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ABSTRACT 

Vibration Analysis of Thickness-Tapered Laminated Composite Square Plates Based on 

Ritz Method 

Babak Arab 

Thickness-tapered laminated composite plates provide stiffness- and mass-tailoring design 

capabilities such that they are widely used in aerospace applications including space structures. In 

the present work, the free and forced vibration response of symmetric linearly-thickness-tapered 

laminated composite square plates are considered with a variety of taper configurations and 

boundary conditions. Since exact and closed-form solutions for the natural frequencies and mode 

shapes of the plates could not be obtained from the corresponding complex partial differential 

equations in space and time coordinates, the Ritz method in conjunction with the Classical 

Laminated Plate Theory (CLPT) and then the First-order Shear Deformation Theory (FSDT) is 

used to obtain the system’s mass and stiffness matrices for out-of-plane bending vibration. The 

natural frequencies and mode shapes are determined. Afterward, the forced vibration response to 

harmonic loadings of the plates are determined by using the assumed modes method using the 

mass and stiffness matrices along with the corresponding natural frequencies and mode shapes 

obtained from the free vibration analysis. Several distributed line loads are considered for the 

forced vibration analysis of the plates with and without damping. Then, the demonstration of 

solution accuracy is performed by comparing the results obtained in free and forced vibration 

analysis, with the solutions available in literature and the solution based on the Finite Element 

Method using ANSYS®. Moreover, hybrid (uniform thick – taper – uniform thin) laminated 

composite plates are studied for the effects of taper length and taper angle on the amplitudes of the 

maximum deflections of these plates. 
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Chapter 1 : ____________________________________________________ 

Introduction 

1.1 Vibration analysis 

Vibration is a mechanical phenomenon in which oscillatory motions of bodies with 

associated forces occur about equilibrium points. In general, vibrations are undesired as they are 

responsible for wasting energy, creating noise and poor performance of mechanical, structural and 

mechatronic systems. Unfortunately, they are capable of creating devastating effects on the 

efficiency and/or operating lifetime of the machine components and structures. Vibration may 

cause fatigue, the most common failure mechanism in mechanical structures, and in some cases 

lead to catastrophic failure. Therefore, developing efficient methods for eliminating this 

phenomenon has always been a major research interest. 

1.2 Free vibration 

Free vibration analysis is a well-known topic and a key component in the analysis of forced 

vibrations. In addition, another reason behind the importance of the free vibration analysis is to 

avoid resonance. Free vibration is a phenomenon in which a mechanical system is set in motion 

by initial displacement and/or velocity in the absence of any external forces. In this kind of 

oscillations, the total energy, and consequently, the amplitude of vibration stays the same if there 

is no damping. In practice, amplitude eventually decays away to zero due to the dissipation of 

energy (damping effect). 

The term free vibration, also known as natural vibration, is always associated with natural 

frequency, the frequency with which a free vibrating system oscillates. A system may have several 

natural frequencies while the system is allowed to vibrate solely with one natural frequency at a 

time. The lowest natural frequency of an oscillatory system is called fundamental frequency which 

is usually the most important one in the analysis. For any natural frequency, there exists a normal 

mode or mode shape, a pattern of motion in which all parts of the system move with the same 

frequency. 
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1.3 Forced vibration 

In contrast to free vibration which, once started, is left alone, forced vibration occurs when 

a system is continuously driven by external stimulus. This external excitation can be a periodic 

and steady-state, a transient or a random input. In general, two types of forced vibration, 

deterministic and non-deterministic referred to as random, are defined. A deterministic vibration 

is the one that can be characterized precisely, whereas a random vibration is merely analyzed 

statistically. An example of deterministic vibration is that due to an applied load varying 

sinusoidally called harmonic loading. Harmonic excitation is often encountered in engineering 

systems. It is also commonly produced by the unbalance in rotating machinery. A phenomenon 

called resonance occurs in a system when the frequency of dynamic periodic load and the 

frequency of free vibration of the system coincide. Specifically, resonance occurs when the 

frequency of the applied force coincides with one of the natural frequencies of the driven system. 

In this coincidence, periodic excitation optimally transfers the energy to the system so that the 

amplitude with which the system vibrates, increases gradually until the system is damaged. 

Obvious examples of forced vibration include the vibration of the floor of a factory due to the 

running heavy machineries or the vibration of a building during an earthquake. 

1.4 Ritz Method 

Differential equations originating from Newton’s law and governing a vibrating system are 

the key components in solving a vibration problem. However, depending on the problem, solving 

the governing differential equations of a mechanical system can be a complicated task or in some 

cases, the exact analytical solution for the equations is not available. Due to the taper configuration 

of the laminated composite plates, the coefficients of the governing partial differential equations 

are expected to be functions of 𝑥 (the direction of the taper) such that solving the differential 

equations is quite complicated if not impossible. Therefore, numerical methods of analysis provide 

the alternative methods for finding the solutions. The Ritz method referred to as classical 

variational method, one of the most powerful of existing techniques for the approximate analytical 

and numerical solution of functional equations, offers the alternative method to overcome the 

problem and typically has been used in the literature. 
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Lord Rayleigh was an English Physicist, published his renowned book “Theory of Sound” 

in 1877. He explained the calculation method to determine the fundamental natural frequency of a 

continuous system such as strings, bars, beams, membranes and plates in his book. The principle 

of Rayleigh’s method is based on assuming the mode shape and equating the maximum potential 

and kinetic energies in a cycle of motion, Ref. [1]. 

In 1908, Walter Ritz used the principle of multiple admissible displacement functions to 

determine the frequencies and mode shapes of any structural member. He demonstrated his method 

by determining the natural frequency of a completely free square plate. Consequently, Rayleigh 

used the same principle in his book and another publication. After a while, many researchers used 

this method, some calling it the ‘Ritz method’ and others, the ‘Rayleigh-Ritz’ method, Ref. [1]. 

The Ritz method has gained popularity in the last few decades to accurately determine the 

natural frequencies and mode shapes of vibration of continuous systems, especially if the exact 

solution is not available. This method became more applicable after the discovery of digital 

computer. The success of this method in a boundary value problem or in an eigenvalue problem 

depends on accurately assuming the solution in the form of series of approximate displacement 

functions which must satisfy the geometric boundary conditions, Ref. [1]. 

In the present study, the Ritz method is used to solve the eigenvalue problem of a tapered 

composite plate in natural vibration investigation. 

1.5 Composite materials 

A composite material consists of an assemblage of two or more materials of different 

natures and allows us to obtain a material of which the set of performance characteristics such as 

high strength and high modulus to weight ratios, corrosion resistance, thermal properties, fatigue 

life and wear resistance and increased tolerance to damage is greater than that of the components 

taken separately, Refs. [2] and [3]. Fiber-reinforced composites (FRC) are lightweight materials 

and provide sufficient strength for carrying loadings. Therefore, in spite of high cost, they are used 

in aerospace components such as wings and fuselages. Weight reduction by use of tapered 

composite laminates in helicopter blades that rotate with high angular velocity (tip velocity of 200 
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m/s), results in less fuel consumption, and consequently, in longer operational range for the 

helicopter. 

Carbon fiber is one of the most important high-performance fibers for military and 

aerospace applications. High-strength carbon fiber came out of the development laboratories in 

Japan, England, and the United States in the late 1960s. The initial fibers were very expensive 

(more than 400 to 500 dollars per pound) which limited their applications to high-value military 

aerospace and space systems. The results of early military composite development programs can 

be seen today in systems fielded by each of the military services. For example, more than 350 parts 

of the F-22 Raptor, accounting for 25 percent of the structural weight, are carbon-epoxy 

composites. But in the early 1970s, continuous processes were developed and the cost declined 

steadily over the next decade. The Air Force Materials Laboratory took the lead in U.S. 

government-sponsored material development and hardware demonstration. By the late 1970s, 

composite materials were used in the production of primary structures for military aircraft and 

missiles. These applications were followed by selective use in commercial aircraft. For 20 years, 

between 1969 and 1989, the carbon fiber industry had phenomenal technological success and 

double-digit annual growth in aerospace and defense industries, with additional use in sports 

equipment and some limited use in automotive and industrial applications. This growth attracted 

many large international companies into the industry. The vision was that continued growth in 

military and commercial aircraft use would be followed by a very large industrial market by the 

year 2000, Ref. [3]. 

1.6 Tapered laminates 

Due to outstanding mechanical properties, composite materials are widely used in industry 

and they come in various shapes and structures depending on the requirements. The tapered 

composite plates are popular in the aerospace industry and are used in manufacturing the structures 

such as rotor blades of helicopters or aircraft wings. Thickness reduction in tapered composites 

can be implemented by the termination of plies at different locations providing the tapered plate 

with customized-stiffness property which is an absent capability in uniform laminates. The initial 

application of tapered laminated composites dates back to mid-1980s when commercial and 
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military sectors demanded, elastically-customizable components with higher weight to stiffness 

ratio, Refs. [4], [5] and [6].  

1.7 Literature survey 

In this section, a comprehensive literature survey is presented on the important studies 

carried out on the free and forced vibration response of uniform and thickness-tapered laminated 

composite plates, in some cases beams, and the application of the Ritz method in tapered composite 

plates. Before composite material is revealed, homogeneous materials were the main subjects for 

researchers to focus on, and engineers to build complex structures. When composites were 

introduced, due to unique mechanical properties, a lot of studies were completed on the material. 

The works that have been done on composite materials are mainly confined to uniform plates and 

there has been a limited amount of literature on the vibration analysis of thickness-tapered 

laminated composite plates, in spite of their applicability. 

1.7.1 Free vibration 

There are lots of work done on natural vibration of uniform rectangular composite beams 

and plates using different approaches. In addition, some studies have been conducted on tapered 

composite beams and plates.  This sub-section is dedicated to a review of these works. 

By using stochastic Rayleigh-Ritz approach, Venini and Mariani, Ref. [7], studied the free 

vibrations of uncertain composite plates. Ganesan and Zabiholla, Ref. [8] analyzed the natural 

vibration response and buckling of uniform-width and thickness-tapered composite beams made 

of NCT-301 Graphite-Epoxy laminas using both conventional and advanced finite element 

methods based on CLPT and FSDT. Berthelot, Ref. [2], has found the exact solutions for the free 

vibrations of uniform laminated composite plates. Reddy, Ref. [9], Berthelot, Ref. [2], and Jones, 

Ref. [10], have found the exact solutions for the free vibrations of uniform laminated composite 

beams. Whitney, Ref. [11], analyzed the effect of boundary conditions on vibrations of uniform 

unsymmetrically laminated rectangular plates. Using Ritz method, Leissa and Baharlu, Ref. [12], 

developed a method for analysis of free vibration and buckling of uniform laminated composite 

plates with arbitrary boundary conditions. Natural frequencies and buckling stresses of uniform 

cross-ply laminated composite plates were investigated by Matsunaga, Ref. [13], considering the 



6 

 

effects of thickness change, shear deformation and rotary inertia. Wu and Chen, Ref. [14], by a 

higher-order theory of plate deformation, determined the natural frequencies and buckling loads 

of uniform laminated composite plates. Ganesan and Nabi, Ref. [15], based on FSDT, developed 

a general finite element formulation to study the natural vibration of laminated composite beams. 

Bert and , Ref. [16], presented an analysis on varying-thickness thin rectangular plate with 

two opposite edges simply supported and general boundary conditions between the other two 

edges. The boundary conditions at these two edges may be quite general. For isotropic or especially 

orthotropic laminated plates, the derived solution method is capable of yielding highly accurate 

results with very small computational effort. 

Malekzadeh, Ref. [17], has carried out large amplitude free vibration analysis of tapered 

Mindlin rectangular plates made of isotropic materials and with elastically restrained against 

rotation edges using differential quadrature method (DQM), and took advantage of direct iterative 

method to solve the nonlinear eigenvalue system of equations. The paper presents a parametric 

study on linearly and bi-linearly varying thickness plates. 

An improved Fourier series method has been presented by Zhang et al, Ref. [18], for the 

free vibration analysis of the moderately thick uniform laminated composite rectangular plate with 

non-uniform boundary conditions. Under the framework, the displacement and rotation functions 

are generally sought, regardless of boundary conditions, in spectral form, as a double Fourier 

cosine series and three supplementary functions. All the series expansion coefficients are treated 

as the generalized coordinates and determined using the Ritz method. The authors claim that the 

method is capable to be applied universally to a wide spectrum of plate vibration problems 

involving different boundary conditions, varying material, and geometric properties while no 

modification is required for the basic functions.  

Houmat, Ref. [19], studied the free vibration of variable stiffness laminated 

composite rectangular plates on the basis of three-dimensional elasticity theory combined with 

the p-version of the finite element method. Results are obtained for frequencies, modal 

displacements, and modal stresses of symmetric and anti-symmetric laminates with various 

boundary conditions. The frequencies predicted by the equivalent single-layer classical plate 

theory and first-order shear deformation theory show deviation from three-dimensional solutions.  

https://www.sciencedirect.com/science/article/pii/S0022460X96900462#!
https://www.sciencedirect.com/science/article/pii/S0022460X96900462#!
https://www.sciencedirect.com/science/article/pii/S0020740316310669?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0263822318300850#!
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1.7.2 Forced vibration 

There are a lot of works done on free vibrations of plates and beams made of isotropic 

material or composite. However, studies on forced vibration of uniform beams and plates, 

particularly tapered ones, are remarkably less in numbers and many of them are confined to Finite 

Element Analysis. 

Babu et al, Ref. [20], have investigated the free and forced transverse vibration 

characteristics of a tapered laminated thick composite plate due to harmonic excitation using finite 

element method based on First-order Shear Deformation Theory for three types of taper 

configurations considering rotary inertia effect. The study has been validated by experimental 

measurements and available literature. Eftakher, Ref. [21], investigated free and forced vibration 

of uniform-width thickness-tapered laminated composite beams using Ritz method by both 

conventional and advanced finite element formulations. 

Reddy, Ref. [9], derived an analytical solution for uniform composite plates subjected to 

transverse loadings with all simply supported edges based on Classical Laminated Plate Theory.in 

the method, transverse excitation is expanded in Fourier series. 

Kumar Gupta et al, Ref. [22], presented analysis of forced vibrations of non-homogeneous 

rectangular plate with linearly-varying thickness subjected to a uniformly distributed harmonic 

lateral load based on Classical Laminated Plate Theory. The non-homogeneity of the plate material 

is assumed to occur due to the linearly-changing density.  

Babu et al, Ref. [23], also investigated the dynamic properties of three different 

configurations of the thickness tapered laminated composite plate with different boundary 

conditions using Finite Element Method based on Classical Laminated Plate Theory (CLPT) and 

studied dynamic response of free and forced vibration due to harmonic loading. Results obtained 

from computations have been compared with that of literature and experimental measurements in 

order to validate the study. The experimental measurements have been performed for CFFF and 

CFCF plates. The paper shows that dynamic properties of a composite plate could be tailored by 

dropping the plies. 
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Darabi and Ganesan, Ref. [24], investigated the dynamic instability of internally-thickness-

tapered laminated composite plates subjected to harmonic in-plane loading based on non-linear 

vibration analysis. They considered the non-linear von Karman strains associated with large 

deflections and curvatures and examined the non-linear dynamic stability characteristics of 

symmetric cross-ply laminates with different taper configurations. In the paper, a comprehensive 

parametric study has been carried out to examine and compare the effects of the taper angles, 

magnitudes of both tensile and compressive in-plane loads and aspect ratios of the tapered plate 

including length-to-width and length-to-average-thickness ratios on the instability regions and the 

parametric resonance particularly the steady-state vibrations amplitude. 

Seraj and Ganesan, Ref. [25], has conducted the dynamic instability analysis of doubly-

tapered cantilever composite beams rotating with periodic rotational velocity for out-of-plane 

bending (flap), in-plane bending (lag) and axial vibrations. A comprehensive parametric study has 

been  crried out to investigate the effects of taper configurations and various system parameters 

including mean rotational velocity, hub radius, double-tapering angles and stacking sequences, on 

the dynamic instability characteristics of the composite beam. 

1.8 Objectives of the thesis 

The dynamic response of thickness-tapered laminated composite plates is concerned within the 

present thesis. The main objectives of the present study are the following: 

1. To investigate the free vibration response of thickness-tapered laminated composite square 

plates using the Ritz method, based on Classical Laminated Plate Theory (CLPT) and First-order 

Shear Deformation Theory (FSDT) and to study the effects of taper angle, taper configuration and 

boundary conditions on the fundamental frequencies of the laminates. 

2. To investigate the forced vibration response of undamped and damped thickness-tapered 

laminated composite square plates using assumed modes method and modal analysis approach and 

to study the effects of taper angle, taper configuration and boundary conditions on the transverse 

deflection amplitude of the plate. 
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3. To study the free and forced vibration response of laminated composite hybrid square 

plates using the formulations developed for the thickness-tapered laminated composite square 

plates. 

1.9 Layout of the thesis 

The present chapter provides a brief introduction and literature survey on free and forced 

vibrations of thickness-tapered laminated composite plates. 

In chapter 2, free vibration of thickness-tapered laminated composite plates using Ritz 

method based on Classical Laminated Plate Theory (CLPT) and First-order Shear Deformation 

Theory (FSDT) is analyzed. For demonstration, the obtained results are compared with that of 

available literature and the exact solution for the uniform laminate. Then, the layer reduction test 

is conducted to compare the fundamental frequency of the thickness-tapered laminated composite 

plates with the corresponding uniform thick and thin ones. A parametric study on laminate length, 

taper angle and laminate configurations for different boundary conditions is done and the obtained 

data based on CLPT and FSDT are displayed in the tables and compared by the graphs. 

In chapter 3, forced vibration of thickness-tapered laminated composite plates is 

investigated based on assumed modes method and Multi Degree of Freedom System (MDOF) 

model using the natural frequencies, mode shapes, and mass and stiffness matrices determined in 

chapter 2. Then, the numerical results are validated using available literature as well as using the 

exact closed-form solution for the uniform laminate with all edges simply supported. The layer 

reduction test similar to that performed in chapter 2, is conducted on the transverse deflection of 

the tapered plates. The deflections of the thickness-tapered laminated composite plates due to 

applied line loads are plotted by the corresponding graphs for different taper configurations and 

boundary conditions. 

In chapter 4, the free vibration analysis is carried out on the laminated composite hybrid 

square plates and based on that, the forced vibration response of the hybrid laminates due to 

transverse excitation is investigated and the obtained results are analyzed and discussed. 
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Chapter 5 provides an overall conclusion of the present work and some recommendations 

for the future works. 
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Chapter 2 : _______________________________________________________ 

Free vibration analysis of tapered composite plates 

2.1 Introduction 

Due to outstanding mechanical properties, composite laminates are increasingly used in 

industry and they come in various shapes and structures depending on the requirements. Tapered 

composite plates are popular in aerospace industry, i.e. in the structures such as rotor blades of 

helicopters or aircraft wings, wherein the thickness is gradually decreased towards the tip, tapered 

composite plates are used. Thickness reduction in tapered composites can be implemented by 

termination of plies at different locations providing the tapered plate with customized stiffness 

property which is an absent capability in uniform laminates. 

Classical Laminated Plate theory known as CLPT based on ‘Kirchhoff Hypothesis’ is 

commonly used to model plate behavior. The ratio of the in-plane elastic modulus to the transverse 

shear modulus is large for composite plates and CLPT neglecting the transverse shear deformation 

is adequate for the analysis of the thin plates. However, for investigation of thick and 

moderately-thick plates, CLPT is unable to output a satisfying result, therefore, more advanced 

theories such as First-order Shear Deformation Theory (FSDT) developed by Reissner (1945) and 

Mindlin (1951) can be used to perform the analysis. Since this theory considers the transverse 

shear stresses, it is capable to produce more accurate results in comparison with CLPT.  

In this chapter, free vibration analysis of tapered laminated composite plates with different 

configurations and boundary conditions is considered, based on CLPT and FSDT. Since exact 

closed-form solution cannot be obtained from the complex partial differential equation, the Ritz 

method is used to obtain the system’s mass and stiffness matrices and then natural frequencies, for 

out-of-plane bending vibration. Based on the theories, the stress and strain distributions determined 

in terms of fiber and taper angles are used to calculate kinetic and strain energies. Afterward, the 

natural frequencies and corresponding mode shapes are obtained by solving the eigenvalue 

problem obtained using the Ritz method. Then, the obtained result is compared with that available 

in literature and with Finite Element Analysis (ANSYS®) solution. A “layer reduction test” is also 



12 

 

carried out for concrete validation and to observe the fundamental frequency change with the 

increase in taper angle. 

2.2 Taper configurations 

In this section, four tapered composite laminated plate configurations are described on 

which analysis is carried out throughout the thesis. Similar taper configurations are commonly 

used in industry and have been studied in literature [3], [23], [34]. To provide a visual perception, 

these configurations are shown in Figure 2.1. 

 

Configuration A 

 

Configuration B 

 

Configuration C 

 

Configuration D 

 

Figure 2.1 Taper configurations and the global coordinate system 



13 

 

The tapered laminated square plates are considered with laminate configuration of 

(0 90⁄ )9𝑠 and (0 90⁄ )3𝑠 at the left and right ends, respectively, and to be made of resin and 

unidirectional NCT-301 Graphite-Epoxy material with ply thickness of 125 × 10−6 m. The 

lengths of the laminates are dependent on the taper angle. For each taper configuration, the study 

is carried out for different taper angles and boundary conditions that are introduced and explained 

in further sections. 

2.3 Stress and strain transformations 

Transformation of coordinate systems is a common problem in mechanics of materials. 

Here, the formulation for transformation of coordinate systems and the derivation corresponding 

to strains and stresses are performed according to Refs. [2] and [5] as a requirement for the 

vibration analysis. 

The 𝑅 
 −  𝑅 𝑅 

 +  coordinate system is considered according to the right-hand rule. If the axis 

about which rotation occurs by an arbitrary angle 𝛾 is called 𝑅, then, the direction cosines for the 

new (rotated) coordinate system 𝑅 
 − ′ 𝑅′ 𝑅 

 + ′ with respect to the coordinate system 𝑅 
 −  𝑅 𝑅 

 + , are: 

 𝑅 
 −  𝑅 𝑅 

 +  

𝑅 
 − ′ cos( 𝑅 

 − , 𝑅 
 − ′ ) = 𝑐𝑜𝑠(𝛾)   cos( 𝑅, 𝑅 

 − ′ ) = 0 cos( 𝑅 
 + , 𝑅 

 − ′ ) = −sin (𝛾) 

𝑅 
    ′ cos( 𝑅 

 − , 𝑅 
    ′ ) = 0             cos( 𝑅, 𝑅 

    ′ ) = 1 cos( 𝑅 
 + , 𝑅 

    ′ ) = 0               

𝑅 
 + ′ cos( 𝑅 

 − , 𝑅 
 + ′) = sin (𝛾) cos( 𝑅, 𝑅 

 + ′) = 0 cos( 𝑅 
 + , 𝑅 

 + ′) = 𝑐𝑜𝑠(𝛾)    

Table 2.1 Direction cosines for rotation about axis 𝑅 

The Figure 2.2 shows the rotation of coordinate system 𝑅 
 −  𝑅 𝑅 

 +  about axis 𝑅 by an 

arbitrary angle 𝛾 and the new (rotated) coordinate system 𝑅 
 − ′ 𝑅′ 𝑅 

 + ′. 
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Figure 2.2 Rotation of a coordinate system about an axis 

Consider an arbitrary layer 𝑘 from the tapered configurations shown by  Figure 2.1. The 

local coordinate system 𝑥′′𝑦′′𝑧′′ is assumed on the layer 𝑘, with 𝑥′′ axis directed along the fiber 

orientation and 𝑧′′ perpendicular to the surface of the layer as shown in Figure 2.3. By taper angle 

𝜑, the global coordinate system 𝑥𝑦𝑧 is rotated counterclockwise about the 𝑦 axis to establish the 

coordinate system 𝑥′𝑦′𝑧′, and in turn,  𝑥′𝑦′𝑧′ is rotated by fiber orientation angle 𝜃𝑘 
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counterclockwise, about the 𝑧′ axis, to correspond to local coordinate system 𝑥′′𝑦′′𝑧′′. Figure 2.3 

illustrates the coordinate systems 𝑥𝑦𝑧, 𝑥′𝑦′𝑧′ and 𝑥′′𝑦′′𝑧′′. 

 

Figure 2.3 Global and local coordinate systems 

Transformation of stresses from the 𝑥𝑦𝑧 coordinate system to the 𝑥′𝑦′𝑧′ coordinate system 

is performed using transformation matrix [𝑇𝜎𝜑]. In addition to [𝑇𝜎𝜑], this explanation corresponds 
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to strain transformation matrix [𝑇𝜀𝜑] in the same way. In equations (2.1) and (2.2), the stresses and 

strains in the 𝑥𝑦𝑧 and 𝑥′𝑦′𝑧′ coordinate systems are connected using transformation matrices [𝑇𝜎𝜑] 

and [𝑇𝜀𝜑]. 

{
 
 

 
 
𝜎𝑥′𝑥′
𝜎𝑦′𝑦′
𝜎𝑧′𝑧′
𝜏𝑦′𝑧′
𝜏𝑥′𝑧′
𝜏𝑥′𝑦′}

 
 

 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑙1
2 𝑙2

2 𝑙3
2 2𝑙2𝑙3 2𝑙1𝑙3 2𝑙1𝑙2

𝑚1
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2 𝑚3
2 2𝑚2𝑚3 2𝑚1𝑚3 2𝑚1𝑚2

𝑛1
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2 𝑛3
2 2𝑛2𝑛3 2𝑛1𝑛3 2𝑛1𝑛2

𝑚1𝑛1 𝑚2𝑛2 𝑚3𝑛3
𝑚3𝑛2
+𝑚2𝑛3

𝑚3𝑛1
+𝑚1𝑛3

𝑚2𝑛1
+𝑚1𝑛2
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𝑙3𝑛2
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+𝑙1𝑚3
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𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

 (2.1) 
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 (2.2) 
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In equations (2.1) and (2.2), the elements within the transformation matrices are direction 

cosines for the coordinate systems 𝑥𝑦𝑧 and 𝑥′𝑦′𝑧′ given by Table 2.2. Depending on the axis about 

which rotation occurs, direction cosines are set according to Table 2.1. 

 𝑥 𝑦 𝑧 

𝑥′ 𝑙1 = 𝑐𝑜𝑠(𝜑) 𝑙2 = 0 𝑙3 = −sin (𝜑) 

𝑦′ 𝑚1 = 0 𝑚2 = 1 𝑚3 = 0 

𝑧′ 𝑛1 = sin (𝜑) 𝑛2 = 0 𝑛3 = 𝑐𝑜𝑠(𝜑) 

Table 2.2 Direction cosines corresponding to taper angle 𝜑 

The equations (2.1) and (2.2) are expressed in compact form. 

{𝜎′} = [𝑇𝜎𝜑]{𝜎} (2.3) 

{𝜀′ } = [𝑇𝜀𝜑]{𝜀} (2.4) 

The direction cosines in terms of 𝜃𝑘 are expressed in a similar manner between the 𝑥′𝑦′𝑧′ 

and 𝑥′′𝑦′′𝑧′′ coordinate systems and the corresponding transformation matrices are written. 

[𝜎′′] = [𝑇𝜎𝜃][𝜎
′] (2.5) 

[𝜀′′] = [𝑇𝜀𝜃][𝜀
′] (2.6) 

In the local coordinate system 𝑥′′𝑦′′𝑧′′, the stiffness [𝐶′′] and compliance [𝑆′′] matrices 

of a unidirectional ply considered as a transversely-isotropic material, according to Ref. [2], are 

expressed. It is noted that [𝐶′′] = [𝑆′′]−1. 
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[𝐶′′] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐶11
′′ 𝐶12

′′ 𝐶12
′′ 0 0 0

𝐶12
′′ 𝐶22

′′ 𝐶23
′′ 0 0 0

𝐶12
′′ 𝐶23

′′ 𝐶22
′′ 0 0 0

0 0 0
𝐶22
′′ − 𝐶23

′′

2
0 0

0 0 0 0 𝐶66
′′ 0

0 0 0 0 0 𝐶66
′′

   

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.7) 

[𝑆′′] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑆11
′′ 𝑆12

′′ 𝑆12
′′ 0 0 0

𝑆12
′′ 𝑆22

′′ 𝑆23
′′ 0 0 0

𝑆12
′′ 𝑆23

′′ 𝑆22
′′ 0 0 0

0 0 0 2[𝑆22
′′ − 𝑆23

′′ ] 0 0

0 0 0 0 𝑆66
′′ 0

0 0 0 0 0 𝑆66
′′ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.8) 

Considering equations (2.7) and (2.8), according to Ref. [2], the elements within the 

transformation matrices are as follows. 
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𝑆11
′′ = 1 𝐸𝑥′′

⁄  (2.9) 

𝑆12
′′ = −(𝜐𝑥′′𝑦′′ 𝐸𝑥′′⁄ ) (2.10) 

𝑆22
′′ = 1 𝐸𝑦′′⁄  (2.11) 

𝑆23
′′ = −(𝜐𝑦′′𝑧′′ 𝐸𝑦′′⁄ ) (2.12) 

𝑆66
′′ = 1

𝐺𝑥′′𝑦′′
⁄  (2.13) 

Within a coordinate system, the strains and stresses are connected by the stiffness or 

compliance matrices in the stress-strain equation. For the 𝑥𝑦𝑧 and 𝑥′′𝑦′′𝑧′′ coordinate systems the 

stress-strain relations are expressed. 

{𝜎} = [𝐶]{𝜀} (2.14) 

{𝜎′′} = [𝐶′′]{𝜀′′} (2.15) 

In local coordinate system 𝑥′′𝑦′′𝑧′′ when fibers of the 𝑘th layer are oriented along the 𝑥′′ 

axis, the layer, according to Ref. [2] with fine approximation, is assumed as a transversely-

isotropic material with stiffness [𝐶′′] and compliance [𝑆′′] matrices described by equation (2.7) 

and (2.8), respectively. In the global coordinate system 𝑥𝑦𝑧, the stiffness matrix [𝐶] of the layer 𝑘 

with the fibers unparallel to the 𝑥 axis is obtained in terms of [𝐶′′] and angles 𝜑 and 𝜃𝑘, using the 

equations (2.3) to (2.6) as well as equations (2.14) and (2.15). 

