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Abstract

FFFaaaiiirrrnnneeessssss CCCooommmpppaaarrriiisssooonnnsss ooofff MMMaaatttccchhhiiinnnggg RRRuuullleeesss

PPPooooooyyyaaa GGGhhhaaasssvvvaaarrreeehhh,,, PPPhhh...DDD...

CCCooonnncccooorrrdddiiiaaa UUUnnniiivvveeerrrsssiiitttyyy,,, 222000111999

This thesis consists of three studies in matching theory and market design.

Its main focus is to compare matching rules according to normative criteria,

primarily fairness, when objects have priorities over agents.

In the first study we analyze one-to-one matching and prove that in

general we cannot find a strategy-proof and Pareto-efficient mechanism

which stands out uniquely in terms of fairness when using fundamental

criteria for profile-by-profile comparison. In particular, despite suggestions

to the contrary in the literature, the Top Trading Cycles (TTC) mechanism

is not more fair than all other mechanisms in this class. We also show that

while the TTC is not dominated, if the priority profile is strongly cyclic

then there is not much scope for TTC to dominate other matching rules in

this class.

In the second study, which focuses on many-to-on matching, I provide

a direct proof that Ergin’s cycle (Ergin, 2002) is stronger than Kesten’s

cycle (Kesten, 2006), due to different scarcity conditions for the quotas on

objects. I also prove that when there is a Kesten cycle there is no strategy-

proof and Pareto-efficient mechanism which uniquely stands out in terms
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of the fairness criteria. Moreover, I use simulations to show that as the

number of Kesten cycles increases, there are more fairness violations and

fewer preference profiles at which the TTC mechanism is fair.

The third study compares three competing many-to-one matching mech-

anisms that are strategy-proof and Pareto-efficient but not fair, namely the

TTC, Equitable Top Trading Cycles (ETTC) and Clinch and Trade (CT)

mechanisms. Although one would expect that ETTC and CT are more fair

than the TTC, I demonstrate the opposite for specific preference profiles

and compare the aggregate number of fairness violations using simulations.

I find that ETTC tends to have fewer priority violations in the aggregate

than the other two mechanisms across both different quota distributions

and varying correlations of preferences. Finally, I show that all three mech-

anisms become more efficient when the commonly most preferred object

has the highest quota, and demonstrate that the more unequal the quota

distribution, the more fair and efficient the three mechanisms become.
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Chapter 1

Introduction

1.1 Matching Theory

Matching theory provides a new way to study supply and demand in some

markets. Thinness of the market, fairness, and truth-telling are problems

in markets where participants’ identity matters. All of these have been

addressed by matching theory, which studies centralized markets where

participants submit their preferences to the market designer who decides

how to match the two sides of the market.

There are different types of matching models. There is one-sided match-

ing (which nonetheless has two sides) in which on one side of the market

are agents and on the other side are objects, where the latter are always in-

divisible items. For example, professors are matched to offices, or students

to schools. Objects have priorities which may be imposed by law. For

example, neighborhood schools may have to prioritize students who live
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nearby. Agents are typically human beings who have different information

and different tastes, which forms their preferences over the objects. There

is also two-sided matching in which on both sides of the market there are

agents, such as medical students and hospitals with residence positions.

Matching theory studies requirements of efficiency, fairness and incen-

tives, in order to lay the foundations for the more practical analyses of

market design, which seek to improve the matching outcomes in real-world

matching markets. Normative and incentive criteria are defined specifi-

cally for matching markets, and the formal definitions may differ from the

way we think of these concepts in everyday life. Examples of unfairness

in real life are numerous; for instance, cronyism or lobbying, or any sort

of favoritism are considered unfair, and more generally inequality without

a basis is deemed unfair. In matching the definition of fairness is very

specific, and in our context where objects have priorities over agents is

based on the specified formal model. Namely, it is considered unfair if an

agent is assigned an object which another agent with a higher priority for

this object envies, given the allocation of the higher-priority agent. This is

called justified envy, as opposed to envy that is not justified based on the

priorities, and fairness calls for eliminating all instances of justified envy

for all different configurations of priorities and preferences.

In the two-sided model where both sides have agents, justified envy is

identical to having two agents on the two different sides of the market mutu-

ally like each other compared to their matches, and the two agents are said
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to form a blocking pair. When all such blocking pairs are absent for arbi-

trary priorities and preferences, the matching is considered stable.1 Thus,

depending on the interpretation and applications of the model (whether

one-sided or two-sided) fairness and stability are closely related concepts

and are identical in terms of the formal definitions.

Pareto-efficiency considers optimizing the allocation of all agents in the

market in the following sense: if the allocation made by a rule is Pareto-

efficient, then the only way we can improve the allocation of one agent is

at the cost of making another agent worse off. Therefore, Pareto-efficiency

ensures that agents’ welfare in terms of their preference rankings cannot be

further increased without harming at least one agent. This concept is used

widely in economics, and it may be different from efficiency concepts used

elsewhere in a broader sense or in other contexts. We also use a different

measure of efficiency in this thesis in addition to Pareto-efficiency, where

we consider the ranking of the allocations received by agents.

In order to provide the correct incentives to agents, a matching rule is

often required to satisfy strategy-proofness, a notion which guarantees that

individuals have no incentive in the matching procedure to misrepresent

their preferences to the market designer, as they cannot obtain a better

allocation by doing so. This is a demanding concept, and less demanding

incentive constraints may also be studied, along with concepts that are

unrelated to strategy-proofness but address other aspects of incentives. One

example of strategic behavior without manipulating reported preferences

is when agents try to show that they are more competent than they are in

1Stability is also closely related to the core, which is the central solution concept in
cooperative game theory. See more on this in Roth and Sotomayor (1990 [35]).

3



reality, in order to get higher rankings in priority orderings. Ruling out this

kind of strategic behavior is logically unrelated to strategy-proofness. In

this thesis, we will focus on strategy-proofness when considering incentives.

It is important to point out that strategy-proofness does not aim to ensure

that preferences are reported truthfully merely for its own sake. A more

far-reaching implication of strategy-proofness, given that the normative

properties of matching rules (such as fairness and efficiency) are applied to

the reported preferences, is that without truthful reporting we essentially

lose the normative properties as well (or at least lose account of them), in

addition to subjecting agents to risky outcomes and forcing them to make

strategic calculations.

Market design, building primarily on matching theory and using the ad-

ditional tools of laboratory experiments, simulations and empirical analysis

as applicable, has been developed mainly since the 1990’s. Its growing suc-

cess led to awarding the Noble prize in 2012 to Alvin E. Roth and Lloyd

S. Shapley for the theory of stable matching and the practice of market

design. Despite the brief history of market design, it has touched the lives

of many people in positive ways and has been widely used for many real-

world allocation problems. Applications of matching theory range from job

market assignments (such as medical residents who need to be matched to

hospitals) to kidney allocation and refugee matching (e.g., [33], [34], [18]),

among many other potential applications.
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1.2 Two Prominent Matching Mechanisms:

DA and TTC

There are two important matching mechanisms (also called matching rules)

that have been introduced and widely studied: Deferred Acceptance (DA)

and Top Trading Cycles (TTC). We present descriptions of these mecha-

nisms here in a one-to-one one-sided matching model where objects have

strict priorities over agents and agents have strict preferences over objects.

Strict priorities and preferences mean that indifferences are not allowed,

and thus if there is a choice of two agents then the higher-priority agent

for each object is unambiguously defined, and if there are two objects then

for each agent one is preferred to the other one (but not the other way

around).

Steps for the DA rule (Gale and Sapley, 1962 [14]):

• Each agent proposes to their most preferred object.

• Each object keeps only the highest priority proposing agent tenta-

tively and rejects the rest.

• All rejected agents propose to their next preferred object and the

process is repeated iteratively.

• The algorithm ends when all agents are either matched or prefer to

stay unmatched.

Steps for the TTC rule (Shapley and Scarf, 1974 [37]; Pápai, 2000 [29]):
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• Each object forms a pair with its highest priority agent who is in the

market.

• Each agent points to the pair with their most preferred object (which

may be their own pair).

• Since there is a finite number of agents, there is going to be at least

one cycle formed by pointing agents which, if the corresponding trade

is carried out, improves the allocation of the involved agents (or leaves

the allocation unchanged if an agent points to their own pair).

• Agents are permanently matched to the objects according to the cy-

cles.

• Matched agents and objects are removed from the market and the

process is repeated iteratively.

• The algorithm ends when all agents are either matched or prefer to

stay unmatched.

The DA and TTC mechanisms are well-studied because they possess

notable attributes. First, both the DA and TTC are strategy-proof in the

one-sided matching model. Therefore, if any of the agents misreports their

ranking, there is no way for them to get a better allocation. In addition,

both of these rules has a property that does not hold for the other one. The

DA is fair ([14]) which means, as already explained, that if an agent gets

matched to an object then there is no other agent who has higher priority

for the object and prefers this object to their current allocation. However,

the DA is not Pareto-efficient, although it has been shown that the DA

6



allocation Pareto-dominates all other fair allocations ([14]). On the other

hand, the TTC is Pareto-efficient ([37], [29]) for the agents, which means

that agents cannot get a better allocation unless at least one agent is made

worse off. However, the TTC is not fair.

1.3 Objectives and Motivation

In this thesis we study the TTC and alternative rules to the TTC which

are strategy-proof and Pareto-efficient but not fair, both in one-to-one and

many-to-one matching models. One of the main aims of this thesis is to

find matching rules that perform relatively better than others by having

fewer justified envy instances of assignments when taking into account the

priorities of the objects.

Gale and Shapley (1962 [14]) and Balinski and Sönmez (1999 [7]) demon-

strate that it is not possible to have an outcome that is both Pareto-efficient

and fair at each priority and preference profile. To see this, consider the

preferences and priorities provided in Table 1(a)-(b). It is easy to verify

that the unique fair allocation is the one given in Table 1(c). However,

this allocation is not Pareto-efficient, since it is Pareto-dominated by the

allocation displayed in Table 1(d).

This is a classic example to show the incompatibility of fairness and

efficiency in a simple matching market, and it clearly demonstrates that

this is a pervasive feature of such markets. This explains the interest in

both the DA and TTC mechanisms, since there is no matching mechanism

7



a b c

i j j

k i i

j k k

(a) Objects’ Priorities

i j k

b a a

a b b

c c c

(b) Agents’ Preferences

objects a b c

agents i j k

(c) Unique fair allocation

objects a b c

agents j i k

(d) Pareto-dominating allocation

Table 1: Incompatibility of Fairness and Pareto-efficiency
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which is both fair and efficient in one-sided matching models. This funda-

mental incompatibility has inspired a substantial literature using various

approaches to reconcile the properties of fairness and efficiency in some sat-

isfying manner, and to understand and potentially alleviate the trade-offs

involved.

Among these efforts, Heo (2019 [17]) restricts the preference domain

and identifies restrictions that allow for both fairness and efficiency. More

importantly for our analysis, Ergin (2002 [13]) and Kesten (2006 [21]) focus

on restrictions on a priority table. Other papers try to weaken the notion

of fairness or efficiency to allow a matching rule to satisfy both properties

simultaneously without having to resort to restricting either preferences or

priorities. Weakening the notion of fairness is especially popular and has

created a large recent literature (see, for example, Alcalde and Romero-

Medina (2017 [4]), Cantala and Pápai (2014 [8]), Morrill (2015 [27]), and

Kloosterman and Troyan (2016 [23]), among others).

Another strand of the literature is primarily looking for alternative mech-

anisms that satisfy some weaker criteria than the original incompatible

properties. For example, Kesten (2010 [22]) proposes a mechanism that

is meant to improve stability compared to the TTC, based on consenting

agents who allow for priority violations in order to improve the efficiency of

the DA outcome. While this rule, called EADAM, maintains the efficiency

of TTC, it is not strategy-proof. For many-to-one problems known as school

choice, Morrill(2013 [26]) and Hakimov and Kesten (2014 [15]) introduce

different matching rules that remain Pareto-efficient and strategy-proof,

just like the TTC, but try to improve upon TTC by having fewer justified
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envy instances at some priority and preference profiles, but as we will show

in Chapter 4, they can create more justified envy instances than TTC at

some profiles, so the theoretical profile-by-profile comparison remains am-

biguous.

As already discussed, strategy-proofness is not just an incentive prop-

erty to assure truth-telling itself. The main reason to insist on strategy-

proofness is that if a designer does not know the true rankings of agents who

are participating in the market, then it is not possible to make sure that

fairness and efficiency truly hold. In this thesis, our primary criteria for

matching rules are efficiency and strategy-proofness, and we ask that if we

maintain these two important properties of matching rules, is it possible to

find a rule (or rules) that always perform better, in terms of fairness, than

others, taking into account all different markets, or at least perform better

on the whole? Thus, our studies fit into the literature analyzing the incom-

patibility of fairness and efficiency, and uses fairness comparison criteria to

identify matching rules that are most suitable to reduce the fundamental

trade-off between fairness and efficiency when efficiency takes precedence

over fairness, while ensuring proper incentives and thus truthfully reported

preferences.

There are different fairness criteria that can be used for comparison.

Abdulkadiroğlu et al. (2017 [3]) introduce the notion of justified envy min-

imality. A matching rule is justified envy minimal if the set of justified envy

instances cannot be weakly decreased in an inclusion sense by another rule,

considering each priority and preference profile. Chen and Kesten (2017
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[9]) use a different concept, which simply compares whether a profile con-

tains a justified envy instance or not, and uses this criterion for comparison

profile-by-profile. We call this criterion JE-domination, and this is the cen-

tral concept studied in Chapter 2.

1.4 The Role of Simulations

Simulation is used as a complementary tool to our analytical methods,

since some properties are not theoretically true for all possible profiles, but

they are statistically significant. Some instances may happen in matching

mechanisms which are rare or can be considered exceptions. Also, conjec-

tures can be verified through simulations and properties that are found via

simulations may result in a theoretical insight.

A case in point is Ashlagi et al. (2011 [5][6]) who ran simulations on

kidney exchange to show how we should organize the chain of donors to

obtain more efficient allocations. Roth and Peranson (1999 [33]) used sim-

ulations in school choice to see the effect of manipulation by agents in a

large market. Dur et al. (2018 [10]) carried out simulations to compare

the DA rule to an improved version of the mechanism that was used in

Boston. Their simulations suggested that the Secure Boston mechanism

Pareto-dominates the DA when the DA is not efficient, and it often over-

laps with the DA when the DA is efficient. Miralles (2009 [25]) also ran

simulations and proved that the Boston mechanism outperforms the DA

when comparing the welfare of the two mechanisms. Morrill (2013 [26])

used simulations to show that Clinch and Trade (CT) and another variant
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of the TTC called Prioritized Top Trading Cycles (PTC), have fewer unfair

instances than the TTC on average.

In Chapters 3 and 4 of this thesis we test different properties of matching

rules in cases where analytical comparisons are not possible. In Chapter 3

simulations are used to show that more cycles in the priority profile lead to

more fairness violations on average when considering different preferences

for the agents. In Chapter 4, simulations are carried out to compare al-

ternative matching mechanisms for the school choice model and see which

one has a relative advantage over its rivals according to various normative

criteria regarding fairness and efficiency.

1.5 Summary of the Results

This thesis consists of three studies in matching theory and market design.

Its main focus is to compare matching rules according to normative criteria,

primarily fairness, when objects have priorities over agents, in addition to

agents having preferences over objects.

In the first study (Chapter 2), we analyze one-to-one matching, for which

the two definitions of cycles in priority profiles introduced by Ergin (2002

[13]) and Kesten (2006 [21]) are identical. The fairness comparison criteria,

called JE-domination (where JE stands for justified envy) and cardinal JE-

domination that we focus on in this chapter are based on profile-by-profile

comparisons. Given a fixed priority profile, a rule f JE-dominates another

rule g at this priority profile if at each preference profile where g is fair
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f is also fair, and if there is at least one more preference profile at which

f is fair and g is not. The alternative notion, cardinal JE-domination,

compares the number of justified envy instances of two matching rules. We

say that rule f cardinally JE-dominates rule g at a fixed priority profile

if there is no preference profile where f has more justified envy instances

than g and there is at least one preference profile at which f has strictly

fewer justified envy instances than g. We use these two straightforward

criteria to compare strategy-proof and efficient matching rules. As we will

show in Chapter 2, there is no unique rule that performs best at all possible

preference profiles when the priority profile has at least one Ergin/Kesten

cycle. Namely, we prove that when there is a cycle in the market, we

cannot find a mechanism which is strategy-proof and Pareto-efficient and

has weakly fewer preference profiles at which the allocation is fair than any

other strategy-proof and Pareto-efficient mechanism, when the comparison

is made profile by profile. This means that there is no unique rule at cyclic

priority profiles which JE-dominates all other strategy-proof and efficient

rules, and a similar result applies to cardinal JE-domination.

Gale and Shapley (1962 [14]) proves that there is a unique mechanism,

the DA, that is fair and Pareto-dominates all other fair mechanisms (i.e.,

weakly Pareto-dominates all fair outcomes at each priority and preference

profile). Some recent papers such as Morrill (2015) [27] and Abdulkadiroǧlu

et al. (2017 [3]) suggest that the TTC is more fair than any other mech-

anism that is strategy-proof and Pareto-efficient. Many papers have tried

to reconcile Pareto-efficiency and fairness by either weakening the notion

of fairness (e.g., Alcalde and Romero-Medina, 2017 [4]; Cantala and Pápai,

2014 [8]; Kloosterman and Troyan, 2016 [23]) or by restricting the priority
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profile (Ergin, 2002 [13]; Kesten, 2006 [21]). We show that while the TTC

cannot be dominated in terms of fairness violations at all preference profiles

among strategy-proof and Pareto-efficient mechanisms, if the priority pro-

file is strongly cyclic then there is not much scope for the TTC to dominate

other strategy-proof and Pareto-efficient matching rules.

In the second study (Chapter 3), we take a closer look at definitions

that have been introduced by Ergin (2002 [13]) and Kesten (2006 [21]) in

a many-to-one matching model. Given that this study focuses on multiple

copies of objects, the scarcity conditions are important and the two defini-

tions of cycles are no longer identical. We show, using a direct proof, that

an Ergin cycle is stronger than a Kesten cycle when objects have quotas.

Moreover, we also prove that when there is a Kesten cycle, which is the

weaker definition of cycles, there is no strategy-proof and Pareto-efficient

mechanism which has weakly fewer fairness violations (called justified envy

instances) at all possible preference profiles compared to other strategy-

proof and Pareto-efficient mechanisms. In the last part of Chapter 3 the

matching prescribed by the TTC mechanism using different priority profiles

is compared while we count the number of Kesten cycles in the priorities.

It is shown that, as a general pattern, as the number of Kesten cycles in-

creases, there are more justified envy instances and fewer preference profiles

at which the mechanism produces fair allocations.

The third study (Chapter 4), which consists of multiple parts, explores

three competing mechanisms for matching markets with multiple quotas,

all of which are strategy-proof and Pareto-efficient but not fair. The TTC
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mechanism as a baseline is compared to the Equitable Top Trading Cy-

cles mechanism (henceforth ETTC), and the Clinch and Trade mechanism

(henceforth CT), as two alternative mechanisms, which were introduced as

variations of TTC by Hakimov and Kesten (2018 [15]) and Morill (2015

[28]), respectively.

First, knowing that mechanisms that are efficient cannot be fair at all

preference profiles, we compare these mechanisms that have been intro-

duced in the literature for many-to-one matching in terms of fairness. Al-

though one would expect that these two recently proposed strategy-proof

and Pareto-efficient mechanisms are fairer than the TTC, I demonstrate

that some preference profiles give the opposite result. Given that these

alternative mechanisms are not always better in terms of fewer justified

envy instances, I compare the aggregate number of justified envy instances

using simulations, in order to see which mechanism has fewer justified envy

instances than the others. The aggregate number is simply the sum of all

justified envy instances in the selected priority and preference profiles.

Since all the alternative mechanisms that we study in this chapter are

the same when the quota of all objects is equal to one, we compare the

mechanisms when the the quota of at least one of the objects is greater

than one. In order to be able to compare the inequality of different distri-

butions of quotas over objects, we use the Gini coefficient. This coefficient

is usually applied to the distribution of wealth, but we use it as a measure

of inequality for distributions of quotas in matching (e.g., distributions of

school seats across schools).

Moreover, there is another feature that has been used in the setup for
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our simulation model: namely, the preference profiles of agents are not

completely random. They are a combination of a given common ranking

and individual rankings over objects. We assume that there is a correlation

between the common ranking and the individual preferences. The common

ranking can be interpreted as common information for all the individuals,

while individual rankings represent each individual’s taste for the different

objects. We carry out the analysis with different distributions of quotas

and different correlations of preferences and show, among other things, that

ETTC tends to have fewer aggregate justified envy instances than the other

two rules.

Furthermore, by applying a new measure of efficiency, we show that each

of the three mechanisms is more efficient when the most preferred object in

the common ranking has a higher quota in general. Considering different

distributions of quotas, we find that the more unequal the distribution, the

less justified envy instances are observed in the market, and at the same

time the more likely it becomes that agents are matched to objects that

are ranked highly by them.

