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ABSTRACT 

Data Mining Frameworks for Energy Consumption Reduction of Existing Buildings 

Milad Ashouri, Ph.D. 

Concordia University, 2019 

Many technical solutions have been developed to reduce buildings’ energy consumption, but 

limited efforts have been made to adequately address the role or action of building occupants in 

this process. On the other side, Building Management System (BMS) monitors the performance 

of buildings by recording the data to improve the building operation, control systems and 

maintenance. Usually, BMS produces a large volume of data throughout the year including 

information with regard to patterns of energy use, occupant behavior, etc. The availability of this 

huge data has created an opportunity to extract information to improve the building energy 

performance through leveraging powerful data analytic tools.  

The objectives defined in this thesis lie in developing methodologies to find energy saving 

opportunities by analyzing data coming from occupants’ energy consumption. Three tasks are 

defined in this thesis. The first task is to provide a recommender system to alert the occupants to 

take certain measures in order to reduce their energy consumption through end-use loads. 

Therefore, the quantification of potential savings is provided upon following recommendations. 

The proposed methodology is also capable to detect the energy saving measures performed by 

occupants. The second task focuses on a systematic comparison procedure between the buildings 

to make the occupants aware of their rank among other buildings and hence give them clues on 

how to improve their performance. The third task focuses on developing a framework to create a 

reference building acting as a reference for a given building. Therefore, the given building can be 
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compared against its reference building. Potential savings are given to the given building along 

with directions how to achieve them. The results show successfulness of developed methodologies 

in finding energy saving opportunities through modifying occupant behavior.   
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Although the IEA has reported that over the last two decades global energy efficiency has 

increased through measures such as renewable and green technologies, the clear link between 

energy consumption, population growth, and economic development endangers these 

improvements. Consequently, globalization, living style enhancement, and developing 

communication networks increase energy needs and create consumption patterns that may 

endanger future generations by exhausting the fossil fuel supply and increasing environmental 

damage [2].    

Thoroughly understanding the major factors affecting energy consumption is necessary for 

applying energy reduction strategies. These factors comprise four major categories: 

1) Building characteristics 
 
Building characteristics refer to all physical characteristics of the building (e.g., wall 

material and thickness, insulation, window-to-wall ratio, orientation, floor and wall area, 

etc.). Modern buildings are usually designed to achieve the maximal natural cooling, 

heating, and radiation while minimizing losses.  

2) Occupant characteristics  

These account for occupants’ presence, activities (what), and operation (how). Occupants 

can interfere significantly with a building’s overall energy consumption [4]. Lifestyles are 

crucial in defining heating/cooling set points, indoor environmental quality required, 

window opening/closing behaviors, lighting, and other factors affecting consumption. 

Degree of education and energy costs are also among the factors that indirectly affect 

residents’ behavioral patterns.  
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Occupant behavior refers to the presence of users, their interaction with appliances (TV, 

refrigerator, etc.), and user changes to lighting, air conditioning, temperature set points, 

and other energy-related settings.   

3) System efficiency 

Building services systems and operations are also key factors in determining building 

energy consumption. These services include space heating/cooling and hot water supply, 

pumps, fans, and other heating and cooling system components. Apart from that, the 

efficiency of home appliances (e.g., oven, microwaves, washing machines, lamps, etc.) is 

also a consideration. Currently, no tool is available to notify building owners when aging, 

inefficient appliances require replacement. 

4) Climatic conditions  

Climatic conditions are crucial when investigating the energy consumed by building 

systems and through occupant behavior. Outside temperature, solar radiation, humidity, 

and wind velocity are important factors. For example, in wintertime, the lower outside 

temperature increases heat load demand and encourages people to stay inside more, 

whereas shorter days increase lighting demands.  

Because these four categories affect building energy consumption either directly or indirectly, 

understanding them thoroughly is a crucial task. However, simulation software packages must still 

overcome the challenge posed by the difference between designed/simulated energy consumption 

and actual building energy consumption, a difference that may arise from the complexity of these 

factors (e.g., uncertainty in climatic conditions, complexity of occupant behavioral patterns). 

Meanwhile, distinguishing among the main influential factors, identifying how each one 

contributes to overall energy consumption, and determining how they interact with one another 
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also present a challenge for researchers. Until these factors and their interrelationships are clearly 

understood, energy consumption reduction strategies cannot be feasibly implemented. 

One emergent area of applications science involves the development of data analysis tools to 

extract useful knowledge, provided that the data contain actual information about these influential 

factors. Data science refers to data mining, machine learning, statistics, data visualization, and 

other data analysis methods. To be more specific, “data science is the interdisciplinary field about 

scientific methods, processes, and systems to extract knowledge or insights from data in various 

forms, either structured or unstructured” [5].  

Modern buildings, particularly those in the public and commercial sectors, are increasingly 

equipped with monitoring tools (e.g., thermostats, sensors) to collect real-time data from building 

equipment to control their operation. This monitoring system is referred to as building automation 

system (BAS) [6]. This data consist of measurements from heating, ventilating, and air 

conditioning (HVAC) systems; ambient conditions; electricity consumption; lighting, noise; 

security systems; vertical transportation systems; and other systems necessary for a building’s 

operation. With advances in information systems technology, researchers have taken advantage of 

the availability of data spanning periods of months or years for knowledge extraction and 

prediction purposes. Analysis of these data provides novel methods to reduce building energy 

consumption and prevent system failures. According to the European Copper Institute [7], the 

potential energy savings from advanced building automation technologies may reach 22% by 

2028. Applications of data mining in this domain can help reduce energy consumption by finding 

patterns of energy use, modifying occupant behavior, understanding occupancy schedule, 

predicting energy performance indices (e.g., energy rating), and detecting and diagnosing faults.  

Building-related data exist in one or all the following forms:  
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1) Climatic data (outside temperature, solar radiation, wind velocity, humidity, etc.) 

2) Operational data of HVAC systems (fans, supply air temperatures, mass flow rates, etc.), 

energy consumption data (end use loads of home appliances, electricity bills, etc.), and 

indoor environmental quality (IEQ; indoor temperatures, CO2, human comfort, etc.) 

3) Physical parameters (wall thickness, insulation, etc.) 

These data include abundant information about building design, operation, and maintenance and 

can be used to help reduce building energy consumption. However, data mining is a relatively new 

science in the domain of building engineering; thus, few efforts have been made to apply data 

analysis tools to building-related data. However, a few data analysis frameworks (a series of 

integrated data analysis techniques for extracting information) exist to effectively mine the 

building-related data. Moreover, occupants and how they use a building’s appliances appear to 

comprise one main energy leakage source. These gaps have motivated this research to contribute 

to data mining applications in building engineering by creating more data analysis frameworks to 

deal with the complexity of building-related data and especially occupant behavior.   

1.2 Problem Statement 

Various statistical data analysis processes have been applied in building studies along with 

simulations and modellings. Here, the goal is to establish a meaningful, appropriate relationship 

among energy consumption and influencing factors to reduce energy consumption more 

effectively and feasibly in the long run. However, simple statistical methods cannot capture the 

increased amount of data generated through the complex interaction of building systems and 

especially through occupant behavior; thus, they are inadequate for identifying correlations in the 

data that could improve performance. Therefore, problems such as accurately identifying the 

behavior of occupants by analyzing their data are still being addressed at a basic level and have 
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not been answered thoroughly by traditional data analysis methods. The challenges to be 

considered are as follows:  

• How can we accurately monitor the performance of occupants, based on their capabilities, 

without interference from other factors, to give them reliable, prioritized 

recommendations?  

• How can we give occupants potential reductions in energy consumption upon following 

the recommendations so they can see the effect of their measures as a motivation?  

• How can we report occupants’ savings resulting from energy consumption in a way that 

would motivate them to increase their savings? 

• How can we develop a process to assess the performance of a set of buildings based on 

their occupants’ energy-saving awareness?  

• How can we develop a process to give the building occupants a specific reference building 

with whose energy consumption they can compare their own?  

To address these questions, we must look more deeply at building-related data to extract the 

information for analysis. This is only possible through the development of a systematic data 

analysis framework that makes it possible to generalize the methodology to be applied.  

1.3 Data Analysis Tools and Methods 

Analysis of recorded data is the core purpose of this research. Data analysis refers to using data 

mining (DM) to scrutinize the data in novel ways for information extraction. DM is the process of 

data analysis bringing together different techniques from statistics, machine learning, and pattern 

recognition to automatically extract hidden and unexpected interrelationships and patterns of 

interest from the dataset [8]–[12]. In other words, DM is “the analysis of large observational 

datasets to find unsuspected relationships and to summarize the data in novel ways so that data 
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owners can fully understand and make use of data” [13]. DM has extensively been used in industry 

[12], but its application in the building energy field is relatively new. DM is applicable to real 

datasets, which yield reliable results and accurate predictions. Examples are in [12] and [14]. In 

addition, uncertainties regarding the boundary conditions (ambient temperature, solar radiations, 

etc.) and occupant behavior are already included in a real dataset [11], and the use of DM-generated 

models is often less time-consuming than physical systems themselves [15]. However, expert 

knowledge must be integrated into this combination of multidisciplinary DM approaches to 

maximize benefit.  

1.4 Objectives and Purposes 

The goal of this research is to develop a new framework for data analysis in the building 

engineering domain with a specific focus on occupants’ role in energy consumption. The 

frameworks proposed here can help building owners or managers monitor building energy 

performance, estimate potential savings, and implement more profitable measures.  A DM 

framework involves a series of consecutive methodologies applied to the data. Although each 

methodology been applied to various ranges of datasets in the building engineering domain, novel 

integration of them can yield pioneer insights regarding the data. To demonstrate the proposed 

frameworks, they will be applied to real datasets of 80 buildings located in different climatic 

conditions in Japan. The methodologies developed will surely answer the key problems outlined 

in chapter 1.2. This study’s objectives can be summarized as follows: 

1. Develop a methodology to recommend to occupants about how to reduce their end-use 

loads energy consumption and prioritize the recommendations:  

• Occupants of a building may not be aware of how much energy they use regarding 

a specific end-use load (e.g., hair dryer, oven, or room light) during the day. 
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Moreover, they use different appliances for certain tasks (e.g., cooking, laundry, or 

entertainment). By analyzing the energy consumption profiles of all individual 

appliances during a given period (for example, 1–6 months), we may notice 

correlations between appliances: for example, while the kitchen lights are on, the 

oven is used and the television is off. By searching through the data for these 

correlations and examining them, we may find instances of energy wastage and 

potentially generate recommendations for improving occupant behavior.  

• An intended outcome is an accurate actionable quantitative report for occupants 

regarding potential energy savings upon following the recommendations. A report 

of achieved savings may motivate them to take more energy-saving measures. 

Chapter 3 provides more details.  

2. Develop a systematic procedure to rank the energy performance of a group of buildings 

based on occupant behavior:  

Comparing energy efficiency between similar buildings is an effective approach for 

evaluating how efficiently building occupants are operating. This way, the residents 

of each building would know where they stand in relation to others and can be 

motivated to take energy-saving measures. In other words, a building’s occupants 

can learn from one another, and observing that a similar building is consuming less 

energy would persuade them to reduce their own consumption. For example, if 

occupants of a single building see that the occupants of other similar buildings are 

using less energy to provide the indoor environment they require, they might be 

persuaded to do the same. However, the existence of several factors in energy 

consumption patterns of occupants (e.g., number of occupants, floor area, and 
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house type) makes a simple comparison of the energy consumption of several 

buildings infeasible. Moreover, such comparisons do not account for the activities 

that occupants have performed to save energy and the degree of their energy 

consciousness. Thus, such simple comparisons are not yet effective. As many 

influencing factors as possible should be considered to make a fair comparison. In 

addition, if the procedure is well designed, it can reveal potential saving 

opportunities for building occupants. Chapter 4 provides more details.  

3.  Develop a systematic approach to provide building occupants with feedback to reduce 

energy consumption:  

This objective involves developing a methodology that would generate a reference 

building (RB) for any given building, regardless of its climate or characteristics, 

that would enable occupants of a given building to evaluate their own energy 

efficiency. In comparing two buildings regarding the same factors, we may notice, 

for example, that one of the buildings has lower energy expenditure toward a certain 

end-use load. This shows that some occupants are aware of certain activities or 

behaviors that could help reduce energy consumption. For example, the occupants 

of one building may use little energy for kitchen appliances, HVAC operation, or 

both. However, occupants may overuse some appliances such as televisions (or 

entertainment appliances more generally) that make them high-energy consumers 

regarding those specific appliances. This enables the creation of a building that has 

all the positive characteristics of low-consumption buildings so we can inform the 

occupants of the building in question of how much energy they can save by copying 

the RB. Chapter 5 outlines the RB concept in more detail.  
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The rest of this thesis investigates the tasks outlined in problem statement section 1.2. First, a 

complete literature review covers the state of the art in the domains of DM and building 

engineering. To address the challenges, this thesis defines three tasks, for which Chapters 3 

through 5 provide detailed explanations, respectively, along with conclusions and future research 

directions. Chapter 6 provides a summary and closing remarks, along with overall limitations and 

future work. 
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2.  Literature Review 

2.1 Data 

The data used in data mining (DM) are of great importance since modeling, analysis and decision 

making depend strongly on them. In an array of data set, each row is called a sample, tuple or 

record and each column is called a variable, feature or attribute. Data pre-processing and cleaning 

is to make sure that the data does not contain any missing value or outlier. Researchers have used 

various tools such as Euclidean distance [16], Hotelling T2 method [17], and lower and upper 

quartile [11] to address this problem. The existence of outliers and missing values might bias the 

results. Highly relevant variables should not be used together since in some DM techniques, such 

as clustering analysis, specific aspects covered by these variables may be overrepresented in the 

clustering solution [18]. As an example, Wang [19] showed that using total number of degree days 

and total number of rooms for a multi linear regression (MLR) problem was not accurate since 

they were correlated linearly to the other involved factors. In addition, all relevant variables should 

be included in the DM process; otherwise, some important combinations of values or hidden 

patterns may be missing. Thus, feature/variable selection is an important preprocessing step. 

