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ABSTRACT

Multi-level production planning with raw-material

perishability and inventory bounds

Andrés Acevedo Ojeda, Ph.D.

Concordia University, 2019

This thesis focuses on studying one of the most important and fundamental links

in supply chain management: production planning. A considerably common assump-

tions in most of the production planning research literature is that the intermediate

items involved in the production process have unlimited lifespans, meaning they can

be stored and used indefinitely. In real life applications, whether referring to physical

exhaustion, loss of functionality, or obsolescence, most items deteriorate over time and

cannot be stored infinitely without enforcing specific constraints on a set of crucial

production planning decisions. This is specially the case for multi-level production

structures. In the thesis, we first introduce the fundamental characteristics in produc-

tion planning modeling and discuss some of the common elements and assumptions

used to model complex production planning problems. We also present an overview of

the production planning research evolution. Our attention is then focused on the most

relevant modeling approaches for perishability in production planning available in the

research literature. We present lot-sizing problems that incorporate raw-material per-

ishability and analyze how these considerations enforce specific constraints on a set of

fundamental decisions. Three variants of the two-level lot-sizing problem are studied:

with fixed raw-material shelf-life, with raw-material functionality deterioration, and

with functionality and volume deterioration. We propose mixed-integer programming

formulations for each of these variants and perform computational experiments with

sensitivity analyses, showing the added value of explicitly incorporating perishability

considerations into production planning problems. Using a Silver-Meal-based rolling-
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horizon algorithm, we develop a sequential approach to solve the studied problems

and compare the results with our proposed formulations.

We then shift our attention to study the multi-item, multi-level lot-sizing prob-

lem with raw-material perishability and batch ordering, inspired by an application

in advanced composite manufacturing processes. We proposed a mixed-integer pro-

gramming formulation for the problem and perform computational experiments with

sensitivity analyses, demonstrating its potentials for practical applications in planning

composite production.

Finally, we address the study of production planning involving inventory bounds.

This characteristic is shown to be related to the perishable raw-material considera-

tions and constitutes another fundamental aspect of this family of problems. We study

the multi-item uncapacitated lot-sizing problem with inventory bounds, presenting a

new mixed-integer programming formulation for the case of non-speculative (Wagner-

Whitin) cost structure using a special set of variables to determine the production

intervals for each item. We then reformulate the problem using a variable-splitting

technique that allows for a Dantzig-Wolfe decomposition. The Dantzig-Wolfe princi-

ple exploits the structure of the problem by decomposing it into two sub-problems:

one relating to the production decisions per item and another that relates to the

inventory decisions per period. We propose a Column Generation algorithm for solv-

ing the Dantzig-Wolfe reformulation. Computational experiments are performed to

evaluate the proposed formulations and algorithms on a set of benchmark instances.

This research presents important contributions on a variety of fields related to

production planning that had only been partially studied in the literature. It also

opens important research paths for the integration of di↵erent types of raw-material

perishability in multi-level product structures processes, with the study of finished

product inventory bounds.
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much skill or e↵ort. But doing so prevents you from testing your own limits and

from growing. The ability to face di�culties can be crucial for your growth.

However, if you are faced with a situation in which the di�culties are simply

overwhelming, you should step back for the time being and wait until you have built

up enough strength to deal with it skillfully.”

- Sayadaw U Tajeniya.

“Of all the footprints, that of the elephant is the deepest and most supreme.

Of all contemplations, that of impermanence is the deepest and most supreme.”

- The Buddha (in the Udānavarga).
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years of my Masters and PhD studies in Montreal. Part of the magic of this life is

to learn and grow from lived experiences. The years we shared together are full of

growing and learning. Diana has been a teacher for me on a personal and academic

level. I feel certain that a beautiful part of my heart will always be dedicated to

Diana, and I want to express my most honest wishes for her life to be filled with

happiness, tranquility, and health.

vii



Finally I want to thank all those friends and colleagues who were by my side

during these doctoral years. I especially want to express my gratitude to Camilo

Ortiz. Remembering all this time studying and working at Concordia University is

to feel his presence by my side. My best friend and my best o�ce colleague. A bright

mind and a heart full of love. I also want to express my gratitude to Carlos Zetina

for his unconditional friendship. His presence has been a source of inspiration to

work intelligently and creatively. Armaghan, Wael, Moayad, Franklin... friends and

colleagues that I did not mention directly and with whom unforgettable moments

were shared: thank you!!

I would like to thank the Universidad Pontificia Bolivariana (Bucaramanga) and

Colciencias Colombia for partially funding this research.

viii



Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

2 Production planning problems 8

2.1 Production planning fundamentals: the lot-sizing problem . . . . . . 8

2.1.1 Modeling features . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Evolution of production planning modeling . . . . . . . . . . . . . . . 12

2.3 Mathematical programming for production planning . . . . . . . . . . 14

2.3.1 Polynomial-time algorithms . . . . . . . . . . . . . . . . . . . 14

2.3.2 Production planning by mixed integer programming . . . . . . 16

2.3.3 Approximate solution methodologies . . . . . . . . . . . . . . 18

3 Raw-Material perishability in production planning 22

3.1 Perishability in production planning . . . . . . . . . . . . . . . . . . . 23

3.1.1 Characteristics of perishability and classification scheme . . . 24

3.1.2 Modeling approaches for perishability . . . . . . . . . . . . . . 27

3.2 Two-Level Lot-sizing with perishable raw material . . . . . . . . . . . 31

3.2.1 Fixed shelf-life . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Functionality deterioration . . . . . . . . . . . . . . . . . . . . 35

ix



3.2.3 Functionality and volume deterioration . . . . . . . . . . . . . 38

3.3 Computational experiments and analysis . . . . . . . . . . . . . . . . 41

3.3.1 Description of test instances . . . . . . . . . . . . . . . . . . . 42

3.3.2 A standard two-level lot-sizing model . . . . . . . . . . . . . . 43

3.3.3 The value of integrating raw-material perishability into classical

lot-sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Key parameters for optimal planning . . . . . . . . . . . . . . 51

3.3.5 Computational performance of MIP formulations . . . . . . . 53

3.3.6 Conclusions and future research . . . . . . . . . . . . . . . . . 56

4 Multi-item, multi-level lot-sizing with raw-material perishability, de-

terioration, and batch ordering 57

4.1 Perishability in composite manufacturing . . . . . . . . . . . . . . . . 58

4.1.1 Prepreg control . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 A small problem instance . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Larger size problems and numerical experiments . . . . . . . . 71

4.5 Conclusions and future research . . . . . . . . . . . . . . . . . . . . . 79

5 Reformulations for the multi-item lot-sizing problem with inventory

bounds 81

5.1 Multi-item lot-sizing with inventory bounds . . . . . . . . . . . . . . 83

5.1.1 Problem description and formulation . . . . . . . . . . . . . . 84

5.1.2 Facility location reformulation . . . . . . . . . . . . . . . . . . 86

5.1.3 Cumulative-demand reformulation . . . . . . . . . . . . . . . . 87

5.2 Variable-splitting reformulation . . . . . . . . . . . . . . . . . . . . . 89

x



5.3 Dantzig-Wolfe column generation approach . . . . . . . . . . . . . . . 90

5.3.1 The restricted master problem . . . . . . . . . . . . . . . . . . 90

5.3.2 The pricing problems . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Preliminary computational experiments . . . . . . . . . . . . . . . . . 94

5.5 Conclusions and future research . . . . . . . . . . . . . . . . . . . . . 97

6 Summary 98

Bibliography 101

xi



List of Figures

1.1 Interdependency between set-ups, deterioration, and capacity. . . . . 3

2.1 ULS as a fixed charge network flow. . . . . . . . . . . . . . . . . . . . 9

3.1 Framework for classifying perishability Source: Amorim et al. [19] . . 25

3.2 Three examples for perishability and deterioration Source: Pahl and

Voß [95] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Three production cost functions for an example with � = 6 and pt = 5 36

3.4 A comparison of solutions for the 2LS-FD . . . . . . . . . . . . . . . 37

3.5 A comparison of solutions for the 2LS-FVD . . . . . . . . . . . . . . 40

3.6 Average sequential approach (%dev) by shelf-life (�) and batch size (b) 49

3.7 Average sequential algorithm %dev vs. raw-material costs percentage

%RM in optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Comparison of disposal costs by shelf-life (�) and batch size (b) values 51

3.9 Comparison of order-placement costs by shelf-life (�) and batch size

(b) values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Optimal objective function values by shelf-life (�) . . . . . . . . . . . 52

3.11 Optimal objective function values by batch-size (b) . . . . . . . . . . 53

4.1 Composite material constitution [47] . . . . . . . . . . . . . . . . . . 60

4.2 Batch-ordering, multi-level inventories, production, and disposal . . . 61

xii



5.1 Graphical representation of the MI-ULS-IB . . . . . . . . . . . . . . 85

5.2 Solution for instance with m = 4 with extended y
i
kt variables . . . . . 88

5.3 Illustrative examples of Ct feasible configurations for the CAP sub-

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiii



List of Tables

3.1 Average standard 2LS solution deviations . . . . . . . . . . . . . . . 44

3.2 Average sequential optimization approach results . . . . . . . . . . . 47

3.3 Computational performance of MIP formulations . . . . . . . . . . . 55

4.1 Costs parameters for the small problem instance . . . . . . . . . . . . 69

4.2 Optimal values for final product related variables . . . . . . . . . . . 69

4.3 Optimal values for raw material batch procurement and inventory vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Optimal values for raw material usage in the shop floor and disposal

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Summary of optimal solution costs . . . . . . . . . . . . . . . . . . . 73

4.6 Results for instances with n = {8, 10} grouped by size. . . . . . . . . 75

4.7 Results for instances with n = {8, 10} grouped by type A and B. . . . 75

4.8 Optimal cost values for instances with n = {8, 10} . . . . . . . . . . . 76

4.9 Results for instances with n = {12, 14} grouped by size. . . . . . . . . 78

4.10 Results for instances with n = {12, 14} grouped by type A and B. . . 78

4.11 Optimal cost values for instances with n = {12, 14} . . . . . . . . . . 79

5.1 Results for instances with |M | = 15 items and |T | = 12 periods . . . . 95

5.2 Results for instances with |M | = 30 items and |T | = 12 periods . . . . 96

xiv



Chapter 1

Introduction

In the context of supply chain management, production planning constitutes one of

the fundamental links to achieve the e�ciency and competitiveness desired by any

manufacturing organization. In general terms, production planning can be defined as

the planning of the acquisition of resources and raw material, as well as the plan-

ning of the production activities required to transform raw material into finished

products, meeting customer demand in the most cost-e↵ective way. Decisions in pro-

duction planning are fundamentally related to the size and timing of production lots

or batches, and the size and timing of raw material acquirement. However, in addition

to the basic production planning decisions, other multiple aspects of manufacturing

systems must be taken into account to define feasible, realistic and economical pro-

duction plans. For instance, the availability of resources (machine hours, workforce,

materials), production and set-up costs, physical warehouse spaces, special inventory

conditions and costs, and other important performance measures [106].

Decisions in production planning often lead to the integration of other opera-

tional and strategic decisions, creating more relevant problems such as: inventory

management problems [54]; production routing problems [10]; production–scheduling

problems [85]; and production–distribution problems [45].
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A common assumption in most of the production planning literature is that the

finished and intermediate items involved in the production process have unlimited

lifespans, meaning they can be stored and used indefinitely. However, in practice,

most items deteriorate over time, referring not only to physical exhaustion or loss

of functionality (usefulness), but also obsolescence. Often, the rate of deterioration

is low or can be ignored and there is little need for considering it in the planning

process. Nonetheless, in many types of industries, it is common to deal with items

that are subject to significant rates of deterioration. These items are referred to as

perishable products.

Although there are multiple definitions of perishability depending on the type

of product or system, the concept basically relates to items that cannot be stored

infinitely without deterioration or devaluation [29]. Clear cases of this type of prod-

ucts can be found in the food or pharmaceutical industries [46, 125]. For instance,

in the yogurt industry [44], perishability is found in every link of the supply chain:

from the raw-material (milk) that enters the dairy factories, to the highly perishable

intermediate items and, finally, the finished-products which are all stamped with a

best-before-date fixing its shelf-life. There are also more subjective, but equally rele-

vant cases, as in the competitive technological market, where deterioration does not

necessarily refer to the physical condition of a product, but to its marketable (or

salable) life [138].

Perishability and deterioration enforce specific constraints on a set of crucial pro-

duction planning decisions [19], specially in the case of multi-level production struc-

tures, where two or more items are produced, and at least one item is required as

an input (raw-material, component, part) of another. These intermediate products,

either acquired from a supplier or processed internally, can often be inventoried, al-

lowing one to produce and consume them at di↵erent moments and rates in time [100].

Most of the data associated with inventories has to be extended in order to track the

2



age and usability status of items with specific time-stamps. Besides the amount of

inventory kept in stock, we also need to know when the material has been acquired

and to what level it has deteriorated, as well as the impact that such deterioration

may have in the production process.

Furthermore, production planning decisions determine the size and timing of pro-

duction lots or batches, and therefore, the frequency of set-ups. Meanwhile, set-ups

a↵ect lead-times of items waiting in line to be processed, which consequently increases

deterioration. To reach acceptable quality levels and/or production yields, a deterio-

rated material will consume more resource capacity that would otherwise be available

for production, and therefore, it will also have an e↵ect on waiting-times. Figure 1.1

shows this interdependent relationship between set-ups, waiting-times, deterioration,

and capacity consumption.

Figure 1.1: Interdependency between set-ups, deterioration, and capacity.

If a perishable item reaches the end of its shelf-life and becomes unsuitable for use,

it may have to be discarded. Thus, besides the obvious waste of valuable resources

and the negative impact it may have on the quality of the finished products, this

aspect causes additional costs, as disposed material may need to be transported to a

certain disposal site and incur also a treatment cost.

When studying multi-level production planning problems with perishable raw ma-

terial, it is fundamental to analyze how inventory management can reduce the costly

impact these material can have on production and on storage and disposal. A key

assumption of our study is that the finished products are non-perishable, or that their

shelf-life is long enough so as to reasonably ignore their perishable nature. There-
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fore, one of the ways in which the optimal solution of these problems tends to be

structured is by using raw material for production as soon as possible after a batch

has been received, resulting in larger finished product quantities stored in inventory.

This solution structure partially reduces the complexity of the perishable raw material

inventory management and is able to avoid larger material disposal costs.

Considering this tendency of storing higher finished product inventories, we have

opened the study to another fundamental assumption regarding production planning

problems: inventory bounds. This consideration arises in various types of production

systems where it is common to find that storage levels of products are bounded. These

restrictions on the quantities to be stored may be related to physical warehouse space

and even to administrative policies, specially for voluminous products, or products

requiring special warehouse conditions (i.e., clean rooms, controlled temperatures)

[15].

The general research objectives of this thesis can be summarized as follows.

• To investigate the fundamental aspects to consider when integrating raw-material

perishability considerations into production planning problems and provide a

comprehensive review on the most relevant modeling approaches available in

the literature.

• To define a fundamental class of production planning problems involving di↵er-

ent types of raw-material perishability considerations and propose mathematical

formulations to solve them.

• To perform managerial analyses on the impact of raw-material perishability and

deterioration on key production planning decisions.

• To investigate the potential application of multi-level multi-item production

planning problems with raw-material perishability in advanced composite man-

ufacturing processes and perform computational experimentation to asses it.
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• To study the multi-item uncapacitated lot-sizing problem with inventory bounds

and propose mathematical formulations and solution algorithms to solve it, de-

vising the opportunity to integrate it with raw material perishability consider-

ations.

The remainder of this document is organized as follows. In Chapter 2 we present

the fundamental characteristics in production planning modeling, introducing the

simplest version of the production planning problem. We discuss some of the most

common elements and assumptions used to model complex production planning prob-

lems. Finally, we present an overview of the production planning research evolution.

In Chapter 3 we first bring a review of the di↵erent characteristics that can be consid-

ered when dealing with perishability, and present a classification framework. We re-

view the most relevant modeling approaches for perishability in production planning.

We then present lot-sizing problems that incorporate raw-material perishability and

analyze how these considerations enforce specific constraints on a set of fundamental

decisions, particularly for multi-level structures. We study three variants of the two-

level lot-sizing problem incorporating di↵erent types of raw-material perishability: (a)

fixed shelf-life, (b) functionality deterioration, and (c) functionality-volume deteriora-

tion. We propose mixed-integer programming formulations for each of these variants

and perform computational experiments with sensitivity analyses. We analyze the

added value of explicitly incorporating perishability considerations into production

planning problems. In Chapter 4 we study the multi-item, multi-level lot-sizing prob-

lem with raw-material perishability and batch ordering inspired by a direct application

in advanced composite laminates manufacturing. In particular, we consider an as-

sembly production system in which one item at the lower level (non-perishable final

product, representing the advanced composite) facing independent demand is to be

produced. Several types of perishable raw-material items at the upstream level are to

be procured in batches from suppliers. The upstream level consists of two di↵erent
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inventory levels: a storage location where raw-material batches can be initially stored

under special conditions so as to avoid deterioration, and a secondary storage location

at the shop floor where raw-material units become available for production after a

batch is opened and start deteriorating. We proposed a mixed-integer programming

formulation for the problem and perform computational experiments with sensitivity

analyses, demonstrating its potentials for practical applications in planning compos-

ite production. In Chapter 5 we study the multi-item uncapacitated lot-sizing problem

with inventory bounds. We present a new mixed-integer programming formulation for

the case of non-speculative (Wagner-Whitin) cost structure using a set of variables to

determine the production intervals for each item. We then reformulate the problem

using a variable-splitting technique that allows for a Dantzig-Wolfe decomposition.

The Dantzig-Wolfe principle exploits the structure of the problem by decomposing it

into two sub-problems: one relating to the production decisions per item and another

that relates to the inventory decisions per period. We propose a column generation

algorithm for solving the Dantzig-Wolfe reformulation. Computational experiments

are performed to evaluate the proposed formulations and algorithms on a set of bench-

mark instances. A summary of the thesis follows in Chapter 6.

Bibliographical note.