In sum, this thesis shows that in one-to-one matching there is no guaran-

tee that that the TTC mechanism is the most fair mechanism when using

some fundamental and straightforward criteria for comparison. Moreover,

in many-to-one matching (i.e., with multiple quotas) the mechanisms can-

not be compared easily analytically, especially when different quota distri-

butions are considered. Therefore, for these cases simulations are used to

compare mechanisms.
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Chapter 2

Fairness Comparisons of

Strategy-Proof and Efficient

Matching Rules

2.1 Introduction

We study a one-to-one matching model where agents have strict prefer-

ences over objects and objects have strict priorities over agents. Our main

question is which strategy-proof and efficient matching rules are the most

fair? Can we compare these rules based on justified envy?

The set of strategyproof and efficient matching rules in this model has

not been characterized yet. Pápai (2000 [29]) characterizes a large class of

matching rules, called Hierarchical Exchange rules, using strategy-proofness,
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efficiency, nonbossiness (agents cannot affect other agents’ allocations with-

out affecting their own allocation), and reallocation-proofness (agents can-

not manipulate the outcome successfully by reporting untruthful prefer-

ences and swapping their assigned objects afterwards). This class is a gen-

eralization of Gale’s Top Trading Cycles (TTC) rule (Shapley and Scarf,

1962 [37]) and allows for an arbitrary priority profile that may change en-

dogenously with the preference profile as the rounds of trading proceeds,

based on prior assignments. Pycia and Ünver (2017 [30]) characterize a

superset of these rules, called Trading Cycles rules, by strategy-proofness,

efficiency, and nonbossiness. Trading Cycles rules allow for so-called bro-

kers under restricted circumstances, where a broker is an agent who can

trade her object but cannot take it herself. We study the even larger family

of rules which are strategy-proof and efficient but may be bossy.

We examine two natural criteria that allow for comparing matching rules

in terms of justified envy. We say that a rule JE-dominates another one

if the first rule has no justified envy at any preference profile where the

second one has no justified envy, and there is at least one additional pref-

erence profile at which the dominating rule has no justified envy, while the

dominated one has. Furthermore, a rule cardinally JE-dominates another

one if the number of justified envy instances are either the same or lower

at each preference profile for the dominating rule, with at least one profile

with a strictly lower number of justified envy instances.

It is well known that the Deferred Acceptance (DA) rule of Gale and

Shapley (1962 [14]) is fair (in the sense that it has no justified envy) in this

18



model but not efficient, while the TTC rule is efficient but not fair. Further-

more, we know that the DA outcome is the most efficient fair matching at

each preference profile, in the strong sense that it Pareto-dominates every

other fair matching. By symmetry, one might conjecture that the major

competitor to DA, the Top Trading Cycle (TTC) rule, is the most fair (i.e.,

has least justified envy) among efficient rules. Along these lines, Morrill

(2015 [27]) demonstrates that the TTC rule is the unique strategy-proof,

efficient and just matching rule, where the axiom of justness weakens the

notion of fairness to accommodate the trading of objects. Furthermore,

Abdulkadiroǧlu et al. (2017 [3]) shows that the TTC rule is justified-envy

minimal among strategy-proof and efficient matching rules, in terms of an

inclusion relation with respect to blocking pairs. However, the TTC rule is

not the only matching rule with this property. Finally, although less closely

related to our setting, there are also some arguments in favor of TTC on

the basis of fairness when there is uncertainty: Harless (2015 [16]) shows

that among ex-post efficient, strategy-proof, and nonbossy rules, TTC rules

Lorenz dominate non-TTC rules.

We argue and demonstrate that when the object priorities are not acyclic

(Ergin, 2002 [13]; Kesten, 2006 [21]) the TTC rule does not stand out as

the unique most fair strategy-proof and efficient matching rule, contrary to

the indications in the literature. Specifically, we show that with respect to

either JE-domination or cardinal JE-domination there is no unique strate-

gyproof and efficient rule that dominates all other such rules for arbitrary

cyclic priorities. We further explore JE-domination among the class of

Modified TTC rules, which are TTC rules that use a priority profile other
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than the “true” priority profile. The Modified TTC rules are also strategy-

proof and efficient, and we prove that when the priorities are strongly

cyclic (a strengthening of the classical cyclic condition) the TTC rule JE-

dominates a Modified TTC rule only under rather restrictive conditions on

the true priority profile.

2.2 Definitions and Axioms

There is a set of m objects M and a set of n agents N . Each agent is

allocated at most one object and each object is assigned to at most one

agent, based on the preferences of the agents and the priorities of the

objects. Each object a ∈ M has a strict priority ranking πa of agents.

Each agent i ∈ N has a strict preference ordering Pi over objects. Strict

preference relations are denoted by Pi and weak preference relations are

denoted by Ri. Given that preferences are strict, aRib means that either

aPib or a = b, that is, since indifference is not allowed if a is only weakly

preferred to b but not strictly, then objects a and b are identical. Objects

may be unacceptable to agents, and we denote the assignment of an agent

who remains unassigned by 0. We also use the notation Pi ∈ (a, b) to

indicate that Pi ranks a first and b second, while Pj = (a, 0) indicates that

j’s only acceptable object is a. Similarly, Pi = (0) means that there is no

acceptable object for agent i. We will use similar notation for priorities πa.

A preference profile P = (P1, . . . , Pn) specifies the strict preferences of each

agent in a particular market. A priority profile π = (πa1 , . . . , πam) specifies

the strict priority ordering of each object. Let Π denote the set of priority
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profiles.

A matching µ is a mapping from the set of agents N to the set of objects

M such that each agent is assigned to at most one object, and each object

is assigned to at most one agent. Thus, if agent i is assigned object a

then µ(i) = a. A matching rule f assigns a matching to each priority and

preference profile (π, P ). When the priorities are fixed and unambiguous,

we may simply write f(P ) to indicate the matching at preference profile

P . Agent i’s assignment in f(P ) is denoted by fi(P ).

A matching rule f is strategy-proof if, for all preference profiles P ,

there is no agent i ∈ N and P ′

i such that fi(P
′

i , P−i)Pifi(P ). If there is

such an agent, then agent i can manipulate at profile P via P ′

i . Strategy-

proofness is a standard, although demanding, incentive requirement in

matching design, and thus we will require all matching rules that we analyze

in this study to satisfy it.

A matching rule f is nonbossy if, for all preference profiles P , there is no

agent i ∈ N and P ′

i such that fi(P
′

i , P−i) = fi(P ) and f(P ′

i , P−i) 6= f(P ).

If there is such an agent, then agent i is bossy at profile P , since she can

change somebody else’s assignment without changing her own. We will not

require nonbossiness in this study, but will use this property of rules in our

proofs, since for example the TTC rule is nonbossy.

Another basic property of matching rules is Pareto-efficiency, or efficiency

for short. A matching µ is individually rational if for all i ∈ N , µiRi0.

A matching µ is efficient if it is not Pareto-dominated. That is, there is

no matching ν such that, for all agents i ∈ N , νiRiµi and νjPjµj for some
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j ∈ N . We assume that agents can always be left unassigned, and thus an

efficient matching is individually rational. A matching rule f is efficient

if, for all preference profiles P , f(P ) is efficient.

Finally, we introduce the central notions in this study on fairness which

are also standard, based on the justified envy of agents with respect to their

priority rankings for objects. Given a fixed priority profile π, a matching µ

has justified envy at preference profile P if there exist agents i, j ∈ N and

object a ∈ M such that aPifi(P ), iπaj, and fj(P ) = a. We will also use

the terminology that (i, a, j) is a justified envy instance, or JE instance

for short.1 A matching rule f is fair if f(P ) has no justified envy at any

preference profile P . We will say that g has JE at P (with respect to π) if

g(P ) has at least one justified envy instance at P , and that g is JE-free at

P if g(P ) has no justified envy instance at P (with respect to π).

2.3 Preliminaries

Here is a brief informal description of the TTC rule with inheritance of

the objects for a given priority profile π. For a formal definition see the

Fixed Endowment Hierarchical Exchange rules in Pápai (2000 [29]), and

for a more succinct description of the ownership rights (i.e., endowments)

see Pycia and Ünver (2017 [30]). The only, fairly straightforward, mod-

ification we make to previous definitions is that we allow agents to have

unacceptable objects, and thus we remove agents from the market when all

1Note that in the one-to-one matching model that we study in this chapter the
number of JE instances corresponds to the number of blocking pairs. This would no
longer be the case in a many-to-one model, where an object has multiple copies which
can be assigned to different agents.
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their acceptable objects have already been assigned to other agents.2

• In each round each object is endowed to the agent who has the highest

priority for the object among the agents who are still in the market.

• Each agent points to the agent who is endowed with the object that

is most preferred by the agent among all the objects that are still

unassigned. Agents may point to themselves.

• Since there is a finite number of agents, there is at least one cycle

(i.e., a top trading cycle). Assign to each agent in each top trading

cycle the object that the agent most prefers (that is, the object that

the agent is pointing for). These assignment are final.

• Remove each assigned agent and object from the market, and remove

each agent who has no acceptable objects left in the market.

• Update the endowments by endowing each object to the highest-

priority agent who is still in the market. This is the “inheritance” of

objects that are left behind by agents who leave the market in this

round.

• Repeat this process in the remaining market until no more assign-

ments can be made.

Given a permutation of the agents, the Serial Dictatorship rule assigns

each agent her favorite object among the remaining objects, when they

select their assignments in the order of the given permutation. Note that

2Pycia and Ünver (2016 [31]) explore this modification, what they call the existence
of an outside option, in some detail.
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if the fixed priority profile is homogeneous (has the same priority ordering

for all objects), then the TTC rule is simply the Serial Dictatorship with

the permutation of the agents that corresponds to the common priority

ordering of the objects.

The TTC rule is strategy-proof and efficient (Pápai, 2000 [29]). Given an

arbitrary priority profile, the TTC rule is not fair at all preference profiles.

In fact, fairness and efficiency cannot be reconciled for an arbitrary priority

profile, since there may be preference profiles for which a fair and efficient

matching does not exist (Roth, 1982 [32]). When restricting the priority

profile, fairness and efficiency can only be satisfied simultaneously if the

priority profile is acyclic (Ergin, 2002 [13]; Kesten, 2006 [21]).

In a one-to-one matching model, which is the focus of this chapter, a

priority profile is acyclic according to Ergin (2002 [13]) if there is no cycle

for two objects a, b ∈ M such that there are three agents i, j, l ∈ N with

lπajπai and iπbl. This turns out to be equivalent to the acyclicity condition

defined by Kesten (2006 [21]), which also stipulates in addition that iπbj.

Given the symmetry between objects a and b in these definitions, it is

straightforward to verify that the two conditions are the same (see details

in the appendix).3 Moreover, when the priority profile is acyclic, the TTC

and DA rules are equivalent in the sense that both yield the same matching

at each preference profile.

Since acyclicity of a priority profile is central to our results, we will state

3The two acyclicity conditions however differ from each other when objects have
multiple copies or a quota, that is, in a many-to-one model. When defining the acyclicity
of a priority profile, both Ergin (2002 [13]) and Kesten (2006 [21]) also specify a scarcity

condition in addition to the loop condition to define a cycle. These scarcity conditions
are trivially satisfied when the quota for each object is one, as assumed in this chapter.
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the definition here formally.

Definition 1. A priority profile π has a cycle if there exist agents i, j, l ∈

N and objects a, b ∈ M such that lπajπai, iπbl and iπbj. A priority profile

is cyclic if it has a cycle, and it is acyclic if it does not have a cycle.

2.4 Fairness Criteria and Comparisons

Our first result demonstrates that none of the strategy-proof and efficient

matching rules stands out uniquely in terms of a profile-by-profile fairness

comparison when the priority profile is cyclic.

Theorem 1. Let n,m ≥ 3 and fix a priority profile π which is cyclic. Let

matching rule f be strategy-proof and efficient. Then there exists another

strategy-proof and efficient matching rule g and a preference profile P such

that f has justified envy at P with respect to π and g does not.

Proof. Since π is cyclic, there exist objects a, b ∈ M and agents a, b, c ∈ N

such that iπalπaj and jπbi. Assume, without loss of generality, that jπbl.

Consider a profile P such that Pi, Pj, Pl ∈ (a, b) and for all other agents

k(k ∈ N \ {i, j, l}), Pk ∈ (k). If f(i,j,l)(P ) 6= (a, b, 0), where this notation

means that i gets a, j gets b and l gets 0, then let g be the TTC rule based

on π. Then g is strategy-proof and efficient and it selects (a, b, 0) at P , that

is, g(i,j,l)(P ) = (a, b, 0). Hence, g is JE-free at P . Given that f is efficient,

it assigns both a and b at P . If fi(P ) = a then fl(P ) = b by efficiency.

Furthermore, (j, b, l) is a JE instance for f at P . If fi(P ) 6= a then efficiency

implies that either fj(P ) = a or fl(P ) = a . Thus, either (i, a, j) or (i, a, l)
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is a JE instance for f at P . Therefore, if f(i,j,l)(P ) 6= (a, b, 0) then the

statement follows for f , given the TTC rule based on π.

Next, assume that f(i,j,l)(P ) = (a, b, 0). Let P ′

i ∈ (b, a), and consider

the profile P ′ = (P ′

i , P−i). Note that fi(P
′) 6= a by efficiency, and thus,

given fi(P ) = a, strategy-proofness implies that fi(P
′) = b. Then efficiency

implies that f(i,j,l)(P
′) ∈ {(b, a, 0), (b, 0, a)}.

Case 1: f(i,j,l)(P
′) = (b, a, 0)

Let π̂ be such that iπ̂alπ̂aj and iπ̂blπ̂bj. Let g be the TTC rule based

on π̂. For simplicity, we can assume that g is the Serial Dictatorship with

permutation (i, l, j). Thus, g is strategy-proof and efficient.

Let P ′′

j ∈ (a, b, c), where c ∈ M . Consider the profile P ′′ = (P ′′

j , P
′

−j).

Then g(i,j,l)(P
′′) = (b, c, a). Hence, g is JE-free at P ′′ with respect to

π. However, note that since fj(P
′) = a, strategy-proofness implies that

fj(P
′′) = a. This means that (l, a, j) is a JE instance for f at P ′′ with re-

spect to π. Thus, the statement follows for f , given the Serial Dictatorship

g with permutation (i, l, j) and profile P ′′.

Case 2: f(i,j,l)(P
′) = (b, 0, a)

Let P̄j ∈ (b, a) and consider the profile P̄ = (P̄j, P
′

−j). Since fb(P
′) = 0,

strategy-proofness implies that fbP̄ = 0. Then by efficiency f(i,j,l)(P̄ ) =

(b, 0, a). Now let g be the TTC rule based on π. Then g is strategy-proof

and efficient and g(i,j,l)(P̄ ) = (a, b, 0). Note that g is JE-free at P̄ with

respect to π. However, (j, b, i) is a JE instance for f at P̄ with respect to

π. Thus, the statement follows for f , given the TTC rule g based on π and
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profile P̄ .

Since the statement is proved for both cases, the proof is complete.

Corollary 2. Let n,m ≥ 3 and fix a priority profile π which is cyclic. Let

matching rule f be strategy-proof and efficient. Then there exists another

strategy-proof and efficient matching rule g and a preference profile P such

that f has more JE instances at P with respect to π than g.

Corollary 2 follows immediately from Theorem 1.

Next we introduce the key definitions of this paper, the criteria which will

allow us to evaluate and compare matching rules based on their fairness.

Definition 2. A rule f is JE-dominated if there exists another rule

g which is JE-free at all preference profiles where f is JE-free, and g is

JE-free at least at one preference profile where f has JE. Then we will say

that g JE-dominates f .

Definition 3. A rule f is cardinally JE-dominated if there exists

another rule g which has at most as many JE instances at each preference

profile as f , and it has fewer JE instances than f at least at one preference

profile. Then we will say that g cardinally JE-dominates f .

We note that, although closely related, there is no logical implication

between JE-domination and cardinal JE-domination, which can be easily

verified. JE-domination was first proposed by Chen and Kesten (2017 [9]).

Corollary 3. Let n,m ≥ 3. If π is cyclic then there is no unique strat-

egyproof and efficient rule which JE-dominates all other strategyproof and

efficient rules.
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Corollary 4. Let n,m ≥ 3. If π is cyclic then there is no unique strategy-

proof and efficient rule which cardinally JE-dominates all strategy-proof and

efficient rules.

Corollaries 3 and 4 are straightforward implications of Theorem 1, using

our new terminology.

2.5 JE-Domination for the TTC Rule

Given the priority profile π ∈ Π, we will denote the TTC rule based on π

by TTC(π) and the DA rule based on π by DA(π).

Proposition 1. If π is acyclic, the unique strategyproof and efficient rule

which both JE-dominates and cardinally JE-dominates all other strate-

gyproof and efficient rules is the TTC(π) = DA(π) rule.

Proof. It is well-known and easy to verify that the TTC and DA rules

are equivalent if π is acyclic (Kesten, 2006 [21]), and therefore this rule

is strategy-proof, efficient and fair. Moreover, the efficient and fair out-

come chosen by this rule is the unique efficient and fair outcome at each

preference profile. Suppose, to the contrary, that there is another efficient

and fair outcome at some preference profile. Then neither outcome Pareto-

dominates the other, since both are efficient. However, this contradicts

the fact that the DA outcome is the agent-optimal fair outcome and thus

it Pareto-dominates all other fair outcomes (Gale and Shapley, 1962 [14]).

Therefore, the TTC rule based on π (or, equivalently, the DA rule based on

π) chooses the unique efficient and fair matching at each preference profile,
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and it follows that any other efficient rule chooses an outcome at some

preference profile which is not fair.

As Corollaries 3 and 4 indicate, Proposition 1 cannot be extended to

priority profiles that are not acyclic. We now provide a simple example

to demonstrate that, given a cyclic priority profile π, the TTC(π) rule

neither JE-dominates nor cardinally JE-dominates all other strategy-proof

and efficient rules.

Example 1. Let π be as follows: πa ∈ (j, i, l) and for all b ∈ M \

{a}, πb ∈ (i, l, j). Let f be the TTC rule based on π, and let g be the

Serial Dictatorship based on agent permutation (i, l, j, ...). Note that both

rules are strategy-proof and efficient. Consider the preferences below, and

assume that all other agents have no acceptable objects.

Pi Pj Pl

a b b

0 0 0

Then the TTC rule f based on π yields fi(P ) = a, fj(P ) = b and f

has a JE instance (l, b, j). However, the Serial Dictatorship g results in

gi(P ) = a, gl(P ) = b, and g is JE-free at P .

Next we show that the TTC rule is not JE-dominated by any other

strategy-proof and efficient rule, given an arbitrary priority profile π̄.

Theorem 5. Let π̄ ∈ Π be a given priority profile. The TTC(π̄) rule is

not JE-dominated by any other strategy-proof and efficient rule.
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Proof. Let g be the TTC(π̄) rule, given an arbitrary priority profile π̄ ∈ Π.

Suppose, by contradiction, that there exists a strategy-proof and efficient

rule f that JE-dominates g. Then there exists P such that g(P ) has JE

and f(P ) is JE-free. Since f(P ) is efficient and JE-free, f(P ) = DA(P ).

Furthermore, g(P ) = TTC(P ) 6= DA(P ).

Since g(P ) = TTC(P ) has JE, there exist i, l ∈ N who trade at P in the

TTC procedure and there exists j ∈ N \ {i, l} who has justified envy at

g(P ) for one of the objects, say a ∈ M , traded by i and l. This implies that

if i and l trade a, b ∈ M in the TTC procedure at P , then iπ̄ajπ̄al and lπ̄bi,

lπ̄bj, (j, a, l) is a JE instance at g(P ), gi(P ) = b, gl(P ) = a, Pi ∈ (b, . . .)

and Pl ∈ (a, . . .). Moreover, note that since g(P ) has JE, gj(P ) = c, where

aPjc and either c ∈ M or c = 0.

Let P i ∈ (b, a, 0) , P̃l ∈ (b, a, 0), P̃i ∈ (a, b, 0) and P l ∈ (a, b, 0). Suppose

fi(P i, P l, Pj) = 0. Then, by strategy-proofness, fi(P̃i, P l, Pj) = 0. How-

ever, gi(P̃i, P l, Pj) = a and since the TTC rule is JE-free at (P̃i, P l, Pj),

g(P̃i, P l, Pj) = f(P̃i, P l, Pj), which is contradiction. Thus, fi(P i, P l, Pj) 6=

0. A similar argument for j shows that fl(P i, P l, Pj) 6= 0.

Therefore, i and l are assigned by f objects a and b in total at (P i, P l, Pj),

and thus efficiency implies that fi(P i, P l, Pj) = b and fl(P i, P l, Pj) = a.

Then, by strategy-proofness, fi(P l, P−l) = b. Suppose fl(P l, P−l) = a.

Then, by strategy-proofness, fl(P ) = a would hold. We will show that this

is a contradiction.