Generally, recorded variables fall into one of the following two categories: climatic data (e.g. 

ambient air temperature, ambient relative humidity, etc.); and operational data, including those of 

the building (e.g. presence of occupants, temperature, humidity, flow rate, pressure, power, control 

signals, states of equipment, etc.). The climatic conditions greatly affect the energy consumption 

of buildings; therefore, climatic variables should be included in the DM dataset, but the operational 

data is different and depends on the objective of the study. The size of the data (both variables and 

samples) should be decreased (but at the same time be representative of the whole system) in order 
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to reduce the computational time, simplify the problem, and reduce the cost of data gathering and 

storage, which are important in some applications [20]. Minimizing of the data size can be 

achieved by either reducing the number of records or reducing the number of variables. The 

number of records is usually selected to cover at least one year of operation to account for all the 

seasons (climatic conditions), while the number of variables differs in different applications. To 

reduce the number of variables, Pearson formula may be used to identify the critical variables, 

which are highly correlated with the variables to be modeled (outputs). An example was given in 

[21]. Another approach is to select the variables playing an important role in the energy balance 

and momentum balance of the system [17]. For HVAC systems, generally, temperature, flow rate, 

humidity and pressure are used to develop simulation and fault detection models [15], [17], [22]. 

Some other methods, such as principal component analysis (PCA), have also been applied for 

variables [23], [24] A PCA is defined as a linear transformation of the original variables. The 

original values can be represented in a new space with reduced dimensions, which is very useful 

in cases with many variables or noisy data, without much information loss. An example on total 

electrical energy consumption of households was presented by Abreu et al. [25]. 

2.2  Building Energy Performance Improvement  

2.2.1 Discovering patterns of operation  

Finding the patterns of operation plays an important role in building performance improvement. 

Generally, pattern recognition refers to finding specific trends in the data. Patterns of energy use 

are valuable knowledge for improving energy performance, i.e., design, optimization, 

maintenance, and fault detection. They can also be applied for energy use forecasting. Cluster 

analysis is an efficient tool for finding the patterns by grouping the data into k separate subsets. 
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Fan et al. [6] found the typical operation patterns of a building cooling system by clustering the 

data of energy consumption over a year. The results suggested two power consumption patterns; 

weekends and weekdays. A similar work [26] suggested three patterns using the same technique. 

D'Oca et al. [27] investigated the patterns of window opening and closing as an important factor 

in energy consumption of 16 office buildings using regression analysis and clustering. These 

patterns are interesting to be incorporated into simulation packages to produce more accurate load 

calculations. As an example, patterns of window opening duration during the day (long, medium 

or short intervals) affect infiltration and consequently the energy consumption. In addition to 

finding patterns, clustering helps isolate the effect of influential factors in energy consumption. 

For instance, do Carmo et al. [28] clustered hourly heat load data of 139 single family detached 

houses into three separate groups. The goal was to eliminate the effect of weather conditions in 

order to isolate the effect of household and building characteristics on the thermal load demand. 

Pattern discovery also helps find daily routines for each household. This can be compared to the 

best, worst or “normal” consumption for changing habits. Abreu et al. [25] developed a framework 

to extract the daily routines of households and patterns of energy consumption during the year. 

They identified the recurrent behaviors during the day (daily routines of households) by applying 

the PCA on the daily electricity energy consumption data. Moreover, Abreu et al. [25] extracted 

patterns of energy consumption using clustering as unoccupied period “baseline”, cold weekend 

days, cold working days, and hot and temperate working days. Other examples of pattern discovery 

using clustering are occupancy schedule [29], energy consumption of domestic appliances [11] 

and indoor air quality [30]. 

Clustering along with other techniques have also been used to rate buildings in terms of energy 

performance. Wang et al. [19] applied a multi-criteria benchmarking method to rank 324 single 
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family dwellings according to their energy performance indicator. TOPSIS method was used to 

rank the building energy performance. It was revealed that over three years, more than half of the 

buildings have a TOPSIS score above 0.50 showing an efficient performance. Also, clustering (K-

means) was applied to TOPSIS results in order to rate the buildings from “excellent” to 

“unsatisfactory”. This provided a framework to study the energy performance of the buildings and 

offered a rating system based on which instructions to building users can be given.  

DM is also helpful to find associations between building variables. Sometimes these associations 

may reveal hidden and useful knowledge because they cannot be discovered through simulation 

programs. Examples are Yu et al. [11] who applied association rule mining on energy consumption 

of domestic appliances. Association rule mining extracted the highly correlated activities (such as 

TV [High]→ Ventilator [High]), which may be unexpected and are useful to guide occupants for 

energy saving recommendations. However, the extracted rules are qualitative (low and high). Fan 

et al. [6] applied quantitative association rule mining on a building cooling system to reveal the 

associations between its components. This can be used for maintenance, design optimization or 

recognizing the faulty conditions. Another example is finding associations between window 

opening and closing behaviors by D'Oca et al. [27]. The techniques of clustering and association 

rule mining can be used together for framework development in a step-by-step process [6], [8], 

[11], [26], [27], [31]. The process usually involves data pre-processing, pattern discovery, 

knowledge discovery, knowledge interpretation and selection.  

2.2.2 Occupancy and occupant behavior 

Identification and modification of occupant behavior is an important task in building energy data 

mining as the occupants have a major impact on the building energy consumption through 
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appliances usage: hot water, lighting, window opening/closing, etc. However, due to the lack of 

efficient methods for identifying the role of occupant behavior in buildings as well as its inherent 

complexity, design expectations of building energy efficiency and its actual operation outcomes 

differ substantially [32]. 

Together with recent technological improvements in building industry such as design and 

operation of building systems [33], a vast number of studies are seen in the literature regarding 

occupant behavior. Two factors are common among the works. The first factor is related to 

stochastic and complex nature of occupant behavior and the second factor lies in interrelation 

between other influencing parameters in building energy consumption such as climate, building 

materials and characteristics, and economics. These two factors make it difficult to model the exact 

occupant behavior. With abundance of data in building through sensors (to measure human 

interactions such as movement. CO2 detection, windows, blinds), Wi-Fi signals, control system 

(for HVAC and lighting), in-depth analysis of occupant behavior has been enabled [34]. 

Currently, building simulation software can only incorporate occupant activities in a pre-defined 

manner such as occupancy presence, utilization of appliances, etc. Data mining can address this 

problem. Yu et al. [11] proposed a framework to isolate the effect of occupants from other factors 

of building energy consumption and also to reduce the overall energy consumption. D’Oca et al. 

[27], [32] extracted the pattern of use of windows by occupants in 16 office buildings as an 

indicator of occupant behavior. Also, they identified the most influential factors on window 

opening and closing behavior using a logistic regression. This information about each office can 

be used in simulation tools as well. Occupancy presence and scheduling (number of occupants in 

each hour of the day) is also modeled using data mining methods. Predicting the existence of 

occupants could affect the building energy modeling due to the internal heat gains of occupants 
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(Liang et al. [29], D’oca et al. [29], [35], and Sun et al. [36]). Cluster analysis and decision tree 

were used by Liang et al. [29] to improve the accuracy of the occupancy schedule. Liang et al. [29] 

showed that although ASHRAE standard 90.1 [37] provides an acceptable general estimation of 

occupancy pattern, it does not fit into any specific building. However, a whole-year data can be 

used as a reference very easily avoiding mathematical analysis (clustering, decision tree, etc.). The 

comparison should be carried out in order to see if there are any improvements in the proposed 

method. Sun et al. [36] showed that working overtime (presence of occupants in an office after the 

normal working hours) can directly influence the status of HVAC equipment; therefore, cooling 

energy consumption. They presented a stochastic model for working overtimes during weekdays 

based on the measured occupancy data from an office building. Results indicated that number of 

occupants and duration of their presence followed binomial and exponential distributions, 

respectively.  

Pattern discovery also helps to optimize the operation of HVAC and reduce the unnecessary loads. 

Capozzoli et al. [38] used occupancy pattern analysis to reduce the HVAC energy consumption. 

By grouping similar occupancy patterns in the same thermal zone, they changed the HVAC control 

strategy to reduce the load while keeping the thermal comfort.  Wi-Fi signals can give us a lot of 

information about the occupancy patterns, and how occupants interact with the building. Wang 

and Shao [39] used Wi-Fi signals to find occupancy patterns and used association rule mining to 

find energy wastage instances. It was claimed that up to 26% of lighting energy could be saved 

through this method. Kastner et al. [40] proposed a web-based intervention plan to encourage 

occupants to more energy efficient behavior through giving them recommendations (either habit-

based intervention or knowledge-based intervention) and recording their actions. Field studies 

show that cultural differences of different sites influence implementation levels. In another study, 
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Meinke et al. [41] used feed forward information to give the occupants information about their 

choice of cooling strategy (removing shirt, turning on ceiling fan, turning on air conditioner or 

tilting the windows) and how they impact energy use and their level of comfort. The result showed 

that most of the participants changed their action after getting the related information. This shows 

the effectiveness of giving occupants information and recommendation on their behavior. 

Knowing the effectiveness of feedback-based systems on household electricity use, Fischer [42] 

developed a psychological model to evaluate which features of feedback works best for the 

occupants. The feedback features are frequency, duration, content, breakdown, medium and way 

of presentation, comparisons, and combinations with other instruments. The results indicate that 

an effective feedback should be frequent, over a long time, be appliance specific breakdown, and 

be presented in an appealing way using computerized and interactive tools.  

Association rule mining was used by Yu et al. [43] to find the relationship between the power 

consumption of different appliances (dishwasher, microwave, TV, etc.) and climatic parameters 

(temperature, relative humidity, etc.) to provide occupants with recommendations on how to 

reduce the appliance usage and to find energy inefficient behaviors.  

The two factors mentioned in the beginning of the section 2.2.2 show the necessity of in-depth 

occupant behavior analysis to reveal new opportunities toward energy efficient buildings while 

maintaining the comfort.  

2.2.3 Predicting energy performance indicators 

Predicting energy performance indices, such as COP, energy efficiency or energy rating, is usually 

done in three steps: initial exploration, model building, and validation and deployment [21]. 

Decision tree, as one promising DM tool, has been used to predict energy consumption of HVAC 
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systems [6], [14]. An example of such a decision tree is described in Fan et al. [6]. In this case, 

given an hour and month of the year, the decision tree can give the range of power consumption 

of an AHU. Another example can be found in Yu et al. [14] who developed a decision tree to 

classify the buildings into high and low energy intensities. The required buildings parameters to 

build the model play a crucial role and should be a complete representative of the building energy 

consumption. Decision trees can provide some more useful knowledge in addition to prediction. 

The variables from the top to the bottom of a decision tree are sorted according to their importance. 

For instance, in the decision tree developed by Yu et al. [14] and Fan et al. [15], annual average 

ambient temperature and hour of the day are the most important decisive variables, respectively. 

In addition, the error rate given by each leaf of the tree provides information about the reliability 

of the decision tree. For instance, Yu et al. [14] found that the number of misclassified labels as 

“Low” EUI (Energy use intensity) was less than “High”. Therefore, the decision tree was more 

sensitive to “low” EUI buildings. This could be due to the fact that the original data contained 

more buildings with low energy consumption, which makes the tree more sensitive to that 

category. Similar interpretations were deduced from the decision tree developed by Liang et al. 

[29] on occupancy prediction. 

Artificial Neural Network (ANN) is a powerful modeling approach used in building energy 

systems such as heat pumps, air conditioning and refrigeration systems [44]. The measured data 

in a certain boundary condition and time period are used in order to build a model. When the model 

is trained using experimental data, it can be used as an estimator instead of using mathematical 

equations (related to system physics such as mass and energy balances) to predict the system 

indicators (energy performance, energy efficiencies or physical variables such as temperature, 

mass flow rate, etc.) at other boundary conditions. However, care should be taken to avoid false 
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predictions. In this context, the data training process plays a determinant role in developing a 

reliable and efficient model. Training data should be representative of the boundary conditions in 

which the model is used. For certain applications (static problems) some methods (like 

experimental design and Latin hyper cube techniques) could be applied to build the training data. 

For HVAC applications, this issue is more complicated since systems are dynamic and complex 

(thermal storage for instance has transient behavior during charging/discharging or the starting 

phase). However, some methods have been suggested for such scenarios [45]. In the framework 

of DM application in monitored buildings and districts, this is not an issue since usually a very 

large amount of data is available. Also, in this framework, the model is exploited in the same 

climate, which was used for training. Thus, the ANN encounters similar patterns to those learned 

during the learning stage.  

Finding all variables, which directly or indirectly affect the performance indices (such as COP, 

energy efficiency, etc.), is difficult due to interrelations between subsystems and variables. On one 

hand, if all variables are chosen to train the network, there may exist correlations among them, 

which may result in less accurate network predictions due to over fitting problems. On the other 

hand, if an insufficient number of variables are chosen, the network may not have enough 

information to generate accurate predictions. Chou et al. [21] applied the Pearson correlation 

among parameters to find the most critical variables associated to COP and then performed 

different neural network methods on the refrigeration cycle. The application of ANN for predicting 

the system indicators such as energy consumption, efficiency, COP, cost, etc. is quite extensive. 