[𝐶] = [𝑇𝜎𝜑]
−1
[𝑇𝜎𝜃]

−1[𝐶′′][𝑇𝜀𝜃][𝑇𝜀𝜑] (2.16) 

In equation (2.16), the stiffness matrix [𝐶] in the global coordinate system is calculated in 

terms of angles 𝜑 and 𝜃𝑘 as well as [𝐶′′], which is the stiffness matrix in local coordinate system 

𝑥′′𝑦′′𝑧′′ containing the mechanical properties of the transversely-isotropic material 

(NCT-301 Graphite-Epoxy) ply 𝑘. 
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Mechanical properties of the unidirectional ply made of NCT-301 Graphite-Epoxy 

(considered as the transversely-isotropic material) and resin (the isotropic material) obtained 

experimentally, are given by Ref. [26]. 

Mechanical Properties of Unidirectional NCT-301 Graphite-Epoxy Ply 

𝐸1 = 113.9 GPa 𝐺12 = 3.137 GPa 𝜐12 = 0.288 

𝜌𝑝 = 1480 kg/m3 

𝐸2 = 7.985 GPa 𝐺23 = 2.852 GPa 𝜐21 = 0.018 

Mechanical Properties of Epoxy Resin 

𝐸 = 3.93 GPa 𝐺 = 1.034 GPa 𝜐 = 0.37 𝜌𝑟 = 1000 kg/m
3 

Table 2.3 Mechanical properties of NCT-301 Graphite-Epoxy ply and resin [26] 

The subscripts 1, 2 and 3 in Table 2.3 correspond to 𝑥′′, 𝑦′′ and 𝑧′′, respectively, in local 

coordinate system 𝑥′′𝑦′′𝑧′′. 

2.4 CLPT and FSDT 

Natural frequencies of the tapered plates are obtained using the Ritz method based on 

Classical Laminated Plate Theory (CLPT) and First-order Shear Deformation Theory (FSDT). In 

order to apply the Ritz method and to determine the natural frequencies, the stiffness and mass 

matrices are obtained from the calculation of displacements, strains and stresses expressed based 

on CLPT and FSDT.  

Displacements based on FSDT are written as follows according to Ref. [2]. 

𝑢 𝐹 
  (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑜 𝐹 

  (𝑥, 𝑦, 𝑡) + 𝜑𝑥(𝑥, 𝑦, 𝑡)𝑧 (2.17) 

𝑣 𝐹 
  (𝑥, 𝑦, 𝑧, 𝑡) = 𝑣𝑜 𝐹 

  (𝑥, 𝑦, 𝑡) + 𝜑𝑦(𝑥, 𝑦, 𝑡)𝑧 (2.18) 

𝑤 𝐹 
  (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑜 𝐹 

  (𝑥, 𝑦, 𝑡) (2.19) 
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where, 𝑢 𝐹 
  , 𝑣 𝐹 

   and 𝑤 𝐹 
   are displacements in 𝑥, 𝑦 and 𝑧 directions, respectively and 𝑢𝑜 𝐹 

  , 𝑣𝑜 𝐹 
   

and 𝑤𝑜 𝐹 
   are displacements of the point of the transverse normal on the midplane (𝑧 = 0). 𝜑𝑥 and 

𝜑𝑦 are rotations of the transverse normal at the midplane and left subscript 𝐹 stands for FSDT. 

Considering the pure bending condition, ( 𝑢𝑜 𝐹 
  = 𝑣𝑜 𝐹 

  = 0) from equations (2.17) to (2.19), it is 

expressed that: 

𝑢 𝐹 
  = 𝜑𝑥𝑧 (2.20) 

𝑣 𝐹 
  = 𝜑𝑦𝑧 (2.21) 

𝑤 𝐹 
  = 𝑤𝑜 𝐹 

   (2.22) 

Equations (2.20) to (2.22) are for displacements based on FSDT formulation considering 

the pure bending condition. Strains are directly obtained from equations (2.20) to (2.22) as follows. 

𝜀𝑥 𝐹 
  =

𝜕 𝑢 𝐹
  

𝜕𝑥
=
𝜕𝜑𝑥
𝜕𝑥

𝑧 (2.23) 

𝜀 𝐹 
  
𝑦 =

𝜕 𝑣 𝐹
  

𝜕𝑦
=
𝜕𝜑𝑦

𝜕𝑦
𝑧 (2.24) 

𝛾 𝐹 
  
𝑥𝑦 =

𝜕( 𝑢 𝐹
  )

𝜕𝑦
+
𝜕( 𝑣 𝐹

  )

𝜕𝑥
= (

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
) 𝑧 (2.25) 

𝛾 𝐹 
  
𝑦𝑧 =

𝜕( 𝑣 𝐹
  )

𝜕𝑧
+
𝜕( 𝑤 𝐹

  )

𝜕𝑦
= 𝜑𝑦 +

𝜕( 𝑤 𝐹
  

𝑜)

𝜕𝑦
 (2.26) 

𝛾 𝐹 
  
𝑥𝑧 =

𝜕( 𝑢 𝐹
  )

𝜕𝑧
+
𝜕( 𝑤 𝐹

  )

𝜕𝑥
= 𝜑𝑥 +

𝜕( 𝑤 𝐹
  

𝑜)

𝜕𝑥
 (2.27) 

Equations (2.23) to (2.27) are for strains based on FSDT formulation considering the pure 

bending condition. In a similar manner, displacements are written based on CLPT and the strains 

are derived. Since CLPT neglects the transverse shear strains 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0, considering the pure 

bending condition, strain equations (2.23) to (2.27) and displacement equations (2.20) to (2.22)  

for CLPT are simplified as follows. 
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𝑢   
 𝐶 = −

𝜕 𝑤𝑜   
 𝐶

𝜕𝑥
𝑧 (2.28) 

𝑣   
 𝐶 = −

𝜕 𝑤𝑜   
 𝐶

𝜕𝑦
𝑧 (2.29) 

𝑤   
 𝐶 = 𝑤𝑜   

 𝐶  (2.30) 

𝜀   
 𝐶

𝑥 = −
𝜕2( 𝑤𝑜   

 𝐶 )
𝑜

𝜕𝑥2
𝑧 (2.31) 

𝜀   
 𝐶

𝑦 = −
𝜕2( 𝑤𝑜   

 𝐶 )

𝜕𝑦2
𝑧 (2.32) 

𝛾   
 𝐶

𝑥𝑦 = −2
𝜕2( 𝑤𝑜   

 𝐶 )

𝜕𝑥𝜕𝑦
𝑧 (2.33) 

Equations (2.28) - (2.33) are for displacements and strains based on CLPT formulation 

considering the pure bending condition and left superscript 𝐶 stands for CLPT. In order to facilitate 

the calculations of strain and kinetic energies, equations (2.20) to (2.27) based on FSDT and 

equations (2.28) to (2.33) based on CLPT, are written in the form of multiplication of matrices 

using the joint matrix { 𝑠 𝐹 
 𝐶 }. Equations (2.34) to (2.38) represent these matrices in a detailed form. 

[ 𝑍𝑢   
 𝐶 ]

3×12
= [

0 0 0 0 0 0 0 −𝑧 0 0 0 0

0 0 0 0 0 0 0 0 −𝑧 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

  ]

3×12

 (2.34) 

[ 𝑍𝜀   
 𝐶 ]

3×12
= [

0 0 0 0 0 0 0 0 0 𝑧 0 0

0 0 0 0 0 0 0 0 0 0 𝑧 0

0 0 0 0 0 0 0 0 0 0 0 𝑧

  ]

3×12

 (2.35) 

[ 𝑍𝑢 𝐹 
  ]

3×12
= [ 

𝑧 0 0 0 0 0 0 0 0 0 0 0

0 0 0 𝑧 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

 ]

3×12

 (2.36) 
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[ 𝑍𝜀 𝐹 
  ]

5×12
=

[
 
 
 
 
 

 

0 𝑧 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 𝑧 0 0 0 0 0 0

0 0 𝑧 0 𝑧 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

 

]
 
 
 
 
 

 5×12

 (2.37) 

{ 𝑠 𝐹 
 𝐶 }

12×1
= 

⌊ 𝜑𝑥 𝐹 
 𝐶 

𝜕 𝜑𝑥 𝐹 
 𝐶 

𝜕𝑥

𝜕 𝜑𝑥 𝐹 
 𝐶 

𝜕𝑦
𝜑𝑦 𝐹 

 𝐶 
𝜕 𝜑𝑦 𝐹 
 𝐶 

𝜕𝑥

𝜕 𝜑𝑦 𝐹 
 𝐶 

𝜕𝑦
𝑤𝑜 𝐹 

 𝐶 
𝜕 𝑤𝑜 𝐹 
 𝐶 

𝜕𝑥

𝜕 𝑤𝑜 𝐹 
 𝐶 

𝜕𝑦
−
𝜕2 𝑤𝑜 𝐹 

 𝐶 

𝜕𝑥2
−
𝜕2 𝑤𝑜 𝐹 

 𝐶 

𝜕𝑦2
−2

𝜕2 𝑤𝑜 𝐹 
 𝐶 

𝜕𝑥𝜕𝑦
⌋

𝑇

 

 (2.38) 

The left subscript 𝐹 and left superscript 𝐶 indicate the FSDT-based and CLPT-based 

formulations. In relations similar to equation (2.38) which is written for FSDT and CLPT at the 

same time in combined form, the left subscript 𝐹 and left superscript 𝐶 are simultaneously present 

for all the corresponding notations meaning that for CLPT-based calculations, only the notation 

with left superscript 𝐶, and for FSDT-based calculations, only the notation with the left subscript 

𝐹 is considered. When notations are used specifically for either CLPT or FSDT, only the 

corresponding letter is used. It is noted that in CLPT-based formulation 𝜑𝑥 
𝑐  and 𝜑𝑦 

𝑐  are considered 

zero for { 𝑠   
 𝐶 } so that instead of 𝜑𝑥 𝐹 

   and 𝜑𝑦 𝐹 
  , notations 𝜑𝑥 and 𝜑𝑦 are considered in the present 

thesis. Equations (2.20) to (2.33) are expressed in closed matrix form using equations (2.34) to 

(2.38). 

{ 𝑢   
 𝐶 }

3×1
= [ 𝑍𝑢   

 𝐶 ]
3×12

 { 𝑠   
 𝐶 }

12×1
 (2.39) 

{ 𝜀   
 𝐶 }

3×1
= [ 𝑍𝜀   

 𝐶 ]
3×12

 { 𝑠   
 𝐶 }

12×1
 (2.40) 

{ 𝑢 𝐹 
   }

3×1
= [ 𝑍𝑢 𝐹 

  ]
3×12

 { 𝑠 𝐹 
  }

12×1
 (2.41) 

{ 𝜀 𝐹 
  }

5×1
= [ 𝑍𝜀 𝐹 

  ]
5×12

 { 𝑠 𝐹 
  }

12×1
 (2.42) 
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where, { 𝑢   
 𝐶 }

3×1
= ⌊ 𝑢 

𝑐 𝑣 
𝑐 𝑤𝑜 

𝑐 ⌋𝑇, { 𝜀   
 𝐶 }

3×1
= ⌊ 𝜀𝑥 

𝑐 𝜀𝑦 
𝑐 𝛾𝑥𝑦 

𝑐 ⌋𝑇, { 𝑢 𝐹 
   }

3×1
=

⌊ 𝑢𝐹
 𝑣𝐹

 𝑤𝐹
 
𝑜⌋𝑇 and { 𝜀 𝐹 

  }
5×1

= ⌊ 𝜀𝑥𝐹
 𝜀𝑦𝐹

 𝛾𝑥𝑦𝐹
 𝛾𝑦𝑧𝐹

 𝛾𝑥𝑧𝐹
 

⌋𝑇. Equations (2.39) to (2.42) 

are written in the following form. 

{ 𝑢 𝐹 
 𝐶 } = [ 𝑍𝑢 𝐹 

 𝐶 ] { 𝑠 𝐹 
 𝐶 } (2.43) 

{ 𝜀 𝐹 
 𝐶 } = [ 𝑍𝜀 𝐹 

 𝐶 ] { 𝑠 𝐹 
 𝐶 } (2.44) 

The explanation given for { 𝑠 𝐹 
 𝐶 } in equation (2.38), also corresponds to notations [ 𝑍𝑢 𝐹 

 𝐶 ] 

and [ 𝑍𝜀 𝐹 
 𝐶 ] used in equations (2.43) and (2.44) respectively. [ 𝑍𝑢 𝐹 

 𝐶 ] and [ 𝑍𝜀 𝐹 
 𝐶 ] are used in further 

sections for the computation of strain and kinetic energies. 

The elements of stiffness matrix are calculated by substituting engineering constants from 

Table 2.3 into equation (2.16). Then, using stress-strain relationship the stresses are determined. 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

𝑘

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34
𝐶15 𝐶25 𝐶35
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 𝐶46
𝐶45 𝐶55 𝐶56
𝐶46 𝐶56 𝐶66]

 
 
 
 
 

𝑘
{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

𝑘

 (2.45) 

In CLPT and FSDT, the out-of-plane normal stress is assumed to be small and negligible 

compared to other stress components. In addition, CLPT implements further assumptions and 

neglects the out-of-plane shears. By imposing these assumptions, the reduced stiffness matrix is 

computed and substituted in stress-strain equation (2.45). Calculation by which the reduced 

stiffness matrix is derived is available in Ref. [5] as well as in Appendix A.1 in compact form. 

Reduced stiffness matrix in CLPT-based formulation is expressed as: 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

 

𝑐

= [
𝑄11 𝑄12
𝑄12 𝑄22

𝑄16
𝑄26

𝑄16 𝑄26 𝑄66

]

 

𝑐

 {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
}

 

𝑐

 (2.46) 

Equation (2.46) is written in compact form. 
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{ 𝜎   
 𝐶 }

3×1
= [ 𝑄   

 𝐶  ]
3×3

 { 𝜀   
 𝐶 }

3×1
 (2.47) 

Reduced stiffness matrix in FSDT-based formulation is expressed as: 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧}
 
 

 
 

𝐹

 

=

[
 
 
 
 

 

   
𝑄11 𝑄12
𝑄12 𝑄22

𝑄16 𝑄14 𝑄15
𝑄26 𝑄24 𝑄25

𝑄16 𝑄26 𝑄66 𝑄46 𝑄56
5

6
(
𝑄14 𝑄24 𝑄46 𝑄44 𝑄45
𝑄15 𝑄25 𝑄56 𝑄45 𝑄55

)

 

]
 
 
 
 

𝐹

 

 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 

𝐹

 

 (2.48) 

Equation (2.48) is written in compact form. 

{ 𝜎 𝐹 
  }

5×1
= [ 𝑄 𝐹 

   ]
5×5

 { 𝜀 𝐹 
  }

5×1
 (2.49) 

Equations (2.47) and (2.49) are expressed in the following form. 

{ 𝜎 𝐹 
 𝐶 } = [ 𝑄 𝐹 

 𝐶  ]  { 𝜀 𝐹 
 𝐶 } (2.50) 

Since resin is an isotropic material, there is no need for the calculation corresponding to 

transformation of coordinate systems. The stiffness matrix for resin is identical in 𝑥𝑦𝑧, 𝑥′𝑦′𝑧′ and 

𝑥′′𝑦′′𝑧′′ coordinate systems and independent of angles 𝜑 and 𝜃. Therefore, the reduced stiffness 

matrix based on CLPT and FSDT are obtained from the 6-by-6 material stiffness matrix using the 

same calculation performed for the plies (Appendix A.1), and the corresponding engineering 

constants are available in Table 2.3. 

Displacements, strains and stresses, represented by equations (2.43), (2.44) and (2.50), 

respectively, are essential components in energy calculation in the next section. Functions 𝑤𝑜, 𝜑𝑥 

and 𝜑𝑦 introduced in displacement equations (2.17) to (2.19), are expressed in the form of series, 

as part of the Rayleigh-Ritz formulation.  

For the CLPT-based formulation, the transverse displacement 𝑤𝑜 is written in the form of 

series as follows. 
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𝑤 
𝑐

𝑜 =∑∑𝐴𝑖𝑗
𝑤 
𝑐

𝑜  𝑋𝑖
𝑤 
𝑐

𝑜(𝑥) 𝑌𝑗
𝑤 
𝑐

𝑜(𝑦)

𝐽

𝑗=1

𝐼

𝑖=1

 (2.51) 

For the FSDT-based formulation, the transverse displacement 𝑤𝑜 and functions 𝜑𝑥 and 𝜑𝑦, 

the rotations of the transverse normal at the midplane about axes 𝑥 and 𝑦 respectively, are written 

in the form of series as follows. 

𝑤𝐹
 
𝑜 =∑∑𝐴𝑖𝑗

𝑤𝐹
 
𝑜  𝑋𝑖

𝑤𝐹
 
𝑜  𝑌𝑗

𝑤𝐹
 
𝑜

𝐽

𝑗=1

𝐼

𝑖=1

 (2.52) 

𝜑𝑥 =∑∑𝐴𝑖𝑗
𝜑𝑥  𝑋𝑖

𝜑𝑥𝑌𝑗
𝜑𝑥

𝐽

𝑗=1

𝐼

𝑖=1

 (2.53) 

𝜑𝑦 =∑∑𝐴
𝑖𝑗

𝜑𝑦  𝑋
𝑖

𝜑𝑦𝑌
𝑗

𝜑𝑦

𝐽

𝑗=1

𝐼

𝑖=1

 (2.54) 

The functions 𝑋𝑖 and 𝑌𝑗 are admissible functions determined by considering the geometric 

boundary conditions of the plate. For different boundary conditions considered in the present 

study, the corresponding admissible functions are presented in a later section. 

2.5 Strain and kinetic energies 

2.5.1 Derivations 

The stresses and strains are key components for strain energy calculation and the density 

of the material is the essential factor in kinetic energy computation. Comparing to CLPT, in the 

calculation of strain energy based on FSDT, two extra terms corresponding to out-of-plane shears 

are taken into account. Notations 𝑈 
 𝐶  and 𝑈 𝐹

  correspond to strain energy based on CLPT and 

FSDT, respectively, and the same explanation corresponds to kinetic energy 𝑇 
 𝐶  and 𝑇 𝐹

 .  
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𝑈 
 𝐶 =

1

2
∭( 𝜀𝑥 

𝑐  𝜎𝑥 
𝑐 + 𝜀𝑦 

𝑐  𝜎𝑦 
𝑐 + 𝛾𝑥𝑦 

𝑐  𝜏𝑥𝑦 
𝑐 ) 𝑑𝑉

 
 (2.55) 

                                    

𝑈 𝐹
 =

1

2
∭( 𝜀𝑥𝐹

  𝜎𝑥𝐹
 + 𝜀𝑦𝐹

  𝜎𝑦𝐹
 + 𝛾𝑥𝑦𝐹

  𝜏𝑥𝑦𝐹
 + 𝛾𝑦𝑧 𝐹

 𝜏𝑦𝑧𝐹
 + 𝛾𝑥𝑧𝐹

  𝜏𝑥𝑧𝐹
 ) 𝑑𝑉 (2.56) 

Writing equations (2.55) and (2.56) in matrix form: 

𝑈 
 𝐶 =

1

2
∭ { 𝜎   

 𝐶  }
𝑇

 { 𝜀   
 𝐶  }  𝑑𝑉 (2.57) 

𝑈 𝐹
 =

1

2
∭ { 𝜎 𝐹 

   }
𝑇
  { 𝜀 𝐹 

   } 𝑑𝑉 (2.58) 

Equations (2.57) and (2.58) are expressed as follows. 

𝑈 𝐹 
 𝐶 =

1

2
∭{ 𝜎 𝐹 

 𝐶 }
𝑇
{ 𝜀 𝐹 
 𝐶 } 𝑑𝑉 (2.59) 

Substituting equation (2.50) in equation (2.59): 

𝑈 𝐹 
 𝐶 =

1

2
∭([ 𝑄 𝐹 

 𝐶  ]{ 𝜀 𝐹 
 𝐶 })

𝑇
{ 𝜀 𝐹 
 𝐶 } 𝑑𝑉 (2.60) 

The kinetic energy of a laminate 𝑇 =
1

2
𝜔2∭𝜌(𝑢2 + 𝑣2 + 𝑤𝑜

2)𝑑𝑉 (𝑢, 𝑣 and 𝑤𝑜 are 

displacement functions in 𝑥, 𝑦 and 𝑧 directions respectively) is considered according to Ref. [2] 

and is expressed in matrix form in a similar manner performed for the strain energy for CLPT and 

FSDT. 

𝑇 𝐹 
 𝐶 =

1

2
𝜔2∭𝜌{ 𝑢 𝐹 

 𝐶 }
𝑇
{ 𝑢 𝐹 
 𝐶 }𝑑𝑉 (2.61) 

Matrix form is superior in terms of computational efficiency and reduces any possibility of 

computational errors. For CLPT and FSDT, derivatives of kinetic and strain energies are calculated 

at the same time in matrix form considering notation 𝑈̂ 𝐹 
 𝐶 = 𝜕 𝑈 𝐹 

 𝐶 𝜕𝐴𝑚𝑛⁄  and 𝑇̂ 𝐹 
 𝐶 = 𝜕 𝑇 𝐹 

 𝐶 𝜕𝐴𝑚𝑛⁄ , 
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where 𝐴𝑚𝑛 can be any one of the parameters of the series given by equations (2.51) to (2.54). The 

same explanation corresponds to matrices { 𝑢̂ 𝐹 
 𝐶 }, { 𝜀̂ 𝐹 

 𝐶 } and { 𝑠̂ 𝐹 
 𝐶 }. Considering equations (2.60) 

and (2.61): 

𝑈̂ 𝐹 
 𝐶 =

1

2
∭([ 𝑄 𝐹 

 𝐶  ]{ 𝜀̂ 𝐹 
 𝐶 })

𝑇
{ 𝜀 𝐹 
 𝐶 } + ([ 𝑄 𝐹 

 𝐶  ]{ 𝜀 𝐹 
 𝐶 })

𝑇
{ 𝜀̂ 𝐹 
 𝐶 }𝑑𝑉 (2.62) 

𝑇̂ 𝐹 
 𝐶 =

1

2
𝜔2∭𝜌({ 𝑢̂ 𝐹 

 𝐶 }
𝑇
{ 𝑢 𝐹 
 𝐶 } + { 𝑢 𝐹 

 𝐶 }
𝑇
{ 𝑢̂ 𝐹 
 𝐶 }) 𝑑𝑉 (2.63) 

Equations (2.62) and (2.63) are written as follows. 

𝑈̂ 𝐹 
 𝐶 =

1

2
∭{ 𝜀̂ 𝐹 

 𝐶 }
𝑇

[ 𝑄 𝐹 
 𝐶  ]{ 𝜀 𝐹 

 𝐶 } + ({ 𝜀̂ 𝐹 
 𝐶 }

𝑇

[ 𝑄 𝐹 
 𝐶  ]{ 𝜀 𝐹 

 𝐶 })
𝑇

𝑑𝑉 (2.64) 

𝑇̂ 𝐹 
 𝐶 =

1

2
𝜔2∭𝜌(  { 𝑢̂ 𝐹 

 𝐶 }
𝑇
{ 𝑢 𝐹 
 𝐶 } + ({ 𝑢̂ 𝐹 

 𝐶 }
𝑇
{ 𝑢 𝐹 
 𝐶 })

𝑇

  ) 𝑑𝑉 (2.65) 

The terms { 𝜀̂ 𝐹 
 𝐶 }

𝑇

[ 𝑄 𝐹 
 𝐶  ]{ 𝜀 𝐹 

 𝐶 } and { 𝑢̂ 𝐹 
 𝐶 }

𝑇
{ 𝑢 𝐹 
 𝐶 } on the right-hand sides of equations (2.64) 

and (2.65) are scalars as they follow scalar values of 𝑈̂ 𝐹 
 𝐶  and 𝑇̂ 𝐹 

 𝐶  on the left-hand sides. In addition, 

this note is also realized from the size of the matrices. Therefore, considering that terms 

{ 𝜀̂ 𝐹 
 𝐶 }

𝑇

[ 𝑄 𝐹 
 𝐶  ]{ 𝜀 𝐹 

 𝐶 } and { 𝑢̂ 𝐹 
 𝐶 }

𝑇
{ 𝑢 𝐹 
 𝐶 } are scalars, they are equal in value to their corresponding 

transpose. 

{ 𝜀̂ 𝐹 
 𝐶 }

𝑇

[ 𝑄 𝐹 
 𝐶  ]{ 𝜀 𝐹 

 𝐶 } = ({ 𝜀̂ 𝐹 
 𝐶 }

𝑇

[ 𝑄 𝐹 
 𝐶  ]{ 𝜀 𝐹 

 𝐶 })
𝑇

 (2.66) 

{ 𝑢̂ 𝐹 
 𝐶 }

𝑇
{ 𝑢 𝐹 
 𝐶 } = ({ 𝑢̂ 𝐹 

 𝐶 }
𝑇
{ 𝑢 𝐹 
 𝐶 })

𝑇

 (2.67) 

Equations (2.66) and (2.67) are substituted in equations (2.64) and (2.65), respectively. 
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𝑈̂ 𝐹 
 𝐶 =∭{ 𝜀̂ 𝐹 

 𝐶 }
𝑇

[ 𝑄 𝐹 
 𝐶  ]{ 𝜀 𝐹 

 𝐶 }𝑑𝑉 (2.68) 

𝑇̂ 𝐹 
 𝐶 = 𝜔2∭𝜌{ 𝑢̂ 𝐹 

 𝐶 }
𝑇
{ 𝑢 𝐹 
 𝐶 }𝑑𝑉 (2.69) 

Equations (2.44) and (2.43) are substituted in equations (2.68) and (2.69) , respectively. 

𝑈̂ 𝐹 
 𝐶 =∭([ 𝑍𝜀 𝐹 

 𝐶 ]{ 𝑠̂ 𝐹 
 𝐶 })

𝑇

[ 𝑄 𝐹 
 𝐶  ] ([ 𝑍𝜀 𝐹 

 𝐶 ]{ 𝑠 𝐹 
 𝐶 })  𝑑𝑉 (2.70) 

𝑇̂ 𝐹 
 𝐶 = 𝜔2∭𝜌([ 𝑍𝑢 𝐹 

 𝐶 ]{ 𝑠̂ 𝐹 
 𝐶 })

𝑇

[ 𝑍𝑢 𝐹 
 𝐶 ]{ 𝑠 𝐹 

 𝐶 }𝑑𝑉 (2.71) 

Equations (2.70) and (2.71) are written as follows. 

𝑈̂ 𝐹 
 𝐶 =∭{ 𝑠̂ 𝐹 

 𝐶 }
𝑇

 ([ 𝑍𝜀 𝐹 
 𝐶 ]

𝑇
[ 𝑄 𝐹 
 𝐶  ][ 𝑍𝜀 𝐹 

 𝐶 ]) { 𝑠 𝐹 
 𝐶 }𝑑𝑉 (2.72) 

𝑇̂ 𝐹 
 𝐶 = 𝜔2∭{ 𝑠̂ 𝐹 

 𝐶 }
𝑇

(𝜌[ 𝑍𝑢 𝐹 
 𝐶 ]

𝑇
[ 𝑍𝑢 𝐹 
 𝐶 ]) { 𝑠 𝐹 

 𝐶 }𝑑𝑉 (2.73) 

Integrating through the laminate thickness ℎ(𝑥), matrices containing functions of 𝑧 are 

taken into account within the integral so that matrices [ 𝑍𝜀 𝐹 
 𝐶 ] and [ 𝑍𝑢 𝐹 

 𝐶 ], 𝑄𝑖𝑗 as well as scalar 𝜌 

participate in the integration as the integrands. 

𝑈̂ 𝐹 
 𝐶 =∬{ 𝑠̂ 𝐹 

 𝐶 }
𝑇

 (∫  [ 𝑍𝜀 𝐹 
 𝐶 ]

𝑇
[ 𝑄 𝐹 
 𝐶  ][ 𝑍𝜀 𝐹 

 𝐶 ] 𝑑𝑧

ℎ(𝑥)
2

−
ℎ(𝑥)
2

) { 𝑠 𝐹 
 𝐶 }𝑑𝐴 (2.74) 

𝑇̂ 𝐹 
 𝐶 =∬{ 𝑠̂ 𝐹 

 𝐶 }
𝑇
(𝜔2∫ 𝜌[ 𝑍𝑢 𝐹 

 𝐶 ]
𝑇
[ 𝑍𝑢 𝐹 
 𝐶 ] 𝑑𝑧

ℎ(𝑥)
2

−
ℎ(𝑥)
2

) { 𝑠 𝐹 
 𝐶 }𝑑𝐴 (2.75) 

Using notations, [ 𝑍̅𝜀 𝐹 
 𝐶 ] and [ 𝑍̅𝑢 𝐹 

 𝐶 ], equations (2.74) and (2.75) are rewritten. 
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𝑈̂ 𝐹 
 𝐶 =∬{ 𝑠̂ 𝐹 

 𝐶 }
𝑇

 [ 𝑍̅𝜀 𝐹 
 𝐶 ]{ 𝑠 𝐹 

 𝐶 }𝑑𝐴 (2.76) 

𝑇̂ 𝐹 
 𝐶 =∬{ 𝑠̂ 𝐹 

 𝐶 }
𝑇

[ 𝑍̅𝑢 𝐹 
 𝐶 ]{ 𝑠 𝐹 

 𝐶 }𝑑𝐴 (2.77) 

[ 𝑍̅𝜀 𝐹 
 𝐶 ] = ∫  [ 𝑍𝜀 𝐹 

 𝐶 ]
𝑇
[ 𝑄 𝐹 
 𝐶  ][ 𝑍𝜀 𝐹 

 𝐶 ] 𝑑𝑧

ℎ(𝑥)
2

−
ℎ(𝑥)
2

 (2.78) 

[ 𝑍̅𝑢 𝐹 
 𝐶 ] = 𝜔2∫  𝜌 [ 𝑍𝑢 𝐹 

 𝐶 ]
𝑇
[ 𝑍𝑢 𝐹 
 𝐶 ] 𝑑𝑧

ℎ(𝑥)
2

−
ℎ(𝑥)
2

 (2.79) 

Considering equations (2.76) to (2.79), the derivations are expressed in the following form. 

