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Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting
12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part
to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second
mitochondria-derived activator of caspases (Smac) have exhibited activity as antineoplastic agents
and reported recently to ameliorate cysts in a murine ADPKD model, possibly by differentially
targeting cystic cells and sparing the surrounding tissue. A first-in-kind Drosophila PKD model has
now been employed to probe further the activity of novel Smac mimics. Substantial reduction of cystic
defects was observed in the Malpighian (renal) tubules of treated flies, underscoring mechanistic
conservation of the cystic pathways and potential for efficient testing of drug prototypes in this
PKD model. Moreover, the observed differential rescue of the anterior and posterior tubules overall,
and within their physiologically diverse intermediate and terminal regions implied a nuanced response
in distinct tubular regions contingent upon the structure of the Smac mimic. Knowledge gained
from studying Smac mimics reveals the capacity for the Drosophila model to precisely probe PKD
pharmacology highlighting the value for such critical evaluation of factors implicated in renal function
and pathology.

Keywords: renal cystogenesis; Drosophila; disease models; Smac mimicry; polycystic kidney
disease; azapeptide

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) induces the formation of cysts along
the entire renal tubule, predominantly at the terminal region and the collector tubule, as well as
extra-renal manifestations [1]. Inherited through a monogenic pattern with the most frequent mutations
affecting the PKD1 or PKD2 gene, ADPKD displays high heterogeneity in both phenotype and speed of
progression [1]. Abnormal proliferation of the epithelial tubular cells during development gives rise to
cysts prenatally. Cysts become more numerous with age, gradually enlarging and filling with fluid [1].
Animal models of PKD have been invaluable for defining disease progression and identifying key
molecular alterations; however, the precise mechanisms underlying disease pathology remain to be
elucidated at the molecular level [2]. The most recent addition to the arsenal of PKD animal models has
been the fruit fly, Drosophila melanogaster. Mutants for the Bicaudal C (BicC) gene (hereby BicC flies) were
found to recapitulate key molecular features of PKD, including myc over-expression and mechanistic
target of rapamycin (mTOR) pathway activation [3]. Consistent with ADPKD, the BicC flies formed
cysts along the entire length of the tubule, with higher frequency at the intermediate, terminal and
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collector tubule regions [3]. Moreover, analogous to vertebrate PKD [4–8], pharmacological treatment
of BicC flies with rapamycin transiently reduced cysts [3]. Consistent with the relevance of the BicC
phenotype in PKD, BICC1 mRNA and Bicc1 protein orthologues were respectively found to decrease in
kidneys from PKD1 patients and Pkd1-/- mice [3]. Thus, PKD1 dysfunction is associated with decreased
BicC function.

An excellent model of human renal function, the fly has high genetic conservation and a streamlined
anatomy (reviewed in [9]). In contrast to the human kidney, which contains one million tubular filtering
units called nephrons, Drosophila harbors two pairs of Malpighian tubules (MTs), which are functionally
equivalent to the tubular portion of the nephron. Suitable to the open circulatory system of the fly,
the renal system does not have glomeruli and possesses nephrocytes, which exhibit re-adsorptive
function analogous to the human glomerular podocytes [9]. Originating from the interface between
the mid- and hind-gut, the MTs are asymmetrical with longer tubules anteriorly and shorter ones
posteriorly. Reminiscent of the different nephron types in the human kidney, the anterior and posterior
MTs have distinct transcriptomes [10]. Like the human renal tubules, MTs can be divided into distinct
regions, which in the fly are called proximal, intermediate, and terminal. The proximal region excretes
fluid into the tubules, the intermediate region secretes potassium chloride and water, and the terminal
region is responsible for sodium and, possibly, water reabsorption [9]. One key advantage of the fly
renal system is that the MTs are anatomically distinct, float freely in the fly body cavity, and can be
cleanly micro-dissected and examined in their entirety.

Antineoplastic mimics of the second mitochondria-derived activator of caspases (Smac, also called
the direct inhibitor of apoptosis-binding protein with low pI, DIABLO) have been used to sensitize
cancer cells to apoptosis by targeting inhibitors of apoptosis proteins (IAPs, [11,12]). Highly conserved,
IAP proteins play a key role in balancing cell survival and cell death through multiple intersecting
cellular pathways. Implicated in innate immunity [13,14], IAPs are often upregulated in cancer [15].
First discovered in insect baculovirus as inhibitors of cellular apoptosis which enable viral replication,
IAPs were found in both vertebrates and invertebrates [16] (reviewed in [11]). The best-known
mammalian IAPs are X-linked IAP (XIAP), cellular IAP1 (cIAP1) and cIAP2 [11]. The Drosophila
genome encodes four IAPs, Diap1, Diap2, dBruce and Deterin [17–19]. Multiple proteins have been
shown to antagonize IAPs. First discovered in Drosophila, three proteins, Reaper [20], Head involution
defective (Hid, [21]) and Grim [22], can induce apoptosis when transfected into mammalian cells,
which demonstrated functional conservation of the apoptotic cellular machinery [23]. Additional fly
IAP antagonists are Jafrac [24], Sickle [25–27] and HtrA2 [28–30]. The search for the mammalian IAP
antagonists yielded Smac/DIABLO [31,32], Omi/HtrA2 [33], apoptosis-related protein in the TGFβ
signaling pathway (ARTS, [34]) and XIAP-associated factor 1 (XAF1, [35]). IAP antagonists function
through an RHG motif, named after the prototypical Reaper, Hid and Grim fly proteins. In the
case of the well-studied human Smac/DIABLO and fly Hid IAP antagonists, pro-apoptotic stimuli
induce proteolytic cleavage exposing the RHG motif at the N-terminus enabling interaction with IAP
proteins [36,37] and triggering their ubiquitination and degradation. In the appropriate cellular context,
IAP degradation can eventually lead to cell death either by way of caspase activation or via tumor
necrosis factor (TNF) signaling [11,38,39]. The discovery that the Smac/DIABLO N-terminal peptide
H-Ala-Val-Pro-Ile-NH2 can recapitulate the pro-apoptotic function of the entire protein has inspired the
development of various Smac mimics, which enable sensitization of neoplastic cells to apoptosis [12].