Suppose that fl(P ) = a. Then given that f(P ) is JE-free and jπal, there

exists d ∈ M \ {a} such that dPja and fj(P ) = d. If d = b, then fi(P ) 6= b.
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Then, by strategy-proofness,fi(P i, P−i) 6= b.

Suppose that fi(P i, P−i) 6= a. Then fi(P i, P−i) = 0 . Thus, by strategy-

proofness, fi(P̃i, P−i) = 0. However , gi(P̃i, P−i) = a, and since the TTC

rule is JE-free at (P̃i, P−i), g(P̃i, P−i) = f(P̃i, P−i), which is a contradiction.

Thus, fi(P i, P−i) = a. But then fl(P i, P−i) 6= a and thus strategy-proofness

implies that fl(P i, P l, Pj) 6= a which is a contradiction. Hence, d 6= b.

However, this implies that matching (b, a, d) Pareto-dominates g(i,l,j) =

(b, a, c), given that aPjc and thus dPjc. This is a contradiction, since the

TTC rule is efficient. Therefore, fl(P ) 6= a which contradicts our prior

assumption.

Thus, fl(P l, P−l) 6= a. Hence, since fi(P l, P−l) 6= b, we have fl(P l, P−l) =

0. Then, by strategy-proofness, fl(P̃l, P−l) = 0. However, gl(P̃l, P−l) = b,

and since the TTC rule is JE-free at (P̃l, P−l), g(P̃l, P−l) = f(P̃l, P−l), which

is a contradiction.

Note that Proposition 1 implies that only the DA rule and rules that co-

incide with the DA rule for acyclic priority profiles are not JE-dominated

by strategy-proof and efficient matching rules for any given arbitrary pri-

ority profile, since the DA is fair for all priority profiles, and it is efficient

for acyclic priority profiles.

2.6 JE-Domination for Modified TTC Rules

Since the characterization of all strategy-proof and efficient matching rules

in the one-to-one model with priorities is an open problem, we will focus
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on the set of Modified TTC rules, which is a large class of well-studied

matching rules (a subset of the Fixed Endowment Hierarchical Exchange

rules of Pápai (2000 [29])) that are both strategy-proof and efficient. Let

π̄ ∈ Π be a given fixed priority profile. Then a Modified TTC rule

is a TTC rule using priority profile π ∈ Π \ {π̄}, denoted by TTC(π),

which does not use the given fixed priorities that we may refer to as the

“true” priorities, but relies on some ”modified” priorities as the basis for

the TTC. This class of rules includes all Serial Dictatorships with different

agent permutations, among many other rules.

First we provide a necessary condition for TTC(π̄) to JE-dominate a

Modified TTC rule, where π̄ is the “true” priority profile, and then we give

a complete characterization of JE-domination by the TTC rule within this

class of rules. Finally, we use these results to show that for strongly cyclic

priority profiles, to be defined later, such JE-domination is not possible.

The intuition is straightforward for the necessity condition presented

below. If TTC(π̄) JE-dominates TTC(π) then either the “true” priority

profile π̄ is acyclic, or if it is cyclic then for each cycle the “intermediate”

agent (j) for an object, the agent whose priority is between the owner and

recipient of an object, cannot be ranked higher than the two traders of the

object, that is, both the owner (l) and the recipient (i).

Proposition 2. Let the priority profile be π̄ ∈ Π. If TTC(π̄) JE-dominates

TTC(π) for some π ∈ Π \ {π̄} then for each cycle given by lπ̄ajπ̄ai, iπ̄bl,

iπ̄bj, we have either lπaj or iπaj.

Proof. Fix the priority profile π̄ ∈ Π. Let π ∈ Π \ π̄ such that TTC(π̄)
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JE-dominates TTC(π). Let f denote TTC(π̄) and let g denote TTC(π).

Suppose that there is a cycle in π̄, given by lπ̄ajπ̄ai, iπ̄bl, iπ̄bj, and suppose

that jπal and jπai. Let P be as follows: Pi = (a, 0), Pj = (a, 0), Pl = (b, 0)

and for all h ∈ N \ {i, j, l}, Ph = (0). Then i and l trade at P in TTC(π̄)

and fi(P ) = a, fl(P ) = b, while fj(P ) = 0. However, gj(P ) = a. Then

(j, a, i) is a JE instance at f(P ). Moreover, since gl(P ) = b and gi(P ) = 0,

by the efficiency of TTC, g(P ) is JE-free. This is a contradiction.

Next we are going to present a characterization of JE-domination within

this class of rules. Let π̄ ∈ Π be the priority profile and let a cycle in π̄

be given by lπ̄ajπ̄ai, iπ̄bl, and iπ̄bj. As before, we call j an intermediate

agent for object a in this cycle, and we call the specific ways of modifying

π defined below intermediate transformation, as it is centered on the role

of the intermediate agent who could potentially have justified envy.

Definition 4. Priority profile π ∈ Π is an intermediate transformation

of π if for each cycle in π (as specified above) one of the following three

cases holds:

case (i): lπai, lπaj, iπbj , iπbl

case(ii): iπaj , iπal

case (iii): lπaiπaj, lπbi, lπbj

To understand this definition, note that since j is an intermediate agent

for object a, (j, a, i) is a JE instance if i is assigned to a. There are exactly

three ways for i to be assigned to a if both agents i and j want object a

and the third agent l wants a different object (see the preference profile
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Pi Pl Pj

a b a

(a) preference profile

πa πb

l i

i j j l

(b) case (i): i trades b for a

πa πb

i
...

j l
...

(c) case (ii): i takes a

πa πb

l l

i i j

j

(d) case (iii): i inherits a

Table 2: Three cases for intermediate transformation

in Table 2), and these three ways correspond to the three cases in the

definition, as illustrated by Table 2.

In the following we will consider the partitioning of each priority profile

π ∈ Π, which is a partition of the “rows” of the priority profile when object

priorities are listed vertically in a priority table, and each member of the

partition consists of on or more consecutive rows in the table. That is, the

priority profile is partitioned by consecutive rank numbers. Specifically,

each agent belongs to exactly one member of this partition such that the

agent only has priorities in this member of the partition. The partition

that we are interested in is the finest partition of π which satisfies the

above condition for each agent. We will refer to members of this uniquely

defined finest partition as the components of π. The size of a component is

given by the number of the agents in the component, which is simply the

number of the rows in the priority table that correspond to the component.

Thus, for example, each Serial Dictatorship has n components of size 1. It

is also clear that acyclic priority profiles have components of size 1 and 2

only, while any cyclic priority profile has at least one size 3 component.
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Now we are ready to prove the characterization of TTC JE-domination

in the class of Modified TTC rules.

Theorem 6. Let the priority profile be π ∈ Π. For all π ∈ Π\{π}, TTC(π)

JE-dominates TTC(π) if and only if π is an intermediate transformation

of π.

Note that if π is acyclic then the conditions for intermediate transforma-

tion are vacuously satisfied due to the lack of cycles, and thus all priority

profiles are intermediate transformations of π. Therefore, one implication

of this characterization is that all Modified TTC rules are JE-dominated

by the TTC (other than TTC itself) if the priority profile has no cycles,

and thus Theorem 6 partially implies Proposition 1.

Proof.

Claim 1: If π is an intermediate transformation of π then TTC(π) JE-

dominates TTC(π).

Proof: Let π be an intermediate transformation of π. Suppose that TTC(π)

does not JE-dominate TTC(π). Then there exists P ∈ P such that

TTC(π, P ) has JE and TTC(π, P ) is JE-free. Since TTC(π, P ) has JE,

there exist a, b ∈ M and i, j, l ∈ N such that lπajπai, iπbl, iπbj, aPib and

bPla, i and l will trade a and b at P and aPjf
TTC
j (π, P ). Thus, (j, a, i) is a

JE instance for TTC(π) at P . The strategy-proofness and nonbossiness of

TTC implies that without loss of generality we can assume that Pi = (a),

Pl = (b) and Pj = (a, fTTC
j (π, P )). Assume also without loss of generality
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that the JE instance occurs occurs in the highest-ranked size 3 component

in π for which such P exists.

Since the JE-free assignments are unique for all agents in the compo-

nents before reaching the component containing {i, j, l}, their assignments

are the same at TTC(π, P ) and TTC(π, p). Moreover, if {i, j, l} is not in

the first component, then by our assumption there is no JE-instance includ-

ing the agents in higher components at TTC(π, P ), and since the JE-free

assignments are unique, these agents get the same assignments at both

TTC(π, P ) and TTC(π, P ). Repeating these arguments as many times

as necessary, given the component structure of π, we can conclude that a

and b are not yet assigned at TTC(π, P ) when we get to the component

containing {i, j, l}, given that fTTC
i (π, P ) = a and fTTC

l (π, P ) = b.

Now we can consider the three cases in the definition of intermediate

transformation, given that π is an intermediate transformation of π.

case (i): lπai, lπaj, iπbj , iπbl.

In this case i and l trade a and b at TTC(π, P ), and thus (j, a, i) is a JE

instance at TTC(π, P )

case (ii): iπaj , iπal.

Since Pi = (a) and i ranks a first in πa among the remaining agents, i is

assigned a at TTC(π, P ), and thus (j, a, i) is a JE instance at TTC(π, P )

case (iii): lπaiπaj, lπbi,lπbj

Since Pl = (b) and l ranks first in πb among the remaining agents, l is
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assigned b at TTC(π, P ). Therefore, a is inherited by i from l, and since

Pi = (a), i is assigned a at TTC(π, P ). Thus, (j, a, i) is a JE instance at

TTC(π, P ).

We have shown that TTC(π, P ) has JE in all three cases, which is a

contradiction. Hence, TTC(π) JE-dominates TTC(π).

Claim 2: If TTC(π) JE-dominates TTC(π) then π is an intermediate

transformation of π.

Proof: Assume that TTC(π) JE-dominates TTC(π). Suppose that π is not

an intermediate transformation of π, then there is a component of π for

which there exists a cycle with a, b ∈ M and i, j, l ∈ N such that lπajπai,

iπbl, iπbj and none of the three cases in the definition of intermediate

transformation holds for this cycle in π. Let P be such that Pi = (a),

Pl = (b) and Pj = (a), and for all other agents k ∈ \{i, j, j}, Pk = (0).

Then i and l trade a and b at TTC(π, P ), and thus (j, a, i) is a JE instance at

TTC(π, P ). Therefore, since TTC(π) JE-dominates TTC(π), TTC(π, P )

also has JE. This implies that j is not assigned a at TTC(π, P ), since then l

is assigned b at TTC(π, P ) by Pareto-efficiency of the TTC, and TTC(π, P )

would be JE-free, a contradiction.

If jπai and jπal then j is assigned a at TTC(π, P ). Therefore, j is not

ranked first by πa among {i, l, j}, and since i is not ranked first by πa

among {i, l, j}, given case (ii) it must be the case that l is ranked first by

πa among {i, l, j}, that is, lπai and lπaj.

Case 1: lπaiπaj
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Since i is not ranked first by πb among {i, l, j}, given case (i), and l is not

ranked first by πb among {i, l, j}, given case (iii), it must be the case that

j is ranked first by πb among {i, l, j}, that is, jπbi and jπbl. This implies

that l and j trade a and b and thus j is assigned a at TTC(π, P ).

Case 2: lπajπai

Since i is not ranked first by πb among {i, l, j}, given case (i), either l or

j is ranked first by πb among {i, l, j}. If lπbi and lπbj then l is assigned b

and j inherits a, and therefore j is assigned a at TTC(π, P ). If jπbi and

jπbl then l and j trade a and b, so j is again assigned a at TTC(π, P ).

This shows that in each case j is assigned a at TTC(π, P ) and we have

reached a contradiction. Therefore, π is an intermediate transformation

of π.

The relevance of the above results, the necessity condition in Proposi-

tion 2 and the characterization given in Theorem 6, is that in the presence

of cycles in the priority profile, which are likely to occur in large num-

bers unless there is a reason for priorities to be nearly identical across

objects, the TTC rule JE-dominates a Modified TTC rule only if the spec-

ified conditions are met by the modified priority table, which makes such

JE-domination quite restricted. We will provide another result in this di-

rection which will further illuminate the issue in the next section. This

next theorem builds on the previous two results and provides more intu-

ition about the restrictions and the limited nature of JE-domination of

Modified TTC rules by the TTC rule.
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2.7 Fairness Comparisons with Strong Cy-

cles

Now we will explore JE-domination when the priority profile is not only

cyclic but has some strong cycles as well. A strongly cycle consists of

four agents and three objects which form a double 4-cycle in the priority

profile. A 4-cycle consists of a pair of priority orderings of four agents

for two objects such that, given the priority ranking of the four agents

for one object, the other object has the exact reverse priority ordering of

the four agents. For a ∈ M , let the reverse of πa be denoted by π̂a. If

there are only for agents then a 4-cycle is given by πa and πb such that

πb = π̂a. Furthermore, a double 4-cycle is given by πa, πb and πc such that

πb = πc = π̂a. A general definition is provided below.

Definition 5. A priority profile π has a strong cycle if it has a double

4-cycle. Namely, there are agents h, i, j, l ∈ N and objects a, b, c ∈ M such

that lπajπaiπah, hπbiπbjπbl and hπciπcjπcl.

Note that a strong cycle in the priority profile implies that it is cyclic,

but not necessarily the other way around. In particular, if the largest

component of a priority profile is of size 3 then the priority profile is cyclic

but does not have a strong cycle. If at least one component of a priority

profile is at least of size 4 then it is cyclic, and it may also contain a

strong cycle. However, no matter how large each component is, it is not

guaranteed that the priority profile has strong cycles.

We now present a result which implies that the TTC rule does not,
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in general, JE-dominate Modified TTC rules. Although Theorem 6 is a

characterization, we cannot easily infer from it the scope of the restrictions

it places on JE-domination by the TTC. The next theorem sheds more

light on these restrictions, as it shows that if the TTC rule were to JE-

dominate a Modified TTC rule then the priorities involved in each strong

cycle would have to be the same in the priority profile of the Modified TTC

as the true priorities. We remark that for our purposes 4-cycles are as large

as needed to establish our result, and no further generalization of cycles is

required. This indicates that with a relatively small sized cycle, assuming

that we have just two objects with exact reversals in priorities and thus

have a strong cycle, we can already obtain a result that shows clearly that

JE-domination by the TTC is rather limited.

We will use the following definition. Two priority profiles π, π′ ∈ Π are in

agreement over a component, cycle, or strong cycle in π if the priorities

for all involved objects are the same over all the involved agents in π′ as

in π.

Theorem 7. Let the priority profile be π ∈ Π. For all π ∈ Π, TTC(π)

JE-dominates TTC(π) only if they are in agreement over each strong cycle.

The proof of the theorem makes use of both Proposition 2 and Theorem 6.

Proof. Let the priority profile π ∈ Π have a strong cycle with h, i, j, l ∈ M

and a, b, c ∈ M such that lπajπaiπah, hπbiπbjπbl and hπciπcjπcl. Let π ∈ Π

such that TTC(π) JE-dominates TTC(π). We will show that then π and

π are in agreement over this strong cycle.

Note first that there are four cycles in this strong cycle:
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Cycle Al : lπajπai, iπbl, iπbj

Cycle Aj : jπaiπah, hπbj, hπbi

Cycle Bh : hπbiπbj, jπah, jπai

Cycle Bi : iπbjπbl, lπai, lπaj

Based on cycle Al, Proposition 2 implies that either lπaj or iπaj.

Based on cycle Aj, Proposition 2 implies that either jπai or hπai.

Therefore, if iπaj then hπai and thus hπaiπaj, and if jπai then lπaj and

thus lπajπai. In sum, either hπaiπaj or lπajπai.

We can show symmetrically for πb, based on cycles Bh and Bi, that either

lπbjπbi or hπbiπbj.

Case 1: If lπajπai, then by Theorem 6 we have case (i) and iπbj, iπbl. Thus,

hπbiπbj and hπbiπbl must hold. If we have jπahπai, then by Theorem 6 we

have case (iii) and jπbi which is a contradiction. Therefore, lπajπaiπah. We

can show symmetrically that in this case hπbiπbjπbl. We can also extend

the above arguments to πc to show that hπciπcjπcl in this case. Hence, all

priorities are in agreement in π and π over the four agents and objects a, b

and c , which means that π and π are in agreement over this strong cycle.

Case 2: If hπaiπaj, then by Theorem 6 we have case (ii), and lπbjπbi

must also hold. We can show similarly that in this case lπcjπcπci holds

as well. Now let Pi = Pj = (a, 0), Pl = (b, 0) and Ph = (c, 0). For all

k ∈ N \ {h, i, j, l}, let Pk = (0). Note that since object a is unacceptable

to agent l and objects b and c are unacceptable to agent h, the priority

ranking of l in πa and the priority ranking of h in both πb and πc are
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irrelevant. Then fTTC
(h,i,j,l)(π, P ) = (c, a, 0, b) and TTC(π) has JE at P , since

(j, a, i) is a JE instance at this profile. However, fTTC
(h,i,j,l)(π, P ) = (c, 0, a, b)

and TTC(π) is JE-free at P . This is a contradiction, given that TTC(π)

JE-dominates TTC(π).

For any priority profile π, let the reverse of π be denoted by π̂, where the

reverse means the exact opposite ordering of agents for each object. Let

the TTC rule based on π (the “true” priorities) be denoted by f and let

the Reversed TTC rule based on the reversed priorities be denoted by f̂ .

That is, f = TTC(π) and f̂ = TTC(π̂).

As noted above, the presence of a strong cycle requires that n ≥ 4 and

m ≥ 3. We will now show that if we have either less than 4 agents or less

than 3 objects then the TTC rule JE-dominates the Reversed TTC rule,

given any arbitrary priority profile. What we show is that f JE-dominates

f̂ for very small markets, and it follows from Theorem 7 that JE-domination

for any market that exceeds this size is only possible if the true priorities

are preserved for agents and objects involved in a strong cycle. Thus, since

the priority profile in a larger market may contain a strong cycle, this result

cannot be extended to larger markets.

Proposition 3. If n < 4 or m < 3 then the TTC(π) rule JE-dominates

the Reversed TTC rule TTC(π̂) for an arbitrary priority profile π ∈ Π.

Proof. First we note that if n = 2 or m = 1 then the priority profile is

trivially acyclic and thus the result follows from Proposition 1. Therefore,

we only need to prove the statement for n = 3 or m = 2.
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Assuming that n = 3 and m ≥ 2, or alternatively m = 2 and n ≥ 3, it is

easy to check that the only way the TTC rule has JE at some preference

profile is if two agents trade in the first round of the TTC rule, and there

is a third agent who does not receive an object in the first round and has

justified envy either for one or both traded objects. In any other scenario

the preference profile is JE-free for the TTC rule. We will show that in all

of these cases the Reversed TTC rule has at least as many JE instances

as the TTC rule. Let’s assume that agent i has top priority for object b,

agent j has top priority for object a, and they trade their objects in a top

trading cycle in the first round of the TTC rule at a given preference profile

P . Thus, (i, a) and (j, b) are both TTC assignments made in the first round

of the procedure. Assume also that there is agent k who does not receive

an object in the first round at P in the TTC rule, and has either one JE

instance, (k, a, i), or two JE instances, (k, a, i) and (k, b, j). Let (k, c̃) be

also an assignment, where c̃ ∈ (c, 0) and c ∈ M , that is, agent k may or

may not be assigned an object in the second round of the TTC rule at the

given profile. Note that in both cases, whether there is only one or two JE

instances, we have jπakπai, iπbk, and iπbj. Also, iπ̂akπ̂aj, so (i, a) is an

assignment at P for the Reversed TTC rule.

Case 1: iπbkπbj

Then jπ̂bkπ̂bi. If (k, a, i) is the only JE instance at P for the TTC rule

then Pk ∈ (a, c̃) and both the TTC and the Reversed TTC rules make the

same assignments, (i, a), (j, b) and (k, c̃), so the Reversed TTC rule has

the same JE instance. If both (k, a, i) and (k, b, i) are JE instances at P for

the TTC rule then Pk ∈ (a, b, c̃) or Pk ∈ (b, a, c̃) and once more both the
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TTC rule and the Reversed TTC rule make the same assignments, namely

(i, a), (j, b) and (k, c̃), so the Reversed TTC rule has the same two JE

instances as the TTC rule.

Case 2: iπbjπbk

Then (k, a, i) is the only JE instance at P for the TTC rule, and given

that kπ̂bjπ̂bi, we have one of two cases. If either Pk ∈ (a, b, c̃) or Pk ∈

(b, a, c̃) then the Reversed TTC rule assigns (k, b) which implies that (j, b, k)

is a JE instance for the Reversed TTC rule at P , so the Reversed TTC rule

does not have fewer JE instances at P than the TTC rule. If Pk ∈ (a, c̃)

then the Reversed TTC rule makes the same assignments as the TTC rule,

(i, a), (j, b) and (k, c̃), so the Reversed TTC rule has the same JE instance

as the TTC rule at P .