Examples are Belman-Flores and Ledesma [46] in case of a MLP (multi-layer perception) ANN 

and Bechtler et al. [46] in case of a dynamic neural network and Swider [47] who performed an 

MLP and RBF (radial basis neural network ANN).  
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2.3 Remarks and Challenges Regarding Building Energy 

Performance Improvement  

As discussed earlier, knowledge discovery helps to identify the hidden patterns in the data and 

provides engineers with an insight to predict the behavior of the system, which is useful for energy 

auditing and modern control systems. However, one major shortcoming of knowledge discovery 

is the inability of DM to provide useful knowledge by itself. In other words, an expert should 

interpret and analyze the results of DM, which might be difficult for some cases. Another important 

issue is the large volume of knowledge or patterns generated by DM, which may overwhelm the 

expert. A solution to address this challenge is application of interactive data mining. The idea is to 

ask users to select some patterns, which they are interested in. Then, the system can interactively 

find more patterns, which are relevant or similar to the chosen ones. Another important challenge 

is the availability of numerous methods in DM field with its own pros and cons (nearly all of the 

machine learning techniques are applicable to DM). Selecting the most relevant methods for 

knowledge discovery requires domain experience. The availability of sufficient data is an issue 

too. For instance, to extract knowledge from a heating system one needs at least data from the 

whole heating season to find frequent and reliable patterns. If one extracts results from a limited 

time such as one week, the data may be misleading (misleading rules) since the frequent rules for 

one week may not be applied to the whole seasons. 

To conclude, the advantages and disadvantages of knowledge discovery are summarized as the 

following: 

◦ Knowledge discovery via DM helps to identify the hidden patterns in the data, 

◦ It provides engineers an insight to predict the behavior of the system, 

◦ It is beneficial for energy auditing and modern control systems, 
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◦ DM is unable to provide useful knowledge without the need of an expert to interpret this 

knowledge, 

◦ Selecting the most relevant methods for knowledge discovery requires domain experience, 

◦ The conclusions are really specific to each set of data or case study and they cannot be 

generalized. 

As mentioned earlier, predictive tasks utilize the inputs and outputs of one system for training the 

model in order to predict the energy performance indices. However, some challenges and 

shortcomings exist:  

◦ Input selection is important in developing a reliable ANN model in order to avoid the over 

fitting problem. The inputs should directly affect the outputs, 

◦ The time needed to train a network for huge data is exhausting, 

◦ More recently, some advanced neural networks have been introduced, which generate more 

accurate predictions with less root mean square error (RMSE). For instance, Mocanu et al. 

[48] applied deep learning method (FCRBM) to predict building energy demand and 

compared it with support vector machine and neural networks. Results showed less RMSE 

in most cases. Application of such more advanced methods needs to be investigated in 

building energy systems, as well, and 

◦ The ANN lacks explanation tools for its knowledge. In most cases, ANN relations cannot 

be explained physically. 
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3. Development of Building Energy Saving 

Advisory: A Data Mining Approach 

3.1 Introduction 

Buildings’ impacts on global energy consumption have been increasing steadily, reaching up to 

20-40% in developed countries [2]. According to Natural Resources Canada [3], more than 30% 

of the total secondary energy is used by residential and commercial buildings. These reports show 

it is necessary to control energy consumption in buildings to ensure sustainability.  

Clear understanding of major influencing factors in building energy consumption is the necessary 

step when determining energy retrofitting strategies. The influential factors can be divided into 4 

major categories: Building Characteristics, all physical features of the building such as wall 

material and insulation; and Occupant Behavior, which include their presence, activities (what), 

and operation (how). Tenants can regulate the overall building energy consumption greatly [4], 

such that buildings with same physical characteristics have large discrepancies in electricity 

consumption. The influential factors are changing heating/cooling set points, the indoor 

environmental quality required, windows opening/closing behaviors, lighting, etc. System 

Efficiency and Operation refers to space heating/cooling and hot water supply, pumps, fans, etc. 

The efficiency of home appliances (oven, microwave, washing and drying machines, lamps, etc.) 

should not be neglected either. The fourth factor is Climatic Conditions, which refer to outside 

temperature, solar radiation, humidity, and wind velocity. Simulation software packages consider 

all these factors to model building performance, yet the designed/simulated building energy 
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consumption differs from the actual one. This challenge may originate in the complexity of these 

factors (e.g. uncertain climatic conditions or complexity of occupant behavioral patterns). 

One recent emerging science is the development of data analysis tools to extract information, and 

patterns, hidden in data. Data science refers to data mining, machine learning, statistics, data 

visualization, and various data analysis methods [5]. Building monitoring systems (Building 

Automation System (BAS)) measure consumption of Heating, Cooling and Air Conditioning 

(HVAC) systems, ambient conditions, electricity consumption, lighting, noise, security systems, 

vertical transportation systems, etc. This data includes abundant information about the building’s 

design, operation and maintenance, and can be used to reduce building energy consumption as 

well as recognizing faulty conditions. 

However, data mining is a relatively new science in building engineering; thus, little effort has 

been made to apply data analysis tools to building industry. Few data analysis frameworks (a series 

of data analysis techniques integrated together to extract information) exist to mine the building 

related data effectively (some of them will be mentioned in the literature review). Also, one of the 

key approaches to reduce building energy consumption can be started from the occupants and how 

they use the appliances. Huge savings are possible by modifying their behavior [49]. It is the only 

way to reduce energy consumption without costly fundamental changes such as upgrading building 

systems, reconstruction, envelope renovation etc. 

3.2 Methodology 

3.2.1 Overall Approach: Data Analysis Framework 

Energy reduction strategies could be achieved by focusing on one or all the mentioned factors. 

This study aims to improve the building energy efficiency by focusing on occupant behavior. One 
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occupants’ previous behavior (the extracted rules) to train neural network models, which becomes 

the basis for judging whether the occupant behavior improved or needs modification.  

The database consists of historical information about occupants’ energy use. It must be updated as 

it registers any behavioral changes such as changes in occupant number, lifestyle, and activities. 

After the learning phase, the extracted knowledge is applied to a new dataset for investigation (See 

Figure 3-3). The historical data must cover all weather and behavioral patterns and could be six 

months, one year, two years, or more depending on the availability and resolution (Every minute, 

hourly or daily) of the dataset. The recent test data should be the current time to monitor the energy 

consumption in a real time. However, in this study, results are shown for days due to unavailability 

of data. This does not affect our approach because the methodology remains the same. 

 

Figure 3-2. The data mining framework for knowledge discovery of occupants. The framework includes clustering, 
association rule mining, and neural networks to give the occupants useful information about their behavior in energy 
consumption of end-use services. The ARM (association rule mining), clustering and prediction models are detailed 

in sections 3.2.3 to 3.2.5.  
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literature are domain expertise [6], lower and upper quantile (Q) [12], complete case analysis [51], 

simple moving average method [6] and inference based methods. By using other attributes of a 

given instance, the chance of predicting a missing record close to its real value is relatively high. 

These methods are more complex and time consuming but more accurate and reliable. In this study, 

the outliers are detected using the quantile method and then estimated using a regression model 

based on other available attributes. To avoid depending on the choice of measurement units and to 

speed up the learning process of neural networks [26], Min-max normalization was performed on 

the data as follows: 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(𝑥𝑚𝑎𝑥

′ − 𝑥𝑚𝑖𝑛
′ ) + 𝑥𝑚𝑖𝑛

′  (3.1) 

where indices min and max refer to minimum and maximum values of each range. This technique 

preserves the relationship between the initial data. 

3.2.3  Clustering  

Clustering is used mainly in pre-processing large datasets, identifying outliers, discovering 

patterns or any data segmentation. Clusters are internally coherent and externally separated. In this 

study, clustering was used to group data by weather conditions. In regions with high temperature 

fluctuations, one may obtain several clusters, and only one in tropical regions. The attribute used 

for clustering is the 24-hour outdoor temperature data. Similarities between records are evaluated 

using distance-based criteria (e.g., Euclidean or Manhattan metrics). Various clustering algorithms 

exist in literature that depend on data dimensionality, type, and distribution. K-Means has been 

used successfully across various fields. This algorithm tries to separate the data points in (k) groups 

of equal variances to minimize the inter-cluster’s sum of squares. It divides a set 

of n records (X) into k disjoint clusters (c), each described by the mean (𝜇𝑗) of the samples (𝑥𝑖) in 
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the cluster. Means are commonly called “centroids” and are representatives of the corresponding 

clusters. K-Means has to choose centroids that minimize inertia, or the within-cluster sum of 

squared [52]: 

𝑜𝑏𝑗 =∑ ‖𝑥𝑖 − µ𝑗‖µ𝑗

𝑚𝑖𝑛
𝑛

𝑖=0

 (3.2)  

Similarly, k-Medoid uses the Euclidian distance to find the nearby data points and cluster them. 

The only difference between this method and K-Means is that it chooses the center of clusters from 

the most centrally located data points, not the average. This prevents clusters from being affected 

by outliers. 

Hierarchical clustering belongs to the family of clustering algorithms that builds nested clusters 

by splitting or merging the dataset. In this study, a bottom-up agglomerative clustering that merges 

nodes having the least similarity in their Manhattan distance is being used.  

Performance evaluation of clustering algorithms is performed using external validation methods 

when true labels exist (e.g. mutual information, F-measure, etc.) [53]. But, if the ground truth 

labels are unknown for a dataset (e.g. sample labels are unknown), evaluation must be done using 

the model itself using metrics such as silhouette index, Dunn Index, Calinski-Harabaz index, and 

Davies-Bouldin index. These evaluation metrics tests the clusters to see whether they satisfy some 

assumption that members belonging to the same class being more similar than members of 

different classes according to some similarity metrics [54]. A higher Silhouette Coefficient score 

means a model with better-defined clusters. The silhouette coefficient ranges between -1 to 1 (1 

means highly dense clustering, and -1 false clustering). The Silhouette Coefficient is defined for 

each sample as follows: 
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𝑠 =
𝑏 − 𝑎

𝑚𝑎𝑥(𝑎, 𝑏)
 (3.3) 

where a is the mean distance between a sample and all other points in the same class, and b the 

mean distance between a sample and all other points in the next nearest cluster. The Silhouette 

coefficient is the mean of all samples in the dataset. Another clustering evaluation method is the 

Dunn index, the ratio of the minimum cluster distance between observations in separate clusters 

to the maximum intra-cluster distance. The Dunn Index has a value between zero and infinity, and 

the highest value gives the best clustering. 

3.2.4 Association Rule Mining (ARM) 

Association rule mining is the next step of process and is applied on each cluster separately (see 

Figure 3-2). ARM is an unsupervised learning process and usually used for items frequently 

associated, meaning that they happen together. It was first used in market basket analysis to 

identify items frequently bought together. Support and confidence are the validity and certainty of 

the association rule. Support is an indication of how frequently the itemset appears in the dataset. 

The support of X with respect to Y is defined as the proportion of the transactions T in the dataset 

which contains the itemset X and Y. Confidence is an indication of how often the rule has been 

found to be true. The confidence value of a rule, X→Y, with respect to a set of transactions T, is 

the proportion of the transactions that contains X which also contains Y.  

There are various thresholds for both indicators that show the effectiveness of the rules. For 

example, a confidence level of 100% ensures that based on the data, two items are bought together 

all the times (such as a phone and case, or a laptop and its charger). ARM has been used in diverse 

fields such as sociology, bioinformatics, and retail [12].  

Mathematically, support and threshold are defined as follows:  
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𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌) = 𝑃(𝑋 ∪ 𝑌) 

 

(3.4) 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) = 𝑃(𝑌|𝑋) (3.5)  

𝐿𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑃(𝑋 ∪ 𝑌)

𝑃(𝑋)𝑃(𝑌)
=
𝑃(𝑌|𝑋)

𝑃(𝑌)
 

(3.6) 

Lift demonstrates the correlation between of X and Y. When Lift > 1, there is a positive 

relationship between premise and conclusion; when Lift < 1, there is a negative correlation. If Lift 

=1, there is no correlation. Therefore, one only considers rules with minimum support (Sup) and 

confidence (Conf) threshold, and a Lift > 1. There are two popular algorithms for association rule 

mining, Apriori and frequent-pattern growth (FP-Growth) algorithm [12]. In this study, the FP-

growth is used due to its high speed and wide applicability. To find associations between various 

activities of occupants, ARM is applied to the dataset. All attribute values are set to high or low 

based on whether the value is between average and maximum value or between minimum and 

average value, respectively. For simplicity, attributes are coded (1 to 17) according to Table 3-2. 

Also, the zero in the right side shows low and 1 shows high consumption. For example, 20 means 

the attribute number 2 has low energy consumption (the zero shows low energy consumption), 

while in number 81 the attribute number 8 signifies high energy consumption (1 indicates high 

energy consumption).  

Table 3-2 shows a selection of the result of this process. All attribute names are listed. Further 

discussion will be presented in section 3.2.  

Rules Categorization  
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There is a set of rules that must be categorized into three distinct groups for further analysis. The 

groups are Rules for Modification (RM), Rules for Savings (RS), and Neutral Rules (RN), and 

each is defined in the sections below.   

Rules for Modification (RM) 

Attributes are divided into weather directly modifiable (e.g. refrigerator, lights, etc.) or indirectly 

modifiable (e.g. temperature or humidity). If any modifiable attributes with LOW value are in the 

conclusion, this rule is categorized as RM. Inspecting a new dataset (separate from the training 

data), any record respecting the premise but not the conclusion is found and flagged as inefficient. 