The content of Chapter 3 is published as “Two-level lot-sizing with raw-material

perishability deterioration”. Journal of the Operational Research Society, 1-16, 2019

[8]. Additionally, the research developments presented in Chapter 3 were presented

in the following international conferences, as:

• “Production planning with perishable raw material considerations.” In Opti-

mization Days, Montreal, Canada, 2014 [2].

• “Production planning with perishable raw material considerations.” In 56th

CORS Annual Conference, Canadian Operational Research Society, Ottawa,
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Canada, 2014 [3].

• “Production planning with perishable raw material considerations.” In 20th

IFORS, International Federation of Operational Research Societies, Barcelona,

Spain, 2014 [4].

• “Two-level lot-sizing with raw-material perishability and deterioration: an ex-

tended MIP formulation.” In CORS/INFORMS 2015 Joint International Meet-

ing, Montreal, Canada, 2015 [5].

• “Two-level lot-sizing with raw-material perishability and deterioration: formu-

lations and analysis.” In International Workshop on Lot-Sizing (IWLS)1, Mon-

treal, Canada, 2015 [6].

The content of Chapter 4 was submitted for publication as “Multi-level lot-sizing with

raw-material perishability, deterioration, and batch ordering: an application of pro-

duction planning in advanced composite manufacturing” to the Journal of Computers

& Industrial Engineering in June, 2019.

The content of Chapter 5 was presented in International Workshop on Lot-Sizing

(IWLS)1, Glasgow, Scotland, 2017, as “Dantzig-Wolfe reformulations for multi-item

lot-sizing problems with inventory bounds” [7].

1
The International Workshop on Lot-Sizing (IWLS) is on invitation only. A limited number of

participants who are active in the field of lot-sizing are invited.
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Chapter 2

Production planning problems

In this chapter, we present the fundamental characteristics in production planning

modeling, introducing the simplest version of the production planning problem. We

discuss some of the most common elements and assumptions used to model complex

production planning problems. Finally, we present an overview of the production

planning research evolution.

2.1 Production planning fundamentals: the lot-

sizing problem

The most fundamental production planning problem is known as the single-item,

single-level, uncapacitated lot-sizing problem (ULS ). It corresponds to the planning

of a single item production to meet some dynamic demand over a discretized planning

horizon, minimizing the sum of production and inventory costs. Although the ULS

model is the most restrictive in terms of applicability, its importance lies in being the

simplest high-level relaxation occurring in most complex production planning models

[106]. ULS can be described as follows: there is a planning horizon of T = {1, . . . , n}

periods. The demand for the item in period t is dt � 0 for t = 1, . . . , n. For each
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period t, there are unit production costs pt, unit storage costs ht for stock remaining at

the end of period t, and a fixed set-up (or order placement) cost qt which is incurred to

allow production to take place in period t and is independent of the amount produced.

LS-U is polynomially solvable, since it can be solved using dynamic programming

[128]. On the other hand, Barany et al. [26] introduced the (l, S)-inequalities for

the standard mixed integer programming formulation of the problem, leading to the

convex hull of the solutions.

An alternative and useful way to view the LS-U is using an adaptation from a

well known network optimization problem: the minimum cost network flow problem

with additional fixed costs for the activation of certain arcs. Figure 2.1 shows an

example of this approach for an instance with n = 3 periods. The flow in arc (0, t)

represents the amount produced in period t, and the flow in arc (t, t + 1) represents

the stock at the end of period t.

Figure 2.1: ULS as a fixed charge network flow.

To mathematically formulate the problem, we define the variables xt for the

amount produced in period t, st for the amount of stock at the end of period t,

and yt as a binary set-up variable which must have the value 1 if xt > 0. An mixed
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integer programming (MIP) formulation for the ULS is:

minimize
nX

t=1

ptxt +
nX

t=0

htst +
nX

t=1

qtyt (2.1)

subject to st�1 + xt = dt + st 1  t  n (2.2)

xt Myt 1  t  n (2.3)

x 2 Rn
, s 2 Rn+1

+ , y 2 {0, 1}n (2.4)

s0 = s
⇤
0, sn = s

⇤
n, (2.5)

where M is a large positive number, expressing an upper bound on the maximum

lot size in period t. The objective function (2.1) is the sum of unit production,

fixed production, and unit inventory costs. Constraints (2.2) express the demand

satisfaction in each period, and are also known as the flow balance or flow conservation

constraints (every feasible solution of ULS corresponds to a flow in the network shown

in Figure 2.1, where d1,3 =
P3

i=1 di is the total demand). Constraints (2.3) ensure

that if there is production in period t (i.e., xt > 0), then the set-up variable in

period t is yt > 0 and so necessarily yt = 1. Here, the term M can be replaced by
Pn

k=t dk, which is the true upper bound on xt when there is no ending inventory (i.e.,

sn = 0). Constraints (2.4) impose the nonnegativity and integrality restrictions on the

variables. Constraints (2.5) are optional in the sense that there are model situations

in which the initial stock s0 and the final stock sn may be decision variables. However,

in the majority of cases their values are fixed, and the values s
⇤
0 and s

⇤
n are part of

the available data of the problem.

2.1.1 Modeling features

In addition to the characteristics mentioned so far as part of the simplest and most

fundamental production planning problems, there are a number of features that may

arise in some applications. They are intended to make the models cover a wide
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variety of aspects of the supply chain and be more applicable, which makes them more

complex and di�cult to solve. Some of the most important of these key elements are

presented below:

• Capacity restrictions coming from common resources : problems with this con-

sideration are commonly known as Master Production Schedule (MPS) prob-

lems. The main purpose of MPS is to plan the production of a set of items,

over a short-term planning horizon corresponding at least to the total pro-

duction cycle. The most fundamental MPS model is known as the multi-item,

single level, capacitated lot-sizing model (MI-LS-C ), where the production plans

of the di↵erent items are linked through capacity restrictions from the common

resources used.

• Multi-level product structures : in a several cases, products interact through

multi-level product structures, where an item can be an output and/or an input

of some production stage (i.e. sub-assembly), or it may be delivered from an

external supplier (raw material). This creates what is known as precedence

constraints between the supply and the consumption of that product. The

multi-item, multi-level, capacitated lot-sizing model (MI-MLS ) is often referred

to as the Material Requirements Planning (MRP) model. The dependency

between items is modeled through a product structure, also called the Bill of

Materials (BOM).

• Backlogging : the demand satisfaction process may allow demand for finished

products to be backlogged. In these cases, it is possible to deliver to a customer

later than required. This is a way to balance the lack of available capacity where

permitted, and usually involves a penalty for the negative impact on customer

satisfaction.

• Capacity Utilization: other important elements in production planning models
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are related to a more precise way of modeling capacity utilization in order to ob-

tain more feasible production plans. For instance, the capacity consumed when

a machine starts or finishes a production batch, or when a machine switches

from one product to another, may need to be considered. In these cases, we

obtain models with set-up times, start-up times, changeover times, or models

with sequencing restrictions.

2.2 Evolution of production planning modeling

The emergence of the formal study of production planning dates back to the early

1910s. Ford W. Harris is well known for presenting the Economic Order Quantity

(EOQ) model in a 1913 paper published in Factory, The Magazine of Management.

The main purpose of the EOQmodel is to determine the order quantity that minimizes

the total inventory and ordering costs [62]. As an extention of Harris’ work, the

Economic Production Quantity (EPQ) model was developed, assuming the product

orders are available in an incrementally manner [119], while the EOQ model assumes

complete and immediate availability. Subsequently, the well known Statistical Re-

order Point (Q,r) model was introduced with the objective of preventing shortages,

introducing the notion of safety stock [134]. Harris’ original publication, along with his

second paper on inventories [63], and the EPQ and Q,r models, laid the foundations

for the treatment of stationary demand.

The next major contribution is the introduction of the dynamic version of the

economic lot-sizing model, as a generalized version of the EOQ, known as the Wagner-

Whitin model [128]. The Wagner-Whitin property provides the optimal lot-sizing

policy of having either on-hand inventory or production, but not both in each period

of the planning horizon. Wagner andWhitin’s work is considered to be the cornerstone

for the treatment of time-varying demand.
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The following milestone of fundamental importance in this field is the well-known

Material Requirements Planning (MRP) method. Born in 1964, MRP is the result

of the e↵orts of Joseph Orlicky at one of the pioneer companies in information tech-

nology: IBM. The commercial availability of computers in the mid-1950s ushered in

a new era of business information processing, with a profound impact in the area of

production planning [94]. Orlicky’s MRP was the most successful method to take

advantage of the new computational capabilities, and it was a major step forward in

the standardization and control of production planning systems.

Inspired by some shortcomings in MRP, Manufacturing Resource Planning (MRP

II) was born in the early 1980s. The development of MRP II is primarily attributed

to Oliver Wight [see 132, 133]. MRP II extended the initial MRP systems to cover all

aspects of manufacturing processes, including demand planning, sales and operations

planning (S&OP), master production schedule (MPS), BOM and inventory control,

among others. For a comprehensive review of MRP models, see Baker [23].

During the 1980s and 1990s, the intentions of integrating MRP and MRP II

transversally in supply chain and manufacturing facilities, along with the need to

introduce new techniques, led to what is known today as Advanced Planning and

Scheduling (APS) and Enterprise Resource Planning (ERP). APS systems provide

long, mid and short-term planning of the supply chain, including internal aspects of

procurement, production, distribution, and sales [93]. Alternatively, ERP systems not

only focus on planning and scheduling of internal resources, they strive to plan and

schedule supplier resources as well [34]. In addition, ERP systems include technology

aspects, such as friendly graphical user interfaces, relational databases, and computer-

aided software engineering tools [9]. For a general review of advantages and critics

on ERP systems, see Davenport [41].

For extensive reviews and fundamentals on the lot-sizing problem, we refer the

reader to Andriolo et al. [20] and Pochet and Wolsey [106].
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2.3 Mathematical programming for production plan-

ning

Production planning problems are often modeled using Mixed Integer Programming

(MIP), because of problem features such as set-up costs and times, start-up costs and

times, machine assignment decisions, and so on. In this section, we review polynomial-

time algorithms and polyhedral approaches for special cases in production planning.

We also present some of the most relevant MIP techniques used in production planning

and approximate solution methodologies.

2.3.1 Polynomial-time algorithms

Dynamic Programming (DP) is the base tool for polynomial-time algorithms in pro-

duction planning. The Wagner-Whitin (W-W) algorithm is the best example of this

fact, where the problems are decomposed into smaller problems that are then solved

recursively. In special structured cases, network optimization algorithms are used to

find optimal solutions in polynomial-time.

Zangwill [141], published in 1969, is an early paper that studies a basic extension

of the ULS, described in Section 2.1, and presents exact algorithms to solve it. The

author uses the Wagner-Whitin property and single-source flow networks, and pro-

poses a DP algorithm to solve both: an uncapacitated single-item lot-sizing problem

with backlogging and an uncapacitated serial multi-level problem. Along the same

lines, Florian and Klein [51] discovered properties for the case of constant capacities

that allows an O(n4) DP algorithm to solve these problems. Pochet and Wolsey [105]

bring a polyhedral analysis for the special case of lot-sizing with constant batches

(LS-CB), and propose an O(n3) dynamic programming algorithm to sove the LS-CB

problem exactly.
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To improve the classic W-W algorithm, advocated since 1958 with O(n2) time,

Federgruen and Tzur [48] described an algorithm that solves the general ULS in

O(n log n) time. They studied two special cases of the problem, obtaining O(n) times.

Subsequently, Wagelmans et al. [127] solved the W-W special case with the possibility

of negative costs in O(n) time. Around the same time, the ULS problem was studied

with di↵erent cost structures and with and without backlogging, obtaining the same

results as in the previous two studies, adding search techniques to the DP algorithm

[11].

Continuing with more recent studies on polynomial algorithms for di↵erent forms

of lot-sizing problems, Vanderbeck [124] studied the single-item constant-capacity lot-

sizing problem (LS-CC ) with start-ups and presented an O(n6) DP algorithm. Start-

up times occur in production systems such as the manufacturing of food products or

chemicals, where significant clean-ups must take place between di↵erent batches of

production. Vanderbeck [124] used a column generation approach to solve multi-item

problems. In the context of production planning of perishable products, Hsu [66]

studied a lot-sizing problem with an age-dependent inventory stock’s deterioration

rate and carrying cost (perishability and production planning of perishable products

will be covered in Chapter 3). The author developed an O(n4) DP algorithm for the

uncapacitated single-item problem with concave costs and no backlogging. Further-

more, Ahuja and Hochbaum [12] studied the linear-cost single-item lot-sizing problem

with production, inventory and backlogging capacities, proposing an O(nlogn) net-

work algorithm to solve it.

Lee et al. [75] and Brahimi et al. [30] studied models that involve the so-called de-

livery windows and production windows, respectively. The authors proposed polynomial-

time algorithms for the single-item cases, and Lagrangian heuristics for multi-item

problems. In this same problem area, Wolsey [135] presented a polyhedral analysis

of these models, proposing valid inequalities for both, and providing tight extended
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reformulations and DP algorithms for special cases.

In more recent studies on polynomial-time algorithms, Akbalik and Rapine [13],

for example, present two polynomial time algorithms for the constant capacitated lot

sizing problem with batch production: the first one is an O(n4) time algorithm for

the case with production capacity being a multiple of the batch size, and the second

one an O(n6) time algorithm for the case with an arbitrary fixed capacity. For their

part, Hellion et al. [65] present an O(n5) algorithm for the single-item capacitated

lot-sizing problem with concave production and storage costs, and minimum order

quantity, and Hwang et al. [69] present the first polynomial algorithm for the general

lot-sizing problem with lost sales and bounded inventory.

2.3.2 Production planning by mixed integer programming

When dealing with MIP models for structured challenging production problems, poly-

hedral analysis and other theoretical and practical approaches have been one of the

favorite and most e�cient ways to develop some special purpose solution techniques.

The first set of these techniques seek to strengthen the original problem formu-

lations by adding valid inequelities. One of the milestone studies in this area is

the development of the well known (l, S)-inequalities [26]. The importance of the

(l, S) inequalities is that they define the convex hull of integer solutions for the ULS

problem, and they can be extended to multi-level lot-sizing problems using echelon

reformulations [104].

Subsequently, Pochet [99] addressed the single-item lot-sizing with constant ca-

pacities problem (LS-CC) and proposed a family of facet-defining inequalities with a

heuristic separation algorithm. Leung et al. [76] studied the polyhedral structure of

the LS-CC and proposed a family of valid inequalities for the multi-item case. The

authors showed that the inequalities can be e↵ectively used to develop an cutting

plane/branch and bound procedures. Later, Pochet and Wolsey [105] considered the
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same problem with a variant in which the capacity in each period is an integer mul-

tiple of some basic batch size (lot-sizing with constant batches, LS-CB). The authors

proposed facet-defining inequalities that can also be applied for the LS-CC problem.

Turning to another type of problem, Pochet and Wolsey [102] examined refor-

mulations for the uncapacitated lot-sizing problem with backlogging. They considered

the e↵ect of using a standard reformulation technique for fixed charge network flow

problems, and described a family of strong valid inequalities. Küçükyavuz and Pochet

[74] described the convex hull of integer solutions to the same problem.

Constantino [38] considered the general capacitated lot-sizing problem with start-

up costs and derived several families of valid inequalities for the single-item case,

which were used in a branch-and-cut procedure. Later, the same author studied

the polyhedral characteriscs of the lot-sizing problem with constant lower bounds on

production [39], where production below some level is not allowed, in order to make

full use of resources.

Loparic et al. [80] examined the ULS version involving sales instead of fixed de-

mands and safety-stocks. The authors presented an extended formulation for the

problem with non-decreasing safety-stocks. For their part, Vyve and Ortega [126]

used an extension of the (l, S)-inequalities and described the convex hull of integer

solutions for the uncapacitated lot-sizing problem with fixed charges on stocks. Fur-

thermore, Atamturk and Küçükyavuz [22] identified facet-defining inequalities for the

lot-sizing problem with fixed inventory costs and inventory bounds.

Extended reformulations for the initial models is the idea behind the second set

of MIP methodologies. An early study by Krarup and Bilde [73] presented the first

general extended reformulation for production planning problems: the facility location

(FL) reformulation. It allows the lot-sizing problem to be seen as a network with NT

possible “facilities” to open, representing the set-up decisions in each period. For the

ULS problem, the LP relaxation of the FL reformulation gives the optimal integral
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solution. With a similar idea, Rardin and Wolsey [109] defined the multi-commodity

(MC) reformulation for the fixed charge netwrok flow problem. TheMC reformulation

further decomposes the production with respect to which finished-product an item

is produced for. This reformulation is stronger than the FL one for the multi-level

lot-sizing problem.

A detailed polyhedral study of di↵erent single-item lot-sizing problems with W-

W costs is provided by Pochet and Wolsey [103]. The authors proposed extended

reformulations for the uncapacitated problem with backlogging and the uncapacitated

problem with start-up costs. Miller and Wolsey [88] presented a polyhedral study on

the the multi-item discrete lot-sizing problem, where only one item can be produced

in a time period and production is either 0 or a predefined constant amount for the

item. The authors presented extended reformulations for the cases with backlogging

and initial inventory variables.

For an extensive review of production planning by mixed integer programming,

taking into account the two sets of aforementioned techniques in detail, and depth,

besides other complementary techniques, we refer the reader to Pochet and Wolsey

[106].

2.3.3 Approximate solution methodologies

When tackling NP–hard problems, heuristic methods are commonly used to speed

up the process of finding a satisfactory solution. In production planning, complex

problems such as multi-item, multi-level, capacitated lot-sizing problems have been

approached with problem-specific heuristic algorithms. Silver and Meal [111] pre-

sented one of the first and classical heuristics for lot-sizing problems. The Silver-Meal

heuristic determines the average cost per period for producing a sequence of peri-

ods and stops production in a period which observes an increase in the average cost.

Maes and Van Wassenhove [83] provided a review of early heuristics techniques for
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lot-sizing problems.