Based on the premise that ADPKD is considered in part a neoplastic condition [40,41], and that
various TNF complex components were upregulated in Pkd1-/- mouse embryonic kidney (MEK) cells,
the Smac mimic and birinapant analog GT13072 was used to induce TNF-α-dependent cell death in
both cultured cells and a rat model of PKD [42]. The pro-apoptotic properties of GT13072 were specific
for the TNF-positive renal epithelial cystic cells and spared surrounding non-cystic cells, offering
therapeutic potential to ablate renal cystic cells to delay cystogenesis [42].

The TNF pathway is highly conserved in the fly [43–48]. The capacity for Smac mimics to reduce
MT cystogenesis has now been tested in the BicC cystic flies. The prototypical H-Ala-Val-Pro-Ile-NH2
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(peptide 1, Figure 1) and three Smac mimics 2–4 were administered to the BicC cystic flies to reduce
cyst formation.
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Figure 1. Second mitochondria-derived activator of caspases (Smac) analogs: peptide 1 and mimics
2–4 (Val, aza-residue and modified N-terminal in blue). Logarithm of the partition coefficient (clogP)
values were calculated as described below.

2. Experimental Section

2.1. Fly Lines and Genetics

Fly breeding and care were previously described in detail [3]. In brief, flies were grown on
cornmeal agar (Jazzmix, Fisher Scientific Canada, Ottawa, ON) at 25 ◦C and aged as indicated.
OregonR (OreR) wild-type flies were maintained as in [3]. BicC mutants were generated by crossing
Df(2L)RA5/CyO (BicC-encompassing deletion obtained from Bloomington Drosophila Stock Center)
virgin females with one of the two hypomorphic BicC mutations, BicCYC33/CyO and BicCIIF34/CyO and
selecting straight-winged progeny (Df(2L)RA5/BicCYC33, BicC∆/YC33 and Df(2L)RA5/BicCIIF34, BicC∆/IIF34).
The two BicC allelic combinations produced truncated proteins and sterile BicC flies [3]. Eclosed adult
flies were collected every two days to yield 0–2-day old populations and aged as described.

2.2. In Vivo and Ex Vivo Assays

2.2.1. Cystic Index

For the cyst analysis, 0–2-days old flies were aged seven days (i.e., 7–9 days old) and were fed
every three days with 2 mL of cornmeal food and equal volumes (50 µL) of either vehicle (water) or an
aqueous solution containing peptide 1 or Smac mimic 2–4. Each compound was used at 20 µM and
was administered for 20 days (i.e., until 27–29 days old). Malpighian tubules were micro-dissected
from 25–50 female flies in phosphate buffered saline (PBS) and the number of cysts was scored
separately in anterior and posterior tubules and assigned to each tubular region (i.e., proximal,
intermediate and terminal [3,9]), as follows. At one extremity, the proximal region consists of about
15% of the tubule length, tends to have an opaque whitish content (posterior tubule), is thinner than
adjacent regions (especially in the anterior tubule) and often exhibits a slight constriction terminally.
The neighboring intermediate region has darker contents and consists of about 55% of the tubule length.
The terminal region is often translucent, directly connected to the collecting tubule, and consists of
the remaining 30% of the tubule length. Cysts were considered tubular deformations creating uni-
or bi-laterally protuberant pouches. Extra-branches (as in [3]) were counted as cysts. Values were
plotted using the Prism 8.0 software (Graphpad Software, San Diego, CA, USA) as nested distributions.
Statistical analyses were performed as unpaired t tests with Welch’s correction (the populations may
not have equal standard deviations). The raw data counts are listed in Supplementary Table S1.

2.2.2. Microscopy

Malpighian tubules from appropriately aged and treated flies were micro-dissected in 1× PBS,
equilibrated into a 3:1 1× PBS:glycerol solution and photographed on a Leica MZ FLIII Fluorescence
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Stereomicroscope with Leica MZ series 10×/21B Widefield adjustable eyepieces equipped with a Canon
DS126201 EOS 5D MARK II camera, using visible light. Canon raw files (CR2) were converted into TIF
format using the Adobe Lightroom 3.2 software (Adobe Systems, San Jose, CA, USA).