This is because, based on the rule, the conclusion is HIGH instead of LOW. Therefore, the 

occupants are informed that they should correct their behavior. Given that the obtained rules are 

frequent, it means that the occupants have shown such behavior before, and modifying their 

behavior is fully feasible.   

Rules for Savings (RS) 

If any attributes (directly modifiable) with HIGH value are in the conclusion, this rule is 

categorized as rules for savings (RS). By inspecting a set of new data (apart from the training data), 

any record respecting the premise but not the conclusion is found and identified as efficient. The 

reason is that based on the found rule, the conclusion should be HIGH, but it is LOW. The 

occupants are notified that they have saved energy. 

Rules be Neutral (RN)  

Rules whose suitability cannot be judged are found based on the data. Some rules can be modified 

to improve occupants’ behavior and lower energy consumption, and some rules should be left 

unchanged.   
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3.2.5  Prediction Model  

Prediction models are meant to build a model based on given inputs and outputs (historical data) 

that predicts outcomes using a new set of inputs. For example, to predict the price of a house based 

on information such as area, age, and location it is possible to train an ANN model on a set of area, 

age, and location data as the inputs and the house price as the output. Artificial neural networks 

(ANNs) are among such predictive models. Using a neural network model, potential savings and 

achieved savings are estimated. Let us consider the following example. According to an RM rule 

([20, 30, 120]→[80], samples should be [20,30,120,80] (see Table 3-2 for a detailed description 

of numbers and their meaning). However, some samples are organized as [20, 30, 120, 81]. Based 

on these samples, occupants are warned that on some certain days the attribute number 8 has had 

high energy consumption (81) as opposed to the normal behavior. This may show an energy 

wasting behavior or abnormal use. The next step is estimating savings upon following the 

recommendation (81 to 80). Given that there is a correlation between the said attributes, the [20, 

30, 120, 80] data is used to build a model to predict attribute 8 using attributes 2, 3, and 12 as 

inputs. After training the model, the records that respect the premise but not the conclusion ([20, 

30, 120, 81] form) are plugged in the model. These samples are transformed to [20, 30, 120, 80] 

using the model. The difference between energy consumption (before and after correction, 81 and 

80) will indicate the potential energy reduction for the considered attribute.  

The same process is established for RS rules. This means that in general consumption is usually 

high, but low on certain days, showing energy preservation. The achieved savings are estimated 

using a similar approach. It is important to note that the procedure is performed for all extracted 

rules in RN and RS (one ANN model per rule). The cumulative effect of these savings can be a 
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great contribution (that depends on the occupant behavior) to reduce energy consumption of 

buildings for a period of time. 

3.2.6  Prioritizing Recommendations  

Recommendations are ranked according to the amount of savings respecting the following 

recommendations. The amount of saving potentials is the cumulative savings upon correcting a 

behavior. For instance, if one tries to correct a behavior b [High] → a [Low], where ‘b’ and ‘a’ are 

energy consumption profiles before and after modification, the cumulative saving will be:  

%𝑆𝑎𝑣𝑖𝑛𝑔𝑠 =
𝑠𝑢𝑚(𝑏) − 𝑠𝑢𝑚(𝑎)

𝑠𝑢𝑚(𝑏)
 

(3.7) 

Maximum saving is reached when sum (a) = 0 and the minimum is no savings which means sum 

(a) = sum (b). In this study, any measure producing savings over 25% is considered as a high 

recommendation. 

3.3 Results and Discussion  

As mentioned in Figure 3-1, the process is designed to capture any abnormal behavior seen in the 

recent data based on analysis of historical data. Data is clustered based on outside hourly 

temperature so the energy consumption data shares similar weather conditions. Association rules 

find all interesting patterns in data which make the basis for alerting the tenants when some 

behavior dissimilar to these patterns is seen. Artificial neural networks are used to quantify the 

energy saving potentials and achieved savings by occupants. Following sections describe the 

results of each task in more detail.      

3.3.1 Clustering Results 
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Figure 3-8. Clustering results for a sample data set using K-means algorithm and k=2.  

Attributes are the 24 hours outdoor temperatures. The results clearly show that the clusters are externally separated. 

3.3.2 Association Rule Mining Results  

Association rule mining was performed on each cluster separately to determine -correlations 

between various end-use loads. By inspecting and categorizing the rules, the specific energy 

inefficient occupant behavior was identified and energy saving recommendations was provided to 

occupants. After applying ARM to the dataset, 863 rules were extracted from both clusters (465 

rules from cluster 0 and 398 from cluster 1). After trying various combinations, a minimum 40% 

support and 85% threshold were used. The minimum Lift value was set to 1.01 to obtain positive 

correlations. Table 3-2 shows a selection of association rules. ARM results were generally 

expected and reasonable meaning that logically makes sense, but many were unexpected and need 

to be investigated by domain knowledge. For example, according to the first rule in the table, when 

the refrigerator and electric water heater are off most of the day, the kitchen light is usually off 

too. This seems logical given the presence of occupants in kitchen when of cooking or using the 

refrigerator. Similar explanations are given for rule 3 and 6. However, some rules cannot be 

explained logically. This shows the practicality of association rule mining, which is able to find 

correlations hidden in the dataset that may not be discovered by other methods. Such rules are the 
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second and the eighth rules in the table. As an example, the eighth rule states that when the living 

room outlets (Telephone, FAX, lights, and any plug loads connected to living room) are being used 

while refrigerator is not used frequently, then living room TV should be turned off most of the 

times. In fact, this rule is not interpretable because it reflects the specific tenants’ behavior which 

may not be a general behavior.   

Looking at extracted rules, it is observed that attributes with LOW energy consumption (0 in the 

rightmost integer) were more frequent than HIGH ones between the rules. This shows building 

occupants are highly conscious regarding energy-saving measures. In fact, this shows a good 

opportunity to modify any behavior opposite to these rules.  

When analyzing association rules, one should be aware of their corresponding cluster to have a 

sense of outdoor conditions when giving recommendations. In the case of rules in cluster 0, which 

is considered high temperature, attributes such as 2, 3 or 7 (electric water heater and lights) should 

be low most of the time because they are used less frequently in warmer seasons (where days and 

natural light are longer) compared to colder seasons.  

Inspecting the extracted rules allows finding relations between end-use loads. For example, rule 

number 1 shows refrigerator (low) and electric water heater (low) imply that kitchen lighting be 

low. Therefore, to reduce the use of kitchen light, occupants may need to use the fridge and electric 

water heater less frequently. Similar interpretations can be derived using rule number 3 or 5. 

Although there is always uncertainty involved in these rules, they are still useful to show the 

correlations.  
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Table 3-2. A selection of extracted association rules from both clusters.  

Rule  Prei  Conii Suppiii Confiv Lftv Cat
vi 

List of symbols 

1 [100, 30] 70 0.500 0.865 1.157 RM 1= Kitchen - Dishwasher / Dryer [Wh] 
2 [50, 71] 20 0.664 0.852 1.077 RM 2= Study Room - Outlet · Electric Light [Wh] 
3 [130, 100] 70 0.463 0.856 1.144 RM 3= Electric Water Heater [Wh] 
4 

[80, 130, 100] 70 0.450 0.850 1.14 RM 4= Entrance, bath, toilet washroom-outlet light 
[Wh] 

5 [20, 70] 100 0.667 0.968 1.117 RM 5= Bedroom · outlet · electric light [Wh] 
6 [60, 101] 10 0.545 0.904 1.094 RM 6= kitchen - Electromagnetic cooker [Wh] 
7 [10, 101, 141] 71 0.401 1.000 1.088 RS 7= Kitchen - Outlet · Electric Light [Wh] 
8 [91, 100] 80 0.526 0.993 1.016 RM 8= Living Room - TV [Wh] 
9 

[120, 130, 71] 101 0.480 0.950 1.040 RS 9= Living Room outlet (Telephone / FAX, …) 
[Wh] 

       10= Kitchen - refrigerator [Wh] 
       11= Washing machine [Wh] 
       12= Kitchen - Microwave [Wh]  
       13= Kitchen - Rice Cooker [Wh] 
  14= Lavatory - Hot water [Wh]  
 15= Living room temperature (°C) 
 16= Living room humidity (°C) 
 17= Bedroom temperature (°C) 

i Premise  
ii Conclusion  
iii Support (min=40%) 
iv Confidence (min=85%) 
v Lift (min=1) 
vi Categorical 
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3.3.3 ANN and Recommendations Results  

Extracted rules were categorized as RM, RS, and RN according to the description detailed in 

section 2.4. For each RM and RS rule, one prediction model was built and stored. That means 863 

ANN models were built and evaluated for 390 RS rules and 473 RM rules. While evaluating 

ANNs, the network parameters were adjusted for each model; if satisfactory results were not 

obtained (based on R-squared and sum of mean squared error and other metrics [56]), the rule was 

rejected. To demonstrate this process, two rules (one from RM and one from RS) were selected 

and shown in Table 3-3:  

Table 3-3. Two example rules for ANN model construction. 

Rule No. Premise Conclusion Supp Conf Lift Cat 

1 [80, 130, 100] 70 45% 85% 1.14 RM 

2 [120, 130, 71] 101 48% 95% 1.04 RS 

 

RM Rules 

Rule 1 indicates that when the living room TV, kitchen rice cooker and refrigerator consume low 

energy during the day, kitchen outlet lights should be switched OFF most of the time. This rule 

has a confidence level of 85% and a Lift value of 1.14, indicating a strong correlation. This means 

that in 85% of cases when living room TV, kitchen rice cooker and refrigerator had low energy 

consumption, kitchen lights were mostly OFF (low consumption). This occupant behavior is 

frequent. Therefore, it is expected that kitchen lights be OFF when the three loads mentioned are 

low. This rule is categorized as RM rule and any occupant behavior following the premise (80, 

130, 100) but not the conclusion (71 instead of 70) is considered inefficient. The occupant is 
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warned about this. One reason for this may be forgetting to switch off the lights. This 

recommendation is practical mainly because occupants have shown such behavior frequently; the 

rule is recurrent and has occurred 48% of the time for the same occupants. Therefore, such rule-

based recommendations are feasible and easy to follow. 

The second task is to estimate potential savings upon following the recommendation achieved by 

building the ANN model. This task indicates possible savings and gives occupants the motivation 

to watch their energy consumption. All data points in the form of [80, 130, 100, 70] are extracted 

and used for modelling. The last attribute (70) is the model output and the remaining ones are fed 

to the model as the input. Figure 3-9 shows the normalized profile of inputs and outputs. All data 

points (i.e. days) belong to the same cluster but are not necessarily successive days. This explains 

the gap between the graphs. There are a lot of ups and down in the graph, but all of them are in the 

[0-0.5] range, which indicates low energy consumption.   

To map the inputs to the output, a multi-layer feed forward neural network with back propagation 

was chosen as the model. GridSearchCV from the scikit-learn package was used to optimize 

network parameters such as solver, number of layers and hidden neurons, regularization parameter, 

learning rate and activation functions. All combinations were tested, and best results were used for 

each ANN model. The optimization was performed to get the highest cross-validation accuracy. 

Given the small size of extracted data sets (each extracted dataset usually have around 200 data 

points), a 5-fold cross validation was used to tune parameters and test accuracy. However, to 

analyze model accuracy with unseen data, 10% of data was separated.  
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Figure 3-9. Normalized energy consumption of end-use loads based on rule 1. The upper and lower figures show the 
inputs and output of the ANN model. The data points are extracted from the dataset and are not successive days. Also, the 

days come from the same cluster. 
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Figure 3-10 shows the modelling result. The cross-validation error (0.0045) and test error (0.001) 

are acceptable. However, the R-squared value of Test set is low, which could be attributed to the 

small size of the dataset and noisy data. Figure 3-11 shows the real and predicted values in the 

training dataset. It is observable that the network is able to capture the underlying pattern in the 

dataset. At some points, the network is not able to follow the data pattern; the error is due mainly 

from the small number of datasets (around 200 data points) and inherent noise in the data.     

 

Figure 3-10. Regression fit of the real and modeled output. The y-axis are normalized values for energy consumption. 
It is seen that the network is able to model the energy consumption of output (kitchen lamp in this case) using other 
end-use loads as inputs (living room TV, rice cooker and refrigerator in this case). The cross-validation error and test 
error are 0.04 and 0.001 which are in acceptable range. 
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Figure 3-11. Comparison of real and network generated values. The model can follow the trend of the real dataset. 
Mean squared error is 0.001.  

The model is used to estimate potential savings upon following given recommendations. The data 

samples that follow the premise ([80,130,100] occurring together), but not the conclusion is 

selected. The premise is fed to the model as input and the output gives us modified values. The 

difference between modified and real values is the potential savings (See Figure 3-12). Using 

equation 3.7, cumulative potential savings go up to 19%, which shows a good opportunity to save 

the energy if occupants follow recommendations and watch their behavior. In other words, this 

potential saving shows that such system is able to save a considerable amount of energy. One 

disadvantage of the current approach is that occupants’ past actions cannot be reversed to save 

energy because this new data is also historical. However, if the system expects occupants’ behavior 

online (current data is fed to the system and inspected), when abnormal behavior 
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Figure 3-14 shows the quality of the fit. The regression fit shows a good performance on the 

training and testing set. The error is mainly associated to the small number of data points. More 

data can reduce the error generated by the model (one bad prediction can be seen in train dataset).  

 

Figure 3-14. Regression fit of the real modeled output. It is seen that the network is able to model the energy 
consumption of refrigerator using other end-use loads microwave, kitchen lamp, and rice cooker. 
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Once the model accuracy was tested and accepted, the data was inspected and looked for data 

points showing such behavior in the premise ([120, 130, 71] occurred together) when the 

conclusion was not respected (100). The inputs were fed to the model and expected behavior was 

extracted (101). The difference between expected behavior and real behavior (100) shows the 

savings achieved by occupants. Figure 3-16 shows the results. The blue bars show the expected 

values generated using the neural networks, while the red bars show the real energy consumed by 

occupants. The cumulative saving for these 22 days is 10% (calculated by Eq. 7).  