So far we proved that if TTC rule has JE at some preference profile

then so is the Reversed TTC rule for all cases in the statement of the

proposition, and in fact the Reversed TTC rule has at least as many JE

instances at each preference profile as the TTC rule. Now we will show that

there exists a preference profile P̄ for each priority profile π such that TTC

rule is JE-free at P̄ given π, but the Reversed TTC rule has JE. This will

prove that the TTC rule both JE-dominates and cardinally JE-dominates

the Reversed TTC rule.

If π is acyclic then this (and the entire proposition) follows immediately

from Proposition 1. Thus, we can assume that π is not acyclic, and then

without loss of generality we have jπakπai, iπbk and iπbj. Let P̄k = (a, b, c̃),

and P̄i = P̄j = (b, a, c̃), where c̃ ∈ {c, 0} and c ∈ M . Then f(i,j,k)(P̄ ) =
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(b, a, c̃) and the TTC rule is JE-free at this profile. Consider first kπbj.

Then jπ̂bkπ̂bi, which implies that f̂j(P̄ ) = b. Then (i, b, j) is a JE instance

for f̂ at P̄ . Consider next jπbk. Then kπ̂bjπ̂bi, and this together with

iπ̂akπ̂aj implies that in the Reversed TTC rule agents i and k trade a and

b. Thus, f̂k(P̄ ) = a and f̂j(P̄ ) = c̃. Then (j, a, k) is a JE instance for the

Reversed TTC rule f̂ at P̄ . This concludes the proof.

Finally, we remark that JE-domination is possible among Modified TTC

rules even if the TTC rule does not JE-dominate any Modified TTC rule

due to strong cycles in the priority profile. Namely, given an arbitrary true

priority profile, if we select an acyclic priority profile which is consistent

with the true priority orderings within each size 2 component of the priority

profile, then the Modified TTC rule using this acyclic priority profile JE-

dominates any other Modified TTC rule which is based on a priority profile

with the same components.

2.8 Conclusion

In this chapter we showed that the TTC rule in general does not stand

out among strategy-proof and efficient matching rules as the most fair rule

with the least amount of justified envy based on profile-by-profile com-

parisons. When the priority profile is acyclic the TTC rule dominates all

other strategy-proof and efficient rules, since it has no justified envy at any

preference profile. However, in this case the TTC rule is equivalent to the

DA rule, so the positive result is clear in this restricted case. We show

that this is no longer true for the TTC rule if the priority profile is cyclic,
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since in this case there is no unique strategy-proof and efficient rule that

dominates all the others when comparing the fairness of the rules at each

preference profile. We characterize the set of priority profiles for which the

TTC rule JE-dominates a Modified TTC rule, which gives us some idea

about the restrictions for JE-domination when cycles are present in the pri-

orities. This contrasts with the case of acyclic priority profiles, for which

the TTC JE-dominates all other Modified TTC rules, which goes back to

the equivalence of the DA and TTC in this relatively rare scenario.

We go one step further and also prove that when the priority profile has

strong cycles a Modified TTC rule is only JE-dominated by the TTC rule

if the modified priorities are in agreement with the true priorities for all

strong cycles. This is the most restrictive case yet. Indeed, if there is just

one object for which the priorities are completely reversed compared to all

the other objects for which the priorities are in agreement, or if objects

may only have a given priority ordering of agents or its exact opposite,

just to mention a couple of obvious cases, then Theorem 7 implies that

the TTC rule does not JE-dominate any of the Modified TTC rules, since

in these scenarios all agents and objects are involved in a strong cycle.

Given that markets are likely to have many strong cycles, especially since

the cycle length is only 4 in strong cycles, unless there is a reason for the

priorities across different objects to be highly correlated, this result demon-

strates that the TTC rule is generally not fairer, based on a straightforward

criterion of fairness, than many other known strategy-proof and efficient

matching rules.
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Appendix to Chapter 2

Ergin loop vs. Kesten loop:

Since scarcity conditions are trivially satisfied in a one-to-one model, we

only need to consider the loop conditions to show that an Ergin cycle is

the same as a Kesten cycle when each object has a quota of one, i.e., in

the one-to-one matching model.

• Ergin loop: lπajπai and iπbl

• Kesten loop: lπajπai, iπbl and iπbj

In the Ergin loop there are two possibilities:

1. iπbj: This implies a Kesten loop immediately.

2. jπbi: Then jπbiπbl, lπaj and lπai is a Kesten loop.

Therefore, an Ergin loop always implies a Kesten loop. The other direction

is immediate.
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Chapter 3

Fairness Comparisons with

Multiple Quotas

3.1 Introduction

Among the strategy-proof and Pareto-efficient one-sided matching rules

when there are multiple quotas, we are looking for rules which are either

stable or have a fewer number of justified envy instances when the priority

table is cyclic than any other strategy-proof and Pareto-efficient matching

rule. We review two different concepts of cycles, which are given by Ergin

(2002 [13]) and Kesten (2006 [21]). First, we show that Ergin’s cycle is

stronger than Kesten’s cycle. Second, we show that when there is a Kesten

cycle,which is a weaker notion for cycles, there is no superior mechanism

with the least number of justified envy instances at all possible preference

profiles.
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We study matching problems with agents and objects in which objects

have priorities instead of preferences over agents. The difference is that

object priorities can be assumed to be exogenous and fixed, and there is

no strategic behavior on the object side. Furthermore, in one-sided match-

ing, where there are agents on one side of the market only, the efficiency

measures consider the agents only and not the objects.

In this chapter we assume that objects may have multiple copies, and

thus we specify a quota for each object. This class of matching is known as

many-to-one matching, a generalized form of one-to-one matching. In these

models each agent can be matched only to one object, and the number of

agents that are matched to an object cannot exceed the quota of the object.

Given that here one side of the market has objects instead of agents, and

the objects have fixed priorities over agents, this problem is also known in

the literature as the school choice problem (Abdulkadiroǧlu and Sönmez,

2003 [2]).

Here again an agent has envy for objects that the agent prefers compared

to their currently allocated object. Furthermore, the envy is justified when

the agent has higher priority than at least one of the agents who has been

matched to the object. For this reason in one-sided matching theory we

use the term of justified envy instead of a blocking pair that is used when

we study two-sided matching with agents on both sides. If a mechanism

eliminates all justified envy instances then it is fair. If a mechanism elimi-

nates all blocking pairs then it is called stable. Thus, technically, the lack

of justified envy, i.e., fairness, is identical to the lack of blocking pairs,

i.e., stability in this context. We use the terminology of justified envy and
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fairness because this is the more appropriate terminology in school choice

problems.

This study considers mechanisms that are strategy-proof and Pareto-

efficient. The mechanism is strategy-proof if no agent can benefit by mis-

reporting their true preferences. The mechanism is Pareto-efficient if we

cannot improve the matching of any agent unless at least one of the agents

is made worse off.

Gale and Shapley (1962 [14]) has an example which shows that the unique

fair matching does not give any agent their first choice, implying that this

matching is not Pareto-efficient for the agents. Balinski and Sönmez (1999

[7]) shows explicitly that a matching that satisfies both fairness and Pareto-

efficiency may not exist at a particular preference profile. Kesten (2006

[21]) proves that a Pareto-efficient and strategy-proof rule cannot select

the Pareto-efficient and fair allocation at each preference profile where it

exists.

If the acyclicity property holds for priority tables, we can have both

Pareto-efficiency and fairness simultaneously. The acyclicity property holds

when we do not have cycles. A cycle is defined in two different ways by

Ergin (2002 [13]) and Kesten (2006 [21]). We show that Kesten acylic-

ity implies Ergin acyclicity or, equivalently, Ergin’s cycle implies Kesten’s

cycle. This has been proved by Kesten (2006 [21]) by applying several

different theorems. We provide an alternative direct proof.

We show that it is enough to have a Kesten’s cycle, which is the weaker
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version of a cycle, to prove that there is no strategy-proof and Pareto-

efficient rule which has weakly fewer justified- envy instances at all profiles

than any other strategy-proof and Pareto-efficient rule.

3.2 Model

There are a finite number of agents A = {i, j, l, k, ...} and a finite number

of objects O = {a, b, c, ...}. Objects may have multiple copies and each

object ainO has a quota qa ≥ 1. The vector of quotas is denoted by

q = (qa, qb, qc, . . .). Each object has strict priorities ≻a over agents1 and

agents have preferences Ri over objects. aRib indicates that agent i weakly

prefers a to b and aPi = b indicates that agent i strictly prefers a to b. A

preference profile specifying a preference ordering for each agent is denoted

by R, and the set of preference profiles is R. We write i ≻a j if object a

gives a strictly higher priority to agent i than to agent j. A priority profile

specifying a priority ordering for each agent is denoted by ≻.

A profile of strict preferences of all agents is denoted by R and a profile of

strict priorities of all objects is denoted by ≻= (≻a)a∈O. fi(R) = a if agent

i is matched to object a. If agent i stays unmatched we write fi(R) = i.

Given a ∈ O, ≻′

aand i ∈ A, let Ui(a) be the set of agents who are preferred

to i by object a. That is, Ua(i) = {j ∈ A|j ≻a i}. Let q be a a quota

vector such that element qa is a quota associated with item a. For each

agent i ∈ N preference ordering Ri is a linear order of i over O ∪ {i} .

1We use different notations here from the previous chapter, following some conven-
tions used in the literature on school choice problems.
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A matching µ is a function from agents to objects: µ : A → O such

that for each agent i and each object a if µ(i) = a then we can also write

i ∈ µ−1(a), and each object a is matched to no more than qa agents,

i.e., the number of agents matched to an object cannot exceed its quota:

|µ−1(a)| ≤ qa. The set of all possible matchings is denoted by M. Given

a fixed priority profile, a mechanism or matching rule f is a function from

all possible preference profiles to the set of matchings: f : R → M.

A matching rule is fair if there does not exist any agent who has justified

envy at any preference profile, given the fixed priority profile ≻. Agent i

has justified envy for object a at a preference profile R such that aPifi(R),

i ≻a j and fj(R) = a. In this case student i’s envy is justified.

A matching µ is Pareto-efficient at preference profile R if there is no

matching ν such that at least for one agent i, ν(i)Piµ(i) and for all j ∈ A,

νjRjµj. for any other agent j. A matching rule is Pareto− efficient if it

assigns a Pareto-efficient matching to each preference profile.

A matching rule is strategy-proof if for all preference profiles R and agent

i there is no R′

i such that fi(R
′

i, R−i)Pifi(R).

3.3 Matching Rules

There are two matching rules studied in this chapter: Serial Dictatorships

and Top Trading Cycles.
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3.3.1 Serial Dictatorships

A Serial Dictatorship (SD) matching rule (Satterthwaite and Sonnenschein,

1981 [36]; Svensson, 1999 [38]) specifies an order of agents and lets the first

agent receive her favorite object, then the next agent receives her favorite

object among the remaining objects, and so on. The mechanism ends when

there are no more agents in the list for whom there is an available object

to be matched with or if each agent is already assigned an object.

3.3.2 Top Trading Cycles

A Top Trading Cycles (TTC) matching rule (Shapley and Scarf; 1962 [37];

Pápai, 2000 [29]; Abdulkadiroğlu and Sönmez, 2003 [2]) consists of the

following steps:

• Each object forms a pair with its highest priority agent who is in the

market.

• Each agent points to the pair with their most preferred object (which

may be their own pair).

• Since there is a finite number of agents, there is going to be at least

one cycle of pointing agents which, if carried out, improves the allo-

cation of the involved agents (or leaves the allocation unchanged if

an agent points to their own pair).

• Agents are permanently matched to the objects according to the cy-

cles.
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• Matched agents and one copy of each matched object is removed from

the market and the process is repeated iteratively in the remaining

market.

• The algorithm terminates when there are no more agents in the mar-

ket who want to be matched to objects that have remaining copies in

the market.

Both the Serial Dictatorships and the Top Trading Cycles rules are

strategy-proof and Pareto-efficient.

3.4 Ergin versus Kesten cycles

Definition [Ergin, 2002 [13]]: Let ≻ be a priority profile and q a vector

of quotas. An Ergin cycle consists of distinct a, b ∈ O and i, j, l ∈ A such

that the following is satisfied:

• Loop Condition: i ≻a l ≻a j and j ≻b i.

• Scarcity Condition: There exist possibly empty disjoint sets of agents

N e
a , N

e
b ⊂ N \ {i, j, l} such that N e

a ⊂ Ua(l) and N e
b ⊂ Ub(i), where

|N e
a | = qa − 1 and |N e

b | = qb − 1.

A priority profile is Ergin acyclic if it has no Ergin cycle.

Definition [Kesten, 2006]: Let ≻ be a priority profile and q a vector

of quotas. A Kesten cycle consists of distinct a, b ∈ O and i, j, l ∈ A such
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that the following is satisfied:

• Loop Condition: i ≻a l ≻a j , j ≻b i and j ≻b l.

• Scarcity Condition: There exists a possibly empty set of agents Nk
a ⊂

N \ {i, j, k} such that Nk
a ⊂ Ua(i)∪ (Ua(l) \Ub(j)) and |Nk

a | = qa− 1.

A priority profile is Kesten acyclic if it has no Kesten cycle. Note that

if qa − 1 > 0 then there has to be a set N e
a satisfying the definition with

|N e
a | = qa − 1 > 0, i.e., N e

a 6= ∅, and otherwise the scarcity condition does

not hold and the priority table is going to be acyclic. Also, we can conclude

that if qa = 1 then the scarcity condition is trivially satisfied for a Kesten

cycle and if qa = qb = 1 then the scarcity condition is trivially satisfied for

an Ergin cycle. For further explanations and examples to illustrate these

definitions see Ergin ([13]) and Kesten ([21]). From this point, the strict

ranking over three agents in the cycle is called the long chain and the strict

ranking that is over two agents is called the short chain.

Proposition 4. If a priority profile is Kesten acyclic, then it is also Ergin

acyclic.

This implication was first proved by Kesten (2006 [21]) by referring to

multiple other theorems. We provide here the first direct proof of this

result. Note that the converse implication does not hold: that is, while we

show that having an Ergin cycle implies having a Kesten cycle, having a

Kesten cycle does not imply that there is also an Ergin cycle.

Proof. We show that whenever there is an Ergin cycle, it is impossible to

have Kesten acyclicity. We know that if qa = qb = 1 in order to check Ergin
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and Kesten cycles, only the loop condition needs to be considered. It is easy

to see that the loop conditions are the same in this case. Therefore, without

loss of generality, an Ergin/Kesten loop can be written as: i ≻a l ≻a j and

[ j ≻b l ≻b i or j ≻b i ≻b l]. In each of the preceding cases we assume

that there is an Ergin cycle and suppose that the profile satisfies Kesten

acycliciy. We will show that this leads to an impossibility in both cases.

In both cases if qa = 1 then there is a Kesten cycle, so in order to avoid a

contradiction we can assume qa > 1. We consider two possible cases.

1. j ≻b l ≻b i: The only possible case in which we have Kesten aciclicity

is when for any feasible N e
a we choose, there is at least one member

say k, which is not in Nk
a . This is possible only if the profiles are

i ≻a k ≻a l ≻a j and k ≻b j ≻b l ≻b i. In this case we have two other

Kesten loops which are k ≻b j ≻b i with i ≻a k, j and j ≻b l ≻b i

with i ≻a l, j. Therefore we have a Kesten loop but, for qb > 1, this

is not a Kesten cycle yet. Since we have not checked yet the scarcity

condition. Now we should be able to find a proper N e
b . Since N e

a

and N e
b are disjoint sets, which are above i in b′s rank. We will call

one of these agents h. If this agent is above j then we have a Kesten

cycle: j ≻b l ≻b i with i ≻a l, j. If we want to avoid having a

Kesten cycle, at least one of the agents, say h, must be below j in

b′s priority: h ≻a i ≻a k ≻a l ≻a j with k ≻b j ≻b h ≻b l ≻b i

ork ≻b j ≻b l ≻b h ≻b i. But even in this case there is a Kesten cycle,

since i ≻a l ≻a j and j ≻b l, i. Therefore, a Kesten cycle will exist

in any possible scenario and we can choose h to be a member of Nk
a .

Therefore, the Kesten scarcity condition is satisfied in every possible
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scenario.

2. j ≻b i ≻b l: In order to have Kesten aciclicity we need to show that

for any choice of N e
a there is going to be at least one member that is

not in Nk
a . This happens when there is an agent, such as k, such that

i ≻a k ≻a l ≻a j and k ≻b j ≻b i ≻b l. But then there is going to be a

Kesten Loop since k ≻a j ≻a i and i ≻b k, j. This Kesten Loop may

be a Kesten cycle: in order to have an Ergin cycle we should be able

to have some set N e
b that satisfies the Scarcity Condition.That means

that if qb > 1 then there should be qb − 1 agents above i (excluding

k). If one of these agents, say m, is excluded from Nk
b then we have

Kesten acyclicity. There are three possible rankings for m :

(a) If h ≻b k ≻b j ≻b i ≻b l then k ≻b j ≻b i and i ≻a k, j.

Therefore, we have a Kesten cycle.

(b) If k ≻b j ≻b i and i ≻a k, j and k ≻b j ≻b i and i ≻a k, j.

This case depends on the position of h in a’s priority. If h ≻a

i ≻a k ≻a l ≻a j then there is another Kesten cycle which is

i ≻a l ≻a j and j ≻a i, l. And if h is below i in a′s priority, then

the cycle is going to be k ≻b j ≻b i and i ≻a k, j.

(c) If k ≻b j ≻b m ≻b i ≻b l then if in a’s priority h is above l then

i ≻a l ≻a j and j ≻b i, l is a Kesten cycle. And if it is below l,

then j ≻b h ≻b l and l ≻a h, j is a Kesten cycle.

Therefore, it is not possible to have Kesten acyclicity. Hence the statement

is proved.
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3.5 Fairness Comparisons in Many-to-One

Matching

As shown by Proposition4, an Ergin cycle is stronger than a Kesten cycle.

We can show that with a Kesten cycle, which is the weaker version of the

two cycles, we cannot find any profile in which one of the mechanisms has

fewer justified envy instances in all possible preference profiles than any

other mechanism.

Theorem 8. Suppose that ≻ has a Kesten cycle. Let |A| ≥ 4 and |O| ≥ 3,

and a fix an arbitrary quota vector q. Let f be a Pareto-efficient and

strategy-proof rule. Then there exists another strategy-proof and Pareto-

efficient rule g and a preference profile R such that f has at least one

justified envy instance at R and g does not.

This is a generalization of Theorem 1 which we proved in Chapter 2.

Theorem 1 was established in a one-to-one matching model; now we extend

it to a many-to-one model with multiple quotas.

Proof. First we prove the statement for four agents and then we generalize

the proof to more than four agents.

Consider the loop condition in the priority profile. Each loop condition

has two sets of strict priorities for each of the two objects. We will call

the object with the larger set of strict priorities object a, and we say that

object a has a long chain of strict priorities, i .e. i ≻a l ≻a j. likewise, the

object with a short chain will be called b, i.e. j ≻b i].If qa = qb = 1 then
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2 1
a b

i ✓✓❙❙k
k j

l i

j l

(a) Case 1: k can be anywhere
but first in b′s priority

2 1
a b

i ✓✓❙❙k
k j

l l

j i

(b) Case 2: k can be anywhere
but first in b′s priority

2 1
a b

k ...

i j

l i

j l

(c) Case 3: k can be anywhere
in b′s priority

2 1
a b

k ...

i j

l l

j i

(d) Case 4: k can be anywhere
in b′s priority

Table 3: Four possible priority tables when qa = 2 and qb = 1

the result follows from Theorem 1 in Chapter 2. Thus, we assume either

[qA = 2 and qb = 1] or [q1 = a and qb = 2].

Also, we assume that the object with the long chain cannot have a quota

of greater than two, since in this case the scarcity condition will not hold.

Part 1: First we assume that qa = 2 and qb = 1. In this case we have four

possible priority tables (see Table 3).

Now we consider the case in which all agents prefer a to b. It g is a TTC

based on this profile then the matching is going to be (a,∅, b, a). Suppose

f(R) 6= (a,∅, b, a). For mechanism f all the higher priority agents for

object a will be matched until the quota for this object becomes is filled. If

not, then unfilled spot in a and the agent who has been matched to object

b will form justified envy with this spot. The other agent is going to be

matched with b, otherwise b can form justified envy with its highest priority
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1 2
a b

i j

l i

j l

(a) Case 1 : The case that needs to
be evaluated on the second part

of the proof

1 2
a b

i j

l l

i i

(b) Case 2 : we have large chain on
b as well, no need to prove it

again

Table 4: Two possible priority tables when qa = 1 and qb = 2

agent among the remaining agents. Therefore, f(R) = g(R) = (a,∅, b, a).

Now let R′

i = (b, a) and R′ = (R′

i, R−i). Since the mechanism is strategy-

proof, i is matched to either a or b. And since it is Pareto-efficient, it is

matched to b. Therefore we have three different scenarios. These scenarios

can be written as: f(i,l,j,k)(R) = (b,∅, a, a), f(i,l,j,k)(R) = (b, a,∅, a), or

f(i,l,j,k)(R) = (b, a, a,∅). In the first case, f(i,l,j,k)(R) = (b,∅, a, a) means

that j and k will receive a and i will receive b, and thus l will not be

matched to any object.