2.3. General Synthetic Methods

Chemicals were used as received from commercial sources without further purification unless
stated otherwise. All glassware was stored in the oven or flame-dried and let cool under an inert
atmosphere prior to use. Anhydrous solvents (DCM, and DMF) were obtained by passage through
solvent filtration systems (Glass-Contour, Irvine, CA, USA). Silica gel chromatography was performed
using 230–400 mesh silica gel (Silicycle), and TLC was on glass-backed silica plates visualizing the
developed chromatogram by UV absorbance or staining with ceric ammonium molybdate or potassium
permanganate solutions. Nuclear magnetic resonance spectra (1H and 13C) were recorded on a
Bruker AV 500 spectrometer and referenced to residual solvent in CD3OD (3.31 ppm, 49.0 ppm).
Coupling constant J values and chemical shifts were measured in Hertz (Hz) and parts per million
(ppm). Infrared spectra were recorded in the neat on a Perkin Elmer Spectrum One FTIR instrument
and are reported in reciprocal centimeter (cm–1). Liquid chromatography−mass spectrometry (LC−MS)
was performed on an Agilent Technologies 1200 series instrument in positive electrospray ionization
(ESI)-time-of-flight (TOF) mode at the Université de Montréal Mass Spectrometry Facility. Sodium and
proton adducts ([M + Na]+ and [M + H]+) were used for empirical formula confirmation. The peptide
H-Ala-Val-Pro-Ile-NH2 (1), Smac mimics 2 and 3, and aza-cyclohexylglycinyl-l-proline benzhydrylamide
(8), all were synthesized according to published methods [49]. N-Boc-N-Methyl-l-alanine and diisopropyl
ethyl amine (DIEA) were purchased from Aldrich or Alfa Aesar and used without further purification.
Benzotriazol-1-yl-oxytripyrrolidino-phosphoniumhexafluoro-phosphate (PyBop) was purchased from GL
Biochem™, recrystallized prior to use from dry CH2Cl2/Et2O (melting point, 156 ◦C), and stored in the dark.

N-Methyl alaninyl-aza-cyclohexylglycinyl-l-proline benzhydrylamide (4). A solution of
aza-cyclohexylglycinyl-l-proline benzhydrylamide (8, 1 eq., 65 mg, 0.155 mmol, prepared
according to [49]) and DIEA (2 eq., 40 mg, 53 µL, 0.309 mmol) was added to a solution of
N-(tert-butoxycarbonyl)-N-methyl-l-alanine (1.2 eq., 38 mg, 0.186 mmol) and PyBOP (1.5 eq., 121 mg,
0.233 mmol) in DMF (3 mL), and the mixture was stirred overnight. The volatiles were removed
under vacuum. The residue was dissolved in EtOAc (10 mL), washed with 5 mL of saturated aqueous
NaHCO3 and brine (10 mL), dried over Na2SO4, filtered, and evaporated. Without further purification,
the residue was dissolved in a 25% solution of trifluoroacetic acid in dichloromethane (2 mL) and
stirred for 2 h. The volatiles were removed under vacuum. The residue was dissolved in CH2Cl2
and the solution was evaporated. The residue was suspended in 2 mL of 1N HCl, stirred for 30 min,
and freeze-dried to give the hydrochloride salt as off white solid, which was purified by RP-HPLC on a
reverse-phase Gemini® C18 column (Phenomenex® Inc., pore size: 110 Å, particle size: 5 µm, 250 ×
21.2 mm) using a binary solvent system consisting of a gradient of 5–60% MeOH [0.1% formic acid
(FA)] in water (0.1% FA) with a flow rate of 10.0 mL/min and UV detection at 214 nm. The desired
fractions were combined and freeze-dried to white fluffy powder: azapeptide 4 (5.2 mg, 0.01 mmol,
7%): mp 93–94 ◦C; 1H NMR (500 MHz, CD3OD) δ 8.40 (s, 1H), 7.45–7.20 (m, 10H), 6.24 (s, 1H), 4.56–4.42
(m, 1H), 4.05–3.88 (m, 1H), 3.69–3.42 (m, 2H), 2.59–2.43 (m, 3H), 2.43–2.31 (m, 1H), 2.26–2.14 (m, 1H),
2.14–2.00 (m, 1H), 2.00–1.91 (m, 1H), 1.91–1.62 (m, 6H), 1.53–1.36 (m, 5H), 1.35–1.03 (m, 5H); 13C NMR
(125 MHz, MeOD) δ 174.1, 171.2, 161.4, 143.2, 139.1, 129.5 (2C), 129.4 (2C), 129.3 (2C), 128.8 (2C), 128.4,
128.2, 63.6, 57.9, 57.4, 49.6, 31.5, 31.3, 30.8, 26.9, 26.72 (2C), 26.69 (2C), 26.5, 17.5; IR (neat) vmax/cm−1

2929, 1638, 1532, 1495, 1449, 1406, 1344, 1323, 1095; HRMS m/z calculated for C29H40N5O3 [M+H]+

506.3126; found 506.3139. (Supplementary File S1). The logarithm of the partition coefficient (clogP)
values were calculated using Chemdraw 17.0 (Perkin Elmer, 2017, Waltham, MA, USA).
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3. Results

