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ABSTRACT

Vibration Analysis of Thickness-Tapered Laminated Composite Square Plates Based on

Ritz Method

Babak Arab

Thickness-tapered laminated composite plates provide stiffness- and mass-tailoring design
capabilities such that they are widely used in aerospace applications including space structures. In
the present work, the free and forced vibration response of symmetric linearly-thickness-tapered
laminated composite square plates are considered with a variety of taper configurations and
boundary conditions. Since exact and closed-form solutions for the natural frequencies and mode
shapes of the plates could not be obtained from the corresponding complex partial differential
equations in space and time coordinates, the Ritz method in conjunction with the Classical
Laminated Plate Theory (CLPT) and then the First-order Shear Deformation Theory (FSDT) is
used to obtain the system’s mass and stiffness matrices for out-of-plane bending vibration. The
natural frequencies and mode shapes are determined. Afterward, the forced vibration response to
harmonic loadings of the plates are determined by using the assumed modes method using the
mass and stiffness matrices along with the corresponding natural frequencies and mode shapes
obtained from the free vibration analysis. Several distributed line loads are considered for the
forced vibration analysis of the plates with and without damping. Then, the demonstration of
solution accuracy is performed by comparing the results obtained in free and forced vibration
analysis, with the solutions available in literature and the solution based on the Finite Element
Method using ANSYS®. Moreover, hybrid (uniform thick — taper — uniform thin) laminated
composite plates are studied for the effects of taper length and taper angle on the amplitudes of the

maximum deflections of these plates.
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Chapter 1 :

Introduction

1.1 Vibration analysis

Vibration is a mechanical phenomenon in which oscillatory motions of bodies with
associated forces occur about equilibrium points. In general, vibrations are undesired as they are
responsible for wasting energy, creating noise and poor performance of mechanical, structural and
mechatronic systems. Unfortunately, they are capable of creating devastating effects on the
efficiency and/or operating lifetime of the machine components and structures. Vibration may
cause fatigue, the most common failure mechanism in mechanical structures, and in some cases
lead to catastrophic failure. Therefore, developing efficient methods for eliminating this

phenomenon has always been a major research interest.

1.2 Free vibration

Free vibration analysis is a well-known topic and a key component in the analysis of forced
vibrations. In addition, another reason behind the importance of the free vibration analysis is to
avoid resonance. Free vibration is a phenomenon in which a mechanical system is set in motion
by initial displacement and/or velocity in the absence of any external forces. In this kind of
oscillations, the total energy, and consequently, the amplitude of vibration stays the same if there
is no damping. In practice, amplitude eventually decays away to zero due to the dissipation of

energy (damping effect).

The term free vibration, also known as natural vibration, is always associated with natural
frequency, the frequency with which a free vibrating system oscillates. A system may have several
natural frequencies while the system is allowed to vibrate solely with one natural frequency at a
time. The lowest natural frequency of an oscillatory system is called fundamental frequency which
is usually the most important one in the analysis. For any natural frequency, there exists a normal
mode or mode shape, a pattern of motion in which all parts of the system move with the same

frequency.



1.3 Forced vibration

In contrast to free vibration which, once started, is left alone, forced vibration occurs when
a system is continuously driven by external stimulus. This external excitation can be a periodic
and steady-state, a transient or a random input. In general, two types of forced vibration,
deterministic and non-deterministic referred to as random, are defined. A deterministic vibration
is the one that can be characterized precisely, whereas a random vibration is merely analyzed
statistically. An example of deterministic vibration is that due to an applied load varying
sinusoidally called harmonic loading. Harmonic excitation is often encountered in engineering
systems. It is also commonly produced by the unbalance in rotating machinery. A phenomenon
called resonance occurs in a system when the frequency of dynamic periodic load and the
frequency of free vibration of the system coincide. Specifically, resonance occurs when the
frequency of the applied force coincides with one of the natural frequencies of the driven system.
In this coincidence, periodic excitation optimally transfers the energy to the system so that the
amplitude with which the system vibrates, increases gradually until the system is damaged.
Obvious examples of forced vibration include the vibration of the floor of a factory due to the

running heavy machineries or the vibration of a building during an earthquake.

14 Ritz Method

Differential equations originating from Newton’s law and governing a vibrating system are
the key components in solving a vibration problem. However, depending on the problem, solving
the governing differential equations of a mechanical system can be a complicated task or in some
cases, the exact analytical solution for the equations is not available. Due to the taper configuration
of the laminated composite plates, the coefficients of the governing partial differential equations
are expected to be functions of x (the direction of the taper) such that solving the differential
equations is quite complicated if not impossible. Therefore, numerical methods of analysis provide
the alternative methods for finding the solutions. The Ritz method referred to as classical
variational method, one of the most powerful of existing techniques for the approximate analytical
and numerical solution of functional equations, offers the alternative method to overcome the

problem and typically has been used in the literature.



Lord Rayleigh was an English Physicist, published his renowned book “Theory of Sound”
in 1877. He explained the calculation method to determine the fundamental natural frequency of a
continuous system such as strings, bars, beams, membranes and plates in his book. The principle
of Rayleigh’s method is based on assuming the mode shape and equating the maximum potential

and kinetic energies in a cycle of motion, Ref. [1].

In 1908, Walter Ritz used the principle of multiple admissible displacement functions to
determine the frequencies and mode shapes of any structural member. He demonstrated his method
by determining the natural frequency of a completely free square plate. Consequently, Rayleigh
used the same principle in his book and another publication. After a while, many researchers used

this method, some calling it the ‘Ritz method’ and others, the ‘Rayleigh-Ritz’ method, Ref. [1].

The Ritz method has gained popularity in the last few decades to accurately determine the
natural frequencies and mode shapes of vibration of continuous systems, especially if the exact
solution is not available. This method became more applicable after the discovery of digital
computer. The success of this method in a boundary value problem or in an eigenvalue problem
depends on accurately assuming the solution in the form of series of approximate displacement

functions which must satisfy the geometric boundary conditions, Ref. [1].

In the present study, the Ritz method is used to solve the eigenvalue problem of a tapered

composite plate in natural vibration investigation.

1.5 Composite materials

A composite material consists of an assemblage of two or more materials of different
natures and allows us to obtain a material of which the set of performance characteristics such as
high strength and high modulus to weight ratios, corrosion resistance, thermal properties, fatigue
life and wear resistance and increased tolerance to damage is greater than that of the components
taken separately, Refs. [2] and [3]. Fiber-reinforced composites (FRC) are lightweight materials
and provide sufficient strength for carrying loadings. Therefore, in spite of high cost, they are used
in aerospace components such as wings and fuselages. Weight reduction by use of tapered

composite laminates in helicopter blades that rotate with high angular velocity (tip velocity of 200



m/s), results in less fuel consumption, and consequently, in longer operational range for the

helicopter.

Carbon fiber is one of the most important high-performance fibers for military and
aerospace applications. High-strength carbon fiber came out of the development laboratories in
Japan, England, and the United States in the late 1960s. The initial fibers were very expensive
(more than 400 to 500 dollars per pound) which limited their applications to high-value military
aerospace and space systems. The results of early military composite development programs can
be seen today in systems fielded by each of the military services. For example, more than 350 parts
of the F-22 Raptor, accounting for 25 percent of the structural weight, are carbon-epoxy
composites. But in the early 1970s, continuous processes were developed and the cost declined
steadily over the next decade. The Air Force Materials Laboratory took the lead in U.S.
government-sponsored material development and hardware demonstration. By the late 1970s,
composite materials were used in the production of primary structures for military aircraft and
missiles. These applications were followed by selective use in commercial aircraft. For 20 years,
between 1969 and 1989, the carbon fiber industry had phenomenal technological success and
double-digit annual growth in aerospace and defense industries, with additional use in sports
equipment and some limited use in automotive and industrial applications. This growth attracted
many large international companies into the industry. The vision was that continued growth in
military and commercial aircraft use would be followed by a very large industrial market by the

year 2000, Ref. [3].

1.6 Tapered laminates

Due to outstanding mechanical properties, composite materials are widely used in industry
and they come in various shapes and structures depending on the requirements. The tapered
composite plates are popular in the aerospace industry and are used in manufacturing the structures
such as rotor blades of helicopters or aircraft wings. Thickness reduction in tapered composites
can be implemented by the termination of plies at different locations providing the tapered plate
with customized-stiffness property which is an absent capability in uniform laminates. The initial

application of tapered laminated composites dates back to mid-1980s when commercial and



military sectors demanded, elastically-customizable components with higher weight to stiffness

ratio, Refs. [4], [5] and [6].

1.7 Literature survey

In this section, a comprehensive literature survey is presented on the important studies
carried out on the free and forced vibration response of uniform and thickness-tapered laminated
composite plates, in some cases beams, and the application of the Ritz method in tapered composite
plates. Before composite material is revealed, homogeneous materials were the main subjects for
researchers to focus on, and engineers to build complex structures. When composites were
introduced, due to unique mechanical properties, a lot of studies were completed on the material.
The works that have been done on composite materials are mainly confined to uniform plates and
there has been a limited amount of literature on the vibration analysis of thickness-tapered

laminated composite plates, in spite of their applicability.

1.7.1  Free vibration

There are lots of work done on natural vibration of uniform rectangular composite beams
and plates using different approaches. In addition, some studies have been conducted on tapered

composite beams and plates. This sub-section is dedicated to a review of these works.

By using stochastic Rayleigh-Ritz approach, Venini and Mariani, Ref. [7], studied the free
vibrations of uncertain composite plates. Ganesan and Zabiholla, Ref. [8] analyzed the natural
vibration response and buckling of uniform-width and thickness-tapered composite beams made
of NCT-301 Graphite-Epoxy laminas using both conventional and advanced finite element
methods based on CLPT and FSDT. Berthelot, Ref. [2], has found the exact solutions for the free
vibrations of uniform laminated composite plates. Reddy, Ref. [9], Berthelot, Ref. [2], and Jones,
Ref. [10], have found the exact solutions for the free vibrations of uniform laminated composite
beams. Whitney, Ref. [11], analyzed the effect of boundary conditions on vibrations of uniform
unsymmetrically laminated rectangular plates. Using Ritz method, Leissa and Baharlu, Ref. [12],
developed a method for analysis of free vibration and buckling of uniform laminated composite
plates with arbitrary boundary conditions. Natural frequencies and buckling stresses of uniform

cross-ply laminated composite plates were investigated by Matsunaga, Ref. [13], considering the



effects of thickness change, shear deformation and rotary inertia. Wu and Chen, Ref. [14], by a
higher-order theory of plate deformation, determined the natural frequencies and buckling loads
of uniform laminated composite plates. Ganesan and Nabi, Ref. [15], based on FSDT, developed

a general finite element formulation to study the natural vibration of laminated composite beams.

Bert and , Ref. [16], presented an analysis on varying-thickness thin rectangular plate with
two opposite edges simply supported and general boundary conditions between the other two
edges. The boundary conditions at these two edges may be quite general. For isotropic or especially
orthotropic laminated plates, the derived solution method is capable of yielding highly accurate

results with very small computational effort.

Malekzadeh, Ref. [17], has carried out large amplitude free vibration analysis of tapered
Mindlin rectangular plates made of isotropic materials and with elastically restrained against
rotation edges using differential quadrature method (DQM), and took advantage of direct iterative
method to solve the nonlinear eigenvalue system of equations. The paper presents a parametric

study on linearly and bi-linearly varying thickness plates.

An improved Fourier series method has been presented by Zhang et al, Ref. [18], for the
free vibration analysis of the moderately thick uniform laminated composite rectangular plate with
non-uniform boundary conditions. Under the framework, the displacement and rotation functions
are generally sought, regardless of boundary conditions, in spectral form, as a double Fourier
cosine series and three supplementary functions. All the series expansion coefficients are treated
as the generalized coordinates and determined using the Ritz method. The authors claim that the
method is capable to be applied universally to a wide spectrum of plate vibration problems
involving different boundary conditions, varying material, and geometric properties while no

modification is required for the basic functions.

Houmat, Ref. [19], studied the free vibration of variable stiffness laminated
composite rectangular plates on the basis of three-dimensional elasticity theory combined with
the p-version of the finite element method. Results are obtained for frequencies, modal
displacements, and modal stresses of symmetric and anti-symmetric laminates with various
boundary conditions. The frequencies predicted by the equivalent single-layer classical plate

theory and first-order shear deformation theory show deviation from three-dimensional solutions.


https://www.sciencedirect.com/science/article/pii/S0022460X96900462#!
https://www.sciencedirect.com/science/article/pii/S0022460X96900462#!
https://www.sciencedirect.com/science/article/pii/S0020740316310669?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0263822318300850#!

1.7.2  Forced vibration

There are a lot of works done on free vibrations of plates and beams made of isotropic
material or composite. However, studies on forced vibration of uniform beams and plates,
particularly tapered ones, are remarkably less in numbers and many of them are confined to Finite

Element Analysis.

Babu et al, Ref. [20], have investigated the free and forced transverse vibration
characteristics of a tapered laminated thick composite plate due to harmonic excitation using finite
element method based on First-order Shear Deformation Theory for three types of taper
configurations considering rotary inertia effect. The study has been validated by experimental
measurements and available literature. Eftakher, Ref. [21], investigated free and forced vibration
of uniform-width thickness-tapered laminated composite beams using Ritz method by both

conventional and advanced finite element formulations.

Reddy, Ref. [9], derived an analytical solution for uniform composite plates subjected to
transverse loadings with all simply supported edges based on Classical Laminated Plate Theory.in

the method, transverse excitation is expanded in Fourier series.

Kumar Gupta et al, Ref. [22], presented analysis of forced vibrations of non-homogeneous
rectangular plate with linearly-varying thickness subjected to a uniformly distributed harmonic
lateral load based on Classical Laminated Plate Theory. The non-homogeneity of the plate material

is assumed to occur due to the linearly-changing density.

Babu ef al, Ref. [23], also investigated the dynamic properties of three different
configurations of the thickness tapered laminated composite plate with different boundary
conditions using Finite Element Method based on Classical Laminated Plate Theory (CLPT) and
studied dynamic response of free and forced vibration due to harmonic loading. Results obtained
from computations have been compared with that of literature and experimental measurements in
order to validate the study. The experimental measurements have been performed for CFFF and
CFCEF plates. The paper shows that dynamic properties of a composite plate could be tailored by
dropping the plies.



Darabi and Ganesan, Ref. [24], investigated the dynamic instability of internally-thickness-
tapered laminated composite plates subjected to harmonic in-plane loading based on non-linear
vibration analysis. They considered the non-linear von Karman strains associated with large
deflections and curvatures and examined the non-linear dynamic stability characteristics of
symmetric cross-ply laminates with different taper configurations. In the paper, a comprehensive
parametric study has been carried out to examine and compare the effects of the taper angles,
magnitudes of both tensile and compressive in-plane loads and aspect ratios of the tapered plate
including length-to-width and length-to-average-thickness ratios on the instability regions and the

parametric resonance particularly the steady-state vibrations amplitude.

Seraj and Ganesan, Ref. [25], has conducted the dynamic instability analysis of doubly-
tapered cantilever composite beams rotating with periodic rotational velocity for out-of-plane
bending (flap), in-plane bending (lag) and axial vibrations. A comprehensive parametric study has
been crried out to investigate the effects of taper configurations and various system parameters
including mean rotational velocity, hub radius, double-tapering angles and stacking sequences, on

the dynamic instability characteristics of the composite beam.

1.8 Objectives of the thesis

The dynamic response of thickness-tapered laminated composite plates is concerned within the

present thesis. The main objectives of the present study are the following:

1. To investigate the free vibration response of thickness-tapered laminated composite square
plates using the Ritz method, based on Classical Laminated Plate Theory (CLPT) and First-order
Shear Deformation Theory (FSDT) and to study the effects of taper angle, taper configuration and

boundary conditions on the fundamental frequencies of the laminates.

2. To investigate the forced vibration response of undamped and damped thickness-tapered
laminated composite square plates using assumed modes method and modal analysis approach and
to study the effects of taper angle, taper configuration and boundary conditions on the transverse

deflection amplitude of the plate.



3. To study the free and forced vibration response of laminated composite hybrid square
plates using the formulations developed for the thickness-tapered laminated composite square

plates.

1.9  Layout of the thesis

The present chapter provides a brief introduction and literature survey on free and forced

vibrations of thickness-tapered laminated composite plates.

In chapter 2, free vibration of thickness-tapered laminated composite plates using Ritz
method based on Classical Laminated Plate Theory (CLPT) and First-order Shear Deformation
Theory (FSDT) is analyzed. For demonstration, the obtained results are compared with that of
available literature and the exact solution for the uniform laminate. Then, the layer reduction test
is conducted to compare the fundamental frequency of the thickness-tapered laminated composite
plates with the corresponding uniform thick and thin ones. A parametric study on laminate length,
taper angle and laminate configurations for different boundary conditions is done and the obtained

data based on CLPT and FSDT are displayed in the tables and compared by the graphs.

In chapter 3, forced vibration of thickness-tapered laminated composite plates is
investigated based on assumed modes method and Multi Degree of Freedom System (MDOF)
model using the natural frequencies, mode shapes, and mass and stiffness matrices determined in
chapter 2. Then, the numerical results are validated using available literature as well as using the
exact closed-form solution for the uniform laminate with all edges simply supported. The layer
reduction test similar to that performed in chapter 2, is conducted on the transverse deflection of
the tapered plates. The deflections of the thickness-tapered laminated composite plates due to
applied line loads are plotted by the corresponding graphs for different taper configurations and

boundary conditions.

In chapter 4, the free vibration analysis is carried out on the laminated composite hybrid
square plates and based on that, the forced vibration response of the hybrid laminates due to

transverse excitation is investigated and the obtained results are analyzed and discussed.



Chapter 5 provides an overall conclusion of the present work and some recommendations

for the future works.
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Chapter 2 :

Free vibration analysis of tapered composite plates

2.1 Introduction

Due to outstanding mechanical properties, composite laminates are increasingly used in
industry and they come in various shapes and structures depending on the requirements. Tapered
composite plates are popular in aerospace industry, i.e. in the structures such as rotor blades of
helicopters or aircraft wings, wherein the thickness is gradually decreased towards the tip, tapered
composite plates are used. Thickness reduction in tapered composites can be implemented by
termination of plies at different locations providing the tapered plate with customized stiffness

property which is an absent capability in uniform laminates.

Classical Laminated Plate theory known as CLPT based on ‘Kirchhoff Hypothesis’ is
commonly used to model plate behavior. The ratio of the in-plane elastic modulus to the transverse
shear modulus is large for composite plates and CLPT neglecting the transverse shear deformation
is adequate for the analysis of the thin plates. However, for investigation of thick and
moderately-thick plates, CLPT is unable to output a satisfying result, therefore, more advanced
theories such as First-order Shear Deformation Theory (FSDT) developed by Reissner (1945) and
Mindlin (1951) can be used to perform the analysis. Since this theory considers the transverse

shear stresses, it is capable to produce more accurate results in comparison with CLPT.

In this chapter, free vibration analysis of tapered laminated composite plates with different
configurations and boundary conditions is considered, based on CLPT and FSDT. Since exact
closed-form solution cannot be obtained from the complex partial differential equation, the Ritz
method is used to obtain the system’s mass and stiffness matrices and then natural frequencies, for
out-of-plane bending vibration. Based on the theories, the stress and strain distributions determined
in terms of fiber and taper angles are used to calculate kinetic and strain energies. Afterward, the
natural frequencies and corresponding mode shapes are obtained by solving the eigenvalue
problem obtained using the Ritz method. Then, the obtained result is compared with that available

in literature and with Finite Element Analysis (ANSYS®) solution. A “layer reduction test” is also
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carried out for concrete validation and to observe the fundamental frequency change with the

increase in taper angle.

2.2 Taper configurations

In this section, four tapered composite laminated plate configurations are described on
which analysis is carried out throughout the thesis. Similar taper configurations are commonly
used in industry and have been studied in literature [3], [23], [34]. To provide a visual perception,

these configurations are shown in Figure 2.1.

Configuration A Configuration B

Configuration C Configuration D

A Z

X
y =

Figure 2.1 Taper configurations and the global coordinate system
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The tapered laminated square plates are considered with laminate configuration of
(0/90)4s and (0/90)5, at the left and right ends, respectively, and to be made of resin and
unidirectional NCT-301 Graphite-Epoxy material with ply thickness of 125 x 107® m. The
lengths of the laminates are dependent on the taper angle. For each taper configuration, the study
is carried out for different taper angles and boundary conditions that are introduced and explained

in further sections.

2.3 Stress and strain transformations

Transformation of coordinate systems is a common problem in mechanics of materials.
Here, the formulation for transformation of coordinate systems and the derivation corresponding
to strains and stresses are performed according to Refs. [2] and [5] as a requirement for the

vibration analysis.