Case 1: f(i,l,j,k)(R
′) = (b,∅, a, a)

This means that agent l will not be matched. Here (l, a, j) is a justified

envy instance. Suppose we change j′s preference to (a, c, b). This will not

change j′s allocation since the mechanism is strategy-proof and j is the least

priority agent for a. Hence there is always a justified envy instance. Now

if we choose a Serial Dictatorship, which is Pareto-efficient and strategy-

proof with permutation (i, l, k, j) then the final matching is going to be

g1(R
′

1) = (b, a, c, a), which is fair.

Case 2: f(i,l,j,k)(R
′) = (b, a,∅, a)
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Here (j, b, i) will form a justified envy instance. Like in the previous

case, we put c between b and a in i′s preference, which will not change

the final allocation of i. Therefore the same justified envy exists. But if

we run Serial Dictatorship with (k, l, j, i) then this mechanism is fair and

g2(R
′

2) = (c, a, b, a).

Case 3: f(i,j,l,k)(R) = (b, a, a,∅)

Similar to previous cases, (k, a, j) is a justified-envy instance. Now if we

put c in the middle of j’s preference, this will not change j’s allocation.

However, if we take any Serial Dictatorship mechanism which is based on

k, i, l, j this mechanism is going to produce a fair matching at this profile.

Part 2: Now we assume that qa = 1 and qb = 2. In this case we have

two possible profiles. If i ≻a l ≻a j then either j ≻b i ≻b l or j ≻b l ≻b i. If

j ≻b l ≻b i then the case is the same as before so we can assume j ≻b i ≻b l.

First we assume that all agents prefer b to a. With the same reasoning

that we used before, we can prove that our mechanism should have the

same outcome as the TTC mechanism. Then we consider two different

conditions. i ≻a k and k ≻a i. First we assume that i ≻a k and the other

case will be proved in a similar way. If i ≻a k then i is definitely matched.

Now we flip i′s preference, so i prefers a to b. Then the mechanism is going

to have three possible outcomes. (a,∅, b, b), (a, b,∅, b) or (a, b, b,∅).

Case 1: f(i,l,j,k)(R) = (a, b, b,∅)

If k ≻b l then (k, b, l) is a justified envy instance. Now if we put c in the

middle of l′s preference,Rl = (b, c, a), this will not change l′s allocation.
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Then if k is matched to a then (i, a, k) is a justified envy instance and if k

is matched to b then j can not be matched to b and then j and b can form a

justified envy instance. Now any Serial Dictatorship with j, i, k, l) produces

a fair outcome at this profile. If l ≻b k then b is going to be matched to j

and the mechanism can be treated as having a quota of (1, 1), which has

been proved before.

Case 2: f(i,l,j,k)(R) = (a, b,∅, b)

In this case (j, b, l) is a justified envy instance. Now if we put c in the

middle of l′s and k′s preference,Rl,k = (b, c, a), this will not change the

allocation when applying TTC. But if we apply the Serial Dictatorship

based on (j, i, k, l) the final matching is going to be g′(i,l,j,k)(R
′) = (b,∅, b, a)

a and the mechanism is going produce a fair outcome on this profile.

Case 3: f(i,l,j,k)(R) = (a,∅, b, b)

If k ≻b l then this case is going to be fair. In this case j is going to

be matched with b and we can assume that we have quota of (1, 1) which

has been proved before. If l ≻b k then (l, b, k) is a justified envy instance.

Therefore we can put c in the middle of k and j′s preference ,Rj,k = (b, c, a),

which will not change the final allocation of TTC. But if we run the Serial

Dictatorship based on (j, i, l, k), the rule is going to assign a fair matching

to this profile.

If k ≻a i : We can use the same reasoning as for the previous case to

prove the result.

Part 3: Different quota distributions
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If we have more than four agents, then the quota needs to be increased

proportionally in order to have cycles. But in any distribution at least one

of the intermediate agents is going to be matched to the object with the

long chain. Therefore, we can assume that we have the same problem but

with the quota reduced by one and one fewer agents. This process can be

iterated until we reach the distribution of (2, 1) or (1, 2), which have been

proved before.

3.6 Simulations

We know that if there is a cycle in the priority profile, then it is not pos-

sible to have a fair and Pareto-efficient matching at all preference profiles.

Therefore, following the definition of Kesten cycles, we can count the num-

ber of cycles in each priority profile. We want to study the effect of having

more cycles. Is there a difference between the priority profiles that have

more cycles and the priority profiles that have less? As we see from an

example, there are unexpected profiles in which the priority profile which

has more cycles is fair, and the one with fewer cycles has justified envy

instances compared to the former. But, as we show by simulation, there

is a reliable trend that shows that as the number of cycles increases, the

chance of having more justified envy instances for the TTC allocation in-

creases and the number of preference profiles that will cause justified envy

instances will increase as well. Table 5 shows that we cannot theoretically

conclude that a mechanism with more cycles always has fewer justified envy

instances. In case 1 the priority profile has three different cycles: the first
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cycle is k ≻b l ≻b j with j ≻a l, k, the second cycle is l ≻b i ≻b j with

j ≻a l, i, and the last cycle is k ≻b i ≻b j with j ≻a i, k and the scarcity

condition is satisfied. If we consider this priority profile with the given

preference profile (see Table 5), the mechanism is going to be fair: m and

i are matched to a and k is matched to b.

If we consider the priority profile in case 2, we have only two cycles:

l ≻a j ≻a m with m ≻b l, j which satisfies the scarcity condition since

Nk
a = {i} and m ≻b j ≻b l with l ≻a j,m. This priority table with the

same preference profile has the following allocation: i and m are matched

to a and l is matched to b. Here we have one justified envy instance: (j, b, l).

Therefore, we cannot analytically prove that more cycles will lead to more

justified envy instances, as it is not true. However, we will show by using

simulation that in most of the cases more cycles do lead to more justified

envy instances.

Figure 1 shows the results of simulations for 100 preference profiles when

the quota vector for two objects is (2, 1). There are five different agents,

and agents can choose to stay unmatched at any stage of the mechanism.

The simulation is for 100 different priority profiles. The priority profiles

are random permutations of agents. In each priority profile we count the

number of cycles. Then we generate 100 random preference profiles, which

is a permutation over all objects plus the case that agent will prefer to stay

unmatched, with a constraint that in the simulation each agent prefers at

least one object. and we count the number of preference profiles over which

there is no justified envy instance. Then we do the same simulation for the

aggregate number of justified envy instances for each of these priority tables
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over 100 random preference profiles.

As can be seen, as the number of cycles increases, the number of profiles

in which the TTC mechanism has fewer justified envy instances decreases.

However, recall that this is different from the definition of JE-domination,

since we are considering only a limited number of preference profiles, and

as we have shown in our preliminary example, although this trend holds,

it is not true for all preference profiles.

However, there is a general trend that shows that whenever there are

more cycles in the priority table the number of preference profiles under

which the TTC mechanism is fair decreases. Moreover, the aggregate num-

ber of JE-instances increases as the number of cycles in each priority profile

increases.

In Figures 1 and 2 there are 100 random priority profiles and 100 random

preference profiles. For each priority table we count the number of cycles

and we show it on the horizontal axis. Then for each priority table we run

the TTC mechanism for 100 random preference profiles. In Figure 1 the

horizontal axis indicates the number of cycles in each of these 100 priority

profiles and the vertical axis shows the number profiles for which TTC

has justified envy instance. As a general pattern in the simulation, as the

number of cycles increases, there are more profiles in which the mechanism

is not fair. In Figure 2 the number of justified envy instances is graphed

with respect to the number of cycles. Again, there is a positive correlation

between the two variables. Tables 6 and 7 show that these linear regressions

are reliable. Therefore, we can conclude that there is a negative relation

between the number of Kesten cycles and preference profiles for which the
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2 1
a b

m k

j m

k l

l i

i j

(a) Case 1: Priority table with three
Kesten cycles

2 1
a b

i i

l m

j j

m l

k k

(b) Case 2: Priority table with two
Kesten cycles

i j k l m

a b b b a

∅ ∅ a ∅ b

(c) Preference profile in which we can
see this irregular behavior

Table 5: An example that shows that simulation is needed to see the
relation between the number of cycles and JE-instances
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Figure 1: Preference profiles for which the TTC is fair vs. the number of
Kesten cycles

TTC mechanism is fair, and a positive relation between the number of

justified envy instances in the TTC and the number of cycles.

profiles Coef. Std. Err. t p > |t| [95% ConfidenceInt.]

Slope 1.304077 0.0668294 -19.51 0.000 -1.436697 -1.171456

Intercept 1.3062 0.432485 228.20 0.000 97.83552 99.55202

Table 6: Confidence interval and reliability test for Figure 1

profiles Coef. Std. Err. t p > |t| [95% ConfidenceInt.]

Slope 2.024872 0.0935502 21.64 0.000 1.839225 2.210519

Intercept 0.5071833 0.6054082 0.84 0.404 -0.6942296 1.708596

Table 7: Confidence interval and reliability test for Figure 2
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Figure 2: Aggregate JE-instances in the TTC vs. the number of Kesten
cycles
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3.7 Conclusion

When there are multiple quotas on the object side, in the acyclicity condi-

tion for priority profiles scarcity needs to be considered as well. In many-

to-one models there is a difference between Ergin and Kesten acyclicity.

We show that a Kesten cycle is a weaker version of an Ergin cycle. But

even with this weaker condition there is no strategy-proof and Pareto-

efficient mechanism which has fewer preference profiles that are fair, when

considering each profile side-by-side, than any other strategy-proof and

Pareto-efficient mechanism.

We have also run simulations to show that there is a negative relation

between cycles and preference profiles for which the TTC gives a fair out-

come. In this linear regression the R−squared is 0.7953, and the number of

observations is 100. Also, as the number of cycles increases, the aggregate

number of JE instances increases as well.
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Chapter 4

Competing School Choice

Mechanisms

4.1 Introduction

High quality public schools are scarce, and just like allocating any scarce

valuable resource, we need economists to assign students to schools in a

proper way. This need fostered a new strand in economics, known as market

design. Historically, students were enrolled at schools based on having

siblings in the school or living in the neighborhood of the school. This

decentralized approach has several disadvantages, including segregation of

students along socioeconomic lines and leaving room for unfair or inefficient

rationing of school seats which may give incentives to students to misreport

their true preferences.
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In market design different schools are endowed with typically diverse pri-

orities over prospective students, which may be based on the applicants’

skills, abilities and/or compatibility with the school, or simply reflect pri-

orities mandated by school boards, such as walk zone priority and priority

due to having an older sibling at the school in the case of Boston schools.

In turn, students have preferences over schools based on their understand-

ing of curricula and extra curricula, the rate of graduation, the rate of

future admission to universities, students’ success in the job market and

the distance from school, among others. In order to match heterogeneous

students to schools in an effective way, students submit their preferences

to a central clearinghouse. Several properties should be satisfied to have

a desirable matching between students and schools. The most prominent

properties are fewer appeals about the unfairness of the allocation, efficient

allocation of schools with different appeal to students with various interests

and talents, and minimum gaming and behind-the-closed-door strategies.

Fairness and efficiency are the main normative criteria, while minimizing

strategic behavior is also important.

A desideratum for parents and schools is receiving a fair matching. In

the context of school choice, fairness, which is the lack of justified envy, is

more important than stability (the property that is formally identical to

fairness but rules out blocking pairs instead of justified envy instances),

since the supply side of school seats is under public control and schools

may not have much incentive to circumvent the market, while students or

their parents can justify their envy based on the priorities set by schools,

and may appeal or sue in case of a school priority violation. From their

viewpoint, if a student prefers a school in which she has higher priority
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than a student who got matched to that school, then her envy is justifiable

and the mechanism is not fair.

From the designer’s viewpoint, the matching should be Pareto-efficient

in the sense that if we can improve the assignment of some students with-

out harming the assignment of others then the matching does not fulfill

this property. Another important property is truth-telling or strategy-

proofness. If students realize that by misreporting their preferences they

can be better off, then they may game the system and gain unfair advan-

tage over others, and it will also be impossible for the market designer

to match students and schools according to the normative criteria, if the

matching is based on false preferences. This point of view is applicable not

only to schools and students, but also to every matching problem in which

we have multiple copies of the objects on one side of the market.1

For the designer it would be best to find a mechanism that meets all

these criteria, but it is well-known that this is not possible. In general, sev-

eral competing matching mechanisms have been proposed in an attempt to

make markets more efficient, fair and strategy-proof. But it is not possible

to have all desired properties, since none of the mechanisms can fulfill all

criteria. Roth (1982) [32] showed that we cannot have fairness and efficiency

simultaneously for arbitrary school priorities. Kesten (2010) [22] proved

that we cannot have a strategy-proof and Pareto-efficient mechanism which

chooses the fair allocation whenever a fair Pareto-efficient allocation ex-

ists. Ergin (2002)[13] showed that in order to have an efficient and stable

1Here we consider misreporting of the preferences as the only way of manipulating
the outcome. A student may also mislead schools in other ways in order to make them
rank her higher than her real competence would allow.
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mechanism the priority structure of schools needs to be acyclic. Kesten

(2006)[21] provided another definition for acyclicity which enables having

both stability and Pareto-efficiency simultaneously. Heo (2017) provides a

maximal preference domain in which stability and efficiency are possible to

achieve simultaneously. Priority structures under which the TTC and the

Boston mechanism always lead to an efficient and fair outcome were given

by Kesten (2006)[21] and Kumano (2013)[24], respectively. Abdulkadiroğlu

et al. (2017 [3]) proved that none of the competing mechanisms that we

compare in this paper are justified envy minimal inclusion-wise, with re-

spect to blocking pairs. There is also a growing literature on weakening

stability notions that are compatible with efficiency.2

Among the properties that we have discussed so far, Pareto-efficiency

and strategy-proofness are in some sense the most important: having a

blocking pair may not always lead to winning the lawsuit, since if the

matching is not Pareto-efficient, some students might be worse off (Morril,

2015-a) [26]. Therefore, this contention will not be resolved. Strategy-

proofness in addition is very important since efficiency and fairness are

based on reported preferences, and therefore if reported preferences are

not true, we cannot be sure that normative properties can be satisfied.

There are some previous papers that compare different mechanisms.

Morril (2013, [26]) compares two mechanisms, CT and PTC and their com-

bination3, with the TTC. We will introduce the CT (Clinch and Trade) rule

2See, for example, Kesten, 2004 [20]; Cantala and Pápai, 2014 [8]; Alcade and
Romero-Medina, 2015 [4]; Dur et al., 2015 [11]; Morrill, 2015 [27]; Kloosterman and
Troyan, 2016 [23]; and Ehlers and Morrill, 2017 [12]

3In the PTC (Prioritized Trading Cycles) rule each school points to its highest average
rank student among the top qa acceptable students.
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in detail later, which allows students to“clinch” a school if they have high

enough priority for the school (to be defined precisely), even if the student

does not have the current top priority, as required by the TTC. Morrill

shows that a combination of CT and PTC give us the best result. He

works with different environments, but always with an equal distribution

of seats. Hakimov and Kesten (2014 [15]) provides an experimental compar-

ison between ETTC and TTC. ETTC was also introduced as a competing

rule to TTC. It goes a step further than CT and allows students with high

enough priorities not only to clinch schools but also to trade them, another

feature which is not allowed by the TTC, since the TTC assigns each copy

of an object as “endowment” to the top priority agent only, and thus in the

TTC rule only the top priority agent for each object can clinch or trade

the object in each step of the iterative procedure.

In this paper we compare ETTC with CT, as well as ETTC and a varia-

tion of CT called FCT, by testing these matching rules in different scenarios

and environments. We also consider the effect of having different distribu-

tions of seats and their implication on the outcomes of the mechanisms.

This is the first paper, to our knowledge, which tests different quota dis-

tributions in a school choice model.

In our simulations the preferences are not completely independent since

in our formulation we allow for common information in the market in the

form of a common ranking, which influences each student’s rankings of

schools. This results in a positive correlation among the preferences of

students, which is not only a realistic feature of school choice preferences

(and of many other applications) but also causes the same sample size to
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be a better measure of the population than in most previous studies.

We simulate four competing mechanisms which are strategy-proof and

Pareto-efficient but not fair, and check which one has less aggregate justified

envy (henceforth, AJE) compared to the other rival mechanisms. Aggre-

gate justified envy numbers show the number of justified envy instances

in total across all sampled preference profiles. Although we can show that

none of the alternative mechanisms are superior at every single possible

profile, if the AJE for a specific mechanism is significantly lower, then the

probability that participants have justified envy and thus perceive that the

mechanism is not fair is lower. We count AJE by simulation across a large

number of randomly generated preference profiles in our setup.

In the first part of the paper, we show by using simulation that among

the mentioned mechanisms, ETTC performs relatively better in terms of

having fewer AJE. In addition, we compare the rate of success of different

mechanisms in terms of having lower AJE when we have different distribu-

tion of quotas and different levels of common information among students.

In the second part of the paper we consider the quota distribution of the

schools. We show that if higher ranked schools have higher quotas, AJE

decreases for each studied mechanism and in addition more students are

matched with the schools that are ranked higher by them. Therefore, if

the school seat distribution in school choice design can be considered an

endogenous parameter, then our findings suggest to choose an unequal dis-

tribution of quotas in order for the school choice mechanisms to better

fulfill our requirements.
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4.2 Model

We have a finite number of students and schools, given byA = {a1, a2, ..., an}

and O = {o1, o2, ..., om}, respectively. Each school oj has a specific quota of

students qoj ≥ 1. Students have strict preferences over schools and schools

have strict priorities over students.

For each a ∈ A we will write onPaom if student a strictly prefers on to om.

With similar notation we will write anPoam if school o has a higher priority

for an than for am. A preference and priority profile in a matching market

is written as P , and the set of profiles is denoted by P. An assignment

µ is a function from students to schools: µ : A → O such that for each

student ai and each school oj that are matched to each other: µ(ai) = oj

and ai ∈ µ−1(oj), where |µ−1(oj)| ≤ qoj . The set of all possible matchings

is denoted by M. A mechanism ν is a function from all possible profiles to

the set of matchings: ν: P → M.

4.2.1 Normative Criteria

A mechanism eliminates justified envy if there does not exist any pair of

student a and school o at any profile P such that oPaµ(a) and aPob where

b ∈ µ−1(o) and νP) = µ. If such a pair exists then the student’s envy of the

school is justified, but if the school does not have higher priority for such

a student then, although the student has envy, her envy is not considered

justified.
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A matching µ is Pareto-efficient at profile P , if there is no matching µ′

such that at least for one student a we have µ′(a)Paµ(a) without having

µ(a′)Pa′µ
′(a′) for any other student a′. A mechanism is Pareto-efficient if

it assigns a Pareto-efficient matching to each profile.

A mechanism is strategy-proof if when the true preference of student i is

Pi there is no preference profile P ′

i such that νi(P−i,P
′

i)Piνi(P−i,Pi).

4.2.2 Correlated Rankings

In order to make our sample more realistic, we assume that the students’

rankings are affected by a common ranking, which can be interpreted as

having some common information over schools. There are some previous

papers on correlations in the environment and their effect on the properties

of the mechanisms (see for example, Abdulkadiroğlu et al.(2011 [1]) and

Karpov (2017 [19]). An additional technical advantage of assuming such

common information over schools is that it allows us to have a proper

sample size. Our possible sample of preference profiles grows as the number

participants in the market grows, and due to computational limitations

considering all possible profiles is not feasible. We will write the aggregate

ranking in this way to reduce the population size and to make our sample

more accurate.4

4 Some conclusions in the second part of the paper depend on this presentation of
rankings.
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The common ranking is a fixed ranking of schools. It could be inter-

preted as some common information available to all students. By contrast,

the individual ranking is a ranking which is generated randomly for each

student in our simulation and reflects each student’s individual taste.

For each of these rankings we give the score of one to the least pre-

ferred school and we increase the score by one unit as we go from last

to most preferred. In order to find the aggregated ranking we use dif-

ferent weight distributions over the common ranking and the individual

rankings. This weight is given by α ∈ [0, 1] in our formula as follows:

(α × common ranking + (1 − α) × individual ranking). The higher is

α in this formula, the more the rankings are correlated. We add the

score of each school in different rankings while taking into account the

weights. The highest-ranked school is the one with the highest score. If

we have any ties, we break the ties in favor of the common ranking.

Note that for the schools’ side we do not use this correlation since the

priorities are imposed by law.

4.2.3 Gini Coefficient

There are many possible distributions of seats among the schools. One

possible distribution is where the seats are equally distributed. On the

other hand, seats could be distributed in favor of one or more school more

than others. The two ends of the distributions in the spectrum of possi-

ble distributions are equal seats for all schools at one end, while at the

other end one seat is given to each school except the most favored one
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and the remaining seats go to the favorite school according to the common

ranking. In order to be able to compare different distributions of seats we

use a concentration index. One very common index is the Gini coefficient

which varies between 0 and 1. The closer it is to zero the closer it is to

equal distribution of seats. This measure is usually used as a measure of

inequality and concentration of income or wealth. If one school has all the

seats and the rest have zero then the Gini coefficient is equal to one. In

our simulation the minimum number of possible seats is one seat for each

school.5 Therefore, in this paper the maximum Gini coefficient cannot be

one.