Trigeiro et al. [123], Diaby et al. [43], and Tempelmeier and Derstro↵ [120], used

Lagrangean-based heuristics for di↵erent lot-sizing cases. The first one studied the

multi-item problem with a single machine shared by all items. The problem is

decomposed into uncapacitated single-item problems using Lagrangean relaxation,

and thereafter the same are solved by DP. Feasible solutions for the original prob-

lem are generated using a smoothing heuristic. Diaby et al. [43] also used a La-

grangean relaxation-based heuristic, this time for very large-scale capacitated lot-

sizing problems. The relaxation is made on resources acquirement contraints and

the Lagrangean-dual problem is solved using subgradient optimization. The set-up

decisions are retained, and transportation problems are solved to determine corre-

sponding optimal production quantities. Moreover, Tempelmeier and Derstro↵ [120]

also decomposed the capacitad multi-level multi-item lot-sizing problem into several

uncapacitated single-item lot-sizing problems with the help of Lagrangean relaxation.

Lower bounds on the original problem are found from the single-item problems.

Recently, Wu et al. [137] also proposed a Lagrangean relaxation-based heuristic for

the capacitated multi-level lot sizing problem with backorders (LS-CB), relaxing the

capacity constraints. The relaxation leads to a number of uncapacitated multi-level,

multi-item lot sizing sub-models. A subgradient optimization procedure is applied to

the Lagrangean dual to obtain lower bounds, and a relax-and-fix approach is applied

on the LS-CB problem to obtain upper bounds.

Furthermore, objective dividing heuristics that modify the objective coe�cients

of a model have also been used to solve production planning problems. Katok et al.

[72] introduced one of these heuristics for multi-item lot sizing problems with general

assembly structures, multiple constrained resources, and nonzero set-up costs and set-

up times. Coe�cient modification is applied by allocating set-up times to variable

time to find initial solutions. LP relaxations of the second stage are used to improve
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initial solutions. Pochet and Van Vyve [101] proposed a coe�cient modification based

heuristic to be used within branch-and-cut for a class of capacitated multi-item multi-

level lot-sizig problems with set-up time. The algorithm is based on modifying the

capacities to smooth the relation between the linear and binary variables in the LP

relaxation. After obtaining integer values for all set-up variables, the heuristic solves

only an LP problem.

Forward scheme and relax-and-fit heuristics have also been used for solving pro-

duction planning models. Federgruen and Tzur [49], for example, proposed a time-

partitioning heuristic with non-overlapping subproblems for a lot-sizing-distribution

network integrated problem where each subproblem is solved to optimality sequen-

tially. For their part, Belvaux and Wolsey [28] studied lot-sizing problems arising

both in practice and in the literature, using a branch-and-cut algorithm that employs

relax-and-fix heuristics for finding feasible solutions. Stadtler [116] proposed a time-

oriented decomposition heuristic to solve the multi-item multi-level lot-sizing problem

in general product structures with single and multiple constrained resources as well

as setup times. Along the same line, Suerie and Stadtler [117] studied the capacitated

lot-sizing problem with linked lot sizes with a time-oriented decomposition heuristic.

In terms of local-search-based heuristics, Gopalakrishnan et al. [55] proposed a

tabu-search heuristic for the LS-C with set-up carryover. It consists of five basic move

types: three for the sequencing decisions and two for the lot-sizing decisions. It allows

infeasible solutions to be generated at a penalty, and uses a dynamic tabu list, an

adaptive memory, and self-adjusting penalties. Simpson and Erenguc [112] proposed

a neighborhood search heuristic that finds an initial feasible solution and improves

it using local search. More recently, Guimaraes et al. [60] studied a single-machine

capacitated lot-sizing and scheduling problem with sequence-dependent setup times

and costs. The authors proposed a matheuristic that uses pricing principles within

construction and improvement MIP-based heuristics. A partial exploration of distinct
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neighborhood structures avoids local entrapment and is conducted on a rule-based

neighbor selection principle.

For extended reviews of several types of heuristics for di↵erent production plan-

ning problems, we refer the reader to Jans and Degraeve [70], Goren et al. [56], and

Ramezanian et al. [108].
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Chapter 3

Raw-Material perishability in

production planning

In this chapter, we first bring a review of the di↵erent characteristics that can be con-

sidered when dealing with perishability, and present a classification framework based

on Amorim et al. [19]. Afterwards, we review the most relevant modeling approaches

for perishability in production planning. We then present lot-sizing problems that

incorporate raw-material perishability and analyze how these considerations enforce

specific constraints on a set of fundamental decisions, particularly for multi-level

structures. We study three variants of the two-level lot-sizing problem incorporat-

ing di↵erent types of raw-material perishability: (a) fixed shelf-life, (b) functionality

deterioration, and (c) functionality-volume deterioration. We propose mixed-integer

programming formulations for each of these variants and perform computational ex-

periments with sensitivity analyses. We analyze the added value of explicitly incor-

porating perishability considerations into production planning problems. For this, we

compare the results of the proposed formulations with those obtained by implement-

ing a sequential approach that adapts a standard two-level lot-sizing solution with a

Silver-Meal-based rolling-horizon algorithm.
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The content of this chapter has been published as “Two-level lot-sizing with raw-

material perishability deterioration”, Journal of the Operational Research Society, 1-

16, 2019 [8]. Additionally, the research developments in this chapter were presented in

several international conferences, including the 20th IFORS, International Federation

of Operational Research Societies, Barcelona, Spain, 2014, as “Production planning

with perishable raw material considerations” [4], and the International Workshop

on Lot-Sizing (IWLS)1, Montreal, Canada, 2015, as “Two-level lot-sizing with raw-

material perishability and deterioration: formulations and analysis” [6].

3.1 Perishability in production planning

A general definition of perishability describes it as the decay, damage, spoilage, evap-

oration, obsolescence, pilferage, loss of utility or loss of marginal value of an item that

results in decreasing usefulness from the original one [131]. As mentioned by Pahl

and Voß [96], most authors working in this field use the terms deterioration, per-

ishability, and depreciation interchangeably. Regardlessly, all perishable goods have

a fixed maximum lifetime, usually referred to as shelf-life. Shelf-life is defined as the

maximum length of time during which a product is considered of satisfactory quality

and can be stored under specified (or expected) conditions, remaining suitable for

use, consumption or for its intended function. It is the length of time that a given

item can remain in a salable or functional condition on the shelf of a retailer or in

the stock of a manufacturer. Shelf-life is usually considered from the moment the

product is produced or acquired.

1
The International Workshop on Lot-Sizing (IWLS) is on invitation only. A limited number of

participants who are active in the field of lot-sizing are invited.
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3.1.1 Characteristics of perishability and classification scheme

Di↵erent, complementary, and even contradictory classifications have been proposed

to deal with perishability and deterioration over the last decades, and there is an

obvious overlap in the way perishablility has been characterized [19]. However, we can

distinguish three main viewpoints to characterize and classify product perishability:

(a) the utility or functionality of the product, (b) the physical state of the product,

and (c) the mathematical modeling point of view of perishability.

When the interest is mainly in the utility or functionality of the products [95, 107],

and based on the value of the inventory as a function of time, perishability can be

classified into: (1) constant-utility : items undergo decay but face no appreciable or

considerable decrease in value, e.g., prescription drugs; (2) decreasing-utility : items

lose functional value throughout their shelf-life, e.g., milk, fruits and vegetables; (3)

increasing-utility : items increase in value, e.g., some wines, cheese, antiques. In the

same sense, but with a special interest in how the customer perceives the functional

value of items [50], we can make two distinctions: (1) items whose functionality

deteriorates over time; (2) items whose functionality does not degrade, but the utility

perceived by the customers deteriorates over time, e.g, fashionable clothing and high-

technology products.

The emphasis on the physical state of the product can be found in early inventory

control papers dealing with perishability. For instance, Ghare and Schrader [53] char-

acterize perishability taking into account the type of deterioration: (1) direct spoilage,

e.g., vegetables, flowers and fresh food; (2) physical depletion, e.g., gasoline and al-

cohol; (3) decay and obsolescence, e.g., newspapers. This perspective refers to the

volume (or quantity) loss of product, but not necessarily to the loss of functionality

or utility. With a similar interest, Lin et al. [79] take into account age-related per-

ishability characteristics and distinguish between: (1) age-dependent on-going deteri-
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oration; (2) age-independent on-going deterioration, e.g., volatile liquids, radioactive

and other chemicals, and grain products.

The third perspective refers to the treatment of perishability from a purely mathe-

matical modeling viewpoint. That is, the interest is not in the origin of the perishable

nature of the products, but only in aspects related to the incorporation of perisha-

bility in the problem formulation. This is the case of Nahmias [90], who divides

perishable products into: (1) with fixed shelf-life: cases where the shelf-life is known

a priori to be a specified length of time; (2) with random shelf-life: cases where the

product shelf-life is a random variable with a specified probability distribution.

One of the most complete and complementary classification of perishability found

in the literature is the one proposed by Amorim et al. [19] shown in Figure 3.1.

Figure 3.1: Framework for classifying perishability
Source: Amorim et al. [19]

The framework is a cluster of three classifying dimensions: (1) physical product

deterioration: reflects if the item is actually su↵ering physical modifications or not,

(2) authority limits : represents the external regulations or any other conventions that

influence directly the perishability phenomenon, and (3) customer value: reflects the

customer willingness to pay for a certain good. The authority limits dimension is

interesting from a mathematical modeling point of view because it may reduce the

stochasticity of the perishability phenomenon when a lifetime is fixed and known. The

author states that the framework might be applied to all di↵erent forms of product
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perishability, either when it manifests itself through the changing of the physical

state or not. It is also flexible enough to be applied to models dealing with any

process(es) of the supply chain. The authority limits dimension is interesting from a

mathematical modelling point of view because the influence of authorities may reduce

the stochasticity of the perishability phenomenon when a lifetime is fixed.

Clustering the three dimensions to classify perishability allows having a more

integrated understanding of product perishability and provides an important tool

for the mathematical programming of problems in this area. An simple example of

the applicability of the framework can be seen in a supply chain planning problem

of production and distribution of fresh milk, where the product undergoes physical

deterioration, its shelf-life is fixed, since there is a Best-Before-Date (BBD) stamp on

it, and the perceived customer value decreases over time, since customer will prefer

packages with a later BBD comparing with others having an earlier one [19].

Furthermore, another essential distinction when characterizing perishability is the

one shown in Figure 3.2 [95]. The leftmost graph represents the course of perishability

of products that are considered fully functional during their shelf-life, or whose dete-

rioration before reaching the end of its shelf-life does not need to be considered for

practical purposes. We make reference to this case as perishable items subject to fixed

shelf-life. In contrast, the second and third graphs show the course of perishability

of products whose functionality or e�ciency level decreases progressively throughout

their shelf-life. We make reference to this case as perishable items subject to func-

tionality deterioration rate. The second graph shows a gradual discrete treatment of

deterioration, and the third graph shows possible courses of continuous deterioration.
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Figure 3.2: Three examples for perishability and deterioration
Source: Pahl and Voß [95]

Although the above classification largely comprises all aspects of perishability con-

sidered until now in the literature, there is a feature that, to the best of our knowledge,

has not been treated and is the way in which raw-material (and/or intermediate prod-

ucts) perishability and deterioration may a↵ect the production of higher-level items

in the product structure in multi-level production systems.

3.1.2 Modeling approaches for perishability

Most of the literature regarding perishable goods is focused on inventory management,

pricing and reverse logistics. In general terms, we distinguish two di↵erent approaches

in which perishability and deterioration are studied in inventory control, scheduling,

and production and distribution planning.

The first approach assumes a loss of a portion of inventory, determined by a

fixed input parameter (shrinkage factor). Hsu [66] presents an uncapacitated, single-

item, lot-sizing problem (LS ) using a deterioration rate factor and considering age-

dependent inventory costs. The model is generalized to include back-ordering [67]

and capacities [130]. Using a similar deteriorating coe�cient, Chen and Chen [35]

integrate LS and scheduling for a perishable item in maximizing revenue, where

demand and production depend on the selling price. Other studies following this

approach include Balkhi and Benkherouf [25], Yang and Cheng [139], Skouri and

Papachristos [113], and Goyal and Giri [59]. Balkhi [24] considers lot-sizing problems
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with time-varying demand of deteriorating items as well as the e↵ect of “learning” in

production. Lin et al. [79] present a multi-item production-inventory problem with

exponential deterioration rates and constant inventory shrinkage factor. Other studies

in this area include Tadj et al. [118], Manna and Chaudhuri [84], and Belo-Filho et al.

[27]. Li et al. [78] study dynamic pricing and inventory control policies for perishable

products with stochastic disturbance.

For a comprehensive review of available literature regarding perishable goods in

inventory management, we refer the reader to Nahmias [90], Goyal and Giri [57], Li

et al. [77], and Raafat [107]. Amorim et al. [19] and Pahl and Voß [96] present reviews

on production-distribution and supply chain planning for deteriorating items.

The second approach attempts to avoid inventory expiration by limiting the num-

ber of periods of production to ensure that products do not reach the end of their

shelf-life. Entrup et al. [44] develop MIP models following this approach to solve

production-scheduling problems of yogurt production with shelf-life-dependent sell-

ing price. Their objective is to maximize the contribution margin, and they use a

block planning approach, where a block is formed from all product variants based on

a same recipe. In the same application area, Amorim et al. [18] propose two multi-

objective LS and scheduling MIP models for a pure make-to-order system, and for

a hybrid make-to-order/make-to-stock scenario. The authors incorporate the maxi-

mization of product freshness as the problem objective function. Pahl and Voß [95]

extend this approach without restricting the number of time periods. They allow

inventory expiration and penalize it by applying a disposal cost as part of a standard

discrete lot-sizing and scheduling problem. Pahl et al. [97] extend this approach to

include sequence-dependent setup times and costs.

Other studies relevant to our research are those by Abad [1], who present a con-

strained non-linear programing model for LS problems of perishable goods with expo-

nential decay, partial back-ordering and lost sales. Teunter and Flapper [121] consider
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a stochastic Economic Production Quantity model where produced units of a single

type product may be non-defective, reworkable-defective, or non-reworkable-defective.

In industries such as the food or pharmaceutical industry, reworkable defective prod-

ucts that are perishable, can become technologically obsolete. Another approach

involves traceability in an economic production quantity problem [129]. Traceability

is the ability to trace and follow the product through all stages of production, pro-

cessing and distribution, which is an important management issue in food industry.

Wang et al. [129] develop an operations planning model with production set-up costs,

inventory holding costs, raw material costs, product spoilage costs, and recall costs

integrating traceability and operational indicators to attain both product quality and

minimum impact of product recall. Kallrath (2002) made an overview of some of

the most encountered production planning and scheduling problems in the chemical

process industry and their specific characteristics. The author took into account and

distinguished three classes of production systems: continuous, batch and semi-batch

production. Neumann et al. [92] introduce a mixed integer nonlinear programming

model for an advanced planning system in the context of batch production for pro-

cess industries. The model includes constraints referring to perishability of products,

where production tasks are assigned to consuming tasks so that no perishable product

is kept in stock at any time, i.e. the amount produced by a batch must equal the

amount consumed in following tasks without delay.

When considering perishability in well-known economic lot scheduling problems

(ELSP), most literature is limited to adding shelf-life constraints to the original prob-

lems [19]. The ELSP, a problem shown to be NP–hard, is concerned about obtaining

a cyclic schedule for several products, for a single resource and under the assumption

of a constant demand rate. Chowdhury and Sarker [37], Goyal and Viswanathan [58],

and Sarker and Chowdhury [110] studied three di↵erent approaches in this field: (1)

changing the production rate, (2) changing the cycle time, and (3) changing produc-
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tion rate and cycle time simultaneously with respect to production scheduling and

raw material ordering. Furthermore, Soman et al. [115], who provided a review in

this topic, stated that, in case of high capacity utilization, the production rate should

not be reduced due to quality problems that may arise with this adjustment. On

similar lines, Yao and Huang [140] proposed a new ELSP model that considers mul-

tiple continuously deteriorating items. Lin et al. [79] for their part, studied an ELSP

with multiple items subject to di↵erent exponential deterioration rates. Arbib et al.

[21] considered a production scheduling problem for perishable products, under two

independent aspects: the relative perishability of products and the feasibility of the

completion time. Gawiejnowicz [52] considered two problems of scheduling a set of

independent, non-preemptable and proportionally deteriorating jobs on a single ma-

chine, where the objective is to minimize the total completion time of jobs subject to

a certain machine capacity. Soman et al. [115], and Pahl and Voß [96] present reviews

of related literature.

Production time-windows are also used to model perishability constraints [136].

Chiang et al. [36] study a production-distribution problem applied to the newspaper

industry. The authors present a simulation-optimization framework and formulate

the problem as an extension of the vehicle routing problem with time-windows. Chen

et al. [33] study a production-scheduling and vehicle routing problem with time-

windows and stochastic demands.

The studies presented above consider product perishability and deterioration in

production planning and related problems. However, research on raw-material (and/or

intermediate products) perishability and deterioration a↵ecting the production of

higher-level items is very limited. Cai et al. [31] and Billaut [29] solve di↵erent pro-

duction scheduling problems with, to certain extent, considerations of raw-material

perishability. The former develop a model and an algorithm for the production of

seafood related products, and the latter proposes new scheduling problems dealing
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with perishable raw materials. Billaut [29] describes amulti-item multi-machine prob-

lem where raw materials are stored into vials and can be used during a limited time

after being opened. The problem is to assign a set of jobs that use these raw materials

to a performing machine, to determine a starting time for each job, and to determine

the opening dates for the vials of each required material. Furthermore, the same au-

thor proposes a first MIP formulation for the case of single-item and single-machine,

shown to be NP–hard, where raw materials are consumed instantaneously, i.e., it is

assumed that if the material perishes exactly when a job starts, the consumption is

realized by the job first, and the remaining quantity of product is lost.

3.2 Two-Level Lot-sizing with perishable raw ma-

terial

We consider a production system in which one item (finished product) is to be pro-

duced and another item (raw-material), an input of the first, is to be procured from a

supplier over a planning horizon with n time periods, T = {1, ..., n}. This constitutes

the simplest version of a two-level product structure. Solving the two-level lot-sizing

problem (2LS) is to determine the production, procurement and inventory plans for

the two items to meet the demands of the planning horizon, while minimizing the cor-

responding costs. As mentioned above, the core aspect of the problems under study is

the perishable condition of the raw-material. In particular, we consider three di↵erent

types of raw-material perishability in solving the 2LS problem: (a) raw-material with

fixed shelf-life (FS); (b) raw-material with functionality deterioration (FD); and (c)

raw-material with functionality and volume deterioration (FVD).