The "R R 'R coordinate system is considered according to the right-hand rule. If the axis

about which rotation occurs by an arbitrary angle y is called R, then, the direction cosines for the

new (rotated) coordinate system R’ R’ "R’ with respect to the coordinate system R R +R, are:

R R ‘R
"R" | cos( R, R")=cos(y) cos(R, R")=0 cos( R, "R') = —sin (y)
R' | cos( R, R')=0 cos(R, R")=1 cos('R, R')=0
"R | cos( "R, "R") = sin (y) cos(R, 'R") =0 cos( 'R, "R") = cos(y)

Table 2.1 Direction cosines for rotation about axis R

The Figure 2.2 shows the rotation of coordinate system R R "R about axis R by an

arbitrary angle y and the new (rotated) coordinate system R’ R’ 'R’

13



R. R

Figure 2.2 Rotation of a coordinate system about an axis

Consider an arbitrary layer k from the tapered configurations shown by Figure 2.1. The
local coordinate system x''y"'z"" is assumed on the layer k, with x"’ axis directed along the fiber
orientation and z"’ perpendicular to the surface of the layer as shown in Figure 2.3. By taper angle
@, the global coordinate system xyz is rotated counterclockwise about the y axis to establish the

coordinate system x'y'z', and in turn, x'y'z' is rotated by fiber orientation angle 0
Y y y Y g k
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counterclockwise, about the z' axis, to correspond to local coordinate system x''y"’z". Figure 2.3

illustrates the coordinate systems xyz, x'y'z" and x"y''z".

Figure 2.3 Global and local coordinate systems

Transformation of stresses from the xyz coordinate system to the x'y'z’ coordinate system

is performed using transformation matrix [T(,(p]. In addition to [Ta(p], this explanation corresponds
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to strain transformation matrix [Tg(p] in the same way. In equations (2.1) and (2.2), the stresses and

strains in the xyz and x'y'z’ coordinate systems are connected using transformation matrices [Tmp]

and [Tg(p].
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In equations (2.1) and (2.2), the elements within the transformation matrices are direction
cosines for the coordinate systems xyz and x'y'z’ given by Table 2.2. Depending on the axis about

which rotation occurs, direction cosines are set according to Table 2.1.

X y z
x I, = cos(p) l, =0 l3 = —sin (¢)
y' m; =0 m, =1 mz =20
z' ny = sin (@) n, =0 nz = cos(¢)

Table 2.2 Direction cosines corresponding to taper angle @

The equations (2.1) and (2.2) are expressed in compact form.

{o'} = [Ty {0} (2.3)

{e'} = [Tep|{e} (2.4)

The direction cosines in terms of 6, are expressed in a similar manner between the x'y'z’

and x"'y"'z"" coordinate systems and the corresponding transformation matrices are written.

(2.5)

(2.6)

In the local coordinate system x''y''z", the stiffness [C''] and compliance [S''] matrices
of a unidirectional ply considered as a transversely-isotropic material, according to Ref. [2], are

expressed. It is noted that [C"'] = [S"']L.
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C11 Ciy Ciy 0 0 0
C17 Ca Ca3 0 0 0
cl, co cy 0 0 0
[c"] = oo (2.7)
0 0 0 2 23 ) 0
2
0 0 0 0 cl 0
0 0 0 0 0 cl |
S11 S12 Si2 0 0 07
S s si 0 0 0
Sl si s 0 0 0
[S"] = (2.8
0 0 0 2[S5,—-S5%] 0 0
0 0 0 0 YA 0
0 0 0 0 0 YA

Considering equations (2.7) and (2.8), according to Ref. [2], the elements within the

transformation matrices are as follows.
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=1 ., (2.9)

12 = (lel II/E II) (2.10)
S = 1

22 = "/, (2.11)

523 = (Uyu H/Eyn) (2.12)

S56 = /G 1 2.13)

Within a coordinate system, the strains and stresses are connected by the stiffness or
compliance matrices in the stress-strain equation. For the xyz and x"'y"'z"" coordinate systems the

stress-strain relations are expressed.

{o} = [Cl{e} (2.14)
{O'”} — [C”]{S”} (2.15)

In local coordinate system x’'y"'z" when fibers of the k™ layer are oriented along the x"’
axis, the layer, according to Ref. [2] with fine approximation, is assumed as a transversely-
isotropic material with stiffness [C"'] and compliance [S''] matrices described by equation (2.7)
and (2.8), respectively. In the global coordinate system xyz, the stiffness matrix [C] of the layer k
with the fibers unparallel to the x axis is obtained in terms of [C"'] and angles ¢ and 6,, using the

equations (2.3) to (2.6) as well as equations (2.14) and (2.15).

Cl = [Top] ' [Tre] 2 [C"1[Tep][Tep] (2.16)

In equation (2.16), the stiffness matrix [C] in the global coordinate system is calculated in
terms of angles ¢ and ) as well as [C"'], which is the stiffness matrix in local coordinate system

x"y"z" containing the mechanical properties of the transversely-isotropic material

(NCT-301 Graphite-Epoxy) ply k.
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Mechanical properties of the unidirectional ply made of NCT-301 Graphite-Epoxy
(considered as the transversely-isotropic material) and resin (the isotropic material) obtained

experimentally, are given by Ref. [26].

Mechanical Properties of Unidirectional NCT-301 Graphite-Epoxy Ply

E, = 113.9 GPa Gy, = 3.137 GPa v,, = 0.288

pp = 1480 kg/m?>

E, = 7.985 GPa G,3 = 2.852 GPa v,y = 0.018

Mechanical Properties of Epoxy Resin

E = 3.93 GPa G = 1.034 GPa v =0.37 py = 1000 kg/m3

Table 2.3 Mechanical properties of NCT-301 Graphite-Epoxy ply and resin [26]

The subscripts 1, 2 and 3 in Table 2.3 correspond to x"’, y'" and z", respectively, in local

., mn._r

coordinate system x"'y"'z".

24 CLPT and FSDT

Natural frequencies of the tapered plates are obtained using the Ritz method based on
Classical Laminated Plate Theory (CLPT) and First-order Shear Deformation Theory (FSDT). In
order to apply the Ritz method and to determine the natural frequencies, the stiffness and mass
matrices are obtained from the calculation of displacements, strains and stresses expressed based

on CLPT and FSDT.

Displacements based on FSDT are written as follows according to Ref. [2].

0y, z,t) = u(x,y,t) + o (x,y,t)z (2.17)
0y, z,t) = (Y, ) + o, (x,y, )z (2.18)
Wy, z,t) = wy(x,y,t) (2.19)
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where, ,u, v and _w are displacements in x, y and z directions, respectively and _u,, .,
and _w, are displacements of the point of the transverse normal on the midplane (z = 0). ¢, and
@y, are rotations of the transverse normal at the midplane and left subscript F stands for FSDT.
Considering the pure bending condition, ( fUo = Vo = 0) from equations (2.17) to (2.19), it is

expressed that:

U=z (2.20)
U=z (2.21)
W= W, (2.22)

Equations (2.20) to (2.22) are for displacements based on FSDT formulation considering

the pure bending condition. Strains are directly obtained from equations (2.20) to (2.22) as follows.

LEx = aa;u = aa(’;" z (2.23)
P&y = aa;v = aa%z (2.24)
P ¥y a(aFyu) a(aicv) - (aa(izx aa?) (2.23)
PYyz = a(aFZv) + a(awa) =@, + 6(5—;%) (2.26)
o Vaz = a(aFZ v + a(aF:V) =, + % (2.27)

Equations (2.23) to (2.27) are for strains based on FSDT formulation considering the pure
bending condition. In a similar manner, displacements are written based on CLPT and the strains
are derived. Since CLPT neglects the transverse shear strains y,, = y,,, = 0, considering the pure
bending condition, strain equations (2.23) to (2.27) and displacement equations (2.20) to (2.22)
for CLPT are simplified as follows.
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: 0 Wo (2.28)

u=-—-—-2
(o)
c,_ _9 Wo (2.29)
dy
‘w= ‘w, (2.30)
2 (o)
c. _ 0 (Two), (2.31)
Ex = axz Z
0%( ‘w )
C (0]
&y ==y 7 (2.32)
0%( ‘w )
¢ __ 0 2.33
Yay 2 3%0y z (2.33)

Equations (2.28) - (2.33) are for displacements and strains based on CLPT formulation
considering the pure bending condition and left superscript C stands for CLPT. In order to facilitate
the calculations of strain and kinetic energies, equations (2.20) to (2.27) based on FSDT and

equations (2.28) to (2.33) based on CLPT, are written in the form of multiplication of matrices

using the joint matrix { ;S} Equations (2.34) to (2.38) represent these matrices in a detailed form.

Cc
[ Z”]3><12 -

-z 0 0 O (2.34)

0 0 0 0 13497

Cc
["Z],,,=| 0 0o o0 o o o0 0 0 0 0 2z 0 (2.35)
L0 0 0 0 0 0 0 0 0 0 0 2z gy,

[+Zul,,,=| 0 0 0 z o 0o o 0o 0 0o 0 o (2.36)
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O z 0 0 O O O O O O 0 0]
o o 0o 0 0 z 0 O O 0 o0 O
[¢Z)..,=| 0 0 z 0 z 0 0 0o 0 0 0 O (2.37)
o o o 1. 0 0 O O 1 0 o0 O
1 0 0 0 0 O O 1 0 0 0 05412
c
{FS}12><1 B
[C 6§‘px 6ﬁ‘px c 6§¢y ai‘»"y € 6§Wo aEWo _aZEWo _aZEWo _ aZEWoT
rPx Tox oy P Tox ay F°  ox ay dx? dy? dxdy
(2.38)

The left subscript F and left superscript C indicate the FSDT-based and CLPT-based

formulations. In relations similar to equation (2.38) which is written for FSDT and CLPT at the

same time in combined form, the left subscript F and left superscript C are simultaneously present

for all the corresponding notations meaning that for CLPT-based calculations, only the notation

with left superscript C, and for FSDT-based calculations, only the notation with the left subscript

F is considered. When notations are used specifically for either CLPT or FSDT, only the

corresponding letter is used. It is noted that in CLPT-based formulation “@, and “¢,, are considered

zero for { Cs} so that instead of _ ¢, and _ ¢,, notations ¢, and ¢, are considered in the present

thesis. Equations (2.20) to (2.33) are expressed in closed matrix form using equations (2.34) to

(2.38).
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¢ _|c c c T ¢ _|¢ c c T _
where, { u}3x1 =|U ‘v ‘w,]|", { e}3x1 =" &  Vayl', {Fu}B><1 =
lFu FV eWo|T and { F£}5X1 = |Fé&x FE€y FYxy FYyz FYxz|T. Equations (2.39) to (2.42)

are written in the following form.
{rul=[;z]{;s} (2.43)

{re}=1;2]1{;s} (2.44)

The explanation given for {;s} in equation (2.38), also corresponds to notations [EZu]

and [;Z 8] used in equations (2.43) and (2.44) respectively. [ﬁZu] and [ﬁZ 8] are used in further

sections for the computation of strain and kinetic energies.

The elements of stiffness matrix are calculated by substituting engineering constants from

Table 2.3 into equation (2.16). Then, using stress-strain relationship the stresses are determined.

(Ux] [C11 Ciz Ciz Gy Cis Cyg (Ex\

Oy Ciz Gy (3 Cuy Gy Coe| | &y |

Oz |Gz Gz G353 Cau G35 Cse &z

Tyz [ |Cia Caa C3q Caq Cus Cug Vyz (2.45)
Txz Cis Cps (35 C4s Css Csg| |[Vrz

Tay/ o LCig Cae C36 Cas Cse Cee—k Yay/

In CLPT and FSDT, the out-of-plane normal stress is assumed to be small and negligible
compared to other stress components. In addition, CLPT implements further assumptions and
neglects the out-of-plane shears. By imposing these assumptions, the reduced stiffness matrix is
computed and substituted in stress-strain equation (2.45). Calculation by which the reduced
stiffness matrix is derived is available in Ref. [5] as well as in Appendix A.1 in compact form.

Reduced stiffness matrix in CLPT-based formulation is expressed as:

Ox 1011 Q12 Qi6] °(Ex
{ay } = [Qu Q22 Qze] {ey } (2.46)
Q16 Q26 Uss

c
Txy Vxy

Equation (2.46) is written in compact form.
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("o}, ="l {%e) (2.47)

Reduced stiffness matrix in FSDT-based formulation is expressed as:

Oy Q11 01z Q16 Qs Q15 Ex
gy Q2 Q22 Q26 Q24 Q35 €y
Txy p = Qi6 Q26 Qo6 Qa6 s Yxy (2.48)

Tyz E(Qm Q24 Qa6 Qas Q45) Vyz
Fl6 Qs Q25 Qss Cas Q55J

F )/XZ

Equation (2.48) is written in compact form.

{rot =10l sk, (2.49)

Equations (2.47) and (2.49) are expressed in the following form.

{(ro}=1:r0l{re} (2.50)

Since resin is an isotropic material, there is no need for the calculation corresponding to
transformation of coordinate systems. The stiffness matrix for resin is identical in xyz, x'y'z" and
x"'y"z" coordinate systems and independent of angles ¢ and 6. Therefore, the reduced stiffness
matrix based on CLPT and FSDT are obtained from the 6-by-6 material stiffness matrix using the
same calculation performed for the plies (Appendix A.l), and the corresponding engineering

constants are available in Table 2.3.

Displacements, strains and stresses, represented by equations (2.43), (2.44) and (2.50),
respectively, are essential components in energy calculation in the next section. Functions w,, ¢,
and ¢, introduced in displacement equations (2.17) to (2.19), are expressed in the form of series,

as part of the Rayleigh-Ritz formulation.

For the CLPT-based formulation, the transverse displacement w,, is written in the form of

series as follows.
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I
Wy = D) A X0 % () (251

For the FSDT-based formulation, the transverse displacement w,, and functions ¢, and ¢,,,

the rotations of the transverse normal at the midplane about axes x and y respectively, are written

in the form of series as follows.

1 ]
Wy = z Z HED el (2.52)
j=1

i=1j

~

I
Oy = Z z AT X PPy (2.53)
i=1

=

1 7]
:ZZ A% Py (2.54)
=1 =1

The functions X; and Y} are admissible functions determined by considering the geometric
boundary conditions of the plate. For different boundary conditions considered in the present

study, the corresponding admissible functions are presented in a later section.
2.5 Strain and Kinetic energies

2.5.1 Derivations

The stresses and strains are key components for strain energy calculation and the density
of the material is the essential factor in kinetic energy computation. Comparing to CLPT, in the

calculation of strain energy based on FSDT, two extra terms corresponding to out-of-plane shears

are taken into account. Notations U and <U correspond to strain energy based on CLPT and

FSDT, respectively, and the same explanation corresponds to kinetic energy “T and ol
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1
‘U= E,f,ff(ch oy + &y €0y + Yyy Tyy) AV (2.55)

1
U= E,ﬂ:f (Fé‘x FOx t p€y FOy + pYxy Flxy T FVyz Flyz + FVxz Fsz) dv (2.56)

Writing equations (2.55) and (2.56) in matrix form:

Cuzéﬂf{ca}T{ce}dv (2.57)
FU=%H {,o) {,e}av (2.58)

Equations (2.57) and (2.58) are expressed as follows.

§U=%fff{§a}T{gs}dV (2.59

Substituting equation (2.50) in equation (2.59):

f,Uz%fff([ﬁQ]{ﬁe})T{ie}dV (2.60)

The kinetic energy of a laminate T = %wz [ff p(w? + v2 + w2)dV (u, v and w, are

displacement functions in x, y and z directions respectively) is considered according to Ref. [2]
and is expressed in matrix form in a similar manner performed for the strain energy for CLPT and

FSDT.

IiT = %wz fff p{gu}T{iu}dV (2.61)

Matrix form is superior in terms of computational efficiency and reduces any possibility of

computational errors. For CLPT and FSDT, derivatives of kinetic and strain energies are calculated

at the same time in matrix form considering notation Eﬁ =d EU / 0A,, and ch" =0 iT / 0Amn,
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where A,,,,, can be any one of the parameters of the series given by equations (2.51) to (2.54). The

same explanation corresponds to matrices {gﬁ}, {ié} and {§§} Considering equations (2.60)

and (2.61):

=5[] (Fel(ze) (e} + (Lol (ze]) {Fe)av 2.6
r=go [[[o({ia) (P + () {F)) v (269

O

Equations (2.62) and (2.63) are written as follows.

T

[ﬁQ]{i€}+({ﬁf}T[ﬁQ]{ﬁe}) dv (2.64)
i1 = g0 [ o (o () (G (1) )av 269

The terms {ié}T[ﬁQ ]{ﬁe} and {EQ}T{ iu} on the right-hand sides of equations (2.64)

and (2.65) are scalars as they follow scalar values of IC, U and ch, on the left-hand sides. In addition,

this note is also realized from the size of the matrices. Therefore, considering that terms
c e c A Tec 1 h i I hei di
{Fs} [FQ ]{Fs} an {Fu} {Fu} are scalars, they are equal in value to their corresponding

transpose.

{ié}T[iQ]{ﬁf} = ({ﬁé}T[ﬁQ]{ﬁeDT (2.66)
{Eﬁ}T{gu} = ({ﬁﬁ}T{iuDT (2.67)

Equations (2.66) and (2.67) are substituted in equations (2.64) and (2.65), respectively.
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‘0= ﬂf{ﬁé}T[ﬁQ]{ﬁe}dV (2.68)
‘7 = w? fﬂ p{lfa}T{ﬁu}dV (2.69)

Equations (2.44) and (2.43) are substituted in equations (2.68) and (2.69) , respectively.

co = [[[ (Gza{ss)) [Fe1 (152l fs)) av .70
°T = w? ﬂfp([ﬁzu]{ﬁst})T [+ 2){;s}av 2.71)

Equations (2.70) and (2.71) are written as follows.

o= [z} (2T Trelliz]) {Fs)av @7
7 = w? fff{ﬁs}T (ol£z.] [[2)){ s}av 2.73)

Integrating through the laminate thickness h(x), matrices containing functions of z are
taken into account within the integral so that matrices [gZ g] and [iZu], Q;j as well as scalar p

participate in the integration as the integrands.

h(x)

0= ff{ﬁs}T <f_hix) €z [Se][¢2] dz){,fs}cm (2.74)
‘P = H{ES}T <w2 J_ﬁp[ﬁzuf[ﬁzu] dz){ﬁs}dA (2.75)

Using notations, [ﬁZ_ g] and [iZ_u], equations (2.74) and (2.75) are rewritten.
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f f }dA (2.76)
f f I Z){ ;s}aa (2.77)

h(x)
_ 2 T
AR IR AN RALE @78
T2
h(x)
_ 2 T
(2= | . plez] [;2.] dz (2.79)
T2

Considering equations (2.76) to (2.79), the derivations are expressed in the following form.

‘E,, =ﬂ{§§}T[§Zg_u {s}as (2.80)

where, [ F Su] represents term [ Z ] or [ u] and term E o represents ;ﬁ or ;’IA"
when equation (2.80) is considered for derivatives of strain or kinetic energies, respectively. After
computation of matrices [ ‘z g] and [ CZu], derivatives of kinetic and strain energies with respect
to parameters AX>° AP* and A(py for FSDT, and 4,, W" for CLPT, are obtained using equation

mn >
(2.80).
2.5.2 Matrices [Z,] and [Z,,]

Any nonzero elements of [Z, ] and [Z,, ], are denoted by R " and R (n), respectively, where
n = 1,2, 3. The matrix [Z <] contains the elements of extensional stlffness R 2), bending-extension

coupling R S) and bending stiffness R S)

16

c m _ 2 ¢ n-1

FRU' - _h(x) FQijZ dz (28D
2
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h(x)

S COR 2 n-1

R = f_ hG) pz dz 2.82)
2

Since the taper configurations described within the framework of the present study are

e c._m c ()
symmetric, it is argued that for even values of n, R g and _R " are zero and for odd values:

ko/2 - ko/2 e 2
c m _ e I a1, c Ik (Z k
Ry =2 f PQ 2" dz=2 ) Qy (— (2.83)
k=1 "Zp k=1 Z(1g)
ko/2 ko/2
Z(u,,) n Z(uk)
o)) L LI k] (Z
R =2 E f p zvldz=2 E p (—) (2.84)
n
k=1 "2y k=1 Z(lp

Terms z(,, and z(;, represent the upper and lower surfaces of k™ layer. k, is the number

of layers at the left end of the tapered configurations described by Figure 2.1. Completing the

mathematical operations, equations (2.83) and (2.84) are written as follows.

ko/2
2
c . (n) _ 4 c _ [k] n . n
PR _nz P Qi (Z(uk) Z(zk>) (283
k=1
ko/2
Cp™ =EZ (e —2m ) (2.86)
F n k_lp w0~ 2

2.6 Stiffness and mass matrices

By substituting equations (2.85) and (2.86) in equation (2.80), the derivatives of strain and

C.
kinetic energies with respect to parameters AL, A%* and A;’;lfl for FSDT, and 4,,,° for CLPT,
are obtained. The final results are presented here in the open form and the corresponding

mathematical operations are available in Appendix A.2.
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c

It is noted that for CLPT-based formulation ‘T"° =9 U /aAmn, 7 ivel =

ol = 9,U/0AFY, T =09,U/04%%,

mn > F

0 T/ 04, W" and for FSDT-based formulation

F

= 0,U/04%, 7" =0,1/04™ 7Y =0,T/04%% and 7' = 0,7/04%,

m‘l’l’F

[wﬂ

U

F

For CLPT-based formulation:

L L
f RE X, Wo X ™o dx f v, v, o dy
0 0
L

L
+ f R Ko X Mo dx j RO A
0 0

1]
L L
cpywol _ ZZ +f Rg)X Wo y¢ Wodxj on W"dy Ai}'v" (2.87)
. 0

0
L L

+ f R K o x Vo dx j RO ALY
0 0

L L
4 f RO X% Mo iy f Vevoy ™o dy
0 0

Ca [wol ! d x=L c c y=L c c
7 Wo Wo vy Wo 7 Woyr Wo ‘wo
7wl _ “’ZZZ + f RPXMox o dx f VoweyWody | a7 (2.88)
i=1 j=1 x=0 y=0
=L [ [ y=L [
Wo Wo Wo vy, Wo
+ f RWX o x Mo dx f Y,y e dy
x=0 y=0

1
[wo Wo Wo CWo CWo ¢ o)
- “’ZZZ < J R<1)X X, "°dx f Y, dy) A (2.89)

For FSDT-based formulation:
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5 1]
= [wol
Ry

ﬁ [ox]

=

o .
( f REDXEY X" dx f vivoy e dy
0 0

L L
\+ f R XD XFY° dx f vEvov e dy
0 0

ij

L L
+< f REDXI X dx f Y,fw"Yj"”‘dy> A%
0 0

L
+ ( f REYXEOX P dx f
s 0

0

t

5 (L L
(1) yox yPx PxyPx
8_]; Re X X; dxfOYn Y™ dy +

L L
f RPRE* X dx J vy Pedy IAg;.x
0 0

|
|
L L . .
\+ j RO XPxX*dx J A AST: /
0 0

i

L L
( [ RZxExP ax [ veiay
+ 0 0 Py

L L
t f REOXL X dx f 7oy dy
0 0

r 5 L L ' .
g( fo RDX DY X dx fo nylg.FWOdy)AiF]%

Px

L L
JRS)Xinfpxde nyYj(p"dy
+] 7 0
L ) L ) ij
ROy xPxdx f ASSALT Y
0
5
6

+
L L

f RVX? x ¥ dx f 7Y dy +
0 0

L L
+ f REX2 X% dx f vvPdy | Al
0 0
@ g0y oy [C L ey0
+LR66meXiydxj; Y, Y dy
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L
Yy Yj"’ydy> A%

5 L . L .
g( f RDXEx X dx f Y,i”W].FWOdy> AR+
0 0

(2.90)

2.91)

(2.92)



1]
L L
FT wol _ w2 Z Z [f R(l)Xrl:lWOXiFwode Y{WOYJ,FWOdyl AZW"dA (2.93)
i=1j=1"0 0
rJ . L 1
7 = wzzz f R XPxx P x f Yy<vPdy|AfrdA (2.94)
i=1 =10 0 :
I ] L L y
i wzzz f ROXL X dx f v,7v! dy| ALY dA (2.95)
i=1j=1""0 0 :
If rotatory inertia is neglected, then T ol _ 7' = 0 and equation (2.93) becomes:
F F q

! L L
= [wol o o o 4 0
T = w? E E l fo RWXEYo XY dx J A A dyl A dA (2.96)
0

i=1j=1

It is noted that the fiber orientation of all the layers within the tapered plates are 0° or 90°
meaning that in-plane normals and shears are decoupled. Therefore, in equations (2.90) to (2.92)
as well as in equation (2.87), those terms originating from normal-shear coupling within the
reduced stiffness matrices, such as Q¢ and Q¢ in reduced stiffness matrix for CLPT, have been

eliminated.