Suppose that there are five schools and twenty seats in total. If we

normalize the number of schools and seats to one, then each school is 0.2 of

total schools and each seat is 0.05 of total seats. Then we sort the schools

from lowest to the highest quota on horizontal axis and the seats on vertical

axis. We have a kinked line which is called the Lorentz curve. (In thick

markets this kinked line looks more like a curve.) The area under this

line is shown by B (as shown in Figure 1). Moreover, there is a straight

line which shows the scenario in which all schools have an equal number

of seats. The area between straight line and the Lorentz curve is A, as

indicated in Figure 1. The Gini coefficient is A
A+B

.

As a case in point if four out of five schools have a quota of one and

the last school has a quota of 16, the Gini coefficient is going to be 0.6.(As

shown in Figure 2.)

5Otherwise we can ignore the school and run the matching procedure without this
school.
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Figure 3: Gini coefficient

Figure 4: Gini coefficient when the quota distribution is (1,1,1,1,16)
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4.3 Competing Mechanisms

4.3.1 TTC Mechanism

Abdulkadiroğlu and Sönmez (2003) adopted a generalized version of Gale’s

top trading cycle mechanism for school choice. The original TTC mech-

anism was first used for allocating agents to objects in a model with a

one-to-one endowment of objects by Shapley and Scarf (1974). The proce-

dure is as follows:

• Each student points to his highest ranked school.

• Each school points to its highest priority student.

• Since we have a finite number of students and schools, there is at

least one cycle.

• We allocate schools to students according to the cycles.This allocation

is final and the matched pairs are removed from the market.

• We iterate this procedure until there is no student or school remaining

in the market.

Proposition 5 (Abdulkadiroğlu and Sönmez, 2003 [2]). The TTC mech-

anism for school choice is Pareto-efficient and strategy-proof.

However, in many cases this mechanism is not fair. Hence, there are some

attempts in the literature to change the mechanism and make it fairer, that
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is, reduce justified envy. One downside of TTC is the fact that schools in-

volve only their highest priority student in the cycles in each round, despite

having multiple seats. This approach makes the market thin and only stu-

dents with the highest priority participate in the formation of each cycle. If

we could make the market thicker we would give a chance to students who

do not have the highest priority to be assigned to better schools. Specifi-

cally, we expect that this leads to fewer justified envy instances. For this

reason, desirable alternative mechanisms have been proposed that may re-

duce justified envy instances, which we introduce next.

4.3.2 FC&T and C&T Mechanisms

Morrill (2015-b) proposed two mechanisms, FC&T and C&T. In FC&T, in

the first step if school o with a capacity of qo has one of the qo highest prior-

ities for a student and the student has the highest preference for the school

then the student can clinch the school. In the second step we run the regular

TTC mechanism.

In C&T mechanism clinching is allowed in every step and not just initially.

If a school has been deleted, then for all the students that are pointing to

the deleted school(s), we run the clinching mechanism again. We repeat

the regular TTC afterwards until there is no student or school that is left

unmatched.

Proposition 6 (Morrill, 2015-b). The FC&T and C&T mechanism are

both Pareto-efficient and strategy-proof.
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4.3.3 ETTC Mechanism

The equitable top trading cycle mechanism (ETTC) was introduced by

Hakimov and Kesten (2014).

• Each school o with a quota of qo forms qo pairs with its top qo priority

students.

• If a student has her favorite school in one of her pairs, she points to

her own pair.

• In each pair, the student points to the pair that contains her highest

ranked school.

• If there are several pairs that fulfill this property, the student points

to the pair that has the student who has highest priority for the school

in the pointing pair.

• Since there is a finite number of pairs, we have at least one cycle.

• Assign students to the schools they are pointing to in each cycle and

remove assigned students and schools.

• After each cycle, since some students can form different pairs and

after the trade in one pair students are not available anymore, we

need to delete all other pairs that this student is in.

• School slots that remain unassigned after students are removed from

the market are inherited under certain conditions, namely, there

should be no other student who is paired with this school in that
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stage. Once all such students are assigned in the market, the remain-

ing seats will be inherited by other students according to the priority

of schools. This restriction on inheritance guarantees that the mech-

anism is strategy-proof.

• We repeat these steps until no more students can be matched.

Proposition 7 (Hakimov and Kesten, 2014 [15]). ETTC is Pareto-efficient

and strategy-proof.

Proposition 8 (Hakimov and Kesten, 2014 [15]). If there are only two

schools and student a is in the top qo priorities of school o, then student a

does not have justified envy under ETTC.

Proposition 9 (Hakimov and Kesten, 2014 [15] ). Suppose thee are only

two schools. Then if an assignment is not fair at some profile under ETTC,

then the assignment is not fair under TTC at the same profile.

4.4 No Superior Mechanism

Although it might appear that the modified mechanisms improve upon the

TTC mechanism at each profile, at some profiles they lead to more justified

envy, when there are multiple seats. Note that if the number of seats is one

for each school, all mentioned rival mechanisms are the same. In order to

demonstrate that TTC is not worse for all preference profiles and, in fact,

may be better than other mechanisms, we provide examples where TTC

has fewer justified envy instances than C&T/FC&T and ETTC.
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4.4.1 TTC vs. ETTC

Consider the profile in Table 8 with quota distribution (2,1,1). The final

matchings for ETTC and TTC show that TTC does not have any justified

envy, whereas ETTC has one justified envy instance with student 4 and

school 1.

4.4.2 TTC vs. C&T/FC&T

Consider the profile in Table 9 with a quota of 2 for both schools. The final

allocations under C&T/FC&T and TTC are shown in Table 9. It can be

seen that C&T/FC&T has one justified envy instance with student 2 and

school 1, whereas the TTC mechanism has no justified envy at this profile.

4.4.3 ETTC vs. C&T/FC&T

In some profiles ETTC has a relative advantage and in some others C&T/FC&T

has the advantage. In Table 10, in the first set of profiles ETTC has a rela-

tive advantage over C&T/FC&T. In this mechanism C&T has one justified

envy instance with school 3 and student 2, whereas ETTC does not have

any.

In another example, with a slight change in priorities of the schools,

C&T/FC&T has relative advantage over ETTC. In Table 11 the only jus-

tified envy instance is student 1 and school 2 for ETTC, and C&T/FC&T
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2 1 1
o1 o2 o3
a1 a1 a2
a2 a3 a3
a4 a4 a1
a3 a2 a4

(a) School Priorities

a1 a2 a3 a4
o3 o1 o1 o1
o2 o3 o2 o3
o1 o2 o3 o2

(b) Student Preferences

Schools 3 1 2 1
Students 1 2 3 4

(c) Matching under TTC

Schools 3 1 1 2
Students 1 2 3 4

(d) Matching under ETTC

Table 8: A profile at which ETTC has more justified envy than TTC
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2 2
o1 o2
a4 a3
a3 a1
a2 a2
a1 a4

(a) School Priorities

a1 a2 a3 a4
o1 o1 o1 o2
o2 o2 o2 o1

(b) Student Preferences

School 1 2 1 2
Student 1 2 3 4

(c) Matching under TTC

School 2 1 1 2
Student 1 2 3 4

(d) Matching under C&T/FC&T

Table 9: A profile at which C&T/FC&T has more justify envy than TTC
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2 2
o1 o2
a4 a2
a3 a1
a2 a3
a1 a4

(a) School Priorities

a1 a2 a3 a4
o2 o1 o2 o2
o1 o2 o1 o1

(b) Student Preferences

School 2 1 2 1
Student 1 2 3 4

(c) Matching under ETTC

School 2 1 1 2
Student 1 2 3 4

(d) Matching under C&T/FC&T

Table 10: A profile at which C&T/FC&T has more justified envy than
ETTC
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2 2
o1 o2
a4 a2
a3 a4
a2 a1
a1 a3

(a) School Priorities

a1 a2 a3 a4
o2 o1 o2 o2
o1 o2 o1 o1

(b) Student Preferences

School 1 1 2 2
Student 1 2 3 4

(c) Matching under ETTC

School 2 1 1 2
Student 1 2 3 4

(d) Matching under C&T/FC&T

Table 11: A profile at which ETTC has more justified envy than
C&T/FC&T
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does not have any justified envy.6

4.5 Simulations

We use simulation in order to compare these competing mechanisms which

are not superior to each other in terms of justified envy when we compare

them profile by profile. We do comparative simulations to see the aggregate

difference between mechanisms when using different samples with different

configurations of quotas and correlations.

We test the mechanisms for five schools and different numbers of stu-

dents. Our simulations are for 10, 15 and 20 students. Each simulation

was replicated 10,000 times. When the number of students are 10 and 15,

we assume that the quotas of all schools are equal. When we have 20 stu-

dents, we test 3 scenarios: equal quotas (E), one school only with a large

quota and others having only one seat (X), and the last environment is an

example for an unequal, but not extreme, quota configuration (U). Specif-

ically we will check three different quota configurations of five schools as

follows:

E:(4,4,4,4,4); X:(16,1,1,1,1); U:(7,7,2,2,2)

For the extreme (X) and unequal (U) environments we assume that

schools that are ranked higher in the common ranking have more seats.

6To the contrary of our expectation we can also show that in some profiles the
assignment under FC&T gives us fewer justified envy instances in comparison with
C&T.
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This assumption is justified in the appendix where we compare results with

the opposite assumption regarding school seat distribution for unequal con-

figurations of quotas.

4.5.1 TTC Simulations

Table 12 shows the results of the TTC simulations. The first row shows the

number of students and the first column shows the different levels of corre-

lation between the common ranking and individual rankings as indicated

by α. There are 5 schools and we ran 10,000 simulations for each scenario.

For 10, 15 and 20(E) we have equal quotas for each school and for 20(X)

and 20(U) the quotas are different as indicated above. Henceforth, each

correlation will be called a scenario, and each configuration of quotas will

be referred to as an environment. Thus, Table 5 displays 5 scenarios corre-

sponding to the 5 rows, and 5 environments corresponding to columns 2-6.

As an example, for the correlation of 0.65 in the extreme environment (X),

when we have twenty students and five schools, the AJE is 28,536, meaning

that in 10,000 simulations this is the number of instances of justified envy

altogether.

From the table we can see that if there are many schools with similar

quotas the possibility of having justified envy is a lot higher than in the

cases with unequal distributions of quotas. Also, the extreme distribution

scenario shows much less AJE then the corresponding unequal distribution

scenarios. This suggests that when schools have a homogeneous distribution

of seats, the possibility of having justified envy increases.
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α 10 15 20(E) 20(X) 20(U)
0.5 34679 78158 132347 34584 75578
0.55 35545 77258 127598 34264 73580
0.6 38228 82746 134936 29626 79471
0.65 35792 79714 131653 28536 78943
0.7 23478 54989 90525 17339 57773

Table 12: AJE in TTC

4.5.2 FC&T and C&T Simulations

We tested the same scenarios and environments for both FC&T and C&T.

Here we can see that there is a reduction in the number of AJE compared

to TTC (see Tables 13 and 14). The numbers in the parenthesis show the

percentage reduction of AJE compared to TTC. As an example, for ten

students and five schools, if the quota for each school is equal to two and

the correlation is 0.5, the AJE for TTC is 34,679 and for FC&T this number

is 34,239 which is a 1.23% reduction in AJE: 34679−34239
34679

= 0.0127 = 1.27%

A comparison of tables 13 and 14 reveals that C&T performs better than

FC&T.

4.5.3 ETTC Simulation

We test the same scenarios and environments for ETTC to check instances

of justified envy (see Table 15).

As we can see, the number of AJE is less than in the TTC.

In all cases with an equal distribution of quotas ETTC has the smallest
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number of justified envy. On the other hand, with an unequal configura-

tion of seats, as the Gini coefficient grows C&T and FC&T become more

successful compared to the case with the equal distribution of seats, and

as we get closer to the extreme quota distribution they become better than

ETTC.

In Table 16 we test

H0 : justified envy instancesCT = justified envy instancesETTC

and

Hα : justified envy instancesCT > justified envy instancesETTC,

which justifies having more justified envy instances in CT. If these numbers

are small, one possibility is that the difference in the average number of

justified envy is not considerable, or the sample size might be small. But

as we can see, since the t-test gives us large numbers, we can conclude

that the sample size is large enough to deduce that the difference between

justified envy instances is not biased by our sample size.

4.6 Efficiency

Next, we compare the efficiency of the mechanisms in the different config-

urations of quotas. We find the percentage of instances in which a student

is matched with her first to fifth preferred choice of schools. We do this for
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20 students and 5 schools in the three main environments that we have an-

alyzed before, E, X and U. The three different scenarios that we are using

are 0.5, 0.6 and 0.7. As can be seen in tables 17 and 18, as the correlation

increases the market becomes more competitive, and therefore the level of

efficiency decreases. As a case in point in Table 17(a), where the correla-

tion is 0.7, the percentage of students who have been matched to their first

choice in TTC is 25.85% and when the correlation is 0.5, 40.23% of stu-

dents will get their top choice. Secondly, as the Gini coefficient increases,

more students will be matched to their top choice. Consider a correlation

of 0.7 and TTC scenario for 10 students and 5 schools, with each school

having two seats in three different scenarios: equal distribution of seats

(E), unequal distribution of seas (U) and all schools having only one seat

except one (X). The percentages of students who are matched to their top

choices are 25.85%, 45.15% and 77.6% respectively. In the very extreme

case (X), since the most favored school has maximum quota, when the cor-

relation increases most of the students will receive their top choices. In

the simulation for extreme unequal distribution of seats, we can see that

having a higher correlation will lead to better outcomes, since there are

enough seats for the most favored school, and therefore, even though many

students like the same schools, there is going to be enough room for all of

them.

We can define a measure of efficiency which enables us to compare the

relative advantage of mechanisms in matching students to schools that are

ranked highly by them in different scenarios and environments. When we

have 5 schools and 10,000 simulations, each student gets 5−r points, where

r is the rank of the school in the student’s preferences. In order to normalize
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we divide the total points that students get by 40,000. Since the maximum

total points that a student can get is 40,000 , this normalizes the efficiency

measure to be between zero and one. By calculating this measure for

different Gini coefficients, we check if it is increasing as the concentration

index increases. The closer this number is to one, the more efficient the

market is. This can help us to compare the efficiency of the different

markets. Table 20 compares the efficiency measures for TTC, ETTC and

C&T in three different scenarios and three different environments.

We can conclude that the more seats are concentrated in one school, the

fewer AJEs will occur and the more efficient the assignments become. Given

this conclusion, we recommend a new policy to give more seats to schools

that are ranked higher according to the common ranking. However, there

are natural constraints that don’t allow for an extreme application of this

policy, conditions such as having schools with a certain minimum number

of seats in each district. Therefore, as much as the constraints allow, we

propose a more unequal and more concentrated seat configuration in favor

of high-ranked schools instead of having an equal distribution of seats.

4.7 Discussion

One of the weaknesses that TTC has in school choice is that it only incor-

porates the first priority of the schools in forming cycles. C&T and FC&T

modify this by allowing students who are not the first priority of the schools

but are in one of the top q priority choices to be matched with these schools

before the formation of a trading cycle (called clinching). This approach
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makes the market thicker and the mechanism becomes more successful in

reducing AJE.

In ETTC, when a student is paired with a school which is her highest

preference, she can also clinch that school. Moreover, in ETTC students

in the top q priority choices are also allowed to trade their school seats, as

opposed to TTC, C&T, and FC&T and, when a student wants to point

to a school, in case she has more than one option, she will use her own

schools’ priorities in the matching. Due to this, there are fewer justified

envy instances in the final allocation. This mechanism is most effective

when there are only two schools, or when cycles have only two members.

In these cases schools’ priorities are considered more successfully than in

other cases.

To conclude, we briefly summarize below our findings and the reasons

behind them.

1. Compared to C&T, ETTC has lower AJE.

Reason: As we have shown in the examples, there are many preference

profiles where FC&T and C&T have fewer JE over ETTC and many

preference profiles that are the other way around. In order to compare

the mechanisms, we have to compare the frequency of these justified

envy instances across preference profiles. Therefore, we present a

statistical comparison of the mechanisms. We also checked that the

sample size is large enough and the sample is reliable by running a

t-test for mean comparison. (Table 16).

2. When there is a correlation between the common ranking and the
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individual rankings, if the Gini coefficient is high, then students are

matched with higher-ranked schools (Table 20).7

Reason: If there is a high correlation between common ranking and

individual rankings, more students will rank schools that have high

common ranking on the top of their rankings. If we increase the quota

of these schools, lots of students will point to them and the chance for

students to be matched with these schools will increase. Therefore,

in general, students will get matched with a higher-ranked school.

3. If the Gini coefficient is higher, all mechanisms are more successful

in having lower AJE.

Reason: In profile-by-profile comparison, when the students are matched

with high-ranked schools, there are going to be fewer schools above

the schools that are matched with them, therefore, there is less chance

for having JE instances. (see Tables 21-23). In each graph, the hor-

izontal axis is the Gini coefficient and the vertical axis is AJE, and

each point in the graph represents 10,000 simulations. )

This suggests a policy that if there is a choice among different environ-

ments in a school district, one which has more unequal distribution

of seats, in favor of most popular schools, should be preferred.

4. As the correlation between common and individual rankings increases,

all alternative mechanisms to TTC are more successful in terms of

having lower AJE than TTC. However, if the Gini coefficient in-

creases, this effect may be smaller or even reversed.

7The efficiency measure that we use here is different from Pareto-efficiency. Here
we are considering the average rank of a school that is matched to students based on
students’ preference rankings.
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Reason: In C&T, if the correlation is high, there is more chance to

have clinching with higher-ranked schools. Therefore, there is more

chance that those schools will be clinched, hence we have fewer AJE.

However, if the Gini coefficient is high as well, this will make most

of the agents be matched with their favourite schools in TTC, and

there is not much room for having less AJE in C&T.