The content of this chapter was published as “Two-level lot-sizing with raw-

material perishability deterioration”. Journal of the Operational Research Society,

1-16, 2019 [8].
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3.2.1 Fixed shelf-life

We first consider the two-level lot-sizing problem with fixed raw-material shelf-life

(2LS-FS). We assume that raw-materials are ordered and received immediately. As-

sociated with each order there are unit batch costs and fixed ordering costs. Received

raw-material may be used in production or placed in inventory. However, it can only

be kept in stock for a predetermined period of time (shelf-life). If the material reaches

the end of its shelf-life and expires, it will be disposed. This causes additional costs

depending on when the disposal is made. Raw-material functionality is considered

constant during the entire shelf-life period. Production is limited by process capacity

and incurs fixed setup costs as well as variable production costs. Demand must be

satisfied in every time period. The 2LS-FS consists of planning the production levels

and raw-material ordering for each time period, as well as planning the inventory

levels so as to minimize the total production, setup, order-placement, inventory, and

raw-material disposal costs.

Applications of 2LS-FS may arise in the production of plastic films. A plastic

film is a thin continuous polymeric material used to separate areas or volumes, to

hold items, to act as barriers, or as printable surfaces [64]. Depending on their

applications, plastic films can be made from a variety of plastic resins and monomers,

which are highly reactive and undergo uncontrolled polymerization. However, they

are considered fully functional during their shelf-life. The finished product is not

considered to be perishable.

In formulating the 2LS-FS model, we use the following notation for the input

parameters:

dt ! demand per period t

a ! standard unit production time

Ct ! available process capacity per period t

pt ! standard unit production cost per period t
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qt ! fixed setup cost per period t

ht ! unit storage cost per period t

b ! fixed order batch-size

Kt ! upper ordering limit per period t

� ! raw-material shelf-life

r ! units of raw-material required to produce each finished item

⇢t ! fixed cost of placing a raw-material order per period t

⇣t ! unit batch cost per period t

�t ! raw-material unit storage cost per period t

�t ! raw-material unit disposal cost per period t

In terms of decision variables, we have the following:

Qt ! number of batches of raw-material to order in period t

wut ! amount of raw-material received in period u used for production in

period t

et ! amount of perished raw-material received in period t to be discarded

st ! finished item stock at the end of period t

yt ! binary variable equal to 1 if and only if there is a positive production in

period t

zt ! binary variable equal to 1 if and only if a raw-material order is placed

in period t

Variables wut are defined for 1  u  t  n and (t� u) < �, given that material

received at the beginning of period u can only be used for production during �

periods of time (including u). The last period in which material received at period

u can be used for production is given by ⇥u = min{u + � � 1, n}. Similarly, let

⇧t = max{1, t� � + 1} denote the earliest period in which material can be acquired

and still be used in period t. We further assume that even though material received
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during period u, � < u  n, does not expire during the planning horizon, if not used,

will be discarded.

Using these sets of decision variables, the 2LS-FS can be formulated as follows:

minimize
nX

t= 1

 
tX

u=⇧t

p
FS
utwut + htst + qtyt + ⇣tQt + �tet + ⇢tzt

!
(3.1)

subject to bQu =
⇥uX

t=u

wut + eu u 2 T (3.2)

st�1 +

✓
1

r

◆ tX

u=⇧t

wut = dt + st t 2 T (3.3)

⇣
a

r

⌘ tX

u=⇧t

wut  Ctyt t 2 T (3.4)

Qt  Ktzt t 2 T (3.5)

st, et � 0 t 2 T (3.6)

wut � 0 u, t 2 T, u  t (3.7)

Qt � 0 and integer t 2 T (3.8)

yt, zt 2 {0, 1} t 2 T (3.9)

s0 = s
⇤
0, (3.10)

where s⇤0 is the number of finished item units available at the beginning of the planing

horizon and

p
FS
ut =

8
>><

>>:

pt
r +

t�1P
v=u

�v if u < t,

pt
r if u = t.

The objective function (3.1) includes production and raw-material inventory holding

costs, finished item inventory holding costs, setup costs, raw-material batch costs,

raw-material disposal costs, and order-placement costs. Constraints (3.2) state that

the amount of raw-material entering the production system at each period u is equal
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to the amount used for production at subsequent periods, plus the amount that is dis-

carded if not used before the end of its shelf-life. Constraints (3.3) represent finished

item inventory balance, whereas constraints (3.4) are capacity limits. Constraints

(3.5) are the upper bounds for the amount of raw-material to order at each time

period. Constraints (3.6) – (3.7) are non-negativity conditions, and constraints (3.8)

– (3.9) are the classical integrality and non-negativity conditions. Constraint (3.10)

provides initial finished item units.

Note that we have not used decision variables to explicitly model production levels

at every period. The p
FS
ut coe�cient in the objective function includes both finished-

item production and raw-material storage costs.

Property 3.1. When b = 1, there exists an optimal solution to 2LS-FS in which

eu = 0 8 u 2 T .

This property states that if it is possible to order raw-material by units, then one

should order the exact amount as needed, i.e.,
Pn

u=1 Qu = r
Pn

t=1 dt. We focus all

our computational study on the case of raw-material batch ordering (b > 1).

3.2.2 Functionality deterioration

The second variant is the two-level lot-sizing problem with raw-material functionality

deterioration (2LS-FD). In this case, raw-material functionality decreases as storage

time passes. We refer to functionality as the suitability of the raw-material for being

used in the manufacturing process. Deteriorated materials may cause additional

production costs and increased resource consumption in achieving the desired product

quality and yields. We represent this e↵ect by considering the unit production cost pt

as an arbitrary non-decreasing function f(�) where � = (t� u), such that f(0) = pt

and f(�)  f(� + 1), for 0  � < �.

Figure 3.3 shows three examples of production cost functions with � = 6 and

pt = 5 for all t 2 T .
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(a) Linear function with

slope ↵
(b) Cuadratic function with

rate of change ↵�2
(c) Piecewise linear func-

tion with slopes ↵a
and ↵b

Figure 3.3: Three production cost functions for an example with � = 6 and pt = 5

Correspondingly, the updated production and raw-material inventory holding costs

per period t considering the use of deteriorated raw-material received in u  t is given

by:

p
FD
ut =

8
>><

>>:

f(�)
r +

t�1P
v=u

�v if u < t,

pt
r if u = t,

Note that the parameter pFD
ut is not a decision variable but an input of the problem

that depends on u, t, and f(�).

As mentioned, the use of deteriorated but otherwise usable raw-material may

require longer production time and consume more resource capacity for setting up

the production system. For example, in composite manufacturing processes producing

polyimide reinforced fiber composites and other products, slightly hardened resin may

still be used in production but it usually requires additional cautions that slower

operations.

In this regard, unit production time a is replaced as follows:

a
FD
ut = a+�(�) for 0  u  t  n, (t� u) < �.

where �(�) is a non-decreasing function with �(0) = 0 and �(�)  �(� + 1), for

0  � < �.
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The 2LS-FD model can be formulated as follows:

minimize
nX

t= 1

 
tX

u=⇧t

p
FD
ut wut + htst + qtyt + ⇣tQt + �tet + ⇢tzt

!
(3.11)

subject to (3.2), (3.3), (3.5)� (3.10)
✓
a

FD
ut

r

◆ tX

u=⇧t

wut  Ctyt t 2 T, (3.12)

A production setup here is the realization of all operations required to reconfigure

the production process at the end of period t after producing a batch of products.

Thus, constraint (3.12), ensures that resource capacity in period t to produce all

batches and perform reconfigurations using deteriorated material is not exceeded.

For illustrative purposes, Figure 3.4 shows a comparison of solutions for an in-

stance with n = 6, � = 2, b = 15, r = 3, and d = {28, 16, 27, 18, 11, 10} for the

2LS-FD problem. Figure 3.3.2 shows raw-material inventory levels considering a

durable (non-perishable) raw-material, solved with the standard 2LS formulation.

The 2LS optimal solution is infeasible for the original 2LS-FD problem. Figure 3.4b

shows the raw-material inventory levels for the actual optimal solution obtained with

the 2LS-FD formulation. As shown in Figure 3.4a, the standard 2LS solution has
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(b) Optimal 2LS-FD solution

Figure 3.4: A comparison of solutions for the 2LS-FD

raw-material orders at t = 1 of size Q1 = 15 and at t = 4 of size Q4 = 7. Since b = 15,

the amount of raw-material units which enter the production system at periods 1 and

4 are 225 and 105, respectively. Letting Xt =
Pt

u=⇧t
wut for t 2 T , represent the
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total production at time period t, in terms of production the standard 2LS leads

to the following lot sizes: X1 = w11/r = 28, X2 = w12/r = 16, X3 = w13/r = 27,

X4 = w44/r = 18, X5 = w45/r = 11, and X6 = (w46 + w16)/r = 10. However, this

solution is infeasible for the 2LS-FD variant, since it uses w13 = 81, w46 = 18, and

w16 = 12 units of raw-material for production that are in fact lost/perished and have

to be disposed, given that � = 2.

The optimal solution obtained with the 2LS-FD formulation, as shown in Figure

3.4b, results in Qt > 0 in t 2 {1, 3, 4}, and production in t 2 {1, 2, 3, 4, 5}, which

corresponds to lot sizes X = {28, 17, 26, 18, 21, 0} and no raw-material lost/perished.

3.2.3 Functionality and volume deterioration

We now propose the two-level lot-sizing problem with raw-material functionality and

volume deterioration (2LS-FVD). Here, the perishability nature of the raw-material

not only refers to a functionality loss but, in addition, to a progressive volume loss.

This, in fact, generalizes the two previous model variants.

We consider that the amount (volume) of available raw-material decreases as a

function of the time it has remained in storage. Thereby, ⌫(�) where � = (t � u),

denotes the raw-material volume deterioration function, with ⌫(�)  ⌫(� + 1), for

0  � < �. A new set of decision variables cut for 1  u  t  n is introduced

to represent the amount of raw-material received in time period u and in storage at

the end of t. Moreover, the expired raw-material variables et now have an additional

index to track when the material is received (u) and when it is perished/lost (t): eut

for 1  u  t  n.

Applications of this problem can be found in canning processes such as, canning

fruits, vegetables, seafood, and meats, among others. The primary objective of food

processing is the preservation of highly perishable goods in a stable form to be stored

and shipped to distant markets. However, considerable amounts of raw-material may
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be lost throughout the multiple steps of the production process, which may include

preliminary preparation, blanching, and filling (Melrose Chemicals Ltd., 2005).

Although some of the final products are stamped with a best-before-date fixing its

shelf-life, their functionality or suitability is su�ciently long so that it is not required

to take it into account in the planning horizon. If the planning horizon T refers to a

set of days, weeks, or even months of production, a finished-item shelf-life that is in

the order of 2 to 6 years does not need to be considered for practical purposes.

The updated production cost per period t (not including raw-material inventory

holding costs) considering the use of deteriorated raw-material received in u  t is

given by:

p
FVD
ut =

8
>><

>>:

f(�)
r if u < t,

pt
r if u = t,

where as before, f(�) is the production cost function depending on � = t� u.

The 2LS-FVD model can be formulated as follows:

minimize
nX

t= 1

 
tX

u=⇧t

p
FVD
ut wut + htst + qtyt + ⇣tQt + ⇢tzt

!

+
nX

u=1

⇥uX

t=u

(�ucut + �ueut) (3.13)

subject to (3.3), (3.5)� (3.10), (3.12)

ctt = (bQt � wtt) (1� ⌫(0)) t 2 T (3.14)

cut = (cu,t�1 � wut) (1� ⌫(�)) u, t 2 T, 0 < � < � (3.15)

ett = (bQt � wtt) (⌫(0)) t 2 T (3.16)

eut = (cu,t�1 � wut) (⌫(�)) u, t 2 T, 0 < � < � (3.17)

cut, eut 2 R+
u, t 2 T, u  t, (3.18)

where constraints (3.14) – (3.15) represent raw-material inventory levels and con-
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straints (3.16) – (3.17) represent raw-material disposal. Since raw-material inventory

levels are recursively calculated at each period t depending on the volume deteriora-

tion function ⌫(�), it becomes necessary to remove the raw-material storage costs �t

from the pFV D
ut cost function and apply it directly to the cut variables in the objective

function.

Note that, if f(�) = pt for 0  � < �, 2LS-FVD reduces to a variant with only

raw-material volume deterioration. Moreover, if ⌫(�) = 0 for 0  � < �, 2LS-FVD

reduces to 2LS-FD.

Considering the same small instance in Section 3.2.2 with the addition of the

volume deterioration rate function ⌫(0) = 0.214 and ⌫(1) = 1.0, Figure 3.5 presents a

graphical representation of the solution structure and a comparison with the durable

(non-perishable) version of the problem.
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(b) Optimal 2LS-FVD solution

Figure 3.5: A comparison of solutions for the 2LS-FVD

Figure 3.5a shows the same initial 2LS solution and Figure 3.5b does so for the

actual optimal solution for the 2LS-FVD version of the problem. The implementation

of the 2LS-FVD MIP formulation results in an optimal solution with Q1 = 6 batches

of raw-material received in t = 1, which represent 90 units entering the production

system. Out of those 90 units, w11 = 84 are used in period 1, leaving 6 units in

inventory. Due to volume deterioration, e11 = 6 ⇥ 0.214 = 1.3 and since w12 = 0,

e12 = (6 � 1.3) ⇥ 1.0 = 4.7 units of raw-material perished and are disposed. Q2 = 5

batches are received in t = 2, representing 75 units entering the system. w22 = 48

units are used in t = 2, leaving 27 in inventory, and e22 = 27 ⇥ 0.214 = 5.8 units
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perished and are disposed. Q3 = 5 batches are once more received in t = 3, but since

21.2 units are still in storage at the beginning of t = 3, 75 + 21.2 = 96.2 units are

available for production. Out of those 96.2 units, w23 +w33 = 21+ 60 = 81 are used,

leaving 15.2 in inventory, and e33 = 15.2⇥ 0.214 = 3.3 units of raw-material perished

and disposed. Finally, Q4 = 7 raw-material batches are received in t = 4, representing

105 units entering the production system. Since 12 units are still in storage at the

beginning of t = 4, 12+105 = 117 units are available for production, and they are all

used with no disposal. This corresponds to the following lot sizes: X1 = w11/r = 28,

X2 = w12/r = 16, X3 = (w23 + w33)/r = 27, X4 = (w34 + w44)/r = 39, with the

following finished-item inventory levels: s = {0, 0, 0, 21, 10, 0}.

3.3 Computational experiments and analysis

A computational study was conducted in order to gain in-depth understanding of the

considered models and to evaluate our MIP formulations. We tested more than 1,500

randomly generated instances for each of the three problem variants. Section 3.3.1

shows how such instances were generated.

For each of our three problem variants, we begin by evaluating the solutions of

the standard 2LS. Results are presented in Section 3.3.2. In Section 3.3.3, we study

the added value of the proposed models in comparison with a sequential approach

in which production and raw-material related decisions are made independently. In

Section 3.3.4, we analyze the way that certain key parameters a↵ect the optimal

planning decisions. Section 3.3.5 shows certain computational aspects of the proposed

MIP formulations when used with a general purpose solver.
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3.3.1 Description of test instances

All problem instances used to perform the computational experiments in section ??

were randomly generated, as follows.

The following parameters were set a priori as a basis for comparison: planning

horizon (n), shelf-life (�), batch-size (b).

Problem size (planning horizon): as seen in Table 3.3, in terms of planning horizon,

we tested instances with n 2 {18, 20, 22}.

Shelf-life (�): as seen in Table 3.3, for each n value, in terms of shelf-life, we

tested instances with values � 2 {2, 4, 6, 8}.

Batch-size (b): for each � value, we tested instances with values b 2 {50, 100, 150, 200, 250}.

Other parameter set a priori is r = 3 for all problem instances.

The remaining parameters were all generated randomly using a uniform distribu-

tion (with U{lower limit, upper limit} for discrete cases, and U(lower limit, upper limit)

for continuous cases, as follows:

Demand (dt): U{150, 300}

Unit production time (a): U(2.5, 3.5)

Unit production cost (pt): U(10.0, 13.0)

Fixed setup cost (qt): U(380.0, 420.0)

Unit storage cost (ht): U(5.0, 7.0)

Unit raw-material cost (⇣t): U(1.0, 3.0)

Upper ordering limit (Kt): the Kt values were generated considering the product

of the average demand d̄t = 225 and the bill of material r, divided by the batch size

b. And so, assuming Kcoef = d̄t⇥r
b , we used U{Kcoef ⇥ 4.5, Kcoef ⇥ 4.75}.

With the purpose of integrating variability in a controlled manner, for the re-

maining parameters, three di↵erent value levels were generated each for 1/3 of the

instances.
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Fixed order-placement cost (⇢t): A high level using U(500, 550), a medium level

using U(250, 300), and a low level using U(150, 200).

Raw-material unit storage cost (�t): A high level using U(8.0, 12.0), a medium

level using U(3.0, 7.0), and a low level using U(1.0, 2.0).

Finally, the capacitated versions of the problem instances (results presented in

Section 3.3.5) used the following:

Available process capacity (Ct): The Ct values were generated considering the

upper demand limit 300, as follows: a high level using U{300 ⇥ 4.5, 300 ⇥ 4.75}, a

medium level using U{300⇥4.25, 300⇥4.5}, and a low level using U{300⇥4.0, 300⇥

4.25}

3.3.2 A standard two-level lot-sizing model

As described in Section 3.2, the standard two-level lot-sizing 2LS problem considers a

production system in which one item (finished product) is to be produced and another

item (raw-material), an input of the first, is to be procured from a supplier over a

planning horizon with n time periods, T = {1, ..., n}. Solving the 2LS problem is

to determine the production, procurement and inventory plans for the two items to

meet the demands of the planning horizon, while minimizing the corresponding costs.

To evaluate the added value of integrating raw-material perishability into classi-

cal lot-sizing problems, we initially perform a comparative analysis on the optimal

solutions obtained with our MIP formulations and those of the 2LS model.