2.7  Rayleigh-Ritz formulation

Considering ‘0™ in equation (2.87) for fixed values of m and n, the indexes i and j are

counted up to the upper bound of the summations I and J. Therefore, there are [ X ] number of

terms that are written in the form of a row matrix multiplied by a column matrix { CA} containing

I X ] number of parameters, AiC;V". By repeating the operation for all possible values of m and n,

there are produced I X J number of row matrices written one beneath the next one forming a matrix

with size of I X J by I X J.
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This I X J by I X J matrix produced from ‘0™ is called as the stiffness matrix and is
denoted by [CK ] In a similar manner for ‘T [WO], a matrix with the same size is formed and is

called as the mass matrix denoted by [ ‘M ]

For the case of FSDT, instead of one, there exist three parameters, that are Af}”", A;’;" and

= [wol
AZ”J?, for O™,

75 lox] 5 [‘Py] . . C.
- U 7and U as presented in equations (2.90) to (2.92). Writing the row

F

matrices for all the three as before, they are three times greater in number and are multiplied by

the column matrix { FA} with size of 3/ X J by 1 containing elements of Af]w", A;-pj" and A;pjy .

Writing for all possible values of m and n, for U ol - ' and FU 42 there are produced

F > F
31 X ] number of row matrices with size of 1 by 3/ X J written one beneath the next one forming
a matrix with size of 31 X J by 31 X J. As a result, the number of elements that exist within mass
([ M ]) and stiffness ([ K ]) matrices is nine times greater than their equivalents in CLPT-based

formulation.

[w

Considering ‘g™ = “p™in CLPT-based formulation, it is expressed that:

Cc Cc Cc Cc
[ K]UXU{ A}le:wz[ M]I]XI]{ A}le (2'97)

For the FSDT-based formulation:

7 [wol 2 [wol
o =T (2.98)
7y loxl _ 4 loxl 2.99
FU - FT (299
~loyl Aoyl 2.100
0= 7 (2.100)

Writing equations (2.98) to (2.100) in matrix form:
— 2
[ F K]31]x31]{ FA}31]><1 —w [ F M]3I]><3I]{ FA}31]><1 (2.101)
Equations (2.97) and (2.101), result in:
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([sK] - w?[ MD){;4} =0 (2.102)

Terms {CA} and { FA} for CLPT-based and FSDT-based formulation, have been written

in the combined form of { }C,A} and the same explanation corresponds to [EK ] and [ § M ] In order

to obtain the non-trivial solution:

det([ K] - w?[sM]) =0 (2.103)

By solving the eigenvalue problem in which w? and the column matrix {EA} are

eigenvalues and eigenvectors, respectively, the natural frequencies and mode shapes are
determined. The square root of the smallest eigenvalue is the fundamental frequency and the mode
shapes are obtained by substituting the eigenvectors in transverse displacement equations (2.51)

and (2.52).

In the case of FSDT, when rotatory inertia from which term R emerges in equation

(2.88), is neglected, equations (2.98) to (2.100) become:

= [wol = [wol
gt = 7 (2.104)
0 =0 (2.105)
g _ o (2.106)

F

In this case, mass matrix is no longer invertible. Considering equations (2.90) to (2.92) in

matrix form as well as equations (2.104) to (2.106), it is written that:

75 [wol
U = [@x Vol yxij{A%*} + [@yFWO]IJXI]{A(py} + [wo o] yxp {AFY} (2.107)
= [ox]
7 = Loy (AP + 0y 2] AP} + o] AP (2.108)
o loy]
U7 = [0 11 (A9} + [0397] 1, CA®?} + [Wo P11 AP0} (2.109)
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From equations (2.108) and (2.109), the column matrices {A®~} and {A?} are obtained in
terms of {AF"°} and by substituting them in equation (2.107), the following relation is obtained

(Appendix A.3).

[FU [WO]] = [FI?] l]xl]{AFWO}UX1 (2.110)
where,
[-K] =
(2.111)
[WOFWO] - [(pxpwo][(px(px]_l[wo(px] + ([(pyFWO] - [‘pxFWO][(px(px]_l[(py(px])[Str]
iser] = [[0y%] - [0 2101 [0, 1] [[ox?1[px?1 w1 = wo?]]  2.112)

Then, the eigenvalue problem can be established and by solving it the solution is obtained.

2.8  Boundary conditions

The natural frequencies are obtained for the tapered composite plates for different
boundary conditions. For CLPT and FSDT, in equations (2.51) to (2.54), admissible functions
Xi(x) and Y;(y) of the series are selected in a manner that satisfies the geometric boundary
conditions. In this section, the following geometric boundary conditions and the corresponding
functions considered for the study are introduced for Classical Laminated Plate Theory (CLPT)
and First-order Shear Deformation Theory (FSDT). It is noted that CCFF boundary condition is
only considered for CLPT.

1. All edges simply supported (SSSS)
2. All edges clamped (CCCC)

3. Clamped at two adjacent edges with other two free (CCFF). The clamped edges correspond
to x = 0 and y = 0 lines and free edges correspond to x = L and y = L lines. It is noted that the

x = 0 and x = L lines correspond to the thick and thin sides of the tapered laminates, respectively.
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The SSSS, CCCC and CCFF boundary conditions are given in Table 2.4 and the
corresponding admissible functions are given in Tables 2.5 - 2.7 using Refs. [2], [5], [27] and [28].

y
S
All edges simply supported (SSSS) . .
1 S X
x=0 y=0
—w,=0 and M, =0 —w, =0 and M, =0
x=1L y=1L
y
=
All edges clamped (CCCC) . .
2 C x
x=0 ow, y=0 ow,
— w, =0 and 5 =0 — w, =0 and 5 =0
x=1L x y=L Y
y
Clamped at two adjacent edges with other two free i
(CCFF) C F
3. c x
d?w, d3w, B d*w, d3w,
x=L—>dx2=Oand dx3=0 y—L—>d2—Oand e 0

Table 2.4 Boundary conditions for the plates
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N——

AR
—

N—

N—

bW
Pt

4.730 040 744 863

7.853 204 624 096

10.995 607 838 002

14.137 165 491 258

0.982 502 214 576

1.000 777 311 907

0.999 966 450 125

1.000 001 449 898

i=5

i=6

i=7

i=8

17.278 759 657 400

20.420 352 245 626

23.561 944902 040

26.703 537 555 508

0.999 999 937 344

1.000 000 002 708

0.999 999 999 883

Table 2.6 Appropriate series for CCCC
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1.875104 068 712

4.694 0911 329 742

7.854 757 438 238

10.995 540 734 875

0.734 095513 759

1.018 467 318 759

0.999 224 496 517

1.000 033 553 252

i=5

i=6

i=7

=8

14.137 168 391 046

17.278 759 532 088

20.420 352251 041

23.561944 901 806

0.999 998 550 109

1.000 000 0626 556

0.999 999 997 292

1.000 000 000 117

Table 2.7 Appropriate series for CCFF

Imposing the boundary conditions of CCCC and CCFF given in Table 2.4 on the
corresponding admissible functions given in Table 2.6 for CCCC and Table 2.7 for CCFF, results
in equations (2.113) and (2.114) for CCCC and equations (2.115) and (2.116) for CCFF. By
solving equations (2.113) to (2.116), 4; and y; are determined and have been given in Ref. [2], up
to i = 4. In Table 2.6 for CCCC and Table 2.7 for CCFF, A; and y; have been given up to i = 8.
Since 4; and y; are passed into hyperbolic functions, in order to obtain sufficiently accurate results,
several decimal places are considered and given in Table 2.6 and Table 2.7. In the present study,
for equations (2.51) to (2.54), I and ] are increased to 13 in order to obtain sufficient number of
natural frequencies required in the next chapter. Therefore, A; and y; are obtained up to i = 13 by

solving equations (2.113) and (2.114) for CCCC and equations (2.115) and (2.116) for CCFF.

For the CCCC boundary condition:

cos(4;) cosh(4;) =1 (2.113)

_cos(4;) — cosh(4;)
Vi= sin(4;) — sinh(4;)

(2.114)
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For CCFF boundary condition:

cos(4;) cosh(4;) = —1 (2.115)

B cos(4;) + cosh(4;)
Y= 5in(a,) + sinh(4,)

(2.116)

Considering the hyperbolic functions in CCCC and CCFF, high accuracy of A; and y; are required
depending on the integer values I and J considered in equations (2.50) and (2.51). The higher

integer values of I and J require more accuracy in values obtained for A; and y;.

2.9 Software limitation

In this study, the calculations are performed in MATLAB®. To the knowledge and
experience of the present author, the software is designed with high capability in numerical
computations according to predetermined aims. However, the software is not capable in
mathematical and symbolic calculations as it is in numerical calculations. Therefore,
computationally complex integrals, combination of hyperbolic, polynomial (coming from bending
stiffness elements) and trigonometric functions which are present as the integrands in
equations (2.87) to (2.96), cannot be passed into the software. Therefore, in order to cope up with
this problem, one may use a software such as MAPLE® for symbolic computations besides.

Nevertheless, the solution of the integrals when solved is extensive and is still difficult to apply.

In the present thesis, this symbolic calculation problem is solved by converting the
integrands including hyperbolic, polynomial and trigonometric functions into respective
fully-polynomial functions using Taylor series. Fully-polynomial functions are simple for the
software (MATLAB®) to process. By this approach, no other software is needed while the result
is obtained without complications in a few seconds (i.e. for [ = | = 7). It is noted that the order of
the Taylor series is increased to 200 or 250 when the fluctuation of the original function is severe
(for smaller laminate lengths) and the order of 160 or even in some cases 110, is sufficient for less

fluctuating functions.
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2.10 Validation

Experimental measurement is a reliable way of validation. However, the related test
facilities and financial support are required. In addition, considering the symmetric configuration
of the tapered laminates in the present thesis, the production of the symmetric tapered plates is
complicated and expensive. Therefore, for demonstration, the formulation developed in the present
chapter is applied to a uniform laminated composite plate and the obtained numerical result for
fundamental frequency of the uniform plate is compared with that of the exact solution. In addition,
since various software packages are commonly used in numerous literature for validation purposes,
the obtained results using the Ritz method for the tapered configurations are compared with that

of the FEM obtained using ANSYS®. Furthermore, the layer reduction test is carried out.

2.10.1 Uniform composite plate

By solving the eigenvalue problem given by equation (2.103) for taper configurations
considering admissible functions selected based on boundary conditions, free vibration analysis
for the tapered plates is completed. For demonstration, the developed formulation has been applied
to a uniform laminate using data given in Ref. [29] and the numerical results were in agreement

with that of the article.

In addition, the exact solution available for natural frequencies of the uniform laminates

with all simply supported edges, is used for comparison in the example below.

Example: Obtain the fundamental frequency of a square plate with side length of 0.35 m
and configuration of (0/90);5 made of unidirectional NCT-301 Graphite-Epoxy material
(mechanical properties were given in Table 2.3) with ply thickness of 125 X 107® m, simply
supported at all edges.

Solution: For a uniform laminate, the condition of pure bending simplifies the equilibrium

equations leading to the following equation of motion derived from Ref. [2].

a4(cW ) a4(cw ) a4(cw )
®3) o 3) ®3) o 3) 0
lRll W+2(R12 +2R66)W+R22 a—y‘} —f(x,y,t) (2.117)
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Term f(x,y,t) is the transverse loading applied onto the laminate which is set to zero for

the free vibration analysis.

Rr® 0*(“wo)

64(CW0) R(3) 64(CW0)
11 Ox%

0x20y?2 22 gyt
52(6W0)+52(CW0)
0x? dy?

+2(RE) +2R%Y))
(2.118)

= —RW €y, + R® (

Equation (2.118) has been solved in Refs. [2] and [9] and the solution for natural

frequencies for a uniform square plate that is simply supported at all edges is:

w2 | 1
— (3); (3) 3)\;2; (3)
a)ij —L—Z W( 11 l4+2(R12 +2R66 )12]2+R22]4) (2119)

In order to obtain the fundamental frequency, the values i and j are set to 1.

n? |1
_ (3) (3) 3) 3)
i =17 [p (R +2(R + 2R7) + R)) (2.120)

Considering equation (2.120), the value obtained for the fundamental frequency is

339 rad/s which is the same as the one calculated in the present work using the Ritz method.

2.10.2 Solution using Finite Element Method (FEM)

Numerical results from calculations worked out by using the Ritz method in the present
chapter, are compared with that of the FEM obtained using ANSYS® for the tapered laminated
composite square plates [30]. Details about the finite element solution are available in Ref. [30]
and are reproduced in Appendix B. The finite element solution has been obtained using the
four-node element SHELL 181 in ANSYS® and converged meshes of 2808 and 195 elements have
been obtained for the plates of side length 0.8594 m and 0.17188 m, respectively.
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Fundamental Frequency (rad/s)

¢ = 0.1° @ = 0.5°
L =0.8594m L =0.17188m

Boundary
Condition

Ritz Method Finite Element Ritz Method Finite Element
(CLPT) Method [30] (CLPT) Method [30]

Configuration

Table 2.8 Comparison between Finite Element Method and Ritz Method Solutions

Considering Table 2.8, it can be seen that the values for the fundamental frequencies of the
tapered configurations for the given lengths and boundary conditions, obtained using FEM and

Ritz method, are in good agreement.
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2.10.3 Layer reduction test

In this sub-section, in order to compare the fundamental frequencies of the uniform and
tapered plates with SSSS boundary condition, a computational investigation called herein as the

“layer reduction test” is implemented.

Three identical uniform laminated plates are considered with configuration of (0/90)¢,
made of unidirectional NCT-301 Graphite-Epoxy material (mechanical properties were given in
Table 2.3) with ply thickness and side length of 125 X 107 m and 0.08593 m, respectively
(Figure 2.4). The two laminates on the left and right sides with same length as that of the middle

laminate, have been displayed only in part due to insufficient horizontal space.

During the 12-stepped “layer reduction test” shown by Figures 2.4 - 2.16, two plies, one
from the top half and the other from the bottom half of the laminate in the middle, are dropped and
replaced with resin such that the thickness of the left side stays the same while that of the right end
is reduced and a small taper angle is revealed at the first step so that the plate is considered as the
tapered laminate (Figure 2.5). As can be seen, in each new step of the test for the middle laminate
(tapered laminate), the thickness of the left end stays the same while that of the right end is
decreased and considering the fixed length of the laminate (0.08593 m), the taper angle increases
such that at the last step of the test (for the middle laminate shown by Figure 2.16) the taper angle
is equal to 1°. Note that during the “layer reduction test” the lengths for all the laminates are fixed

and equal to 0.08593 m as described before.

At each step during the 12-stepped “layer reduction test”, one ply from the top half and the
other from the bottom half of the right-side laminate is removed and no dropped plies are replaced
with the resin. Therefore, the laminate stays uniform during the test while the thickness is
decreased at each step so that it is called the thin laminate. (The laminates on the right side are

shown by Figures 2.4 - 2.16)

The laminate on the left side with the configuration and properties described at the
beginning of the sub-section, remains intact throughout the test and the thickness stays the same
so that it is called the thick laminate. (The laminates on the left side are shown by

Figures 2.4 - 2.16)

45



At the end of the 12-stepped “layer reduction test”, the middle plate corresponds to
configuration A while the configuration of the thick laminate stays the same as (0/90)q,, and the

thin laminate becomes (0/90);.

Figure 2.7 Step 3: 6 plies dropped-off
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Figure 2.11 Step 7: 14 plies dropped-off

Figure 2.12 Step 8: 16 plies dropped-off
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Figure 2.13 Step 9: 18 plies dropped-off

Figure 2.15 Step 11: 22 plies dropped-off

Figure 2.16 Step 12: 24 plies dropped-off

The numerical results obtained for the fundamental frequencies of the thick, tapered and
thin laminates at each step of the test are calculated using the developed formulation. By solving
the eigenvalue problem given by equation (2.103), the fundamental frequencies are obtained and

displayed in Table 2.9.
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Fundamental Frequency (rad/s) of the plate

B.C: SSSS L=0.08593 m

Number of CLPT FSDT

Reduced Layers

Tapered Tapered

16850 16218

16456 15857

16056 15490

15648 15115

15233 14730

14802 14330

14362 13920

13893 13482

13418 13036

12891 12539

12366 12043

11744 11453

11145 10880

Table 2.9 Fundamental frequency values for the laminates from layer reduction test

In Table 2.9, for the CLPT, the fundamental frequencies for the thick and thin laminates
are calculated using the exact solution and that of the tapered laminate are calculated using the
Ritz method. When no plies are reduced from the plates, the obtained fundamental frequencies for

the left (thick), middle and right (thin) plates obtained based on different approaches, are equal.

It is grasped from Table 2.9 that by increasing the number of removed plies from the
tapered laminate, the fundamental frequency of the plate is decreased. This explanation
corresponds to the thin laminate as well, however, this decline in fundamental frequency value for

the thin plate is remarkable in comparison with that of the tapered plate. The results for the thick
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laminate stay the same as it remains intact throughout the 12-stepped test. During the 12-stepped
test, the fundamental frequency of the tapered laminate is numerically lower than that of the thick

laminate and higher than that of the thin laminate.

Comparing the numerical values that have been obtained based on CLPT and FSDT, the
FSDT-based results are lower than that of CLPT at any single step of the test. In order to obtain
the difference between the FSDT-based and CLPT-based fundamental frequencies for each
laminate at each step given by Table 2.9, the fundamental frequencies of the laminates based on

FSDT, are deducted from that of CLPT and the results are shown in Table 2.10.

Fundamental Frequency Difference in rad/s

B.C: SSSS L=0.08593 m

Number of

Reduced Layers Thick Tapered

632 632

632 599

632 566

632 533

632 503

632 472

632 442

632 411

632 382

632 352

632 323

632 291

632 265

Table 2.10 Difference between the fundamental frequencies obtained based on CLPT and FSDT
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Considering the fixed length of the laminates throughout the layer reduction test, by
removing the plies from the tapered and thin laminates at each step of the test, the
length-to-thickness ratio gradually increases such that the numerical difference between
CLPT-based and FSDT-based fundamental frequencies are decreased. For the thin laminate, this

decline is considerable compared to that of the tapered laminate.