𝐸̂ 𝑈,𝑇 𝐹 
 𝐶 =∬{ 𝑠̂ 𝐹 

 𝐶 }
𝑇

 [ 𝑍̅𝜀,𝑢 𝐹 
 𝐶  ] { 𝑠 𝐹 

 𝐶 }𝑑𝐴 (2.80) 

where, [ 𝑍̅𝜀,𝑢 𝐹 
 𝐶  ] represents term [ 𝑍̅𝜀 𝐹 

 𝐶 ] or [ 𝑍̅𝑢 𝐹 
 𝐶 ], and term 𝐸̂ 𝑈,𝑇 𝐹 

 𝐶  represents 𝑈̂ 𝐹 
 𝐶  or 𝑇̂ 𝐹 

 𝐶  

when equation (2.80) is considered for derivatives of strain or kinetic energies, respectively. After 

computation of matrices [ 𝑍𝜀 𝐹 
 𝐶 ] and [ 𝑍𝑢 𝐹 

 𝐶 ], derivatives of kinetic and strain energies with respect 

to parameters 𝐴𝑚𝑛
𝑤𝐹
 
𝑜, 𝐴𝑚𝑛

𝜑𝑥  and 𝐴𝑚𝑛
𝜑𝑦

 for FSDT, and 𝐴𝑚𝑛
𝑤 
𝑐

𝑜  for CLPT, are obtained using equation 

(2.80). 

2.5.2 Matrices [𝒁̅𝜺] and [𝒁̅𝒖] 

Any nonzero elements of [𝑍̅𝜀 ] and [𝑍̅𝑢 ], are denoted by 𝑅 𝑖𝑗
 (𝑛) and 𝑅 

(𝑛)
, respectively, where 

𝑛 = 1, 2, 3. The matrix [𝑍̅𝜀] contains the elements of extensional stiffness 𝑅 𝑖𝑗
 (1), bending-extension 

coupling 𝑅 𝑖𝑗
 (2) and bending stiffness 𝑅 𝑖𝑗

 (3).  

𝑅 𝑖𝑗
 (𝑛)

 𝐹 
 𝐶 = ∫  𝑄 𝐹 

 𝐶 
𝑖𝑗 𝑧

𝑛−1 𝑑𝑧

ℎ(𝑥)
2

−
ℎ(𝑥)
2

 (2.81) 
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𝑅 
(𝑛)

 𝐹 
 𝐶 = ∫   𝜌𝑧𝑛−1 𝑑𝑧

ℎ(𝑥)
2

−
ℎ(𝑥)
2

 (2.82) 

Since the taper configurations described within the framework of the present study are 

symmetric, it is argued that for even values of 𝑛, 𝑅 𝑖𝑗
 (𝑛)

 𝐹 
 𝐶  and 𝑅 

(𝑛)

 𝐹 
 𝐶  are zero and for odd values: 

𝑅 𝑖𝑗
 (𝑛)

 𝐹 
 𝐶 = 2 ∑ ∫ 𝑄 𝐹 

 𝐶 
𝑖𝑗
 [𝑘]  𝑧𝑛−1

𝑧(𝑢𝑘)

𝑧(𝑙𝑘)

𝑘𝑜 2⁄

𝑘=1

𝑑𝑧 = 2 ∑ 𝑄 𝐹 
 𝐶 

𝑖𝑗
 [𝑘] (

𝑧𝑛

𝑛
)
𝑧(𝑙𝑘)

𝑧(𝑢𝑘)
𝑘𝑜 2⁄

𝑘=1

 (2.83) 

𝑅 
(𝑛)

 𝐹 
 𝐶 = 2 ∑ ∫ 𝜌 

[𝑘]
 𝑧𝑛−1

𝑧(𝑢𝑘)

𝑧(𝑙𝑘)

𝑘𝑜 2⁄

𝑘=1

𝑑𝑧 = 2 ∑ 𝜌 
[𝑘]
(
𝑧𝑛

𝑛
)
𝑧(𝑙𝑘)

𝑧(𝑢𝑘)
𝑘𝑜 2⁄

𝑘=1

 (2.84) 

Terms 𝑧(𝑢𝑘) and 𝑧(𝑙𝑘) represent the upper and lower surfaces of 𝑘th layer. 𝑘𝑜 is the number 

of layers at the left end of the tapered configurations described by Figure 2.1. Completing the 

mathematical operations, equations (2.83) and (2.84) are written as follows. 

𝑅 𝑖𝑗
 (𝑛)

 𝐹 
 𝐶 =

2

𝑛
∑ 𝑄 𝐹 

 𝐶 
𝑖𝑗
 [𝑘] (𝑧 (𝑢𝑘)

 𝑛 − 𝑧 (𝑙𝑘)
 𝑛 )

𝑘𝑜 2⁄

𝑘=1

 (2.85) 

𝑅 
(𝑛)

 𝐹 
 𝐶 =

2

𝑛
∑ 𝜌 

[𝑘]
(𝑧 (𝑢𝑘)

 𝑛 − 𝑧 (𝑙𝑘)
 𝑛 )

𝑘𝑜 2⁄

𝑘=1

 (2.86) 

2.6 Stiffness and mass matrices 

By substituting equations (2.85) and (2.86) in equation (2.80), the derivatives of strain and 

kinetic energies with respect to parameters 𝐴𝑚𝑛
𝑤𝐹
 
𝑜 , 𝐴𝑚𝑛

𝜑𝑥  and 𝐴𝑚𝑛
𝜑𝑦

 for FSDT, and 𝐴𝑚𝑛
𝑤 
𝑐

𝑜 for CLPT, 

are obtained. The final results are presented here in the open form and the corresponding 

mathematical operations are available in Appendix A.2. 
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It is noted that for CLPT-based formulation 𝑈̂ 
[𝑤𝑜]

 
 𝐶 = 𝜕 𝑈  

 𝐶 𝜕𝐴𝑚𝑛
𝑤 
𝑐

𝑜⁄ , 𝑇̂  
[𝑤𝑜]

 
 𝐶 =

𝜕 𝑇  
 𝐶 𝜕𝐴𝑚𝑛

𝑤 
𝑐

𝑜⁄  and for FSDT-based formulation 𝑈̂ 
[𝑤𝑜]

 𝐹
 = 𝜕 𝑈𝐹

  𝜕𝐴𝑚𝑛
𝑤𝐹
 
𝑜⁄ , 𝑈̂ 

[𝜑𝑥]

 𝐹
 = 𝜕 𝑈𝐹

  𝜕𝐴𝑚𝑛
𝜑𝑥⁄ , 

𝑈̂ 
[𝜑𝑦]

 𝐹
 = 𝜕 𝑈𝐹

  𝜕𝐴𝑚𝑛
𝜑𝑦⁄ , 𝑇̂  

[𝑤𝑜]

 𝐹
 = 𝜕 𝑇𝐹

  𝜕𝐴𝑚𝑛
𝑤𝐹
 
𝑜⁄ , 𝑇̂  

[𝜑𝑥]

 𝐹
 = 𝜕 𝑇𝐹

  𝜕𝐴𝑚𝑛
𝜑𝑥⁄  and 𝑇̂  

[𝜑𝑦]

 𝐹
 = 𝜕 𝑇𝐹

  𝜕𝐴𝑚𝑛
𝜑𝑦⁄ . 

For CLPT-based formulation: 

𝑈̂ 
[𝑤𝑜]

 
 𝐶 =∑∑

(

 
 
 
 
 
 
 
 
 
 

∫ 𝑅12
(3)𝑋𝑚

𝑤 
𝑐

𝑜𝑋̈𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝐿

0

∫ 𝑌̈𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

+∫ 𝑅11
(3)𝑋̈𝑚

𝑤 
𝑐

𝑜𝑋̈𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0

+∫ 𝑅22
(3)𝑋𝑚

𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌̈𝑛
𝑤 
𝑐

𝑜𝑌̈𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0

+∫ 𝑅12
(3)𝑋̈𝑚

𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌̈𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0

+4∫ 𝑅66
(3)𝑋̇𝑚

𝑤 
𝑐

𝑜𝑋̇𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌̇𝑛
𝑤 
𝑐

𝑜𝑌̇𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0 )

 
 
 
 
 
 
 
 
 
 

𝐴𝑖𝑗
𝑤 
𝑐

𝑜

𝐽

𝑗=1

𝐼

𝑖=1

 (2.87) 

𝑇̂  
[𝑤𝑜]

 
 𝐶 = 𝜔2∑∑

(

 
 
 
 
 
∫ 𝑅(3)𝑋̇𝑚

𝑤 
𝑐

𝑜𝑋̇𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝑥=𝐿

𝑥=0

∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝑦=𝐿

𝑦=0

+∫ 𝑅(3)𝑋𝑚
𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝑥=𝐿

𝑥=0

∫ 𝑌̇𝑛
𝑤 
𝑐

𝑜𝑌̇𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝑦=𝐿

𝑦=0

+∫ 𝑅(1)𝑋𝑚
𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝑥=𝐿

𝑥=0

∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝑦=𝐿

𝑦=0 )

 
 
 
 
 

𝐴𝑖𝑗
𝑤 
𝑐

𝑜

𝐽

𝑗=1

𝐼

𝑖=1

 (2.88) 

If rotatory inertia is neglected, then equation (2.88) becomes: 

𝑇̂  
[𝑤𝑜]

 
 𝐶 = 𝜔2∑∑(∫ 𝑅(1)𝑋𝑚

𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝑥=𝐿

𝑥=0

∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝑦=𝐿

𝑦=0

)𝐴𝑖𝑗
𝑤 
𝑐

𝑜

𝐽

𝑗=1

𝐼

𝑖=1

 (2.89) 

For FSDT-based formulation: 
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𝑈̂ 
[𝑤𝑜]

 𝐹
 =

5

6
∑∑

[
 
 
 
 
 
 
 
 
 

(

 
 
∫ 𝑅55

(1)𝑋̇𝑚
𝑤𝐹
 
𝑜𝑋̇𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝑤𝐹
 
𝑜𝑌𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0

+∫ 𝑅44
(1)𝑋𝑚

𝑤𝐹
 
𝑜𝑋𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌̇𝑛
𝑤𝐹
 
𝑜𝑌̇𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0 )

 
 
𝐴𝑖𝑗

𝑤𝐹
 
𝑜

+(∫ 𝑅55
(1)𝑋̇𝑚

𝑤𝐹
 
𝑜𝑋𝑖

𝜑𝑥𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝑤𝐹
 
𝑜𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

)𝐴𝑖𝑗
𝜑𝑥

+(∫ 𝑅44
(1)𝑋𝑚

𝑤𝐹
 
𝑜𝑋

𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌̇𝑛
𝑤𝐹
 
𝑜𝑌
𝑗

𝜑𝑦𝑑𝑦
𝐿

0

)𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 
 

𝐽

𝑗=1

𝐼

𝑖=1

 (2.90) 

𝑈̂ 
[𝜑𝑥]

 𝐹
 =∑∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5

6
(∫ 𝑅55

(1)𝑋𝑚
𝜑𝑥𝑋̇𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0

)𝐴𝑖𝑗
𝑤𝐹
 
𝑜 +

(

 
 
 
 

5

6
∫ 𝑅55

(1)𝑋𝑚
𝜑𝑥𝑋𝑖

𝜑𝑥𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

+

∫ 𝑅11
(3)𝑋̇𝑚

𝜑𝑥𝑋̇𝑖
𝜑𝑥𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

+∫ 𝑅66
(3)𝑋𝑚

𝜑𝑥𝑋𝑖
𝜑𝑥𝑑𝑥

𝐿

0

∫ 𝑌̇𝑛
𝜑𝑥𝑌̇𝑗

𝜑𝑥𝑑𝑦
𝐿

0 )

 
 
 
 

𝐴𝑖𝑗
𝜑𝑥

+

(

 
 
∫ 𝑅12

(3)𝑋̇𝑚
𝜑𝑥𝑋

𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌̇

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

+∫ 𝑅66
(3)𝑋𝑚

𝜑𝑥𝑋̇
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌̇𝑛
𝜑𝑥𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0 )

 
 
𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐽

𝑗=1

𝐼

𝑖=1

 (2.91) 

𝑈̂ 
[𝜑𝑦]

 𝐹
 =∑∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5

6
(∫ 𝑅44

(1)𝑋𝑚
𝜑𝑦𝑋𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌̇𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0

)𝐴𝑖𝑗
𝑤𝐹
 
𝑜

+

(

 
 
∫ 𝑅12

(3)𝑋𝑚
𝜑𝑦𝑋̇𝑖

𝜑𝑥𝑑𝑥
𝐿

0

∫ 𝑌̇𝑛
𝜑𝑦𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

+∫ 𝑅66
(3)𝑋̇𝑚

𝜑𝑦𝑋𝑖
𝜑𝑥𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌̇𝑗

𝜑𝑥𝑑𝑦
𝐿

0 )

 
 
𝐴𝑖𝑗
𝜑𝑥

+

(

 
 
 
 

5

6
∫ 𝑅44

(1)𝑋𝑚
𝜑𝑦𝑋

𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

+

∫ 𝑅22
(3)𝑋𝑚

𝜑𝑦𝑋
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌̇𝑛
𝜑𝑦𝑌̇

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

+∫ 𝑅66
(3)𝑋̇𝑚

𝜑𝑦𝑋̇
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0 )

 
 
 
 

𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐽

𝑗=1

𝐼

𝑖=1

 (2.92) 
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𝑇̂  
[𝑤𝑜]

 𝐹
 = 𝜔2∑∑[∫ 𝑅(1)𝑋𝑚

𝑤𝐹
 
𝑜𝑋𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝑤𝐹
 
𝑜𝑌𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0

] 𝐴𝑖𝑗
𝑤𝐹
 
𝑜𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (2.93) 

𝑇̂  
[𝜑𝑥]

 𝐹
 = 𝜔2∑∑[∫ 𝑅(3)𝑋𝑚

𝜑𝑥𝑋𝑖
𝜑𝑥𝑑𝑥∫ 𝑌𝑛

𝜑𝑥𝑌𝑗
𝜑𝑥𝑑𝑦

𝐿

0

𝐿

0

] 𝐴𝑖𝑗
𝜑𝑥𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (2.94) 

𝑇̂  
[𝜑𝑦]

 𝐹
 = 𝜔2∑∑[∫ 𝑅(3)𝑋𝑚

𝜑𝑦𝑋
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

] 𝐴
𝑖𝑗

𝜑𝑦𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (2.95) 

If rotatory inertia is neglected, then 𝑇̂  
[𝜑𝑦]

 𝐹
 = 𝑇̂  

[𝜑𝑥]

 𝐹
 = 0  and equation (2.93) becomes: 

𝑇̂  
[𝑤𝑜]

 𝐹
 = 𝜔2∑∑[∫ 𝑅(1)𝑋𝑚

𝑤𝐹
 
𝑜𝑋𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝑤𝐹
 
𝑜𝑌𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0

] 𝐴𝑖𝑗
𝑤𝐹
 
𝑜𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (2.96) 

It is noted that the fiber orientation of all the layers within the tapered plates are 0𝑜 or 90𝑜 

meaning that in-plane normals and shears are decoupled. Therefore, in equations (2.90) to (2.92) 

as well as in equation (2.87), those terms originating from normal-shear coupling within the 

reduced stiffness matrices, such as 𝑄16 and 𝑄26 in reduced stiffness matrix for CLPT, have been 

eliminated. 

2.7 Rayleigh-Ritz formulation 

Considering 𝑈̂ 
[𝑤𝑜]

 
 𝐶  in equation (2.87) for fixed values of 𝑚 and 𝑛, the indexes 𝑖 and 𝑗 are 

counted up to the upper bound of the summations 𝐼 and 𝐽. Therefore, there are 𝐼 × 𝐽 number of 

terms that are written in the form of a row matrix multiplied by a column matrix { 𝐴  
 𝐶 } containing 

𝐼 × 𝐽 number of parameters, 𝐴𝑖𝑗
𝑤 
𝑐

𝑜. By repeating the operation for all possible values of 𝑚 and 𝑛, 

there are produced 𝐼 × 𝐽 number of row matrices written one beneath the next one forming a matrix 

with size of 𝐼 × 𝐽 by 𝐼 × 𝐽.  
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This 𝐼 × 𝐽 by 𝐼 × 𝐽 matrix produced from 𝑈̂ 
[𝑤𝑜]

 
 𝐶  is called as the stiffness matrix and is 

denoted by [ 𝐾   
 𝐶 ]. In a similar manner for 𝑇̂  

[𝑤𝑜]

 
 𝐶 , a matrix with the same size is formed and is 

called as the mass matrix denoted by [ 𝑀   
 𝐶 ]. 

For the case of FSDT, instead of one, there exist three parameters, that are 𝐴𝑖𝑗
𝑤𝐹
 
𝑜, 𝐴𝑖𝑗

𝜑𝑥 and 

𝐴
𝑖𝑗

𝜑𝑦
, for 𝑈̂ 

[𝑤𝑜]

 𝐹
 , 𝑈̂ 

[𝜑𝑥]

 𝐹
 and 𝑈̂ 

[𝜑𝑦]

 𝐹
  as presented in equations (2.90) to (2.92). Writing the row 

matrices for all the three as before, they are three times greater in number and are multiplied by 

the column matrix { 𝐴 𝐹 
  } with size of 3𝐼 × 𝐽 by 1 containing elements of 𝐴𝑖𝑗

𝑤𝐹
 
𝑜 , 𝐴𝑖𝑗

𝜑𝑥 and 𝐴
𝑖𝑗

𝜑𝑦
. 

Writing for all possible values of 𝑚 and 𝑛, for 𝑈̂ 
[𝑤𝑜]

 𝐹
 , 𝑈̂ 

[𝜑𝑥]

 𝐹
 and 𝑈̂ 

[𝜑𝑦]

 𝐹
  there are produced 

3𝐼 × 𝐽 number of row matrices with size of 1 by 3𝐼 × 𝐽 written one beneath the next one forming 

a matrix with size of 3𝐼 × 𝐽 by 3𝐼 × 𝐽. As a result, the number of elements that exist within mass 

([ 𝑀 𝐹 
  ]) and stiffness ([ 𝐾 𝐹 

  ]) matrices is nine times greater than their equivalents in CLPT-based 

formulation.  

Considering 𝑈̂ 
[𝑤𝑜]

 
 𝐶 = 𝑇̂  

[𝑤𝑜]

 
 𝐶  in CLPT-based formulation, it is expressed that:  

[ 𝐾   
 𝐶 ]

𝐼𝐽×𝐼𝐽
{ 𝐴  
 𝐶 }

𝐼𝐽×1
= 𝜔2[ 𝑀   

 𝐶 ]
𝐼𝐽×𝐼𝐽

{ 𝐴  
 𝐶 }

𝐼𝐽×1
 (2.97) 

For the FSDT-based formulation:  

𝑈̂ 
[𝑤𝑜]

 𝐹
 = 𝑇̂  

[𝑤𝑜]

 𝐹
  (2.98) 

𝑈̂ 
[𝜑𝑥]

 𝐹
 = 𝑇̂  

[𝜑𝑥]

 𝐹
  (2.99) 

𝑈̂ 
[𝜑𝑦]

 𝐹
 = 𝑇̂  

[𝜑𝑦]

 𝐹
  (2.100) 

Writing equations (2.98) to (2.100) in matrix form: 

[ 𝐾 𝐹 
   ]

3𝐼𝐽×3𝐼𝐽
{ 𝐴 𝐹 
  }

3𝐼𝐽×1
= 𝜔2[ 𝑀 𝐹 

   ]
3𝐼𝐽×3𝐼𝐽

{ 𝐴 𝐹 
  }

3𝐼𝐽×1
 (2.101) 

Equations (2.97) and (2.101), result in: 
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([ 𝐾 𝐹 
 𝐶 ] − 𝜔2[ 𝑀 𝐹 

 𝐶 ]){ 𝐴 𝐹 
 𝐶 } = 0 (2.102) 

Terms { 𝐴  
 𝐶 } and { 𝐴 𝐹 

  } for CLPT-based and FSDT-based formulation, have been written 

in the combined form of { 𝐴 𝐹 
 𝐶 } and the same explanation corresponds to [ 𝐾 𝐹 

 𝐶 ] and [ 𝑀 𝐹 
 𝐶 ]. In order 

to obtain the non-trivial solution: 

𝑑𝑒𝑡([ 𝐾 𝐹 
 𝐶 ] − 𝜔2[ 𝑀 𝐹 

 𝐶 ]) = 0 (2.103) 

By solving the eigenvalue problem in which 𝜔2 and the column matrix { 𝐴 𝐹 
 𝐶 } are 

eigenvalues and eigenvectors, respectively, the natural frequencies and mode shapes are 

determined. The square root of the smallest eigenvalue is the fundamental frequency and the mode 

shapes are obtained by substituting the eigenvectors in transverse displacement equations (2.51) 

and (2.52). 

In the case of FSDT, when rotatory inertia from which term 𝑅(3) emerges in equation 

(2.88), is neglected, equations (2.98) to (2.100) become: 

𝑈̂ 
[𝑤𝑜]

 𝐹
 = 𝑇̂  

[𝑤𝑜]

 𝐹
  (2.104) 

𝑈̂ 
[𝜑𝑥]

 𝐹
 = 0 (2.105) 

𝑈̂ 
[𝜑𝑦]

 𝐹
 = 0 (2.106) 

In this case, mass matrix is no longer invertible. Considering equations (2.90) to (2.92) in 

matrix form as well as equations (2.104) to (2.106), it is written that: 

𝑈̂ 
[𝑤𝑜]

 𝐹
 = [𝜑𝑥

𝑤𝐹
 
𝑜]𝐼𝐽×𝐼𝐽{𝐴

𝜑𝑥} + [𝜑𝑦
𝑤𝐹
 
𝑜]
𝐼𝐽×𝐼𝐽

{𝐴𝜑𝑦} + [𝑤𝑜
𝑤𝐹
 
𝑜]𝐼𝐽×𝐼𝐽{𝐴

𝑤𝐹
 
𝑜} (2.107) 

𝑈̂ 
[𝜑𝑥]

 𝐹
 = [𝜑𝑥

𝜑𝑥]𝐼𝐽×𝐼𝐽{𝐴
𝜑𝑥} + [𝜑𝑦

𝜑𝑥]
𝐼𝐽×𝐼𝐽

{𝐴𝜑𝑦} + [𝑤𝑜
𝜑𝑥]𝐼𝐽×𝐼𝐽{𝐴

𝑤𝐹
 
𝑜} (2.108) 

𝑈̂ 
[𝜑𝑦]

 𝐹
 = [𝜑𝑥

𝜑𝑦]𝐼𝐽×𝐼𝐽{𝐴
𝜑𝑥} + [𝜑𝑦

𝜑𝑦]
𝐼𝐽×𝐼𝐽

{𝐴𝜑𝑦} + [𝑤𝑜
𝜑𝑦]𝐼𝐽×𝐼𝐽{𝐴

𝑤𝐹
 
𝑜} (2.109) 
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From equations (2.108) and (2.109), the column matrices {𝐴𝜑𝑥} and {𝐴𝜑𝑦} are obtained in 

terms of {𝐴 𝑤𝐹
 
𝑜} and by substituting them in equation (2.107), the following relation is obtained 

(Appendix A.3). 

[ 𝑈̂ 
[𝑤𝑜]

 𝐹
 ] = [ 𝐾̅ 𝐹 

  ]
 𝐼𝐽×𝐼𝐽

{𝐴 𝑤𝐹
 
𝑜}𝐼𝐽×1 (2.110) 

where, 

[ 𝐾̅ 𝐹 
  ] = 

[𝑤𝑜
𝑤𝐹
 
𝑜] − [𝜑𝑥

𝑤𝐹
 
𝑜][𝜑𝑥

𝜑𝑥]−1[𝑤𝑜
𝜑𝑥] + ([𝜑𝑦

𝑤𝐹
 
𝑜] − [𝜑𝑥

𝑤𝐹
 
𝑜][𝜑𝑥

𝜑𝑥]−1[𝜑𝑦
𝜑𝑥])[𝑆𝑡𝑟] 

(2.111) 

[𝑆𝑡𝑟] = [[𝜑𝑦
𝜑𝑦] − [𝜑𝑥

𝜑𝑦][𝜑𝑥
𝜑𝑥]−1[𝜑𝑦

𝜑𝑥]]
−1

[[𝜑𝑥
𝜑𝑦][𝜑𝑥

𝜑𝑥]−1[𝑤𝑜
𝜑𝑥] − [𝑤𝑜

𝜑𝑦]] (2.112) 

Then, the eigenvalue problem can be established and by solving it the solution is obtained. 

2.8 Boundary conditions 

The natural frequencies are obtained for the tapered composite plates for different 

boundary conditions. For CLPT and FSDT, in equations (2.51) to (2.54), admissible functions 

𝑋𝑖(𝑥) and 𝑌𝑗(𝑦) of the series are selected in a manner that satisfies the geometric boundary 

conditions. In this section, the following geometric boundary conditions and the corresponding 

functions considered for the study are introduced for Classical Laminated Plate Theory (CLPT) 

and First-order Shear Deformation Theory (FSDT). It is noted that CCFF boundary condition is 

only considered for CLPT. 

1. All edges simply supported (SSSS) 

2. All edges clamped (CCCC) 

3. Clamped at two adjacent edges with other two free (CCFF). The clamped edges correspond 

to 𝑥 = 0 and 𝑦 = 0 lines and free edges correspond to 𝑥 = 𝐿 and 𝑦 = 𝐿 lines. It is noted that the 

𝑥 = 0 and 𝑥 = 𝐿 lines correspond to the thick and thin sides of the tapered laminates, respectively. 
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The SSSS, CCCC and CCFF boundary conditions are given in Table 2.4 and the 

corresponding admissible functions are given in Tables 2.5 - 2.7 using Refs. [2], [5], [27] and [28].  

1. 

All edges simply supported (SSSS) 

 

{ 
𝑥 = 0
 

𝑥 = 𝐿
 ⟶ 𝑤𝑜 = 0   and  𝑀𝑥 = 0 { 

𝑦 = 0
 

𝑦 = 𝐿
 ⟶ 𝑤𝑜 = 0   and  𝑀𝑦 = 0 

2. 

All edges clamped (CCCC) 

 

{ 
𝑥 = 0
 

𝑥 = 𝐿
 ⟶ 𝑤𝑜 = 0   and  

𝜕𝑤𝑜
𝜕𝑥

= 0 { 
𝑦 = 0
 

𝑦 = 𝐿
 ⟶ 𝑤𝑜 = 0   and  

𝜕𝑤𝑜
𝜕𝑦

= 0 

3. 

Clamped at two adjacent edges with other two free 

(CCFF) 

 

𝑥 = 𝐿 ⟶
𝑑2𝑤𝑜
𝑑𝑥2

= 0  and  
𝑑3𝑤𝑜
𝑑𝑥3

= 0 𝑦 = 𝐿 ⟶
𝑑2𝑤𝑜
𝑑𝑦2

= 0  and  
𝑑3𝑤𝑜
𝑑𝑦3

= 0 

Table 2.4 Boundary conditions for the plates 
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Table 2.5 Appropriate series for SSSS 

Table 2.6 Appropriate series for CCCC 

S
S

S
S

 

C
L

P
T

 

𝑋𝑖
𝑤 
𝑐

𝑜 = sin (𝑖𝜋
𝑥

𝐿
)      ,     𝑌𝑗

𝑤 
𝑐

𝑜 = sin (𝑗𝜋
𝑦

𝐿
) 

F
S

D
T

 

𝑋𝑖
𝑤𝐹
 
𝑜 = sin (𝑖𝜋

𝑥

𝐿
)      ,     𝑌𝑗

𝑤𝐹
 
𝑜 = sin (𝑗𝜋

𝑦

𝐿
)

 

𝑋𝑖
𝜑𝑥 = cos (𝑖𝜋

𝑥

𝐿
)     ,     𝑌𝑗

𝜑𝑥 = sin (𝑗𝜋
𝑦

𝐿
)

 

𝑋
𝑖

𝜑𝑦 = sin (𝑖𝜋
𝑥

𝐿
)     ,    𝑌

𝑗

𝜑𝑦 = cos (𝑗𝜋
𝑦

𝐿
)

 

C
C

C
C

 

C
L

P
T

 𝑋𝑖
𝑤 
𝑐

𝑜 = 𝑐𝑜𝑠 (𝜆𝑖
𝑥

𝐿
) − 𝑐𝑜𝑠ℎ (𝜆𝑖

𝑥

𝐿
) − 𝛾𝑖 [𝑠𝑖𝑛 (𝜆𝑖

𝑥

𝐿
) − 𝑠𝑖𝑛ℎ (𝜆𝑖

𝑥

𝐿
)]

 

𝑌𝑗
𝑤 
𝑐

𝑜 = 𝑐𝑜𝑠 (𝜆𝑗
𝑦

𝐿
) − 𝑐𝑜𝑠ℎ (𝜆𝑗

𝑦

𝐿
) − 𝛾𝑗 [𝑠𝑖𝑛 (𝜆𝑗

𝑦

𝐿
) − 𝑠𝑖𝑛ℎ (𝜆𝑗

𝑦

𝐿
)]

 

F
S

D
T

 

𝑋𝑖
𝑤𝐹
 
𝑜 = 𝑐𝑜𝑠 (𝜆𝑖

𝑥

𝐿
) − 𝑐𝑜𝑠ℎ (𝜆𝑖

𝑥

𝐿
) − 𝛾𝑖 [𝑠𝑖𝑛 (𝜆𝑖

𝑥

𝐿
) − 𝑠𝑖𝑛ℎ (𝜆𝑖

𝑥

𝐿
)]

 

𝑌𝑗
𝑤𝐹
 
𝑜 = 𝑐𝑜𝑠 (𝜆𝑗

𝑦

𝐿
) − 𝑐𝑜𝑠ℎ (𝜆𝑗

𝑦

𝐿
) − 𝛾𝑗 [𝑠𝑖𝑛 (𝜆𝑗

𝑦

𝐿
) − 𝑠𝑖𝑛ℎ (𝜆𝑗

𝑦

𝐿
)]

 

𝑋𝑖
𝜑𝑥 = sin (𝑖𝜋

𝑥

𝐿
)                         ,                        𝑌𝑗

𝜑𝑥 = sin (𝑗𝜋
𝑦

𝐿
) 

𝑋
𝑖

𝜑𝑦 = sin (𝑖𝜋
𝑥

𝐿
)                         ,                       𝑌

𝑗

𝜑𝑦 = sin (𝑗𝜋
𝑦

𝐿
) 

𝑖 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 

𝜆𝑖 4.730 040 744 863 7.853 204 624 096 10.995 607 838 002 14.137 165 491 258 

𝛾𝑖 0.982 502 214 576 1.000 777 311 907 0.999 966 450 125 1.000 001 449 898 

𝑖 𝑖 = 5 𝑖 = 6 𝑖 = 7 𝑖 = 8 

𝜆𝑖 17.278 759 657 400 20.420 352 245 626 23.561 944 902 040 26.703 537 555 508 

𝛾𝑖 0.999 999 937 344 1.000 000 002 708 0.999 999 999 883 1.000 000 000 005 
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Table 2.7 Appropriate series for CCFF 

Imposing the boundary conditions of CCCC and CCFF given in Table 2.4 on the 

corresponding admissible functions given in Table 2.6 for CCCC and Table 2.7 for CCFF, results 

in equations (2.113) and (2.114) for CCCC and equations (2.115) and (2.116) for CCFF. By 

solving equations (2.113) to (2.116), 𝜆𝑖 and 𝛾𝑖 are determined and have been given in Ref. [2], up 

to 𝑖 = 4. In Table 2.6 for CCCC and Table 2.7 for CCFF, 𝜆𝑖 and 𝛾𝑖 have been given up to 𝑖 = 8. 