3.1. Chemistry

Smac activity has been correlated to binding to IAP proteins and mimicked by its N-terminal
four residue amide sequence (H-Ala-Val-Pro-Ile-NH2, 1, Figure 1) [50–52]. The purported turn
conformation adopted about the central Val-Pro dipeptide in this sequence has led to the synthesis of
various constrained analogs, exhibiting enhanced potency [12,53]. Noting the similar conformational
preferences of indolizidinone amino acid and aza-amino acyl proline turn mimics [54–57], and the
relative ease of synthesis of the latter, a series of aza-analogs were synthesized and certain were
shown to induce cell death by a caspase-9 mediated apoptotic pathway in cancer cell cultures [49,57].
Notably, aza-methanopipecolate and aza-cyclohexylglycine analogs 2 and 3 were synthesized using
pericyclic chemistry on the diazo dicarbonyl moiety of an azopeptide to examine the conformation
of the Val residue in 1 [49,58,59]. Specifically, the Alder-ene reaction of cyclohexadiene and the
Diels-Alder reaction of cyclopentadiene on N-(Cbz)azoglycinyl-proline benzhydrylamide 5 gave
the unsaturated azapeptides 6 and 7, which were hydrogenated with concomitant removal of
the benzyloxycarbonyl group, coupled to N-protected alanine, and deprotected (Scheme 1, [49]).
Considering the tolerance of N-methyl-alanine for alanine in the terminal position [60], a similar
approach was used to prepare N-methyl analog 4 by hydrogenation of azapeptide 7, coupling of the
resulting aza-cyclohexylglycinyl-L-proline benzhydrylamide (8) to N-(Boc)-N-methylalanine using
PyBop and cleavage of the Boc group with TFA in DCM. In cultured MCF7 breast cancer cells,
aza-cyclohexylglycine analog 3 induced up to 60% cell death relative to vehicle [49].

Scheme 1. Synthesis of Smac mimics 2 and 4 (dienes, azo- and aza-residues in blue).

3.1.1. Effect of Smac Mimic Administration In Vivo

We have previously reported that flies mutant in the BicC gene recapitulate key features of
PKD [3]. Considering that Smac mimics showed efficacy at reducing cysts in a rat PKD model [42],
the results of Smac mimic administration were tested in the BicC cystic flies using two different allelic
combinations. BicC mutant flies were obtained from genetic crosses of heterozygote parents consisting
of CyO-balanced flies containing Df(2L)RA5 (∆, a BicC-encompassing deletion), and either the BicCYC33

or BicCIIF34 alleles similarly balanced with CyO. The BicC∆/YC33 fly exhibits milder cystic defects than
the BicC∆ /IIF34 fly [3]. Straight-winged mutants (BicC∆/YC33, BicC∆/IIF34) from crosses were selected
within two days of eclosion to yield pools of 0–2 days old flies and aged for seven days (7–9 days
old), during which time the flies were kept well-fed by transferring to fresh vials twice (Figure 2).
Aged sibling flies were divided into fresh vials containing food spiked with either vehicle (water, 50 µL)
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or one of the Smac analogs 1–4 at 20 µM (50 µL). Flies were transferred into identical fresh vials every
three days. After 20 days of treatment, the Malpighian tubules were micro-dissected from 27–29 day
old flies and analyzed ex vivo. Per each condition, cystic deformities were scored using 25–50 female
BicC∆/IIF34 and BicC∆/YC33 flies (i.e., 50–100 anterior and 50–100 posterior tubules). For each fly, cysts
which were found in the two anterior and two posterior tubules were scored and charted as nested plots
using the Prism 8.0 (Graphpad) software (Figures 3–6). Vehicle-treated flies presented several cysts in
both the anterior and posterior MTs, especially in the terminal and intermediate regions, and fewer
cysts in the proximal region, as reported previously [3]. Similar to PKD patients [1], a variable number
of cysts was found in different individuals [3]. In general, Smac-mimics appeared to reduce tubular
cysts in both BicC allelic combinations (Tables 1 and 2).
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Figure 2. Testing protocol for Smac-mimic efficacy in cyst reduction. OreR wild-type, BicC∆/YC33,
and BicC∆/IIF34 flies (0–2 days old) were placed in food-containing vials at age 0–2 days and transferred
into fresh vials every three days. Once the age of 7–9 days was reached, flies were placed in vials
containing one of each of the Smac-mimics or vehicle control, respectively. Cysts were scored on the
micro-dissected MTs after 20 days, when flies reached age 27–29 days.

Table 1. Overall cyst reduction upon Smac-mimic treatment of BicC∆/YC33 flies.

Anterior Tubule Posterior Tubule

Mimic Cyst #
Vehicle

Cyst #
Treated

%
Reduction p Value Cyst #

Vehicle
Cyst #

Treated
%

Reduction p Value

1 228 127 44% 0.0005 276 220 20% 0.0457
2 216 165 24% 0.0324 244 162 34% 0.0017
3 195 153 21% 0.1028 238 156 34% 0.0014
4 134 93 31% 0.0553 152 124 18% 0.1877

P values > 0.05 and corresponding percentages are italicized.