Figure 2.17 has been illustrated using data from Table 2.9 showing the trend by which the

fundamental frequencies for the plates change when the plies are gradually dropped-oft.
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Figure 2.17 The variation of fundamental frequencies of the thick, thin and tapered laminates
with increase of dropped layers (CLPT and FSDT)

The graph shows that the decrease for the thin plate is faster compared to the tapered
laminate regardless of the theory. The line that corresponds to the FSDT is well below the CLPT
line showing that the fundamental frequencies obtained based on FSDT formulation, are lower
than that of CLPT. This decrease in numerical difference between CLPT-based and FSDT-based
results for the tapered and thin laminates is also observed in Figure 2.17. The vertical distance

between the CLPT and FSDT lines corresponding to the tapered laminate, is gradually decreased
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by removing the plies. This explanation also corresponds to the thin laminate as the results obtained

from the two theories almost coincide at the last step of the test.

2.11 Number of terms of the shape function and the accuracy of the calculation

The shape function is expressed in the form of series in equation (2.51) using admissible
functions and the summations count the integer values of i and j up to the upper bounds of I and
J. Increasing the values of I and J, increases the size of mass and stiffness matrices, and the natural
frequencies obtained by solving equation (2.103) are more accurate. In this section, the influence
of the values for I and J on the accuracy with which the natural frequencies are computed, is
investigated. In addition, some notifications are given in order to avoid any probable calculation

error caused by inappropriate selection of I and J.

Configuration B with length of 0.1719 m corresponding to taper angle of 0.5° is
considered. The natural frequencies of the plate are calculated considering I =] =5 in
equation (2.51) and the computation is repeated for different values for I and | (I =] =
7,9,11, 13). Then, the natural frequencies obtained, each time based on specific values for I and
J, are sorted in ascending order and are plotted in Figure 2.18, Figure 2.19 and Figure 2.20 for
SSSS, CCCC and CCFF boundary conditions, respectively.
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Figure 2.18 Influence of I and J values on natural frequency calculation (configuration B, SSSS)
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Figure 2.19 Influence of I and J values on natural frequency calculation (configuration B, CCCC)
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Figure 2.20 Influence of I and J values on natural frequency calculation (configuration B, CCFF)

Consider the curves correspondingto I =] = 7 and I = ] = 9 for SSSS plate as the first
and second curves. According to the second curve, the first 75% of the obtained natural frequencies
reported by the first curve are almost accurate while for the rest, the accuracy gradually decreases
and the curves diverge so that the last 15% of the frequencies obtained based on I = J = 7 are not
reliable. The curves corresponding to the higher values for I and / (I =] = 11, 13) confirm the
starting point of the error. Therefore, it can be concluded that the first 75% of the natural

frequencies obtained based on [ = | = 7 are reliable.

In a similar manner as explained for I = J = 7, this explanation corresponds to I =] =9
and I = ] = 11. Therefore, it can be concluded that the last 15% of the frequencies obtained based

on a fixed I and /, (at least up to 11) are not reliable.

The starting point of the error for CCFF plate is almost the same as that of SSSS and is
equal to 75% while that of the CCCC plate is 65%. In order to avoid any miscalculation caused by

this inaccuracy, two suggestions are offered.
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Suggestion 1: In order to obtain accurate values of natural frequencies, the upper bound
values for I and J are selected higher than what is required such that the frequencies within the
accurate range are sufficiently numerous. Then, by excluding the inaccurate frequencies, the rest
of the values are accurate and are sufficient in number as the upper bound values of [ and J are
high. Besides, for eigenvectors, values corresponding to reserved frequencies are retained and the
rest are excluded. Furthermore, for each set of eigenvectors, values corresponding to the last terms
of the shape function are omitted such that the matrix of the eigenvectors remains square. By this
approach, eigenvalues and eigenvectors derived from Ritz method are filtered and reliable values

are put into further use in forced vibration analysis.

Suggestion 2: For the forced vibration analysis, using high order of I and J ensures that
accurate frequencies play the important role in the deflection function while inaccurate ones
correspond to sufficiently weak terms. Therefore, by testing different values for I and J until when
the numerical result converges, the solution is made reliable. By this approach, the complications

caused by the previous suggestion is avoided.

In the present study, considering suggestion 2, the calculations have been performed based
onl = ] = 13 and the derived mass and stiffness matrices as well as eigen values and eigenvectors

are used in the next chapter for the forced vibration analysis.

It can be observed from Figures 2.18 - 2.20 that the natural frequency values calculated by
the Ritz method for the tapered configurations, are over estimated and by increasing the number
of terms considered for the out of plane displacement function in equation (2.51), this error is

reduced.

2.12 Numerical results and discussion

After demonstration, the developed formulation based on CLPT and FSDT are applied to
study tapered plates of various lengths, with four taper configurations, and with three different
boundary conditions. The obtained results for each case, including eigenvalues and eigenvectors
determined by solving the eigenvalue problem, as well as mass and stiffness matrices, are reserved
for further use in the next chapter. The fundamental frequency for each case is given in

Tables 2.11 - 2.13.
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Configuration A Configuration B

Length (cm) ;
Angle (deg)

MeanThickness

Table 2.11 Fundamental frequency (rad/s) values of tapered composite plates for different lengths and

taper angles for configurations A and B

56



Configuration C Configuration D

Angle (deg)

Length (cm) ;

Mean Thickness

Table 2.12 Fundamental frequency (rad/s) values of tapered composite plates for different lengths and

taper angles for configurations C and D
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In the case of FSDT, the admissible functions corresponding to CCFF plate have not been

found among the references. Therefore, the results for CCFF plate are obtained solely based on

CLPT and displayed in Table 2.13.

CCFF; Based on CLPT

Configuration
A

Angle (deg)

Mean Thickness

Configuration
B

Configuration
C

Configuration
D

N
=]
=)
()]

Table 2.13 Fundamental frequency (rad/s) values of tapered composite plates for different lengths and

taper angles

According to Tables 2.11 - 2.13, the fundamental frequencies for the CCCC and CCFF

plates are the highest and the lowest respectively. It is observed from the tables that regardless of

the boundary condition, by increasing the taper angle which results in smaller length, the

fundamental frequency of the plate increases.
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In order to visualize the data given in Tables 2.11 - 2.13, the following graphs are depicted

by Figures 2.21 - 2.24. ‘w4 and _ w4, are the fundamental frequencies obtained based on CLPT

and FSDT formulations, respectively. Figures 2.21 and 2.22 illustrate the change of frequency

ratio p wq4 / ‘wq; with increase of length over mean thickness ratio. Figure 2.23 and Figure 2.24

illustrate the change of fundamental frequency with increase of length over mean thickness ratio

for different boundary conditions for CLPT and FSDT.

Frequency Ratio
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Figure 2.21 Frequency ratio w1 / w14 for different lengths of the taper configuration A
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Figure 2.22 Frequency ratio g w,1 / ‘w1, for different lengths of the taper configuration D

For different lengths of the tapered laminates with configurations described by Figure 2.1,
the mean thickness is constant as the thickness of the left and right ends of the plate stays the same.
Therefore, increase in the length to mean thickness ratio means that the laminate’s length increases.
It is grasped from Figures 2.21 and 2.22 that by increase in the laminate length, the difference
between the CLPT-based and FSDT-based fundamental frequencies decreases such that the FSDT
to CLPT frequency ratio tends to 1.

Figures 2.23 and 2.24 illustrate the fundamental frequency values for different lengths of

the tapered laminates.
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wq1 rad/s

Length over Mean Thickness Ratio

Figure 2.23 CLPT-based and FSDT-based fundamental frequencies for different boundary conditions
and lengths (configuration A)

61



—— 585885 - “wy, 1
——— 8885 - W, 1
—— CCCC- “wy, _
—+— CCCC - gy, ]

—+— CCFF - Wy, _

Wi rad/s

10 15 20 25 30 33 40 45 50 55 60
Length over Mean Thickness Ratio

Figure 2.24 CLPT-based and FSDT-based fundamental frequencies for different boundary conditions
and lengths (configuration D)

From Figure 2.24 and Figure 2.23 it can be observed that by increase in laminate length,
the fundamental frequency decreases and the difference between the CLPT-based and FSDT-based
results decreases. Since the trends for all taper configurations are the same, the results
corresponding to configurations A and D which display a greater difference, have been illustrated.
The numerical results for the CCFF plates are the lowest and that of the CCCC plates are the
highest.

By increase in the length over mean thickness ratio the fundamental frequency decreases
such that when this ratio starting from 19.1 approaches 57.3, the fundamental frequency is reduced
to 11%. This explanation is true for all the boundary conditions; however, this reduction in
fundamental frequency for CCFF and SSSS plates, with slight difference, are the highest and the

lowest, respectively.

The difference in the taper configurations subjected to the study is mainly in the internal
regions while the external layers are similar. The following example shows the important role of

the external plies in determining the fundamental frequency value of a plate.
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Example: Consider the two uniform square laminated plates shown in Figure 2.25, with

the mechanical and geometrical properties described as below.

Two uniform laminated square plates with all simply supported edges are considered with
the configuration of (0/90)4s made of unidirectional plies of NCT-301 Graphite-Epoxy material
(Table 2.3) with ply thickness and length of 125 X 107® m and 0.35 m, respectively.

In the second laminate, 24 plies in the middle of the plate are replaced by resin with the

same thickness as depicted in Figure 2.25. Obtain and compare the fundamental frequencies.

Resin

[ 1
[ |
== 1

[(0/9(553/}?es;in)((5)90)3] Laminate

(0/90)ys Laminate

Figure 2.25 Two uniform laminates of same thickness and with difference in internal structure

Solution: The natural frequencies of a uniform laminated composite plate with all simply
supported edges are determined using the exact solution given by equation (2.119). In order to

obtain the fundamental frequency, the condition is i, j = 1 resulting in equation (2.120).

Fundamental frequencies obtained for the first and the second plates are equal to
1016 rad/s and 989 rad/s, respectively. Therefore, in spite of using three times more plies in
the structure of the first laminate, there is merely a slight difference between the two fundamental
frequencies. This example shows that the stiffness of a ply that is close to the midplane is
significantly less responsible for increasing the fundamental frequency in comparison with an

external ply.

Consider the order of 3 for the variable z, the distance from the midplane, in the bending
stiffness elements Ri(f) in equation (2.85) when n = 3. It shows that the external plies are mostly

responsible for increasing the bending stiffness elements of the laminate as their distance z is

greater than that of the internal plies. On the other hand, the density of the plies is greater than that
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of the resin regardless of the region they are used in. Therefore, the internal plies close to the
midplane do not significantly contribute in increasing the fundamental frequency of the plates
compared to external plies while they still increase the mass of the plate as much as the external

plies.

2.13 Conclusion

In this chapter, the stiffness and mass matrices based on CLPT and FSDT, for the tapered
laminated plates have been obtained. The eigenvalue problems for the plates under three different
boundary conditions and with various lengths have been solved. The natural frequencies and mode
shapes of the plate have been obtained and the so-called layer reduction test has been carried out.
The numerical results have been given in tables and graphs. Considering the obtained results, the

following conclusions are made:

1. Regardless of the taper configuration, the fundamental vibration frequency for CCCC plate
is the highest and that of the CCFF plate is the lowest such that for configuration A with the highest
difference rate, fundamental frequency of the CCCC plate is 465% of that of the CCFF plate and
for configuration D with the lowest difference rate, fundamental frequency of the CCCC plate is

448% of the CCFF plate when the side length of the plate is 0.8594 m.

2. Regardless of the boundary condition and taper configuration, decrease in the length over
mean thickness ratio results in higher fundamental frequency such that when this ratio is reduced
from 57.3 to 19.1, the fundamental frequency (in general, from 2700 rad /s for SSSS plates, 5750
rad/s for CCCC plates and 1300 rad/s for CCFF plates) increases roughly by 800% for all the
plates. However, this increase for CCFF and SSSS plates, with slight difference, are the highest

and lowest, respectively.

3. Layer reduction test shows that for a fixed-length laminate, increasing the taper angle by
removing the plies results in a decrease in the fundamental frequency. At beginning of the test with
no ply drop-off, the fundamental frequency obtained for the tapered laminate based on the Ritz
method is equal to that of the thick and thin laminates obtained based on the exact solution method.

The fundamental frequency for the tapered laminate is lower than that of the thick plate and higher
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than that of the thin plate at each single step of the test. The obtained results for the thick, tapered
and thin laminates based on FSDT are slightly lower than that of the CLPT-based results at each
single step of the test and this slight difference is reduced with increase of dropped-off plies as the

length over mean thickness ratio increases.

4. Since transverse shear stresses are considered in FSDT, numerical results obtained for the
natural frequencies based on this theory are more accurate. For the square tapered plates with
smaller side length, the difference between the fundamental frequencies obtained based on CLPT
and FSDT are greater. In general, for a fixed side length, this difference for CCCC plate is larger
compared with SSSS plates. However, the difference is not sufficiently great to justify the expense
of computational effort imposed by FSDT, especially in modal analysis. Therefore, CLPT is

selected for further analysis including forced vibration study in further chapters.

5. In composite plates, the plies close to the midplane do not significantly contribute to
increasing the natural frequencies even though their inertia (mass) contribution is the same as that

of other plies.

6. For the SSSS boundary condition, configuration A with sufficient outer plies and resin as
a lighter inner material vibrates with the highest frequency among all the tapered configurations
and configuration C comes the second. By using plies in inner layers of configuration C, it becomes
heavier in comparison with configuration A while such plies do not contribute significantly in
increasing the stiffness, therefore, configuration A with considerably fewer plies, still exhibits high
fundamental frequency. However, in CCCC and CCFF boundary conditions, fundamental

frequency of the configuration C, is the highest among all the tapered configurations.

7. Considering configuration C with the resin used at the core along the midplane and
configurations B and D, all possessing the same mass distribution, configuration C vibrates with
the highest natural frequency since the resin as the weaker material is used at the core along the
midplane and the plies contribute in the best way among the configurations B, C and D. For
configurations B and D, resin is used in the regions farther from the midplane which prevents the
plies from using their stiffness potential to the full capacity. In configuration D, resin is used in
the region close to the external layers such that it vibrates with the lowest natural frequency among

all the configurations.
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Chapter 3 :

Forced vibration analysis of tapered composite plates

3.1 Introduction

In chapter 2, free vibration analysis was carried out and the mass and stiffness matrices
were obtained based on CLPT and FSDT. Then, using these matrices, the Ritz method was applied
forming an eigenvalue problem leading to the determination of natural frequencies and the

parameters corresponding to the mode shapes.

In the present chapter, the assumed modes method is used to study the forced vibrations of
tapered composite plates. According to Ref. [31], the solution of the problem is assumed in the
form of series composed of linear combination of admissible functions of the spatial coordinates
satisfying essential (geometric) boundary conditions, multiplied by time-dependent generalized
coordinates. Strain and kinetic energies as well as virtual work of conservative and
nonconservative forces are expressed in terms of the assumed modes solution. The CLPT is used.
The mass and stiffness matrices derived in chapter 2 based on CLPT, are reused here in chapter 3
in the assumed modes method. The Lagrange’s equations are used to establish the equations of
motion of the equivalent n-degrees-of-freedom discrete system of the continuous system.
Parameters of the mode shapes and the natural frequencies, as the eigenvectors and square roots
of corresponding eigenvalues respectively, are the essential requirements for the forced vibration
analysis of tapered laminated composite plates using assumed modes method. Afterward, with the
mathematical operations performed on the Multi Degree of Freedom (MDOF) discrete system, the
solution is obtained. The deflection function composed of spatial and time-dependent functions

describes the dynamic behavior of the laminate.

3.2 Forced vibration response based on CLPT

In forced vibration analysis, the transverse deflection function is expressed in the form of

series according to Ref. [32].
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wl = ZZA@(t)Xi(x)Y,-(y) G.D)
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=1 j=1

where, w! is the transverse displacement function in forced vibration analysis and AiFj is
the parameter corresponding to the admissible functions X; and Y; determined by geometric
boundary conditions discussed in chapter 2. The right superscript F in the terms w/ and AiFj stands

for forced vibration response. The derivative of transverse displacement function w} with respect

to time is obtained as follows.

1]
wh = Z Z AfX.Y; (3.2)

The overdot notation indicates the derivative with respect to time, for example: W) =
dwf /dt. The admissible spatial functions X; and Y; corresponding to the geometric boundary

conditions explained in chapter 2 are substituted in equation (3.1).

3.2.1 Undamped forced vibration

Stiffness and mass matrices obtained from strain and kinetic energies in chapter 2, are used
in the assumed modes method in the present chapter. Following Ref. [31], in addition to strain and
kinetic energies, virtual work of external forces is taken into consideration in forced vibration

analysis.

SW = ff flx,y,t) swldA (3.3)

where, W is the work done by the external force f(x,y,t) and § denotes virtual quantities.

Substituting equation (3.1) in (3.3):

J

Z f f £y, X ()Y;(y)dA(SAF; (3.4)

-3

1
i=1 j=1
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Writing the above expression in the form below:

1]
SW = F;;(8Af (3.5)
Ry = || Fey.0x00%0)da (3.6

Lagrange’s equations are expressed according to Ref. [31]:

3.7)

i(a(%)) +6(CU) ~

dt\ 0Af; 0Af; Y

where, i = 1,2,3,...,landj = 1,2, 3, ..., . Considering all possible integer values of i and

J in equation (3.7), the mass [ ‘M ] and stiffness [ ‘K ] matrices and force matrix {F} are obtained

from equation (3.7).

[CM] {AF}le + [CK] {AF}I]XI = {F};x1 3.8)

1JxI] 1JxI]

Equation (3.8) represents the matrix equation of motion of the equivalent
n-degrees-of-freedom discrete system of the continuous system. According to Ref. [33], the

general solution is in the form of:

J

(4"} = iZ{Aww} @i (0) (3.9

i=1 j=1

where, {A“4} contains the eigenvector corresponding to the ij natural frequency w; ; that

has been normalized with respect to mass matrix [CM]. In the n-degrees-of-freedom discrete

system of the continuous system, g;;(t) is known as the time-dependent generalized coordinate.
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The derivatives of {47} with respect to time are calculated and expressed in matrix form after the

summations have been taken care of.

{AF} = [Aw]ljxl] {q}ljxl (3.10)
{AF} 1]><1] {q}ljxl (3.11)
{AF} 1]><1] {q}ljxl (3.12)

Square matrix [A®] contains all column matrices {A“%}, and column matrix {q} contains
elements q;;, and column matrices {¢} and {¢} are derivatives of {q} with respect to time.

Substituting equations (3.10) and (3.12) in equation (3.8):

[“M][4°1(G} + [ “K][4“)q} = {F} 3.13)

Multiplying both sides by [4¢]T:
[A°]7[ “M][4°1{G} + [4°]7[ “K][4°){q} = [A“]7{F} (3.14)

Since [A“] is normalized matrix with respect to mass matrix, the terms [A°]"[ ‘m [[A“]

and [A“’]T[ ‘K ] [A®] are equal to [I] and [“w?\], respectively. [I] is the identity matrix. Matrix
[“w?.] is the diagonal matrix containing the natural frequencies obtained by solving the

eigenvalue problem in chapter 2. Using notation {F} = [A®]T{F}, equation (3.14) is rewritten as

follows.

{d} + [Nw?{q} = {F} (3.15)

Considering that [“w?.] is a diagonal matrix, equation (3.15) is decoupled as follows.

Gij + wl,qu Fyj (3.16)
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where, Fij is the ij™ element of the column matrix {F}and i = 1,2,...,/andj = 1,2, ..., ].

The solution of equation (3.16) is given by Ref. [33] as follows.

11, : g ,

qij(t) = q;;(0) cos(w;jt) + o qij(0) sin(w;;t) + f Fij(t) sin (wij(t - T)) dTl (3.17)
lj 0

By setting the initial displacement and velocity to zero, terms q;;(0) and ¢;;(0) for any

integer values of i and j are zero (Appendix A.4) and equation (3.17) becomes:
1 (t_
q;;(t) = —f Fi; (1) sin (wij(t - T)) dr (3.18)
WijJo

where, i =1,2,3,...,1 and j =1,2,3,...,/J. By substituting (3.18) in (3.9), {AF} is
obtained. Then, in order to determine the transverse displacement function w} for the forced

vibration analysis with no damping, elements of {AF} are substituted in equation (3.1).

3.2.2 Forced vibration with viscous damping

In this sub-section, the viscous damping effect is taken into consideration and
corresponding transverse displacement function is obtained. In a similar manner to that of the
previous sub-section, the investigation is conducted using Refs. [31] and [33]. Considering viscous

damping, Lagrange’s equation is expressed as follows.

3.19)

fi(G(CT)>4_6Ud a(‘v)

dt aAg aAg aAg

where,i = 1,2,3,...,]andj = 1,2, 3, ..., J. Dissipation of energy is represented by U, and
considering all integer values of i and j in equation (3.19), the mass [CM], stiffness [CK ] and

damping [U;] matrices are substituted in equation (3.19) according to Ref. [32].

[CM] I]XI]{AF},]Xl + [Ud]I]xI]{AF}le + [CK] UX”{AF}Ijxl = {F};;x1 (3.20)
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For simplicity, it is assumed that the Rayleigh damping is capable of describing the

damping effect of the tapered laminates. By this assumption, [Ug];;x;; can be written into a linear

combination of mass and stiffness matrices as below.

