 3.55 

 

Table 3.6 Input parameters and results 

Note: The soil parameters, slope geometries and distances from the foundation to the slope 

were randomly formed using Monte Carlo sampling method, as explained in section 3.3, the 

random combination of the variable parameters led to overall instability of the problem in certain 

cases as indicated in table 3.6, achieving a factor of safety of less than 1 under the self weight of 

the foundation. 
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CHAPTER 4 

4. ANALYSIS AND RESULTS 

 

4.1 General 

The research was accomplished through two complementary phases while each phase had 

different objective. The objective of phase I was examining the ultimate bearing capacity of a 

typical strip foundation of 1m width, B, and 1m depth, D, placed near slope with considering 

different soil and geometry conditions, thus, determine the allowable load, Q, bearable by the 

prescribed foundation in terms of the allowable settlement and the factor of safety. 

Then, performing phase II of the research which aimed to study the effect of the distance 

between the slope and the foundation, thus, determine the minimum distance which achieves the 

stability of a system consists of foundation and slope. 

Different soil conditions were taken into account, each soil has properties of c, φ and soil 

unit weight of γ. The soil parameters were obtained randomly using Monte Carlo Sampling 

Technique, then assigned to different slope geometries (slope heights H, and angles α) with 

different foundation locations from the crest of the slope. 

 

4.2 Phase I Analysis: Bearing capacity 

The deduced results of phase I of the analysis concerning the bearing capacity of a 

foundation placed at distance from slope are presented below in terms of load- settlement curves 

(loadx1m2), and sorted in three categories; bearing capacity failure, bearing capacity failure 

followed by slope failure and the third category is slope failure followed by bearing capacity 

failure. 

 

4.2.1 Bearing capacity failure  

It is noticeable from the collection of analysis results summarized in figure 4.2 that the 

vertical displacement underneath the foundation increased with load increase until bearing 

capacity failure occurred under the foundation while the slope remained stable (F.S.>1.3). In 



 

48 
 

shallow foundations, usually, the allowable bearing capacity is governed by the settlement of the 

foundation. Thus, the bearing capacity failure in the following cases detected when the settlement 

value exceeded the allowable settlement, which according to Skempton and MacDonald (1956), 

was when the maximum settlement for sand is 32mm, and 45mm for clay. Figure 4.1 shows typical 

results characterised the mode of failure presented in the first category. Note that the slope’s factor 

of safety is shown in each figure, further emphasizing the slope remained safe while the foundation 

failed.   

 

 

Figure 4.1 Typical results show bearing capacity failure presented in 1st category 
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F.S.=3.1 F.S.=2.98 

F.S.=2.43 F.S.=1.35 

F.S.=2.16 F.S.=3.43 

 

 

=3.43 

F.S.=2.36 F.S.=5.6 
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F.S.=1.4 F.S.=1.32 

F.S.=1.9 F.S.=1.83 

F.S.=1.31 F.S.=1.56 

F.S.=1.55 F.S.=3.84 
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F.S.=1.63 F.S.=1.34 

F.S.=1.46 F.S.=4.68 

F.S.=1.62 F.S.=1.31 

F.S.=3.47 F.S.=3.08 
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F.S.=2.03 F.S.=3.35 

F.S.=2.12 F.S.=2.74 

F.S.=3.4 

F.S.=1.46 F.S.=2.18 

F.S.=1.39 
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Figure 4.2 Bearing capacity failure (Pahse I analysis) 
 

 

4.2.2 Bearing capacity failure followed by slope failure 

The following set of charts represent the second mode of failure which reported a case of 

bearing capacity failure followed by slope failure, which is seen from the figures the bearing 

capacity of the foundation has reached its ultimate value, in terms of the vertical displacement of 

the soil underneath the foundation, while the slope still stable and achieving the acceptable factor 

of safety of at least 1.3 for designing purposes. With load increasing, the soil underneath the 

foundation tended to move horizontally towards the slope which explains the decrease in the 

vertical displacement values with load increase as the slope started to slide until it reached the least 

values of it when slope failure occurred. Specifically, for the first two charts in figure 4.3, it’s seen 

that the slope started to fail before the foundation was completely settled, no transition zone 

occurred for these two models as with the increasing load, the slope failed. 
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Figure 4.3 Bearing capacity failure followed by slope failure (Phase I analysis). 