Since 𝜆𝑖 and 𝛾𝑖 are passed into hyperbolic functions, in order to obtain sufficiently accurate results, 

several decimal places are considered and given in Table 2.6 and Table 2.7. In the present study, 

for equations (2.51) to (2.54), 𝐼 and 𝐽 are increased to 13 in order to obtain sufficient number of 

natural frequencies required in the next chapter. Therefore, 𝜆𝑖 and 𝛾𝑖 are obtained up to 𝑖 = 13 by 

solving equations (2.113) and (2.114) for CCCC and equations (2.115) and (2.116) for CCFF. 

For the CCCC boundary condition: 

cos(𝜆𝑖) cosh(𝜆𝑖) = 1 (2.113) 

𝛾𝑖 =
cos(𝜆𝑖) − cosh(𝜆𝑖)

sin(𝜆𝑖) − sinh(𝜆𝑖)
 (2.114) 

C
C

F
F

 

C
L

P
T

 𝑋𝑖
𝑤 
𝑐

𝑜 = 𝑐𝑜𝑠 (𝜆𝑖
𝑥

𝐿
) − 𝑐𝑜𝑠ℎ (𝜆𝑖

𝑥

𝐿
) − 𝛾𝑖 [𝑠𝑖𝑛 (𝜆𝑖

𝑥

𝐿
) − 𝑠𝑖𝑛ℎ (𝜆𝑖

𝑥

𝐿
)]

 

𝑌𝑗
𝑤 
𝑐

𝑜 = 𝑐𝑜𝑠 (𝜆𝑗
𝑦

𝐿
) − 𝑐𝑜𝑠ℎ (𝜆𝑗

𝑦

𝐿
) − 𝛾𝑗 [𝑠𝑖𝑛 (𝜆𝑗

𝑦

𝐿
) − 𝑠𝑖𝑛ℎ (𝜆𝑗

𝑦

𝐿
)]

 

𝑖 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 

𝜆𝑖 1.875 104 068 712 4.694 0911 329 742 7.854 757 438 238 10.995 540 734 875 

𝛾𝑖 0.734 095 513 759 1.018 467 318 759 0.999 224 496 517 1.000 033 553 252 

𝑖 𝑖 = 5 𝑖 = 6 𝑖 = 7 𝑖 = 8 

𝜆𝑖 14.137 168 391 046 17.278 759 532 088 20.420 352 251 041 23.561 944 901 806 

𝛾𝑖 0.999 998 550 109 1.000 000 0626 556 0.999 999 997 292 1.000 000 000 117 
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For CCFF boundary condition: 

cos(𝜆𝑖) cosh(𝜆𝑖) = −1 (2.115) 

𝛾𝑖 =
cos(𝜆𝑖) + cosh(𝜆𝑖)

sin(𝜆𝑖) + sinh(𝜆𝑖)
 (2.116) 

Considering the hyperbolic functions in CCCC and CCFF, high accuracy of  𝜆𝑖 and 𝛾𝑖 are required 

depending on the integer values 𝐼 and 𝐽 considered in equations (2.50) and (2.51). The higher 

integer values of 𝐼 and 𝐽 require more accuracy in values obtained for 𝜆𝑖 and 𝛾𝑖. 

2.9 Software limitation 

In this study, the calculations are performed in MATLAB®. To the knowledge and 

experience of the present author, the software is designed with high capability in numerical 

computations according to predetermined aims. However, the software is not capable in 

mathematical and symbolic calculations as it is in numerical calculations. Therefore, 

computationally complex integrals, combination of hyperbolic, polynomial (coming from bending 

stiffness elements) and trigonometric functions which are present as the integrands in 

equations (2.87) to (2.96), cannot be passed into the software. Therefore, in order to cope up with 

this problem, one may use a software such as MAPLE® for symbolic computations besides. 

Nevertheless, the solution of the integrals when solved is extensive and is still difficult to apply. 

In the present thesis, this symbolic calculation problem is solved by converting the 

integrands including hyperbolic, polynomial and trigonometric functions into respective 

fully-polynomial functions using Taylor series. Fully-polynomial functions are simple for the 

software (MATLAB®) to process. By this approach, no other software is needed while the result 

is obtained without complications in a few seconds (i.e. for 𝐼 = 𝐽 = 7). It is noted that the order of 

the Taylor series is increased to 200 or 250 when the fluctuation of the original function is severe 

(for smaller laminate lengths) and the order of 160 or even in some cases 110, is sufficient for less 

fluctuating functions. 
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2.10 Validation 

Experimental measurement is a reliable way of validation. However, the related test 

facilities and financial support are required. In addition, considering the symmetric configuration 

of the tapered laminates in the present thesis, the production of the symmetric tapered plates is 

complicated and expensive. Therefore, for demonstration, the formulation developed in the present 

chapter is applied to a uniform laminated composite plate and the obtained numerical result for 

fundamental frequency of the uniform plate is compared with that of the exact solution. In addition, 

since various software packages are commonly used in numerous literature for validation purposes, 

the obtained results using the Ritz method for the tapered configurations are compared with that 

of the FEM obtained using ANSYS®. Furthermore, the layer reduction test is carried out. 

2.10.1 Uniform composite plate 

By solving the eigenvalue problem given by equation (2.103) for taper configurations 

considering admissible functions selected based on boundary conditions, free vibration analysis 

for the tapered plates is completed. For demonstration, the developed formulation has been applied 

to a uniform laminate using data given in Ref. [29] and the numerical results were in agreement 

with that of the article. 

In addition, the exact solution available for natural frequencies of the uniform laminates 

with all simply supported edges, is used for comparison in the example below.  

Example: Obtain the fundamental frequency of a square plate with side length of 0.35 m 

and configuration of (0 90⁄ )3𝑠 made of unidirectional NCT-301 Graphite-Epoxy material 

(mechanical properties were given in Table 2.3) with ply thickness of 125 × 10−6 m, simply 

supported at all edges. 

Solution: For a uniform laminate, the condition of pure bending simplifies the equilibrium 

equations leading to the following equation of motion derived from Ref. [2]. 

[𝑅11
(3) 𝜕

4( 𝑤 
𝑐

𝑜)

𝜕𝑥4
+ 2(𝑅12

(3)
+ 2𝑅66

(3)
)
𝜕4( 𝑤 

𝑐
𝑜)

𝜕𝑥2𝜕𝑦2
+ 𝑅22

(3) 𝜕
4( 𝑤 
𝑐

𝑜)

𝜕𝑦4
] − 𝑓(𝑥, 𝑦, 𝑡) (2.117) 
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= −𝑅(1) 𝑤̈ 
𝑐

𝑜 + 𝑅
(3) (

𝜕2( 𝑤̈ 
𝑐

𝑜)

𝜕𝑥2
+
𝜕2( 𝑤̈ 

𝑐
𝑜)

𝜕𝑦2
)            

Term 𝑓(𝑥, 𝑦, 𝑡) is the transverse loading applied onto the laminate which is set to zero for 

the free vibration analysis. 

𝑅11
(3) 𝜕

4( 𝑤 
𝑐

𝑜)

𝜕𝑥4
+ 2(𝑅12

(3) + 2𝑅66
(3))

𝜕4( 𝑤 
𝑐

𝑜)

𝜕𝑥2𝜕𝑦2
+ 𝑅22

(3) 𝜕
4( 𝑤 
𝑐

𝑜)

𝜕𝑦4
 

= −𝑅(1) 𝑤̈ 
𝑐

𝑜 + 𝑅
(3) (

𝜕2( 𝑤̈ 
𝑐

𝑜)

𝜕𝑥2
+
𝜕2( 𝑤̈ 

𝑐
𝑜)

𝜕𝑦2
)            

(2.118) 

Equation (2.118) has been solved in Refs. [2] and [9] and the solution for natural 

frequencies for a uniform square plate that is simply supported at all edges is: 

𝜔𝑖𝑗 =
𝜋2

𝐿2
√
1

𝑅(1)
(𝑅11

(3)𝑖4 + 2(𝑅12
(3) + 2𝑅66

(3))𝑖2𝑗2 + 𝑅22
(3)𝑗4) (2.119) 

In order to obtain the fundamental frequency, the values 𝑖 and 𝑗 are set to 1. 

𝜔11 =
𝜋2

𝐿2
√
1

𝑅(1)
(𝑅11

(3) + 2(𝑅12
(3) + 2𝑅66

(3)) + 𝑅22
(3)) (2.120) 

Considering equation (2.120), the value obtained for the fundamental frequency is 

339 𝑟𝑎𝑑 𝑠⁄  which is the same as the one calculated in the present work using the Ritz method. 

2.10.2 Solution using Finite Element Method (FEM) 

Numerical results from calculations worked out by using the Ritz method in the present 

chapter, are compared with that of the FEM obtained using ANSYS® for the tapered laminated 

composite square plates [30]. Details about the finite element solution are available in Ref. [30] 

and are reproduced in Appendix B. The finite element solution has been obtained using the 

four-node element SHELL 181 in ANSYS® and converged meshes of 2808 and 195 elements have 

been obtained for the plates of side length 0.8594 m and 0.17188 m, respectively. 
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Fundamental Frequency (𝒓𝒂𝒅 𝒔⁄ ) 
C

o
n

fi
g
u

ra
ti

o
n

 

B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

𝜑 = 0.1o 

𝐿 = 0.8594 𝑚 

𝜑 = 0.5o 

𝐿 = 0.17188 𝑚 

Ritz Method 

(CLPT) 

Finite Element 

Method [30] 

Ritz Method 

(CLPT) 

Finite Element 

Method [30] 

A 

SSSS 111 111 2784 2656 

CCCC 235 233 5866 5694 

CCFF 50 49 1259 1216 

B 

SSSS 108 108 2700 2699 

CCCC 229 230 5728 5710 

CCFF 52 52 1304 1245 

D 

SSSS 105 104 2627 2633 

CCCC 221 216 5527 5594 

CCFF 49 51 1235 1240 

Table 2.8 Comparison between Finite Element Method and Ritz Method Solutions 

Considering Table 2.8, it can be seen that the values for the fundamental frequencies of the 

tapered configurations for the given lengths and boundary conditions, obtained using FEM and 

Ritz method, are in good agreement.  
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2.10.3 Layer reduction test 

In this sub-section, in order to compare the fundamental frequencies of the uniform and 

tapered plates with SSSS boundary condition, a computational investigation called herein as the 

“layer reduction test” is implemented. 

Three identical uniform laminated plates are considered with configuration of (0 90⁄ )9𝑠 

made of unidirectional NCT-301 Graphite-Epoxy material (mechanical properties were given in 

Table 2.3) with ply thickness and side length of 125 × 10−6 m and 0.08593 m, respectively 

(Figure 2.4). The two laminates on the left and right sides with same length as that of the middle 

laminate, have been displayed only in part due to insufficient horizontal space. 

During the 12-stepped “layer reduction test” shown by Figures 2.4 - 2.16, two plies, one 

from the top half and the other from the bottom half of the laminate in the middle, are dropped and 

replaced with resin such that the thickness of the left side stays the same while that of the right end 

is reduced and a small taper angle is revealed at the first step so that the plate is considered as  the 

tapered laminate (Figure 2.5). As can be seen, in each new step of the test for the middle laminate 

(tapered laminate), the thickness of the left end stays the same while that of the right end is 

decreased and considering the fixed length of the laminate (0.08593 m), the taper angle increases 

such that at the last step of the test (for the middle laminate shown by Figure 2.16) the taper angle 

is equal to 1o. Note that during the “layer reduction test” the lengths for all the laminates are fixed 

and equal to 0.08593 m as described before. 

At each step during the 12-stepped “layer reduction test”, one ply from the top half and the 

other from the bottom half of the right-side laminate is removed and no dropped plies are replaced 

with the resin. Therefore, the laminate stays uniform during the test while the thickness is 

decreased at each step so that it is called the thin laminate. (The laminates on the right side are 

shown by Figures 2.4 - 2.16) 

The laminate on the left side with the configuration and properties described at the 

beginning of the sub-section, remains intact throughout the test and the thickness stays the same 

so that it is called the thick laminate. (The laminates on the left side are shown by 

Figures 2.4 - 2.16) 
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At the end of the 12-stepped “layer reduction test”, the middle plate corresponds to 

configuration A while the configuration of the thick laminate stays the same as (0 90⁄ )9𝑠, and the 

thin laminate becomes (0 90⁄ )3𝑠. 

 

Figure 2.4 Identical laminates considered for layer reduction test (no ply drop-off) 

 

Figure 2.5 Step 1: 2 plies dropped-off 

 

Figure 2.6 Step 2: 4 plies dropped-off 

 

Figure 2.7 Step 3: 6 plies dropped-off 
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Figure 2.8 Step 4: 8 plies dropped-off 

 

 

Figure 2.9 Step 5: 10 plies dropped-off 

 

Figure 2.10 Step 6: 12 plies dropped-off 

 

Figure 2.11 Step 7: 14 plies dropped-off 

 

Figure 2.12 Step 8: 16 plies dropped-off 
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Figure 2.13 Step 9: 18 plies dropped-off 

 

Figure 2.14 Step 10: 20 plies dropped-off 

 

Figure 2.15 Step 11: 22 plies dropped-off 

 

Figure 2.16 Step 12: 24 plies dropped-off 

The numerical results obtained for the fundamental frequencies of the thick, tapered and 

thin laminates at each step of the test are calculated using the developed formulation. By solving 

the eigenvalue problem given by equation (2.103), the fundamental frequencies are obtained and 

displayed in Table 2.9. 
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Fundamental Frequency (𝒓𝒂𝒅 𝒔⁄ ) of the plate 

B.C:  SSSS             𝑳 = 𝟎. 𝟎𝟖𝟓𝟗𝟑 𝐦 

Number of 

Reduced Layers 

CLPT FSDT 

Thick Tapered Thin Thick Tapered Thin 

0 16850 16850 16850 16218 16218 16218 

2 16850 16456 15914 16218 15857 15365 

4 16850 16056 14978 16218 15490 14505 

6 16850 15648 14042 16218 15115 13637 

8 16850 15233 13105 16218 14730 12761 

10 16850 14802 12169 16218 14330 11879 

12 16850 14362 11233 16218 13920 10991 

14 16850 13893 10296 16218 13482 10096 

16 16850 13418 9360 16218 13036 9196 

18 16850 12891 8424 16218 12539 8291 

20 16850 12366 7488 16218 12043 7381 

22 16850 11744 6551 16218 11453 6468 

24 16850 11145 5615 16218 10880 5550 

Table 2.9 Fundamental frequency values for the laminates from layer reduction test  

In Table 2.9, for the CLPT, the fundamental frequencies for the thick and thin laminates 

are calculated using the exact solution and that of the tapered laminate are calculated using the 

Ritz method. When no plies are reduced from the plates, the obtained fundamental frequencies for 

the left (thick), middle and right (thin) plates obtained based on different approaches, are equal. 

It is grasped from Table 2.9 that by increasing the number of removed plies from the 

tapered laminate, the fundamental frequency of the plate is decreased. This explanation 

corresponds to the thin laminate as well, however, this decline in fundamental frequency value for 

the thin plate is remarkable in comparison with that of the tapered plate. The results for the thick 
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laminate stay the same as it remains intact throughout the 12-stepped test. During the 12-stepped 

test, the fundamental frequency of the tapered laminate is numerically lower than that of the thick 

laminate and higher than that of the thin laminate. 

Comparing the numerical values that have been obtained based on CLPT and FSDT, the 

FSDT-based results are lower than that of CLPT at any single step of the test. In order to obtain 

the difference between the FSDT-based and CLPT-based fundamental frequencies for each 

laminate at each step given by Table 2.9, the fundamental frequencies of the laminates based on 

FSDT, are deducted from that of CLPT and the results are shown in Table 2.10. 

Fundamental Frequency Difference in 𝒓𝒂𝒅 𝒔⁄  

B.C:  SSSS             𝑳 = 𝟎. 𝟎𝟖𝟓𝟗𝟑 𝐦 

Number of 

Reduced Layers 
Thick Tapered Thin 

0 632 632 632 

2 632 599 549 

4 632 566 473 

6 632 533 405 

8 632 503 344 

10 632 472 290 

12 632 442 242 

14 632 411 200 

16 632 382 164 

18 632 352 133 

20 632 323 107 

22 632 291 83 

24 632 265 65 

Table 2.10 Difference between the fundamental frequencies obtained based on CLPT and FSDT 
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Considering the fixed length of the laminates throughout the layer reduction test, by 

removing the plies from the tapered and thin laminates at each step of the test, the 

length-to-thickness ratio gradually increases such that the numerical difference between 

CLPT-based and FSDT-based fundamental frequencies are decreased. For the thin laminate, this 

decline is considerable compared to that of the tapered laminate. 

Figure 2.17 has been illustrated using data from Table 2.9 showing the trend by which the 

fundamental frequencies for the plates change when the plies are gradually dropped-off.  
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Number of Dropped Layers 

 
Figure 2.17 The variation of fundamental frequencies of the thick, thin and tapered laminates 

with increase of dropped layers (CLPT and FSDT) 

The graph shows that the decrease for the thin plate is faster compared to the tapered 

laminate regardless of the theory. The line that corresponds to the FSDT is well below the CLPT 

line showing that the fundamental frequencies obtained based on FSDT formulation, are lower 

than that of CLPT. This decrease in numerical difference between CLPT-based and FSDT-based 

results for the tapered and thin laminates is also observed in Figure 2.17. The vertical distance 

between the CLPT and FSDT lines corresponding to the tapered laminate, is gradually decreased 
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by removing the plies. This explanation also corresponds to the thin laminate as the results obtained 

from the two theories almost coincide at the last step of the test. 

2.11 Number of terms of the shape function and the accuracy of the calculation 

The shape function is expressed in the form of series in equation (2.51) using admissible 

functions and the summations count the integer values of 𝑖 and 𝑗 up to the upper bounds of 𝐼 and 

𝐽. Increasing the values of 𝐼 and 𝐽, increases the size of mass and stiffness matrices, and the natural 

frequencies obtained by solving equation (2.103) are more accurate. In this section, the influence 

of the values for 𝐼 and 𝐽 on the accuracy with which the natural frequencies are computed, is 

investigated. In addition, some notifications are given in order to avoid any probable calculation 

error caused by inappropriate selection of 𝐼 and 𝐽. 

Configuration B with length of 0.1719 m corresponding to taper angle of 0.5o is 

considered. The natural frequencies of the plate are calculated considering 𝐼 = 𝐽 = 5 in 

equation (2.51) and the computation is repeated for different values for 𝐼 and 𝐽 (𝐼 = 𝐽 =

7, 9, 11, 13). Then, the natural frequencies obtained, each time based on specific values for 𝐼 and 

𝐽, are sorted in ascending order and are plotted in Figure 2.18, Figure 2.19 and Figure 2.20 for 

SSSS, CCCC and CCFF boundary conditions, respectively. 
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 Figure 2.18 Influence of I and J values on natural frequency calculation (configuration B, SSSS) 
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Figure 2.19 Influence of I and J values on natural frequency calculation (configuration B, CCCC) 



54 

 

𝝎
 𝒓
𝒂
𝒅
𝒔
⁄

 

 

 Ordinal Number of 𝝎 

 
Figure 2.20 Influence of I and J values on natural frequency calculation (configuration B, CCFF) 

Consider the curves corresponding to 𝐼 = 𝐽 = 7 and 𝐼 = 𝐽 = 9 for SSSS plate as the first 

and second curves. According to the second curve, the first 75% of the obtained natural frequencies 

reported by the first curve are almost accurate while for the rest, the accuracy gradually decreases 

and the curves diverge so that the last 15% of the frequencies obtained based on 𝐼 = 𝐽 = 7 are not 

reliable. The curves corresponding to the higher values for 𝐼 and 𝐽 (𝐼 = 𝐽 = 11, 13) confirm the 

starting point of the error. Therefore, it can be concluded that the first 75% of the natural 

frequencies obtained based on 𝐼 = 𝐽 = 7 are reliable. 

In a similar manner as explained for 𝐼 = 𝐽 = 7, this explanation corresponds to 𝐼 = 𝐽 = 9 

and 𝐼 = 𝐽 = 11. Therefore, it can be concluded that the last 15% of the frequencies obtained based 

on a fixed 𝐼 and 𝐽, (at least up to 11) are not reliable. 

The starting point of the error for CCFF plate is almost the same as that of SSSS and is 

equal to 75% while that of the CCCC plate is 65%. In order to avoid any miscalculation caused by 

this inaccuracy, two suggestions are offered. 
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Suggestion 1: In order to obtain accurate values of natural frequencies, the upper bound 

values for 𝐼 and 𝐽 are selected higher than what is required such that the frequencies within the 

accurate range are sufficiently numerous. Then, by excluding the inaccurate frequencies, the rest 

of the values are accurate and are sufficient in number as the upper bound values of 𝐼 and 𝐽 are 

high. Besides, for eigenvectors, values corresponding to reserved frequencies are retained and the 

rest are excluded. Furthermore, for each set of eigenvectors, values corresponding to the last terms 

of the shape function are omitted such that the matrix of the eigenvectors remains square. By this 

approach, eigenvalues and eigenvectors derived from Ritz method are filtered and reliable values 

are put into further use in forced vibration analysis. 

Suggestion 2: For the forced vibration analysis, using high order of 𝐼 and 𝐽 ensures that 

accurate frequencies play the important role in the deflection function while inaccurate ones 

correspond to sufficiently weak terms. Therefore, by testing different values for 𝐼 and 𝐽 until when 

the numerical result converges, the solution is made reliable. By this approach, the complications 

caused by the previous suggestion is avoided. 

In the present study, considering suggestion 2, the calculations have been performed based 

on 𝐼 = 𝐽 = 13 and the derived mass and stiffness matrices as well as eigen values and eigenvectors 

are used in the next chapter for the forced vibration analysis. 

It can be observed from Figures 2.18 - 2.20 that the natural frequency values calculated by 

the Ritz method for the tapered configurations, are over estimated and by increasing the number 

of terms considered for the out of plane displacement function in equation (2.51), this error is 

reduced. 

2.12 Numerical results and discussion 

After demonstration, the developed formulation based on CLPT and FSDT are applied to 

study tapered plates of various lengths, with four taper configurations, and with three different 

boundary conditions. The obtained results for each case, including eigenvalues and eigenvectors 

determined by solving the eigenvalue problem, as well as mass and stiffness matrices, are reserved 

for further use in the next chapter. The fundamental frequency for each case is given in 

Tables 2.11 - 2.13. 
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 𝐋
𝐞
𝐧
𝐠
𝐭𝐡
 (
𝐜𝐦

) ;
𝐀
𝐧
𝐠
𝐥𝐞
 (
𝐝
𝐞
𝐠
)

 

𝐋
𝐞
𝐧
𝐠
𝐭𝐡

𝐌
𝐞
𝐚
𝐧
𝐓
𝐡
𝐢𝐜
𝐤
𝐧
𝐞
𝐬𝐬

 Configuration A Configuration B 

SSSS CCCC SSSS CCCC 

CLPT FSDT CLPT FSDT CLPT FSDT CLPT FSDT 

𝟖𝟓. 𝟗𝟒;
𝟎. 𝟏𝐨

 286.5 111.4 110.3 234.7 231.7 108.0 107.0 229.2 226.9 

𝟑𝟒. 𝟑𝟖;
𝟎. 𝟐𝟓𝐨

 114.60 696 688 1467 1452 675 668 1432 1418 

𝟏𝟕. 𝟏𝟗;
𝟎. 𝟓𝐨

 57.3 2784 2751 5866 5746 2700 2670 5728 5623 

𝟏𝟏. 𝟒𝟔;
𝟎. 𝟕𝟓𝐨

 38.2 6264 6160 13198 12749 6075 5983 12888 12498 

𝟖. 𝟓𝟗;
𝟏𝐨

 28.6 11138 10879 23469 22278 10802 10576 22917 21895 

𝟔. 𝟖𝟕;
𝟏. 𝟐𝟓𝐨

 22.9 17409 16902 36682 35614 16884 16392 35821 34778 

𝟓. 𝟕𝟑;
𝟏. 𝟓𝐨

 19.1 25045 24003 52770 46830 24289 23391 51532 46332 

Table 2.11 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) values of tapered composite plates for different lengths and 

taper angles for configurations A and B 
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 𝐋
𝐞
𝐧
𝐠
𝐭𝐡
 (
𝐜𝐦

) ;
𝐀
𝐧
𝐠
𝐥𝐞
 (
𝐝
𝐞
𝐠
)

 

𝐋
𝐞
𝐧
𝐠
𝐭𝐡

𝐌
𝐞
𝐚
𝐧
 𝐓
𝐡
𝐢𝐜
𝐤
𝐧
𝐞
𝐬𝐬

 Configuration C Configuration D 

SSSS CCCC SSSS CCCC 

CLPT FSDT CLPT FSDT CLPT FSDT CLPT FSDT 

𝟖𝟓. 𝟗𝟒;
𝟎. 𝟏𝐨

 286.5 110.7 109.7 236.2 233.9 105.1 104 221.2 218.4 

𝟑𝟒. 𝟑𝟖;
𝟎. 𝟐𝟓𝐨

 114.6 692 685 1476 1461 657 651 1382 1370 

𝟏𝟕. 𝟏𝟗;
𝟎. 𝟓𝐨

 57.3 2766 2736 5902 5792 2627 2597 5527 5427 

𝟏𝟏. 𝟒𝟔;
𝟎. 𝟕𝟓𝐨

 38.2 6224 6130 13280 12862 5909 5820 12434 12071 

𝟖. 𝟓𝟗;
𝟏𝐨

 28.6 11066 10831 23614 22508 10507 10292 22111 21179 

𝟔. 𝟖𝟕;
𝟏. 𝟐𝟓𝐨

 22.9 17297 16808 36909 34335 16423 15964 34560 32175 

𝟓. 𝟕𝟑;
𝟏. 𝟓𝐨

 19.1 24883 23933 53095 47489 23628 22786 49721 44970 

Table 2.12 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) values of tapered composite plates for different lengths and 

taper angles for configurations C and D 
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In the case of FSDT, the admissible functions corresponding to CCFF plate have not been 

found among the references. Therefore, the results for CCFF plate are obtained solely based on 

CLPT and displayed in Table 2.13. 

CCFF; Based on CLPT 

 𝐋
𝐞
𝐧
𝐠
𝐭𝐡
 (
𝐜𝐦

) ;
𝐀
𝐧
𝐠
𝐥𝐞
 (
𝐝
𝐞
𝐠
)

 

𝐋
𝐞
𝐧
𝐠
𝐭𝐡

𝐌
𝐞
𝐚
𝐧
 𝐓
𝐡
𝐢𝐜
𝐤
𝐧
𝐞
𝐬𝐬

 

Configuration 

A 

Configuration 

B 

Configuration 

C 

Configuration 

D 

𝟖𝟓. 𝟗𝟒;
𝟎. 𝟏𝐨

 286.5 50.4 52.2 54.7 49.4 

𝟑𝟒. 𝟑𝟖;
𝟎. 𝟐𝟓𝐨

 114.60 315 326 341.61 308 

𝟏𝟕. 𝟏𝟗;
𝟎. 𝟓𝐨

 57.3 1259 1304 1366 1235 

𝟏𝟏. 𝟒𝟔;
𝟎. 𝟕𝟓𝐨

 38.2 2833 2934 3073 2779 

𝟖. 𝟓𝟗;
𝟏𝐨

 28.6 5038 5216 5465 4942 

𝟔. 𝟖𝟕;
𝟏. 𝟐𝟓𝐨

 22.9 7873 8151 8540 7723 

𝟓. 𝟕𝟑;
𝟏. 𝟓𝐨

 19.1 11328 11729 12287 11114 

Table 2.13 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) values of tapered composite plates for different lengths and 

taper angles 

According to Tables 2.11 - 2.13, the fundamental frequencies for the CCCC and CCFF 

plates are the highest and the lowest respectively. It is observed from the tables that regardless of 

the boundary condition, by increasing the taper angle which results in smaller length, the 

fundamental frequency of the plate increases. 
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In order to visualize the data given in Tables 2.11 - 2.13, the following graphs are depicted 

by Figures 2.21 - 2.24. 𝜔   
𝑐

11 and 𝜔 𝐹 
  

11 are the fundamental frequencies obtained based on CLPT 

and FSDT formulations, respectively. Figures 2.21 and 2.22 illustrate the change of frequency 

ratio 𝜔𝐹 
  

11 𝜔   
𝑐

11⁄  with increase of length over mean thickness ratio. Figure 2.23 and Figure 2.24 

illustrate the change of fundamental frequency with increase of length over mean thickness ratio 

for different boundary conditions for CLPT and FSDT. 
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Figure 2.21 Frequency ratio 𝜔𝐹 
  

11 𝜔   
𝑐

11⁄  for different lengths of the taper configuration A 
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Figure 2.22 Frequency ratio 𝜔𝐹 
  

11 𝜔   
𝑐

11⁄  for different lengths of the taper configuration D 

For different lengths of the tapered laminates with configurations described by Figure 2.1, 

the mean thickness is constant as the thickness of the left and right ends of the plate stays the same. 