In ETTC, when student preferences are correlated, students will point

to the same schools. Therefore, the probability of forming small cycles

increases. This includes cycles with two pairs in which ETTC is more

successful. However, if the Gini coefficient is high, we have few AJE

in TTC and there is not much room for reducing this number in

ETTC.
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α 10 15 20(E) 20(X) 20(U)
0.5 34239(1.27%) 76669(1.90%) 130893(1.09%) 24002(30.60%) 73923(2.19%)
0.55 34625(2.54%) 76311(1.21%) 125452(1.68%) 24602(28.20%) 71441(2.90%)
0.6 37589(1.67%) 80853(2.29%) 132242(2.00%) 21158(28.58%) 75873(4.53%)
0.65 34715(3.00%) 77448(2.84%) 129353(1.74%) 20773(27.20%) 76391(3.23%)
0.7 22429(4.47%) 52559(4.42%) 84902(6.21%) 15865 (8.50%) 53036(8.20%)

Table 13: AJE in FC&T

α 10 15 20(E) 20(X) 20(U)
0.5 33869(2.34%) 75841(1.34%) 129574(1.71%) 23799(31.18%) 73564(2.66%)
0.55 34232(3.70%) 75621(2.12%) 124390(2.51%) 24326(29.00%) 70319(4.43%)
0.6 37343(2.32%) 80233(3.04%) 131079(2.86%) 21120(28.71%) 75685(4.76%)
0.65 34471(3.69%) 76482(4.05%) 128848(2.13%) 20596(27.82%) 75695(4.11%)
0.7 22361(4.76%) 52376(4.75%) 84666(6.47%) 15830(8.7%) 52830(8.55%)

Table 14: AJE in C&T

α 10 15 20(E) 20(X) 20(U)
0.5 31329(13.51%) 66925(17.04%) 111088(16.81%) 15792(54.34%) 63078(15.00%)
0.55 31524(14.55%) 66776(16.84%) 106789(18.13%) 16414(59.10%) 60833(16.22%)
0.6 33408(17.26%) 69727(18.70%) 109950(19.71%) 13094(55.80%) 61750(20.00%)
0.65 32268(12.76%) 67031(18.59%) 110960(17.54%) 13187(53.79%) 63509(17.77%)
0.7 20293(17.49%) 44044(22.80%) 68009(27.59%) 11422(34.12%) 38858(28.04%)

Table 15: AJE in ETTC

α 20E 20X
0.5 23.3144 23.8314
0.7 15.972 16.9664

Table 16: t-test for comparison of ETTC and CT.
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TTC FC&T C&T ETTC
1 25.85 25.92 25.87 25.84
1-2 45.55 46.33 45.82 45.82
1-3 65.73 65.85 66.17 65.99
1-4 84.93 85.68 85.54 85.22
1-5 100 100 100 100

(a) (20E,0.7)

TTC FC&T C&T ETTC
1 35.03 33.49 35.03 35.00
1-2 53.64 52.71 53.7 53.65
1-3 74.00 71.88 73.98 73.99
1-4 90.32 89.90 90.32 90.34
1-5 100 100 100 100

(b) (20E,0.6)

TTC FC&T C&T ETTC
1 40.23 38.39 40.23 40.22
1-2 60.09 59.14 60.1 60.01
1-3 78.85 76.82 78.83 78.82
1-4 91.72 91.07 91.72 91.73
1-5 100 100 100 100

(c) (20E,0.5)

Table 17: Equal quota environment (E) with different correlations
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TTC FC&T C&T ETTC
1 45.15 45.15 45.15 45.12
1-2 74.63 74.63 74.67 74.61
1-3 82.55 82.54 82.8 82.54
1-4 92.6 92.59 93.11 93.2
1-5 100 100 100 100

(a) (20U,0.7)

TTC FC&T C&T ETTC
1 59.55 59.54 59.54 59.55
1-2 77.39 77.38 77.38 77.44
1-3 86.14 86.11 86.11 86.12
1-4 94.84 94.84 94.85 94.81
1-5 100 100 100 100

(b) (20U,0.6)

TTC FC&T C&T ETTC
1 64.73 64.73 64.74 64.75
1-2 80.25 80.25 80.24 80.28
1-3 88.92 88.9 88.91 88.96
1-4 95.29 95.29 95.28 95.32
1-5 100 100 100 100

(c) (20U,0.5)

Table 18: Unequal quota environment (U) with different correlations.
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TTC FC&T C&T ETTC
1 77.6 77.59 77.59 77.6
1-2 85.08 85.07 85.91 85.88
1-3 91.38 91.38 91.67 91.38
1-4 96.08 96.17 96.54 96.16
1-5 100 100 100 100

(a) (20X,0.7)

TTC FC&T C&T ETTC
1 66.69 66.69 66.69 66.70
1-2 87.95 87.94 87.93 87.96
1-3 92.58 92.59 92.49 92.59
1-4 97.11 97.13 97.03 97.12
1-5 100 100 100 100

(b) (20X,0.6)

TTC FC&T C&T ETTC
1 63.95 63.92 63.93 63.96
1-2 87.83 87.57 87.57 89.33
1-3 94.62 94.32 94.32 96.13
1-4 97.42 97.11 97.1 98.92
1-5 100 100 100 100

(c) (20X,0.5)

Table 19: Extreme quota environment (X) with different correlations.
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α 20E 20U 20X
0.7 0.5572 0.718 0.8875
0.6 0.6326 0.7948 0.8608
0.5 0.6772 0.8223 0.8558

(a) TTC

α 20E 20U 20X
0.7 0.5572 0.7372 0.8775
0.6 0.6326 0.7947 0.8608
0.5 0.6772 0.8229 0.8573

(b) CT

α 20E 20U 20X
0.7 0.5572 0.7012 0.8776
0.6 0.6325 0.7948 0.8609
0.5 0.6770 0.8233 0.8708

(c) ETTC

Table 20: Comparing efficiency for different quota configurations
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ETTC Coef. t p > |t|
Slope -84507.94 -14.08 0.000
Intercept. 70752.8 32.58 0.000

Table 21: Linear regression of ETTC with different Gini coefficients (Adj
R-squared =0.7409)

TTC Coef. t p > |t|
Slope -129229.1 -56.32 0.000
Intercept. 98497 118.64 0.000

Table 22: Linear regression of TTC with different Gini coefficients (Adj
R-squared = 0.9787)
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CT Coef. t p > |t|
Slope -119040.4 -28.52 0.000
Intercept. 92174.86 61.90 0.000

Table 23: Linear regression of CT with different Gini coefficients (Adj R-
squared = 0.9237)
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Appendix to Chapter 4

We claim that more seats should be allocated to more favored schools to

reduce justified envy. This is supported by the general intuition that this

distribution will give us a better matching. Here we show results were the

distribution of seats is the opposite, for comparison.

We test the unequal scenario, with two seats for the three top schools and

seven seats for each of the two bottom schools (20(U)′), and an extreme

scenario where 16 seats are given to the last preferred school in the common

ranking and one seat for each of the remaining schools (20(X)′). The results

for AJE can be seen in Tables 26-28. The tables demonstrate that if more

seats are given to less favored schools then fewer students are matched to

higher-ranked schools.
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α 20(X)′ 20(U)′ 20(X) 20(U)
0.5 110375 145206 15792 63078
0.55 108615 139539 16414 60833
0.6 103325 140867 13094 61750
0.65 88314 125145 13187 63509
0.7 52313 78450 11422 38858

Table 24: AJE in TTC: case where more seats are given to low-ranked
schools (shown by prime) vs. high-ranked schools

α 20(X)′ 20(U)′ 20(X) 20(U)
0.5 99334 138309 23799 73564
0.55 97727 132597 24326 70319
0.6 93488 134670 21120 75685
0.65 88314 125145 20596 75695
0.7 52313 78450 15830 52830

Table 25: AJE in C&T: case where more seats are given to low-ranked
schools (shown by prime) vs. high-ranked schools

α 20(X)′ 20(U)′ 20(X) 20(U)
0.5 99334 138309 15792 63078
0.55 97727 132597 16414 60833
0.6 93488 134670 13094 61750
0.65 88314 125145 13187 63509
0.7 52313 78450 11422 38858

Table 26: AJE in ETTC: case where more seats are given to low-ranked
schools (shown by prime) vs. high-ranked schools
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[8] David Cantala and Szilvia Pápai. Reasonably and securely stable

matching. Mimeo, 2014.

[9] Yan Chen and Onur Kesten. Chinese college admissions and school

choice reforms: A theoretical analysis. Journal of Political Economy,

125(1):99–139, 2017.

[10] Umut Dur, Robert G Hammond, and Thayer Morrill. The secure

Boston mechanism: Theory and experiments. Experimental Eco-

nomics, forthcoming, 2018.
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[29] Szilvia Pápai. Strategyproof assignment by hierarchical exchange.

Econometrica, 68(6):1403–1433, 2000.
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Appendix: Matlab codes

This appendix contains the main codes that are used in the simulations.
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9/14/19 10:56 AM C:\Users...\modified_profile_generator.m 1 of 1

%--------------------------------------------------------------
%------ generating random preference and priority profiles-----
clear all
clc
% generates random (preference/priority) profiles
% 5 agents and 3 objects, 100 sample from preferences and priorities
objects=3;
agents=5;
number_of_preference_profiles=100;
number_of_priority_profiles=100;
 
for j=1:number_of_preference_profiles
agents_transpose=[];
for i=1:agents
%generate preference profile for one agent only [shown by "c"]
a=-1:objects;
a(a==0)=[];
b=perms(a); % all possible permutations
r = randi([1 size(b,1)],1,1) ;% random 1by1 matrix between 1 and size(b,1)
c=b(r,:);
agents_transpose=[agents_transpose; c];
agents_preference=agents_transpose';
end
agents_preference_p(:,:,j)=agents_preference
end
 
for j=1:number_of_priority_profiles
objects_transpose=[];
for i=1:objects
b=randperm(agents); % all possible permutations
objects_transpose=[objects_transpose; b];
objects_priority=objects_transpose';
end
objects_priority_p(:,:,j)=objects_priority
end
 
 
save('a5o3-1','objects_priority_p','agents_preference_p','agents','objects')
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9/14/19 10:51 AM C:\Users\pooya\...\modified-TTC-draft.m 1 of 5

%----------------------------------------------------
%------------TTC model ------------------------------
 
clear all
clc
 
% "-1" in preference profile means that agent does not want to participate
% in the market anymore, if an agent/ object is gone we will put zero in
% the profile
total_JE=0;
load('a5o3-32-1.mat')
q=1; % for saving final results in excel
 all_objects_quota_vector=[1 1 1]
for aa=1:size(agents_preference_p,3)
    for oo=1:size(preserved_profile,3)
quota=all_objects_quota_vector;
 
 
agents_preference=agents_preference_p(:,:,aa)
objects_priorities=preserved_profile(:,:,oo)
 
 
for i=1:2
agents_ID(i,:)=1:size(agents_preference_p,2);
end
 
for i=1:2
objects_ID(i,:)=1:size(preserved_profile,2);
end
 
%%%%%%%--------------------delete agents with "-1"-----------------
%%%%%%%------------------------------------------------------------
% define matching matrix, second row is agents' ID and first row is alloted
% student
match=zeros(2,size(agents_ID,2)); %matching matrix
for i=1:size(agents_ID,2) %second row of matching matrix is students ID first row will 
be filled with sschool allocation
    match(2,i)=i;
end
 
should_be_deleted_columns=[];
for i=1:size(agents_preference,2)
 if agents_preference(1,i)==-1
     should_be_deleted_columns=[should_be_deleted_columns i];
 end
end
 
% mus be deleted should be deleted columns with -1
for i=1:size(match,2)
    for j=1:length(should_be_deleted_columns)
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        match(1,should_be_deleted_columns(j))=-1
    end
end
 
  agents_preference(:,should_be_deleted_columns)=[];
 
 
 %---------------find agents' ID :needed if we want to delete from priority table
 agents_index=[];
 for i=1:size(agents_ID,2)
     for j=1:size(should_be_deleted_columns,2)
   if agents_ID(1,i)==should_be_deleted_columns(j)
       agents_index=[agents_index agents_ID(2,i)];
   end
     end 
 end
 
 
 
 
 agents_ID(:,should_be_deleted_columns)=[];
 agents_ID(1,:)=1:size(agents_ID,2); %delete from agents_preferencec
 
 for i=1:length(agents_index)
 objects_priorities(objects_priorities==agents_index(i))=0;
 
 end
 
[ objects_priorities ] = zeros_button( objects_priorities );
 
 
 
 
%-- if there are part of a chein the value becomes one. This is usuful to
%check cycle formation
 
object_in_cycle=zeros(1,size(objects_priorities,2));
agent_in_cycle=zeros(1,size(agents_preference,2));
 
 
 
%%%%%--------------------------end of delete agents with "-1" ------
%%%%%--------------------------------------------------------------
 
 
 
% "i" is the maximum numbers that we can have in the cycle
ia_c=1;
for i=1:100000000%size(agents_ID,2)  % not match completely with size
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    %---------agents that have minus 1
    %------------------------------------
    should_be_deleted_columns=[];
for i=1:size(agents_preference,2)
 if agents_preference(1,i)==-1
     should_be_deleted_columns=[should_be_deleted_columns i];
 end
end
 
  agents_preference(:,should_be_deleted_columns)=[];
agent_in_cycle(:,should_be_deleted_columns)=[];
agents_index=[];
 for i=1:size(agents_ID,2)
     for j=1:size(should_be_deleted_columns,2)
   if agents_ID(1,i)==should_be_deleted_columns(j)
       agents_index=[agents_index agents_ID(2,i)];
   end
     end 
 end
 
for i=1:size(agents_index,2)
    for j=1:size(match,2)
   if match(2,j)==agents_index(i)
       match(1,j)=-1
   end
    end
end
 
 agents_ID(:,should_be_deleted_columns)=[];
 agents_ID(1,:)=1:size(agents_ID,2); %delete from agents_preferencec
 
 for i=1:length(agents_index)
 objects_priorities(objects_priorities==agents_index(i))=0;
 
 end
 
[ objects_priorities ] = zeros_button( objects_priorities );
  
 
if size(agents_ID,2)==0 % if there is no more agents in the market
    break
end
    
    %------------ end of agents that have minus one
    %-----------------------------------------------
    
 if   agent_in_cycle(ia_c)~=1   %if there is a cycle then we go to else
 for j=1:size(objects_ID,2)   
agent_in_cycle(ia_c)=1
io=agents_preference(1,ia_c)
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io_c=relevent_c_sc(objects_ID,io)
object_in_cycle(io_c)=1
ia=objects_priorities(1,io_c)
ia_c=relevent_c_st(agents_ID,ia)
 
if   agent_in_cycle(ia_c)==1 % as soon as we realize that there is a cycle we start 
allocation
    break
end
 
 end
   
 
 else
     
     new_matching_set=[]; %used in "reduced_quota_accordin_gmatching" function
 
     %start allocation
   for j=1:size(objects_ID,2)
  
     io_c=relevent_c_sc(objects_ID,io)
  %   all_objects_quota_vector(io_c)=all_objects_quota_vector(io_c)-1
     ia=objects_priorities(1,io_c)
     ia_c=relevent_c_st(agents_ID,ia)
     io=agents_preference(1,ia_c)
     match(1,ia)=io 
     [new_matching_set] = reduced_quota_according_matching(io,ia,new_matching_set)
   end
   % new quota vector
   for i=1:size(new_matching_set,2)
    o= new_matching_set(1,i)
    o_c=relevent_c_sc(objects_ID,o)
    all_objects_quota_vector(o_c)=all_objects_quota_vector(o_c)-1
    
end
  % delete schools 
   [objects_priorities,objects_ID,agents_preference]=delmatch_school1( match,
objects_ID,objects_priorities,agents_preference,all_objects_quota_vector);
   %op are not needed in simulation
   [agents_preference,agents_ID,objects_priorities]=delmatch_student1( match,agents_ID,
agents_preference,objects_priorities);
   
   all_objects_quota_vector(all_objects_quota_vector==0)=[]
   objects_ID(1,:)=1:size(objects_ID,2);
   agents_ID(1,:)=1:size(agents_ID,2);
   
   % -------------end of callinig elimination function--------------------
object_in_cycle=zeros(1,size(objects_ID,2));
agent_in_cycle=zeros(1,size(agents_ID,2));
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%-------------------zeros on button function-------------------------
 agents_preference  = st_zeros_button( agents_preference );
 objects_priorities  = sc_zeros_button( objects_priorities );
%--------------------end of zeros on button function -----------------
ia_c=1; %after allocation we start from begining
end
if size(agents_ID,2)==0 % if there is no more agents in the market
    break
end
 
if size(all_objects_quota_vector,2)==0
    for i=1:size(match,2)
        if match(1,i)==0
            match(1,i)=-1;
        end
        
    end
    break
end
 
 
end
% we need original preference and priorities to be able to find blocking
% pairs
agents_preference=agents_preference_p(:,:,aa);
objects_priorities=objects_priority_p(:,:,oo);
 
[ blocking_pairs ] = block_finder( agents_preference,objects_priorities,match );
 
A(q,1)=aa;
A(q,2)=oo;
A(q,3)=blocking_pairs;
%A(q,4)=total_cycles(oo);
q=q+1;
 
clear agents_ID
clear  objects_ID
all_objects_quota_vector=quota;
 
total_JE=total_JE+blocking_pairs;
    end
end
 
output=xlswrite('C:\Users\pooya\Dropbox\mechanism design\matlab codes\mix - with 
extentions\TTC-1-2-m\segmented_JE_32.xlsx',A);
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%-------------Clinch and Trade -------------------
%-------------------------------------------------
 
clear all
        clc
        % we will generate sample filr in another profile
       % load('a20o5alpha0.7.mat')
       
       
load ('a20o5alpha0.5.mat')
%load ('studdent possible profiles')
 
 
q=1;
DP=zeros(size(student_preference_p,1),1);
total_blockings=0;
 
%sc=4; 
%st=90;
 
       for sc=1:size(school_preference_p,3)
 
        for st=1:size(student_preference_p,3)
    
    
        
        student_preference=student_preference_p(:,:,st); %run for different samples
        school_preference=school_preference_p(:,:,sc); 
                Original_sc_preference=school_preference; % needed for one loop in 
future
 
%-------------- define student ID---------------------
        for i=1:2 %ID assigning to students  and schools
        student_ID(i,:)=1:size(student_preference,2);
        school_ID(i,:)=1:size(school_preference,2);
   end
 
             %%%%%%below is matching matrix
        match=zeros(2,size(student_ID,2)); %matching matrix
        for i=1:size(student_ID,2) %second row of matching matrix is students ID first 
row will be filled with sschool allocation
            match(2,i)=i;
        end   
        %%%%%%end of matching matrix
        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  SChools
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Capacity
 
        school_capacity=[2 2 2 7 7]; % can't be in sample file
        old_school_capacity=zeros(1,size(school_capacity,2)); % need to define 
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something for clinching process. if thehy are equal in clinching, the clinching loop 
will end
 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     
        school_in_cycle=zeros(1,size(school_preference,2));%if a school is tentatively 
in cycle we will put a number of 1 for it. ?? do we need it for clinching process??
        student_in_cycle=zeros(1,size(student_preference,2));
   
        
         %"ia" is a generic element for school and "ibb" is a generic element for 
student
        % k is the student we start with
 
        %need a benchmark : if school capacity is not changing in any clinching
        %process then we are done
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clinching process%%%%%%%%%%%%
        for i=1:size(student_preference,2) % maximum all students can be assigned in 
clinching process
        if old_school_capacity==school_capacity
            break
        else
            old_school_capacity=school_capacity; % we need it for clinching process(we 
will continue the clinching process up until the point in which there is no more change 
in school capacity)
 
        [ match, school_capacity] = FC( student_preference,school_preference,
school_capacity,match,student_ID,school_ID );
 
 
        %%%%%%%%%%%%%elimination after clinching process
        [school_preference,school_ID,student_preference]=delmatch_school1( match,
school_ID,school_preference,student_preference,school_capacity);
        [student_preference,student_ID,school_preference]=delmatch_student1( match,
student_ID,student_preference,school_preference);
 
        school_ID(1,:)=1:size(school_ID,2);
        %ia_c=school_ID(1,1)
        student_ID(1,:)=1:size(student_ID,2);
        % -------------end of callinig elimination function--------------------
        
        %-------------------zeros on button function-------------------------
         student_preference  = st_zeros_button( student_preference );
         school_preference  = sc_zeros_button( school_preference );
        end
        end
 
        %---------------end of clinching
         %---------------------------school capacities deletion
     del_cap=[]; %rows that should be deleted
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     for i=1:size(school_capacity,2) 
         if school_capacity(1,i)==0
             del_cap=[del_cap i]; 
         end
     end
     %---- ID should be deleted from students oreference in the followings
     %if ~isempty(del_cap) % otherwise there is no deletion
    % for i=1:length(del_cap) % deleting scool ID from students preference
      %for j=1:size(school_ID,2)
      % if  school_ID(1,j)==del_cap(i)  
     %student_preference(student_preference==school_ID(2,j))=0;
      % end
     % end
    % end
 
     %-----------------------------------------------------------
 
     school_capacity(:,del_cap)=[];
   % end
     %---------------------------end of deletion
 
        scc=nnz(school_capacity); % a condition for doing the rest(the process may end 
in this loop) (there should be some remained capacities for schools)
        % IMP: " just in case where capacity of schools are equal to students
        % and no one wants to be unmatched
  if scc~=0
        ibb=1;
        ia=1; %just to define something
        %ibb_c=relevent_c_st(student_ID,ibb);
        for i=1:size(Original_sc_preference,2) % because school might be deleted in 
clinching process
        if size(find(school_ID(2,:)==ia),2)==0
            ia=ia+1;
        end
        end
 
 
        ia_c=relevent_c_sc(school_ID,ia);
       %%%%%%need to delete stident and school in cycle 
school_in_cycle=zeros(1,size(school_ID,2));
student_in_cycle=zeros(1,size(student_ID,2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% starting cycles
 
    for m=1:size(match,2) %number of runs  
   
        ibb_c=1;
    ua=nnz(match(1,:));%un allocated items
        if ua==size(match,2) % if all are allocated then we are done
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            break
        end
    %student_in_cycle(ibb)=1;
    if length(student_ID)==0
        break
    end
    
  
    for i=1:size(student_ID,2)+1 %in each cycle we have to go through the loop and
        
    %check one more student and one more school
    % when we finished a complete cycle we will start allocations od that
    % cycle. the allocations will start tthrough "if" below
    %--------------------conditional starting of allocation-----------------
    if student_in_cycle(ibb_c)==1 % if this equality holds we need to start allocation 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        M=[]; %this is for clinching process after each trade (set of ID od schools 
which have zero capacity after the trade)
        N=[]; % samae as above [N stans for students that need to form blocking pair]
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for j=1:i
     ia=student_preference(1,ibb_c);  % we start allocation from stu
         ia_c=relevent_c_sc(school_ID,ia);
 
     if match(1,ibb)~=0 %if we already alocated two pairs we have to break the cycle 
        break
    else
        match(1,ibb)=ia; %if its not over doing then do the allocation
        school_capacity(ia_c)=school_capacity(ia_c)-1;
        %we should find the schools with zero capacity
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   
     end
     %%% run clinch after the trade only for this students
 
 
    ibb=school_preference(1,ia_c); %this is not for allocation, we will do this just to 
go one step ahead
    ibb_c=relevent_c_st(student_ID,ibb);
     if school_capacity(ia_c)==0
        m=school_ID(2,ia_c) ;
        M=[M m];
      end
    end
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
    