[Ualijxi; = a[cM] +5[CK] (3.21)

1jxij 1jx1J

where, a and 8 are material parameters. Values of a and f for the material considered in
the present work are given in Refs. [3] and [34]. The general solution is given by equation (3.9)
which is expressed by equation (3.10) in matrix form. Substituting equations (3.10), (3.11), (3.12)
and (3.21) in (3.20):

[“M][4°1G} + (af “M] + B[ “K])[4°1{g} + [ K][4°1{q} = {F} (3.22)
Multiplying both sides by [4¢]T:
[A°17[ “M][4°1g} + (a[a®]7[ “M][A°] + BLA®]7] “K][A“]){g} + [A°]"[ *K][4“){q}

= [A°]"{F}

(3.23)

Since [A®] is normalized matrix with respect to mass matrix, according to Ref. [31], terms
[A<]7| CM] [A“] and [A®]7[ CK] [A®] are equal to [I] and [ w?.], respectively. Matrix [I] is the
identity matrix and [“w?.] is the diagonal matrix containing the natural frequencies obtained by
solving the eigenvalue problem in chapter 2. Using notation [A®]T{F} = {F}, equation (3.23) is

rewritten.
@+ (aln) + g o ]) @} + [0 fa} = {F) (3.24)

Considering that [“w?.] is a diagonal matrix, equation (3.24) is decoupled as follows.

According to Ref. [33], the following equation is written:
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where, {;; is the damping ratio. Substituting equation (3.26) in (3.25):
Gij + 28w qij + wqi; = Fy (3.27)

The solution of the equation (3.27) is given by Ref. [33].

—liiwii Gijwij .
qij(t) =e Z11“’Ut[cos (wdijt) + Zd'l_] sin (wdijt) CIij(O) +
ij
1 t_ (3.28)
—— [e~Su@itsi () e—Cij0iE=T) g _
Wy, ey Jsm(wdijt)qu(o)-l-J;)Flj(t)e iy sm(mdij(t T))d‘[l

where, wq;; = w;; /1 —§;%andi=1,2,3,..,landj = 1,2,3,...,].

Considering zero initial displacement and velocity, q;;(0) and ¢;;(0) are zero

(Appendix A.4) and equation (3.28) is simplified.

1 [t
qi;(t) = Kf F; (0)e 5?7 gin (wdij(t - ‘L')) dt 3.29)
ij 7o

where, i = 1,2,3,...,] and j = 1,2, 3, ...,]. By substituting equation (3.29) in (3.9), {47}
is obtained. Then, in order to determine the transverse displacement function for the forced

vibration analysis with damping effect, elements of {AF} are substituted in equation (3.1).
33 Loading types

In the forced vibration analysis of the tapered laminates, the response of the plates due to
external force is studied. In this section, 4 different types of line loads as the external forces are

described. The corresponding expressions of the excitations have been given in Table 3.1.
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Loading (N/m?) Types

Type 1 Type 2 Type 3 Type 4
Spatial L L Ly x N )
Function J (x - E) 6 (y - z) 6 (x - E) sin (n Z) é (y - E) sin (n Z)
Time
Function (=500) cos(2t)

.Q == 0.3(1)11

where, § is the Dirac delta function and w4, and {2 are the fundamental frequency of the

plate and excitation frequency, respectively. Figures 3.1 - 3.4 provide a visual perception of the

Table 3.1 Four types of loading

spatial variation in coordinate system xyz, of the excitation types given in Table 3.1.

Figure 3.1 Line load type 1
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Figure 3.4 Line load type 4
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The loading types 1 and 3 have been applied at the middle of the laminate along the taper
direction x. The difference between loading types 1 and 3 is that the magnitude of the loading type
1 is constant along the laminate’s length while the magnitude of loading type 3 shows a sinosoidal

variation along x.

The loading types 2 and 4 have been applied at the middle of the laminate perpendicular to
the taper direction x. The difference between loading types 2 and 4 is that the magnitude of the
loading type 2 is constant along the laminate’s width while the magnitude of loading type 4 shows

a sinosoidal variation along y.

The excitations described in present section, are applied to the tapered laminates and the
responses are analyzed. In the present paper, the deflection of the transverse normal at the center

of the laminate is investigated.

Consider the vibration of a uniform SSSS or CCCC square plate due to a uniformly
distributed loading with sinusoidal time function. The peak deflection of the plate occurs exactly
at the point located at the center of the plate. For a SSSS or CCCC plate with taper configuration,
the peak deflection does not necessarily occur at the plate center (see Ref. [23]). In addition, for
CCEFF plate, the peak deflection of the laminate occurs at the point located at the intersection of
the two free edges. However, in the present work, the time-maximum value (amplitude) of the
deflection of the point located at the center of the tapered laminate is studied regardless of the peak

deflection of the plate.

3.4 Validation

3.4.1 Isotropic plate

In this section, for demonstration purposes, forced vibration investigations conducted in
available literature using different approaches are considered. The assumed modes method
solution is applied to the data given in the literature and the obtained results are compared. For a
case of an isotropic plate subjected to harmonic loading, results obtained by Galerkin method and
exact solution [31] are compared with that of the assumed modes method solution developed in

the present study, in Table 3.2.
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Using data from Ref. [35], for an isotropic square plate with all simply supported edges
subjected to a harmonic excitation f(x,y,t) = f, cos(2t), the numerical results are displayed in
Table 3.2 for the deflection of the point located at the center of the laminate. Note that for the exact
solution, the numerical result is obtained using Ref. [31] that also corresponds to the exact solution
given by Ref. [35]. Then the results obtained using the Galerkin method [35] and the formulation
developed in the present study, are compared. Since the results given by Ref. [35], are in

dimensionless form, an arbitrary plate and loading amplitude (f;) can be used.

w(a/2,b/2) x D/(f,a*) (dimensionless)

. . . . Present
Loading Exact Solution [31] Solution Using Galerkin Assumed Modes Method
Frequency Method [35] Solution
N =0.3wqq 0.0006984 0.00072 0.0006983
N =05wq; 0.0008537 0.00088 0.000829
N =0.8wq; 0.001813 0.00184 0.00177

Table 3.2 Comparison between assumed modes method, Galerkin method and Exact solutions

In Table 3.2, w denotes the maximum deflection of the plate, a and b are length and width
of the plate respectively (which are equal for the square plate), and D = Eh3/12(1 — v?) is the
flexural rigidity of the plate. E,v and h are Young’s Modulus, Poisson’s Ratio and plate’s
thickness, respectively. Table 3.2 shows that the numerical results determined by using the

assumed modes method are in good agreement with that of the other methods.

3.4.2 Composite plate

The exact solution for the deflection function for the uniform-thickness composite plate
subjected to transverse harmonic loading is given in Ref. [9] provided that the boundary conditions
are simply supported on all edges. In order to validate the formulation developed in the present
chapter, a problem is solved based on assumed modes method and the result is compared with the

numerical output obtained by using the exact solution [9].
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A square laminated plate (0/90) with side length L of 0.1719 m made of unidirectional
plies of NCT-301 Graphite-Epoxy material (mechanical properties were given in Table 2.3) with
ply thickness of 125 X 107 m is at rest in equilibrium position. All edges are simply supported.
The maximum transverse deflection of the plate at the center, when it is subjected to the given
distributed loading, in N /m?2.

X | my

f(x,y,t) = =10 cos(0.3w4,t) sinTsinT (3.30)

where, wq is the fundamental frequency of the plate.

Solution [9]: Considering notations (a; = im/L) and ([)’j =jn/ L) given in Ref. [9], the

transverse loading and deflection, f and w/l', are written in the form of series.

ey, =) ) Py(®sina)sin(6;y) (3.3
i=1j=1
P;(t) = izj J f(x,v,0) sin(a;x)sin(B;y) dxdy (3.32)
L 0 J0

The transverse deflection function is expressed in the following form:

wh(x,y,t) = Z Z A (©)sin(a;x)sin(B;y) (3.33)

i=1 j=1

Equations (3.31) and (3.33) are substituted in equation of motion (2.118).

ZAZ- [Rg‘?’l)a{* + Z(R%) + 2R§’6))al-2ﬁj2 + Rg‘?ﬁf] sin(a;x)sin(B;y)
e o (3.34)
- Z Z Pijsin(aix)sin(ﬁjy) =
i=1j=1
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—R® z Z AF isin(a; x)sin(By) — R® z Z(QZAF ZAF )sm(a x)sin(B;y)

i=1j= i=1j=
Equation (3.34) is written in the following form:

D ([RDat +2(RY + 2RD)a2p? + R BH| 4T + [RD + (a? + 57)RO]AL
i=1 j=1 (3.35)

— Pij) X sin(a;x)sin(Bjy) = 0

Taking advantage of the orthogonality property in equation (3.35), fori,j = 1,2,3, ...,

it is expressed that:

Py — |RDat + 2(RY + 2R )a?p? + RSB | 4 = (RD + (a? + BRD)AL,  (3.36)
According to Ref. [9], some denotations are defined as follows.
Ky = R at +2(RE) + 2RY )a?p? + R} (3.37)
M;; = R + R®)(a? + p7) (3.38)
Substituting equations (3.37) and (3.38) in (3.36):
MUAZ + KLJAZ = Py (3.40)
Substituting equation (3.39) in (3.40):
. Kij —
Ajj + <M—]) A = Py (341

Considering equation (3.30), the distributed sinusoidal loading given in the problem, and

equation (3.31), the series by which the loading has been expressed, for i =j =1,
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Py, = =10 cos(0.3w41t) /My, and for any integer values of i and j, i,j # 1, P;; = 0. Therefore,

equation (3.41) is written in the following form.

. K4 —10 cos(0.3w,4t)
A (—) Af = 3.42
1 ) 1 My (42
K.
1F tj F _ ..

The solution for the differential equation (3.41) is given by Ref. [9].

Af;(t) = ey cos(pjt) + efy sin(ut) + AT (1) (3.44)

(3.45)

SE

Uij =
ij

where, e;; and e; ; are constants to be determined using the initial conditions, Afj (t) is the

particular solution. Considering equations (3.42), (3.43) and (3.44):

45,0 (Giet) + el sin(uu ) 10 cos(0.3w4t) (3.46)
= e41 COS ey Sin - .
11 11 H11 11 H11 Ki; — (0.3w,)2My,

Af; () = e cos(uyt) + efj sin(u;t) ij#1 (3.47)

Considering zero initial displacement in equation (3.33), for any integer values of i and j,
AZ-(O) = 0. Therefore, in equation (3.47), when i,j#1, ¢;=0 and e;; =

10/K;; — (0.3w41)?M;. Initial zero velocity results in ei; = 0, for any integer values of i and j.

Therefore, equations (3.46) and (3.47) become:

cos(uq1t) —cos(0.3wq1t)
AF () =10 (3.48)
H K11 — (0.3w11)*My4
Af;(©) =0 ij#1 (3.49)

Equations (3.48) and (3.49) are substituted in equation (3.33), and the solution is derived.
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cos(uy1t) —cos(0.3wq1t)

K11 — (0.30)11)21\411 Sin(alx)Sin(ﬁly) (350)

wl(x,y,t) =10

In order to obtain the deflection function for the point located at the center of the laminate,

x = L/2and y = L/2 are substituted into equation (3.50).

(3.51)

L
wk (—

L coS t) —cos(0.3wqqt
z'E't) — 10 (u11t) ( 11t)

Ki; — (0.3w11)*Myy
where, 4 is determined using equation (3.45).

This exact solution given by equation (3.51) and the results obtained by using the
formulation developed in the present chapter, are plotted. Figure 3.5 illustrates the transverse
deflection at the center over time by the two approaches. It is observed from Figure 3.5 that the
results calculated by the two approaches correspond very well such that the curves corresponding

to the two methods, coincide. The maximum deflection is equal to 0.136 X 1073 m.
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Figure 3.5 Deflection at the center of the laminate over time due to transverse sinusoidal excitation
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3.4.3 Layer reduction test

In this sub-section, in order to compare the transverse deflection of the uniform and tapered
plates with SSSS boundary conditions due to predetermined excitation, a 12-stepped
“layer reduction test” is implemented. The arrangement of the laminates (thick, thin and tapered
plates) in different steps of the test, the layer removal and resin replacement process, are the
same as that of the “layer reduction test” carried out and explained in chapter 2 and depicted by
Figures 2.4 - 2.16. In the “layer reduction test” conducted in chapter 2, the subjects of the study
are the fundamentaal frequencies of the thick, thin and tapered plates. However, in the
“layer reduction test” in the present sub-section, the deflections at the center of the laminates

described in the following, due to predetermined excitation are studied.

Three identical uniform-thickness laminated plates are considered with configuration of
(0/90)gg, length of L; =0.1719m, and width of L, = SLl made of unidirectional

NCT-301 Graphite-Epoxy material (mechanical properties were given in Table 2.3) with ply
thickness of 125 x 107® m (Figure 2.4 shows the three identical uniform-thickness plates). The
laminates on the left, middle and right sides are called thick, tapered and thin laminates according

to the explanations given in the “layer reduction test” in chapter 2.

For each laminate at each step of the test, corresponding stiffness [CK ] and mass [CM ]

matrices are obtained and substituted in equation (2.102) and by solving it, the natural frequencies
and the corresponding mode shapes are determined. Then, the eigenvalues and eigenvectors as
well as the stiffness and mass matrices are used in the forced vibration formulation developed in
the present chapter to determine the deflection at the center of the laminate. Undamped vibration

response is considered.

The amplitude of distributed loading (N /m?) applied to the laminates is kept the same
throughout the test and is described by the following equation.

f = —1000 cos (0.3w;4t) (3.52)

where, w4 1s the fundamental frequency of the plate.
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For the tapered and thin laminates, at each step, the deflection at the center of the laminates
over time are calculated and depicted by Figures 3.7 - 3.18. At the begining of the test when no
plies are removed (Figure 2.4), the deflections over time for the thick, thin and tapered laminates
are equal as their configurations are the same and the correponding curves coincide (Figure 3.6).
Since the thick laminate remains the same throughout the test, the variation of the deflection over
time for the laminate does not change throughout the test and it is the same as that of the thin and
tapered laminates depicted by Figure 3.6. Therefore, in order to prevent any congestion in

Figures 3.9 - 3.18, the deflection of the thick laminate over time is not traced.

4 —— Tapered @ ----- Thin -~ Thick
12X 10
. T T I T I

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

Deflection at the Center (m)
>
>
>
=

g
>
>
2

<
D>
=
>

d
>
>
=

q

_12 | | | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Time (sec)

Figure 3.6 Layer reduction test in forced vibration analysis (no ply drop-off)
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Figure 3.7 Layer reduction test in forced vibration analysis (step 1. 2 plies dropped-off)
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Figure 3.8 Layer reduction test in forced vibration analysis (step 2. 4 plies dropped-off)
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Figure 3.9 Layer reduction test in forced vibration analysis (step 3. 6 plies dropped-off)
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Figure 3.10 Layer reduction test in forced vibration analysis (step 4: 8 plies dropped-off)
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Figure 3.11 Layer reduction test in forced vibration analysis (step 5: 10 plies dropped-off)
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Figure 3.12 Layer reduction test in forced vibration analysis (step 6: 12 plies dropped-off)
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Figure 3.13 Layer reduction test in forced vibration analysis (step 7: 14 plies dropped-off)
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Figure 3.14 Layer reduction test in forced vibration analysis (step 8: 16 plies dropped-off)

86



Deflection at the Center (m)

Deflection at the Center (m)

4 —— Tapered - Thin

x10
6 I I I I I
5
4
3
2
1 /N //\\ / \\ //\\\ SN N
0 ; N // \ _ /_:\\ / AN _ JaN \\ / \ \ // N

\ // \ // \ ! / N \\/ / \\ // \\ // \\ V

-2
-3
-4
-5
_6 | | | | | | |

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Time (sec)

Figure 3.15 Layer reduction test in forced vibration analysis (step 9: 18 plies dropped-off)

4 — Tapered

o = W s L O

-6 I I

0 0.005 0.01

0.015

0.02 0.025 0.03 0.035 0.04

Time (sec)

Figure 3.16 Layer reduction test in forced vibration analysis (step 10: 20 plies dropped-off)

87



Deflection at the Center (m)

Deflection at the Center (m)

Tapered

x10°

1 | 1 | L

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Time (sec)

0.04
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Considering Figures 3.6 - 3.18, for the thin and tapered laminates, the deflection at the
center of the laminates due to the excitation, is increased as the layers are removed from the plates
at each step. However, this increase for the thin laminate is greater at each step of the test such that
in Figure 3.6 the two curves coresponding to the deflections of the two laminates coincide, and

through Figure 3.18, the difference between the two curves gradually increases.

Considering the small deflection of the thick plate which is the same as that of the thin and
tapered laminates in Figure 3.6 when no plies are removed, it can be said that the deflection
amplitude of the tapered laminate is lower than that of the thin plate and higher than that of the

thick plate at each step of the test.
3.5 Maximum deflection and excitation frequency

In this section, the variation of the response of the laminates due to the change of excitaion
frequency is studied. The square plates with taper configurations described in section 2.2
(configurations A, B, C and D) are considered with side length of 0.1719 m (taper angle ¢ = 0.5°)
and different boundary conditions (SSSS, CCCC and CCFF). The mechanical properties were
given in Table 2.3. A loading described by equation (3.53) below and with excitation frequency of
0 (0 < Q< 1.1wqq) is applied to the tapered laminates. The fundamental frequency w4, for each
configuration with corresponding boundary conditions was given in Tables 2.11 - 2.13. The
maximum deflection of the transverse normal (located at the center of the plate) due to the
excitation and the corresponding excitation frequency are recorded. The same process is repeated
for different values of excitation frequency {2 and using the obtained data the following graphs are
illustrated by Figures 3.19 - 3.30 showing the maximum deflection at the center of the laminate

with respect to change of excitation frequency.

The study is repeated in the same way considering the damping effect and the results are
shown by Figures 3.19 - 3.30. The results can be compared with that of the case with no damping.
The values of @ and 8 have been given in Refs. [3] and [34] as @ = 2.14 and § = 2.76 x 107>,

0'1719) (N/m?), (0< Q< 11wy, (3.53)

f =—-500cos(Qt) S (x -
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It is grasped from Figures 3.19 - 3.30 that for all the boundary conditions and taper
configurations, as expected, the deflection at the center point of the tapered laminates increases
remarkably when the excitation frequency approaches the fundamental frequency of the laminate.
When the excitation frequency coincides with the fundamental frequency, for the undamped case,
the deflection tends to a very high value and for the corresponding case with damping, the
maximum deflection is noticeably large. When the excitation frequency value exceeds the

fundamental frequency, the maximum deflection decreases for the damped and undamped cases.

It is observed from Figures 3.19 - 3.30 that regardless of the configuration, the maximum
deflection of the tapered laminate at the point located at the center of the laminate for the CCCC
plate is the lowest and that of the SSSS plate is the highest. For CCFF plate, it should be noted that
the peak deflection of the plate occurs at the corner point located at the intersection of the two free
edges. Therefore, the maximum deflection at the center for the CCFF plate is not the peak
deflection. For SSSS and CCCC tapered plates, the location of the peak deflection is not
necessarily at the center of the tapered laminates, however, since the taper angle is small, this

location is expected to be close to the center of the laminate.

3.6 Numerical results

In the present section, different loading types given in Table 3.1 are applied to the tapered
laminates with different configurations (Figure 2.1) described in section 2.2 (mechanical properties
were given in Table 2.3) considering various lengths and three boundary conditions (SSSS, CCCC
and CCFF) with no damping. Then, the responses are calculated using the forced vibration
formulation developed in the present chapter and the maximum deflections at the point located at
the center of the tapered laminate due to the excitations, are recorded and written in
Tables 3.3 - 3.5. The excitation frequency {2 = 0.3w;4 and the fundamental frequency w; were

given in Tables 2.11 - 2.13 for each case.

In addition, for the tapered configurations with different boundary conditions and with
length of 0.1719 m, loading types given in Table 3.1 are applied to the tapered laminates and the

deflections at the centers of the plates over time are calculated using the developed formulation
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and are illustrated by Figures 3.31 - 3.78 for damped and undamped cases. Then, the results
displayed in Tables 3.3 - 3.5 and illustrated by Figures 3.31 - 3.78 are discussed.

Maximum Deflection at the Center of the Laminate (mm)

¢ =01° , L=0.8594m ©=05°, L=01719m

Length — 2865 Length — 573
Mean Thickness Ratio ' Mean Thickness Ratio ~

Configuration
Boundary Condition

Loading Type 1
Loading Type 2
Loading Type 3
Loading Type 4
Loading Type 1
Loading Type 2
Loading Type 3
Loading Type 4

Table 3.3 Maximum deflection (mm) at the center for all taper configurations and BCs
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Maximum Deflection at the Center of the Laminate (mm)

© =0.75° , L=0.1146m p=1° , L =0.0859m

Length — 382 Length 986
Mean Thickness Ratio Mean Thickness Ratio

Configuration
Boundary Condition

Loading Type 1
Loading Type 2
Loading Type 3
Loading Type 4
Loading Type 1
Loading Type 2
Loading Type 3
Loading Type 4

Table 3.4 Maximum deflection (mm) at the center for all taper configurations and BCs
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Maximum Deflection at the Center of the Laminate (mm)

@ =1.25° , L =0.0687m ¢ =15°, L=0.0573m

Length — 279 Length — 191
Mean Thickness Ratio Mean Thickness Ratio =

Configuration
Boundary Condition

Loading Type 1
Loading Type 2
Loading Type 3
Loading Type 4
Loading Type 1
Loading Type 2
Loading Type 3
Loading Type 4

Table 3.5 Maximum deflection (mm) at the center for all taper configurations and BCs
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It is grasped from Tables 3.3 - 3.5 that regardless of the boundary conditions, taper
configurations and loading types, with increase in the length over mean thickness ratio, the
deflection at the center of the laminate increases such that when this ratio from 19.1 approaches
57.3, the deflection at the center is increased roughly by 690%. However, this increase in
transverse deflection for SSSS and CCFF plates, with slight difference, are the highest and the

lowest, respectively.