Therefore, increase in the length to mean thickness ratio means that the laminate’s length increases. 

It is grasped from Figures 2.21 and 2.22 that by increase in the laminate length, the difference 

between the CLPT-based and FSDT-based fundamental frequencies decreases such that the FSDT 

to CLPT frequency ratio tends to 1. 

Figures 2.23 and 2.24 illustrate the fundamental frequency values for different lengths of 

the tapered laminates. 
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Figure 2.23 CLPT-based and FSDT-based fundamental frequencies for different boundary conditions 

and lengths (configuration A) 
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Figure 2.24 CLPT-based and FSDT-based fundamental frequencies for different boundary conditions 

and lengths (configuration D) 

From Figure 2.24 and Figure 2.23 it can be observed that by increase in laminate length, 

the fundamental frequency decreases and the difference between the CLPT-based and FSDT-based 

results decreases. Since the trends for all taper configurations are the same, the results 

corresponding to configurations A and D which display a greater difference, have been illustrated. 

The numerical results for the CCFF plates are the lowest and that of the CCCC plates are the 

highest. 

By increase in the length over mean thickness ratio the fundamental frequency decreases 

such that when this ratio starting from 19.1 approaches 57.3, the fundamental frequency is reduced 

to 11%. This explanation is true for all the boundary conditions; however, this reduction in 

fundamental frequency for CCFF and SSSS plates, with slight difference, are the highest and the 

lowest, respectively. 

The difference in the taper configurations subjected to the study is mainly in the internal 

regions while the external layers are similar. The following example shows the important role of 

the external plies in determining the fundamental frequency value of a plate. 
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Example: Consider the two uniform square laminated plates shown in Figure 2.25, with 

the mechanical and geometrical properties described as below. 

Two uniform laminated square plates with all simply supported edges are considered with 

the configuration of (0 90⁄ )9𝑠 made of unidirectional plies of NCT-301 Graphite-Epoxy material 

(Table 2.3) with ply thickness and length of 125 × 10−6 m and 0.35 m, respectively. 

In the second laminate, 24 plies in the middle of the plate are replaced by resin with the 

same thickness as depicted in Figure 2.25. Obtain and compare the fundamental frequencies. 

 
(0 90⁄ )9𝑠 Laminate [(0 90⁄ )3 𝑅𝑒𝑠𝑖𝑛 (0 90⁄ )3⁄⁄ ] Laminate 

Figure 2.25 Two uniform laminates of same thickness and with difference in internal structure 

Solution: The natural frequencies of a uniform laminated composite plate with all simply 

supported edges are determined using the exact solution given by equation (2.119). In order to 

obtain the fundamental frequency, the condition is 𝑖, 𝑗 = 1 resulting in equation (2.120). 

Fundamental frequencies obtained for the first and the second plates are equal to 

1016 𝑟𝑎𝑑 𝑠⁄  and 989 𝑟𝑎𝑑 𝑠⁄ , respectively. Therefore, in spite of using three times more plies in 

the structure of the first laminate, there is merely a slight difference between the two fundamental 

frequencies. This example shows that the stiffness of a ply that is close to the midplane is 

significantly less responsible for increasing the fundamental frequency in comparison with an 

external ply. 

Consider the order of 3 for the variable 𝑧, the distance from the midplane, in the bending 

stiffness elements 𝑅𝑖𝑗
(3)

 in equation (2.85) when 𝑛 = 3. It shows that the external plies are mostly 

responsible for increasing the bending stiffness elements of the laminate as their distance 𝑧 is 

greater than that of the internal plies. On the other hand, the density of the plies is greater than that 
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of the resin regardless of the region they are used in. Therefore, the internal plies close to the 

midplane do not significantly contribute in increasing the fundamental frequency of the plates 

compared to external plies while they still increase the mass of the plate as much as the external 

plies. 

2.13 Conclusion 

In this chapter, the stiffness and mass matrices based on CLPT and FSDT, for the tapered 

laminated plates have been obtained. The eigenvalue problems for the plates under three different 

boundary conditions and with various lengths have been solved. The natural frequencies and mode 

shapes of the plate have been obtained and the so-called layer reduction test has been carried out. 

The numerical results have been given in tables and graphs. Considering the obtained results, the 

following conclusions are made: 

1. Regardless of the taper configuration, the fundamental vibration frequency for CCCC plate 

is the highest and that of the CCFF plate is the lowest such that for configuration A with the highest 

difference rate, fundamental frequency of the CCCC plate is 465% of that of the CCFF plate and 

for configuration D with the lowest difference rate, fundamental frequency of the CCCC plate is 

448% of the CCFF plate when the side length of the plate is 0.8594 m. 

2. Regardless of the boundary condition and taper configuration, decrease in the length over 

mean thickness ratio results in higher fundamental frequency such that when this ratio is reduced 

from 57.3 to 19.1, the fundamental frequency (in general, from 2700 𝑟𝑎𝑑 𝑠⁄  for SSSS plates, 5750 

𝑟𝑎𝑑 𝑠⁄  for CCCC plates and 1300 𝑟𝑎𝑑 𝑠⁄  for CCFF plates) increases roughly by 800% for all the 

plates. However, this increase for CCFF and SSSS plates, with slight difference, are the highest 

and lowest, respectively. 

3. Layer reduction test shows that for a fixed-length laminate, increasing the taper angle by 

removing the plies results in a decrease in the fundamental frequency. At beginning of the test with 

no ply drop-off, the fundamental frequency obtained for the tapered laminate based on the Ritz 

method is equal to that of the thick and thin laminates obtained based on the exact solution method. 

The fundamental frequency for the tapered laminate is lower than that of the thick plate and higher 
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than that of the thin plate at each single step of the test. The obtained results for the thick, tapered 

and thin laminates based on FSDT are slightly lower than that of the CLPT-based results at each 

single step of the test and this slight difference is reduced with increase of dropped-off plies as the 

length over mean thickness ratio increases. 

4. Since transverse shear stresses are considered in FSDT, numerical results obtained for the 

natural frequencies based on this theory are more accurate. For the square tapered plates with 

smaller side length, the difference between the fundamental frequencies obtained based on CLPT 

and FSDT are greater. In general, for a fixed side length, this difference for CCCC plate is larger 

compared with SSSS plates. However, the difference is not sufficiently great to justify the expense 

of computational effort imposed by FSDT, especially in modal analysis. Therefore, CLPT is 

selected for further analysis including forced vibration study in further chapters. 

5. In composite plates, the plies close to the midplane do not significantly contribute to 

increasing the natural frequencies even though their inertia (mass) contribution is the same as that 

of other plies. 

6. For the SSSS boundary condition, configuration A with sufficient outer plies and resin as 

a lighter inner material vibrates with the highest frequency among all the tapered configurations 

and configuration C comes the second. By using plies in inner layers of configuration C, it becomes 

heavier in comparison with configuration A while such plies do not contribute significantly in 

increasing the stiffness, therefore, configuration A with considerably fewer plies, still exhibits high 

fundamental frequency. However, in CCCC and CCFF boundary conditions, fundamental 

frequency of the configuration C, is the highest among all the tapered configurations. 

7. Considering configuration C with the resin used at the core along the midplane and 

configurations B and D, all possessing the same mass distribution, configuration C vibrates with 

the highest natural frequency since the resin as the weaker material is used at the core along the 

midplane and the plies contribute in the best way among the configurations B, C and D. For 

configurations B and D, resin is used in the regions farther from the midplane which prevents the 

plies from using their stiffness potential to the full capacity. In configuration D, resin is used in 

the region close to the external layers such that it vibrates with the lowest natural frequency among 

all the configurations. 
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Chapter 3 : ________________________________________ 

Forced vibration analysis of tapered composite plates 

3.1 Introduction 

In chapter 2, free vibration analysis was carried out and the mass and stiffness matrices 

were obtained based on CLPT and FSDT. Then, using these matrices, the Ritz method was applied 

forming an eigenvalue problem leading to the determination of natural frequencies and the 

parameters corresponding to the mode shapes. 

In the present chapter, the assumed modes method is used to study the forced vibrations of 

tapered composite plates. According to Ref. [31], the solution of the problem is assumed in the 

form of series composed of linear combination of admissible functions of the spatial coordinates 

satisfying essential (geometric) boundary conditions, multiplied by time-dependent generalized 

coordinates. Strain and kinetic energies as well as virtual work of conservative and 

nonconservative forces are expressed in terms of the assumed modes solution. The CLPT is used. 

The mass and stiffness matrices derived in chapter 2 based on CLPT, are reused here in chapter 3 

in the assumed modes method. The Lagrange’s equations are used to establish the equations of 

motion of the equivalent n-degrees-of-freedom discrete system of the continuous system. 

Parameters of the mode shapes and the natural frequencies, as the eigenvectors and square roots 

of corresponding eigenvalues respectively, are the essential requirements for the forced vibration 

analysis of tapered laminated composite plates using assumed modes method. Afterward, with the 

mathematical operations performed on the Multi Degree of Freedom (MDOF) discrete system, the 

solution is obtained. The deflection function composed of spatial and time-dependent functions 

describes the dynamic behavior of the laminate. 

3.2 Forced vibration response based on CLPT 

In forced vibration analysis, the transverse deflection function is expressed in the form of 

series according to Ref. [32]. 



67 

 

𝑤𝑜
𝐹 =∑∑𝐴𝑖𝑗

𝐹 (𝑡)𝑋𝑖(𝑥)𝑌𝑗(𝑦)

𝐽

𝑗=1

𝐼

𝑖=1

 (3.1) 

where, 𝑤𝑜
𝐹 is the transverse displacement function in forced vibration analysis and 𝐴𝑖𝑗

𝐹  is 

the parameter corresponding to the admissible functions 𝑋𝑖 and 𝑌𝑗 determined by geometric 

boundary conditions discussed in chapter 2. The right superscript 𝐹 in the terms 𝑤𝑜
𝐹 and 𝐴𝑖𝑗

𝐹  stands 

for forced vibration response. The derivative of transverse displacement function 𝑤𝑜
𝐹 with respect 

to time is obtained as follows. 

𝑤̇𝑜
𝐹 =∑∑𝐴̇𝑖𝑗

𝐹 𝑋𝑖𝑌𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 (3.2) 

The overdot notation indicates the derivative with respect to time, for example: 𝑤̇𝑜
𝐹 =

𝑑𝑤𝑜
𝐹 𝑑𝑡⁄ . The admissible spatial functions 𝑋𝑖 and 𝑌𝑗 corresponding to the geometric boundary 

conditions explained in chapter 2 are substituted in equation (3.1). 

3.2.1 Undamped forced vibration 

Stiffness and mass matrices obtained from strain and kinetic energies in chapter 2, are used 

in the assumed modes method in the present chapter. Following Ref. [31], in addition to strain and 

kinetic energies, virtual work of external forces is taken into consideration in forced vibration 

analysis. 

𝛿𝑊 =∬𝑓(𝑥, 𝑦, 𝑡) 𝛿𝑤𝑜
𝐹𝑑𝐴 (3.3) 

where, 𝑊 is the work done by the external force 𝑓(𝑥, 𝑦, 𝑡) and 𝛿 denotes virtual quantities. 

Substituting equation (3.1) in (3.3): 

𝛿𝑊 =∑∑∬𝑓(𝑥, 𝑦, 𝑡)𝑋𝑖(𝑥)𝑌𝑗(𝑦)𝑑𝐴(𝛿𝐴𝑖𝑗
𝐹 )

𝐽

𝑗=1

𝐼

𝑖=1

 (3.4) 
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Writing the above expression in the form below: 

𝛿𝑊 =∑∑𝐹𝑖𝑗(𝛿𝐴𝑖𝑗
𝐹 )

𝐽

𝑗=1

𝐼

𝑖=1

 (3.5) 

𝐹𝑖𝑗 =∬𝑓(𝑥, 𝑦, 𝑡)𝑋𝑖(𝑥)𝑌𝑗(𝑦)𝑑𝐴 (3.6) 

Lagrange’s equations are expressed according to Ref. [31]:  

𝑑

𝑑𝑡
(
𝜕( 𝑇   

 𝐶 )

𝜕𝐴̇𝑖𝑗
𝐹
) +

𝜕( 𝑈   
 𝐶 )

𝜕𝐴𝑖𝑗
𝐹 = 𝐹𝑖𝑗 (3.7) 

where, 𝑖 = 1, 2, 3, … , 𝐼 and 𝑗 = 1, 2, 3, … , 𝐽. Considering all possible integer values of 𝑖 and 

𝑗 in equation (3.7), the mass [ 𝑀   
 𝐶 ] and stiffness [ 𝐾   

 𝐶 ] matrices and force matrix {𝐹} are obtained 

from equation (3.7). 

[ 𝑀   
 𝐶 ]

 𝐼𝐽×𝐼𝐽
{𝐴̈𝐹}

𝐼𝐽×1
+ [ 𝐾   

 𝐶 ]
 𝐼𝐽×𝐼𝐽

{𝐴𝐹}𝐼𝐽×1 = {𝐹}𝐼𝐽×1 (3.8) 

Equation (3.8) represents the matrix equation of motion of the equivalent 

n-degrees-of-freedom discrete system of the continuous system. According to Ref. [33], the 

general solution is in the form of: 

{𝐴𝐹} =∑∑{𝐴𝜔𝑖𝑗} 𝑞𝑖𝑗(𝑡)

𝐽

𝑗=1

𝐼

𝑖=1

 (3.9) 

where, {𝐴𝜔𝑖𝑗} contains the eigenvector corresponding to the 𝑖𝑗th natural frequency 𝜔𝑖𝑗 that 

has been normalized with respect to mass matrix [ 𝑀   
 𝐶 ]. In the n-degrees-of-freedom discrete 

system of the continuous system, 𝑞𝑖𝑗(𝑡) is known as the time-dependent generalized coordinate. 
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The derivatives of {𝐴𝐹} with respect to time are calculated and expressed in matrix form after the 

summations have been taken care of. 

{𝐴𝐹} = [𝐴𝜔]𝐼𝐽×𝐼𝐽 {𝑞}𝐼𝐽×1 (3.10) 

{𝐴̇𝐹} = [𝐴𝜔]𝐼𝐽×𝐼𝐽 {𝑞̇}𝐼𝐽×1 (3.11) 

{𝐴̈𝐹} = [𝐴𝜔]𝐼𝐽×𝐼𝐽 {𝑞̈}𝐼𝐽×1 (3.12) 

Square matrix [𝐴𝜔] contains all column matrices {𝐴𝜔𝑖𝑗}, and column matrix {𝑞} contains 

elements 𝑞𝑖𝑗, and column matrices {𝑞̇} and {𝑞̈} are derivatives of {𝑞} with respect to time. 

Substituting equations (3.10) and (3.12) in equation (3.8): 

[ 𝑀   
 𝐶 ][𝐴𝜔]{𝑞̈} + [ 𝐾   

 𝐶 ][𝐴𝜔]{𝑞} = {𝐹} (3.13) 

Multiplying both sides by [𝐴𝜔]𝑇: 

[𝐴𝜔]𝑇[ 𝑀   
 𝐶 ][𝐴𝜔]{𝑞̈} + [𝐴𝜔]𝑇[ 𝐾   

 𝐶 ][𝐴𝜔]{𝑞} = [𝐴𝜔]𝑇{𝐹} (3.14) 

Since [𝐴𝜔] is normalized matrix with respect to mass matrix, the terms [𝐴𝜔]𝑇[ 𝑀   
 𝐶 ][𝐴𝜔] 

and [𝐴𝜔]𝑇[ 𝐾   
 𝐶 ][𝐴𝜔] are equal to [𝐼] and [ 𝜔2↘ 

↖ ], respectively. [𝐼] is the identity matrix. Matrix 

[ 𝜔2↘ 
↖ ] is the diagonal matrix containing the natural frequencies obtained by solving the 

eigenvalue problem in chapter 2. Using notation {𝐹̅} = [𝐴𝜔]𝑇{𝐹}, equation (3.14) is rewritten as 

follows. 

{𝑞̈} + [ 𝜔2↘ 
↖ ]{𝑞} = {𝐹̅} (3.15) 

Considering that [ 𝜔2↘ 
↖ ] is a diagonal matrix, equation (3.15) is decoupled as follows. 

𝑞̈𝑖𝑗 + 𝜔𝑖𝑗
2 𝑞𝑖𝑗 = 𝐹̅𝑖𝑗 (3.16) 
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where, 𝐹̅𝑖𝑗 is the 𝑖𝑗th element of the column matrix {𝐹̅} and 𝑖 = 1, 2, … , 𝐼 and 𝑗 = 1, 2, … , 𝐽. 

The solution of equation (3.16) is given by Ref. [33] as follows. 

𝑞𝑖𝑗(𝑡) = 𝑞𝑖𝑗(0) cos(𝜔𝑖𝑗𝑡) +
1

𝜔𝑖𝑗
[𝑞̇𝑖𝑗(0) sin(𝜔𝑖𝑗𝑡) + ∫ 𝐹̅𝑖𝑗(𝜏) 𝑠𝑖𝑛 (𝜔𝑖𝑗(𝑡 − 𝜏)) 𝑑𝜏

𝑡

0

] (3.17) 

By setting the initial displacement and velocity to zero, terms 𝑞𝑖𝑗(0) and 𝑞̇𝑖𝑗(0) for any 

integer values of 𝑖 and 𝑗 are zero (Appendix A.4) and equation (3.17) becomes: 

𝑞𝑖𝑗(𝑡) =
1

𝜔𝑖𝑗
∫ 𝐹̅𝑖𝑗(𝜏) sin (𝜔𝑖𝑗(𝑡 − 𝜏))
𝑡

0

𝑑𝜏 (3.18) 

where, 𝑖 = 1, 2, 3, … , 𝐼 and 𝑗 = 1, 2, 3, … , 𝐽. By substituting (3.18) in (3.9), {𝐴𝐹} is 

obtained. Then, in order to determine the transverse displacement function 𝑤𝑜
𝐹 for the forced 

vibration analysis with no damping, elements of {𝐴𝐹} are substituted in equation (3.1). 

3.2.2 Forced vibration with viscous damping 

In this sub-section, the viscous damping effect is taken into consideration and 

corresponding transverse displacement function is obtained. In a similar manner to that of the 

previous sub-section, the investigation is conducted using Refs. [31] and [33]. Considering viscous 

damping, Lagrange’s equation is expressed as follows. 

𝑑

𝑑𝑡
(
𝜕( 𝑇   

 𝐶 )

𝜕𝐴̇𝑖𝑗
𝐹
) +

𝜕𝑈𝑑

𝜕𝐴̇𝑖𝑗
𝐹
+
𝜕( 𝑈   

 𝐶 )

𝜕𝐴𝑖𝑗
𝐹 = 𝐹𝑖𝑗 (3.19) 

where, 𝑖 = 1, 2, 3, … , 𝐼 and 𝑗 = 1, 2, 3, … , 𝐽. Dissipation of energy is represented by 𝑈𝑑 and 

considering all integer values of 𝑖 and 𝑗 in equation (3.19), the mass [ 𝑀   
 𝐶 ], stiffness [ 𝐾   

 𝐶 ] and 

damping [𝑈𝑑] matrices are substituted in equation (3.19) according to Ref. [32]. 

[ 𝑀   
 𝐶 ]

 𝐼𝐽×𝐼𝐽
{𝐴̈𝐹}

𝐼𝐽×1
+ [𝑈𝑑]𝐼𝐽×𝐼𝐽{𝐴̇

𝐹}
𝐼𝐽×1

+ [ 𝐾   
 𝐶 ]

 𝐼𝐽×𝐼𝐽
{𝐴𝐹}𝐼𝐽×1 = {𝐹}𝐼𝐽×1 (3.20) 
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For simplicity, it is assumed that the Rayleigh damping is capable of describing the 

damping effect of the tapered laminates. By this assumption, [𝑈𝑑]𝐼𝐽×𝐼𝐽 can be written into a linear 

combination of mass and stiffness matrices as below. 

[𝑈𝑑]𝐼𝐽×𝐼𝐽 = 𝛼[ 𝑀   
 𝐶 ]

𝐼𝐽×𝐼𝐽
+ 𝛽[ 𝐾   

 𝐶 ]
𝐼𝐽×𝐼𝐽

 (3.21) 

where, 𝛼 and 𝛽 are material parameters. Values of 𝛼 and 𝛽 for the material considered in 

the present work are given in Refs. [3] and [34]. The general solution is given by equation (3.9) 

which is expressed by equation (3.10) in matrix form. Substituting equations (3.10), (3.11), (3.12) 

and (3.21) in (3.20): 

[ 𝑀   
 𝐶 ][𝐴𝜔]{𝑞̈} + (𝛼[ 𝑀   

 𝐶 ] + 𝛽[ 𝐾   
 𝐶 ])[𝐴𝜔]{𝑞̇} + [ 𝐾   

 𝐶 ][𝐴𝜔]{𝑞} = {𝐹} (3.22) 

Multiplying both sides by [𝐴𝜔]𝑇: 

[𝐴𝜔]𝑇[ 𝑀   
 𝐶 ][𝐴𝜔]{𝑞̈} + (𝛼[𝐴𝜔]𝑇[ 𝑀   

 𝐶 ][𝐴𝜔] + 𝛽[𝐴𝜔]𝑇[ 𝐾   
 𝐶 ][𝐴𝜔]){𝑞̇} + [𝐴𝜔]𝑇[ 𝐾   

 𝐶 ][𝐴𝜔]{𝑞} 

= [𝐴𝜔]𝑇{𝐹} 

 (3.23) 

Since [𝐴𝜔] is normalized matrix with respect to mass matrix, according to Ref. [31], terms 

[𝐴𝜔]𝑇[ 𝑀   
 𝐶 ][𝐴𝜔] and [𝐴𝜔]𝑇[ 𝐾   

 𝐶 ][𝐴𝜔] are equal to [𝐼] and [ 𝜔2↘ 
↖ ], respectively. Matrix [𝐼] is the 

identity matrix and [ 𝜔2↘ 
↖ ] is the diagonal matrix containing the natural frequencies obtained by 

solving the eigenvalue problem in chapter 2. Using notation [𝐴𝜔]𝑇{𝐹} = {𝐹̅}, equation (3.23) is 

rewritten. 

{𝑞̈}+ (𝛼[𝐼]+ 𝛽 [ 𝜔2↘ 

↖
]) {𝑞̇}+ [ 𝜔2↘ 

↖
] {𝑞} = {𝐹̅} (3.24) 

Considering that [ 𝜔2↘ 
↖ ] is a diagonal matrix, equation (3.24) is decoupled as follows. 

𝑞̈𝑖𝑗 + (𝛼 + 𝛽𝜔𝑖𝑗
2 )𝑞̇𝑖𝑗 + 𝜔𝑖𝑗

2 𝑞𝑖𝑗 = 𝐹̅𝑖𝑗 (3.25) 

According to Ref. [33], the following equation is written: 
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𝛼 + 𝛽𝜔𝑖𝑗
2 = 2𝜁𝑖𝑗𝜔𝑖𝑗 (3.26) 

where, 𝜁𝑖𝑗 is the damping ratio. Substituting equation (3.26) in (3.25): 

𝑞̈𝑖𝑗 + 2𝜁𝑖𝑗𝜔𝑖𝑗𝑞̇𝑖𝑗 + 𝜔𝑖𝑗
2 𝑞𝑖𝑗 = 𝐹̅𝑖𝑗 (3.27) 

The solution of the equation (3.27) is given by Ref. [33]. 

𝑞𝑖𝑗(𝑡) = 𝑒−𝜁𝑖𝑗𝜔𝑖𝑗𝑡 [cos (𝜔𝑑𝑖𝑗𝑡) +
𝜁𝑖𝑗𝜔𝑖𝑗

𝜔𝑑𝑖𝑗
𝑠𝑖𝑛 (𝜔𝑑𝑖𝑗𝑡)] 𝑞𝑖𝑗(0) + 

1

𝜔𝑑𝑖𝑗
[𝑒−𝜁𝑖𝑗𝜔𝑖𝑗𝑡𝑠𝑖𝑛 (𝜔𝑑𝑖𝑗𝑡) 𝑞̇𝑖𝑗(0) + ∫ 𝐹̅𝑖𝑗(𝑡)𝑒

−𝜁𝑖𝑗𝜔𝑖𝑗(𝑡−𝜏) sin (𝜔𝑑𝑖𝑗(𝑡 − 𝜏))𝑑𝜏
𝑡

0

] 

 

(3.28) 

where, 𝜔𝑑𝑖𝑗 = 𝜔𝑖𝑗√1 − 𝜁𝑖𝑗
2  and 𝑖 = 1, 2, 3, … , 𝐼 and 𝑗 = 1, 2, 3, … , 𝐽. 

Considering zero initial displacement and velocity, 𝑞𝑖𝑗(0) and 𝑞̇𝑖𝑗(0) are zero 

(Appendix A.4) and equation (3.28) is simplified. 

𝑞𝑖𝑗(𝑡) =
1

𝜔𝑑𝑖𝑗
∫ 𝐹̅𝑖𝑗(𝜏)𝑒

−𝜁𝑖𝑗𝜔𝑖𝑗(𝑡−𝜏) sin (𝜔𝑑𝑖𝑗(𝑡 − 𝜏))𝑑𝜏
𝑡

0

 (3.29) 

where, 𝑖 = 1, 2, 3, … , 𝐼 and 𝑗 = 1, 2, 3, … , 𝐽. By substituting equation (3.29) in (3.9), {𝐴𝐹} 

is obtained. Then, in order to determine the transverse displacement function for the forced 

vibration analysis with damping effect, elements of {𝐴𝐹} are substituted in equation (3.1). 

3.3 Loading types 

In the forced vibration analysis of the tapered laminates, the response of the plates due to 

external force is studied. In this section, 4 different types of line loads as the external forces are 

described. The corresponding expressions of the excitations have been given in Table 3.1. 
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 Loading (𝑵 𝒎𝟐⁄ ) Types  

 Type 1 Type 2 Type 3 Type 4 

Spatial 

Function 
𝛿 (𝑥 −

𝐿

2
) 𝛿 (𝑦 −

𝐿

2
) 𝛿 (𝑥 −

𝐿

2
) sin (𝜋

𝑥

𝐿
) 𝛿 (𝑦 −

𝐿

2
) sin (𝜋

𝑦

𝐿
) 

Time 

Function 
(−500) 𝑐𝑜𝑠(𝛺𝑡) 

                           𝛺 = 0.3𝜔11 

Table 3.1 Four types of loading 

where, 𝛿 is the Dirac delta function and 𝜔11 and 𝛺 are the fundamental frequency of the 

plate and excitation frequency, respectively. Figures 3.1 - 3.4 provide a visual perception of the 

spatial variation in coordinate system 𝑥𝑦𝑧, of the excitation types given in Table 3.1. 

 

Figure 3.1 Line load type 1 



74 

 

 

Figure 3.2 Line load type 2 

 

Figure 3.3 Line load type 3 

 

Figure 3.4 Line load type 4 

 



75 

 

The loading types 1 and 3 have been applied at the middle of the laminate along the taper 

direction 𝑥. The difference between loading types 1 and 3 is that the magnitude of the loading type 

1 is constant along the laminate’s length while the magnitude of loading type 3 shows a sinosoidal 

variation along 𝑥.  

The loading types 2 and 4 have been applied at the middle of the laminate perpendicular to 

the taper direction 𝑥. The difference between loading types 2 and 4 is that the magnitude of the 

loading type 2 is constant along the laminate’s width while the magnitude of loading type 4 shows 

a sinosoidal variation along 𝑦.  

The excitations described in present section, are applied to the tapered laminates and the 

responses are analyzed. In the present paper, the deflection of the transverse normal at the center 

of the laminate is investigated. 

Consider the vibration of a uniform SSSS or CCCC square plate due to a uniformly 

distributed loading with sinusoidal time function. The peak deflection of the plate occurs exactly 

at the point located at the center of the plate. For a SSSS or CCCC plate with taper configuration, 

the peak deflection does not necessarily occur at the plate center (see Ref. [23]). In addition, for 

CCFF plate, the peak deflection of the laminate occurs at the point located at the intersection of 

the two free edges. However, in the present work, the time-maximum value (amplitude) of the 

deflection of the point located at the center of the tapered laminate is studied regardless of the peak 

deflection of the plate. 