Using a similar approach, after evaluating each rule, 29 and 36 rules were catalogued as RM and 

RS rules, respectively. Table 3-4 shows the result of applying the rules on the dataset. For RM 

category, potential savings over 25% (for each rule) were flagged as High Recommendations 

(occupants should take more precautions), and the rest were categorized as Normal 

Recommendations (The importance of them is not as much as High Recommendations). It also 

shows that there is a potential saving of up to 21% in total energy consumption (calculations were 

performed for all rules together). Also, achieved savings were reported to be 12% for occupants 

for all rules. This motivates tenants to follow more energy saving measures. 

A more detailed report that includes the appliances needing more attention is also available, so 

occupants can focus more on those. For example, considering RM rules, it is revealed that two 

appliances, kitchen outlet lights and the refrigerator appear in the recommendations more 

frequently. This shows that these two appliances deserve more attention.  
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Table 3-4. Result of applying all rules on the dataset. High recommendations have a potential saving of more than 
25% each, while the recommendations have lower than 25% potential saving. 

 
Number 

of Rules 
Recommendations priority Average of savings per rule Total savings 

RM rules 29 
High recommendations: 18 

Normal recommendations: 11 

High: 26% 

Normal: 20% 
21% 

RS rules 36 _ 11% 12% 

 

3.4 Conclusions  

Although different services in a building may work efficiently, occupants may not be informed 

enough to fully exploit their opportunities to save energy. This study proposed a new approach for 

evaluating the energy consumption of different end-use loads and used it to create a 

recommendation system that would advise tenants how to decrease their consumption. Different 

data mining tasks were employed in a framework—clustering, association rule mining, and 

artificial neural networks. The idea was to find frequent patterns in the data and use them as models 

to inspect occupants’ behavior. If an opposite behavior was noticed in the energy consumption 

pattern for any appliance, tenants were notified and potential or achieved savings reported. 

According to the rules obtained in the data, a potential saving of 21% is achievable. This 

demonstrates that there remains a lot of potential for occupant behavior to improve. This highlights 

the importance of data-based systems to unleash the hidden potential of data for energy savings. 

The methodology also enables the building management system to report the savings achieved by 
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occupants as a motivation for them to act more consciously. In this case study, the achieved savings 

were 12%. Further investigation of rules obtained shows the important end-use loads that need 

more consideration, such as refrigerator and the kitchen lamps in this study. The next step would 

be developing methodologies involving more than one single building for comparison purposes to 

overcome the mentioned challenges.  
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4. Development of a Ranking Procedure for 

Energy Performance Evaluation of Buildings 

based on Occupant Behavior 

4.1 Introduction 

According to reports published by the Natural Resources Canada [3], residential and commercial 

buildings are a main contributor to total secondary energy use, making up more than 30% of the 

total. This shows the necessity of energy consumption manipulation in buildings for a sustainable 

future. Occupants could affect the energy consumption of a building to great extents even if all 

systems and equipment (end-use loads and heating, ventilation, and air conditioning [HVAC] 

systems) work perfectly [49]. Recently, there have been many improvements in technological 

solutions, such as design and operation of building services [33]. Among these, recent research 

highlights occupant behavior as an important contributor that can increase the energy efficiency 

of buildings, similar to technological solutions [57].  

Generally, the factors influencing the building energy consumption could be divided into four main 

categories (see Table 4-1).  

Table 4-1. Influencing factors in energy consumption 

1 Climate (e.g., outdoor temperature, solar radiation) 

2 Building-related characteristics (e.g., type, area, heat loss coefficients) 

3 Building services (e.g., space heating and cooling, hot water supply) 
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4 Building occupant activities and behavior (e.g., user presence, activities) 

 

Among these, building occupants’ activities and behavior include factors that indirectly affect 

energy consumption. For example, social and economic factors (energy cost, degree of education, 

etc.) partly affect the occupants’ attitudes toward energy consumption [58]. Indoor environmental 

conditions are also determined by the occupants; therefore, they are an indicator of occupant 

behavior. The combined effect of the first three factors on energy consumption is identified using 

advanced simulation packages that are robust with respect to simulating different scenarios. 

However, modeling occupant behavior is still a challenge due to its complexity and indirect effects. 

Additionally, various statistical data analysis processes have been applied to establish meaningful 

relationships among energy consumption and influencing factors that help reduce energy 

consumption effectively. However, with the increasing amount of data generated by buildings 

within the complexity of the systems, especially on occupant behavior, these relationships cannot 

be captured by simple statistical methods; thus, such methods are inadequate for performance 

improvement. In this study, the challenge is: “How can we develop a procedure to assess the 

performance of a group of buildings based on the occupants’ behavior?” 

The occupants of a single building may not be well informed regarding their energy consumption 

performance. One solution to this challenge would be developing a procedure for a comparison 

among occupants of several buildings to show the rank of each building among others and 

showcase occupants’ potential abilities to reduce energy consumption on specific end-use loads. 

This way, the residents of each building would know their real rank and could be motivated to take 

energy-saving measures. In other words, the occupants can learn from each other and be persuaded 
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to reduce their consumption because they would observe that a similar building is consuming less 

energy. For example, if occupants of a single building see that the occupants of similar buildings 

are using less energy to provide the required indoor environment, they might be persuaded to 

follow them. However, due to the existence of several factors in energy consumption patterns of 

occupants (such as number of occupants, floor area, and house type), we cannot simply compare 

the energy consumption of several buildings. Also, the activities that occupants have performed to 

save energy and the degree of their energy consciousness are not accounted for. Thus, such simple 

comparisons are not yet effective. As many influencing factors as possible should be considered 

to make a fair comparison. Also, if the procedure is well designed, it can reveal potential saving 

opportunities for occupants of the buildings. In this study, a new framework for energy assessment 

of a set of buildings is introduced using data-mining techniques. The details are introduced in the 

following sections. 

4.2 Methodology 

The proposed method is composed of multiple steps, shown in Figure 4-1. The data from 80 

buildings in Japan are collected, integrated, and processed. Outlier detection and removal are 

applied on the dataset as preprocessing steps. As a result, four buildings are removed due to data 

deficiency. Outliers are substituted by approximations using regression on other attributes [59]. 

Each step uses a subset of available features in the data set, which are described in the following 

sections. The proposed method is composed of two-level ranking, as shown in Figure 4-1 in red 

boxes. The first level considers the amount of energy usage by occupants after filtering out effects 

unrelated to occupants. The second level ranks the buildings in terms of achieved and potential 

savings during the time under investigation. Therefore, the occupants know their specific category 
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in terms of each level. This helps them clearly understand their performance and take suitable 

measures. The methodology was applied on detailed data of 76 buildings.  

 

Figure 4-1. Framework development for building performance comparison based on occupant behavior. 

4.2.1 Grey Relational Analysis 

The influencing factors that affect building energy consumption are listed in Table 4-2. The 

contribution of each of these factors in overall energy consumption of buildings (energy use 

intensity, EUI) differs greatly. For example, variation in number of occupants may have larger 

effects on the total energy consumption than variation in the annual wind speed. Therefore, weights 
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should be assigned to each of these factors. One of the methods that could give such weights is 

grey relational analysis (GRA), which is applied on the data set as shown in Figure 4-1. GRA tries 

to identify the causative factors of a defined objective (energy use, in this case) and sort them in 

terms of their contribution [60]. Considering an n × m data set, 𝑦𝑗 denotes the objective sequence 

(in this case, building energy consumption), and 𝑦𝑖 denotes the influencing factors (listed in Table 

4-2). Therefore, 𝑖: 1,2, …m, and 𝑗: 1,2, …𝑃 (in this case, P = 1), and  𝑘: 1,2, …𝑛 is the index of 

data point.  

𝑦𝑖(𝑘) =
𝑥𝑖(𝑘)

1
𝑛
∑ 𝑥𝑖(𝑘)
𝑛
𝑘=1

 (4.1) 

Similarly, 𝑦(𝑘) is defined for all objectives. At any data point k, the grey relational grade between 

𝑦(𝑘) and 𝑦𝑖(𝑘) is defined as:  

𝜉𝑗(𝑘) =
𝑚𝑖𝑛
𝑖
min
k
|y(k) − yi(k)| + αmax

i
max
k
|y(k) − yi(k)|

|y(k) − yi(k)| + αmax
i

max
k
|y(k) − yi(k)|

 (4.2) 

where α is the “distinguishing coefficient” and is generally set to 0.5 [59]. The results are 

calculated for each data point. The average is used as the weight for the corresponding attribute 

and is known as the relational grade. 

 ri =
1

n
∑ ξi(k)
n
k=1  (4.3) 

The relational grades are numerical measures which show the effect of the influencing factors on 

the objectives. Basically, ri > 0.9 denotes a marked influence, ri > 0.8 shows a relatively 

important influence, and ri > 0.7 an important one; also, ri < 0.6 denotes a negligible influence 

[11], [60].  
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4.2.2 Level 1 Clustering  

Clustering analysis tries to group a set of observations by maximizing between-cluster distance 

and minimizing within-cluster similarities. In other words, it tries to put observations into distinct 

groups. The buildings are clustered based on influencing factors unrelated to occupant behavior 

(mentioned in Table 4-2), so buildings in the same group have similar characteristics except for 

occupant behavior. In this study, clustering is performed several times for different tasks. There 

are several clustering algorithms, each made for different purposes. They are usually applied on 

two-dimensional data where each row represents an observation and each column represents an 

attribute. Clustering mainly involves five main tasks. The first is feature generation, which is the 

process of choosing appropriate attributes for clustering. This is based on domain knowledge and 

available data. The attributes chosen for level 1 clustering are described in Table 4-2. Therefore, 

buildings in the same cluster share similar characteristics in terms of weather conditions, building 

structure, number of occupants, and building services.  

Table 4-2. Representative attributes of the four influencing factors on occupant behavior. 

Influencing Factor in EUI Attribute Category-Unit Abbreviation 

City climate 

Annual mean air temperature Numerical-ᵒC T 

Annual mean relative humidity Numerical RH 

Annual mean wind speed Numerical-m/s WS 

Annual mean global solar radiation Numerical-MJ/m2 RA 

Building-related 

characteristics 

House typei Categorical HT 

Building area Numerical-m2 BA 

Equivalent leakage areaii Numerical-cm2/m2 ELA 
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Heat loss coefficientiii Numerical-W/m2K HLC 

Occupant-related 

characteristics 
Number of occupants Numerical NO 

Building services system 

and operationiv 

Space heating and cooling Categorical HC 

Hot water supply Categorical HWS 

Kitchen equipment Categorical KE 

i The houses are either detached or apartments and are transformed to [0, 1].  
ii Measured by fan pressurization method. 
iii Calculated based on building design plans. 

iv Either electric or nonelectric. They are transformed to [0, 1]. As all space cooling equipment is electric, the value of HC is 

determined by space heating.  

 

The second task is choosing proximity measures that differ based on the algorithms used. The most 

widely used measure is the K-means algorithm, given as: 

∑ ‖xi − µj‖µj

min
n

i=1

 (4.4)  

where xi is the ith observation and µj is the cluster center. Other similar algorithms are the K-

medoids and Manhattan distance, Pearson correlation, and cosine similarity algorithms [61]. The 

third and fourth tasks are applying the algorithm and explaining the results. The last task is to 

measure the goodness of the clustering, which is done either by external methods (mutual 

information, F-measure, purity, etc.) or internal measures (such as the Silhouette index or Dunn 

index). A list of methods can be found in [62].    

Prior to clustering the data, some preprocessing is needed to make the data consistent, such as unit 

conversions, outlier diagnosis, and normalization. For binary attributes, their two states, such as 
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house types, that is, [detached house, apartment], are transformed to [0, 1]. Outlier detection is 

performed using the quantile method, and the outliers were substituted using regression on other 

attributes [31], [51].  

If all features are used at the same time for clustering, we may end up with some buildings in the 

same cluster with different climatic conditions, such as outdoor ambient temperature (other 

features may be very similar, which would put two buildings in the same cluster). However, 

comparing two buildings with different climatic conditions does not make sense. To make sure 

that the buildings in the same group are as similar as possible in terms of weather conditions, first, 

the buildings are clustered in terms of climatic data (temperature, humidity, wind speed, and solar 

radiation) and then grouped based on other characteristics described in Table 4-2 (level 1-1 and 

level 1-2 clustering).   

4.2.3 Level 2 Clustering  

Given that all buildings in the same cluster level 1 share similar characteristics in weather 

conditions (level 1-1) and building and occupant characteristics (level 1-2), the differences in 

energy consumption of the buildings of the same cluster (level 1) are due to occupant behavior. 

The buildings are again clustered in terms of energy use intensities (EUIs), which is an indicator 

of the occupants’ behavior (indicated in Figure 4-1 as level 2 clustering). The detailed attributes 

are summed up in eight categories:  

1) Heating, ventilation, and air conditioning (HVAC) 

2) Hot water supply (HWS) 

3) Lighting (LIGHT) 

4) Kitchen (KITCH) 

5) Refrigerator (FRIDGE) 
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6) Entertainment and information (E&I) 

7) Housework and sanitary (H&S) 

8) Other end-use loads (OTHER) 

This clustering groups the buildings into different energy use levels. The number of clusters is 

determined based on internal measures, such as the Silhouette index [62]. The clusters are then 

ranked from highest to lowest EUI. Therefore, the general category of each group becomes known. 