For each of our three problem variants, we begin by evaluating the solutions of the

2LS. If they are feasible for the counterpart problems with raw-material deterioration,

these solutions will be compared with the optimal solutions of the proposed MIP

formulations. Table 3.1 presents these results for a set of instances with n = 7 where

the only varying parameters are � = {2, 3, 4} and b = {40, 80, 100, 150, 200, 250}.

The same instances are used for the computational experiments presented in Section
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3.3.3.

Table 3.1: Average standard 2LS solution deviations

Variant � %inf %dev % > 10 max

2LS-FS

2 33.3 8.8 12.6 15.5
3 16.6 10.2 20.3 18.1
4 0.0 12.2 21.8 23.6

16.6 10.4 18.8 23.6

2LS-FD

2 33.3 8.9 12.6 15.5
3 16.6 10.5 20.3 18.1
4 0.0 12.3 21.8 23.6

16.6 10.6 18.8 23.6

2LS-FVD

2 56.2 9.2 33.8 26.3
3 56.2 11.9 42.9 30.6
4 56.2 13.0 47.5 34.2

56.2 11.4 41.4 34.2

Total 29.8 10.8 23.9 34.2

The first two columns in Table 3.1 specify the type of problem variant solved

and the � values of the instances. The third column shows the percentage of in-

stances for which the standard 2LS solution is infeasible (%inf) when adapted to

solve its counterpart problem variant. The next column shows the average de-

viation (%dev) of the feasible solutions from the optimal solution of the actual

problem considering raw-material perishability. The deviations are computed as

%dev = [(SOL2LS �OPT ) /OPT ] ⇥ 100, where SOL2LS is the objective function

value of the feasible solution and OPT the optimal solution value. Finally, the last

two columns show the percentage of instances with %dev greater than 10% and the

maximum %dev observed, respectively.

As expected, for many problem instances, optimal solutions of the 2LS model are

not feasible for solving their counterpart problems with raw-material perishability,

specially for shorter shelf-life instances and for 2LS-FVD.

We observe that %dev increases when the � values increase. In total, 29.8% of

the 2LS solutions were infeasible and the average %dev is 10.8% with the maximum

being 34.2%. Averaging the three problem instances, nearly 24% of the instances
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showed a %dev greater than 10%.

We further investigate the instances that are infeasible and those that show greater

deviations. In general, infeasibility comes from two di↵erent but closely related

sources. Firstly, the standard 2LS model may have solutions where production of

finished-items is set to use raw-material stored in inventory for periods longer than

its shelf-life, i.e. wut > 0 for (t� u) � �. A second source of infeasibility, specifically

for 2LS-FVD, is that the amount of raw-material ordered in any given period is less

than required to cover all production for subsequent periods before a new order is

placed, i.e. constraints (3.14) and (3.15) are violated.

3.3.3 The value of integrating raw-material perishability into

classical lot-sizing

With a clear understanding that the comparison between the standard 2LS model

and our MIP formulations may not seem fair, we make it in order to quantitatively

assess the value of integrating perishability and deterioration into classical lot-sizing

problems using our proposed models. To continue this assessment, we propose a

sequential approach that adapts in a natural and intuitive fashion the initial standard

2LS solutions to find feasible and possibly improved solutions for the original problem

variants. We then compare how our MIP formulations perform compared to this

sequential optimization approach.

Considering that the sources of infeasibility are decisions regarding the size and

timing of raw-material orders and the use of such material to meet production re-

quirements, it is natural to adapt the solutions by modifying these decisions in a

subsequent phase.

With this in mind, the first step of the sequential approach begins by fixing the

production-related decisions obtained in the standard 2LS solution and use them

as exogenous decisions for the following step. The second step applies a rolling-
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horizon algorithm following the basic idea of the Silver-Meal heuristic [111] to solve

the remaining sub-problem regarding the raw-material related decisions. Thus, the

idea is to order enough raw-material to cover the production of one time period u

and then the number of periods to cover is increased (in increments of one period t)

until the average cost per period (ACPut) increases. We begin by defining the terms:

x̂t ! production decisions to fix obtained from standard 2LS solution for

1  t  n, where x̂t =
Pt

u=1 wut.

X̂ut ! fixed cumulative production to cover from period u to t.

Q̄ut ! order quantity (raw-material batches) in period u to cover fixed production

up to t.

z̄ut ! binary raw-material for order placement variable.

w̄ut ! variables used to modified the original wut variables within the heuristic to

avoid violation of the (t� u) < � condition.

ACPut ! average cost per period for an order placed in period u to cover fixed

production requirements up to t, where:

ACPut =
⇢uz̄u + ⇣uQ̄ut +

P⇥u

t=u p
i
utw̄ut + �u

⇣
bQ̄ut �

P⇥u

t=u w̄ut

⌘

(t� u) + 1
.

Clearly, the original Silver-Meal heuristic cannot be applied to any our problem

variants, so an extended version is implemented. For the 2LS-FS and 2LS-FD vari-

ants, the steps involved in the second step of the sequential approach are shown in

Algorithm 1.

For the 2LS-FVD variant, ACPut is computed as follows:

ACPut =
⇢uz̄u + ⇣uQ̄ut +

P⇥u

t=u p
3
utwut +

P⇥u

t=u (�ucut + �ueut)

(t� u) + 1
,

and the steps are shown in Algorithm 2.

Table 3.2 shows the computational results using the sequential approach to solve

each of the original problem variants. The first two columns specify the type of
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Algorithm 1 Second step procedure of sequential approach for 2LS-FS and 2LS-FD

1: Solve standard 2LS, return ŷt, wut for u, t 2 T, u  t

2: u 1
3: while t < n do

4: t u

5: compute X̂ut =

Pn
t=u wut

r

6: let Q̄ut =

8
><

>:

0, if X̂ut = 0

max

(&
rX̂ut

b

'
, L

)
, if X̂ut > 0

and z̄u =

(
0, if Q̄ut = 0

1, if Q̄ut > 0

7: compute w̄ut = rx̂t

8: compute ACPut

9: if ACPut > ACPu,t�1 or t+ 1 = ⇥u then

10: go to step 14
11: else

12: t (t+ 1) and go to step 5
13: end if

14: Let zu = z̄u,t�1, Qu = Q̄u,t�1, and wu,t�1 = w̄u,t�1

15: u (u+ 1) and go to step 4
16: end while

17: return zu, Qu, wut for u, t 2 T, 0  (t� u) < �

Table 3.2: Average sequential optimization approach results

Variant � %opt %dev % > 10

2LS-FS

2 39.6 4.5 10.5
3 52.1 4.2 20.9
4 62.5 3.9 18.8

51.4 4.2 16.7

2LS-FD

2 39.6 5.0 12.5
3 52.1 4.4 20.9
4 52.1 4.0 18.8

47.9 4.5 17.4

2LS-FVD

2 8.3 8.7 34.4
3 6.3 12.1 49.0
4 4.2 14.2 63.6

6.3 11.7 49.0

Total 35.2 6.8 27.7
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Algorithm 2 Second step procedure of sequential approach for 2LS-FVD

1: Solve standard 2LS, return ŷt, wut for u, t 2 T, u  t

2: u 1
3: while t < n do

4: t u

5: if u = t then

6: let Q̄ut =

8
<

:

0, if x̂u = 0

max

⇢⇠
rx̂u

b

⇡
, L

�
, if x̂u > 0

and z̄u =

(
0, if Q̄ut = 0

1, if Q̄ut > 0

7: else

8: let Q̄ut =

8
>><

>>:

0, if x̂ut = 0

max

8
<

:

2

666

h
c̄ut

(1�⌫(0)) + rx̂u

i

b

3

777
, L

9
=

; , if x̂ut > 0
and z̄u =

(
0, if Q̄ut = 0

1, if Q̄ut > 0
9: end if

10: compute w̄ut, c̄ut, and ēut for all u  t  ⇥u

11: compute ACPut

12: if ACPut > ACPu,t�1 or t+ 1 = ⇥u then

13: go to step 17
14: else

15: t (t+ 1) and go to step 8
16: end if

17: let zu = z̄u,t�1, Qu = Q̄u,t�1 for u  t  ⇥u

18: let wu,t�1 = w̄u,t�1, cu,t�1 = c̄u,t�1, and eu,t�1 = ēu,t�1 for u  t  ⇥u

19: u (u+ 1) and go to step 4
20: end while

21: return zu, Qu, wu,t, cut, eut for u, t 2 T, 0  (t� u) < �

Where w̄ut = rx̂t; c̄ut = (c̄u,t�1 � rx̂t) (1� ⌫(�)) and c̄uu = rx̂u+1, and ēut =
(c̄u,t�1 � rx̂t) (⌫(�)) and ēuu =

�
bQ̄ut � x̂t

�
(⌫(�)).
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problem variant solved and the � values of the instances. The third column shows

the percentage of instances for which the sequential approach solution is optimal

(%opt). The last two columns show the average deviation (%dev) with respect to

the optimal solution (of the non-optimal solutions), and the percentage of instances

greater than 10%, respectively.

We can see that in addition to achieving feasibility for all instances, the sequential

approach also reached optimal solutions for 51.4%, 47.9%, and 6.3% of the instances

for 2LS-FS, 2LS-FD, and 2LS-FVD, respectively. The average deviations (%dev) for

the first two problem variants are quite similar, ranging from 3.9% to 5.0%. It is

much higher 2LS-FVD, ranging from 8.7% to 14.2%. Figure 3.6 clusters the three

problem variants and graphically shows the sequential approach deviations (%dev)

for each batch-size value b. The dotted lines represent the average %dev for each

shelf-life � value. It shows a clear trend that the average deviation increases as the

batch-size value (b) increases.

2

5

8

11

14

40 80 100 150 200 250 40 80 100 150 200 250 40 80 100 150 200 250

(a) β = 2 (b) β = 3 (c) β = 4

A
v
er

ag
e 

 %
d

ev

Figure 3.6: Average sequential approach (%dev) by shelf-life (�) and batch size (b)

Since the sequential approach focuses on the modification of raw-material related

decisions, it is relevant to see how its deviation changes with respect to the total

costs corresponding to these decisions (%RM) from the total value of the optimal

solution. Figure 3.7 shows the scatter plots for 2LS-FD and 2LS-FVD within the

range 25  %RM  75.

Figure 3.7 shows that the deviation values are somewhat scattered. However, we

note that for instances with %RM above 65%, the sequential approach found near
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Figure 3.7: Average sequential algorithm %dev vs. raw-material costs percentage
%RM in optimal solution

optimal solutions for 2LS-FD. This is not the case for 2LS-FVD, where higher %RM

represent also higher deviations. Similarly, when %RM is below 40%, some instances

are optimally solved for 2LS-FD, whereas the 2LS-FVD variant shows higher devia-

tions.

The highest deviations for the 2LS-FS and 2LS-FD (%dev > 20) were found on

instances with b � 100 in which the sequential approach resulted in solutions with a

lower raw-material ordering frequency than the one observed in the optimal solution

of the problem. These instances have %RM lower than 35 and greater than > 55.

By resulting in a lower raw-material ordering frequency, the fixed order-placement

are evidently reduced. However, this reduction is not su�cient compared to the

substantial increase in raw-material inventory holding and disposal costs.

On the other hand, the highest deviations for the 2LS-FVD (%dev > 30) were

found on instances with b � 80. In these cases, the discrepancy between the sequential

and the integrated solution is that the former makes raw-material orders that are much

higher than those required for production. This increases the general raw-material

related costs, including inventory and disposal.
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3.3.4 Key parameters for optimal planning

The shelf-life parameter � limits the number of periods that the raw-material can

remain in storage and be used for production. Along with �, functions f(�) and ⌫(�) to

model the loss of material functionality and volume, respectively, constitute the core

features of the studied problems. In addition, raw-material order batch-size is another

parameter requiring detailed analysis to see how it a↵ects the optimal solutions. For

this analysis, we solved a set of problem instances with a planning horizon of n = 7

periods, bill of material r = 3, lower ordering limit L = 0, and various � and b

values, keeping all other parameters unchanged. Figure 3.8 shows a comparison of

the corresponding raw-material disposal costs
⇣Pn

u=1

P⇥u

t=u (�ucut + �ueut)
⌘

in the

optimal solution for each problem variant.
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Figure 3.8: Comparison of disposal costs by shelf-life (�) and batch size (b) values

The most important variations in the structure of optimal solutions largely arise

from the relation between the order batch-size b, the bill of material r, and the

finished-item demand dt levels. This relation a↵ects the flexibility to manage raw-

material inventories and the possibility to avoid disposing units. The greater flexibility

is found on instances with ordering batch-size b = 1 (see Property 3.1). Results

shown in this sections are for instances with b > 1. As observed in Figure 3.8, for

every problem instance, raw-material disposal increases consistently as the batch-size

increases.

For the same � and b values, Figure 3.9 shows the changes in the corresponding

order-placement costs (
Pn

t=1 ⇢tzt) in the optimal solution. These costs represent the

frequency with which raw-material order are placed.
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Figure 3.9: Comparison of order-placement costs by shelf-life (�) and batch size (b)
values

As observed, longer shelf-lives result in lower average order-placement costs. This

is partially attributed to the fact that shorter shelf-lives represent fast functionality

and/or volume deterioration, which consequently results in a higher setup frequency.

Although not shown in the figure, this fact also results in an increase in the average

finished-item inventory holding costs, since production tends to take place in earlier

periods to avoid raw-material disposal.

A counterintuitive observation from Figure 3.9 is that higher order-placement

costs are found for instances with larger batch-sizes b. This is partially attributed

to the fact that larger order batch-sizes result in an increase of raw-material wastage

and disposal, as well as higher finished-item inventory costs. This behavior is later

observed again in Figure 3.11 for the optimal objective function values.
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Figure 3.10: Optimal objective function values by shelf-life (�)

To get a more generic view of how shelf-life impacts cost levels, Figure 3.10 shows

the changes in the optimal solution values when solving a single problem instance

with a planning horizon of n = 16 periods and various � values, keeping all other
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parameters unchanged.

Figure 3.10 shows that the same behavior previously observed is ultimately re-

flected in the optimal solution values as well.

A clear observation from Figures 3.8 to 3.10 is that the optimal solution values are

clearly higher for the 2LS-FVD problem variant, which is consistent with the signifi-

cant increase in raw-material disposal and order-placement costs. This is somewhat

expected due to the progressive raw-material volume loss in each period, resulting

in the need to place orders more frequently. The 2LS-FS variant does not show

substantial changes when � varies.
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Figure 3.11: Optimal objective function values by batch-size (b)

Finally, Figure 3.11 presents the optimal objective function values for nine di↵erent

b values. As previously mentioned, for every problem instance, it is clear how these

values increase consistently as the batch-size increases.

3.3.5 Computational performance of MIP formulations

For the following computational study, we have implemented our MIP formulations

on a set of randomly generated capacitated instances for each problem variant (see

Section 3.3.1). All computational experiments were implemented and executed using

the Callable Library of IBM CPLEX 12.6.2 on an Intel(R) Xeon(R) CPU E3-1270

v3 processor with 3.50GHz and 24GB of RAM memory and Microsoft Windows 7
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Enterprise operating system. A maximum time limit of two hours was used in all

experiments.

Table 3.3 presents the computational performance of the test instances for each

problem variant. The first three columns show the di↵erent variant, n and � values

for which results are presented. We show the average performance of 1620 instances

for each variant (i.e. 135 for each � value and 540 for each n).

The second couple of columns refer to the number of branch and bound nodes

explored by CPLEX showing the minimum value found and the average. The next

couple of columns refer to the linear programming gaps (LP Gaps %). And the

last two columns refer to the CPU time (in seconds), showing the average and the

maximum value observed. Wherever “limit” is registered it means that at least one

of the solutions was not solved to optimality within the two hours.

A first observation is that the increase in the shelf-life values corresponds to an

increment of the number of branch and bound nodes explored in most of the tested

instances. This is partially due to the fact that a lower shelf-life restricts the solution

space decreasing the number of possibilities to decide upon regarding the usage of raw-

material for production in later periods. Having a longer shelf-life value increases the

solution space to explore.