Considering loading types 1 and 3, the deflection of the plates corresponding to the loading
type 1 is higher than that of the loading type 3. The same explanation corresponds to loading types
2 and 4, respectively.

The deflections for the CCCC plates are the lowest and that of the SSSS plates are the
highest. It is noted that the peak deflections of the CCFF plates occur at the corner of the plates at
the intersection of the free edges while that of the CCCC and SSSS plates are expected to be close

to the center where the magnitudes of the deflections have been recorded.

Considering the different taper configurations, the deflection corresponding to taper
configuration C, is the lowest and that of configuration D (with fewer external plies), with slight

difference compared to configuration A, is the highest.

The deflection at the center over time for the square laminates with side length 0of 0.1719 m
(¢ = 0.5°) for different taper configurations and with three boundary conditions (SSSS, CCCC
and CCFF) due to the excitation types given in Table 3.1, are determined next. The excitation
frequency 2 = 0.3w41 and the fundamental frequency w4, for each configuration and boundary

condition were given in Tables 2.11 - 2.13.

For all boundary conditions (SSSS, CCCC and CCFF) and taper configurations with length
of 0.1719 m corresponding to taper angle of 0.5°, the deflection at the center over time due to
excitation types given in Table 3.1, are illustrated by Figures 3.31 - 3.78. The dashed and solid

curves correspond to the deflection of the plate with and without damping, respectively.
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It is grasped from Figures 3.31 - 3.78 that for each boundary condition, the amplitude of
the deflection of the taper configuration C is the least. This can be expected from the stiff structure
and large mass of the configuration. Among the four taper configurations, A and D show higher
deflection. Considering the low mass of A and lack of external plies in D, these configurations

vibrate with higher amplitude when excitations are applied.

It is observed from Figures 3.31 - 3.78 that the effect of the boundary condition on the
deflection amplitude is more important than the laminate’s taper configuration. The deflections of
the CCCC plates are the least regardless of the taper configuration. Therefore, due to the stiff
structure and large mass, deflection of the configuration C clamped at all edges is much less than
that of A with weaker and lighter structure. Regardless of the loading type, the deflection for
configuration C with all clamped edges is the least among different configurations and boundary

conditions.

Although the deflection for CCCC plate is the least in comparison with SSSS and CCFF
plates, considering the time span, it vibrates severely compared to the SSSS and CCFF plates.

The amplitude of vibration considering viscous damping effect is smaller than that of the

case with no damping, for all boundary conditions and taper configurations.

3.7 Conclusion

In the present chapter, the formulation for the forced vibration with and without damping
has been developed for tapered composite plates excited by arbitrary excitations; Then,
demonstration is performed and the formulation has been examined by the layer reduction test.
Afterward, four different line loads were defined and applied to the taper configurations with
different lengths, taper angles and boundary conditions. The results were presented in the tables
and displayed by the graphs. According to the study conducted in the present chapter, it is
concluded that:

1. The deflection due to loading type 1 (line loading along the taper) is greater in comparison

with that due to the loading type 2.
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2. The deflection due to loading type 3 (line loading along the taper) is greater in comparison

with that due to the loading type 4.

3. Since loading types 3 and 4 die away when approaching the laminate’s ends, the deflections

due to these loading types are less compared to that due to the loading types 1 and 2, respectively.

4. The boundary conditions in which the plates vibrate with higher natural frequencies in free
CLPTvibration analysis, show lower deflections in forced vibration investigation. The CCCC
plates show the highest resistance to excitations so that the laminates with this boundary condition

deflect the least.

5. Deflection of the CCFF plates, due to clamped edges, is lower at the center than that of
SSSS plates. However, the maximum deflection of the CCFF plates takes place at the intersection

of the free edges.

6. Since configurations B, C and D are the same in terms of inertia (mass) and are heavier
than configuration A, configuration C that is the stiffest among all, shows the least deflection and
then configuration B comes the second and configurations A and D are almost the same in terms
of transverse deflection. Configuration B is heavier than configuration A and, to some extent, is

stiffer which results in lower deflection.

7. For all boundary conditions, taper configurations and loading types, with increase in the
length over mean thickness ratio, the deflection at the center of the laminate increases such that
when this ratio from 19.1 approaches 57.3, the deflection at the center is increased roughly by
690%. However, the increase in transverse deflections for SSSS and CCFF plates are the highest

and the lowest, respectively.
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Chapter 4 :

Tapered composite plates with hybrid configuration

4.1 Introduction

In chapter 2, free vibration analysis of the tapered composite plates was carried out and
using the mass and stiffness matrices obtained based on CLPT, the Ritz method was applied and
the natural frequencies and the corresponding mode shapes were determined. In chapter 3, the
forced vibration analysis of the tapered composite plates was carried out using the assumed modes
method and considering the mass and stiffness matrices as well as the natural frequencies and the

corresponding mode shapes obtained in chapter 2.

In the present chapter, the tapered composite plates with hybrid configuration composed
of thick-uniform, tapered and thin-uniform parts are considered and the formulations developed in
chapters 2 and 3 are used to study the free and forced vibrations of the hybrid plates. The mass and
stiffness matrices are obtained based on CLPT and the natural frequencies and the corresponding
mode shapes are determined using the Ritz method. The fundamental frequencies of the hybrid
configurations are displayed in the corresponding tables and depicted by the graphs. Then, the
steady state response of the hybrid plates due to harmonic transverse excitation are computed for
different taper configurations and boundary conditions and the obtained results are analyzed and

discussed.
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4.2 Hybrid configurations

In this section, four tapered composite plates with hybrid configurations are described for

the analysis. Figure 4.1 provides a visual perception of configurations A", B", C* and D".

L

L

L,

Configuration A"

E—

Configuration B"

——

Configuration C"

m\

—

Configuration D"

Figure 4.1 Hybrid (uniform-tapered-uniform) Configurations
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The tapered laminated square hybrid plates are considered with L = 0.18 m composed of
thick-uniform, tapered and thin-uniform parts and laminate configuration of (0/90)¢, and
(0/90) 5, for the thick-uniform and thin-uniform parts. The configuration of the tapered part is
(0/90)4s and (0/90); at the left and right ends, respectively. The lengths of the thick-uniform,
tapered and thin-uniform parts are notated by L;, L, and L3, respectively (Figure 4.1). The laminate
is made of resin and unidirectional NCT-301 Graphite-Epoxy material (mechanical properties

were given in Table 2.3) with ply thickness of 125 X 107¢ m.

Figure 4.1 shows that the resin has been used only in the structure of the tapered parts of
the hybrid laminates. Considering the fixed thickness of the left and right ends of the tapered parts
which are the same as that of the thick-uniform and thin-uniform parts, respectively, the length
and taper angle of the tapered part, L, and ¢, are such that with decrease in taper angle ¢, L, is
increased. Since the total length of the hybrid plates, L, is fixed and is equal to 0.18 m as described
before, for a fixed L4, with increase in L, the length of the thin-uniform part, L5, is decreased such

that the total length, L, is kept the same.

It is noted that in the analysis carried out in the present chapter, the length of the

thick-uniform part for all the hybrid configurations, is fixed.

4.3 Free vibration analysis of the hybrid plates

In the present section, the free vibration analysis of the hybrid plates is carried out using
the formulation developed in chapter 2. The stiffness and mass matrices are obtained based on
CLPT for the hybrid plates and are used in the Ritz method in order to determine the natural

frequencies and the mode shapes.

The free vibration analysis of the hybrid plates is carried out considering different taper
angles, taper configurations and boundary conditions. The taper angles corresponding to different

lengths of the tapered part, have been displayed in Table 4.1.
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L(cm) | 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

Ly (cm) | 3 3 3 3 3 3 3 3 3
Ly(cm) | 15 | 135 12 10.5 9 7.5 6 4.5 3
Ly(cm) | 0 1.5 3 45 6 7.5 9 10.5 12

@ (deg) | 0.57° | 0.64° | 0.72° | 0.82° | 0.95° | 1.15° | 1.43° | 1.91° | 2.86°

Table 4.1 Lengths (cm) of laminate parts corresponding to different taper angles

The fundamental frequencies for hybrid plates with taper angles given in Table 4.1 are

obtained for different taper configurations and boundary conditions and are displayed in Table 4.2.

Fundamental Frequency (rad/s)

e £ § @ (deg)
5 8 g 0.57° | 0.64° | 0.72° | 0.82° | 0.95° | 1.15° | 1.43° ] 1.91° | 2.86°
Ah | 3196 | 2871 | 2564 | 2303 | 2112 1937 | 1854 | 1788 | 1725
% Bh | 3099 | 2784 | 2486 | 2233 | 2048 | 1878 | 1798 | 1734 | 1679
% ch | 3175 2852 2547 2288 2098 1924 1842 1776 1721
DR | 3017 | 2710 | 2420 | 2174 | 1993 1828 | 1750 | 1688 | 1639
Al | 6753 | 6067 | 5418 | 4866 | 4463 | 4093 3917 | 3778 | 3664
8 Bh | 6594 | 5924 | 5290 | 4752 | 4357 | 3996 | 3825 | 3689 | 3578
8 ch| 6795 | 6104 | 5451 | 4896 | 4490 | 4118 | 3941 | 3801 | 3686
D" | 6362 | 5715 | 5104 | 4584 | 4204 | 3855 | 3690 | 3559 | 3452
Al | 1494 | 1342 1199 | 1077 987 906 867 836 810
E Bh | 1443 1296 | 1157 | 1040 953 874 837 807 782
8 ch | 1564 | 1405 1255 | 1127 | 1034 948 907 875 848
D" | 1417 | 1272 1136 | 1021 936 858 822 792 768

Table 4.2 Fundamental frequency (rad/s) of the hybrid plates
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It can be grasped from Table 4.2 that regardless of the taper angle, for CCCC and CCFF
boundary conditions, the obtained fundamental frequencies for configuration C" are the highest
among all the configurations. However, for SSSS plates, the fundamental frequencies
corresponding to configuration A" is the highest and configuration C", with slight difference comes

second.

According to Table 4.2, the fundamental frequencies of the CCCC and CCFF plates are the

highest and lowest respectively.

For all boundary conditions and taper angles of the hybrid laminates, the fundamental

frequency corresponding to configuration D" is the lowest among all the hybrid configurations.

Using the data given in Table 4.2, the change in fundamental frequency with increase in
the taper angle ¢, is depicted by Figures 4.2 - 4.5 for all the hybrid configurations and boundary

conditions.
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Figure 4.2 Fundamental frequency (rad/s) variation with increase in taper angle @
(configuration A")
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It is observed from Figures 4.2 - 4.5 that for all the boundary conditions and hybrid
configurations, with increase in taper angle (increase in the length of the thin-uniform part) the
fundamental frequency of the laminate decreases such that when the taper angle approaches 2.86°
from 0.57°, the fundamental frequencies are reduced roughly to 55% and this reduction for the

CCCC plates is numerically greater than that of the SSSS and CCFF plates.

In addition, it is grasped from Figures 4.2 - 4.5 that regardless of the laminate configuration,
the obtained fundamental frequencies for CCCC and CCFF plates are the highest and lowest,

respectively.
4.4  Forced vibration analysis of the hybrid plates

In this section, considering the mass and stiffness matrices as well as the natural
frequencies and the corresponding mode shapes obtained in the free vibration analysis of the
hybrid plates in the previous section, the response of the laminates due to transverse excitation is

calculated using the formulation developed in chapter 3.

The loading described by equation (4.1) in below, is applied to all the hybrid configurations
with different boundary conditions and taper angles displayed in Table 4.2. Then, the maximum
transverse deflection corresponding to the center of the laminates due to the excitation, is

calculated and the results are displayed in Table 4.3.

L
f = —500co0s(0.3w;,t) & (x - E) 4.1)
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Maximum Deflection at the Center (mm)

e 2 é @ (deg)
2 S 5 0.57° | 0.64° | 0.72° | 0.82° | 0.95° | 1.15° | 1.43° | 1.91° | 2.86°
A" ] 0.441 | 0.492 | 0.551 | 0.613 | 0.664 | 0.713 | 0.752 | 0.790 | 0.819
x B" | 0.434 | 0.484 | 0.542 | 0.603 | 0.652 | 0.701 | 0.739 | 0.776 | 0.802
Z ch ] 0.413 | 0460 | 0.515 | 0.572 | 0.619 | 0.666 | 0.702 | 0.738 | 0.762
D" | 0.449 | 0.500 | 0.560 | 0.623 | 0.674 | 0.722 | 0.783 | 0.803 | 0.826
A" ] 0.126 | 0.140 | 0.157 | 0.175 | 0.190 | 0.204 | 0.216 | 0.225 | 0.232
8 B" | 0.124 | 0.138 | 0.154 | 0.172 | 0.187 | 0.200 | 0.211 | 0.221 | 0.228
8 ch]0.118 | 0.132 | 0.147 | 0.163 | 0.178 | 0.191 | 0.201 | 0.211 | 0.218
D" | 0.128 | 0.143 | 0.160 | 0.178 | 0.193 | 0.208 | 0.219 | 0.229 | 0.237
A" ] 0323 | 0.360 | 0.403 | 0.449 | 0.486 | 0.522 | 0.550 | 0.578 | 0.599
= B" | 0.303 | 0.338 | 0.378 | 0.421 | 0.455 | 0.489 | 0.516 | 0.542 | 0.559
8 ch ] 0.295 | 0.328 | 0.368 | 0.409 | 0.442 | 0.476 | 0.502 | 0.527 | 0.544
D" | 0.337 | 0.375 | 0.4200 | 0.467 | 0.506 | 0.542 | 0.587 | 0.602 | 0.6200

Table 4.3 Maximum deflection (mm) at the center of the laminates due to transverse excitation

Table 4.3 shows that, regardless of the boundary conditions and taper angle, the deflection
corresponding to configuration C" is the lowest and that of configuration B" comes the second and

deflection for configuration D" is the highest.

It is noted that consideing the hybrid configuration of the plates, the peak deflection of the

plates do not occur necessarily at the center of the laminates.

In order to illustrate the change in maximum deflection at the center of the hybrid laminates
with respect to taper angle ¢, following graphs are depicted by Figures 4.6 - 4.9 using data from
Table 4.3.
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Figure 4.6 Maximum deflection at the center for different taper angles (configuration A")
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Figure 4.7 Maximum deflection at the center for different taper angles (configuration B")
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Figure 4.8 Maximum deflection at the center for different taper angles (configuration C")
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Figure 4.9 Maximum deflection at the center for different taper angles (configuration D)

It is grasped from Figures 4.6 - 4.9 that, with increase in taper angle, the maximum
deflection at the center of the laminate increases such that when the taper angle approaches 2.86°
from 0.57°, the maximum deflection at the center of the laminate is increased roughly to 185%

for all hybrid configurations and boundary conditions.

In addition, it is grasped from Figures 4.6 - 4.9 that regardless of the laminate configuration,
the transverse deflection at the center for SSSS and CCCC plates are the highest and lowest,
respectively. It is noted that for CCFF plates, the peak deflection of the laminates is expected to

occur at the corner of the plate, at the intersection of the free edges.
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4.5 Conclusion

In chapter 4, four different hybrid laminate configurations were described and the free
vibration analysis of the laminates was conducted based on CLPT and using the Ritz method. The
effect of change in taper angle on the variation of the fundamental frequencies was investigated
for different boundary conditions. Then, the forced vibration analysis of the hybrid plates was
carried out using the assumed modes method and the effect of change in taper angle on the
variation of the maximum deflection of the center point of the laminates, was investigated
considering different boundary conditions. From the study performed in the present chapter, it can

be concluded that:

1. Regardless of the boundary conditions and hybrid configurations, with increase in taper
angle the fundamental frequencies of the laminates decrease such that when the taper angle

approaches 2.86° from 0.57°, the fundamental frequencies are reduced roughly to 55%.

2. Regardless of the hybrid configurations and boundary conditions, with increase in taper
angle, the maximum deflection at the center of the laminates increase such that when the taper

angle approaches 2.86° from 0.57°, the maximum deflection is increased roughly to 185%.

3. Because of fewer external plies in configuration D", it vibrates with the lowest fundamental
frequency among all the configurations for all boundary conditions. Configuration C", with stiff
structure, shows the highest fundamental frequency for CCCC and CCFF boundary conditions and

configuration A" vibrates with the highest fundamental frequency among the SSSS plates.

4. For all boundary conditions and taper angles, the deflections corresponding to
configurations C* and D" are the lowest and the highest, respectively, and that of configuration B

is the second lowest.
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Chapter 5 :

Conclusion

5.1 Contribution

In the present thesis, free vibration analyses of the tapered and hybrid laminated composite
plates have been conducted based on the Classical Laminated Plate Theory (CLPT) as well as
First-order Shear Deformation Theory (FSDT) using Ritz method for four taper configurations and
three boundary conditions. In the analysis, the stiffness matrix and the mass matrix were derived
for CLPT as well as FSDT and the calculations leading to mass and stiffness matrices are
performed in matrix form facilitating the derivation of the matrices and reducing the possibility of
computational error. This compact matrix-form formulation describes the mass and stiffness

matrices for CLPT and FSDT in a unified manner.

An investigation has been carried out regarding the increase of the calculation accuracy of
the natural frequencies that are used in the derivation of the solution for the forced vibration
response. Then, further suggestions have been given in order to minimize the frequency calculation

errors and to avoid any extra computational effort.

In order to obtain the numerical results efficiently, an approach has been given to cope up
with the computational problems caused by the presence of the integrands that are combinations
of hyperbolic, polynomial and trigonometric functions. In this approach, by taking advantage of

the Taylor series, one can obtain the numerical results using MATLAB® in a very short time.

Forced vibrations of the tapered and hybrid laminated composite plates have been
investigated based on CLPT using assumed modes method for all the taper configurations and
boundary conditions. The maximum deflection of the plates at the center have been given in the
tables for different cases and the deflection response at the plate center over time have been

depicted using the solution derived in the analysis and the software MATLAB®.

120



5.2 Conclusion

The study conducted on tapered laminated composite plates, begins with the free vibration
analysis based on CLPT and FSDT using the Ritz method and continues with the forced vibration
investigation using the assumed modes method and the derivations from the free vibration analysis,
and ends with the free and forced vibration analyses of the hybrid laminates. In the following, the

principal conclusions of the present study are given.

1. In order to obtain the fundamental frequencies of the tapered plates with good accuracy,
considering the first 4 terms of the series expansion of the Ritz shape function is sufficient.
However, in order to determine the solution for the forced vibration that requires numerous natural
frequencies, higher number of terms should be taken into account. In the present thesis, 13 terms
have been considered for all the cases in the calculations corresponding to the free and forced

vibration analyses using the Taylor series and the approach explained in section 2.9.

2. For all taper configurations, the fundamental frequencies for CCCC plates are the highest
and that of the CCFF plates are the lowest.

3. In composite plates, the plies close to the midplane absorb less energy than the external
plies and they do not significantly take part in increasing the natural frequencies while their inertial

(mass) contribution is the same as that of the other plies. The order of 3 for variable z (the distance

3

from the midplane) in the bending stiffness coefficients R;}, clarifies the importance of this fact.

4. Among the tapered laminated composite plates considered, the configuration C is the
stiffest configuration. The resin considered as the weaker material is positioned at the core while
the plies are used in farther layers from the midplane, thus, taking advantage of their high stiffness
property to the full capacity. Therefore, it is observed from the numerical results that this
configuration vibrates with highest fundamental frequency among all the configurations for CCCC
and CCFF boundary conditions. Furthermore, it shows the lowest deflection when subjected to
excitation in forced vibration investigation compared to the rest of the configurations for all the

boundary conditions.
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5. Tt 1is grasped from the results that the configuration A containing considerably fewer plies
compared to other configurations, vibrates with frequencies that are close to that of the other
configurations in free vibration analysis. This behavior comes from the use of the plies at the most
external layers and resin which is the weaker material, in internal layers, such that the configuration
is lighter and is still able to compensate for the absence of notable numbers of stiff plies within the

structure.

6. The structure of configuration C with the resin used at the core, is stiffer than that of the
configuration B and D with the resin used at farther layers from the midplane. In addition,
configuration D has fewer external plies. Therefore, the fundamental frequency of C is the highest

and that of the D is the lowest among configurations B, C and D for all boundary conditions.

7. The “Layer reduction test” in free vibration analysis shows that the fundamental frequency
of the tapered plate is between the fundamental frequencies of the thick-uniform and thin-uniform
plates with the laminate configurations identical to that of the left and right ends of the tapered
plate.

8. From the “Layer reduction test” in free vibration analysis, it is observed that by removing
the plies from the tapered and uniform-thin laminates, the fundamental frequencies corresponding
to the plates, decrease. However, this reduction in fundamental frequency value is faster in the

uniform-thin laminate.

9. The “Layer reduction test” in forced vibration analysis shows that the deflection at the
center of the tapered plate is higher than that of the thick-uniform laminate and lower than that of

the thin-uniform laminate.

10. From the “Layer reduction test” in forced vibration analysis, it is observed that by removing
the plies from the tapered and uniform-thin laminates, the deflection at the center of laminates
increase. However, this increase in transverse deflection magnitude is faster in the uniform-thin

laminate.