Table 2. Overall cyst reduction upon Smac-mimic treatment of BicC∆/IIF34 flies.

Anterior Tubule Posterior Tubule

Mimic Cyst #
Vehicle

Cyst #
Treated

%
Reduction p Value Cyst #

Vehicle
Cyst #

Treated
%

Reduction p Value

1 357 199 44% <0.0001 433 272 37% 0.0002
2 233 142 39% 0.0011 302 202 33% 0.0020
3 114 102 11% 0.6317 155 122 21% 0.2285
4 199 119 40% 0.0005 243 151 38% 0.0002

P values > 0.05 and corresponding percentages are italicized.
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Effects of Smac mimic administration were recorded as overall cyst reduction (Table 1, Table 2).
Nested plots were used to represent individual variability in cyst number in the analyzed fly populations.
Administration of peptide 1 to BicC∆/YC33 flies (n = 50) reduced cystic deformities respectively by
44% and 20% (228 vs. 127 cysts and 276 vs. 220 cysts, p = 0.0005 and 0.0457) in the anterior and
posterior tubules, respectively (Table 1, Figure 3A,B). Administration of mimic 2 to BicC∆/YC33 flies
(n = 50) reduced tubular cysts by 24% and 34% (216 vs. 165 cysts, p = 0.0324 and 244 vs. 162 cysts,
p = 0.0017) in the anterior and posterior tubules, respectively (Table 1, Figure 3A,B). Administration of
mimic 3 to BicC∆/YC33 flies (n = 50) reduced cysts in the anterior and posterior tubules respectively by
21% and 34% (195 vs. 153 cysts, p = 0.1028 and 238 vs. 156 cysts, p = 0.0014, Table 1, Figure 3A,B).
Finally, administration of mimic 4 to BicC∆/YC33 flies (n = 50) reduced cysts in the anterior and posterior
tubules respectively by 31% and 18% (134 vs. 93 cysts, p = 0.0553 and 152 vs. 124 cysts, p = 0.1877,
Table 1, Figure 3A,B).
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Figure 3. Smac-mimics reduced cysts in BicC∆/YC33 flies. (A). Representative Malpighian tubules
micro-dissected from BicC∆/YC33 flies treated with either vehicle or analogs 1, 2, 3, and 4 (indicated)
were photographed ex vivo. Arrows indicate cysts. In each image, anterior pairs are at the top, posterior
pairs at the bottom. Scale bar: 1 mm. (B). Nested plots depicting number of cysts found in the anterior
and posterior tubule pairs of vehicle- and Smac mimic-treated cystic flies (indicated), with mean and
standard deviation. P values (with Welch’s correction) are indicated. Treatments are indicated with
color: vehicle, grey; mimic 1, sepia; 2, blue; 3, dark pink; 4, brown.

The analogs were next administered to the BicC∆/IIF34 flies carrying the allelic combination
which produced a more severe phenotype. Treatment with peptide 1 decreased cystic deformations
respectively by 44% and 37% (total 357 vs. 199 cysts and 433 vs. 272 cysts, p < 0.0001 and 0.0002,
respectively) in the anterior and posterior tubules of the micro-dissected BicC∆/IIF34 flies (n = 50, Table 2,
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Figure 4A,B). Administration of mimic 2 to BicC∆/IIF34 flies (n = 50) reduced cystic deformations by
39% in the anterior (233 vs. 142 cysts, p = 0.0011) and by 33% in the posterior (302 vs. 202 cysts,
p = 0.0020) tubules (Table 2, Figure 4A,B). Administration of mimic 3 to BicC∆/IIF34 flies (n = 25) had a
milder and highly variable effect on the renal tubules and reduced cystic deformities by 11% (114 vs.
102 cysts, p = 0.6317) and 21% (155 vs. 122 cysts, p = 0.2285) in the anterior and posterior tubules
respectively (Table 2, Figure 4A,B), below statistical relevance thresholds. Finally, administration of
mimic 4 to BicC∆/IIF34 flies (n = 50) reduced cysts in the anterior and posterior tubules by 40% (199 vs.
119 cysts, p = 0.0005) and 38% (243 vs. 151 cysts, p = 0.0002) respectively (Table 2, Figure 4A,B).
Parallel respective administration of analogs 1–4 to control, non-cystic OreR wild type flies did not
change MT morphology.
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Figure 4. Smac-mimics reduced cysts in BicC∆/IIF34 flies. (A). Representative Malpighian tubules
micro-dissected from BicC∆/IIF34 flies treated with either vehicle or analogs 1, 2, 3, and 4 (indicated) were
photographed ex vivo. Arrows indicate cysts. In each image, anterior pairs are at the top, posterior
pairs at the bottom. Scale bar: 1 mm. (B). Nested plots depicting number of cysts found in the anterior
and posterior tubule pairs of vehicle- and Smac mimic-treated cystic flies (indicated), with mean and
standard deviation. P values (with Welch’s correction) are indicated. Treatments are indicated with
color: vehicle, grey; mimic 1, sepia; 2, blue; 3, dark pink; 4, brown.