 

 

4.2.3 Slope failure followed by bearing capacity failure 

The third category of the charts represented a case of slope failure followed by bearing 

capacity failure with increasing loads. In geotechnical engineering, the acceptable factor of safety 

of slope is at least 1.3 then it is considered failed for less factors of safety. While for the software, 

the failure is detected when the total factor of safety of the problem is less than 1. That explains 

the capability of the program for analyzing models with increased loads although the engineering 

failure criterion has been met. Figure 4.4 presents a sketch of the location of the foundation for the 

slip line of the slope for the third set of charts which show that the foundation is located completely 

outside the critical circular failure. 

 

 

Figure 4.4 Sketch for the location of the foundation to the failure surface. 
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Figure 4.5 Slope failure followed by bearing capacity failure (Phase I analysis). 

 

 

4.3 Allowable Load  

The allowable load is the maximum load can be applied on a foundation before failure or 

uncontrolled deformation occur. As the settlement usually controls the allowable bearing capacity 

of shallow foundations, the allowable load was measured as the corresponding load to the 

allowable settlement reached by the foundation during loading and achieved a factor of safety of 

at least 3. From the analysis of phase I and after discarding the results with F.S. less than 3, the 

allowable load for a strip footing of depth and width of 1m was found to be 200kN/m2. 

 

 

4.4 Phase II analysis: Slope stability 

 

Figures below are the curve form of the tests performed in phase II of the analysis which 

concerned about examining the effect of the slope height and angle, the angle of internal friction 

of the soil and finally the distance from the foundation to the slope on the stability of the slope and 

foundation. It demonstrates the distance (x) of the foundation to the slope in meters on the 

horizontal axis with the corresponding factor of safety for each distance on the vertical axis. For 

all tests, the value of the factor of safety augmented as expected by increasing the distance from 

the foundation to the slope until it remained constant at the distances stated in the theory of 

Meyerhof (1957), which indicates the agreement between the theory and the research in terms of 

the factor of safety of the slope. 
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Figure 4.6 Slope stability (Phase II analysis). 

 

4.5 Parametric study 

From the values of the ultimate bearing capacity, displacements and factor of safeties 

measured during testing, it was found that the x/B ratio, the slope height and angle α are the most 

significant parameters affecting the stability of a system of a foundation and slope. 

For the cases of the foundation placed at greater distance from the slope (>6B), the bearing 

capacity becomes independent of these parameters. While changing the shearing resistance of the 

soil by increasing or decreasing affected the stability of the slope regardless the foundation. 

4.5.1 Distance to the slope (x) 

Meyerhof (1975) determined the reduction in the bearing capacity coefficients of the 

foundation associated with existence of a slope, as well as defining the distance at which the 

bearing capacity of the foundation is independent of the inclination of the slope. According to 

Meyerhof, the foundation becomes independent of the slope at distance from 2 to 6B depending 

on φ and D/B (where D & B are the foundation depth and width, respectively). As expected, the 

factor of safety increased with distance increase from the slope until it remained constant at 

distance 6B and beyond. For cases that the foundation placed close to the crest of the slope, the 

displacement of the soil under the footing concentrates more on the side of the slope than on the 

side of the horizontal surface. From the analysis and results, the validation of Meyerhof’s theory 

is detected in figure 4.7. 
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Figure 4.7 Constant F.S. at 6B and beyond. 

 

4.5.2 The slope angle (α) and the angle of internal friction (φ) 

It’s expected that the bearing capacity of the foundation reduces with the increase in the 

slope inclination and the decrease in the angle of shearing resistance of soil. From investigating 

and comparing the results, it’s found that for medium slopes the effect of increasing the slope angle 

is almost as significant as the effect of deceasing the angle of internal friction of the soil on the 

stability of the slope. As seen from figures below for two slopes of same height of 10m, decreasing 

the angle of shearing resistance by 25% caused reduction in the factor of safety by around 25% for 

the same ratio of x/B and α, then increasing the slope angle by 33% reduced the factor of safety 

by around 22% for same ratio of x/B and φ figure 4.6. 
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Figure 4.8 Effect of slope angle and friction angle. 