11. The magnitude of the deflection at the center corresponding to the line loads, for all the

configurations, are slightly higher when the line loads are distributed along the length (along the
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taper) in x direction compared to the case with the line loads distributed along the width in y

direction.

12. For all boundary conditions and taper configurations, the magnitudes of the deflection at
the center of the laminates, due to the distributed sinusoidal loadings that dies away when
approaching the laminate’s ends, are lower compared to that due to the line loads with constant

magnitude throughout the laminate length.

13. In the forced vibration analysis, a laminate with higher fundamental frequency compared
to another laminate, does not necessarily deflect less when subjected to the same excitation. The
Configuration C is denser and stiffer than configuration A and fundamental frequency of A is
slightly higher than that of C for SSSS boundary condition. However, in forced vibration analysis,
for all boundary conditions including SSSS, configuration C compared to A, deflects less when
subjected to the same excitation. The mass and stiffness of configuration C provide higher
resistance to excitation. The fundamental frequency of a heavy and stiff laminate can be
comparable to that of a light and weak laminate. However, due to stiffness and inertial effect, the
magnitude of the deflection for the heavy and stiff laminate can be less than that of the light and

weak laminate when subjected to the same excitation.

14. With increase in taper angle of the tapered part in hybrid laminate, the fundamental

frequency of the plates decreases.

15. With increase in taper angle of the tapered part in hybrid laminate, the magnitude of the

deflection at the center of the laminate due to transverse excitation increases.

5.3 Recommendations for future works

Considering the content of the study and the contributions made in the present thesis, the

following suggestions are proposed for the future works.

1. Free and forced vibration analysis of tapered laminated composite plates presented in this
thesis can be extended for thick laminates based on Higher-order Shear Deformation Theory

(HSDT).
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2. Damped and undamped free vibration analysis can be conducted on equilateral and

trapezoidal tapered laminated composite plates.

3. Damped and undamped forced vibration analysis can be conducted on equilateral and

trapezoidal tapered laminated composite plates.

4. Random vibration analysis can be performed on tapered laminated composite plates.

124



References

[1] S. Seraj, “Free Vibration and Dynamic Instability Analyses of Doubly-Tapered Rotating
Laminated Composite Beams”, MASc Thesis, Concordia University, 2016.

[2] J. M. Berthelot, Composite Materials - Mechanical Behavior and Structural Analysis,
Springer - Verlag Berlin Heidelberg New York, 1999.

[3] P. Salajegheh, "Vibrations of Thickness-and-width Tapered Laminated Composite Beams
with Rigid and Elastic Supports," MASc Thesis, Concordia University, 2013.

[4] K. He, S.V. Hoa and R. Ganesan, “The Study of Tapered Laminated Composite Structures:
A Review”, Composites Science and Technology, Vol. 60, pp. 2643 — 2657, 2000.

[5] S. M. Akhlaque-E-Rasul, “Buckling Analysis of Tapered Composite Plates Using Ritz
Method Based on Classical and Higher-order Theories”, MASc Thesis, Concordia University,
2005.

[6] R Ganesan and D.Y. Liu, “Progressive Failure and Post-Buckling Response of Tapered
Composite Plates Under Uni-Axial Compression”, Composite Structures, Vol. 82, No 2, pp. 159
— 176, 2008.

[7] P. Venni and C. Mariani, “Free Vibration of Uncertain Composite Plates via Stochastic

Rayleigh-Ritz Approach”, Computers and Structures, Vol. 64, No. 1 — 4, pp. 407 — 423, 1997.

(8] A. Zabihollah, “Vibration and Buckling Analysis of Tapered Composite Beams Using
Conventional and Advanced Finite Element Formulations”, MASc Thesis, Concordia

University, 2003.

[9] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells - Theory and Analysis,
CRC Press, 2003.

[10] R. M. Jones, Mechanics of Composite Materials, 2" Edition, Taylor and Francis, 1999.

125


https://www.sciencedirect.com/science/journal/02638223/82/2

[11] J. M. Whitney, “The Effect of Boundary Conditions on the Response of Laminated
Composite”, Journal of Composite Materials, Vol. 4, No. 2, pp. 360 — 378, 1970.

[12] B. Baharlou and A. W. Leissa, “Vibration and Buckling of Generally Laminated
Composite Plates with Arbitrary Edge Conditions”, International Journal of Mechanical

Sciences, Vol. 29, No. 8, pp. 545 — 555, 1987.

[13] H. Matsunaga, “Vibration and Stability of Cross-ply Laminated Composite Plates
According to a Global Higher-Order Plate Theory”, Composite Structures, Vol. 48, No. 4, pp.
231 -244, 2000.

[14] C.P. Wu and W. Y. Chen, “Vibration and Stability of Laminated Plates Based on a
Local High Order Plate Theory”, Journal of Sound and Vibration, Vol. 177, No. 4, pp. 503 —
520, 1994.

[15] S. Mohamed Nabi and N. Ganesan, "A Generalized Element for the Free Vibration
Analysis of Composite Beams" Computers and Structures, Vol. 51, No. 5. pp. 607 — 610, 1994.

[16] C. W. Bert and M. Malik, “Free Vibration Analysis of Tapered Rectangular Plates by
Differential Quadrature Method: A Semi-Analytical Approach”, Journal of Sound and Vibration,
Vol. 190, No. 1, pp. 41 — 63, 1996.

[17] P. Malekzadeh, “Nonlinear Free Vibration of Tapered Mindlin Plates with Edges
Elastically Restrained Against Rotation Using DQM”, Thin-Walled Structures, Vol. 46, No. 1, pp
11-26,2008.

[18] H. Zhang, D. Shi and Q. Wang, “An Improved Fourier Series Solution for Free Vibration
Analysis of the Moderately Thick Laminated Composite Rectangular Plate with Non-Uniform
Boundary Conditions”, International Journal of Mechanical Sciences, Vol. 121, pp. 1 — 20, 2017.

[19] A. Houmat, “Three-Dimensional Free Vibration Analysis of Variable Stiffness Laminated

Composite Rectangular Plates”, Composite Structures, Vol. 194, pp. 398 — 412, 2018.

126


https://www.sciencedirect.com/science/article/pii/S0022460X96900462#!
https://www.sciencedirect.com/science/article/pii/S0022460X96900462#!
https://www.sciencedirect.com/science/journal/0022460X
https://www.sciencedirect.com/science/journal/0022460X/190/1
https://www.sciencedirect.com/science/article/pii/S0263823107002157#!
https://www.sciencedirect.com/science/journal/02638231
https://www.sciencedirect.com/science/journal/02638231/46/1
https://www.sciencedirect.com/science/article/pii/S0020740316310669?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0020740316310669?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0020740316310669?via%3Dihub#!
https://www.sciencedirect.com/science/journal/00207403
https://www.sciencedirect.com/science/journal/00207403/121/supp/C
https://www.sciencedirect.com/science/article/pii/S0263822318300850#!
https://www.sciencedirect.com/science/journal/02638223
https://www.sciencedirect.com/science/journal/02638223/194/supp/C

[20] A. Ananda Babu, P. Edwin Sudhagar, R. Vasudevan and P. Jeyaraj, “Vibration Analysis
of a Tapered Laminated Thick Composite Plate with Ply Drop-Offs”, Archive of Applied
Mechanics, Vol. 85, No. 7, pp. 969 — 990, 2015.

[21] H. Eftakher, “Free and Forced Vibrations of Tapered Composite Beams Including the
Effects of Axial Force and Damping”, MASc Thesis, Concordia University, 2008.

[22] A. Kumar Gupta, M. Saini, S. Singh and R. Kumar, “Forced Vibrations of Non-
Homogeneous Rectangular Plate of Linearly Varying Thickness”, Journal of Vibration and

Control, Vol. 20, No. 6, pp. 876 — 884, 2014.

[23] A. Ananda Babu, P. Edwin Sudhagar and R. Vasudevan, “Dynamic Characterization of
Thickness Tapered Laminated Composite Plates”, Journal of Vibration and Control, Vol. 22, No.
16, pp. 3555 - 3575, 2016.

[24] M. Darabi and R. Ganesan, “Non-Linear Vibration and Dynamic Instability of
Internally-Thickness-Tapered Composite Plates Under Parametric Excitation”, Composite

Structures, Vol. 176, pp. 82 — 104, 2016.

[25] S. Seraj and R. Ganesan, “Dynamic Instability of Rotating Doubly-Tapered Laminated
Composite Beams Under Periodic Rotational Speeds”, Composite Structures, Vol. 200, pp. 711 —
728, 2018.

[26] P. Salajegheh and R. Ganesan, “Free Vibrations of Variable-thickness Variable-width
Laminated Composite Beams with Elastic Supports”, American Society of Composites, 28th

Technical Conference, 2013.

[27] H. R. H. Kabir, “On the Frequency Response of Moderately Thick Simply Supported
Rectangular Plates with Arbitrarily Lamination”, International Journal of Solids and Structures,

Vol. 36, No. 15, pp. 2285 — 2301, 1999.

[28] C.W.Bertand B.L. Mayberry, “Free Vibration of Unsymmetrically Laminated Anisotropic
Plates with Clamped Edges”, Journal of Composite Materials, Vol. 3, No. 2, pp. 282 — 293, 1969.

127


https://journals.sagepub.com/author/Gupta%2C+Arun+Kumar
https://journals.sagepub.com/author/Saini%2C+Manisha
https://journals.sagepub.com/author/Singh%2C+Shiv
https://journals.sagepub.com/author/Kumar%2C+Rajendar
https://www.sciencedirect.com/science/journal/02638223
https://www.sciencedirect.com/science/journal/02638223
https://www.sciencedirect.com/science/journal/02638223/194/supp/C
https://www.sciencedirect.com/science/journal/02638223
https://www.sciencedirect.com/science/journal/02638223/194/supp/C

[29] A.K.NOOR, “Free Vibrations of Multilayered Composite Plates”, AIAA Journal, Vol. 11,
No. 7, pp. 1038 — 1039, 1973.

[30] B. Arab, R. Ganesan and M. Malaki, “Fundamental Frequency of Composite Plate with
Staircase Internal-Thickness-Taper”, 26" International Congress on Sound and Vibration, 2019.

(The paper has been accepted and will be published in July 2019)
[31] S.S. Rao, Vibration of Continuous Systems, John Wiley & Sons, 2007.

[32] D.S. Cho, B. H. Kim, J. H. Kim, N. Vladimir and T. M. Choi, “Forced Vibration Analysis
of Arbitrarily Constrained Rectangular Plates and Stiffened Panels Using the Assumed Mode
Method”, Thin-Walled Structures, Vol. 90, pp. 182 — 190, 2015.

[33] S.S.Rao, Mechanical Vibrations, 5" Edition, Pearson Education, 2004.

[34] M. A. Fazili, “Vibration Analysis of Thickness-and Width-Tapered Laminated Composite
Beams using Hierarchical Finite Element Method”, MASc Thesis, Concordia University, 2013.

[35] P. A. A. Laura and R. Duran, “A Note on Forced Vibration of a Clamped Rectangular
Plate”, Journal of Sound and Vibration, Vol.42, No.1, pp.129 — 135, 1975.

[36] R. Ganesan, Stress Analysis in Mechanical Design, Lecture Notes, Mechanical, Industrial

and Aerospace Engineering Department, Concordia University, 2018.

[37] A.C.Ugural and S. K. Fenster, Advanced Mechanical of Materials and Applied Elasticity,
5t Edition, Pearson Education, 2012.

[38] M. T. DiNardo and A. P. Lagace, “Buckling and Post-buckling of Laminated Composite
Plates with Ply Drop-offs” AI4A Journal, Vol. 27, No. 10, pp. 1392 — 1398, 1989.

[39] J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates, Taylor and Francis
Group, 1987.

[40] A. K. Kaw, Mechanics of Composite Materials, Taylor and Francis, 2006.

128


https://www.sciencedirect.com/science/article/pii/S0263823115000300?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0263823115000300?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0263823115000300?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0263823115000300?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0263823115000300?via%3Dihub#!
https://www.sciencedirect.com/science/journal/02638231
https://www.sciencedirect.com/science/journal/02638231/90/supp/C
https://www.sciencedirect.com/science/journal/0022460X

[41] J.R. Vinson and R. L. Sierakowski, The Behavior of Structures Composed of Composite
Materials, 2" Edition, Kluwer Academic Publishers, 2002.

[42] J. M. Whitney, “The Effect of Transverse Shear Deformation on the Bending of Laminated
Plates” The Journal of Composite Materials, Vol. 3, No. 3, pp. 534 — 547, 1969.

[43] J. N. Reddy And A. Khdeir, “Buckling and Vibration of Laminated Composite Plates
Using Various Plate Theories”, 4144 Journal, Vol. 27, No. 12, pp. 1808 — 1817, 1989.

[44] J. N. Reddy and D. H. Robbins, “Theories and Computational Models for Composite
Laminates”, Applied Mechanics Reviews, Vol. 47, No. 6, pp. 147 — 169, 1994.

[45] A. Tessler, E. Saether and T. Tsui, “Vibration of Thick Laminated Composite Plates”,
Journal of sound and vibration, Vol. 179, No. 3, pp.475 — 498, 1995.

[46] M. Huang, X.Q. Ma, T. Sakiyama, H. Matuda, C. Morita, “Free vibration analysis of
orthotropic rectangular plates with variable thickness and general boundary conditions”, Journal

of Sound and Vibration, Vol. 288, No. 4 - 5, pp. 931 - 955, 2005.

129


http://appliedmechanicsreviews.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=J.+N.+Reddy&q=J.+N.+Reddy
http://appliedmechanicsreviews.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=D.+H.+Robbins&q=D.+H.+Robbins
https://www.sciencedirect.com/science/journal/0022460X
https://www.sciencedirect.com/science/journal/0022460X
https://www.sciencedirect.com/science/journal/0022460X/288/4

Appendix A

A.l Reduced stiffness matrices based on CLPT and FSDT

The stress-strain relationship, considering negligible out of plane normal stress, is written

for the k™ layer as follows using equation (2.45).

Oy =01 [C11 Ci2 Ciz Gy G5 Cig] p&x =&
0y = 03 Ciz Gy (i3 Gy (a5 Cye &y =&
o, =03=0 _|Ciz Gz C33 Caa G35 (36 & = & (1)
Tyz = 04 Cia Caq C3q Cay Cus Cye| |Vyz =%
Txz = Os Cis Cps C35 Cas Css Csg| [Yaz =85
Txy = 06 }k [Ci6 Ca6 C36 Cae Cse Coelp Vv = %6/,

Similar to Ref. [5], calculation is performed here in order to derive the reduced stiffness

matrices based on CLPT and FSDT. Considering g3 = 0 in equation (1), it is expressed that:

6
j=1

Using equation (2), the following expression is written.

"7 —Z @)s )

j#3

In addition, using equation (1), it is written that:
o; = Z Cljgj + Ci3€3 (l * 3) (4)
];3

Equation (3) is substituted in equation (4).

Z Cijgi|+ Cis|— Z ((6:33) &; (i #3) (5)
J¢3
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Equation (5) is written in the following from.
6
14 : lj i C33 Jj (6)

Considering notation Q;; = (C ij — Ci3 cﬁ)’ equation (6) is rewritten as follows:
33

6
o; = Z Qij & (i #3) )
]:

j#3

Writing equation (7) in matrix form:

(91 [Qn Q2 Qs Q15 Qle] (€1)
02 Q21 Q22 Q24 Q25 Q26| |&2
O4p =041 Qa2 Qua Qs 0Qu 2 )
lUSJ Qs1 Osz Qss 0Qss Ose LESJ
06/ i Qo1 Qo2 Qes Uss Q66Jk €6J i

Considering the relation C;; = Cj; which results in Q;; = Q;, equation (8) is expressed as

follows.

) Q2 Q22 Qs Q5 Q2|2
04 Qia Q24 Qus Qus Que||éa )
Os Qs Q5 Qss 0Qss CQse] |5

01‘ rn Q12 Qiz Q15 Q6] &1

Og

Q16 Q26 (a6 Use Ueel M6

Rearranging the stresses and considering shear correction factor using Refs. [2] and [5],

the reduced stiffness matrix for FSDT becomes:

Oy = 0q Q11 Q12 Q16 Qs Q55 & =&
0y = 03 Qiz Q22 Q26 Q24 Qs &y = &
Txy = O0p| = Qe Q26 Qo6 Qa6 Use ||Vxy = €6 (10)

lyz = 04 5(Q14 Q24 Qu6 0Qsa Q45) Vyz = &4

Txz = 05 6\Q15s Qz5 Qs6 Qus Qss/IVxz =85

Considering €, = €5 = 0 for CLPT in equation (6), it is expressed that:
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o; =

A

N

Cs .
(Cij ~Co 6_33) & (i % 3,4,5) (11)

5

W

J
Jj*
Considering the relation Q;; = Qj; in equation (11), the reduced stiffness matrix for CLPT

1s derived.

Ox = 01 Qi1 Q12 Q] [&x=&
[ay = 02] = [Q12 Q22 st] [Ey = 82] (12)
Txy = 06 Qe Q26 Qeel LYxy = &6

A.2  Derivatives of kinetic and strain energies

In order to derive the derivatives of strain and kintic energies based on CLPT, equation

(2.85) is substituted in equation (2.80), and equation (2.86) is substituted in equation (2.80).

0%(w,) |,
0x?

—~[w Cyy = C .. C c 62 ‘w
CU[ ol — ff [RngmWOYnWO + REZXmWanWo ;yzo) dA (13)
02 (‘w,)

dxdy

|RE X Ty + RE Y,

+AR3 X oy Wo

a(“w,)

. C c c . C a(CW )
Can wol X f.’» R3XmWanWo a + R3XmWanWo o
=W X

T dy |dA (14)

+RIX, VoY, Y0 (Cw,)
Substituting equation (2.51) in equations (13) and (14), it is written that:

L X oo R, + R3 KoY, e | Koy ™o +
C = [wo] [ o"C o .. C o [ o c o..c o w
g™ = 22” ([RE X, oW + RS E 2%, | X ™oV ™o + A dA (15)

. c . c . C .c
3 Wo vy Wo Wo vy "Wo
AR XY, X MY,
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R3X"oY, o X, oy, +

1 ]
CT, [wol — szZ[J‘ 3X on Wox.WOY' ‘w, A;\_/v(,dA

i=1j=1 +R1X WOY WOX WOY ‘wy

Equations (15) and (16) result in the following expressions:

L L
f R3, X, W"X Wo dx f W"Y Wo gy
0

L L
+ fo R} X, °X, " dx fo Y, "oy, "o dy

1] L L
CU wol _ Z Z n j- RSZX:”WOX;WO dxf Y;WU -Y-jcwo dy Ai}’"o
0

i 0
i=1j=1
J L

L
+ fo R3, XX, Modx fo Y,"o¥, "o dy

L L
4 j REX 0§ o j ooy oy
0 0

x=L . C . C y=L C o
/ R3X,, °X,"°dx J Y, ey, Yody \

x=0 y=0

(16)

(17)

(18)

For FSDT, by substituting equation (2.85) in (2.80) for derivative of strain energy and by

substituting equation (2.86) in (2.80) for derivative of kinetic energy, it is expressed that:

ER%SXTI;lWoYT{:Wo a(FWO) + ERi4XFWOYFWO a(FWO)

m In
FU[wO] _ U 6 : 0x 65 G P
RS X i Y P+ REX Y 0y
5 0
ox] ER%SXr(fleripx (FxO) + = G —REs X Y @y + R XY™ ;;x
- ] s
F 0. 00 do do
+R3 X@xy§ox X + R X§0xy§0x y + R X(PxY(Px y
66‘m In ay 66 a 12 ay
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(F o) a(Px a(px

R44X“’yy"’y +RLX DY —Z 4 R XYY
a‘P 0y 0y 0Py 0
+= R44X"’yyfy<py +R3,XYY X p Y L R XYY X >
y X
FT [wol — a)z ff[RlX;lwoyyfwo(FWo)]dA (22)
=~ lox] — wz ‘U‘[Rgx:flxyépx(px]d[l (23)
P o [[lRex s (24

By substituting equations (2.52), (2.53) and (2.54) in equations (19) to (24), it is expressed
that:

— §R§5X;IW° Yo x oy e
6 ] AFWO

42 RiXmev, o xYeye !

1]
=5 [wol m - n vt
ACls z Z f f 6 dA (25)

i=1j=1 + (g Rgsx,ﬁoy,{”"x;”xg"’X> ATF
LV) A”

5 .
+ (g RiaXmo ¥y XY

— 5 . -
(g RFI)SXr(flxyripfowo YjFWo) A;?}’Vo

5
g RéSX:flx YriPxXl‘Px Yj(Px

1 ]
. . Px
FU\[«Jx] — g fo + +R31X7‘flxyfxxlfpxy}(ﬂx Aij dA (26)
i=1 j=1 +RE X Y XY

R26X1(51x YriPxX:py Y}(py
+RE, Xy x v

Py
ij
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- 5 . -
(— Ry Xy Yy XE™ YjFWO> AR

6
Py Py vox x
(szxmyyn YXPy? ) o
rJ 3 vPyyPyyPxyPx |
. +R: XY TXTFY.
T 3 | H s A O T
el £ 1 yvPyy Py v Py Py
=1 j=1 €R44Xm Yn Xl Y]
. . @
| HRRX VXY (A

+RE X, Yy XY

1 ]
F,T-. [wol — wZZZ[f I:Rlx‘;;lWoYTi:WoXiFWoY}FWo] AZWOdA (28)
i=1j=1
1 J
~ [ox] x v Px xyPx x
e 2 wZZZﬂ[R%‘Q VP XEY O] AP*dA 29
i=1 j=1
1
= [oy] Py, Py Py, Py 4P
T = 2 z ﬁ [R3X72 v x v | A% da (30)
i=1j=1

By rearranging the equations (25) to (30) and performing some mathematical operations,

the following expressions are derived for derivatives of strain and kinetic energy based on FSDT.