    
      [clinch_student_preference,clinch_student_ID,clinch_school_preference]
=delmatch_student1( match,student_ID,student_preference,school_preference);
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[clinch_school_preference,clinch_school_ID,removed_student_preference] = 
delmatch_school2( match,school_ID,clinch_school_preference,clinch_student_preference,
school_capacity );
         % We dont need to double count students that already have been
         % allocated in the cycle. for that reason, we first delete the
         % aloocated students and then we look for the students that need
         % to be clinched
 
del_cap=[]; %columns that should be deleted
     for i=1:size(school_capacity,2) 
         if school_capacity(1,i)==0
             del_cap=[del_cap i]; 
         end
     end
     school_capacity(:,del_cap)=[];
      school_preference(:,del_cap)=[]; 
      keep_school_ID=school_ID;
      school_ID(:,del_cap)=[];
      school_ID(1,:)=1:size(school_ID,2);
     % Now we will find the ID of students who are pointing to them
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    for i=1:size(clinch_student_ID,2)
         for j=1:length(M)
        if clinch_student_preference(1,i)==M(j)
            n=clinch_student_ID(2,i); % ID of students hat need to be in clinching 
process 
            N=[N n];
         end
         end
    end
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N_C=[];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
     for i=1:size(N,2)
N_C(i)=relevent_c_st(clinch_student_ID,N(i));
end
%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:length(M)
removed_student_preference(removed_student_preference==M(i))=0;
end
removed_student_preference=st_zeros_button(removed_student_preference);
 
hp_sc=[];
    %%%%%%%%%%% find this students highest preference
for s=1:size(N,2)
   hp_sc(s)=removed_student_preference(1,N_C(s));%the schools that are highest 
preference of students
    % first ine is gone in the cycle, but we did not delete it yet ,the second one 
should be the one we
    % are looking for is the one that can be used for clinching process

124



9/14/19 11:13 AM C:\Users\poo...\C&T(main)(revise)2-.m 6 of 13

end
hp_sc_c=[];
for i=1:size(hp_sc,2)
    hp_sc_c(i)=relevent_c_sc(school_ID,hp_sc(i));
end
  %school_ID(:,del_cap)=[];    
 
%hp_sc=unique(hp_sc); % avoid repeating elements
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sample_sans_rep=[]; % we may have double deduction in capacity, i.e if  hp_sc=[4 4];we 
will fix thi by this function
old_sample_sans_rep=[]; % if there is a change in this then we have the allocation and 
we reduce capacity of school by one unit
 
for j=1:size(hp_sc,2) % start a loop for clinching
 sample=[sample_sans_rep hp_sc(j)];
 sample_sans_rep=unique(sample);
 old_school_capacity=school_capacity;
% now check the schools column
 
% if schools first preference is equal to students ID then these two will be matched to 
each other
for i=1:size(hp_sc,2)
        for k=1:school_capacity(hp_sc_c(i))
    if clinch_school_preference(k,hp_sc_c(i))==N(i)
        if match(1,N(i))==0
        match(1,N(i))=hp_sc(i);
        %if length(sample_sans_rep)~=length(old_sample_sans_rep)
          school_capacity(hp_sc_c(i))=school_capacity(hp_sc_c(i))-1;  
        %end
    end
    end
 
    end
end
     old_sample_sans_rep= sample_sans_rep;
 
      if length(old_school_capacity)~=length(school_capacity) % for the next "if" 
matrix dimensions must be same
        break
    end
    if old_school_capacity==school_capacity
        break
    end
end
 % end
    %schools and students that should be deleted
     %---------------------------school capacities deletion
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     %---- ID should be deleted from students oreference in the followings
     if ~isempty(del_cap) % otherwise there is no deletion
     for i=1:length(del_cap) % deleting scool ID from students preference
      for j=1:size(school_ID,2)
       if  school_ID(1,j)==del_cap(i)  
     student_preference(student_preference==keep_school_ID(2,j))=0;
       end
      end
     end
 
     %-----------------------------------------------------------
del_cap=[]; %rows that should be deleted
     for i=1:size(school_capacity,2) 
         if school_capacity(1,i)==0
             del_cap=[del_cap i]; 
         end
     end
     school_capacity(:,del_cap)=[];
     school_ID(:,del_cap)=[];
     school_preference(:,del_cap)=[];
    end
     %---------------------------end of deletion
 
    %--------------call elimination function-----------------
    [school_preference,school_ID,student_preference]=delmatch_school1( match,school_ID,
school_preference,student_preference,school_capacity);
    [student_preference,student_ID,school_preference]=delmatch_student1( match,
student_ID,student_preference,school_preference);
    school_ID(1,:)=1:size(school_ID,2);
    %ia_c=school_ID(1,1)
    student_ID(1,:)=1:size(student_ID,2);
    % -------------end of callinig elimination function--------------------
    school_in_cycle=zeros(1,size(school_preference,2));
    student_in_cycle=zeros(1,size(student_preference,2));
    %-------------------delete scshools from students preferences-------
    [ student_preference ] = delete_full_schools( school_ID,student_preference,
school_preference_p );
    %-------------------zeros on button function-------------------------
     student_preference  = st_zeros_button( student_preference );
     school_preference  = sc_zeros_button( school_preference );
    %--------------------end of zeros on button function -----------------
    break %after aloocating we have to stop the cycle of the first round
    else %if we dont have complete cycle, we will go one step a head
        student_in_cycle(ibb_c)=1; % if it is not in the loop then we put it in the 
loop and henceforth it would be equal to "1"
        ia=student_preference(1,ibb_c);%first available preference of student "ia" is 
the school that student "ibb" wants the most
        ia_c=relevent_c_sc(school_ID,ia);
 
    end
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     ua=nnz(match(1,:));%un allocated
        if ua==size(match,2)
            break
        end
 
    if school_in_cycle(ia_c)==1 
        M=[];
        N=[];
    for j=1:i %up to the point that cycle is complete. we did it up to step "i" so we 
will allocate up to this part
    ibb=school_preference(1,ia_c); %we start from the point of repetition to allocate 
    ibb_c=relevent_c_st(student_ID,ibb);
    ia=student_preference(1,ibb_c);%we should start to allocate from students
    ia_c=relevent_c_sc(school_ID,ia); %% ia has already been deleted in step j=1
  
    if match(1,ibb)~=0 %we may have more repetition than normal in some cases. so as 
soon as we get in to loop we will cut the loop
        break
    else
        match(1,ibb)=ia;
        school_capacity(ia_c)=school_capacity(ia_c)-1; 
    
        %%%%%%%%%%%%%%%%%%
        %%%%%%%%%%%%%%%%%%%%
        if school_capacity(ia_c)==0
           m=school_ID(2,ia_c) ;
        M=[M m];
              
     % find the ID of students who are pointing to them
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
%%%%%%%%%% if student is in schools one of high priorities then clinching
%%%%%%%%%% is done
%  for j=1:size(school_capacity,2)
%if
%end
 % end
%end
     end
 
    end
 
    end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
 %%%%% after this allocation we should have deletion before doing the
 %%%%% clinching process
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
 %%%%%%%%%start deletion
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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 %---------------------------school capacities deletion
         del_cap=[]; %rows that should be deleted
         for i=1:size(school_capacity,2) 
             if school_capacity(1,i)==0
                 del_cap=[del_cap i];
             end
         end
     %---- ID should be deleted from students oreference in the followings
     if ~isempty(del_cap) % otherwise there is no deletion
     for i=1:length(del_cap) % deleting scool ID from students preference
      for j=1:size(school_ID,2)
       if  school_ID(1,j)==del_cap(i)  
     student_preference(student_preference==school_ID(2,j))=0;
     
     %school_ID(:,del_cap(i) )=[];
  
       end
      end
     end
     
     %-----------------------------------------------------------
 
     school_capacity(:,del_cap)=[];
     school_ID(:,del_cap)=[];
       school_ID(1,:)=1:size(school_ID,2);
     school_preference(:,del_cap)=[];
    end
     %---------------------------end of deletion
       [clinch_student_preference,clinch_student_ID,clinch_school_preference]
=delmatch_student1( match,student_ID,student_preference,school_preference);
[clinch_school_preference,clinch_school_ID,removed_student_preference] = 
delmatch_school2( match,school_ID,clinch_school_preference,clinch_student_preference,
school_capacity );
     
       %  [clinch_student_preference,clinch_student_ID,clinch_school_preference]
=delmatch_student1( match,student_ID,student_preference,school_preference);
        % [clinch_school_preference,clinch_school_ID,clinch_student_preference]
=delmatch_school1( match,school_ID,school_preference,student_preference,
school_capacity);
 
         % We dont need to double count students that already have been
         % allocated in the cycle. for that reason, we first delete the
         % aloocated students and then we link for the students that need
         % to b eclinched
         del_cap=[]; %rows that should be deleted
     for i=1:size(school_capacity,2) 
         if school_capacity(1,i)==0
             del_cap=[del_cap i]; 
         end
     end
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     school_capacity(:,del_cap)=[];
          school_preference(:,del_cap)=[]; 
                keep_school_ID=school_ID;
 
               school_ID(:,del_cap)=[];
      school_ID(1,:)=1:size(school_ID,2);
    
N=[];
    for i=1:size(clinch_student_ID,2)
         for j=1:length(M)
        if clinch_student_preference(1,i)==0
            n=clinch_student_ID(2,i); % ID of students hat need to be in clinching 
process 
            N=[N n];
         end
         end
    end
    
    N_C=[];
    %%%%%%%%%%%%%%find students column%%%%%%%%%%%%%%%%%%
for i=1:size(N,2)
N_C(i)=relevent_c_st(clinch_student_ID,N(i));
end
%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:length(M)
removed_student_preference(removed_student_preference==M(i))=0;
end
removed_student_preference=st_zeros_button(removed_student_preference);
 
%%%%%%%%%%%%%%%%%%%%%%%%
hp_sc=[];
%%%%%%%%%%% "hp_sc" are the "schools" which has high preference for students
%%%%%%%%%%% who are supposed to do the clinching in this step
for s=1:size(N,2) % 
   hp_sc(s)=removed_student_preference(1,N_C(s));% highest rpiority in school
    % first one is gone in the cycle, the second one should be the one we
    % are looking for is the one that can be used for clinching process
end
 
% now check the schools column
for i=1:size(hp_sc,2)
    hp_sc_c(i)=relevent_c_sc(school_ID,hp_sc(i));
end
%school_ID(:,del_cap)=[];
clinch_school_preference=sc_zeros_button( clinch_school_preference );
 
sample_sans_rep=[]; % we may have double deduction in capacity, i.e if  hp_sc=[4 4];we 
will fix thi by this function
old_sample_sans_rep=[]; % if there is a change in this then we have the allocation and 
we reduce capacity of school by one unit
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for j=1:size(hp_sc,2) % start a loop for clinching
 sample=[sample_sans_rep hp_sc(j)];
 sample_sans_rep=unique(sample);
 old_school_capacity=school_capacity;
% now check the schools column
 
% if schools first preference is equal to students ID then these two will be matched to 
each other
for i=1:size(hp_sc,2)
        for k=1:school_capacity(hp_sc_c(i))
    if clinch_school_preference(k,hp_sc_c(i))==N(i)
        if  match(1,N(i))==0
        match(1,N(i))=hp_sc(i);
          school_capacity(hp_sc_c(i))=school_capacity(hp_sc_c(i))-1;  
        end
    end
 
    end
end
     old_sample_sans_rep= sample_sans_rep;
 
      if length(old_school_capacity)~=length(school_capacity) % for the next "if" 
matrix dimensions must be same
        break
    end
    if old_school_capacity==school_capacity
        break
    end
end
%---------------------------school capacities deletion
         del_cap=[]; %rows that should be deleted
         for i=1:size(school_capacity,2) 
             if school_capacity(1,i)==0
                 del_cap=[del_cap i];
             end
         end
     %---- ID should be deleted from students oreference in the followings
     if ~isempty(del_cap) % otherwise there is no deletion
     for i=1:length(del_cap) % deleting scool ID from students preference
      for j=1:size(school_ID,2)
       if  school_ID(1,j)==del_cap(i)  
     student_preference(student_preference==keep_school_ID(2,j))=0; 
 
       end
      end
     end
     
     %----deleting school ID
      % if school_capacity(ia_c)==0
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     %   school_ID(:,ia_c)=[];
    %school_ID(1,:)=1:size(school_ID,2);
    %school_capacity(:,ia_c)=[];
    %end
 
     %-----------------------------------------------------------
 
     school_capacity(:,del_cap)=[];
     school_ID(:,del_cap)=[];
       school_ID(1,:)=1:size(school_ID,2);
     school_preference(:,del_cap)=[];
    end
     %---------------------------end of deletion
    % when allocation of first round ends, all the in cycles should be equal to
    % zero
 
    %students and schools that should be deleted
 
    %--------------call elimination function-----------------
    [school_preference,school_ID,student_preference]=delmatch_school1( match,school_ID,
school_preference,student_preference,school_capacity );
    [student_preference,student_ID,school_preference]=delmatch_student1( match,
student_ID,student_preference,school_preference);
    school_ID(1,:)=1:size(school_ID,2);
    student_ID(1,:)=1:size(student_ID,2);
    % -------------end of callinig elimination function--------------------
    school_in_cycle=zeros(1,size(school_preference,2));
    student_in_cycle=zeros(1,size(student_preference,2));
    %-------------------delete scshools from students preferences-------
    [ student_preference ] = delete_full_schools( school_ID,student_preference,
school_preference_p );
    %-------------------zeros on button function-------------------------
     student_preference  = st_zeros_button( student_preference );
     school_preference  = sc_zeros_button( school_preference );
    %--------------------end of zeros on button function -----------------
    break  %for breaking the biggest loop, eliminating alocations and re-run the loop
    else
      school_in_cycle(ia_c)=1; %because we start from school in each rounf of the loop, 
we may head back to same thing
      ibb=school_preference(1,ia_c);
      ibb_c=relevent_c_st(student_ID,ibb);
    end
    %%%%%%%%%%%%%%%%%%%%end of allocation%%%%%%%%%%
 
    end
   
    end
 
        end
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    %-----l ast end is for doint TTC if clinching process does not work-----%   end
     student_preference=student_preference_p(:,:,st);
     school_preference=school_preference_p(:,:,sc); 
    [ blocking_pairs ] = block_finder( student_preference,school_preference,match );
    total_blockings=total_blockings+blocking_pairs;
    clear school_ID
    clear student_ID
    
    % save for comparing individual profiles
A(q,1)=sc;
A(q,2)=st;
A(q,3)=blocking_pairs;
q=q+1;
% end of saving
     student_preference=student_preference_p(:,:,st);
 
[ new_DP ] = distribution_function( match,student_preference);
DP=DP+new_DP;
 
         end
       end
       
       DP_av=DP/(st*sc)
 
         
       output=xlswrite('C:\Users\pooya\Dropbox\mechanism design\matlab codes\mix - with 
extentions\C&T\output.xlsx',A);
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%--------------- Equitable top trading cycle --------------------
%----------------------------------------------------------------
 
clear all
clc
 
load('a10o5alpha0.65.mat')
DP=zeros(size(student_preference_p,1),1);
total_blockings=0;
q=1;
 
st=33;
student_preference=student_preference_p(:,:,st);
 
for i=1:2
student_ID(i,:)=1:size(student_preference,2); %define 2 rows for student id, in futre 
the first row would be column ID
end
 
sc=20;
school_preference=school_preference_p(:,:,sc); %sc=1
 
 
%school_capacity=xlsread('C:\Users\pooya\Dropbox\economic design\matlab codes\ETTC\TTC.
xlsx',3);
school_capacity=[2 2 2 2 2];
original_school_capacity=school_capacity;
for i=1:2
school_ID(i,:)=1:size(school_preference,2);
end
school_in_cycle=zeros(1,size(school_preference,2));%if a school is tentatively in cycle 
we will put a number of 1 for it.
student_in_cycle=zeros(1,size(student_preference,2));
%below is matching matrix
match=zeros(2,size(student_ID,2)); %matching matrix
for i=1:size(student_ID,2) %second row of matching matrix is students ID first row will 
be filled with sschool allocation
    match(2,i)=i;
end   
%%%%%%end of matching matrix
 
[ ETTC_pairs ] = ETTC_pair_v2( school_preference,school_capacity ) % fiinding school-
student pairs
nn = nnz(ETTC_pairs); %number of none zero elements (maximum number of loops)
 
% ETTC_pairs are set of doable matches fro schoool preference
ETTC_pairs(:,:,2)=0; %each element would be equal to one if they are in cycle
 
ia_c=1; % a generic element for scool that we are working on it
    ii=1; % number of row that is going to be matched
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    ibb_r=1;
mm=1;
zz=1; 
 
 
for jj=1:50*nn% until every thing is allocated
    
   
 
    if ETTC_pairs(ii,ia_c,2)==1 % when a loop forms
    
        % ia_c=1;
         %ii=1; 
         ibb=ETTC_pairs(ii,ia_c); % student ID
         ETTC_pairs(:,:,2)=0;
 
    % start allocating--------------------------------------------------
    for m=1:mm 
       
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%for second round (student column)
 
ibb_c=find_column_st( student_ID,ibb ); % columns that have students that need to be 
allocated
ia_c_i=ia_c; %??
ia=student_preference(1,ibb_c); %first preference of student (that is the column that w 
should go for it)
 
 
match(1,ibb)=ia;
 
for i=1:size(ETTC_pairs,1) % find the student that has been matched
if ETTC_pairs(i,ia_c)==ibb
ii=i;
end
end
ETTC_pairs(ii,ia_c,2)=1;
 
 
ia_c=find_column_st( school_ID,ia );
 
ibb= highest_rank( ETTC_pairs,school_preference,ia_c,ia_c_i ); 
 
 
    end
    %-------end of allocation
    
[ school_capacity,school_preference,school_ID,student_preference,S_CO,s,ETTC_pairs ] = 
new_capacity_v2( match,original_school_capacity,school_preference,school_ID,
student_preference,ETTC_pairs );%school capacity reduced from matching matrix
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% delete assigned students in "ETTC_pairs"
 
for i=1:size(match,2)
    if match(1,i)~=0
        ETTC_pairs(ETTC_pairs==match(2,i))=0;
 
    end
end  
ETTC_pairs=st_zeros_button(ETTC_pairs);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%end of deleting assgned students
 
%%%%%%%%%%%%%%%%%this should be corrected
[ ETTC_pairs ] = ETTC_pair_v3( school_preference,school_capacity,ETTC_pairs );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    % delete 
    mm=1;
[ student_ID,student_preference ] = del_assigned_st( match,student_ID,
student_preference,s );
         ETTC_pairs(:,:,2)=0;
 
 
[ student_preference ] = st_zeros_button( student_preference );
irs );
ii=1;
ia_c=1;
    else
 
if mm==1
      ETTC_pairs(1,ia_c,2)=1; % first element that participated
ibb=ETTC_pairs(1,ia_c); % student ID of the first element
 
  else
ETTC_pairs(ibb_r,ia_c,2)=1; % next element that participated
ibb=ETTC_pairs(ibb_r,ia_c); % student ID of next element
  end
  %!!!! end of this consideration
ia_c_i=ia_c;
%%%%%%%%%%%%%%%%%%%%%%%%%%%for second round (student column)
student_column=[];
ibb_c=find_column_st( student_ID,ibb );
%%%%%%%%%%%%%%%%%end of it
ia=student_preference(1,ibb_c); %#first preference of student (that is the column that 
w should go for it)
% we may have many items and we have to find bests of them
% we can have many students in  the school side
%Find column of school
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school_column=[];
ia_c=find_column_st( school_ID,ia );
%%%%%%%%%%%% find the best among many
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%we need to put monover here
if ia_c_i~=ia_c
ibb = highest_rank( ETTC_pairs,school_preference,ia_c,ia_c_i ); 
end
 
for i=1:size(ETTC_pairs,1) %best ranked agent must participate
if ETTC_pairs(i,ia_c)==ibb
ii=i;
end
end
 
 
mm=mm+1;
[ ibb_r ] = find_row_st( ETTC_pairs,ibb,ia_c );
    end
if isempty(ETTC_pairs)
    break
end
end
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%--------finding Justified envy instances-----
%---------------------------------------------
function [ blocking_pairs ] = block_finder( student_preference,school_preference,match 
)
n=0; %number of blocking pairs
 
for i=1:size(student_preference,2) % "i" stands for student
sc_m=match(1,i); % school which is matched
%-------for finding rank of the matched school in students preference -----
for j=1:size(student_preference,1)  
   if student_preference(j,i)==sc_m
    rank_sc=j;
    break
   end
end
if rank_sc~=1 % if it is first rank we do not have blocking pair for sure
%-----finding the schools above the matchings with higher preferences---
    for j=1:rank_sc-1 
sc=student_preference(j,i); % each school above the ranking 
 
rank_st=[];
for k=1:size(match,2) %finding matched student with any of the schools above preference 
??????we may have more than one student
if match(1,k)==sc
    st=match(2,k)
    for k=1:size(school_preference,1) %for finding rank of the matched thing in schools 
preference list
   if school_preference(k,sc)==st
    rank_st=[rank_st k]
    break
end
end
end
end
%------------------
% here we  will ahve number of blocking pairs but we can have number of
% matched pairs that have been blocked.
%------------------
 
rank_st=max(rank_st); % if its blocked pairs we have to compare it with every number in 
the set
 
if rank_st~=1
for k=1:rank_st-1
    if school_preference(k,sc)==i
        n=n+1;
    end
end
end
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end
end
end
 
blocking_pairs=n;
end
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