Distinct MT regions in both the anterior and posterior tubules appeared to respond differentially
to the Smac mimics. The cyst location was thus specifically mapped in the proximal, intermediate and
terminal regions of the anterior and posterior tubules respectively (Tables 3 and 4), and individual
variable cyst numbers similarly plotted (Figures 5 and 6). Absolute numbers for the cysts in each
region described below are listed in Table S2.
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Figure 5. Smac-mimics reduce cysts in BicC∆/YC33flies with varying regional specificity. Malpighian tubules
from 50 BicC∆/YC33flies were micro-dissected after 20 days of treatment (age 27–29 days). Cysts were scored
ex vivo. For each fly, cysts numbers were recorded for the terminal, intermediate and proximal region
of the Malpighian tubules, independently for the anterior (left) and posterior (right) tubules. Flies were
administered either vehicle (water, grey) or Smac mimics 1 (A, sepia), 2 (B, blue), 3 (C, dark pink), and 4
(D, brown). Mean and standard deviation are indicated. Analogs 1 and 2 best reduced tubular cysts, mimic
3 was effective at reducing cysts in the terminal region of the anterior tubules and mimic 4 had a mild effect
in the intermediate region of both tubule pairs. P values (with Welch’s correction) are indicated. BicC∆/YC33

flies exhibit the milder cystic defects.
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Figure 6. Smac-mimics reduce cysts in BicC∆/IIF34flies with varying regional specificity. Malpighian tubules
from 25 to 50 BicC∆/IIF34flies were micro-dissected after 20 d of treatment (age 27–29 days). Cysts were
scored ex vivo. For each fly, cysts numbers were recorded for the terminal, intermediate and proximal region
of the Malpighian tubules, independently for the anterior (left) and posterior (right) tubules. Flies were
administered either vehicle (water, grey) or Smac mimics 1 (A, sepia), 2 (B, blue), 3 (C, dark pink), and 4
(D, brown). Mean and standard deviation are indicated. Peptide 1 was the most effective at reducing cysts
in the treated tubules. Mimics 2 and 4 showed great improvements in all regions except for the intermediate
region of the posterior tubules and mimic 3 showed a very mild to no effect in cyst reduction. P values
(with Welch’s correction) are indicated. BicC∆/IIF34flies exhibit the more severe cystic defects.
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Table 3. Percentage of cyst reduction upon treatment of BicC∆/YC33 flies.

Smac-Mimic
Anterior Tubule Posterior Tubule

Prox. Int. Term. Prox. Int. Term.

1 (n = 50) n/s 34%
p = 0.0381

53%
p < 0.0001

5%
p = 0.7531

26%
p = 0.0449

22%
p = 0.1405

2 (n = 50) n/s 5%
p = 0.7599

41%
p = 0.0006

47%
p = 0.0057

29%
p = 0.0389

32%
p = 0.0125

3 (n = 50) n/a 2%
p = 0.9072

40%
p = 0.0041

21%
p = 0.2431

30%
p = 0.0465

45%
p = 0.0007

4 (n = 50) n/a 36%
p = 0.0461

20%
p = 0.3377

n/s
p = 0.4769

33%
p = 0.0130

n/s
p = 0.9245

P values > 0.05 and corresponding percentages are italicized; n/s = not significant; n/a = no cysts.

Table 4. Percentage of cyst reduction upon treatment of BicC∆/IIF34 flies.

Smac-Mimic
Anterior Tubule Posterior Tubule

Prox. Int. Term. Prox. Int. Term.

1 (n = 50) n/s 48%
p < 0.0001

40%
p = 0.0038

39%
p = 0.0150

41%
p = 0.0008

32%
p = 0.0022

2 (n = 50) n/a 41%
p = 0.0045

37%
p = 0.0161

43%
p = 0.0080

27%
p = 0.0703

32%
p = 0.0086

3 (n = 25) n/a 9%
p = 0.7140

11%
p = 0.6746

40%
p = 0.1325

10%
p = 0.7038

21%
p = 0.2429

4 (n = 50) n/s 42%
p = 0.0014

38%
p = 0.0195

35%
p = 0.1069

22%
p = 0.1231

51%
p < 0.0001

P values > 0.05 and corresponding percentages are italicized; n/s = not significant; n/a = no cysts.

3.1.2. Smac Mimics Differentially Affect Distinct Regions of the MTs

Administration of peptide 1 to the milder allelic combination BicC∆/YC33 (n = 50) reduced cysts
in the terminal and intermediate regions of the anterior tubules respectively by 53% and 34% (total
122 vs. 57, 104 vs. 69 cysts, p < 0.0001 and p = 0.0381, Table 3, Figure 5A). In the proximal region
of the anterior tubules, two cysts were found in the control versus one cyst in the treated samples,
precluding statistical analyses. In the posterior tubules, administration of peptide 1 diminished cysts
in the intermediate region by 26% (total 109 vs. 80 cysts, p = 0.0449). In the terminal and proximal
regions, a trend toward decreased cysts was observed, albeit without reaching a statistical threshold for
significance (respectively 108 vs. 84 cysts, 22% reduction, p = 0.1405, and 59 vs. 56 cysts, 5% reduction,
p = 0.7531, Table 3, Figure 5A).