Also, the main contributors to such differences will be determined from each of the eight attributes 

described above, which gives the occupants information about how to reduce their overall energy 

consumption to enter the lower EUI cluster. This constitutes the level 1 ranking. 

4.2.4 Performance Index  

To evaluate the activities of occupants and whether they have tried to take energy-saving measures, 

the performance index (PI) is calculated as described below. It is indicated as PI in Figure 4-1 and 

is applied on each building.  

PI is defined as: 

PI = AS − PS (4.5) 

AS is the achieved savings and PS is the potential savings. Achieved savings mean that the 

occupants have tried to lower their energy consumption by taking certain actions to reduce the 

energy usage of one or more of the eight end-use loads. The potential savings are the amount of 

energy that could have been saved if the occupants do not increase their energy consumption 

(opposite to their previous actions which was lower energy usage of a specific end-use load). The 

process is designed to capture any abnormal behavior seen in the recent data based on analysis of 

historical data as indicated in Figure 4-2. In this process, the eight end-use loads described above 
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are broken down into more detailed data. For example, KITCH data are broken down to washing 

machine, dryer, rice cooker, oven, and so on, depending on the available home appliances [63]. 

Data are then clustered based on outdoor hourly temperature so the energy consumption data share 

similar weather conditions. Association rule mining finds all the patterns in the data, which forms 

the basis for alerting occupants when dissimilar behavior to those patterns is seen. The rules are 

categorized as rules for modification (RMs) and rules for savings (RSs), as shown in Figure 4-3. 

RMs imply that the energy consumption of an appliance is low. Any behavior opposite from these 

rules is flagged as potential savings (PS), meaning that there is a potential to save energy by 

following the recommendation (the RM). In other words, occupants have shown a good behavior 

regarding an end-use load and any behavior opposite to that is flagged as waste of energy. For 

example, consider energy consumption of lighting in a room. After analyzing the energy 

consumptions, the system may extract a rule that at certain times, the light should always be (or 

most of the times) switched OFF. Any behavior contradicts with this rule (light be switched ON 

in the mentioned times) is flagged as inefficient and needs consideration and modification. Any 

waste of energy is considered as potential savings for the occupants. RSs imply that the energy 

consumption of an appliance is high. Any behavior opposite to these patterns is flagged as achieved 

savings (AS), which shows that occupants have used less energy than their normal usage. Artificial 

neural networks are used to quantify the energy-saving potential and achieved savings by 

occupants. The flowchart of the process is shown in Figure 4-2. More details are provided in [51]. 

Based on this definition, if a building has low potential for improvement and high savings 

achievements, it is considered a very sgood building regarding its occupants’ energy awareness. 

Buildings in the same cluster are compared and ranked based on PI. This comparison gives the 

occupants of a building an idea of their place regarding their efforts to save energy and motivates 
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them to improve their performance using the clues in level 2 clustering. This makes up the basis 

of a level 2 ranking. More insights are given in the Results and Discussion section. The described 

process is independent of level 1 ranking. Therefore, the occupants of a single building are 

informed about their ranks in both levels and can take suitable actions.  

 

Figure 4-2. The data-mining process for rule extraction among home appliances to find potential and achieved 
savings, along with performance index.  

 

 

Figure 4-3. Rule categorization process [51]. 

 

4.3 Results and Discussions 

4.3.1 Grey Relational Analysis  
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Accumulated annual energy use intensity of buildings in 2003 was selected as the objective 

variable in Grey Relational Analysis (GRA). Because the EUI already contains information about 

building area, this factor is not considered in GRA. Results are shown in Table 4-3, in which 

temperature, relative humidity, wind speed, and solar radiation are functions of time and region 

and were therefore averaged over 12 months for each district. The rest of the variables are fixed 

and were calculated using the whole data set. ` 

Table 4-3. Grey relational analysis of influencing factors on energy consumption. 

egion 

Factors 
Hokkaido Tohoku Hokuriku Kanto Kansai Kyusyu 

T 0.799 0.831 0.772 0.737 0.712 0.654 

RH 0.620 0.765 0.644 0.732 0.695 0.661 

RA 0.683 0.662 0.716 0.641 0.690 0.675 

WS 0.584 0.555 0.532 0.601 0.580 0.605 

HT 0.617 

ELA 0.490 

HLC 0.780 

NO 0.701 

HC 0.537 

HWS 0.514 

KE 0.551 
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The results imply that outdoor air temperature has the greatest contribution to EUI considering 

only the weather parameters (except for the Kyusyu region, in which RA has the highest 

contribution). This is more obvious in colder climates such as Hokkaido and Hokuriku. It appears 

that in warmer climates, the contributions of weather parameters are similar to each other, for 

example in Kyushu regions all parameters are in the range of 0.600-0.675, while in Hokkaido they 

are in the range of 0.580-0.800. Among the other seven variables, heat loss coefficient (HLC) and 

number of occupants (NO) play the dominant roles.  

The achieved GRAs for all variables are multiplied by their corresponding variables in the 

buildings data set so the more influential variables are dominant in clustering the buildings. 

4.3.2 Clustering based on weather parameters (level 1-1) 

As described in Section 4.2.2, level 1-1 clustering puts all buildings with similar weather 

conditions in the same group. This way, buildings in the same group share similar characteristics 

in terms of four weather parameters: outside temperature, relative humidity, solar radiation, and 

wind speed. The results imply two clusters, which are shown in Figure 4-4. The figure on top 

shows that one of the clusters contains buildings from only two regions, Tohoku and Hokkaido, 

which are considered cold regions with less radiation. The figure at the bottom shows the centroids 

of each cluster. It is seen that lower temperature and wind speed are the dominant factors that put 

these buildings in cluster C2, while other clusters contain buildings with higher temperature, 

humidity, wind speed, and solar radiation. The next step divides each of these two clusters further 

to consider building characteristics, too. The reason the buildings are divided first by weather 

conditions is the importance of weather parameters in inspecting occupant behavior.   
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opposite effects (they neutralize their effect), which causes the algorithm to put the buildings 

together in one cluster; otherwise, the buildings are not grouped with each other.  

Figure 4-6 shows the distribution of end-use loads in each cluster, along with their corresponding 

proportions. The difference in EUI between buildings in the same cluster is attributed to 

differences in occupant behavior. The eight end-use loads of each building were averaged over a 

year. As shown in Figure 4-6, KITCH and HWS are the two important contributors in cluster C 

2_2, so the buildings in this cluster need to focus more on these two end-use loads regarding energy 

saving. However, FRIDGE and E&I are the two dominant factors of EUI in cluster C 2_1. Also, 

HVAC, LIGHT, and FRIDGE are the main contributors in cluster C 1_3, while cluster C 1_1 

shows a uniform distribution among different end-use loads. This shows that occupants in different 

clusters show different behaviors regarding the intensities of end-use load usage. The noticeable 

increase in HWS in cluster C 2_2 may be attributed to the low outside air temperature of the 

buildings in this cluster (this cluster comes from C 2 which includes colder regions). Also, all 

buildings in this cluster have electrical heaters (see Figure 4-5) and apparently occupants tend to 

use them more than kerosene heaters.     
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Figure 4-7 shows the result of the level 1 rankings. Every building of the data set falls into one of 

the leaves of the graph shown. By following the branches of the curve, some information about 

the general characteristics of the buildings and weather conditions of the buildings in that cluster 

can be found. For example, buildings in clusters C 2_1 and C 2_2 are all in cold regions where 

temperature, humidity, and solar radiation, are low. Buildings in cluster C 2_1 have low equivalent 

leakage areas and nonelectric hot water supply and space heaters, while buildings in C 2_2 have 

electric heaters and hot water supply. By looking at clustering level 2, general occupant behavior 

is extracted. For example, buildings in cluster C 2_1 are clustered further into two groups of high 

and low energy consumers. Cluster C 2_1_1 is the cluster with higher energy consumption in the 

majority of end-use loads, such as HVAC, HWS, LIGHT, FRIDGE, E&I, and OTHER. Therefore, 

the occupants need to focus on these end-use loads. More information about all 10 obtained clusters 

is shown in Figure 4-7.  
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Figure 4-7. Results of level ranking. Details of clusters and their general characteristics. 

 

Figure 4-8 shows clustering centroids for each end use. By analyzing clustering level 2 results, 

specific occupant behavior is determined. Some of the implications are as follows:  

High energy consumer buildings in cluster C 1_1 (top left graph in Figure 4-8) have higher energy 

consumption specifically in HVAC, KITCH, and FRIDGE, which implies that building occupants 

in this cluster should give primary consideration to these activities and bring their energy 
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consumption level to low values. The activities that need more consideration in cluster C 1_2 are 

FRIDGE, HVAC, and OTHER. The end-use load that deserves attention in all buildings is 

FRIDGE, because it is the main contributor in nearly all clusters (high energy consumers), and 

HVAC is a main contributor in all clusters except C 2_1. Also, C 1_1 shows a uniform distribution 

of energy usage in end-use loads. Blue bars show the centroid of buildings at the low energy 

consumption level. It is important to mention that sometimes one activity may have a higher 

portion compared to its corresponding value in the high energy consumers, but the overall energy 

consumption of occupants (based on Euclidean distance in the K-means algorithm) puts them in 

the low energy category. Such activities are E&I in cluster C 1_3 and KITCH and H&S in cluster 

C 2_1. Occupants may focus on these activities to save more energy.  

Level 2 clustering gives the building occupants of each cluster (level 1) a basis to reduce their 

energy consumption by comparing their consumption with similar group. Low energy consumers 

are encouraged to improve their building’s performance by focusing on major end-use loads and 

comparison with the best building in their section.  



 72 

 

Figure 4-8. Clustering level 2 results. Data in all clusters were clustered again in terms of EUI. Centroids are shown 

in blue and red bars and are categorized as buildings with either low or high energy consumption, respectively. 

4.3.5 Level 2 Ranking  

For each building in the same cluster (level 1), the PI was calculated and the results were reported. 

Buildings with a higher PI have a higher place regarding energy consumption, while occupants of 

buildings with a lower PI are informed to take suitable actions to reduce their energy consumption 

level and improve their rank. Potential and achieved savings are calculated based on the extracted 

rules (RM and RS rules in Figure 4-3). Two sample rules are indicated in Table 4-4. The first rule 
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indicates that when the living-room TV, kitchen rice cooker, and refrigerator consume low energy 

during the day, kitchen outlet lights should be switched off most of the time (based on this rule, 

which is derived using historical data). This occupant behavior is frequent; thus, it is expected that 

kitchen lights should be off when the three loads mentioned are low. This rule is categorized as an 

RM rule, and any record following the premise ([TV (low), rice cooker (low), refrigerator (low)]) 

but not the conclusion ([Kitchen light (high)]) is considered inefficient. The occupant is warned 

about this issue. To estimate the potential savings associated with this waste of energy, an ANN 

model is built based on the rule in which the input and output are the premise and conclusion, 

respectively (as shown in Table 4-4). Figure 4-9 and Figure 4-10 show the outputs of the models 

based on the rules represented in Table 4-4, which are obtained by plugging the values of the 

premise into the model and getting the output. The recorded (real) values and their differences are 

also reported in the figure. Figure 4-9 corresponds to the sample RS rule, and Figure 4-10 refers 

to the sample RM rule. The potential savings are calculated based on the difference between 

modified and recorded values, and achieved savings are estimated based on the difference between 

expected and recorded values. This process is repeated for all extracted rules. The cumulative 

potential savings are reported as a percentage (shown in Table 4-5). The achieved savings is 

calculated in a similar manner for RS rules.  

Table 4-4. Two sample rules for calculation of achieved and potential savings. 

Premise Conclusion Category 

[TV (low), rice cooker (low), refrigerator (low)] [Kitchen light (low)] RM 

[Microwave (low), rice cooker (low), kitchen light (high)] [Refrigerator (high)] RS 
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It is important to mention that in Equation 4.4.5, AS and PS are expressed in terms of percentages, 

and their subtraction may give negative, zero, or positive values. Negative values mean that the 

achieved savings are less than the potential savings, zero means they are the same, and positive 

means the potential savings are lower than the achieved savings, which is the best case. Table 4-5 

shows part of the results in cluster C 1_1_1 (high energy consumers; there are 14 buildings in this 

cluster). High energy consumers (red bars in Figure 4-8) and low energy consumers ((blue bars in 

Figure 4-8) are ranked separately; therefore, a clear ranking of each building is given to tenants, 

giving them opportunities to know their place among other buildings and see how to improve their 

rank. For example, based on Table 4-5, building 3 in cluster C 1_1_1 is a high energy consumer 

according to clustering level 2 (red bars in Figure 4-8, top left). Therefore, the tenants are advised 

to try to modify their behavior (especially on HVAC, KITCH, and FRIDGE based on Figure 4-8, 

top left) to improve their place. This building shows a relatively good performance in terms of PI 

because it is in second place among the other four buildings, with a PI of –2%. The best building 

has a PI of 1%. Similar interpretations are possible for other buildings in the data set. Similar 

results are obtained and can be reported to the occupants of other buildings.  

Table 4-5. Part of results of two-level ranking system for buildings in cluster 2 in high energy consumers.  

 

Building No. Cluster Level 1 Ranking Level 2 Ranking AS PS PI 

1 

C1_1_1 

H
igh Energy Consum

er 

4 12% 21% –9% 

2 3 10% 15% –5% 

3 2 10% 12% –2% 

4 1 11% 10% 1% 
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4.4 Conclusions 

A novel two-level ranking system for a set of buildings was proposed based on occupant behavior 

and activities. Buildings were first clustered using the K-means method into two levels, levels 1-1 

and 1-2, to reduce the effects of non–occupant-related factors and put buildings into separate 

groups. The differences between the buildings’ energy consumption in the same clusters are 

attributed to occupant roles. A second clustering in terms of eight end-use loads was performed in 

each group to yield a level 1 ranking for each building (high and low energy consumers). 