Generally, LP Gaps range from 6.51% to 26.81%. The lowest LP Gaps (< 10%)

were observed in 2LS-FS and 2LS-FD instances with lower fixed costs of placing

raw-material orders ⇢t. Whereas the highest LP Gaps (> 20%) were mostly observed

in 2LS-FVD instances with b � 100 values. In terms of computational times, the

average CPU time ranges between 6.77 and 1, 577 seconds. The highest values (> 60

minutes) were mostly observed in instances with � � 4. Instances that were not

solved within the two hour limit have all � � 6.
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Table 3.3: Computational performance of MIP formulations

Variant n �
Nodes (x1,000) LP Gap (%) Time (s)

min avg min avg avg max Solved

2LS-FS

18

2 1.69 158.66 7.37 13.56 7.30 66.94 135/135
4 1.59 740.71 7.31 13.96 35.70 1684.83 135/135
6 1.12 1,480.00 6.94 14.15 73.64 2131.91 135/135
8 1.97 3,529.23 7.87 14.21 192.37 limit 134/135

Total 1.12 1,477.15 6.94 13.97 77.25 limit 539/540

20

2 2.47 663.44 6.51 13.59 30.28 1137.07 135/135
4 5.80 1,191.96 7.95 13.95 59.54 1077.24 135/135
6 6.11 4,180.69 7.25 14.30 226.90 limit 134/135
8 5.43 9,106.74 8.08 14.25 604.65 limit 130/135

Total 2.47 3,785.71 6.51 14.02 230.34 limit 534/540

22

2 4.76 1,741.72 7.56 13.45 87.56 1685.92 135/135
4 6.55 5,565.82 7.23 13.95 332.51 limit 133/135
6 15.93 8,269.32 7.03 13.97 480.59 limit 133/135
8 21.21 16,195.62 8.40 14.16 1193.36 limit 120/135

Total 4.76 7,943.12 7.03 13.88 523.50 limit 521/540

Variant Total 1.12 4,401.99 6.51 13.96 277.03 limit 1,594/1,620

2LS-FD

18

2 1.28 139.98 7.80 14.08 6.77 60.29 135/135
4 2.94 661.71 7.32 14.37 36.11 1916.44 135/135
6 2.15 783.55 7.23 14.46 51.86 918.77 135/135
8 4.67 1,840.65 8.00 14.46 140.16 limit 134/135

Total 1.28 856.47 7.23 14.34 58.73 limit 539/540

20

2 0.92 622.76 7.00 14.08 28.87 1054.34 135/135
4 6.30 1,032.04 7.96 14.38 60.36 902.31 135/135
6 9.43 3,239.19 7.46 14.64 216.48 2881.92 135/135
8 6.18 5,500.59 8.33 14.51 452.89 limit 134/135

Total 0.92 2,598.65 7.00 14.40 189.65 limit 539/540

22

2 3.66 1,715.70 8.16 13.95 88.01 1573.18 135/135
4 7.19 4,317.31 7.96 14.34 291.21 limit 134/135
6 6.30 6,087.04 7.50 14.30 491.10 limit 132/135
8 15.29 11,610.36 8.49 14.41 1135.40 limit 125/135

Total 3.66 5,932.60 7.50 14.25 501.43 limit 526/540
Variant Total 0.92 3,129.24 7.00 14.33 249.94 limit 1,604/1,620

2LS-FVD

18

2 1.54 232.54 10.80 17.85 13.87 335.50 135/135
4 3.52 1,107.24 11.04 18.20 114.48 limit 134/135
6 3.84 1,093.42 11.90 18.30 133.27 2090.75 135/135
8 3.02 1,015.08 11.97 18.40 142.19 2510.95 135/135

Total 1.54 862.07 10.80 18.19 100.95 limit 539/540

20

2 1.99 947.69 11.38 17.95 56.41 1132.17 135/135
4 10.68 2,358.18 11.84 18.22 242.20 6684.31 135/135
6 4.44 5,677.68 11.75 18.54 765.87 limit 131/135
8 7.79 4,146.80 11.97 18.37 674.60 limit 130/135

Total 1.99 3,282.59 11.38 18.27 434.77 limit 531/540

22

2 5.71 3,215.44 11.92 17.82 213.35 6195.72 135/135
4 9.38 6,323.53 11.61 18.19 708.45 limit 131/135
6 18.28 5,933.21 11.57 18.33 847.36 limit 132/135
8 26.13 8,659.96 12.08 18.40 1577.27 limit 119/135

Total 5.71 6,033.03 11.57 18.18 836.61 limit 517/540

Variant Total 1.54 3,392.56 10.80 18.21 457.44 limit 1,587/1,620
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3.3.6 Conclusions and future research

From the study presented in Section 3.3, we can infer that there is a significant added

value for using our proposed MIP formulations to integrate these considerations into

classical lot-sizing models. Clearly, the use of a standard two-level lot-sizing model

within a sequential approach is insu�cient to solve the problems discussed in this

study.

From this research, Chapter investigates the integration of other relevant factors

to make our models more robust, such as multi-raw-material items, di↵erent prod-

uct structures, capacity restrictions, time-dependent batch sizes, and other special

raw-material inventory-related assumptions. Finally, considering the extensive com-

putational times to solve a portion of medium to large size problem instances, we

plan to work in the development of solution algorithms for e�ciently solving certain

variants of these problems in the future.
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Chapter 4

Multi-item, multi-level lot-sizing

with raw-material perishability,

deterioration, and batch ordering

Advanced composite manufacturing processes use polymers and fibers pre-impregnated

with thermoplastic or thermoset resins as raw-materials. These highly sensitive ma-

terials are considerably perishable, a↵ecting the production process in several ways

and requiring special inventory cares. This perishable condition of raw materials in

composite manufacturing constitutes the main motivation for this study.

With production planning in composite manufacturing as an initial motivation

and with the possibility of generalizing the problem to other applications, in this

chapter we study the multi-item, multi-level lot-sizing problem with raw-material per-

ishability and batch ordering (MI-MLS-FVD). In particular, we consider an assembly

production system in which one item at the lower level (non-perishable final product,

representing the advanced composite) facing independent demand is to be produced.

Several types of perishable raw-material items (representing various prepregs and ad-

hesives) at the upstream level are to be procured in batches (e.g. boxes, container or
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packages) from suppliers. The upstream level consists of two di↵erent inventory lev-

els: a storage location where raw-material batches can be initially stored (unopened)

under special conditions so as to avoid deterioration, and a secondary storage location

at the shop floor where raw-material units become available for production after a

batch is opened and start deteriorating. We proposed a mixed-integer programming

formulation for the problem and perform computational experiments with sensitivity

analyses, demonstrating its potentials for practical applications in planning composite

production.

The content of this chapter has been submitted for publication as “Multi-level

lot-sizing with raw-material perishability, deterioration, and batch ordering: an appli-

cation of production planning in advanced composite manufacturing” to the Journal

of Computers & Industrial Engineering in June, 2019.

4.1 Perishability in composite manufacturing

Material performance qualification and product consistency are key requirements in

aerospace, defense, marine, automotive, mass transit, and renewable energy sectors.

Advanced composite materials exhibit desirable physical and chemical properties that

make them widely used in these industries. Automated Tape Laying (ATL) and

Automated Fibre Placement (AFP) are currently the two main technologies employed

to manufacture advanced composite laminates from unidirectional prepregs. ATL is

mainly employed to deliver wide prepreg tape onto a surface, while AFP utilises a

band of narrow prepreg slices, which are collimated on the head and then delivered

together [82].

Prepregs are used in high-performance applications where weight and mechanical

properties take precedence over cost. Prepregs are reinforcement materials that have

been pre-impregnated with either a thermoplastic or thermoset resin, hence the name
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prepreg. Due to their high sensitivity toward premature aging by cross-linking poly-

merization, prepreg materials are considerably perishable, a↵ecting the production

process in several ways [see 16, 17, 32]. To prevent the cross-linking polymerization

reaction that takes place at room temperature, prepregs have to be kept under special

freezing conditions. Refrigerated prepregs usually remain usable for three months in

most cases, while certain types of prepregs can be good for up to one year, depending

upon the particular resin system used. Suppliers usually assign materials a shelf-life

representing the maximum length of time during which the material can remain out-

side storage (out-time) in the shop floor being suitable for use. Materials exceeding

their shelf-life cannot be relied upon and must be disposed. Once these materials

have been used for production they become stable and no longer deteriorate. Thus,

the final products are normally considered to be non-perishable.

4.1.1 Prepreg control

Fiber-Reinforced Plastics (FRPs) are composite materials that are made of polymers

and fibers. The polymers (prepregs) and the fibers are commonly glass or carbon.

FRP have properties of being high-strength and light-weight so they are widely used

as an advanced material in automobiles, aircraft and construction. The fibers are

bonded to the epoxy resins and can have high economic value [114]. Figure 4.1 shows

a general composite material constitution.

Prepreg is the common term for a reinforcing fabric which has been pre-impregnated

with a resin system (typically epoxy) that already includes the proper curing agent.

As a result, the prepreg is ready to lay into the mold without the addition of any

more resin. In order for the laminate to cure, it is necessary to use a combination of

pressure and heat.

Thermoset prepregs are produced by saturating a fiber reinforcement with a liquid

thermoset resin. Once the resin components are mixed, the cure reactions are initiated
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Figure 4.1: Composite material constitution [47]

and the material is no longer stable in the process of transforming from liquid to

pliable solid. This is known as the “B-stage”. Composite thermoset prepregs and

adhesives in the B-stage must be stored in a refrigerator. After the curing process is

activated with the application of heat, the material attains again a stabilized stage

known as “C-stage”. This creates what is called a perishable condition, which requires

special cares, as the material will advance or age when kept at room temperature.

As the resin ages at room temperature, the curing agent slowly reacts with the base

resin. Several things happen when the resin advances [32]:

• there is a noticeable loss of tack that can make the plies hard to lay up,

• the prepreg becomes boardy and sti↵,

• during cure, there will be less resin flow which can result in thicker than desired

parts, and

• in some systems, the resin may not properly cure if taken to extreme “out-time”

conditions.

This deterioration and loss of functionality in prepregs and its impact on production

is the main motivation for the present study from a production planning perspective.

Prepregs are shipped from suppliers wrapped in plastic in refrigerated trucks or

packed in boxes with dry ice. Once received, it is important to immediately store
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them in refrigerated containers, usually 0oF or lower, where the resin cure reaction is

slowed down to residual levels. Freezer life is normally between 3 to 12 months from

the date of manufacture, depending upon the particular resin system used. Once a

roll is removed from the refrigerator and opened for use, the time of removal must

be documented and the material begins its out-time at room temperature. During

out-time, usually between 10 to 30 days, the material properties are a↵ected by the

cure reactions, eventually reaching its shelf-life when the material can no longer be

used for production and it is scraped or disposed [89].

4.2 Problem Description

We study the multi-item, multi-level lot-sizing problem with raw-material perishability

and batch-ordering (MI-MLS-FVD). Figure 4.2 shows a graphical depiction of the

flow of material and the distinction between di↵erent levels and types of inventory

considered in the MI-MLS-FVD.
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Figure 4.2: Batch-ordering, multi-level inventories, production, and disposal

Several types of perishable raw-material items are procured in batches from sup-

61



pliers (e.g. prepregs packed in boxes, containers or packages). Once received at the

upstream level, two di↵erent inventory sub levels are considered: a storage location

where raw-material batches can be initially stored (unopened) in refrigerated contain-

ers so as to avoid deterioration, and a secondary storage location at the shop floor

where raw-material units become available for production after a batch is opened and

start deteriorating. As raw-material deteriorates at room temperature during out-

time, the detriment of its functionality directly impacts production due to increased

assembly costs. Additionally, the use of deteriorated material requires longer produc-

tion time and greater process capacity consumption. Process capacity is considered

to be shared among all raw-material items. In addition to the loss of functionality, it

is often the case that the perishable nature of the raw-material involves a progressive

quantity loss of on hand inventory. The prepregs outside the fridge with premature

polymerization causes the material to lose not only its suitability for production, but

also a portion of the initial available quantity. Once final product units are assembled

they are considered to be non-perishable and can be either used to satisfy demand

immediately or placed in inventory to deliver at a later time.

4.3 Model formulation

The main purpose of formulating and solving the MI-MLS-FVD is to determine the

production, procurement, inventory, and disposal plans over a planning horizon with

n time periods. We consider a total of m items including one final product and

m � 1 raw material types required for the assembly. Finished product demand dt

is to be satisfied at the end of every period t = 1, . . . , n. Production incurs a fixed

setup cost of q1t and a basic per-unit cost of p̂1t . Finished-item inventory holding cost

at the end of every period is denoted by ht. Raw-material orders are placed and

delivered immediately (no order lead time assumed) in batches of size b
i for every
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i = 2, . . . ,m, and they entail a fixed ordering cost of qit and a per-batch cost of ĝit.

Raw-material batches are received at the storage location where they are kept under

special conditions to avoid deterioration, incurring a storage cost of f i
t .

Once a raw-material batch is transferred to the shop floor and opened, it becomes

available for production. Raw-material functionality decreases as a function of storage

time (out-time) at the shop floor. The use of deteriorated but otherwise usable

material causes additional assembly costs and reduces production capacity. As in

Section 3.2.2, we represent this by considering the standard per-unit costs p̂
i
t and

process capacity consumption â
i
t of item i = 2, . . . ,m used for production in period t

as general non-decreasing functions P i(�) and �i(�), respectively, where � = (t � k)

for 1  k  t  n and 0  � < �
i. Here, � is the out-time from time k that

a raw-material batch is opened to time t that the material is used for production.

�
i represents the shelf-life of raw-material item i. From their definitions, we have

P
i(0) = p̂

i
t, P

i(�)  P
i(� + 1), �i(0) = â

i
t, and �i(�)  �i(� + 1). Shelf-life is

considered from the time that the raw-material batch is opened and represents the

maximum length of time (out-time) during which the item is considered of satisfactory

quality and can be stored, remaining suitable for use in whole or partially.

Using the same concept of quantity loss of on hand inventory as in Section 3.2.3, we

denote ⌫i(�) as the raw material volume deterioration function for item i = 2, . . . ,m,

where � = (t � u), ⌫i(�)  ⌫
i(� + 1), for 0  � < �

i and 1  u  t  n. We further

consider that perished raw material must be discarded, incurring additional disposal

costs.

In formulating the MI-MLS-FVD model, we use the following notation:

m ! number of items (including the final product),

n ! number of time periods in planning horizon,

dt ! final product demand per period t, 1  t  n,

b
i ! order batch size of item i, with b

i
> 1, for 2  i  m,
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r
i ! units of item i required to produce a final product (bill of materials),

with r
i
> 1,

�
i ! shelf-life of item i, for 2  i  m (we assume no final product perishability,

i.e. �1 � n),

â
i
t ! standard process capacity consumption per unit of item i when used

for production at period t, 2  i  m and 1  t  n,

Ct ! available process capacity per period t, 1  t  n,

p̂
i
t ! standard cost per unit of item i used for production at period t, 1  i  m

and 1  t  n,

ht ! final product storage cost per period t, 1  t  n,

ĝ
i
t ! per batch cost of item i ordered at period t, 2  i  m and 1  t  n,

f
i
t ! storage cost per batch of item i per period t, 2  i  m and 1  t  n,

�
i
t ! storage cost (at shop floor) per unit of item i per period t, 2  i  m

and 1  t  n,

�
i
t ! disposal cost per unit of item i per period t, 2  i  m and 1  t  n,

q
i
t ! fixed set up or ordering cost of item i per period t, 1  i  m and

1  t  n,

� ! out-time duration from time k that a raw-material batch is opened to time

t that the material is used for production, � = (t� k) for 1  k  t  n,

and 0  �, < �
i,

P
i(�) ! production cost function for item i, 2  i  m,

�i(�) ! process capacity consumption function for item i, 2  i  m,

⌫
i(�) ! raw material volume deterioration function for item i, 2  i  m.

In terms of decision variables, we have the following:

xtl ! production of final product at period t to satisfy demand of period l,

1  t  l  n,

st ! final product inventory at the end of period t, 1  t  n,
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Q
i
uk ! number batches of item i, ordered at period u to open at period k,

2  i  m, 1  u  k  n,

w
i
ukt ! amount of item i, from a batch received at period u and opened at period

k to use for production at period t, 1  u  k  t  n and

0  (t� k) < �
i,

c
i
ukt ! inventory of item i at the end of period t, from a batch received at period

u and opened at period k, 2  i  m, 1  u  k  t  n, and

0  (t� k) < �
i,

e
i
ukt ! amount of perished item i discarded at period t, from a batch received at

period u and opened at period k, 2  i  m, 1  u  k  t  n, and

0  (t� k) < �
i,

y
i
t ! binary variable equal to 1 if and only if an order of item i is placed

(2  i  m), or there is final product production (i = 1), in period

t, 1  t  n.

Using these sets of decisions variables, the MLS-FVD can be formulated as the

following mixed-integer program (MIP):

minimize
nX

t=1

 
nX

l=t

p̂
1
txtl + htst

!
+

mX

i=2

nX

u=1

⇥i
uX

k=u

nX

t=k

p
i
ktw

i
ukt +

mX

i=1

nX

t=1

q
i
ty

i
t

+
mX

i=2

nX

u=1

nX

k=u

0

@g
i
ukQ

i
uk +

⇥i
kX

t=k

�
�
i
tc

i
ukt + �

i
te

i
ukt

�
1

A (4.1)
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subject to
lX

t=1

xtl = dl, 1  l  n (4.2)

tX

u=1

tX

k=⇧i
ut

w
i
ukt = r

i
nX

l=t

xtl, 2  i  m, 1  t  n (4.3)

c
i
ukk =

�
b
i
Q

i
uk � w

i
ukk

� �
1� ⌫

i(0)
�
, 2  i  m, 1  u  k  n (4.4)

c
i
ukt =

�
c
i
uk,t�1 � w

i
ukt

� �
1� ⌫

i(�)
�
,

2  i  m, 1  u  k < t  n : � < �
i (4.5)

e
i
ukk =

�
b
i
Q

i
uk � w

i
ukk

� �
⌫
i(0)
�
, 2  i  m, 1  u  k  n (4.6)

e
i
ukt =

�
c
i
uk,t�1 � w

i
ukt

� �
⌫
i(�)
�
,

2  i  m, 1  u  k < t  n : � < �
i (4.7)

mX

i=2

tX

u=1

tX

k=⇧i
ut

a
i
ktw

i
ukt  Cty

1
t , 1  t  n (4.8)

nX

l=t

xtl Mty
1
t , 1  t  n (4.9)

nX

k=u

Q
i
uk  K

i
uy

i
u, 2  i  m, 1  u  n (4.10)

st =
nX

l=t+1

xtl, 1  t  n (4.11)

xtl, st 2 R+
, 1  t  l  n (4.12)

Q
i
uk 2 N, 2  i  m, 1  u  k  n (4.13)

w
i
ukt, c

i
ukt, e

i
ukt 2 R+

, 2  i  m, 1  u  k  t  n (4.14)

y
i
t 2 {0, 1}, 1  i  m, 1  t  n (4.15)

where pikt =

8
>><

>>:

p̂it
ri if k = t,

P i(�)
ri if k < t,

g
i
uk =

8
>><

>>:

ĝ
i
u if u = k,

ĝ
i
u +

Pk�1
t=u f

i
t if u < k,

and a
i
kt =

8
>><

>>:

âit
ri if k = t,

�i(�)
ri if k < t.

Alternatively, we can calculate the raw material batch inventory as Si
k =

Pn
k=u+1 Quk

for 2  i  m and 1  k  n.
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The objective function (4.1) includes: final product production and inventory

holding costs, raw material production related costs, fixed set-up and ordering costs,

raw material batch and special inventory holding costs, raw-material (at shop floor)

unit inventory holding costs, and disposal costs. Constraints (4.2) make sure that

the amounts xtl produced in every period t = 1, . . . , l are equal to the final product

demand dl at period l = 1, . . . , n. Constraints (4.3) represent the link between the

raw material production related variables wi
ukt and the final product production vari-

ables xtl for raw material item i = 2, . . . ,m and period t = 1, . . . , n, using the bill of

materials parameter ri. Constraints (4.4) and (4.5) represent raw material inventory

levels ciukt at the shop floor for raw material item i = 2, . . . ,m, and recursively calcu-

late the number of Qi
ukt batches opened at period k = 1, . . . , n, whereas constraints

(4.6) and (4.7) compute the raw material disposal units e
i
ukt. Constraints (4.8) set

the capacity limits for the production process. Constraints (4.9) force the set-up bi-

nary variable to be 1 if production takes place (xtl > 0) at t = 1, . . . , n. Constraints

(4.10) are the ordering binary variables and equal to 1 if a raw material batch order

is placed (Qi
uk > 0) at u = 1, . . . , n. Constraints (4.11) calculate the final product

inventory levels st at period t = 1, . . . , n. Finally, constraints (4.12) – (4.15) are the

non-negativity and integrality conditions.