Administration of peptide 1 to BicC∆/IIF34 flies reduced cysts in the anterior tubules by 40% and
48% (total 156 vs. 94 and 193 vs. 100 cysts, p = 0.0038 and p < 0.0001) in the terminal and intermediate
regions, respectively (Table 4, Figure 6A). In the proximal region of the anterior tubules, a trend of cyst
reduction was observed, albeit fewer cysts (eight and five in vehicle- and peptide 1-treated tubules) and
high individual variability precluded a margin of confidence. In the posterior tubules, administration
of peptide 1 reduced cysts in the terminal, intermediate and proximal regions by 32%, 41% and 39%
(total 180 vs. 122, 167 vs. 98, 86 vs. 52 cysts, p = 0.0022, 0.0008 and 0.0150), respectively (Table 4,
Figure 6A).

Treatment with mimic 2 diminished cysts in the terminal region of the anterior tubules of BicC∆/YC33

flies (n = 50) by 41% (114 vs. 67 cysts, p = 0.0006). In the intermediate region, a mild 5% reduction was
observed that did not approach a statistical significance threshold (102 vs. 97 cysts, p = 0.7599, Table 3,
Figure 5B). Precluding statistical analyses, no (control) and one cyst (mimic 2-treated) were detected
in the proximal region of the anterior tubules. In contrast, in the posterior tubule, administration of
mimic 2 reduced cysts in the terminal, intermediate and proximal regions by 32%, 29% and 47% (101 vs.
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69 cysts, p = 0.0125, 96 vs. 68 cysts, p = 0.0389 and 47 vs. 25 cysts, p = 0.0057), respectively (Table 3,
Figure 5B).

Administration of mimic 2 to the more severely cystic BicC∆/IIF34 flies (n = 50) reduced cysts in the
terminal and intermediate regions of the anterior tubules by 37% and 41% (average 115 vs. 72 cysts,
p = 0.0161, 118 vs. 70 cysts, p = 0.0045), respectively. No cysts were found in the proximal regions
of control and treated tubules (Table 4, Figure 6B). Administration of mimic 2 reduced cysts in the
terminal and proximal regions of the posterior tubules by 32% and 43% (134 vs. 91 cysts, p = 0.0086 and
69 vs. 39 cysts, p = 0.0080), respectively. The intermediate region displayed a 27% reduction that
approached statistical significance threshold (99 vs. 72 cysts, p = 0.0703, Table 4, Figure 6B).

After treatment with mimic 3, the BicC∆/YC33 flies (n = 50) harbored 40% fewer cysts in the terminal
region of the anterior tubules (99 vs. 59 cysts, p = 0.0041). In the intermediate region, the effect was
negligible (2% reduction, 96 vs. 94 cysts, p = 0.9072). No cysts were detected in the proximal region
of both control and treated tubules (Table 3, Figure 5C). On the contrary, administration of mimic
3 reduced strongly cysts in the terminal and intermediate regions of the posterior tubules by 45%
and 30% (100 vs. 55 cysts, p = 0.0007 and 90 vs. 63 cysts, p = 0.0465), respectively. The proximal
region displayed a trend towards cyst reduction with high individual variability (21% reduction, 48 vs.
38 cysts, p = 0.2431, Table 3, Figure 5C).

Mimic 3 did not ameliorate the more severely cystic BicC∆/IIF34 flies (n = 25). After treatment with
mimic 3, the BicC∆/IIF34 flies displayed respectively 11% and 9% (61 vs. 54 cysts, p = 0.6746 and 53 vs.
48 cysts, p = 0.7140) fewer cysts in the terminal and intermediate regions of the anterior tubules; no
cysts were observed in the proximal region of both control and treated tubules (Table 4, Figure 6C).
Similarly, mimic 3 caused respectively 21%, 10% and 40% (75 vs. 59 cysts, p = 0.2429, 50 vs. 45 cysts,
p = 0.7038 and 30 vs. 18 cysts, p = 0.1325) reductions in cysts in the terminal, intermediate and proximal
regions of the posterior tubules (Table 4, Figure 6C).

Mimic 4 reduced cysts in the intermediate region of the anterior tubules of BicC∆/YC33 flies (n = 50)
by 36% (85 vs. 55 cysts, p = 0.0461). In the terminal region, a 20% decrease was observed, that did
not reach a threshold of statistical significance (49 vs. 39 cysts, p = 0.3377). No cysts were detected in
the proximal region of both control and treated tubules (Table 3, Figure 5D). Treatment with mimic 4
reduced cysts in the intermediate region of the posterior tubules by 33% (98 vs. 66 cysts, p = 0.0130),
but did not reduce cysts in the terminal and proximal regions (Table 3, Figure 5D).

Upon treatment with mimic 4, cysts were lessened in the terminal and intermediate regions of
the anterior tubules of BicC∆/IIF34 flies (n = 50) by 38% and 42% (92 vs. 57 cysts, p = 0.0195 and 106 vs.
62 cysts, p = 0.0014), respectively (Table 4, Figure 6D). Precluding statistical analysis, only one cyst was
detected in the proximal region of control tubules and no cysts in the treated tubules. Administration of
mimic 4 reduced cysts in the terminal region of the posterior tubules by 51% (113 vs. 55 cysts, p <

0.0001). Less cysts were also scored in the intermediate and proximal regions, although values did
not reach the significance threshold (respectively 22% reduction, 90 vs. 70 cysts, p = 0.1231, and 35%
reduction, 40 vs. 26 cysts, p = 0.1069, Table 4, Figure 6D).