Performance index was defined in terms of achieved and potential savings to determine the amount 

of savings for each building based on detailed operational data and was named level 2 ranking. 

Results show that, using the information provided by the two ranking levels, tenants of a certain 

building are able to understand their performance in terms of energy usage compared to other 

buildings and get recommendations on how to reduce their energy consumption and improve their 

rank. 
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5. Systematic Approach to Provide Building 

Occupants with Feedback to Reduce Energy 

Consumption 

5.1  Introduction  

Occupants’ contributions to the energy consumption of buildings could be significant. By 

monitoring occupants’ behavior in this regard, we can find opportunities to save energy. This is 

important in the sense that modifying occupant behavior is an inexpensive way to reduce building 

energy consumption, especially if the occupants could benefit financially (reducing energy bills) 

and without any additional costs. Occupant behavior means occupants’ presence, activities, and 

operations. One of the best ways to assess this behavior is through comparison. Climate conditions, 

building envelope, and building systems can influence occupant behavior. However, if two 

buildings with the same types of factors are studied, we may notice, for example, that one of the 

buildings has lower energy expenditure toward a certain end-use load. This shows that some 

occupants are aware of their activities or behavior, which could help reduce energy consumption. 

For example, the occupants of one building may use little energy for kitchen appliances, the 

operation of heating, ventilation, and air conditioning (HVAC), or both. This can be due to several 

reasons, such as culture or lifestyle. On the other hand, occupants may overuse some appliances, 

which makes them high-energy consumers. Based on this, it is possible to create a building that 

has all the positive characteristics of low-consumption buildings, so we can alert the occupants of 

the building in question of how much energy they can save by copying the reference building (RB). 

The idea is shown in Figure 5-1. As expected, buildings have different occupants and 
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characteristics, such as the number of people, age, the level of activities, building thermal 

characteristics such as wall area, insulations, etc., and weather conditions such as cold and humid, 

or warm and dry climates. Therefore, one cannot simply compare the high-energy-consuming 

buildings with those with the lowest energy consumption. The main objective of the current project 

is to generate an RB so that any other building can be compared with it. The RB should be very 

similar to the building in question in terms of number of occupants, building characteristics, and 

weather conditions. In the previous studies, occupant behavior was analyzed using data mining of 

several existing buildings to reveal opportunities to save energy [1-3]. In this study, the 

development of a novel methodology to generate an RB from data on existing buildings for 

performance evaluation is described. The result is a generic, accurate, and scalable tool to evaluate 

the energy consumption of a given building. In the following sections, an overview of previous 

works is presented before the current work methodology is introduced. 
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Figure 5-1 Creation of reference building through analysis of appliances energy consumption. 

 In this study, a new approach for evaluation of energy consumption in a single dwelling is 

presented, using clustering analysis and ANN models. The following is a summary of the 

contributions of the current work:  

1. The current paper is the first featuring a proposal to create a nonexistent RB to assess the 

energy consumption of a given building. Knowing that each building may show a low 

energy consumption pattern regarding one specific end-use load such as HVAC or lighting, 

it is possible to make an RB that contains all energy-saving characteristics of different 

buildings. Therefore, for a given building, its RB is created by the proposed methodology. 

Potential savings are revealed through comparison of the given building with the RB.  
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2. The creation of an RB through this methodology is an accurate approach to assess the real 

performance of a building. (A comparison of existing work with another authors’ 

publication is described in section 5.3.4) 

3. The methodology introduced here is a generic and scalable approach, meaning that by 

increasing the number of buildings under investigation, we can achieve even better and 

more robust models as RBs to assess the performance of a given building. 

5.2 Methodology   

Figure 5-2 shows the overview of the framework. The tasks are outlined in the framework: 

1) data selection; 2), data aggregation; outlier detection and diagnosis; and normalization; 3) 

database creation; 4) grey relational analysis (GRA); 5) level 1-1 clustering; 6) level 1-2 clustering; 

7) level 2 clustering; 8) cluster ranking and combination; and 9) model development. Each task is 

meant for a purpose and is applied to a portion of the dataset. The designed process is as follows:  

1) Data on energy consumption from each building are selected, summarized, cleaned, and 

integrated together. The data consist of weather parameters, building characteristics, and 

energy consumption of all end-use loads. Energy consumption data are averaged to annual 

values and normalized and stored in the database. This methodology uses the annual 

building energy consumption, but it can be further improved to show seasonal energy 

consumption. 

2) GRA is performed on the database to give weight to input parameters. The contribution of 

each parameter on a specific end-use load may be different. GRA is performed for each 

specific load separately for use in generating the RB.  
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3) A two-level clustering is performed on the dataset to group buildings with similar 

characteristics in terms of climatic and physical and occupant information, as shown in 

Figure 5-2. This step is called level one clustering. 

4) A second clustering is performed on each resultant dataset to place them into groups of 

low- and high-energy consumers.  

5) Clusters containing buildings with low-energy consumer tags are combined to develop the 

dataset of low-energy consumers. Note that steps 3–5 are performed for each end-use load 

separately. 

The following sections describe each step in more detail. 

 

Figure 5-2. The proposed data mining framework. The inputs are home appliance energy use, weather, physical data, 
and occupant information. The output is the model to create an RB. 
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5.2.1 Data Selection   

The data containing the information about home appliance energy use, weather data, building 

characteristics, and occupants’ information were input. Home appliances’ energy use were 

summed up in eight categories as follows:  

1) HVAC 

2) Hot water supply (HWS) 

3) Lighting (LIGHT) 

4) Kitchen (KITCH) 

5) Refrigerator (FRIDGE) 

6) Entertainment and information (E&I) 

7) Housework and sanitary (H&S) 

8) Other end-use loads (OTHER) 

The energy consumption of each of these end-use loads was monitored and measured every day 

for each building. There are 76 buildings in total, and the study was performed between 2002 and 

2004. Therefore, approximately 3 × 365 × 76 = 83220 datapoints were collected. Climate data 

included: 

1) Annual average outside air temperature (T) 

2) Annual average relative humidity (RH) 

3) Annual mean wind speed (WS) 

4) Annual mean global solar radiation (IR)  
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In some cases, where the values were missing, the nearest weather station’s data were used. 

Building physical parameters were: 

5) House types (HT) (detached or apartment) 

6) Building area (A) (m2) 

7) Equivalent leakage area (ELA) (W/m2K) 

8) Type of space heating and cooling (HC) (electric or nonelectric) 

9) Type of HWS (electric or non-electric)  

10)  Kitchen equipment (KE) (electric or nonelectric)  

Occupant information included only: 

11)  Number of occupants (NO)  

5.2.2 Data Aggregation, Outlier Detection, and Normalization   

The data from all buildings were aggregated, and outlier detection was performed using the lower 

and upper quantile method. This means that data lower than Q1 − 1.5(Q3 − Q1) or greater than 

Q3 + 1.5(Q3 − Q1) were considered as outliers, where Q1 and Q3 were the first and third 

quantiles, respectively. After outlier removal, they were filled using a regression model based on 

other available attributes. Data were then normalized using min‒max normalization to obtain the 

values between 0 and 1. Furthermore, the categorical values were converted to 0, 1, or in between. 

5.2.3 Database Development    

Once pre-processing was completed, the database was developed for the DM tasks. For each task, 

a subset of the attributes was selected. For example, in level 1-1 clustering, climate data were used 
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to cluster the buildings into similar groups, and other attributes were kept, while in level 1-2 

clustering, the building’s physical information was used. Finally, in level 2 clustering, the energy 

consumption data of a specific end-use load were used. 

5.2.4 Grey Relational Analysis    

GRA identifies the causative factors of an objective (energy use, here) and weighs them according 

to their contribution[60]. The contribution of each of these factors in the overall energy 

consumption of buildings varies greatly. For example, a variation in the number of occupants may 

have larger effects on the KITCH energy consumption than would variation in the house type. In 

this study, GRA was applied to the following variables: temperature, relative humidity, solar 

radiation, wind speed, house type, equivalent leakage area, heat loss coefficient, number of 

occupants, heating/cooling type, hot water supply, and kitchen equipment. The GRA results were 

then multiplied by their corresponding variable. The process was repeated for each end-use load. 

Results were stored in the database for the next steps. 

5.2.5 Level 1-1 Clustering 

This step filters out the effects of weather parameters by clustering buildings with similar weather 

conditions together. The attributes used for this clustering are annual mean air temperature, annual 

mean relative humidity, annual mean wind speed, and annual mean global solar radiation. The 

output of this clustering is groups of buildings with similar weather parameters. It is worth 

mentioning that it is possible to prioritize the attributes used in this clustering, for example, making 

the outside temperature the main attribute by giving it a weight. However, in this study, all four 

climatic attributes were given the same importance (weight) and used in clustering. 

5.2.6 Level 1-2 Clustering 
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At this stage, the buildings are grouped by occupant information (number of occupants) and 

building physical characteristics (house type, equivalent leakage area, heat loss coefficient, 

heating/cooling type, hot water supply, and kitchen equipment). The result is the grouping of 

buildings with similar occupants and physical parameters. 

5.2.7 Level 2 Clustering 

The differences between energy consumption of buildings in level 2 clustering are due to different 

occupant behaviour. At this level, the buildings are clustered in terms of energy use intensity (EUI, 

energy use per unit of area), which is an indicator of the energy consumption of the occupants. The 

steps in sections 2.4‒2.7 are repeated for all eight end-use loads (mentioned in section 2.1) 

separately and stored in the database. 

5.2.8 Cluster Ranking and Combination 

The result of level 2 clustering is the grouping of buildings with similar energy use regarding one 

specific end-use load (for example, HVAC energy consumption). The centroids of clusters 

(average energy use of each cluster) are then sorted from the highest to the lowest: the cluster with 

the lowest centroid represents building occupants who are cautious regarding energy use of the 

end-use load under investigation. By extracting all low consumer buildings and their 

corresponding information (listed in level 1-1 and 1-2 clustering), we were able to make a database, 

which was a subset of the original database but contained only low-consumption buildings, as 

shown in Figure 5-2. This process was performed for all eight end-use loads listed in section 2.1. 

The resulting data lay the foundation to create the RB. 

5.2.9 Model Development 
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The aim of this step is to use the developed databases as the base to generate the RB. As mentioned 

before, all buildings in the created datasets were low-consumption buildings. The goal was to 

develop a model that could estimate the energy consumption of an end-use load. The model inputs 

were number of occupants, climatic conditions, and building physical information. The model took 

the inputs and estimated how much energy the building would approximately consume if it 

belonged to the set of low-energy-consumption buildings. The model used an artificial neural 

network to map inputs (characteristics) to outputs (energy consumption). This process was 

performed for all eight end-use loads, and a model was created for each end-use load. Therefore, 

the RB consisted of eight ANN models. The outputs of the RB were in the range of low-

consumption buildings because the databases were created using such buildings. After comparing 

the model outputs and real values from a given building, we could evaluate said building’s thermal 

performance. This is shown in Figure 5-3. It is worth mentioning that the RB was customized to 

each given building, considering that the inputs of the models came from the given building and 

those developing the RB estimated the desired values from the low-consumption buildings using 

an ANN. The ANN model used in this study was a multilayer perception model with regularization 

parameters. The Scikit-learn package of Python 3.7.3 was used for the analysis, and the optimal 

parameters were chosen according to the grid-search method available with the package scikit-

learn [62]. A three-layer neural network was used in all cases, and the activation function, 

regularization parameter, and learning rate method were chosen by the grid search.  
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Figure 5-3. Creation of reference building using eight ANN models. 

5.3 Results and Discussion   

5.3.1 Grey Relational Analysis 

Table 5-1 shows the result of GRA for every end-use load. As can be seen, for every load, the 

contributions of characteristics are different. The colors in each column sort the values from 

highest to lowest. Pure red shows the maximum, pure green shows the minimum, and others are 

in between. For example, in HVAC energy consumption, NO, followed by T, are the key variables, 

while HT is the least important characteristic. This shows that the type of dwelling (detached or 

apartment) has the least effect on HVAC energy consumption by occupants. Regarding HWS, RH 

and NO are the dominant factors, which seems reasonable, while KE is the least important 

characteristic. In general, the important characteristics are NO, HLC, T, and IR, while HT and KE 

are considered less important characteristics. Weather factors and NO play a greater role than 
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building characteristics. The contributions of each characteristic were multiplied by the normalized 

energy consumption data for clustering purposes (next section). 

Table 5-1 Results of GRA for each end-use load 

 
HVAC HWS LIGHT KITCH FRIDGE E&I H&S OTHER 

HT 0.625 0.653 0.637 0.562 0.614 0.621 0.588 0.707 

NO 0.778 0.726 0.732 0.765 0.812 0.777 0.763 0.698 

HLC 0.77 0.708 0.697 0.739 0.802 0.751 0.779 0.679 

ELA 0.734 0.696 0.694 0.706 0.723 0.696 0.74 0.702 

HC 0.688 0.683 0.645 0.641 0.699 0.704 0.673 0.73 

hws 0.744 0.639 0.707 0.649 0.751 0.712 0.725 0.696 

KE 0.667 0.605 0.645 0.546 0.651 0.658 0.642 0.691 

T 0.773 0.688 0.721 0.709 0.783 0.747 0.753 0.671 

RH 0.722 0.734 0.668 0.66 0.693 0.703 0.704 0.767 

WS 0.753 0.668 0.707 0.702 0.766 0.699 0.768 0.677 

IR 0.768 0.684 0.707 0.738 0.806 0.766 0.784 0.66 

 

5.3.2 Clustering Analysis 

Figure 5-4 shows the result of data clustering regarding HVAC energy consumption; Df 

represents the original dataset after applying GRA. The number of clusters was determined using 

the silhouette index [53] which was two in this case. Df1 and Df2 are the output of level 1-1 
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clustering regarding climatic conditions of the buildings. This means that all buildings in Df1 and 

Df2 have similar weather parameters. Cluster Df1 contains buildings in warmer regions 

considering that in their centroid, temperature and solar irradiation have higher average values. 