3.4 Validation 

3.4.1 Isotropic plate 

In this section, for demonstration purposes, forced vibration investigations conducted in 

available literature using different approaches are considered. The assumed modes method 

solution is applied to the data given in the literature and the obtained results are compared. For a 

case of an isotropic plate subjected to harmonic loading, results obtained by Galerkin method and 

exact solution [31] are compared with that of the assumed modes method solution developed in 

the present study, in Table 3.2. 
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Using data from Ref. [35], for an isotropic square plate with all simply supported edges 

subjected to a harmonic excitation 𝑓(𝑥, 𝑦, 𝑡) =  𝑓𝑜 cos(𝛺𝑡), the numerical results are displayed in 

Table 3.2 for the deflection of the point located at the center of the laminate. Note that for the exact 

solution, the numerical result is obtained using Ref. [31] that also corresponds to the exact solution 

given by Ref. [35]. Then the results obtained using the Galerkin method [35] and the formulation 

developed in the present study, are compared. Since the results given by Ref. [35], are in 

dimensionless form, an arbitrary plate and loading amplitude (𝑓𝑜) can be used. 

𝑤(𝑎 2⁄ , 𝑏 2⁄ ) × 𝐷 (𝑓𝑜𝑎
4)⁄   (dimensionless) 

Loading 

Frequency 
Exact Solution [31] 

Solution Using Galerkin 

Method [35] 

Present 

Assumed Modes Method 

Solution 

𝛺 = 0.3𝜔11 0.0006984 0.00072 0.0006983 

𝛺 = 0.5𝜔11 0.0008537 0.00088 0.000829 

𝛺 = 0.8𝜔11 0.001813 0.00184 0.00177 

Table 3.2 Comparison between assumed modes method, Galerkin method and Exact solutions 

In Table 3.2, 𝑤 denotes the maximum deflection of the plate, 𝑎 and 𝑏 are length and width 

of the plate respectively (which are equal for the square plate), and 𝐷 = 𝐸ℎ3 12(1 − ν2)⁄  is the 

flexural rigidity of the plate. 𝐸, 𝜈 and ℎ are Young’s Modulus, Poisson’s Ratio and plate’s 

thickness, respectively. Table 3.2 shows that the numerical results determined by using the 

assumed modes method are in good agreement with that of the other methods. 

3.4.2 Composite plate 

The exact solution for the deflection function for the uniform-thickness composite plate 

subjected to transverse harmonic loading is given in Ref. [9] provided that the boundary conditions 

are simply supported on all edges. In order to validate the formulation developed in the present 

chapter, a problem is solved based on assumed modes method and the result is compared with the 

numerical output obtained by using the exact solution [9]. 
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A square laminated plate (0 90⁄ )𝑠 with side length 𝐿 of 0.1719 m made of unidirectional 

plies of NCT-301 Graphite-Epoxy material (mechanical properties were given in Table 2.3) with 

ply thickness of 125 × 10−6 m is at rest in equilibrium position. All edges are simply supported. 

The maximum transverse deflection of the plate at the center, when it is subjected to the given 

distributed loading, in 𝑁 𝑚2⁄ . 

𝑓(𝑥, 𝑦, 𝑡) = −10 𝑐𝑜𝑠(0.3𝜔11𝑡) 𝑠𝑖𝑛
𝜋𝑥

𝐿
𝑠𝑖𝑛

𝜋𝑦

𝐿
 (3.30) 

where, 𝜔11 is the fundamental frequency of the plate. 

Solution [9]: Considering notations (𝛼𝑖 = 𝑖𝜋 𝐿⁄ ) and (𝛽𝑗 = 𝑗𝜋 𝐿⁄ ) given in Ref. [9], the 

transverse loading and deflection, 𝑓 and  𝑤𝑜
𝐹,  are written in the form of series. 

𝑓(𝑥, 𝑦, 𝑡) =∑∑𝑃𝑖𝑗(𝑡)sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦)

∞

𝑗=1

∞

𝑖=1

 (3.31) 

𝑃𝑖𝑗(𝑡) =
4

𝐿2
∫ ∫ 𝑓(𝑥, 𝑦, 𝑡) sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦) 𝑑𝑥𝑑𝑦

𝐿

0

𝐿

0

 (3.32) 

The transverse deflection function is expressed in the following form: 

𝑤𝑜
𝐹(𝑥, 𝑦, 𝑡) =∑∑𝐴𝑖𝑗

𝐹 (𝑡)sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦)

∞

𝑗=1

∞

𝑖=1

 (3.33) 

Equations (3.31) and (3.33) are substituted in equation of motion (2.118). 

∑∑𝐴𝑖𝑗
𝐹 [𝑅11

(3)𝛼𝑖
4 + 2(𝑅12

(3) + 2𝑅66
(3))𝛼𝑖

2𝛽𝑗
2 + 𝑅22

(3)𝛽𝑗
4] sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦)

∞

𝑗=1

∞

𝑖=1

 

−∑∑𝑃𝑖𝑗sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦)

∞

𝑗=1

∞

𝑖=1

= 

(3.34) 
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−𝑅(1)∑∑𝐴̈𝑖𝑗
𝐹 sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦)

∞

𝑗=1

∞

𝑖=1

− 𝑅(3)∑∑(𝛼𝑖
2𝐴̈𝑖𝑗

𝐹 + 𝛽𝑗
2𝐴̈𝑖𝑗

𝐹 )sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦)

∞

𝑗=1

∞

𝑖=1

 

Equation (3.34) is written in the following form: 

∑∑([𝑅11
(3)𝛼𝑖

4 + 2(𝑅12
(3) + 2𝑅66

(3))𝛼𝑖
2𝛽𝑗

2 + 𝑅22
(3)𝛽𝑗

4] 𝐴𝑖𝑗
𝐹 + [𝑅(1) + (𝛼𝑖

2 + 𝛽𝑗
2)𝑅(3)]𝐴̈𝑖𝑗

𝐹

∞

𝑗=1

∞

𝑖=1

− 𝑃𝑖𝑗) × sin(𝛼𝑖𝑥)sin(𝛽𝑗𝑦) = 0 

(3.35) 

Taking advantage of the orthogonality property in equation (3.35), for 𝑖, 𝑗 = 1, 2, 3, … ,∞, 

it is expressed that: 

𝑃𝑖𝑗 − [𝑅11
(3)
𝛼𝑖
4 + 2(𝑅12

(3) + 2𝑅66
(3))𝛼𝑖

2𝛽𝑗
2 + 𝑅22

(3)
𝛽𝑗
4] 𝐴𝑖𝑗

𝐹 = (𝑅(1) + (𝛼𝑖
2 + 𝛽𝑗

2)𝑅(3))𝐴̈𝑖𝑗
𝐹  (3.36) 

According to Ref. [9], some denotations are defined as follows. 

𝐾𝑖𝑗 = 𝑅11
(3)
𝛼𝑖
4 + 2(𝑅12

(3) + 2𝑅66
(3))𝛼𝑖

2𝛽𝑗
2 + 𝑅22

(3)
𝛽𝑗
4 (3.37) 

𝑀𝑖𝑗 = 𝑅
(1) + 𝑅(3)(𝛼𝑖

2 + 𝛽𝑗
2) (3.38) 

𝑃̅𝑖𝑗   =  ( 𝑃𝑖𝑗 𝑀𝑖𝑗⁄ ) (3.39) 

Substituting equations (3.37) and (3.38) in (3.36): 

𝑀𝑖𝑗𝐴̈𝑖𝑗
𝐹 + 𝐾𝑖𝑗𝐴𝑖𝑗

𝐹 = 𝑃𝑖𝑗 (3.40) 

Substituting equation (3.39) in (3.40): 

𝐴̈𝑖𝑗
𝐹 + (

𝐾𝑖𝑗

𝑀𝑖𝑗
)𝐴𝑖𝑗

𝐹 = 𝑃̅𝑖𝑗  (3.41) 

Considering equation (3.30), the distributed sinusoidal loading given in the problem, and 

equation (3.31), the series by which the loading has been expressed, for 𝑖 = 𝑗 = 1, 
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𝑃̅11= −10 𝑐𝑜𝑠(0.3𝜔11𝑡) 𝑀11⁄  and for any integer values of 𝑖 and 𝑗, 𝑖, 𝑗 ≠ 1, 𝑃̅𝑖𝑗 = 0. Therefore, 

equation (3.41) is written in the following form. 

𝐴̈11
𝐹 + (

𝐾11
𝑀11

)𝐴11
𝐹 =

−10 𝑐𝑜𝑠(0.3𝜔11𝑡)

𝑀11
 (3.42) 

𝐴̈𝑖𝑗
𝐹 + (

𝐾𝑖𝑗

𝑀𝑖𝑗
)𝐴𝑖𝑗

𝐹 = 0                      𝑖, 𝑗 ≠ 1 (3.43) 

The solution for the differential equation (3.41) is given by Ref. [9]. 

𝐴𝑖𝑗
𝐹 (𝑡) = 𝑒𝑖𝑗 𝑐𝑜𝑠(𝜇𝑖𝑗𝑡) + 𝑒𝑖𝑗

′ 𝑠𝑖𝑛(𝜇𝑖𝑗𝑡) + 𝐴𝑖𝑗
𝑝 (𝑡) (3.44) 

𝜇𝑖𝑗 = √
𝐾𝑖𝑗

𝑀𝑖𝑗
 (3.45) 

where, 𝑒𝑖𝑗 and 𝑒𝑖𝑗
′  are constants to be determined using the initial conditions, 𝐴𝑖𝑗

𝑝 (𝑡) is the 

particular solution. Considering equations (3.42), (3.43) and (3.44): 

𝐴11
𝐹 (𝑡) = 𝑒11 𝑐𝑜𝑠(𝜇11𝑡) + 𝑒11

′ 𝑠𝑖𝑛(𝜇11𝑡) −
10 𝑐𝑜𝑠(0.3𝜔11𝑡)

𝐾11 − (0.3𝜔11)2𝑀11
 (3.46) 

𝐴𝑖𝑗
𝐹 (𝑡) = 𝑒𝑖𝑗 𝑐𝑜𝑠(𝜇𝑖𝑗𝑡) + 𝑒𝑖𝑗

′ 𝑠𝑖𝑛(𝜇𝑖𝑗𝑡)                                  𝑖, 𝑗 ≠ 1 (3.47) 

Considering zero initial displacement in equation (3.33), for any integer values of 𝑖 and 𝑗, 

𝐴𝑖𝑗
𝐹 (0) = 0. Therefore, in equation (3.47), when 𝑖, 𝑗 ≠ 1, 𝑒𝑖𝑗 = 0 and 𝑒11 =

10 𝐾11 − (0.3𝜔11)
2𝑀11⁄ . Initial zero velocity results in 𝑒𝑖𝑗

′ = 0, for any integer values of 𝑖 and 𝑗. 

Therefore, equations (3.46) and (3.47) become: 

𝐴11
𝐹 (𝑡) = 10

𝑐𝑜𝑠(𝜇11𝑡) − 𝑐𝑜𝑠(0.3𝜔11𝑡)

𝐾11 − (0.3𝜔11)2𝑀11
 (3.48) 

𝐴𝑖𝑗
𝐹 (𝑡) = 0                                        𝑖, 𝑗 ≠ 1 (3.49) 

Equations (3.48) and (3.49) are substituted in equation (3.33), and the solution is derived. 
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𝑤𝑜
𝐹(𝑥, 𝑦, 𝑡) = 10

𝑐𝑜𝑠(𝜇11𝑡) − 𝑐𝑜𝑠(0.3𝜔11𝑡)

𝐾11 − (0.3𝜔11)2𝑀11
sin(𝛼1𝑥)sin(𝛽1𝑦) (3.50) 

In order to obtain the deflection function for the point located at the center of the laminate, 

𝑥 = 𝐿 2⁄  and 𝑦 = 𝐿 2⁄  are substituted into equation (3.50). 

𝑤𝑜
𝐹 (
𝐿

2
,
𝐿

2
, 𝑡) = 10

𝑐𝑜𝑠(𝜇11𝑡) − 𝑐𝑜𝑠(0.3𝜔11𝑡)

𝐾11 − (0.3𝜔11)2𝑀11
 (3.51) 

where, 𝜇11 is determined using equation (3.45). 

This exact solution given by equation (3.51) and the results obtained by using the 

formulation developed in the present chapter, are plotted. Figure 3.5 illustrates the transverse 

deflection at the center over time by the two approaches. It is observed from Figure 3.5 that the 

results calculated by the two approaches correspond very well such that the curves corresponding 

to the two methods, coincide. The maximum deflection is equal to  0.136 × 10−3 m.  
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Figure 3.5 Deflection at the center of the laminate over time due to transverse sinusoidal excitation 
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3.4.3 Layer reduction test 

In this sub-section, in order to compare the transverse deflection of the uniform and tapered 

plates with SSSS boundary conditions due to predetermined excitation, a 12-stepped 

“layer reduction test” is implemented. The arrangement of the laminates (thick, thin and tapered 

plates) in different steps of the test, the layer removal and resin replacement process, are the 

same as that of the “layer reduction test” carried out and explained in chapter 2 and depicted by 

Figures 2.4 - 2.16. In the “layer reduction test” conducted in chapter 2, the subjects of the study 

are the fundamentaal frequencies of the thick, thin and tapered plates. However, in the 

“layer reduction test” in the present sub-section, the deflections at the center of the laminates 

described in the following, due to predetermined excitation are studied. 

Three identical uniform-thickness laminated plates are considered with configuration of 

(0 90⁄ )9𝑠, length of 𝐿1 = 0.1719 m, and width of 𝐿2 =
6

5
𝐿1 made of unidirectional 

NCT-301 Graphite-Epoxy material (mechanical properties were given in Table 2.3) with ply 

thickness of 125 × 10−6 m (Figure 2.4 shows the three identical uniform-thickness plates). The 

laminates on the left, middle and right sides are called thick, tapered and thin laminates according 

to the explanations given in the “layer reduction test” in chapter 2. 

For each laminate at each step of the test, corresponding stiffness [ 𝐾   
 𝐶 ] and mass [ 𝑀   

 𝐶 ] 

matrices are obtained and substituted in equation (2.102) and by solving it, the natural frequencies 

and the corresponding mode shapes are determined. Then, the eigenvalues and eigenvectors as 

well as the stiffness and mass matrices are used in the forced vibration formulation developed in 

the present chapter to determine the deflection at the center of the laminate. Undamped vibration 

response is considered. 

The amplitude of distributed loading (𝑁 𝑚2⁄ ) applied to the laminates is kept the same 

throughout the test and is described by the following equation. 

𝑓 = −1000 cos (0.3𝜔11𝑡) (3.52) 

where, 𝜔11 is the fundamental frequency of the plate. 
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For the tapered and thin laminates, at each step, the deflection at the center of the laminates 

over time are calculated and depicted by Figures 3.7 - 3.18. At  the begining of the test when no 

plies are removed (Figure 2.4), the deflections over time for the thick, thin and tapered laminates 

are equal as their configurations are the same and the correponding curves coincide (Figure 3.6). 

Since the thick laminate remains the same throughout the test, the variation of the deflection over 

time for the laminate does not change throughout the test and it is the same as that of the thin and 

tapered laminates depicted by Figure 3.6. Therefore, in order to prevent any congestion in 

Figures 3.9 - 3.18, the deflection of the thick laminate over time is not traced. 
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 Figure 3.6 Layer reduction test in forced vibration analysis (no ply drop-off) 
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 Figure 3.7 Layer reduction test in forced vibration analysis (step 1: 2 plies dropped-off) 
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 Figure 3.8 Layer reduction test in forced vibration analysis (step 2: 4 plies dropped-off) 
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 Figure 3.9 Layer reduction test in forced vibration analysis (step 3: 6 plies dropped-off) 
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 Figure 3.10 Layer reduction test in forced vibration analysis (step 4: 8 plies dropped-off) 
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 Figure 3.11 Layer reduction test in forced vibration analysis (step 5: 10 plies dropped-off) 
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 Figure 3.12 Layer reduction test in forced vibration analysis (step 6: 12 plies dropped-off) 
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 Figure 3.13 Layer reduction test in forced vibration analysis (step 7: 14 plies dropped-off) 
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 Figure 3.14 Layer reduction test in forced vibration analysis (step 8: 16 plies dropped-off) 
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 Figure 3.15 Layer reduction test in forced vibration analysis (step 9: 18 plies dropped-off) 
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 Figure 3.16 Layer reduction test in forced vibration analysis (step 10: 20 plies dropped-off) 
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 Figure 3.17 Layer reduction test in forced vibration analysis (step 11: 22 plies dropped-off) 
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 Figure 3.18 Layer reduction test in forced vibration analysis (step 12: 24 plies dropped-off) 



89 

 

Considering Figures 3.6 - 3.18, for the thin and tapered laminates, the deflection at the 

center of the laminates due to the excitation, is increased as the layers are removed from the plates 

at each step. However, this increase for the thin laminate is greater at each step of the test such that 

in Figure 3.6 the two curves coresponding to the deflections of the two laminates coincide, and 

through Figure 3.18, the difference between the two curves gradually increases. 

Considering the small deflection of the thick plate which is the same as that of the thin and 

tapered laminates in Figure 3.6 when no plies are removed, it can be said that the deflection 

amplitude of the tapered laminate is lower than that of the thin plate and higher than that of the 

thick plate at each step of the test. 

3.5 Maximum deflection and excitation frequency 

In this section, the variation of the response of the laminates due to the change of excitaion 

frequency is studied. The square plates with taper configurations described in section 2.2 

(configurations A, B, C and D) are considered with side length of 0.1719 m (taper angle 𝜑 = 0.5o) 

and different boundary conditions (SSSS, CCCC and CCFF). The mechanical properties were 

given in Table 2.3. A loading described by equation (3.53) below and with excitation frequency of 

𝛺 (0 < Ω < 1.1𝜔11) is applied to the tapered laminates. The fundamental frequency 𝜔11 for each 

configuration with corresponding boundary conditions was given in Tables 2.11 - 2.13. The 

maximum deflection of the transverse normal (located at the center of the plate) due to the 

excitation and the corresponding excitation frequency are recorded. The same process is repeated 

for different values of excitation frequency 𝛺 and using the obtained data the following graphs are 

illustrated by Figures 3.19 - 3.30 showing the maximum deflection at the center of the laminate 

with respect to change of excitation frequency. 

The study is repeated in the same way considering the damping effect and the results are 

shown by Figures 3.19 - 3.30. The results can be compared with that of the case with no damping. 

The values of 𝛼 and 𝛽 have been given in Refs. [3] and [34] as 𝛼 = 2.14 and 𝛽 = 2.76 × 10−5. 

𝑓 = −500 𝑐𝑜𝑠(Ω𝑡) 𝛿 (𝑥 −
0.1719

2
)         (𝑁 𝑚2⁄ ) ,              (0 < Ω < 1.1𝜔11) (3.53) 
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Figure 3.19 Effect of excitation frequency on maximum deflection (configuration A, SSSS) 
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Figure 3.20 Effect of excitation frequency on maximum deflection (configuration B, SSSS) 
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Figure 3.21 Effect of excitation frequency on maximum deflection (configuration C, SSSS) 
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Figure 3.22 Effect of excitation frequency on maximum deflection (configuration D, SSSS) 
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Figure 3.23 Effect of excitation frequency on maximum deflection (configuration A, CCCC) 
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Figure 3.24 Effect of excitation frequency on maximum deflection (configuration B, CCCC) 
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Figure 3.25 Effect of excitation frequency on maximum deflection (configuration C, CCCC) 
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Figure 3.26 Effect of excitation frequency on maximum deflection (configuration D, CCCC) 
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Figure 3.27 Effect of excitation frequency on maximum deflection (configuration A, CCFF) 
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Figure 3.28 Effect of excitation frequency on maximum deflection (configuration B, CCFF) 
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Figure 3.29 Effect of excitation frequency on maximum deflection (configuration C, CCFF) 
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Figure 3.30 Effect of excitation frequency on maximum deflection (configuration D, CCFF) 
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It is grasped from Figures 3.19 - 3.30 that for all the boundary conditions and taper 

configurations, as expected, the deflection at the center point of the tapered laminates increases 

remarkably when the excitation frequency approaches the fundamental frequency of the laminate. 

When the excitation frequency coincides with the fundamental frequency, for the undamped case, 

the deflection tends to a very high value and for the corresponding case with damping, the 

maximum deflection is noticeably large. When the excitation frequency value exceeds the 

fundamental frequency, the maximum deflection decreases for the damped and undamped cases. 

It is observed from Figures 3.19 - 3.30 that regardless of the configuration, the maximum 

deflection of the tapered laminate at the point located at the center of the laminate for the CCCC 

plate is the lowest and that of the SSSS plate is the highest. For CCFF plate, it should be noted that 

the peak deflection of the plate occurs at the corner point located at the intersection of the two free 

edges. Therefore, the maximum deflection at the center for the CCFF plate is not the peak 

deflection. For SSSS and CCCC tapered plates, the location of the peak deflection is not 

necessarily at the center of the tapered laminates, however, since the taper angle is small, this 

location is expected to be close to the center of the laminate. 

3.6 Numerical results 

In the present section, different loading types given in Table 3.1 are applied to the tapered 

laminates with different configurations (Figure 2.1) described in section 2.2 (mechanical properties 

were given in Table 2.3) considering various lengths and three boundary conditions (SSSS, CCCC 

and CCFF) with no damping. Then, the responses are calculated using the forced vibration 

formulation developed in the present chapter and the maximum deflections at the point located at 

the center of the tapered laminate due to the excitations, are recorded and written in 

Tables 3.3 - 3.5. The excitation frequency 𝛺 = 0.3𝜔11 and the fundamental frequency 𝜔11 were 

given in Tables 2.11 - 2.13 for each case. 

In addition, for the tapered configurations with different boundary conditions and with 

length of 0.1719 m, loading types given in Table 3.1 are applied to the tapered laminates and the 

deflections at the centers of the plates over time are calculated using the developed formulation 
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and are illustrated by Figures 3.31 - 3.78 for damped and undamped cases. Then, the results 

displayed in Tables 3.3 - 3.5 and illustrated by Figures 3.31 - 3.78 are discussed. 

Maximum Deflection at the Center of the Laminate (mm) 

C
o

n
fi

g
u

ra
ti

o
n

 

B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 𝜑 = 0.1o   ,   𝐿 = 0.8594 𝑚 

Length

Mean Thickness Ratio
= 286.5 

𝜑 = 0.5o   ,   𝐿 = 0.1719 𝑚 

Length

Mean Thickness Ratio
= 57.3 

L
o

ad
in

g
 T

y
p

e 
1
 

L
o

ad
in

g
 T

y
p

e 
2

 

L
o

ad
in

g
 T

y
p

e 
3

 

L
o

ad
in

g
 T

y
p

e 
4

 

L
o

ad
in

g
 T

y
p

e 
1

 

L
o

ad
in

g
 T

y
p

e 
2

 

L
o

ad
in

g
 T

y
p

e 
3

 

L
o

ad
in

g
 T

y
p

e 
4

 

A 

SSSS 3.906 3.811 3.070 3.008 0.569 0.555 0.447 0.438 

CCCC 1.119 1.0234 0.9339 0.872 0.163 0.149 0.136 0.127 

CCFF 3.297 2.802 2.115 1.895 0.480 0.408 0.308 0.276 

B 

SSSS 3.802 3.584 2.966 2.835 0.554 0.522 0.432 0.413 

CCCC 1.077 0.967 0.899 0.830 0.157 0.141 0.131 0.121 

CCFF 3.226 2.457 2.018 1.708 0.470 0.358 0.294 0.249 

C 

SSSS 3.571 3.378 2.781 2.677 0.520 0.492 0.405 0.390 

CCCC 0.976 0.913 0.817 0.776 0.142 0.133 0.119 0.113 

CCFF 2.754 2.074 1.716 1.435 0.401 0.302 0.250 0.209 

D 

SSSS 3.969 3.819 3.093 3.012 0.580 0.558 0.452 0.440 

CCCC 1.136 1.061 0.9443 0.903 0.166 0.155 0.138 0.132 

CCFF 3.336 2.689 2.190 1.895 0.488 0.393 0.320 0.277 

Table 3.3 Maximum deflection (mm) at the center for all taper configurations and BCs 
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Maximum Deflection at the Center of the Laminate (mm) 
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 𝜑 = 0.75o   ,   𝐿 = 0.1146 𝑚 
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Mean Thickness Ratio
= 38.2 

𝜑 = 1o   ,   𝐿 = 0.0859 𝑚 
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Mean Thickness Ratio
= 28.6 
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A 

SSSS 0.170 0.165 0.133 0.130 0.116 0.112 0.0906 0.089 

CCCC 0.049 0.046 0.040 0.039 0.033 0.031 0.027 0.027 

CCFF 0.142 0.120 0.091 0.082 0.097 0.082 0.062 0.056 

B 

SSSS 0.163 0.156 0.128 0.123 0.111 0.106 0.087 0.084 

CCCC 0.047 0.043 0.039 0.036 0.032 0.029 0.027 0.025 

CCFF 0.138 0.105 0.087 0.074 0.094 0.072 0.059 0.050 

C 

SSSS 0.154 0.147 0.120 0.116 0.105 0.100 0.082 0.079 

CCCC 0.043 0.039 0.036 0.034 0.0293 0.0266 0.0245 0.023 

CCFF 0.126 0.096 0.082 0.069 0.086 0.065 0.056 0.047 

D 

SSSS 0.173 0.167 0.135 0.132 0.118 0.114 0.092 0.090 

CCCC 0.051 0.046 0.042 0.039 0.035 0.031 0.029 0.027 

CCFF 0.152 0.122 0.098 0.086 0.104 0.083 0.067 0.059 

Table 3.4 Maximum deflection (mm) at the center for all taper configurations and BCs 
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Maximum Deflection at the Center of the Laminate (mm) 
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 𝜑 = 1.25o   ,   𝐿 = 0.0687 𝑚 

Length

Mean Thickness Ratio
= 22.9 

𝜑 = 1.5o   ,   𝐿 = 0.0573 𝑚 

Length

Mean Thickness Ratio
= 19.1 
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A 

SSSS 0.096 0.093 0.075 0.073 0.072 0.070 0.056 0.055 

CCCC 0.028 0.026 0.023 0.022 0.0208 0.0195 0.0169 0.017 

CCFF 0.080 0.068 0.051 0.046 0.060 0.051 0.039 0.035 

B 

SSSS 0.092 0.0881 0.072 0.070 0.069 0.066 0.054 0.052 

CCCC 0.027 0.0242 0.022 0.020 0.020 0.018 0.017 0.015 

CCFF 0.078 0.0593 0.049 0.042 0.058 0.045 0.037 0.031 

C 

SSSS 0.087 0.0830 0.068 0.066 0.065 0.062 0.051 0.049 

CCCC 0.024 0.0220 0.020 0.019 0.018 0.017 0.015 0.014 

CCFF 0.071 0.0542 0.046 0.039 0.053 0.041 0.035 0.029 

D 

SSSS 0.098 0.0943 0.076 0.075 0.073 0.071 0.057 0.056 

CCCC 0.029 0.0260 0.024 0.022 0.022 0.0195 0.018 0.017 

CCFF 0.086 0.0689 0.055 0.049 0.064 0.0517 0.042 0.036 

Table 3.5 Maximum deflection (mm) at the center for all taper configurations and BCs 
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It is grasped from Tables 3.3 - 3.5 that regardless of the boundary conditions, taper 

configurations and loading types, with increase in the length over mean thickness ratio, the 

deflection at the center of the laminate increases such that when this ratio from 19.1 approaches 

57.3, the deflection at the center is increased roughly by 690%. However, this increase in 

transverse deflection for SSSS and CCFF plates, with slight difference, are the highest and the 

lowest, respectively. 

Considering loading types 1 and 3, the deflection of the plates corresponding to the loading 

type 1 is higher than that of the loading type 3. The same explanation corresponds to loading types 

2 and 4, respectively. 

The deflections for the CCCC plates are the lowest and that of the SSSS plates are the 

highest. It is noted that the peak deflections of the CCFF plates occur at the corner of the plates at 

the intersection of the free edges while that of the CCCC and SSSS plates are expected to be close 

to the center where the magnitudes of the deflections have been recorded. 

Considering the different taper configurations, the deflection corresponding to taper 

configuration C, is the lowest and that of configuration D (with fewer external plies), with slight 

difference compared to configuration A, is the highest. 

The deflection at the center over time for the square laminates with side length of 0.1719 m 

(𝜑 = 0.5o) for different taper configurations and with three boundary conditions (SSSS, CCCC 

and CCFF) due to the excitation types given in Table 3.1, are determined next. The excitation 

frequency 𝛺 = 0.3𝜔11 and the fundamental frequency 𝜔11 for each configuration and boundary 

condition were given in Tables 2.11 - 2.13. 