4.4 Numerical examples

In this section, we first present a small example instance with detailed data and so-

lution to illustrate the application of the proposed model. Several mid-sized example

problems are then presented to further illustrate other aspects of the model such as its

performance, solution di↵erences with various data sets and required computational

time.
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4.4.1 A small problem instance

We first illustrate the problem definition and validate our MI-MLS-FVD formula-

tion using the following problem instance. We consider a seven time-period in-

stance (n = 7), with one final product and two raw material types required for

assembly (m = 3). Finished product demand per period is assumed to be d =

(178, 67, 119, 72, 50, 193, 91), order batch sizes for each raw material type are b =

(30, 60), and their shelf-lives values are � = (3, 2). The amount of units of item i

required to produce a final product are r = (4, 2).

Capacity consumption, production costs, and raw material volume deteri-

oration functions We assume the same standard capacity consumption per unit

for the two raw material types to be â = 2.5. Since the rate of material deteriora-

tion is di↵erent for each type, the increased capacity consumption process of items

i = 2, 3 is represented by two piecewise non-decreasing linear functions �2(�) and

�3(�), where � = (t � k) for 1  k  t  n is the raw-material out-time and

0  � < �
i. In this way, since � = (3, 2) for i = 2, 3, then �2(�) = (2.5, 3.333, 4.167)

for 0  � < 3, and �3(�) = (2.50, 3.75), for 0  � < 2. Similarly, but with a di↵erent

standard per-unit production cost p̂ = (12, 7) for i = 2, 3 and the increased assembly

costs functions to be P
2(�) = (12, 16.5, 20) for 0  � < 3, and P

3(�) = (7, 10.5), for

0  � < 2. In terms of raw material volume deterioration, we assume the functions

⌫
2(�) = {0.333, 0.667, 1.0} for 0  � < 3, and ⌫

3(�) = {0.5, 1.0} for 0  � < 2.

Storage, disposal, and fixed set up and ordering costs Table 4.1 shows the

the di↵erent relevant costs parameters for each item.

Problem Instance Solution Tables 4.2, 4.3, and 4.4 show theMI-MLS-FVD opti-

mal solution in detail for the small problem instance. In terms of final item production
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Table 4.1: Costs parameters for the small problem instance

Item (i): 1 2 3

p̂
i
t, standard per unit production 10 12 7
ĝ
i
t, per batch ordered n/a 30 60
f
i
t , per batch storage n/a 42.96 93
ht, �i

t , per unit storage 5 1.19 0.67
�
i
t, per unit disposal n/a 4.36 1.13

q
i
t, fixed set up / ordering 3,000 2,764 2,691

and inventory levels, the optimal plan is to produce in periods t = {1, 2, 5, 6}, result-

ing in an average inventory level of 90.75 units for the first six periods. As shown

in Table 4.2, this represents a total set-up cost of $12.000, a total final product pro-

duction cost of $7.700, and a total final product inventory holding cost of $2, 722.5,

adding up to a total of $22, 422.5.

Table 4.2: Optimal values for final product related variables

Time-periods 1 2 3 4 5 6 7 Totals Associated costs

Section 2.1 Binary set-up variable at period t

y
i
t i = 1 1 1 0 0 1 1 0 4.0 12,000.0

Section 2.2 Production of final product at period t to satisfy demand of period l

xtl t =

1 178 0 18 0 35 6.5 0 237.5

2 - 67 101 72 0 0 0 240.0

5 - - - - 15 0 0 15.0

6 - - - - - 186.5 91 277.5

Totals 178 67 119 72 50 193 91 770.0 7,700.0

Section 2.3 Finished product inventory at the end of period t

st 59.5 232.5 113.5 41.5 6.5 91 0 544.5 2,722.5

The procurement plan and special storage decisions for the two raw material

types are presented in Table 4.3. It consists of placing and receiving orders in periods

t = {1, 6} for item i = 2 and in periods t = {1, 2, 5, 6} for item i = 3, respectively. In

total, 103 and 26 batches of items 2 and 3 are procured, containing a total of 3,090

(b2 = 30) and 1,560 (b3 = 60) raw material units, respectively. These batch orders

are used and inventoried as shown in Sections 3.2 to 3.5 of Table 4.3. Out of the

66 batches of item 2 received in period u = 1, 32 batches are opened for production
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instantaneously (same period they are received), and 34 are kept in stock (unopened).

Afterwards, 32 batches are opened in period 2, and the remaining two batches are

kept in stock until the end of period 4. They are then opened at period 5. For item

3, batches received at periods 1, 2 and 6 are opened instantaneously. While out of

the two batches received at period 5, one is opened and the other is kept in stock

until the next period. The total cost with fixed ordering, per-batch ordered, and per

batch storage costs associated with these orders is $41, 353.4

Table 4.3: Optimal values for raw material batch procurement and inventory variables

Time-periods 1 2 3 4 5 6 7 Totals Associated costs

Section 3.1 Binary ordering variable at period t

y
i
t i =

2 1 0 0 0 0 1 0 2.0 5,528.0

3 1 1 0 0 1 1 0 4.0 10,764.0

Section 3.2 Number of batches of item 2, ordered at period u, to open at period k

Q
2
uk u =

1 32 32 0 0 2 0 0 66.0

6 - - - - - 37 0 37.0

Totals = 32 32 0 0 2 37 0 103.0 15,450.0

Section 3.3 Number of batches of item 3, ordered at period u, to open at period k

Q
3
uk u =

1 8 0 0 0 0 0 0 8.0

2 - 8 0 0 0 0 0 8.0

5 - - - - 1 1 0 2.0

6 - - - - - 8 0 8.0

Totals = 8 8 0 0 1 9 0 26.0 7,800.0

Section 3.4 Amount of raw material batch inventory of item 2 at the end of period t

S
2
t 34 2 2 2 0 0 0 40.0 1,718.4

Section 3.5 Amount of raw material batch inventory of item 3 at the end of period t

S
3
t 0 0 0 0 1 0 0 1.0 93.0

Regarding the activity at the shop floor, Table 4.4 shows how raw material units

are used for production, kept in stock (out-time), and disposed.

Section 4.1, 4.3, and 4.5 refer to item i = 2. From the 960 units (32 batches ⇥ 30

units/batch) of item i = 2 that are opened at period 1, 950 are used for production

instantaneously (same period they are opened). As the remaining 10 units start their
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out-time at the shop floor, they progressively perish and are all disposed. The pace

at which they are disposed (e211t = {3.33, 4.449, 2.221} for 1  t  3) is determined

by the volume deterioration function ⌫
2(�). All 960, 60, and 1,110 units opened at

periods 2, 5, and 6, respectively, are used for production instantaneously.

Sections 4.2, 4.4, and 4.6 in Table 4.4 refer to item i = 3. From the 480 units (8

batches ⇥ 60 units/batch) of item i = 3 that are opened at period 1, 475 of them are

used for production instantaneously. As the remaining 5 units start their out-time,

they progressively perish and are all disposed. Out the 60 units opened at period

5, 30 of them are used for production instantaneously, 15 are used at period 6, and

the remaining 15 become unusable and are disposed. The pace at which these raw

material units are disposed (e311t = {2.5, 2.5} for 1  t  2 and e
3
555 = 15) corresponds

to the deterioration function ⌫
3(�).

This activity at the shop floor results in $47, 792.5 of raw material cost of produc-

tion, and $22.3 and $66.2 in raw material inventory and disposal costs, respectively.

The total cost of the optimal solution of this example problem is $111, 656.92.

Finished product related costs account for $22, 422.4 (20.1% of total costs), raw ma-

terial related costs account for $41, 353.4 (37% of total costs), and raw material costs

due to material perishing and disposal at the shop floor account for $47, 881 (42.9%

of total costs). Table 4.5 shows a summary of these costs.

4.4.2 Larger size problems and numerical experiments

In addition to the example instance presented above, we use several more data sets to

further test the MI-MLS-FVD model and to demonstrate its potentials for practical

applications in planning composite production. Here, we present optimal solutions

based on four data sets with di↵erent problem sizes and characteristics. Each data

set consists of eight problem instances with 8, 10, 12, and 14 time periods (n) in

the planning horizon, respectively. All four data sets consists of problems with m =
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Table 4.4: Optimal values for raw material usage in the shop floor and disposal
variables

Time-periods 1 2 3 4 5 6 7 Totals Associated costs

Section 4.1 Amount of item 2, from a batch received at u and opened at k, used for production at t

w
2
1kt

k =

1 950 0 0 - - - - 950.0 11,400.0

2 - 960 0 0 - - - 960.0 11,520.0

5 - - - - 60 0 0 60.0 720.0

w
2
6kt 6 - - - - - 1,110 0 1,110.0 13,320.0

Totals = 950 960 0 0 60 1,110 0 3,080.0 36,960.0

Section 4.2 Amount of item 3, from a batch received at u and opened at k, used for production at t

w
3
1kt

k =

1 475 0 - - - - - 475.0 3,325.0

w
3
2kt 2 - 480 0 - - - - 480.0 3,360.0

w
3
5kt

5 - - - - 30 15 - 45.0 367.5

6 - - - - - 60 0 60.0 420.0

w
3
6kt 6 - - - - - 480 0 480.0 3,360.0

Totals = 475 480 0 0 30 555 0 1,540.0 10,832.5

Section 4.3 Inventory of item 2 at the end of period t, from a batch received at u and opened at k

c
2
1kt k = 1 6.67 2.221 0 - - - - 8.89 10.6

Section 4.4 Inventory of item 3 at the end of period t, from a batch received at u and opened at k

c
3
1kt

k =
1 2.5 0 - - - - - 2.5

c
3
5kt 5 - - - - 15 0 - 15.0

Totals = 2.5 0 0 0 15 0 0 17.5 11.7

Section 4.5 Amount of perished item 2 discarded at t, from a batch received at u and opened at k

e
2
1kt k = 1 3.33 4.449 2.221 - - - - 10.0 43.6

Section 4.6 Amount of perished item 3 discarded at t, from a batch received at u and opened at k

e
3
1kt

k =
1 2.5 2.5 - - - - - 5.0

e
3
5kt 5 - - - - 15 0 - 15.0

Totals = 2.5 2.5 0 0 15 0 0 20.0 22.6
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Table 4.5: Summary of optimal solution costs

Final product related costs 22,422.5 20.1%

Fixed Set-up costs 12,000.0
Final product production costs 7,700.0
Final product inventory costs 2,722.5

Raw material batch related costs 41,353.4 37.0%

Fixed order placement costs 16,292.0
Raw material batch costs 23,250.0
Raw material batch special inventory costs 1,811.4

Raw material (at shop floor) related costs 47,881.0 42.9%

Raw material production related costs 47,792.5
Shop floor inventory costs 22.3
Raw material disposal costs 66.2

Total costs 111,656.9 100%

{6, 9, 12, 15} items, including the final product. Depending on m, the batch-size (bi)

parameter for 2  i  m was set a priori, as follows: for instances with m = 6,

b = {20, 40, . . . , 100}; for instances with m = 9, b = {20, 40, . . . , 160}; for instances

with m = 12, b = {20, 40, . . . , 220}; for instances with m = 15, b = {20, 40, . . . , 280}.

Depending on the problem sizes, the shelf-life values �
i parameter for each 2 

i  m was randomly generated using a discrete uniform distribution, as follows: for

instances with n = 8, � ⇠ U{2, 6}; for instances with n = 10, � ⇠ U{2, 8}; for

instances with n = 12, � ⇠ U{2, 10}; for instances with n = 14, � ⇠ U{2, 12}.

One of the main purposes of these numerical experiments is to compare the struc-

ture of the optimal solution depending on n and m, as well as some other key cost

parameters. Thus, we introduced more noticeable di↵erences between each pair of

instances for set up, inventory holding and disposal costs parameters (q1t , ht, and �
i
t),

due to the fact that, based on preliminary experimentation, we found that they are

the most fundamental parameters for important changes in the structure of the op-

timal solutions. Each instance has a “lower cost level” version called “nxm A”, and
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a “higher cost level” version called “nxm B” for these three costs. The remaining

parameters were randomly generated using continuous and discrete uniform distribu-

tions integrating variability in a controlled manner.

The proposed model formulation was implemented using the Callable Library of

IBM CPLEX 12.7.0. All tests were carried out on an Intel(R) Xeon(R) CPU E3-1270

v3 processor with 3.50GHz and 24GB of RAM memory and Microsoft Windows 7

Enterprise operating system. Time limit was set to two hours.

Table 4.6 shows computational results for the first two data sets. The first column

shows the name of the instance, which also corresponds to its size (nxm) and version

(“A”, or “B”). The second column shows the computational time, which in the

majority of the cases reached the two hours limit. The last three columns show the

upper and lower bounds reached, and the optimality gaps. In this table, one can see

that the optimality gaps have an increasing tendency as the size of the instance gets

larger. The average optimality gap within the two hour limit for instances with n = 8

was 2.2%, and for instances with n = 10 was 4.8%.

When comparing the instances by the pairs A vs. B (see Table 4.7), we observe

that, for instances with fewer items, the lower level cost of A instances tend to have

lower optimal solution bounds. When the number of items becomes larger, this

tendency is no longer present. The optimality gap, however, except for one case, was

always larger for the higher level costs of B instances. The average optimality gaps

for A and B instances are similar, less then 3.6%.

Table 4.8 shows the di↵erent costs corresponding to the first two sets of instances.

Similar to those shown in the small example problem in Section 4.4.1 these costs are

divided into the following three categories:

• Final product related costs

– Set up: fixed set up costs
Pn

t=1 q
1
t y

1
t ,

– FP Pcc: final product production costs
Pn

t=1

Pn
l=t p̂

1
txtl,
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Table 4.6: Results for instances with n = {8, 10} grouped by size.

nxm Time (s) UB LB Gap (%)

8x6 A 27.2 486,403.1 486,403.1 0.0
8x6 B 22.7 492,086.3 492,086.3 0.0
8x9 A limit 607,681.2 603,178.1 0.7
8x9 B limit 651,197.1 645,827.9 0.8
8x12 A limit 869,025.2 847,438.7 2.5
8x12 B limit 925,293.6 897,009.8 3.1
8x15 A limit 1,006,592.3 954,503.5 5.2
8x15 B limit 907,918.6 860,012.9 5.3

2.2

10X6 A 1634.7 390,091.6 390,091.6 0.0
10X6 B 449.3 614,301.3 614,301.3 0.0
10X9 A limit 821,417.8 782,231.9 4.8
10X9 B limit 658,959.0 635,338.2 3.6
10X12 A limit 1,231,766.7 1,135,279.7 7.8
10X12 B limit 1,117,245.4 1,023,071.6 8.4
10X15 A limit 1,647,093.4 1,540,101.6 6.5
10X15 B limit 1,451,398.0 1,349,587.1 7.0

4.8

Table 4.7: Results for instances with n = {8, 10} grouped by type A and B.

nxm Time (s) UB LB Gap (%)

8x6 A 27.2 486,403.1 486,403.1 0.0
8x9 A limit 607,681.2 603,178.1 0.7
8x12 A limit 869,025.2 847,438.7 2.5
8x15 A limit 1,006,592.3 954,503.5 5.2
10X6 A 1634.7 390,091.6 390,091.6 0.0
10X9 A limit 821,417.8 782,231.9 4.8
10X12 A limit 1,231,766.7 1,135,279.7 7.8
10X15 A limit 1,647,093.4 1,540,101.6 6.5

3.4

8x6 B 22.7 492,086.3 492,086.3 0.0
8x9 B limit 651,197.1 645,827.9 0.8
8x12 B limit 925,293.6 897,009.8 3.1
8x15 B limit 907,918.6 860,012.9 5.3
10X6 B 449.3 614,301.3 614,301.3 0.0
10X9 B limit 658,959.0 635,338.2 3.6
10X12 B limit 1,117,245.4 1,023,071.6 8.4
10X15 B limit 1,451,398.0 1,349,587.1 7.0

3.5
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– FP Inv: final product inventory costs
Pn

t=1 htst,

• Raw material batch related costs

– Order: fixed ordering costs
Pm

i=2

Pn
t=1 q

i
ty

i
t,

– Batch: raw material per batch costs
Pm

i=2

Pn
t=1

Pn
k=t ĝ

i
tQ

i
tk

– Batch Inv: raw material special inventory costs
Pm

i=2

Pn
t=1

Pn
k=t+1 f

i
kQ

i
tk

• Raw material (at shop floor) related costs

– RMPcc: raw material production related costs
Pm

i=2

Pn
u=1

P⇥i
u

k=u

Pn
t=k p

i
ktw

i
ukt,

where p
i
kt = p̂

i
t/r

i if k = t, and p
i
kt = P

i(�)/ri if k < t.

– RM Inv: raw material unit inventory (at shop floor) costs
Pm

i=2

Pn
u=1

Pn
k=u

P⇥i
k

t=k �
i
tc

i
ukt,

– Disposal: raw material disposal costs
Pm

i=2

Pn
u=1

Pn
k=u

P⇥i
k

t=k �
i
te

i
ukt.