 

4.5.3 The slope height (H) 

The analysis gave an expected result regarding the slope height in terms of the factor of 

safety of slope, where the safety factor gave lower values at higher altitudes as it is shown in the 

figures below the effect of increasing the height of slope with fixing the friction angle φ for two 

sets of slope angles, from the first set of data and at the same slope angle α=30ᵒ and  friction of 

soil φ=30ᵒ the factor of safety decreases linearly with the increase of slope height. For slope angle 

of α=40ᵒ with increasing the slope height by 100% the factor of safety is less than 1 in case of the 

presence of foundation at 9m and it equals exactly 1 in case of no foundation, which concluded 

that for this parameters combination it’s not recommended to have a foundation at any distance 

from the slope. The key factor here is the slope height and neither is the slope angle nor the friction 

angle since for the slope of height 10m and angle α=40ᵒ and friction angle of 30ᵒ it was safe to 

have foundation adjacent to the slope (x=0). So, it is noticeable that generally with increasing the 

slope angle and fixing the shearing resistance angle, it was not possible to increase the slope height 

and have a foundation at the same time. 
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Figure 4.9 Effect of slope height. 

 

4.6 Output 

The analysis was performed through two phases. The objective of phase I was to examine 

the ultimate bearing capacity of a strip foundation of width, B and depth, D of 1m placed at distance 

from slope, thus, determine the allowable load for the given footing. Then a parametric study was 

proceeded in phase II of the analysis to study the key factors affecting the stability of the system 

of foundation and slope such as (H, α, φ and x). 

From the figures below, the influence of the presence of the slope on the bearing capacity 

of the foundation is seen through the size and shape of the failure plane below the foundation. To 

explain the difference in the failure plane due to the effect of the slope angle, slope height, x/B 

ratio (in this case, x/B is the distance to the slope as B=1m) as well as the soil properties. The cases 

of soil with φ=30ᵒ & 40ᵒ, α=30ᵒ & 40ᵒ and slope height H=10 & 20m were chosen for comparison. 

It is noticeable that there no displacements were initiated on or near the boundaries of the model, 

and no additional stresses were generated which confirms that the boundaries were suitable for all 

geometry conditions. It’s noted that when the foundation was placed directly at or close to the edge 

of the slope (x/B=0, 1), the soil under the foundation tended to move horizontally toward the slope 

since it has less shearing resistance. With increasing the distance of the foundation to 2B, the 

ultimate bearing capacity increased as expected and part of the stresses due to the presence of the 

foundation began to be governed by soil on the side of the ground surface. With locating the 

foundation farther, the slip line of the slope passed the farther edge of the foundation to make the 
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foundation located completely inside the slope failure plane, the slope at this case experienced case 

of toe failure and this explains the constancy of the factor of safety at distance of 6B and beyond 

to be equal to the case of no foundation as so is the foundation is governed by the overall stability 

of the slope, and not by the ultimate bearing capacity. For case of αᵒ≻ φᵒ and for H=10m, the slope 

experienced case of face failure as shown in figure 4.10. 

 

For higher and steeper slopes, the effect of the distance of the foundation became more 

significant, and the foundation is governed by the ultimate bearing capacity for cases of αᵒ= φᵒ.  

While for case that αᵒ≻ φᵒ, slope sliding occurred on the slope surface to produce case of toe failure 

for all distances to the foundation. It can be concluded that for such steep and high slopes, the 

foundation is governed by the slope failure. So, the increase in the slope geometry requires increase 

in the distance of the foundation where the bearing capacity is independent of the slope. 

 

  

  

Figure 4.10 Output for H=10m, D/B=1 & x/B=0 

  

Figure 4.11 Output for H=10m, D/B=1 & x/B=1. 
 

φ=30ᵒ, α=40ᵒ φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ φ=40ᵒ, α=30ᵒ 

φ=30ᵒ, α=30ᵒ φ=40ᵒ, α=30ᵒ 
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Figure 4.11 Output for H=10m, D/B=1 & x/B=1. 

 

  

  
  

Figure 4.12 Output for H=10m, D/B=1 & x/B=2. 

 

  

  

Figure 4.13 Output for H=10m, D/B=1 & x/B=3. 