For all boundary conditions (SSSS, CCCC and CCFF) and taper configurations with length 

of 0.1719 m corresponding to taper angle of 0.5o, the deflection at the center over time due to 

excitation types given in Table 3.1, are illustrated by Figures 3.31 - 3.78. The dashed and solid 

curves correspond to the deflection of the plate with and without damping, respectively. 
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Figure 3.31 Configuration A, SSSS, loading type 1 Figure 3.32 Configuration B, SSSS, loading type 1 

  

Figure 3.33 Configuration C, SSSS, loading type 1 Figure 3.34 Configuration D, SSSS, loading type 1 

  

Figure 3.35 Configuration A, CCCC, loading type 1 Figure 3.36 Configuration B, CCCC, loading type 1 
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Figure 3.37 Configuration C, CCCC, loading type 1 Figure 3.38 Configuration D, CCCC, loading type 1 

  

Figure 3.39 Configuration A, CCFF, loading type 1 Figure 3.40 Configuration B, CCFF, loading type 1 

  

Figure 3.41 Configuration C, CCFF, loading type 1 Figure 3.42 Configuration D, CCFF, loading type 1 
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Figure 3.43 Configuration A, SSSS, loading type 2 Figure 3.44 Configuration B, SSSS, loading type 2 

  

Figure 3.45 Configuration C, SSSS, loading type 2 Figure 3.46 Configuration D, SSSS, loading type 2 

  

Figure 3.47 Configuration A, CCCC, loading type 2 Figure 3.48 Configuration B, CCCC, loading type 2 
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Figure 3.49 Configuration C, CCCC, loading type 2 Figure 3.50 Configuration D, CCCC, loading type 2 

  

Figure 3.51 Configuration A, CCFF, loading type 2 Figure 3.52 Configuration B, CCFF, loading type 2 

  

Figure 3.53 Configuration C, CCFF, loading type 2 Figure 3.54 Configuration D, CCFF, loading type 2 
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Figure 3.55 Configuration A, SSSS, loading type 3 Figure 3.56 Configuration B, SSSS, loading type 3 

  

Figure 3.57 Configuration C, SSSS, loading type 3 Figure 3.58 Configuration D, SSSS, loading type 3 

  

Figure 3.59 Configuration A, CCCC, loading type 3 Figure 3.60 Configuration B, CCCC, loading type 3 
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Figure 3.61 Configuration C, CCCC, loading type 3 Figure 3.62 Configuration D, CCCC, loading type 3 

  

Figure 3.63 Configuration A, CCFF, loading type 3 Figure 3.64 Configuration B, CCFF, loading type 3 

  

Figure 3.65 Configuration C, CCFF, loading type 3 Figure 3.66 Configuration D, CCFF, loading type 3 
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Figure 3.67 Configuration A, SSSS, loading type 4 Figure 3.68 Configuration B, SSSS, loading type 4 

  

Figure 3.69 Configuration C, SSSS, loading type 4 Figure 3.70 Configuration D, SSSS, loading type 4 

  

Figure 3.71 Configuration A, CCCC, loading type 4 Figure 3.72 Configuration B, CCCC, loading type 4 
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Figure 3.73 Configuration C, CCCC, loading type 4 Figure 3.74 Configuration D, CCCC, loading type 4 

  

Figure 3.75 Configuration A, CCFF, loading type 4 Figure 3.76 Configuration B, CCFF, loading type 4 

  

Figure 3.77 Configuration C, CCFF, loading type 4 Figure 3.78 Configuration D, CCFF, loading type 4 
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It is grasped from Figures 3.31 - 3.78 that for each boundary condition, the amplitude of 

the deflection of the taper configuration C is the least. This can be expected from the stiff structure 

and large mass of the configuration. Among the four taper configurations, A and D show higher 

deflection. Considering the low mass of A and lack of external plies in D, these configurations 

vibrate with higher amplitude when excitations are applied. 

It is observed from Figures 3.31 - 3.78 that the effect of the boundary condition on the 

deflection amplitude is more important than the laminate’s taper configuration. The deflections of 

the CCCC plates are the least regardless of the taper configuration. Therefore, due to the stiff 

structure and large mass, deflection of the configuration C clamped at all edges is much less than 

that of A with weaker and lighter structure. Regardless of the loading type, the deflection for 

configuration C with all clamped edges is the least among different configurations and boundary 

conditions. 

Although the deflection for CCCC plate is the least in comparison with SSSS and CCFF 

plates, considering the time span, it vibrates severely compared to the SSSS and CCFF plates. 

The amplitude of vibration considering viscous damping effect is smaller than that of the 

case with no damping, for all boundary conditions and taper configurations. 

3.7 Conclusion 

In the present chapter, the formulation for the forced vibration with and without damping 

has been developed for tapered composite plates excited by arbitrary excitations; Then, 

demonstration is performed and the formulation has been examined by the layer reduction test. 

Afterward, four different line loads were defined and applied to the taper configurations with 

different lengths, taper angles and boundary conditions. The results were presented in the tables 

and displayed by the graphs. According to the study conducted in the present chapter, it is 

concluded that: 

1. The deflection due to loading type 1 (line loading along the taper) is greater in comparison 

with that due to the loading type 2. 
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2. The deflection due to loading type 3 (line loading along the taper) is greater in comparison 

with that due to the loading type 4. 

3. Since loading types 3 and 4 die away when approaching the laminate’s ends, the deflections 

due to these loading types are less compared to that due to the loading types 1 and 2, respectively.  

4. The boundary conditions in which the plates vibrate with higher natural frequencies in free 

CLPTvibration analysis, show lower deflections in forced vibration investigation. The CCCC 

plates show the highest resistance to excitations so that the laminates with this boundary condition 

deflect the least. 

5. Deflection of the CCFF plates, due to clamped edges, is lower at the center than that of 

SSSS plates. However, the maximum deflection of the CCFF plates takes place at the intersection 

of the free edges.  

6. Since configurations B, C and D are the same in terms of inertia (mass) and are heavier 

than configuration A, configuration C that is the stiffest among all, shows the least deflection and 

then configuration B comes the second and configurations A and D are almost the same in terms 

of transverse deflection. Configuration B is heavier than configuration A and, to some extent, is 

stiffer which results in lower deflection. 

7. For all boundary conditions, taper configurations and loading types, with increase in the 

length over mean thickness ratio, the deflection at the center of the laminate increases such that 

when this ratio from 19.1 approaches 57.3, the deflection at the center is increased roughly by 

690%. However, the increase in transverse deflections for SSSS and CCFF plates are the highest 

and the lowest, respectively. 
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Chapter 4 : _________________________________________ 

Tapered composite plates with hybrid configuration 

4.1 Introduction 

In chapter 2, free vibration analysis of the tapered composite plates was carried out and 

using the mass and stiffness matrices obtained based on CLPT, the Ritz method was applied and 

the natural frequencies and the corresponding mode shapes were determined. In chapter 3, the 

forced vibration analysis of the tapered composite plates was carried out using the assumed modes 

method and considering the mass and stiffness matrices as well as the natural frequencies and the 

corresponding mode shapes obtained in chapter 2. 

In the present chapter, the tapered composite plates with hybrid configuration composed 

of thick-uniform, tapered and thin-uniform parts are considered and the formulations developed in 

chapters 2 and 3 are used to study the free and forced vibrations of the hybrid plates. The mass and 

stiffness matrices are obtained based on CLPT and the natural frequencies and the corresponding 

mode shapes are determined using the Ritz method. The fundamental frequencies of the hybrid 

configurations are displayed in the corresponding tables and depicted by the graphs. Then, the 

steady state response of the hybrid plates due to harmonic transverse excitation are computed for 

different taper configurations and boundary conditions and the obtained results are analyzed and 

discussed. 
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4.2 Hybrid configurations 

In this section, four tapered composite plates with hybrid configurations are described for 

the analysis. Figure 4.1 provides a visual perception of configurations Aℎ, Bℎ, Cℎ and Dℎ.  

 

Configuration Aℎ 

 

Configuration Bℎ 

 

Configuration Cℎ 

 

Configuration Dℎ 

Figure 4.1 Hybrid (uniform-tapered-uniform) Configurations 
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The tapered laminated square hybrid plates are considered with 𝐿 = 0.18 m composed of 

thick-uniform, tapered and thin-uniform parts and laminate configuration of (0 90⁄ )9𝑠 and 

(0 90⁄ )3𝑠 for the thick-uniform and thin-uniform parts. The configuration of the tapered part is 

(0 90⁄ )9𝑠 and (0 90⁄ )3𝑠 at the left and right ends, respectively. The lengths of the thick-uniform, 

tapered and thin-uniform parts are notated by 𝐿1, 𝐿2 and 𝐿3, respectively (Figure 4.1). The laminate 

is made of resin and unidirectional NCT-301 Graphite-Epoxy material (mechanical properties 

were given in Table 2.3) with ply thickness of 125 × 10−6 m. 

Figure 4.1 shows that the resin has been used only in the structure of the tapered parts of 

the hybrid laminates. Considering the fixed thickness of the left and right ends of the tapered parts 

which are the same as that of the thick-uniform and thin-uniform parts, respectively, the length 

and taper angle of the tapered part, 𝐿2 and 𝜑, are such that with decrease in taper angle 𝜑, 𝐿2 is 

increased. Since the total length of the hybrid plates, 𝐿, is fixed and is equal to 0.18 m as described 

before, for a fixed 𝐿1, with increase in 𝐿2, the length of the thin-uniform part, 𝐿3, is decreased such 

that the total length, 𝐿, is kept the same. 

It is noted that in the analysis carried out in the present chapter, the length of the 

thick-uniform part for all the hybrid configurations, is fixed. 

4.3 Free vibration analysis of the hybrid plates 

In the present section, the free vibration analysis of the hybrid plates is carried out using 

the formulation developed in chapter 2. The stiffness and mass matrices are obtained based on 

CLPT for the hybrid plates and are used in the Ritz method in order to determine the natural 

frequencies and the mode shapes. 

The free vibration analysis of the hybrid plates is carried out considering different taper 

angles, taper configurations and boundary conditions. The taper angles corresponding to different 

lengths of the tapered part, have been displayed in Table 4.1. 
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𝐿 (cm) 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 

𝐿1 (cm) 3 3 3 3 3 3 3 3 3 

𝐿2 (cm) 15 13.5 12 10.5 9 7.5 6 4.5 3 

𝐿3 (cm) 0 1.5 3 4.5 6 7.5 9 10.5 12 

𝜑 (deg) 0.57o 0.64o 0.72o 0.82o 0.95o 1.15o 1.43o 1.91o 2.86o 

Table 4.1 Lengths (cm) of laminate parts corresponding to different taper angles  

The fundamental frequencies for hybrid plates with taper angles given in Table 4.1 are 

obtained for different taper configurations and boundary conditions and are displayed in Table 4.2. 

Fundamental Frequency (𝒓𝒂𝒅 𝒔⁄ ) 
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𝝋 (deg) 

0.57o 0.64o 0.72o 0.82o 0.95o 1.15o 1.43o 1.91o 2.86o 

S
S

S
S

 

𝐀𝒉 3196 2871 2564 2303 2112 1937 1854 1788 1725 

𝐁𝒉 3099 2784 2486 2233 2048 1878 1798 1734 1679 

𝐂𝒉 3175 2852 2547 2288 2098 1924 1842 1776 1721 

𝐃𝒉 3017 2710 2420 2174 1993 1828 1750 1688 1639 

C
C

C
C

 

𝐀𝒉 6753 6067 5418 4866 4463 4093 3917 3778 3664 

𝐁𝒉 6594 5924 5290 4752 4357 3996 3825 3689 3578 

𝐂𝒉 6795 6104 5451 4896 4490 4118 3941 3801 3686 

𝐃𝒉 6362 5715 5104 4584 4204 3855 3690 3559 3452 

C
C

F
F

 

𝐀𝒉 1494 1342 1199 1077 987 906 867 836 810 

𝐁𝒉 1443 1296 1157 1040 953 874 837 807 782 

𝐂𝒉 1564 1405 1255 1127 1034 948 907 875 848 

𝐃𝒉 1417 1272 1136 1021 936 858 822 792 768 

Table 4.2 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) of the hybrid plates 
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It can be grasped from Table 4.2 that regardless of the taper angle, for CCCC and CCFF 

boundary conditions, the obtained fundamental frequencies for configuration Cℎ are the highest 

among all the configurations. However, for SSSS plates, the fundamental frequencies 

corresponding to configuration Aℎ is the highest and configuration Cℎ, with slight difference comes 

second. 

According to Table 4.2, the fundamental frequencies of the CCCC and CCFF plates are the 

highest and lowest respectively. 

For all boundary conditions and taper angles of the hybrid laminates, the fundamental 

frequency corresponding to configuration Dℎ is the lowest among all the hybrid configurations. 

Using the data given in Table 4.2, the change in fundamental frequency with increase in 

the taper angle 𝜑, is depicted by Figures 4.2 - 4.5 for all the hybrid configurations and boundary 

conditions. 

𝝎
𝟏
𝟏
 𝒓
𝒂
𝒅
𝒔
⁄

 

 
 𝝋 (deg) 

 

Figure 4.2 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) variation with increase in taper angle 𝜑 

(configuration 𝐴ℎ) 
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Figure 4.3 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) variation with increase in taper angle 𝜑 

(configuration 𝐵ℎ) 
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Figure 4.4 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) variation with increase in taper angle 𝜑 

(configuration 𝐶ℎ) 
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Figure 4.5 Fundamental frequency (𝑟𝑎𝑑 𝑠⁄ ) variation with increase in taper angle 𝜑 

(configuration 𝐷ℎ) 
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It is observed from Figures 4.2 - 4.5 that for all the boundary conditions and hybrid 

configurations, with increase in taper angle (increase in the length of the thin-uniform part) the 

fundamental frequency of the laminate decreases such that when the taper angle approaches 2.86o 

from 0.57o, the fundamental frequencies are reduced roughly to 55% and this reduction for the 

CCCC plates is numerically greater than that of the SSSS and CCFF plates.  

In addition, it is grasped from Figures 4.2 - 4.5 that regardless of the laminate configuration, 

the obtained fundamental frequencies for CCCC and CCFF plates are the highest and lowest, 

respectively. 

4.4 Forced vibration analysis of the hybrid plates 

In this section, considering the mass and stiffness matrices as well as the natural 

frequencies and the corresponding mode shapes obtained in the free vibration analysis of the 

hybrid plates in the previous section, the response of the laminates due to transverse excitation is 

calculated using the formulation developed in chapter 3. 

The loading described by equation (4.1) in below, is applied to all the hybrid configurations 

with different boundary conditions and taper angles displayed in Table 4.2. Then, the maximum 

transverse deflection corresponding to the center of the laminates due to the excitation, is 

calculated and the results are displayed in Table 4.3. 

𝑓 = −500 𝑐𝑜𝑠(0.3𝜔11𝑡) 𝛿 (𝑥 −
𝐿

2
) (4.1) 
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Maximum Deflection at the Center (mm) 
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𝝋 (deg) 

0.57o 0.64o 0.72o 0.82o 0.95o 1.15o 1.43o 1.91o 2.86o 

S
S

S
S

 

𝐀𝒉 0.441 0.492 0.551 0.613 0.664 0.713 0.752 0.790 0.819 

𝐁𝒉 0.434 0.484 0.542 0.603 0.652 0.701 0.739 0.776 0.802 

𝐂𝒉 0.413 0.460 0.515 0.572 0.619 0.666 0.702 0.738 0.762 

𝐃𝒉 0.449 0.500 0.560 0.623 0.674 0.722 0.783 0.803 0.826 

C
C

C
C

 

𝐀𝒉 0.126 0.140 0.157 0.175 0.190 0.204 0.216 0.225 0.232 

𝐁𝒉 0.124 0.138 0.154 0.172 0.187 0.200 0.211 0.221 0.228 

𝐂𝒉 0.118 0.132 0.147 0.163 0.178 0.191 0.201 0.211 0.218 

𝐃𝒉 0.128 0.143 0.160 0.178 0.193 0.208 0.219 0.229 0.237 

C
C

F
F

 

𝐀𝒉 0.323 0.360 0.403 0.449 0.486 0.522 0.550 0.578 0.599 

𝐁𝒉 0.303 0.338 0.378 0.421 0.455 0.489 0.516 0.542 0.559 

𝐂𝒉 0.295 0.328 0.368 0.409 0.442 0.476 0.502 0.527 0.544 

𝐃𝒉 0.337 0.375 0.4200 0.467 0.506 0.542 0.587 0.602 0.6200 

Table 4.3 Maximum deflection (mm) at the center of the laminates due to transverse excitation 

Table 4.3 shows that, regardless of the boundary conditions and taper angle, the deflection 

corresponding to configuration Cℎ is the lowest and that of configuration Bℎ comes the second and 

deflection for configuration Dℎ is the highest. 

It is noted that consideing the hybrid configuration of the plates, the peak deflection of the 

plates do not occur necessarily at the center of the laminates. 

In order to illustrate the change in maximum deflection at the center of the hybrid laminates 

with respect to taper angle 𝜑, following graphs are depicted by Figures 4.6 - 4.9 using data from 

Table 4.3. 
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Figure 4.6 Maximum deflection at the center for different taper angles (configuration 𝐴ℎ) 
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Figure 4.7 Maximum deflection at the center for different taper angles (configuration 𝐵ℎ) 
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Figure 4.8 Maximum deflection at the center for different taper angles (configuration 𝐶ℎ) 
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Figure 4.9 Maximum deflection at the center for different taper angles (configuration 𝐷ℎ) 

It is grasped from Figures 4.6 - 4.9 that, with increase in taper angle, the maximum 

deflection at the center of the laminate increases such that when the taper angle approaches 2.86o 

from 0.57o, the maximum deflection at the center of the laminate is increased roughly to 185% 

for all hybrid configurations and boundary conditions. 

In addition, it is grasped from Figures 4.6 - 4.9 that regardless of the laminate configuration, 

the transverse deflection at the center for SSSS and CCCC plates are the highest and lowest, 

respectively. It is noted that for CCFF plates, the peak deflection of the laminates is expected to 

occur at the corner of the plate, at the intersection of the free edges. 
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4.5 Conclusion 

In chapter 4, four different hybrid laminate configurations were described and the free 

vibration analysis of the laminates was conducted based on CLPT and using the Ritz method. The 

effect of change in taper angle on the variation of the fundamental frequencies was investigated 

for different boundary conditions. Then, the forced vibration analysis of the hybrid plates was 

carried out using the assumed modes method and the effect of change in taper angle on the 

variation of the maximum deflection of the center point of the laminates, was investigated 

considering different boundary conditions. From the study performed in the present chapter, it can 

be concluded that: 

1. Regardless of the boundary conditions and hybrid configurations, with increase in taper 

angle the fundamental frequencies of the laminates decrease such that when the taper angle 

approaches 2.86o from 0.57o, the fundamental frequencies are reduced roughly to 55%. 

2. Regardless of the hybrid configurations and boundary conditions, with increase in taper 

angle, the maximum deflection at the center of the laminates increase such that when the taper 

angle approaches 2.86o from 0.57o, the maximum deflection is increased roughly to 185%. 

3. Because of fewer external plies in configuration Dℎ, it vibrates with the lowest fundamental 

frequency among all the configurations for all boundary conditions. Configuration Cℎ, with stiff 

structure, shows the highest fundamental frequency for CCCC and CCFF boundary conditions and 

configuration Aℎ vibrates with the highest fundamental frequency among the SSSS plates. 

4. For all boundary conditions and taper angles, the deflections corresponding to 

configurations Cℎ and Dℎ are the lowest and the highest, respectively, and that of configuration Bℎ 

is the second lowest. 
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Chapter 5 : _________________________________________ 

Conclusion 

5.1 Contribution 

In the present thesis, free vibration analyses of the tapered and hybrid laminated composite 

plates have been conducted based on the Classical Laminated Plate Theory (CLPT) as well as 

First-order Shear Deformation Theory (FSDT) using Ritz method for four taper configurations and 

three boundary conditions. In the analysis, the stiffness matrix and the mass matrix were derived 

for CLPT as well as FSDT and the calculations leading to mass and stiffness matrices are 

performed in matrix form facilitating the derivation of the matrices and reducing the possibility of 

computational error. This compact matrix-form formulation describes the mass and stiffness 

matrices for CLPT and FSDT in a unified manner. 

An investigation has been carried out regarding the increase of the calculation accuracy of 

the natural frequencies that are used in the derivation of the solution for the forced vibration 

response. Then, further suggestions have been given in order to minimize the frequency calculation 

errors and to avoid any extra computational effort. 

In order to obtain the numerical results efficiently, an approach has been given to cope up 

with the computational problems caused by the presence of the integrands that are combinations 

of hyperbolic, polynomial and trigonometric functions. In this approach, by taking advantage of 

the Taylor series, one can obtain the numerical results using MATLAB® in a very short time. 

Forced vibrations of the tapered and hybrid laminated composite plates have been 

investigated based on CLPT using assumed modes method for all the taper configurations and 

boundary conditions. The maximum deflection of the plates at the center have been given in the 

tables for different cases and the deflection response at the plate center over time have been 

depicted using the solution derived in the analysis and the software MATLAB®. 
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5.2 Conclusion 

The study conducted on tapered laminated composite plates, begins with the free vibration 

analysis based on CLPT and FSDT using the Ritz method and continues with the forced vibration 

investigation using the assumed modes method and the derivations from the free vibration analysis, 

and ends with the free and forced vibration analyses of the hybrid laminates. In the following, the 

principal conclusions of the present study are given. 

1. In order to obtain the fundamental frequencies of the tapered plates with good accuracy, 

considering the first 4 terms of the series expansion of the Ritz shape function is sufficient. 

However, in order to determine the solution for the forced vibration that requires numerous natural 

frequencies, higher number of terms should be taken into account. In the present thesis, 13 terms 

have been considered for all the cases in the calculations corresponding to the free and forced 

vibration analyses using the Taylor series and the approach explained in section 2.9. 

2. For all taper configurations, the fundamental frequencies for CCCC plates are the highest 

and that of the CCFF plates are the lowest. 

3. In composite plates, the plies close to the midplane absorb less energy than the external 

plies and they do not significantly take part in increasing the natural frequencies while their inertial 

(mass) contribution is the same as that of the other plies. The order of 3 for variable 𝑧 (the distance 

from the midplane) in the bending stiffness coefficients 𝑅𝑖𝑗
3 , clarifies the importance of this fact. 

4. Among the tapered laminated composite plates considered, the configuration C is the 

stiffest configuration. The resin considered as the weaker material is positioned at the core while 

the plies are used in farther layers from the midplane, thus, taking advantage of their high stiffness 

property to the full capacity. Therefore, it is observed from the numerical results that this 

configuration vibrates with highest fundamental frequency among all the configurations for CCCC 

and CCFF boundary conditions. Furthermore, it shows the lowest deflection when subjected to 

excitation in forced vibration investigation compared to the rest of the configurations for all the 

boundary conditions. 
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5. It is grasped from the results that the configuration A containing considerably fewer plies 

compared to other configurations, vibrates with frequencies that are close to that of the other 

configurations in free vibration analysis. This behavior comes from the use of the plies at the most 

external layers and resin which is the weaker material, in internal layers, such that the configuration 

is lighter and is still able to compensate for the absence of notable numbers of stiff plies within the 

structure.  

6. The structure of configuration C with the resin used at the core, is stiffer than that of the 

configuration B and D with the resin used at farther layers from the midplane. In addition, 

configuration D has fewer external plies. Therefore, the fundamental frequency of C is the highest 

and that of the D is the lowest among configurations B, C and D for all boundary conditions. 

7. The “Layer reduction test” in free vibration analysis shows that the fundamental frequency 

of the tapered plate is between the fundamental frequencies of the thick-uniform and thin-uniform  

plates with the laminate configurations identical to that of the left and right ends of the tapered 

plate.  

8. From the “Layer reduction test” in free vibration analysis, it is observed that by removing 

the plies from the tapered and uniform-thin laminates, the fundamental frequencies corresponding 

to the plates, decrease. However, this reduction in fundamental frequency value is faster in the 

uniform-thin laminate. 

9. The “Layer reduction test” in forced vibration analysis shows that the deflection at the 

center of the tapered plate is higher than that of the thick-uniform  laminate and lower than that of 

the thin-uniform laminate.  

10. From the “Layer reduction test” in forced vibration analysis, it is observed that by removing 

the plies from the tapered and uniform-thin laminates, the deflection at the center of laminates 

increase. However, this increase in transverse deflection magnitude is faster in the uniform-thin 

laminate. 

11. The magnitude of the deflection at the center corresponding to the line loads, for all the 

configurations, are slightly higher when the line loads are distributed along the length (along the 
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taper) in 𝑥 direction compared to the case with the line loads distributed along the width in 𝑦 

direction. 

12. For all boundary conditions and taper configurations, the magnitudes of the deflection at 

the center of the laminates, due to the distributed sinusoidal loadings that dies away when 

approaching the laminate’s ends, are lower compared to that due to the line loads with constant 

magnitude throughout the laminate length. 

13. In the forced vibration analysis, a laminate with higher fundamental frequency compared 

to another laminate, does not necessarily deflect less when subjected to the same excitation. The 

Configuration C is denser and stiffer than configuration A and fundamental frequency of A is 

slightly higher than that of C for SSSS boundary condition. However, in forced vibration analysis, 

for all boundary conditions including SSSS, configuration C compared to A, deflects less when 

subjected to the same excitation. The mass and stiffness of configuration C provide higher 

resistance to excitation. The fundamental frequency of a heavy and stiff laminate can be 

comparable to that of a light and weak laminate. However, due to stiffness and inertial effect, the 

magnitude of the deflection for the heavy and stiff laminate can be less than that of the light and 

weak laminate when subjected to the same excitation.  

14. With increase in taper angle of the tapered part in hybrid laminate, the fundamental 

frequency of the plates decreases. 

15. With increase in taper angle of the tapered part in hybrid laminate, the magnitude of the 

deflection at the center of the laminate due to transverse excitation increases. 

5.3 Recommendations for future works 

Considering the content of the study and the contributions made in the present thesis, the 

following suggestions are proposed for the future works. 

1. Free and forced vibration analysis of tapered laminated composite plates presented in this 

thesis can be extended for thick laminates based on Higher-order Shear Deformation Theory 

(HSDT). 
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2. Damped and undamped free vibration analysis can be conducted on equilateral and 

trapezoidal tapered laminated composite plates. 

3. Damped and undamped forced vibration analysis can be conducted on equilateral and 

trapezoidal tapered laminated composite plates. 

4. Random vibration analysis can be performed on tapered laminated composite plates. 
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Appendix A 

A.1 Reduced stiffness matrices based on CLPT and FSDT 

The stress-strain relationship, considering negligible out of plane normal stress, is written 

for the 𝑘th layer as follows using equation (2.45). 

{
 
 

 
 

𝜎𝑥 = 𝜎1
𝜎𝑦 = 𝜎2

𝜎𝑧 = 𝜎3 = 0
𝜏𝑦𝑧 = 𝜎4
𝜏𝑥𝑧 = 𝜎5
𝜏𝑥𝑦 = 𝜎6 }

 
 

 
 

𝑘

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34
𝐶15 𝐶25 𝐶35
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 𝐶46
𝐶45 𝐶55 𝐶56
𝐶46 𝐶56 𝐶66]

 
 
 
 
 

𝑘
{
 
 

 
 
𝜀𝑥 = 𝜀1
𝜀𝑦 = 𝜀2
𝜀𝑧 = 𝜀3
𝛾𝑦𝑧 = 𝜀4
𝛾𝑥𝑧 = 𝜀5
𝛾𝑥𝑦 = 𝜀6}

 
 

 
 

𝑘

 (1) 

Similar to Ref. [5], calculation is performed here in order to derive the reduced stiffness 

matrices based on CLPT and FSDT. Considering 𝜎3 = 0 in equation (1), it is expressed that: 

∑𝐶3𝑗𝜀𝑗

6

𝑗=1

= 0 (2) 

Using equation (2), the following expression is written. 

𝜀3 = −∑(
𝐶3𝑗

𝐶33
) 𝜀𝑗

6

𝑗=1
𝑗≠3

 (3) 

In addition, using equation (1), it is written that: 

𝜎𝑖 =

[
 
 
 
 

∑𝐶𝑖𝑗𝜀𝑗

6

𝑗=1
𝑗≠3 ]

 
 
 
 

+ 𝐶𝑖3𝜀3               (𝑖 ≠ 3) (4) 

Equation (3) is substituted in equation (4). 

𝜎𝑖 =

[
 
 
 
 

∑𝐶𝑖𝑗𝜀𝑗

6

𝑗=1
𝑗≠3 ]

 
 
 
 

+ 𝐶𝑖3

[
 
 
 
 

−∑(
𝐶3𝑗

𝐶33
) 𝜀𝑗

6

𝑗=1
𝑗≠3 ]

 
 
 
 

               (𝑖 ≠ 3) (5) 



131 

 

Equation (5) is written in the following from. 

𝜎𝑖 =∑(𝐶𝑖𝑗 − 𝑖3

𝐶3𝑗

𝐶33
) 𝜀𝑗

6

𝑗=1
𝑗≠3

               (𝑖 ≠ 3) (6) 

Considering notation 𝑄𝑖𝑗 = (𝐶𝑖𝑗 − 𝐶𝑖3
𝐶3𝑗

𝐶33
), equation (6) is rewritten as follows: 

𝜎𝑖 =∑𝑄𝑖𝑗

6

𝑗=1
𝑗≠3

𝜀𝑗                (𝑖 ≠ 3) (7) 

Writing equation (7) in matrix form: 

{
 
 

 
 
𝜎1
𝜎2
𝜎4
𝜎5
𝜎6}
 
 

 
 

𝑘

=

[
 
 
 
 
𝑄11 𝑄12
𝑄21 𝑄22

𝑄14 𝑄15 𝑄16
𝑄24 𝑄25 𝑄26

𝑄41 𝑄42
𝑄51 𝑄52
𝑄61 𝑄62

𝑄44 𝑄45 𝑄46
𝑄54 𝑄55 𝑄56
𝑄64 𝑄65 𝑄66]

 
 
 
 

𝑘

 

{
 
 

 
 
𝜀1
𝜀2
𝜀4
𝜀5
𝜀6}
 
 

 
 

𝑘

 (8) 

Considering the relation 𝐶𝑖𝑗 = 𝐶𝑗𝑖 which results in 𝑄𝑖𝑗 = 𝑄𝑗𝑖, equation (8) is expressed as 

follows. 

[
 
 
 
 
𝜎1
𝜎2
𝜎4
𝜎5
𝜎6]
 
 
 
 

=

[
 
 
 
 
𝑄11 𝑄12
𝑄12 𝑄22

𝑄14 𝑄15 𝑄16
𝑄24 𝑄25 𝑄26

𝑄14 𝑄24
𝑄15 𝑄25
𝑄16 𝑄26

𝑄44 𝑄45 𝑄46
𝑄45 𝑄55 𝑄56
𝑄46 𝑄56 𝑄66]

 
 
 
 

 

[
 
 
 
 
𝜀1
𝜀2
𝜀4
𝜀5
𝜀6]
 
 
 
 

 (9) 

Rearranging the stresses and considering shear correction factor using Refs. [2] and [5], 

the reduced stiffness matrix for FSDT becomes: 

[
 
 
 
 
𝜎𝑥 = 𝜎1
𝜎𝑦 = 𝜎2
𝜏𝑥𝑦 = 𝜎6
𝜏𝑦𝑧 = 𝜎4
𝜏𝑥𝑧 = 𝜎5]

 
 
 
 

=

[
 
 
 
 
   
𝑄11 𝑄12
𝑄12 𝑄22

𝑄16 𝑄14 𝑄15
𝑄26 𝑄24 𝑄25

𝑄16 𝑄26 𝑄66 𝑄46 𝑄56
5

6
(
𝑄14 𝑄24 𝑄46 𝑄44 𝑄45
𝑄15 𝑄25 𝑄56 𝑄45 𝑄55

)
]
 
 
 
 

[
 
 
 
 
𝜀𝑥 = 𝜀1
𝜀𝑦 = 𝜀2
𝛾𝑥𝑦 = 𝜀6
𝛾𝑦𝑧 = 𝜀4
𝛾𝑥𝑧 = 𝜀5]

 
 
 
 

 (10) 

Considering 𝜀4 = 𝜀5 = 0 for CLPT in equation (6), it is expressed that: 
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𝜎𝑖 = ∑ (𝐶𝑖𝑗 − 𝐶𝑖3
𝐶3𝑗

𝐶33
)

6

𝑗=1
𝑗≠3,4,5

𝜀𝑗               (𝑖 ≠ 3, 4, 5) (11) 

Considering the relation 𝑄𝑖𝑗 = 𝑄𝑗𝑖 in equation (11), the reduced stiffness matrix for CLPT 

is derived. 