Clustering level 1-2 divides each cluster further into groups of buildings with similar physical 

characteristics and NO (Df1-1 to Df1-2), as shown in Figure 5-4. Df1-1 contains buildings with a 

nonelectric HWS and KE, whereas Df1-2 is all electric. The details of clustering are shown in 

Figure 5-4. The last clustering step is level 2, which partitions data based on target end-use load 

(HVAC energy consumption here). This last clustering step is performed based on the end-use 

load. As seen, the high-energy-consumption buildings have normalized HVAC consumption of 

more than 0.60 in all clusters, while their low-consumption counterparts use less than 0.30 in all 

clusters. Through comparing cluster centroids of level 2 clustering, the clusters with lowest energy 

consumption were selected and combined. This dataset made the “low-consumption buildings,” 

which are shown in Figure 5-4 in the case of HVAC energy consumption. It is important to note 

that clustering level 2 may end up with more than two clusters (here, we ended up with two clusters, 

so we named them low- and high-energy-consumption buildings). The buildings belonging to 

lower consumption groups are chosen and combined regardless of the number of clusters. 
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of clusters with high energy consumption, while low-consumption buildings are the collection of 

clusters with low energy consumption. The ANN model used the low-consumption buildings as 

the training dataset. Therefore, by plugging in the characteristics of any given building (shown in 

red in Figure 5-5), the model output is an estimation of how much the HVAC energy consumption 

of the given building would have been had it belonged to low-consumption buildings (RB shown 

in red in Figure 5-5). The difference between the actual and estimated value of the given building 

and the RB shows the possible energy consumption savings. It is important to mention that because 

the training dataset comes from a combination of clusters, the input of the model is sufficiently 

diverse to show that the model is a good estimator.  

The number of low consumer buildings in Figure 5-5 (shown in blue) is a function of three steps 

clustering. It means that the higher number of clusters divides the dataset into smaller groups in 

size. Therefore, it is up to the expert to choose the groups with lowest possible energy 

consumptions or choose a wider range of clusters as low consumer buildings. This in fact affect 

the reference building from a stricter (the lowest consumer) to a less strict behavior (higher energy 

consumer).  



Given building

Reference building

Low consumer buildingsHigh consumer buildings
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 HVAC HWS LIGHT KITCH FRIDGE E&I H&S OTHER 

Given building 0.634 0.189 0.102 0.092 0.639 0.754 0.366 0.605 

Reference Building 0.256 0.062 0.144 0.601 0.527 0.507 0.342 0.033 

Energy savings 0.378 0.127 -0.042 -0.509 0.112 0.247 0.024 0.572 

 

5.3.4 Assessment of the Methodology 

 

Table 5-3 shows the result of the given building assessment through the developed 

methodology and the previous work [64] (a different approach, based on mere comparison of 

similar buildings with each other). It is observed that for all end-use loads except KITCH, the RB 

implies that there are more energy-saving opportunities, while according to the previous authors’ 

work, there are limited or no such opportunities. This is because the RB assumes the advantage 

over all low-consumption buildings, while the previous work took similar buildings with lower 

average energy consumption than the given building.  

 

Table 5-3 Comparison of given building through reference building and comparison with existing buildings [64]. 

 HVAC HWS LIGHT KITCH FRIDGE E&I H&S OTHER 

Given building 0.634 0.189 0.102 0.092 0.639 0.754 0.366 0.605 

Energy savings according to 

reference building 
0.378 0.127 -0.042 -0.509 0.112 0.247 0.024 0.572 
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Energy savings according to 

comparison with existing 

buildings [64] 

0.161 -0.02 -0.135 -0.245 0.067 0.182 -0.033 0.284 

5.4 Conclusions   

A general methodology was developed to generate an energy-efficient building—RB—using field-

measured data. The generated RB could be used to evaluate the thermal energy performance of 

any given building and provide information to building occupants about their building energy 

performance with respect to any specific end use (such as HVAC, kitchen appliances, 

entertainment, etc.). A dataset of 76 buildings was studied to extract buildings with low energy 

consumption regarding the specific end use. Considering eight end-use loads, a dataset of eight 

buildings with low energy consumption was extracted from the original dataset and named as a set 

of low-consumption buildings. By building neural network models using these low-consumption 

buildings as the training dataset, mapping of building characteristics to an estimation of energy 

use was performed. Therefore, any given building could be compared with its RB (which was 

generated using ANN models). The results show that by comparing the two, it is possible to spot 

the end-use loads that are consuming more than the RB; therefore, the occupants may focus on 

those energy uses and take measures (i.e., turning off unnecessary lights or HVAC, etc.) to improve 

building energy performance. The methodology introduced here can be applied to larger building 

datasets in any climate. 
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6. Summary, Limitations and Future Work 

6.1 Summary  

Buildings are complicated systems with numerous interactions between components. As a result, 

it is typical for there to be energy loss in buildings. Moreover, the literature has underestimated or 

neglected the role of a building’s occupants in energy consumption and energy savings. This thesis 

leveraged data analysis as a powerful technology to extract hidden information in data generated 

by occupants of buildings. The overall goal of this study was to find energy saving opportunities 

for building occupants that would motivate them to follow recommendations for applying energy 

saving measures. This thesis’s basic ideas include finding correlations between home appliance 

energy use, ranking similar buildings in terms of energy use, and estimating possible energy 

savings using data analysis tools. Three tasks were defined in this thesis. The first task focuses on 

a single building, examining all the correlations between the home appliances it contains, which 

allow us to spot inefficient energy consumption patterns. The second task is based on a clear 

comparison method between occupants of several buildings that enables them to find their place 

among other buildings and learn how to modify their performance. The last task focuses on 

developing a methodology to create a RB to serve as a model for a given building to estimate 

possible energy savings by comparing a given building with its reference building. Data analysis 

tools used in this thesis included clustering, association rule mining, and neural networks. 

6.2 Limitations 

Although developed methodologies can be applied to any building in any climatic region, some 

difficulties must be overcome. Most of this study’s limitations come from data deficiency, which 

affects the results obtained here; however, in this thesis an effort was made to develop general 
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methodologies that can be applied to similar data. The following is a list of limitations and 

challenges that arose during this study.  

• Lack of hourly data for end-use loads is an important challenge that makes associating rule 

mining processes less realistic given that services might not be operating simultaneously. 

Consequently, recommendations are less accurate. The availability of hourly data would 

improve the accuracy and reliability of the process beyond that given by daily data. Despite 

these shortcomings, the methodology introduced in this study remains valid. 

• The obtained rules in this study originate from the measured energy consumption of 

building occupants and therefore provide the basis for energy reduction recommendations. 

However, the occupants of a single building may not be aware of possible energy savings. 

If the rate of resident energy usage is almost always high, good behaviors are not detected 

in historical data; thus, no RM rule is found. Domain knowledge enables us to introduce 

some artificial rules (similar to real rules) that may help find energy-inefficient behaviors. 

For example, at noon (while tenants are at work) and the lights are off, appliances such as 

televisions, stereos, kitchen appliances, or computers should be turned off. This rule could 

also be applied to closing and opening windows.  

• The energy consumption data in this study were collected annually. However, a seasonal 

analysis would enhance the accuracy of detection of low-consumption buildings. For 

example, a building whose HVAC energy consumption is high in winter and low in 

summer could be categorized among low-consumption buildings when considering yearly 

energy consumption. However, the same building may be a high energy consumer if one 

considers only the winter season or a low consumer if one considers only summer. In 

addition, we have used annual weather data in clustering level 1-1, which does not capture 
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underlying fluctuations in weather parameters. One solution would be to include standard 

deviations of the weather parameters or to use 24-hour temperature profiles of each 

building throughout the year. 

• More information about individual buildings would enhance the process. For instance, the 

number of occupants is present in the dataset; however, more information (e.g., age, level 

of activity, number of adults and children, time of arrival and departure) could be used in 

clustering analysis when putting similar buildings together. Knowing this information 

would also help us provide more detailed recommendations based on which activities or 

behaviors of children or adults consume the most energy. The most useful information 

would be occupants’ daily schedules, preferences (e.g., lighting level, room temperature), 

and holidays. 

• In clustering level 1 (Section 4.2.2 in chapter 4), it is quite possible that buildings in the 

same cluster might have similar non-occupant-related characteristics but may be dissimilar 

in other respects. To reduce the effect of this problem, we multiplied each characteristic by 

its contribution to energy consumption by means of GRA. Therefore, those characteristics 

with higher GRA values dominated in determining the cluster to which the building 

belonged. In addition, clustering level 1 was divided into two subsections, levels 1-1 and 

1-2, to prioritize the weather parameters in clustering. If one attempts to increase the 

clustering accuracy in terms of any characteristics, one can increase the subsections of level 

1 clustering to even more than two (e.g., level 1-3 as number of occupants). However, this 

makes the cluster sizes smaller, and we were limited by the database size in this study. 

Increasing the size of the database can resolve this issue, as the next point discusses.  
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• The number of buildings in this study was 76. Including more buildings in the clustering 

analysis would enhance it by breaking it into more levels (e.g., levels 1-1, 1-2, 1-3, etc.) in 

order of importance of variables. Furthermore, sufficient data points would improve 

creation of the neural network models. In this case, a few thousand buildings would work 

well.    

• High energy consumers who receive feedback are expected to take suitable measures to 

improve their ranking. A real case evaluation to see the effectiveness of the proposed 

system can achieve this, especially if the ranking is performed online so that occupants can 

more quickly see the effect of their energy-saving measures.  

In chapter 4, the first part of the methodology (level 1 ranking) is based on comparison 

between several buildings. If the low energy consumers are wasting some energy, there is 

still room for improvement that is not identifiable through this methodology. In other 

words, the buildings are not comparing themselves with the best cases. Chapter 5 addresses 

this limitation by introducing the reference building  

6.3 Future Work  

The current study aims to provide a complete DM framework for knowledge discovery and 

information retrieval in the building engineering domain. However, buildings are complex 

systems, and the application of DM in building energy analysis still yields many opportunities. 

Here are some suggested directions for future research:  

• Combining simulation and data analysis for modelling occupant behavior. Using 

mathematical simulations can be helpful in representing a typical building occupant. Data 

analysis can help customize the occupant for any specific building by analyzing data and 

learning the behavior of actual occupants.  
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• Applying data analysis to data coming from building control systems. Huge savings are 

possible by using real data to build predictive models to estimate the heat/cool load of a 

building and adjust the control set-points/scheduling of the building.  

• Automated fault detection and diagnosis. Buildings are equipped with hundreds of sensors 

and controls. The analysis of such massive amounts of data can reveal insights for building 

owners to optimize the building infrastructure. Leveraging powerful big data analytics to 

automatically detect and diagnose faults in the HVAC system, reducing operating costs 

and utility bills, increasing equipment life, and improving tenant comfort are worthy areas 

of research that still are in the initial phase.  

Some DM methods have been successfully used to address the problems within the 

building engineering domain in this research. However, other advanced methods are useful 

for analyzing measured building-related data and extracting useful knowledge. For 

example, the deep learning method could be used to predict numerical variables in building 

energy demand modeling. Using deep learning was not justifiable in this study because of 

the relatively small size of the available datasets and the low number of features under 

study  

6.4 Guidelines for application of the research    

It is important to mention that all methods established in this thesis are generic and scalable; 

therefore, it is applicable to any building(s) to obtain the results. The higher resolution data (e.g. 

hourly versus daily) can help increase the accuracy of the methodologies. Also, the methodologies 

introduced in this thesis can be applied on specific seasons (hot season vs. cold seasons) to obtain 

a better understanding of occupant role in energy consumption regardless of climatic conditions.   
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There are some parameters needed to be set before applying algorithms. Cluster analysis, 

association rule mining, and neural networks are the algorithms used in this thesis. For cluster 

analysis, the number of clusters is an important parameter because all subsequent analysis and 

results may change depending on the number of clusters set by the user. In order to address this 

issue, there are some internal and external measures to evaluate number of clusters (such as those 

introduced in Chapter 1). In this thesis, the number of clusters was found to be two in nearly all 

cases, but it is important to try different values in different climatic conditions (hot seasons vs. 

cold seasons) to make sure the applicability. Also, some more recent methods such as XMeans 

algorithm can use some splitting information (Bayesian Information Criterion) to automatically 

find the number of clusters.  

Regarding association rule mining, the two parameters support and confidence were set at 40% 

and 85%, respectively. These value are considered to be reliable regarding building application 

and were also used in the literature [6], [11].   

Regarding the ANN model, the details of the model can be found in Chapter 1. However, the 

objective of the methodologies developed in this thesis was to provide a framework for occupant 

behavior analysis, not optimizing the performance of ANNs. It is likely that some better performed 

ANN algorithms are introduced in recent years which perform better than MLP models used in 

this thesis. However, the size of the dataset is an important factor and should be considered while 

using the estimator models. It is recommended that different regressor models be applied and tested 

for the best results.  
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