φ=40ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ φ=40ᵒ, α=30ᵒ 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=40ᵒ, α=40ᵒ 
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Figure 4.14 Output for H=10m, D/B=1 & x/B=4. 

  

  

Figure 4.15 Output for H=10m, D/B=1 & x/B=5. 

  

  

Figure 4.16 Output for H=10m, D/B=1 & x/B=6. 
 

φ=40ᵒ, α=40ᵒ 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ 

φ=30ᵒ, α=30ᵒ φ=40ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=40ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 
φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ φ=40ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 
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Figure 4.17 Output for H=20m, D/B=1 & x/B=0. 

  

  

Figure 4.18 Output for H=20m, D/B=1 & x/B=1. 

  

  

Figure 4.19 Output for H=20m, D/B=1 & x/B=2. 

φ=30ᵒ, α=40ᵒ φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ φ=40ᵒ, α=30ᵒ 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ φ=40ᵒ, α=30ᵒ 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=40ᵒ, α=30ᵒ 
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Figure 4.20 Output for H=20m, D/B=1 & x/B=3. 

  

  

Figure 4.21 Output for H=20m, D/B=1 & x/B=4. 

  

  

Figure 4.22 Output for H=20m, D/B=1 & x/B=5. 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=40ᵒ, α=30ᵒ 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=40ᵒ, α=30ᵒ 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=40ᵒ, α=30ᵒ 
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Figure 4.23 Output for H=20m, D/B=1 & x/B=6. 

 

4.7 Design charts 

The design charts represent a relationship between the slope height (H) and angle (α), the 

angle of internal friction of the soil (φ) and distance from the foundation to the edge of the slope 

(x) based on factor of safety from 1.3 to 1.7. These charts are limited to cohesionless soils and to 

a ratio of D/B=1 (where D & B are the embedment depth and the width of the foundation, 

respectively). If higher factor of safety is required, it’s recommended to place the foundation at 

farther distance from slope. 

 

Table 4.1 summarises the values used to create the design charts. The target distance is the 

minimum distance at which the slope reached a factor of safety from 1.3 to 1.7. 

 

 

 

 

 

 

φ=40ᵒ, α=40ᵒ 

φ=30ᵒ, α=30ᵒ 

φ=30ᵒ, α=40ᵒ 

φ=40ᵒ, α=30ᵒ 
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Table 4.1 Design charts values 

Point 

Soil parameters Slope 

height 

(H)    

(m) 

Slope 

angle 

(α)         

(ᵒ) 

Distance to 

slope (x) 

(m) 

Q 

allowable 

(kN/m2) 

Factor of 

Safety 

(F.S.) 

γ 

(kN/m3) 
φ (ᵒ) 

c 

(kPa) 

1 19.00 30.00 5.0 10.0 30.0 3.0 200 1.37 

2 19.00 30.00 5.0 20.0 30.0 6.0 200 1.31 

3 19.00 30.00 5.0 30.0 30.0 8.0 200 1.4 

4 19.00 30.00 5.0 40.0 30.0 9.0 200 1.42 

5 19.00 30.00 5.0 10.0 40.0 

Parameters combination doesn't 

allow footing 

6 19.00 30.00 5.0 20.0 40.0 

7 19.00 30.00 5.0 30.0 40.0 

8 19.00 30.00 5.0 40.0 40.0 

9 19.00 35.00 5.0 10.0 30.0 2.0 200 1.31 

10 19.00 35.00 5.0 20.0 30.0 3.0 200 1.3 

11 19.00 35.00 5.0 30.0 30.0 5.0 200 1.4 

12 19.00 35.00 5.0 40.0 30.0 6.0 200 1.41 

13 19.00 35.00 5.0 10.0 40.0 3.0 200 1.32 

14 19.00 35.00 5.0 20.0 40.0 5.0 200 1.45 

15 19.00 35.00 5.0 30.0 40.0 7.0 200 1.41 

16 19.00 35.00 5.0 40.0 40.0 8.0 200 1.5 

17 19.00 40.00 5.0 10.0 30.0 0.0 200 1.62 

18 19.00 40.00 5.0 20.0 30.0 1.0 200 1.73 

19 19.00 40.00 5.0 30.0 30.0 3.0 200 1.31 

20 19.00 40.00 5.0 40.0 30.0 6.0 200 1.4 

21 19.00 40.00 5.0 10.0 40.0 2.0 200 1.45 

22 19.00 40.00 5.0 20.0 40.0 3.0 200 1.3 

23 19.00 40.00 5.0 30.0 40.0 5.0 200 1.45 

24 19.00 40.00 5.0 40.0 40.0 7.0 200 1.5 

 