[

𝜎𝑥 = 𝜎1
𝜎𝑦 = 𝜎2
𝜏𝑥𝑦 = 𝜎6

] = [
𝑄11 𝑄12
𝑄12 𝑄22

𝑄16
𝑄26

𝑄16 𝑄26 𝑄66

] [

𝜀𝑥 = 𝜀1
𝜀𝑦 = 𝜀2
𝛾𝑥𝑦 = 𝜀6

] (12) 

A.2 Derivatives of kinetic and strain energies 

In order to derive the derivatives of strain and kintic energies based on CLPT, equation 

(2.85) is substituted in equation (2.80), and equation (2.86) is substituted in equation (2.80). 

𝑈̂ 
[𝑤𝑜]

 
 𝐶 =∬

[
 
 
 
 
 
 [𝑅12

3 𝑋𝑚
𝑤 
𝑐

𝑜𝑌̈𝑛
𝑤 
𝑐

𝑜 + 𝑅11
3 𝑋̈𝑚

𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜]
𝜕2( 𝑤 

𝑐
𝑜)

𝜕𝑥2
+

[𝑅22
3 𝑋𝑚

𝑤 
𝑐

𝑜𝑌̈𝑛
𝑤 
𝑐

𝑜 + 𝑅12
3 𝑋̈𝑚

𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜]
𝜕2( 𝑤 

𝑐
𝑜)

𝜕𝑦2

+4𝑅66
3 𝑋̇𝑚

𝑤 
𝑐

𝑜𝑌̇𝑛
𝑤 
𝑐

𝑜
𝜕2( 𝑤 

𝑐
𝑜)

𝜕𝑥𝜕𝑦 ]
 
 
 
 
 
 

𝑑𝐴 (13) 

𝑇̂  
[𝑤𝑜]

 
 𝐶 = 𝜔2∬[

𝑅3𝑋̇𝑚
𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜
𝜕( 𝑤 

𝑐
𝑜)

𝜕𝑥
+ 𝑅3𝑋𝑚

𝑤 
𝑐

𝑜𝑌̇𝑛
𝑤 
𝑐

𝑜
𝜕( 𝑤 

𝑐
𝑜)

𝜕𝑦

+𝑅1𝑋𝑚
𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜( 𝑤 
𝑐

𝑜)

] 𝑑𝐴 (14) 

Substituting equation (2.51) in equations (13) and (14), it is written that: 

𝑈̂ 
[𝑤𝑜]

 
 𝐶 =∑∑∬

(

 
 
[𝑋𝑚

𝑤 
𝑐

𝑜𝑌̈𝑛
𝑤 
𝑐

𝑜𝑅12
3 + 𝑅11

3 𝑋̈𝑚
𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜] 𝑋̈𝑖
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜 +

[𝑅22
3 𝑋𝑚

𝑤 
𝑐

𝑜𝑌̈𝑛
𝑤 
𝑐

𝑜 + 𝑅12
3 𝑋̈𝑚

𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜] 𝑋𝑖
𝑤 
𝑐

𝑜𝑌̈𝑗
𝑤 
𝑐

𝑜 +

4𝑅66
3 𝑋̇𝑚

𝑤 
𝑐

𝑜𝑌̇𝑛
𝑤 
𝑐

𝑜𝑋̇𝑖
𝑤 
𝑐

𝑜𝑌̇𝑗
𝑤 
𝑐

𝑜

)

 
 
𝐴𝑖𝑗
𝑤 
𝑐

𝑜𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (15) 
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𝑇̂  
[𝑤𝑜]

 
 𝐶 = 𝜔2∑∑∬

[
 
 
 
 𝑅

3𝑋̇𝑚
𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜𝑋̇𝑖
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜 +

𝑅3𝑋𝑚
𝑤 
𝑐

𝑜𝑌̇𝑛
𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑌̇𝑗
𝑤 
𝑐

𝑜

+𝑅1𝑋𝑚
𝑤 
𝑐

𝑜𝑌𝑛
𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜
]
 
 
 
 

𝐴𝑖𝑗
𝑤 
𝑐

𝑜𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (16) 

Equations (15) and (16) result in the following expressions: 

𝑈̂ 
[𝑤𝑜]

 
 𝐶 =∑∑

(

 
 
 
 
 
 
 
 
 
 

∫ 𝑅12
3 𝑋𝑚

𝑤 
𝑐

𝑜𝑋̈𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝐿

0

∫ 𝑌̈𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

+∫ 𝑅11
3 𝑋̈𝑚

𝑤 
𝑐

𝑜𝑋̈𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0

+∫ 𝑅22
3 𝑋𝑚

𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌̈𝑛
𝑤 
𝑐

𝑜𝑌̈𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0

+∫ 𝑅12
3 𝑋̈𝑚

𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌̈𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0

+4∫ 𝑅66
3 𝑋̇𝑚

𝑤 
𝑐

𝑜𝑋̇𝑖
𝑤 
𝑐

𝑜𝑑𝑥∫ 𝑌̇𝑛
𝑤 
𝑐

𝑜𝑌̇𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝐿

0

𝐿

0 )

 
 
 
 
 
 
 
 
 
 

𝐴𝑖𝑗
𝑤 
𝑐

𝑜

𝐽

𝑗=1

𝐼

𝑖=1

 (17) 

𝑇̂  
[𝑤𝑜]

 
 𝐶 = 𝜔2∑∑

(

 
 
 
 
 
∫ 𝑅3𝑋̇𝑚

𝑤 
𝑐

𝑜𝑋̇𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝑥=𝐿

𝑥=0

∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝑦=𝐿

𝑦=0

+∫ 𝑅3𝑋𝑚
𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝑥=𝐿

𝑥=0

∫ 𝑌̇𝑛
𝑤 
𝑐

𝑜𝑌̇𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝑦=𝐿

𝑦=0

+∫ 𝑅1𝑋𝑚
𝑤 
𝑐

𝑜𝑋𝑖
𝑤 
𝑐

𝑜𝑑𝑥
𝑥=𝐿

𝑥=0

∫ 𝑌𝑛
𝑤 
𝑐

𝑜𝑌𝑗
𝑤 
𝑐

𝑜𝑑𝑦
𝑦=𝐿

𝑦=0 )

 
 
 
 
 

𝐴𝑖𝑗
𝑤 
𝑐

𝑜

𝐽

𝑗=1

𝐼

𝑖=1

 (18) 

For FSDT, by substituting equation (2.85) in (2.80) for derivative of strain energy and by 

substituting equation (2.86) in (2.80) for derivative of kinetic energy, it is expressed that: 

𝑈̂ 
[𝑤𝑜]

 𝐹
 =∬

[
 
 
 
5

6
𝑅55
1 𝑋̇𝑚

𝑤𝐹
 
𝑜𝑌𝑛

𝑤𝐹
 
𝑜
𝜕( 𝑤𝐹

 
𝑜)

𝜕𝑥
+
5

6
𝑅44
1 𝑋𝑚

𝑤𝐹
 
𝑜𝑌̇𝑛

𝑤𝐹
 
𝑜
𝜕( 𝑤𝐹

 
𝑜)

𝜕𝑦

+
5

6
𝑅55
1 𝑋̇𝑚

𝑤𝐹
 
𝑜𝑌𝑛

𝑤𝐹
 
𝑜𝜑𝑥 +

5

6
𝑅44
1 𝑋𝑚

𝑤𝐹
 
𝑜𝑌̇𝑛

𝑤𝐹
 
𝑜𝜑𝑦 ]

 
 
 

𝑑𝐴 (19) 

𝑈̂ 
[𝜑𝑥]

 𝐹
 =∬

[
 
 
 
5

6
𝑅55
1 𝑋𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥
𝜕( 𝑤𝐹

 
𝑜)

𝜕𝑥
+
5

6
𝑅55
1 𝑋𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥𝜑𝑥 + 𝑅11

3 𝑋̇𝑚
𝜑𝑥𝑌𝑛

𝜑𝑥
𝜕𝜑𝑥
𝜕𝑥

+𝑅66
3 𝑋𝑚

𝜑𝑥𝑌̇𝑛
𝜑𝑥
𝜕𝜑𝑥
𝜕𝑦

+ 𝑅66
3 𝑋𝑚

𝜑𝑥𝑌̇𝑛
𝜑𝑥
𝜕𝜑𝑦

𝜕𝑥
+ 𝑅12

3 𝑋̇𝑚
𝜑𝑥𝑌𝑛

𝜑𝑥
𝜕𝜑𝑦

𝜕𝑦 ]
 
 
 

𝑑𝐴 (20) 
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𝑈̂ 
[𝜑𝑦]

 𝐹
 =∬

[
 
 
 
 
5

6
𝑅44
1 𝑋𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦 𝜕( 𝑤𝐹

 
𝑜)

𝜕𝑦
+ 𝑅12

3 𝑋𝑚
𝜑𝑦𝑌̇𝑛

𝜑𝑦 𝜕𝜑𝑥
𝜕𝑥

+ 𝑅66
3 𝑋̇𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦 𝜕𝜑𝑥

𝜕𝑦

+
5

6
𝑅44
1 𝑋𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦𝜑𝑦 + 𝑅22

3 𝑋𝑚
𝜑𝑦𝑌̇𝑛

𝜑𝑦 𝜕𝜑𝑦

𝜕𝑦
+ 𝑅66

3 𝑋̇𝑚
𝜑𝑦𝑌𝑛

𝜑𝑦 𝜕𝜑𝑦

𝜕𝑥 ]
 
 
 
 

𝑑𝐴 (21) 

𝑇̂  
[𝑤𝑜]

 𝐹
 = 𝜔2∬[𝑅1𝑋𝑚

𝑤𝑜𝐹
 

𝑌𝑛
𝑤𝑜𝐹
 

( 𝑤𝑜𝐹
 )]𝑑𝐴 

(22) 

𝑇̂  
[𝜑𝑥]

 𝐹
 = 𝜔2∬[𝑅3𝑋𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥𝜑𝑥]𝑑𝐴 

(23) 

𝑇̂  
[𝜑𝑦]

 𝐹
 = 𝜔2∬[𝑅3𝑋𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦𝜑𝑦]𝑑𝐴 

(24) 

By substituting equations (2.52), (2.53) and (2.54) in equations (19) to (24), it is expressed 

that: 

𝑈̂ 
[𝑤𝑜]

 𝐹
 =∑∑∬

[
 
 
 
 
 
 
 
 
(

5

6
𝑅55
1 𝑋̇𝑚

𝑤𝐹
 
𝑜𝑌𝑛

𝑤𝐹
 
𝑜𝑋̇𝑖

𝑤𝐹
 
𝑜𝑌𝑗

𝑤𝐹
 
𝑜

+
5

6
𝑅44
1 𝑋𝑚

𝑤𝑜𝑌̇𝑛
𝑤𝑜𝑋𝑖

𝑤𝑜𝑌̇𝑗
𝑤𝑜

)𝐴𝑖𝑗
𝑤𝐹
 
𝑜

+(
5

6
𝑅55
1 𝑋̇𝑚

𝑤𝑜𝑌𝑛
𝑤𝑜𝑋𝑖

𝜑𝑥𝑌𝑗
𝜑𝑥)𝐴𝑖𝑗

𝜑𝑥

+(
5

6
𝑅44
1 𝑋𝑚

𝑤𝑜𝑌̇𝑛
𝑤𝑜𝑋

𝑖

𝜑𝑦𝑌
𝑗

𝜑𝑦)𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 

𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (25) 

𝑈̂ 
[𝜑𝑥]

 𝐹
 =∑∑∬

[
 
 
 
 
 
 
 
 
 (
5

6
𝑅55
1 𝑋𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥𝑋̇𝑖

𝑤𝐹
 
𝑜𝑌𝑗

𝑤𝐹
 
𝑜)𝐴𝑖𝑗

𝑤𝐹
 
𝑜

+

(

 
 

5

6
𝑅55
1 𝑋𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥𝑋𝑖

𝜑𝑥𝑌𝑗
𝜑𝑥

+𝑅11
3 𝑋̇𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥𝑋̇𝑖

𝜑𝑥𝑌𝑗
𝜑𝑥

+𝑅66
3 𝑋𝑚

𝜑𝑥𝑌̇𝑛
𝜑𝑥𝑋𝑖

𝜑𝑥𝑌̇𝑗
𝜑𝑥

)

 
 
𝐴𝑖𝑗
𝜑𝑥

+(
𝑅66
3 𝑋𝑚

𝜑𝑥𝑌̇𝑛
𝜑𝑥𝑋̇

𝑖

𝜑𝑦𝑌
𝑗

𝜑𝑦

+𝑅12
3 𝑋̇𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥𝑋

𝑖

𝜑𝑦𝑌̇
𝑗

𝜑𝑦
)𝐴

𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 
 

𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (26) 
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𝑈̂ 
[𝜑𝑦]

 𝐹
 =∑∑∬

[
 
 
 
 
 
 
 
 
 
 (
5

6
𝑅44
1 𝑋𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦𝑋𝑖

𝑤𝐹
 
𝑜𝑌̇𝑗

𝑤𝐹
 
𝑜)𝐴𝑖𝑗

𝑤𝐹
 
𝑜

+(
𝑅12
3 𝑋𝑚

𝜑𝑦𝑌̇𝑛
𝜑𝑦𝑋̇𝑖

𝜑𝑥𝑌𝑗
𝜑𝑥

+𝑅66
3 𝑋̇𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦𝑋𝑖

𝜑𝑥𝑌̇𝑗
𝜑𝑥
)𝐴𝑖𝑗

𝜑𝑥

+

(

 
 

5

6
𝑅44
1 𝑋𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦𝑋

𝑖

𝜑𝑦𝑌
𝑗

𝜑𝑦

+𝑅22
3 𝑋𝑚

𝜑𝑦𝑌̇𝑛
𝜑𝑦𝑋

𝑖

𝜑𝑦𝑌̇
𝑗

𝜑𝑦

+𝑅66
3 𝑋̇𝑚

𝜑𝑦𝑌𝑛
𝜑𝑦𝑋̇

𝑖

𝜑𝑦𝑌
𝑗

𝜑𝑦

)

 
 
𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 
 
 

𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (27) 

𝑇̂  
[𝑤𝑜]

 𝐹
 = 𝜔2∑∑∬[𝑅1𝑋𝑚

𝑤𝑜𝐹
 

𝑌𝑛
𝑤𝑜𝐹
 

𝑋𝑖
𝑤𝑜𝐹
 

𝑌𝑗
𝑤𝑜𝐹
 

] 𝐴𝑖𝑗
𝑤𝑜𝐹
 

𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (28) 

𝑇̂  
[𝜑𝑥]

 𝐹
 = 𝜔2∑∑∬[𝑅3𝑋𝑚

𝜑𝑥𝑌𝑛
𝜑𝑥𝑋𝑖

𝜑𝑥𝑌𝑗
𝜑𝑥]𝐴𝑖𝑗

𝜑𝑥𝑑𝐴 

𝐽

𝑗=1

𝐼

𝑖=1

 (29) 

𝑇̂  
[𝜑𝑦]

 𝐹
 = 𝜔2∑∑∬[𝑅3𝑋𝑚

𝜑𝑦
𝑌𝑛
𝜑𝑦
𝑋
𝑖

𝜑𝑦
𝑌
𝑗

𝜑𝑦
] 𝐴

𝑖𝑗

𝜑𝑦
𝑑𝐴 

𝐽

𝑗=1

𝐼

𝑖=1

 (30) 

By rearranging the equations (25) to (30) and performing some mathematical operations, 

the following expressions are derived for derivatives of strain and kinetic energy based on FSDT. 

𝑈̂ 
[𝑤𝑜]

 𝐹
 =

5

6
∑∑ 

𝐽

𝑗=1

𝐼

𝑖=1 

[
 
 
 
 
 
 
 (∫ 𝑅55

1 𝑋̇𝑚
𝑤𝐹
 
𝑜𝑋̇𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝑤𝐹
 
𝑜𝑌𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0

+∫ 𝑅44
1 𝑋𝑚

𝑤𝐹
 
𝑜𝑋𝑖

𝑤𝐹
 
𝑜𝑑𝑥

𝐿

0

∫ 𝑌̇𝑛
𝑤𝐹
 
𝑜𝑌̇𝑗

𝑤𝐹
 
𝑜𝑑𝑦

𝐿

0

)𝐴𝑖𝑗
𝑤𝐹
 
𝑜

+(∫ 𝑅55
1 𝑋̇𝑚

𝑤𝐹
 
𝑜𝑋𝑖

𝜑𝑥𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝑤𝐹
 
𝑜𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

)𝐴𝑖𝑗
𝜑𝑥

+(∫ 𝑅44
1 𝑋𝑚

𝑤𝐹
 
𝑜𝑋

𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌̇𝑛
𝑤𝐹
 
𝑜𝑌
𝑗

𝜑𝑦𝑑𝑦
𝐿

0

)𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 (31) 
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𝑈̂ 
[𝜑𝑥]

 𝐹
 =∑∑ 

𝐽

𝑗=1

𝐼

𝑖=1 

[
 
 
 
 
 
 
 
 
 

5

6
(∫ 𝑅55

1 𝑋𝑚
𝜑𝑥𝑋̇𝑖

𝑤𝑜𝐹
 

𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌𝑗

𝑤𝑜𝐹
 

𝑑𝑦
𝐿

0

)𝐴𝑖𝑗
𝑤𝑜𝐹
 

+

(

 
 

5

6
∫ 𝑅55

1 𝑋𝑚
𝜑𝑥𝑋𝑖

𝜑𝑥𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

+∫ 𝑅11
3 𝑋̇𝑚

𝜑𝑥𝑋̇𝑖
𝜑𝑥𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

+∫ 𝑅66
3 𝑋𝑚

𝜑𝑥𝑋𝑖
𝜑𝑥𝑑𝑥

𝐿

0

∫ 𝑌̇𝑛
𝜑𝑥𝑌̇𝑗

𝜑𝑥𝑑𝑦
𝐿

0 )

 
 
𝐴𝑖𝑗
𝜑𝑥

+(∫ 𝑅12
3 𝑋̇𝑚

𝜑𝑥𝑋
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑥𝑌̇

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

+∫ 𝑅66
3 𝑋𝑚

𝜑𝑥𝑋̇
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌̇𝑛
𝜑𝑥𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

)𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 
 

 (32) 

𝑈̂ 
[𝜑𝑦]

 𝐹
 =∑∑ 

𝐽

𝑗=1

𝐼

𝑖=1 

[
 
 
 
 
 
 
 
 
 

5

6
(∫ 𝑅44

1 𝑋𝑚
𝜑𝑦𝑋𝑖

𝑤𝑜𝐹
 

𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌̇𝑗

𝑤𝑜𝐹
 

𝑑𝑦
𝐿

0

)𝐴𝑖𝑗
𝑤𝑜𝐹
 

+

(∫ 𝑅12
3 𝑋𝑚

𝜑𝑦𝑋̇𝑖
𝜑𝑥𝑑𝑥

𝐿

0

∫ 𝑌̇𝑛
𝜑𝑦𝑌𝑗

𝜑𝑥𝑑𝑦
𝐿

0

+∫ 𝑅66
3 𝑋̇𝑚

𝜑𝑦𝑋𝑖
𝜑𝑥𝑑𝑥

𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌̇𝑗

𝜑𝑥𝑑𝑦
𝐿

0

)𝐴𝑖𝑗
𝜑𝑥 +

(

 
 

5

6
∫ 𝑅44

1 𝑋𝑚
𝜑𝑦𝑋

𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

+∫ 𝑅22
3 𝑋𝑚

𝜑𝑦𝑋
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌̇𝑛
𝜑𝑦𝑌̇

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

+∫ 𝑅66
3 𝑋̇𝑚

𝜑𝑦𝑋̇
𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0 )

 
 
𝐴
𝑖𝑗

𝜑𝑦

]
 
 
 
 
 
 
 
 
 

 (33) 

𝑇̂  
[𝑤𝑜]

 𝐹
 = 𝜔2∑∑ [∫ 𝑅1𝑋𝑚

𝑤𝑜𝐹
 

𝑋𝑖
𝑤𝑜𝐹
 

𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝑤𝑜𝐹
 

𝑌𝑗
𝑤𝑜𝐹
 

𝑑𝑦
𝐿

0

] 𝐴𝑖𝑗
𝑤𝑜𝐹
 

𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (34) 

𝑇̂  
[𝜑𝑥]

 𝐹
 = 𝜔2∑∑ [∫ 𝑅3𝑋𝑚

𝜑𝑥𝑋𝑖
𝜑𝑥𝑑𝑥∫ 𝑌𝑛

𝜑𝑥𝑌𝑗
𝜑𝑥𝑑𝑦

𝐿

0

𝐿

0

] 𝐴𝑖𝑗
𝜑𝑥𝑑𝐴

𝐽

𝑗=1

𝐼

𝑖=1

 (35) 

𝑇̂  
[𝜑𝑦]

 𝐹
 = 𝜔2∑∑ 

𝐽

𝑗=1

[∫ 𝑅3𝑋𝑚
𝜑𝑦𝑋

𝑖

𝜑𝑦𝑑𝑥
𝐿

0

∫ 𝑌𝑛
𝜑𝑦𝑌

𝑗

𝜑𝑦𝑑𝑦
𝐿

0

] 𝐴
𝑖𝑗

𝜑𝑦𝑑𝐴

𝐼

𝑖=1

 (36) 
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A.3 Rearrangement of stiffness and mass matrices 

Equations (2.107) to (2.109) are rewritten. 

𝑈̂ 
[𝑤𝑜]

 𝐹
 = [𝜑𝑥

𝑤𝐹
 
𝑜]𝐼𝐽×𝐼𝐽{𝐴

𝜑𝑥}𝐼𝐽×1 + [𝜑𝑦
𝑤𝐹
 
𝑜]
𝐼𝐽×𝐼𝐽

{𝐴𝜑𝑦}𝐼𝐽×1 + [𝑤𝑜
𝑤𝐹
 
𝑜]𝐼𝐽×𝐼𝐽{𝐴

𝑤𝐹
 
𝑜}𝐼𝐽×1 (37) 

𝑈̂ 
[𝜑𝑥]

 𝐹
 = [𝜑𝑥

𝜑𝑥]𝐼𝐽×𝐼𝐽{𝐴
𝜑𝑥}𝐼𝐽×1 + [𝜑𝑦

𝜑𝑥]
𝐼𝐽×𝐼𝐽

{𝐴𝜑𝑦}𝐼𝐽×1 + [𝑤𝑜
𝜑𝑥]𝐼𝐽×𝐼𝐽{𝐴

𝑤𝐹
 
𝑜}𝐼𝐽×1 (38) 

𝑈̂ 
[𝜑𝑦]

 𝐹
 = [𝜑𝑥

𝜑𝑦]𝐼𝐽×𝐼𝐽{𝐴
𝜑𝑥}𝐼𝐽×1 + [𝜑𝑦

𝜑𝑦]
𝐼𝐽×𝐼𝐽

{𝐴𝜑𝑦}𝐼𝐽×1 + [𝑤𝑜
𝜑𝑦]𝐼𝐽×𝐼𝐽{𝐴

𝑤𝐹
 
𝑜}𝐼𝐽×1 (39) 

Equations (2.104) to (2.106) ( 𝑈̂ 
[𝑤𝑜]

 𝐹
 = 𝑇̂  

[𝑤𝑜]

 𝐹
 , 𝑈̂ 

[𝜑𝑥]

 𝐹
 = 0, 𝑈̂ 

[𝜑𝑦]

 𝐹
 = 0) are considered 

and used in equations (38) and (39). 

{𝐴𝜑𝑥} = −[𝜑𝑥
𝜑𝑥]−1([𝜑𝑦

𝜑𝑥][𝐴𝜑𝑦] + [𝑤𝑜
𝜑𝑥]{𝐴 𝑤𝐹

 
𝑜}) (40) 

[𝜑𝑦
𝜑𝑦]{𝐴𝜑𝑦} + [𝑤𝑜

𝜑𝑦]{𝐴 𝑤𝐹
 
𝑜} = [𝜑𝑥

𝜑𝑦][𝜑𝑥
𝜑𝑥]−1([𝜑𝑦

𝜑𝑥]{𝐴𝜑𝑦} + [𝑤𝑜
𝜑𝑥]{𝐴 𝑤𝐹

 
𝑜}) (41) 

Equation (41) is rearranged as follows. 

{𝐴𝜑𝑦} = ([𝜑𝑦
𝜑𝑦] − [𝜑𝑥

𝜑𝑦][𝜑𝑥
𝜑𝑥]−1[𝜑𝑦

𝜑𝑥])
−1
([𝜑𝑥

𝜑𝑦][𝜑𝑥
𝜑𝑥]−1[𝑤𝑜

𝜑𝑥] − [𝑤𝑜
𝜑𝑦]){𝐴 𝑤𝐹

 
𝑜} (42) 

Considering equation (42), the notation [𝑆𝑡𝑟] is used in the equation. 

{𝐴𝜑𝑦} = [𝑆𝑡𝑟]{𝐴 𝑤𝐹
 
𝑜} (43) 

Equation (43) is substituted in equation (40). 

{𝐴𝜑𝑥} = −[𝜑𝑥
𝜑𝑥]−1([𝜑𝑦

𝜑𝑥][𝑆𝑡𝑎𝑟] + [𝑤𝑜
𝜑𝑥]){𝐴 𝑤𝐹

 
𝑜} (44) 

Substituting equations (44) and (43) in equation (37) results in the following expression. 

[ 𝑈̂ 
[𝑤𝑜]

 𝐹
 ] = ([𝜑𝑦

𝑤𝑜][𝑆𝑡𝑎𝑟] + [𝑤𝑜
𝑤𝐹
 
𝑜] − [𝜑𝑥

𝑤𝑜][𝜑𝑥
𝜑𝑥]−1([𝜑𝑦

𝜑𝑥][𝑆𝑡𝑎𝑟] + [𝑤𝑜
𝜑𝑥])) {𝐴 𝑤𝐹

 
𝑜} (45) 

Equation (45) is rewritten considering notation [ 𝐾̅ 𝐹 
  ]. 



138 

 

[ 𝑈̂ 
[𝑤𝑜]

 𝐹
 ] = [ 𝐾̅ 𝐹 

  ]
𝐼𝐽×𝐼𝐽

{𝐴𝐹
 
𝑜}
𝐼𝐽×1

 (46) 

[ 𝐾̅ 𝐹 
  ] = [[𝜑𝑦

𝑤𝑜] − [𝜑𝑥
𝑤𝑜][𝜑𝑥

𝜑𝑥]−1[𝜑𝑦
𝜑𝑥]] [𝑆𝑡𝑟] − [𝜑𝑥

𝑤𝑜][𝜑𝑥
𝜑𝑥]−1[𝑤𝑜

𝜑𝑥] + [𝑤𝑜
𝑤𝐹
 
𝑜] (47) 

[𝑆𝑡𝑟] = ([𝜑𝑦
𝜑𝑦] − [𝜑𝑥

𝜑𝑦][𝜑𝑥
𝜑𝑥]−1[𝜑𝑦

𝜑𝑥])
−1
([𝜑𝑥

𝜑𝑦][𝜑𝑥
𝜑𝑥]−1[𝑤𝑜

𝜑𝑥] − [𝑤𝑜
𝜑𝑦]) (48) 

A.4 Forced vibration formulation for zero initial displacement and velocity 

Equations (3.1), (3.2), (3.10) and (3.11) are rewritten here for convenience. 

𝑤𝑜
𝐹 =∑∑𝐴𝑖𝑗

𝐹 (𝑡)𝑋𝑖(𝑥)𝑌𝑗(𝑦)

𝐽

𝑗=1

𝐼

𝑖=1

 (49) 

𝑤̇𝑜
𝐹 =∑∑𝐴̇𝑖𝑗

𝐹 (𝑡)𝑋𝑖(𝑥)𝑌𝑗(𝑦)

𝐽

𝑗=1

𝐼

𝑖=1

 (50) 

{𝐴𝐹} = [𝐴𝜔]𝐼𝐽×𝐼𝐽 {𝑞}𝐼𝐽×1 (51) 

{𝐴̇𝐹} = [𝐴𝜔]𝐼𝐽×𝐼𝐽 {𝑞̇}𝐼𝐽×1 (52) 

Since the plate is in static state at equilibrium position at 𝑡 = 0, the transverse displacement 

and velocity, 𝑤𝑜
𝐹 and 𝑤̇𝑜

𝐹, are zero meaning that {𝐴𝐹} and {𝐴̇𝐹} are zero. Therefore, equations (51) 

and (52) become: 

{0} = [𝐴𝜔]𝐼𝐽×𝐼𝐽 {𝑞}𝐼𝐽×1 (53) 

{0} = [𝐴𝜔]𝐼𝐽×𝐼𝐽 {𝑞̇}𝐼𝐽×1 (54) 

From equations (53) and (54) it is concluded that {𝑞} = {𝑞̇} = 0 and by substituting them 

in equation (3.28), equation (3.29) is obtained. 
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