- L L L
( f R X X" dx f vy o dy + f
0

0 0

L L
7 FWo x Wo x x
+<f0 RixF"x? dxfo i A6 dy)Af}

L L
+< J R1XE" X! dx f Y,fwoyj"’yczy> AL
0 0

L -
Ry XE"XF"dx f A 7! )AF.WO
R S A A YY)
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0

5 L L L ) ) L
A fo RiXpxxP*dx fo v Y dy + fo R3 X pxXP*dx fo Yy <Y *dy

L L
+ f R3XpxxP*dx f <y P*dy
0 0

5/t . L
g( f R Xpx X" dx f Y,;”xY].FW"dy> AR+
0

Px
Aij

L L L L
+( ] RLXLxXT” dx j Yn"’ij"’ydy+ j RE XXX dx J Y,;”xyj"’ydy>A"’y
- 0 0 0 0

5
6( j R44X"’yXFW°dx f "’yYFWOdy> A +
0

5 t L L L . .
- ] RiXyY X! dx J YY" dy + j RS, XX dx f v v dy
0 0 0

L L
+j Rgs)'(;fly)'(i(pydxj Y,;pij(pydy
0 0

L

oyl

i=1j=1

RIXEYoXF"0dx J YFW"YFW"dyl AfdA

0

) S .
L L
o lox]l Px yvPx PxyPx Px
T _wZZZ f R3X;7 X, dxf Y dylAij dA
i=1j=1 -0 0
L Jo L
eyl 5 3vPy v Py Py, Py oy
el =w ZZ fORXmXi deYn Y] dy Al.jdA
i=1j=1 "~
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A.3  Rearrangement of stiffness and mass matrices

Equations (2.107) to (2.109) are rewritten.

=5 [wol
U = [@x PVl s {AP Y x1 + [‘PyFW"] {A%73} 51 + [Wo PVl s {AF 31 (37)

1jx1j

ﬁ [ox]

F = [0 1yx1){A%*}jx1 + [(Py(px] AP} 1 + Wo 1y {AFY O} 15q (38)

1jx1j

U [‘Py]

F = [0V ]1jx1) 1A} 51 + [(Py(py] {497} 1 + W 11 {AFY 0} x4 (39)

1jx1J

Equations (2.104) to (2.106) (Fﬁ ol = plwel - glexd — o, U o] _ 0) are considered

F F

and used in equations (38) and (39).
{495} = =[x #*17 ([@y <[ [A*7] + [w, P=1{AF"?3) (40)
[y #7[{A273 + [wo 7 1{AP"0} = [0, ][ P17 ([0 #< [{A?} + [, P1{AF*})  (41)
Equation (41) is rearranged as follows.
{42} = ([0,2] = [ox 02?1 [0y 2]) 7 (a1 ?*1  [wo <] — [wo P D{APY}  (42)
Considering equation (42), the notation [Str] is used in the equation.
{A%v} = [Str]{Ar*e} (43)
Equation (43) is substituted in equation (40).
{495} = —[@:#*]7Y ([ @y *][Star] + [wo#+]){Ar"} (44)
Substituting equations (44) and (43) in equation (37) results in the following expression.

= [wol

[FU ]=([(pyWO][Star]+[wopWo]—[<PxWo][(px<px]—1([(py<px][Star]+[W0<px])){AFwo} (45)

Equation (45) is rewritten considering notation [ - K ]
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[FU[WO]] = [FI?]U)(U{AF o}]]xl (46)
[ K] = [[0y"] = [0 1[0:2x17 [0y +]] [Str] = [0 ][] [Wo ] + [woFe]  (47)
[str] = ([0, %] = (0221102217 [0, %)) ([ 1?1 Wo?<] = [Wo>1)  (48)

A4  Forced vibration formulation for zero initial displacement and velocity

Equations (3.1), (3.2), (3.10) and (3.11) are rewritten here for convenience.

S
Il

M-

N

4 AL (OX;(0)Y;(y) 49)
i=1j=1
I HGYACNAH (50)
i=1j=1
{AF} = [Aw]uxu {q}ljxl (51)
{AF} I]xI] {q}I]xl (52)

Since the plate is in static state at equilibrium position at t = 0, the transverse displacement
and velocity, wf and w7, are zero meaning that {AF} and {AF} are zero. Therefore, equations (51)

and (52) become:

{0} = [Aw]I]XI] {q}1]><1 (53)

{0} = [Aw]Iij {q}ljxl (54)

From equations (53) and (54) it is concluded that {q} = {¢} = 0 and by substituting them
in equation (3.28), equation (3.29) is obtained.
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Considering the outstanding engineering properties, such as high strength/stiffness to weight ratios
and the capability to be stiff at one location and flexible at another location as desired, internally-
thickness-tapered composite plates are used in aerospace, mechanical and green power generation
structures. Due to its distinct characteristics, such plates require comprehensive research to under-
stand their dynamic response. In the present paper, the free vibration response of composite plates
with staircase internal-thickness-taper configuration is considered considering clamped-free bound-
ary condition. Since closed-form exact solution cannot be obtained for the resulting complex partial
differential equation with variable coefficients in space and time coordinates, the Ritz method in con-
junction with the Classical Laminated Plate Theory (CLPT) is used to obtain the system mass and
stiffness matrices for out-of-plane bending vibration. In this approach, the stress and strain distribu-
tions in the laminated plate are determined in terms of mid-plane displacements and rotations corre-
sponding to CLPT and as functions of taper angle and fiber orientation angle, and using these the
kinetic and strain energies of the plate are calculated. Following the variational approach of the Ray-
leigh-Ritz method, the eigenvalue problem for the free vibration response is obtained, and the natural
frequencies and mode shapes of the plate are determined by solving this eigenvalue problem. Numer-
ical and symbolic computations have been performed using the software MATLAB. The influences
of taper angle under thickness constraint and length constraint on the natural frequencies of the lam-
inated composite plate are investigated for different stacking sequences of the laminate. Important
design aspects are systematically brought out.

Keywords: Rayleigh-Ritz method, free vibration, composite plates

1. INTRODUCTION

Due to outstanding mechanical properties, composite materials are widely used in industry for years
and they come 1n various shapes and structures depending on the requirements. As an instance, the ta-
pered composite plates are popular in the aerospace industry and are used in manufacturing the structures
such as rotor blades of helicopters and aircraft wings. Thickness reduction in tapered composites can be
implemented by the termination of plies at different locations providing the tapered plate with customized
stiffness property which is an absent capability in uniform laminates. The initial application of tapered
laminated composites dates back to mid-1980s when commercial and military sectors demanded, elas-
tically customizable components with higher weight to stiffness ratio [1].
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In the course of the recent decades, few researchers have conducted analysis of such tapered struc-
tures. Recently, Seraj and Ganesan [2] investigated the dynamic instability of rotating doubly-tapered
laminated composite beams under periodic rotational speeds. Liu and Ganesan [3] studied tapered com-
posite plates for their dynamic instability. Ananda Babu et a/ [4] performed the dynamic characterization
of thickness-tapered laminated composite plates using finite element analysis. Free vibration analysis of
variable-stiffness laminated composite plates using Ritz method has not so far been conducted in existing
literature and it is addressed in the present paper.

2. STRESS AND STRAIN TRANSFORMATIONS

L

The local coordinate system x''y"’z"" is considered for the k™ layer with the x”’ axis directed along the

fiber orientation and z"' perpendicular to the surface of the layer as shown in Fig. 1. By the angle «,

global coordinate system xyz is rotated counter-clockwise about the y-axis to establish the x"y'z’ coor-

dinate system and in turn, x"y'z’ is rotated by angle 8, counter-clockwise, to correspond to the local

fr . rr

coordinate system x"'y"'z"".

AZ

.~:J-_ z2’

l|rrrl||

et
"

Figure 1: Ply orientation in the tapered laminated plate (left) and staircase taper configuration (right)

The stress-strain relationship in the global coordinate system is written for the k™ layer.
(o651 = [l lloxa (1)

L

Where [C]Eﬂ6 \ [C’][61§16 and [C”][ﬁlﬂ6 are stiffness matrices in xyz, x"y'z’, and x"'y"'z"" coordinate sys-
tems respectively. The relation between stress and strain matrices, in x'y’z’ and xyz coordinate systems,
according to [6] is expressed:

l[0'] = [Tsqllo] 2

[¢"] = [Tealle] 3)
Considering Eqgs. (1), (2) and (3) for the coordinate systems depicted by Fig. 1, the relation between

L .

the stiffness matrices in local and global coordinate systems x''y"’z’" and xyz for the k™ layer is as fol-
lows.

(€)= [Toal ™ [Tog] " ("1 [Teg][Tic] @
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3. FORMULATION BASED ON CLPT

In order to apply the Ritz method and to determine the fundamental frequency, stiffness and mass
matrices are obtained from the calculation of displacements, strains and stresses expressed based on
Classical Laminated Plate Theory (CLPT). Considering the pure bending condition (displacement on
midplane is zero in x and y directions), displacements and strains are as follows.

u=—(0w,/dx)z (5)

v =—(0w,/0dy)z (6)
w=w, (7)

& = —(0%w,/0x?)z (8)
&y = —(0°w,/dy?*)z )
Yay = —2(0%w,/0x0y)z (10)

Where u, v and w are displacements in x, y and z directions, respectively. In order to facilitate fur-
ther calculation of strain and kinetic energies, Eqgs. (5) to (10) are written in form of multiplication of
matrices using the joint matrix [s]. Equations (11) to (13) represents these matrices in a detailed form.

r0 z 0 0 0 07
[ZJsxe=|0 0 2z 0 0 (11)

L1 0 0 0 0 0

[0 0 0 z 0 07
[Z:]axe = | 0 0 0 0 z 0 (12)

L0 0 0 0 0 Z

2 2 2., 1F
[Sloxs = |w, _awa 0w, _6 w, _6 Wo a°w, (13)
dx ay dx? ay? dxady

Equations (5) to (10) are expressed in matrix using Eqs. (11) to (13).
[ulsx1 = [Zulsxe [Slex1 (14)
[elax1 = [Zelaxe [Slexa (15)

Where [u] and [¢£] are column matrices containing displacements and strains elements, respectively.
The stresses are determined using the stress-strain relationship. The elements of the stiffness matrix are
obtained using Eq. (4) and engineering constants of the material which have been given by Table 2.

Considering the CLPT assumptions, the reduced stiffness matrix in the stress-strain relationship is

expressed.
Ox Q11 Qi Que] [&
[Uy‘ = |Q12 Q22 Qze] &y (16)
Ty Q16 Qa6 Qessl ay
Equation (16) 1s express in compact form as follows.
[6]351 = [Q]axs [elaxa (17)

The resin is considered as an isotropic material and the corresponding stiffness matrix is independent
of angles a and f. The reduced stiffness matrix based on CLPT can be obtained considering the CLPT

assumptions.
Displacements, strains, and stresses presented by Egs. (14), (15) and (17) are essential in energy cal-
culation in the next section. Function w, introduced by Eq. (7), is expressed in the form of series.
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Wo :iiﬂu X;(0) Y;(y) (18)

i=1j=1
Terms X; and ¥} are admissible functions dependent on the boundary conditions. The stresses and
strains are key components for strain energy U calculation, and the density of the material is the essential
factor in kinetic energy T computation. The strain and kinetic energies are expressed according to [6]
and written in matrix form as follows.

U= %ﬂ [o][e] dV (19)

1
T= Emz fﬂp[u]f[u]dv (20)
Matrix form is superior in terms of computational efficiency. Hence, kinetic and strain energies are
calculated at the same time in this form. In order to apply the Ritz method, the derivatives of the strain
and kinetic energies with respect to parameters A,,,, are denoted by U = 0U/dA, and T = T /0 A,

and calculated using Egs. (19) and (20).

0 - [[| ceenia + qerentterav e
7 =507 [[] parta + ranav @)
Equations (21) and (22) are written in the following form.
7 - [[[1er1e el + certaiten* av (23)
7 =30 [[[ st + @ av (1)

The terms [£]*[Q][€] and [i]*[u] on the right-hand side of the Egs. (23) and (24) should be scalars as
they follow scalar values of I and T on the left-hand side. In addition, this can also be realized from the
size of the matrices on the right-hand side. Therefore, considering scalars [£]¢[Q][e] and [@1]*[u]:

[e][eQ][e] = ([&]F[Q][eD)® (25)
[2][u] = ([2]*[uD" (26)
Equations. (25) and (26) are substituted in Egs. (23) and (24).

0= [ ] [€]°[0 1[elav 27)
T = w? Jﬂ plti) [u]av (28)

Substituting Eqgs. (15) and (14), in Egs. (27) and (28), respectively, one can get:
0= f f j ][] [Q1[Z][s)dV (29)
P =02 [[[ plsriza1zdisIay (30)

Equations (29) and (30) are written in the following form.

0= [[lr f [Z][Q1[Z] dz | [s]dA (1)
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7= [ o ﬁp[zu]f[zuldz [s]d 32)

Integration through the laminate thickness, matrices containing functions of z are taken into account
within the integral so that matrices [Z]. [Z,] and Q;; as well as scalar p participate in the integration.

0 = [ 181 1514 (33)
7= [[ 111215104 (34)
h
AR AL AL 39
’ h
(2= w2 [, plz.)[2.)dz (36)

2
Equations (33) and (34) are written in the following form.

E, = f [51°[Z..][s]dA (37)

Equation (37) has been written in combined form such that depending on the calculation performed
for derivatives of strain or kinetic energies (U or T), matrices [Z,] or [Z,,] is considered. After computa-

tion of matrices [Z,] and [Z,,], derivatives of kinetic and strain energies with respect to parameters 4,,,

m) m

are obtained using Eq. (37). Any nonzero elements of [Z. ] and [Z,, ], are denoted by R .." and R ", re-

ij
spectively. The matrix [Z.] contain the elements of the extensional stiffness matrix R 3), bending-exten-
sion coupling matrix R S) and bending stiffness matrix R S)

The final results for system coefficients are computed by replacing Eq. (18) in Eq. (37) and are pre-
sented here in the open form. Since the configurations of tapered laminates are made of (0/90) ply
layup, elements @, and Q,, from reduced stiffness matrix are zero meaning that in-plane normal and

shear are decoupled. The expressions for stiffness and mass coefficients are given within the brackets in
the following two expressions for strain and Kinetic energies.

L L L L
j RIx,, X;dx f ¥, Ydy + f RP%, X.dx f Y,Y;dy
0 0 0 0
R 1 7 L L L ) Lo
g=> >+ J' R X Xidx f V.¥dy + f R, X;dx f Vady | A 38)
g 0 0 0 0

L L
+4 ] ROX, X, dx f V7 dy
0 0

x=L o y=L x=L y=L
f R®X, X;dx f YoY;dy + f R®X, X;dx f Y. Y;dy
x=0

1]
7= wzzz y=0 x=0 y=o A; 69
Y. x=L y=L
i=1 j=1 +j R(l)XmXidxf Ynlj-dy
x=0 y=0

143



ICSV26, Montreal, 7-11 July 2019

4. FREE VIBRATION ANALYSIS

Considering U, in Eq. (38), for the fixed values of m and n, the indices i and j are counted up to the
upper bound of the summations I and J. Therefore, there are I X /] number of terms that are written in the
form of a row matrix multiplied by a column matrix [A] containing I X J number of parameters, A;;. By
repeating the operation for all possible values for m and n, there are produced I X J number of row ma-
trices written one beneath the next one forming a matrix with the size of I X J by I X J.

This I x J by I X J matrix produced from U is called stiffness matrix and denoted by [K]. In a similar

manner for T, a matrix with the same size is formed and called mass matrix denoted by [M]. considering
U=T:

(K] iyxi[Alyxa = @?[M]yxiy[Alxa (40)
In order to obtain a non-trivial solution from eigenvalue problem given by Eq. (40):
det([K] = w*[M]) =0 (41)

By solving the eigenvalue problem in which w? and the column matrix [A] are eigenvalues and
eigenvectors, respectively, natural frequencies and mode shapes are determined. The square root of the
smallest eigenvalue is the fundamental frequency.

The fundamental frequency is obtained for the described taper laminate (Fig. 1) for different bound-
ary conditions. Considering Eq. (18), admissible functions X;(x) and Y;(y) corresponding to the bound-
ary conditions SSSS, CCCC and CCFF are in the Table 1. The clamped edges for the CCFF boundary
condition correspond to x = 0 and y = 0 lines and free edges to x = L and y = L lines.

Table 1: Admissible functions corresponding to the boundary conditions [6, 7]

% Xi=51n(fﬂ;) , }j-=sin(jrr%) Lj=123..
Xm = cos(li%) — cosh (2%) -V [sin(li%) - sinh(ii%)]
§ Y, = cos(/l}-%) - cosh(l};%) —Y; [sin(ﬂj%) - sinh(lj%)]
© i ij=1 ij=2 iLj=3 ij=4
A 4.730,040,08 7.853,204,6 10.995,607,8 10.995,540,7
Yi 0.982,502,2 1.000,777,3 0.999,966,4 1.000,033,553,2
Xm = cos(li%) — cosh ()li%) — Vi [sfn()lt%) — sinh (21%)]
% Y= COS(@-%) - cosh()ﬁ%) - [sin(ijz) - sinh(lj%)]
“ i ij=1 i,j=2 i,j=3 i,j=4
A 1.875,104,069 4.694,091,133 7.854,757,438 10.995,540,735
Vi 0.734,095,514 1.018,467,319 0.999,224,497 1.000,033,553

5. NUMERICAL RESULTS

Two tapered laminated square plates with configuration of (0/90)4s and (0/90), at the left and
right ends, respectively, made of resin and unidirectional plies of NCT-301 Graphite-Epoxy material
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with ply thickness of 125 x 107° m are considered (Fig. 1). The lengths of the laminates are dependent
on the taper angle and are 85.944 cm and 17.188 cm for 0.1° and 0.5° taper angles, respectively.
The composite layer is considered as a transversely-isotropic material and the corresponding stiffness

matrix is denoted by [C"']. The mechanical properties of NCT-301 Graphite-Epoxy material are given in
Table 2.

Table 2: Mechanical Properties of NCT-301 Graphite-Epoxy [5] Ply and epoxy resin

Mechanical Properties of Unidirectional NCT-301 Graphite — Epoxy Resin
E; =113.9 GPa E, = 7985 GPa E =393 GPa
Gy, = 3.137 GPa G,z = 2.852 GPa G = 1.034 GPa
v, = 0.288 vy, = 0.018 v =037
Pply = 1480 k.g/ma Presin = 1000 kg/m?

Solving the eigenvalue problem given by Eq. (41), the first natural frequencies obtained for the square
plates with the staircase taper configuration with different boundary conditions are given in Table 3.
Numerical solutions using the finite element software ANSYS® were also obtained and compared with
the present Ritz solutions. The finite element solution has been obtained using the four-node element
SHELL 181 in ANSYS® and converged meshes of 2808 and 195 elements have been obtained for the
plates of side length 85.944 c¢cm and 17.188 cm, respectively. The finite element model developed
in ANSYS®is shown in Fig. 2. First mode shape of the plate of side length 85.944 cm is shown in
Fig. 2(b) for different boundary conditions.

SSSS CCcCC CCFF

Figure 2: Finite element model of the tapered laminate: (a) Converged mesh and (b) First mode shapes

Table 3: Fundamental frequencies of plates (rad/s) for different boundary conditions

Length/Mean Thickness = 286.5 Length/Mean Thickness = 57.3
BC Length (cm)/Angle (deg) = 85.944/0.1° | Length (cm)/Angle (deg) = 17.188/0.5°
. Finite Element . Finite Element
Ritz Method Method Ritz Method Method
SSSS 108.0 108.5 2700 2699
CCCC 229.2 230.0 5728 5710
CCFF 52.2 52.3 1304 1245
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6. CONCLUSION

Tapered composite plate with staircase taper configuration has been considered. The displacements,
strains, and stresses based on CLPT are expressed, and then, the mass and stiffness matrices were devel-
oped based on the Ritz method for the tapered plates with different boundary conditions. From the
analysis of the results, it is concluded that:

»  The fundamental vibration frequency for the CCCC plate is the highest and that of the CCFF plate

is the lowest, having a ratio of 4.39. The frequencies of CCCC and SSSS plates have a ratio of 2.12.

»  The plies close to the midplane do not significantly contribute to increasing the fundamental fre-

quency even though their inertial (mass) contribution is the same as that of other plies.

»  The resin which is the weaker material is used in the regions close to the midplane, and the com-
posite plies are used in farther layers. Therefore, composite plies contribute with higher capacity in
increasing the stiffness of the plate and the resin does not take part notably in tailoring the stiffness yet
used instead of plies to avoid any significant increase in the plate’s weight. Hence, in order to maximize
the fundamental frequency, the materials with higher stiffness property should be used for the external
layers of the plate, and weaker materials should be used for inner layers close to the midplane.
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