Note: Certain combination of soil characteristics and slope geometries caused an overall 

instability for the slope as it achieved a factor of safety of exactly 1 only for the case of no 

foundation. Consequently, for these soil and slope parameters combination it is not recommended 

to have foundation at any distance from the slope. 
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Figure 4.24 Design chart, φ=30ᵒ. 

 

Figure 4.25 Design chart, φ=35ᵒ. 

H=4.54x2+15.2x+20.5 

H=0.16x2-3.64x+15 

H=10.58x+33 

H=5.3x3+8x2+7.7x+27.5 

H=5.3x3+4x2+4.7x+26 
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Figure 4.26 Design chart, φ=40ᵒ. 

 

4.8 Design example 

 

 

Figure 4.27 Design example 

From the given information on the figure, 

medium slope of H=25m, slope angle α=30ᵒ  

soil friction angle φ= 30ᵒ    from chart figure 4.24      ∴ x=7m 

 

 

H=-0.48x2+10.1x-7.44 

kN/m2 

 

H=-0.31x2+7.5x+4.1 

H=-0.61x2+8.5x+10.7 
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4.9 Design guideline: 

1- Obtain soil parameters from one of the lab tests which determine the shearing strength 

parameters of the soil depending on the soil type (direct shear, triaxial test...etc.). 

2- Determine the load from the building on the foundation, according to this research for a 

strip footing of width of 1m and embedment depth of 1m and placed at a distance from 0 

to 6B (B: width of foundation), the allowable load which maintains the stability of the slope 

and foundation with respecting the allowable settlement for the foundation in cohesionless 

soil can not exceed 200 kN/m2. 

3- Know the slope height and angle. 

4-  Determine the slope type from table 3.1. 

5- Giving (H, α, φ), the design charts can be used to predict the minimum distance (x) from 

the foundation to the slope to achieve a factor of safety of at least 1.3. 

6- In case of instability of the problem, it’s recommended to increase the embedment depth 

of the foundation and/or increase the distance between the foundation and the edge of the 

slope. 
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CHAPTER 5 

5. CONCLUSION  

 

Numerical model was developed using finite element technique to examine the parameters 

governing the bearing capacity of shallow foundation near slope. Parametric study was 

conducted to examine the effect of the slope height (H), slope angle (α), the angle of the internal 

friction of the soil (φ) and the distance from the foundation to the edge of the slope (x). Design 

procedures and charts were developed to assist designers to predict the location of the 

foundation for given slope geometries and soil conditions in order to maintain the stability of 

both foundation and slope. Design example was presented. The following can be concluded: 

1- The bearing capacity of the foundation placed near slope deceases with the increase of the 

slope angle and height while increases with the increase of the distance to the slope and/or 

the angle of internal friction of the soil. 

2- The theory of Meyerhof, 1957 underestimated the effect of the distance from the 

foundation to the slope. The distance at which the bearing capacity of the foundation is 

independent of the inclination of the slope was found to be greater than that mentioned in 

the theory, while it was in full agreement with the results in terms of the factor of safety of 

the slope. 

3- For higher angles of shearing resistance and in case of relatively medium slopes, the 

stability of slope is less affected by the presence of the foundation. 

4- For medium slopes, the effect of the slope angle (α) on the stability of the slope has almost 

the same significance as the effect of the shearing resistance angle of the soil (φ). 

5- At certain combination of soil parameters and slope geometries (presented in table 4.1), 

it’s not recommended to have a foundation at any distance from the slope as the factor of 

safety was found to be exactly 1 only in case of no foundation. 

6- For medium slopes and for α > φ, the stability of a system of foundation and slope is 

governed by the slope height. 
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RECOMMENDATIONS 

1- The presented study could be extended to consider the true three dimensions of the 

problem. 

2- Different types and dimensions of foundations can be considered in further researches. 

3- The presented study can be extended to consider layered soils.  

4- The presented study can be performed for case of presence of ground water table. 
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