Ineffective cyst reduction could be partly due to flies refusing to ingest the Smac mimics. To assess
their ingestion, the analogs were mixed with food and dye, and fed to the flies for four days. The green
dye could be seen through the semi-transparent abdominal cuticle of the BicC flies for all mimics,
confirming analog ingestion (Figure S1). As a measure of hydrophilicity, the clogP values were
calculated for the different Smac mimics (Figure 1) and found to be sufficiently low to be consistent
with absorption: 1 (0.7), 2 (3.9), 3 (5.0), 4 (5.4). Together these results support the conclusion that the
Smac analogs may have differential activities and/or processing.

4. Discussion

A systematic analysis of the influences of the Smac mimic H-Ala-Val-Pro-Ile-NH2 (1) and
constrained analogs 2–4 on renal cystogenesis has been performed using the novel BicC fly model to
recapitulate features of PKD [3]. Two allelic combinations for BicC were used that yield cystic phenotypes
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of different severity, namely BicC∆/YC33 and BicC∆/IIF34. Previously, the Smac mimic GT13072 reduced
cystogenesis in a rat ADPKD model [42]. In the BicC flies, Smac mimics 1–4 ameliorated similarly the
cystic condition with the strongest effects displayed in the more severely affected BicC∆/IIF34 genotype.
Peptide 1 exhibited the highest overall efficacy reducing cyst occurrence by 20–44% across genotypes
at the anterior and posterior tubules. Moreover, aza-methanopipecolate 2 caused a 24–39% reduction
of cysts. Aza-cyclohexylglycine 3 displayed least efficacy, but still improved significantly the posterior
tubules of the BicC∆/YC33 flies. The related N-methyl-alaninyl-aza-cyclohexylglycine analog 4 exhibited
differential activity in the two BicC mutants, reducing cysts by ~40% in both tubules of the BicC∆/IIF34

flies. In contrast, analog 4 only showed a trend towards reducing cysts in the anterior tubule of the
BicC∆/YC33 flies close to the significance threshold (p = 0.0553). The Smac mimics tested appeared to
differentially affect the anterior and posterior tubule pairs overall, consistent with the report of the
latter having distinct transcriptomes [10] and thus different physiological specialization. Mimics 1,
2 and 3 were found to induce death of 20% (1, 2) and 60% (3) of cultured MCF7 adenocarcinoma
cells [49]. Their efficacy in other PKD models and patients is unknown. Smac mimics function in
context-dependent ways, likely through different IAPs to affect apoptosis via several mechanisms [12].
Due to its methyl group, N-methyl-alaninyl-aza-cyclohexylglycine analog 4 was expected to be more
stable than aza-cyclohexylglycine 3 in vivo [61–63], which was consistent with the observed higher
cyst-reducing activity.

The tubular sections responded differentially to treatment with the Smac mimics. The terminal
region consistently exhibited better improvement, especially in the weaker BicC∆/YC33 allelic
combination. The flies were shown to ingest the Smac mimics. The clogP values of mimics 1–4
were also within the range consistent with effective absorption. The distinct pharmacological responses
observed at different regions of the MTs may be related to variability in absorption, metabolism and
response to Smac mimics within cystic cells in such regions. Regional specialization of fly MTs has
been observed despite the tubular epithelium being composed by only two major cell types (reviewed
in [9,64]). Cystogenesis may perturb cells and reduce the threshold for initiating cell death pathways
either through caspase-dependent apoptosis or the TNF signaling pathway. The contribution of
apoptosis to the early phases of ADPKD is a matter of debate [65]; however, the TNF pathway has been
implicated in ADPKD-type renal cystogenesis and suggested to be the primary target of Smac mimics in
a rat model of Pkd1-dependent ADPKD [42]. The results presented here predict that the BicC mutation
may feature dysregulated TNF signaling in the epithelial cells of the MTs, as observed in ADPKD-type
cystogenesis. The expression of TNF (Eiger) and TNF pathway components in the MT and their
respective contributions to tubular function are however unknown. The human BicC orthologue
BICC1 has been found to be genetically downstream of the main PKD1 gene [3]. The pharmacological
response to Smac mimics was herein demonstrated to be conserved in the fly illustrating further the
phenotypic and molecular similarities between PKD1-induced and BicC-induced renal cystogenesis.

Notably, pharmacological binding sites have been found to be conserved in Drosophila [66].
Chemical probing in the fly in vivo may thus rapidly pinpoint the involvement of specific pathways
with complementarity to genetic analyses, indicate conserved biological activity of drug-prototypes,
and provide a rapid read-out for effectiveness of pharmacological modulation of specific pathways
involved in cystic pathogenesis. The Smac mimics affected different tubular regions differentially.
Considering that such specificity may be conserved to humans, the development of personalized
pharmacological treatments for cystic renal diseases such as PKD will benefit from precise knowledge
of the cyst-ameliorating potential of different Smac mimics.
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