Table 4.8: Optimal cost values for instances with n = {8, 10}
Final product related costs Raw material batch related costs Raw material (at shop floor) related costs

nxm Set up FP Pcc FP Inv Total % Order Batch Batch Inv Total % RM Pcc RM Inv Disposal Total %

8x6 A 16,000 17,990 4,241.3 38,231.3 7.9 25,666 93,680 6,504 125,850 25.9 322,038.5 93.8 189.5 322,321.8 66.3
8x6 B 20,000 16,850 8,180.2 45,030.2 9.2 37,611 62,840 6,000 106,451 21.6 337,815.0 816.4 1,973.7 340,605.1 69.2
8x9 A 16,000 16,820 2,998.0 35,818.0 5.9 51,818 90,020 5,892 147,730 24.3 417,180.7 2,151.2 4,801.4 424,133.2 69.8
8x9 B 20,000 17,330 10,670.0 48,000.0 7.4 74,024 118,520 10,120 202,664 31.1 395,180.0 956.5 4,396.6 400,533.1 61.5
8x12 A 16,000 17,110 6,702.0 39,812.0 4.6 70,571 131,560 8,700 210,831 24.3 607,811.4 3,136.1 7,434.7 618,382.2 71.2
8x12 B 20,000 18,150 19,730.0 57,880.0 6.3 98,656 146,320 5,460 250,436 27.1 605,306.2 2,817.7 8,853.8 616,977.6 66.7
8x15 A 16,000 16,860 4,040.7 36,900.7 3.7 93,115 175,480 6,420 275,015 27.3 676,954.1 5,304.9 12,417.6 694,676.6 69.0
8x15 B 20,000 15,140 6,486.3 41,626.3 4.6 129,540 161,200 8,860 299,600 33.0 554,424.0 2,061.5 10,206.8 566,692.3 62.4

18,000 17,031.3 7,881.1 42,912.3 6.2 72,625.1 122,452.5 7,244.5 202,322.1 26.8 489,588.7 2,167.3 6,284.3 498,040.2 67.0

10X6 A 20,000 20,710 4,693.1 45,403.1 11.6 40,710 70,860 5,976 117,546 30.1 225,923.4 477.0 742.1 227,142.5 58.2
10X6 B 25,000 22,080 6,730.0 53,810.0 8.8 62,985 130,640 0 193,625 31.5 364,371.9 582.9 1,911.5 366,866.3 59.7
10X9 A 24,000 24,790 2,380.0 51,170.0 6.2 93,846 129,860 7,344 231,050 28.1 533,453.8 2,150.9 3,593.2 539,197.8 65.6
10X9 B 25,000 20,540 7,813.3 53,353.3 8.1 75,854 124,380 5,240 205,474 31.2 388,603.1 2,496.5 9,032.1 400,131.7 60.7
10X12 A 24,000 23,650 4,901.4 52,551.4 4.3 132,502 208,480 10,308 351,290 28.5 812,241.3 5,492.4 10,191.7 827,925.3 67.2
10X12 B 30,000 24,770 17,479.7 72,249.7 6.5 135,150 178,260 11,860 325,270 29.1 699,804.6 4,057.4 15,863.7 719,725.7 64.4
10X15 A 24,000 24,940 4,846.9 53,786.9 3.3 153,684 337,840 8,040 499,564 30.3 1,073,872.5 6,394.2 13,475.8 1,093,742.5 66.4
10X15 B 25,000 22,270 19,232.5 66,502.5 4.6 125,400 242,100 18,040 385,540 26.6 977,814.6 5,373.7 16,167.2 999,355.5 68.9

24,625 22,968.8 8,509.6 56,103.4 6.7 102,516.4 177,802.5 8,351.0 288,669.9 29.4 634,510.7 3,378.1 8,872.1 646,760.9 63.9

Table 4.8 shows the raw material associated costs take major portions of the

total costs in these instances. On average, for all instances, these costs add up to

93.45% of the total costs. This was to be expected, as we are considering multi-item

structures with only one final product and up to 15 types of raw material items. From

Table 4.8, we can also observe that, as the size of the instances increases in terms

of the number of items m, the final product related costs proportion is reduced.

This also corresponds to an increase in the costs associated with raw material batch

and raw material handling at the shop floor (last two sets of columns in Table 4.8).
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Notably, instances with m = {6, 9} averaged 91.9% for raw material related costs,

while instances with m = {12, 15} average 95.3% for the same cost category. This is

because as the instances have a higher number of raw material types considered to

produce the one final product, there will be more costs associated with the ordering,

storage, handling (at shop floor), and disposal of there items.

When the instance size increases with respect to the planning horizon from n = 8

to n = 10, the final product related costs proportion also increases, as well as the raw

material batch related costs. In this case, only the costs associated with raw material

handling at the shop floor decrease.

One of the most important aspects to observe in the cost structure presented in

the Table 4.8 and later in Table 4.11 is that, with respect to all other costs, those

associated with raw material disposal are relatively low. This is specially informative

because it constitutes one of the main values of the proposed model. In previous

computational experiments, we adapted the optimal solutions obtained with classic

lot sizing models to the studied instances, and the raw material disposal levels were

considerably higher.

Table 4.9 shows the computational results for the second data sets. We can see

that the tendency for the optimality gaps to increase with the instance sizes is also

present. On average, the optimality gap within the two hour limit for instances

with n = 12 was 7.5%, and for instances with n = 14 was 8.7%. When comparing

the instances by pairs A vs. B (see Table 4.10), we observe that, for instances with

m = 6 and m = 9, the lower cost level A instances tend to have lower optimal solution

bounds. This tendency is no longer present for instances with larger numbers of items.

As with the first data sets, except for one case, the optimality gap was always larger

for the higher costs level B instances. The lower cost level A instances resulted in an

average optimality gap of 6.7%, while that for the B instances is 9.5%.

Table 4.11 shows the di↵erent costs corresponding to the last two sets of instances.
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Table 4.9: Results for instances with n = {12, 14} grouped by size.

nxm Time (s) UB LB Gap (%)

12X6 A limit 511,633.3 506,448.9 1.0
12X6 B limit 740,685.9 707,379.3 4.5
12X9 A limit 1,040,811.2 1,005,228.4 3.4
12X9 B limit 1,086,433.1 991,328.3 8.8
12X12 A limit 1,606,875.4 1,504,864.7 6.3
12X12 B limit 1,249,973.1 1,083,615.3 13.3
12X15 A limit 1,645,667.2 1,478,286.3 10.2
12X15 B limit 1,557,413.6 1,367,853.5 12.2

7.5

14X6 A limit 722,331.1 701,709.6 2.9
14X6 B limit 769,199.3 733,757.1 4.6
14X9 A limit 960,330.1 856,638.5 10.8
14X9 B limit 1,042,533.5 961,903.6 7.7
14X12 A limit 1,745,341.0 1,575,429.4 9.7
14X12 B limit 1,557,248.5 1,349,720.9 13.3
14X15 A limit 1,888,661.6 1,711,459.1 9.4
14X15 B limit 1,912,862.7 1,691,936.8 11.5

8.7

Table 4.10: Results for instances with n = {12, 14} grouped by type A and B.

nxm Time (s) UB LB Gap (%)

12X6 A limit 511,633.3 506,448.9 1.0
12X9 A limit 1,040,811.2 1,005,228.4 3.4
12X12 A limit 1,606,875.4 1,504,864.7 6.3
12X15 A limit 1,645,667.2 1,478,286.3 10.2
14X6 A limit 722,331.1 701,709.6 2.9
14X9 A limit 960,330.1 856,638.5 10.8
14X12 A limit 1,745,341.0 1,575,429.4 9.7
14X15 A limit 1,888,661.6 1,711,459.1 9.4

6.7

12X6 B limit 740,685.9 707,379.3 4.5
12X9 B limit 1,086,433.1 991,328.3 8.8
12X12 B limit 1,249,973.1 1,083,615.3 13.3
12X15 B limit 1,557,413.6 1,367,853.5 12.2
14X6 B limit 769,199.3 733,757.1 4.6
14X9 B limit 1,042,533.5 961,903.6 7.7
14X12 B limit 1,557,248.5 1,349,720.9 13.3
14X15 B limit 1,912,862.7 1,691,936.8 11.5

9.5
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Table 4.11: Optimal cost values for instances with n = {12, 14}
Final product related costs Raw material batch related costs Raw material (at shop floor) related costs

nxm Set up FP Pcc FP Inv Total % Order Batch Batch Inv Total % RM Pcc RM Inv Disposal Total %

12X6 A 24,000 26,740 6,398.0 57,138.0 11.2 39,696 75,040 7,128 121,864 23.8 331,576.0 337.1 718.3 332,631.3 65.0
12X6 B 35,000 29,180 10,111.7 74,291.7 10.0 97,175 134,440 9,000 240,615 32.5 423,394.2 657.2 1,727.8 425,779.2 57.5
12X9 A 24,000 26,580 6,115.9 56,695.9 5.4 79,335 206,020 10,944 296,299 28.5 681,061.1 2,123.0 4,632.2 687,816.3 66.1
12X9 B 35,000 27,140 19,741.6 81,881.6 7.5 134,752 169,000 18,440 322,192 29.7 673,829.3 2,438.5 6,091.8 682,359.5 62.8
12X12 A 28,000 28,820 6,408.6 63,228.6 3.9 132,478 294,140 7,464 434,082 27.0 1,090,378.9 6,355.4 12,830.4 1,109,564.8 69.1
12X12 B 35,000 27,380 20,718.4 83,098.4 6.6 184,418 209,200 11,340 404,958 32.4 729,661.0 7,052.2 25,203.5 761,916.7 61.0
12X15 A 28,000 26,830 4,609.3 59,439.3 3.6 188,355 284,600 18,972 491,927 29.9 1,072,138.9 6,982.2 15,179.8 1,094,300.9 66.5
12X15 B 35,000 27,080 10,172.5 72,252.5 4.6 202,961 243,420 15,800 462,181 29.7 981,242.0 10,088.4 31,649.7 1,022,980.1 65.7

Avg. 30,500 27,468.8 10,534.5 68,503.3 6.6 132,396.3 201,982.5 12,386.0 346,764.8 29.2 747,910.2 4,504.2 12,254.2 764,668.6 64.2

14X6 A 28,000 32,100 9,804.5 69,904.5 9.7 49,227 83,700 14,304 147,231 20.4 504,136.5 339.6 719.6 505,195.7 69.9
14X6 B 35,000 31,570 21,192.0 87,762.0 11.4 60,562 142,520 18,160 221,242 28.8 458,221.2 507.1 1,467.0 460,195.3 59.8
14X9 A 32,000 30,550 6,930.0 69,480.0 7.2 118,494 169,560 26,832 314,886 32.8 568,810.4 2,527.7 4,625.9 575,964.1 60.0
14X9 B 35,000 30,890 16,205.9 82,095.9 7.9 101,063 156,160 9,980 267,203 25.6 677,128.5 3,687.2 12,418.9 693,234.6 66.5
14X12 A 36,000 34,310 6,551.2 76,861.2 4.4 181,291 273,700 6,408 461,399 26.4 1,185,573.8 7,570.0 13,937.0 1,207,080.9 69.2
14X12 B 35,000 27,960 18,759.9 81,719.9 5.2 198,827 285,900 5,020 489,747 31.4 929,463.0 11,111.1 45,207.6 985,781.6 63.3
14X15 A 28,000 30,110 7,138.8 65,248.8 3.5 174,546 362,380 20,532 557,458 29.5 1,230,767.8 12,475.7 22,711.3 1,265,954.8 67.0
14X15 B 35,000 30,170 19,202.9 84,372.9 4.4 223,786 341,580 17,580 582,946 30.5 1,203,371.3 10,209.0 31,963.5 1,245,543.8 65.1

Avg. 33,000 30,957.5 13,223.2 77,180.7 6.7 138,474.5 226,937.5 14,852.0 380,264.0 28.2 844,684.1 6,053.4 16,631.3 867,368.8 65.1

As in Table 4.8, these costs are divided into final product related costs (first set of

columns), raw material batch related costs (second set of columns), and raw material

(at shop floor) related cost (third set of columns). Similar observations to those from

Table 4.8 can be made in Table 4.11 regarding the cost proportions as the number of

items increments from m = 6 to m = 15. Instances with fewer items average 8.8%

in terms of the final product related costs proportions, and those with m = {12, 15}

average 4.5% for the same type of costs. Comparing tables 4.8 and 4.11, one can see

that, although the costs are higher in every category for the second set of instances,

the proportions are quite similar.

4.5 Conclusions and future research

In the study presented in this chapter, we contribute to the research of production

planning by developing and incorporating special constraints for several raw material

types that deteriorate and perish depending on the storage and handling conditions.

We propose and study a multi-item, multi-level lot-sizing problem with raw-material

perishability and batch ordering (MI-MLS-FVD) inspired by a direct application in

advanced composite laminates manufacturing. We consider di↵erent inventory levels

and conditions: one where raw material batches are kept unopened and under special

conditions so as to avoid deterioration, and a second one where raw material batches
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are opened and used for production and start deteriorating. Following the perishable

conditions of prepregs used in producing high-performance composite materials, we

consider both progressive functionality loss and a volume loss after the raw material

batches are opened and begin their out-time at room temperature. We present a

detailed small example to validate and show the structure of the optimal solution

obtained, and performed extensive computational experimentation to evaluate the

proposed model formulation and its potentials for practical applications in composite

manufacturing production planning and optimization.

From this study, we plan to further explore the structure of the problem and

to investigate the impact of material perishability on production e�ciency as well

as product quality. We also plan to develop integrated production models for pro-

cess control and optimization in composite manufacturing and other manufacturing

systems which may share problem features studied in this work.
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Chapter 5

Reformulations for the multi-item

lot-sizing problem with inventory

bounds

In previous chapters, we have thoroughly studied multi-level lot-sizing problems with

perishable raw material considerations. A fundamental aspect to consider in these

problems is how inventory management can reduce the costly impact that these ma-

terials can have on production and on storage and disposal. A key assumption of

our study in previous chapters is that the finished products are non-perishable, or

that their shelf-life is long enough so as to reasonably ignore their perishable nature.

Therefore, one of the ways in which the optimal solution of these problems tend to

be notably structured is by using raw material for production as soon as possible

after a batch has been received, and thus, storing large finished product quantities in

inventory. This solution structure partially reduces the complexity of the perishable

raw material inventory management and is able to avoid considerably larger material

disposal costs.

Considering this tendency of storing higher finished product inventories, we have
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opened the study to another fundamental assumption regarding production planning

problems: inventory bounds (IB). Whether due to warehouse infrastructure condi-

tions, conditions inherent to the market, or internal administrative policies, there are

several industrial application cases where finished products cannot be stored in un-

limited quantities from one period to the next. Considering the type of applications

that we have studied in Chapters 3 and 4, the approach has been focused on studying

problems with a single finished product. One of our future fields of research is the

extension of these problems to consider not only multiple types of raw material items,

but also the case of few large structural components as finished products, integrating

the consideration of IB. As discussed in previously, these problems arise, for example,

in advanced composite materials manufacturing processes, which motivate our study

[122].

With this in mind, in this chapter we formally study the multi-item uncapacitated

lot-sizing problem with inventory bounds (MI-ULS-IB). We present a new MIP formu-

lation for the case of non-speculative (Wagner-Whitin) cost structures using a special

set of variables to determine the production intervals for each item. We then reformu-

late the problem using a variable-splitting technique that allows for a Dantzig-Wolfe

decomposition. The Dantzig-Wolfe principle exploits the structure of the MI-ULS-IB

by decomposing it into two sub-problems: one relating to the production decisions

per item and another that relates to the inventory decisions per period. We propose

a column generation algorithm for solving the linear programming relaxation of the

Dantzig-Wolfe reformulation. Preliminary computational experiments are performed

to evaluate the proposed formulations and algorithms on a set of benchmark instances.

The content of this chapter was presented in the International Workshop on Lot-

Sizing (IWLS)1, Glasgow, Scotland, 2017, as “Dantzig-Wolfe reformulations for multi-

item lot-sizing problems with inventory bounds” [7]. It constitutes progress and pre-

1
The International Workshop on Lot-Sizing (IWLS) is on invitation only. A limited number of

participants who are active in the field of lot-sizing are invited.
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liminary results of our ongoing research project. We then plan to integrate the results

and insights of this project with those obtained in our previous research to study lot-

sizing problems considering multiple finished products and perishable raw materials

with IB. We believe this is a promising research area in the field of production plan-

ning that, to the best of our knowledge, has not been studied in the literature so

far.

5.1 Multi-item lot-sizing with inventory bounds

In various types of production systems and industries it is common to find that inven-

tory levels of products are bounded. These restrictions on the quantities to be stored

may be related to physical warehouse space and even to administrative policies, spe-

cially for voluminous products, or products requiring special warehouse conditions

(i.e., clean rooms, controlled temperatures) [15]. Storage capacity (inventory bounds,

IB) considerations are even more relevant for multi-item production structures, where

di↵erent types of products share storage space. We study themulti-item uncapacitated

lot-sizing problem with inventory bounds (MI-ULS-IB), a problem of special theoret-

ical and practical interest. The MI-ULS-IB is very symmetrical, but not equivalent

to the multi-item capacitated lot sizing problem (MI-CLS ), which is widely studied

in the literature.

A similar problem to the single-item version of the uncapacitated lot-sizing prob-

lem with inventory bounds (ULS-IB) was initially studied in 1973 [81]. Then, the

author presented a polynomial algorithm for the LS with bounded production and

inventory considering separable piecewise concave costs. After that, to the best of our

knowledge, it was not until 1994 that the problem was again studied, when Pochet

and Wolsey [103] presented a polyhedral study on the ULS-IB and gave a complete

description of the convex hull of solutions for the case of non-speculative (Wagner-
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Whitin) cost structure. Most recently, Atamturk and Küçükyavuz [22] performed a

polyhedral study and proposed valid inequalities for the ULS-IB with linear and fixed

inventory costs. Wolsey [135] studied the lot-sizing problem with time windows and

nonspecific orders, which is equivalent to the ULS-IB, and derived polynomial time

dynamic programming algorithms and tight extended formulations for the uncapaci-

tated and constant capacity problems with general costs. Considering bounds on the

initial inventory for the discrete version of the LS, Di Summa and Wolsey [42] pre-

sented extended formulations describing the convex hull of solutions. For the ULS-IB

that allows backlogging, and considers lost sales, dynamic programming algorithms

were presented in [68] and [69], respectively.

General production-distribution planning problems considering IB can be found

in [98] and [87]. An industrial application example of a multi-item replenishment-

storage planning problem with IB was presented by Akbalik et al. [14]. Gutierrez

et al. [61] presented a variant of the problem with di↵erent item weights (or volume),

where the bounds are imposed on the total weight of the stock. More formally, the

MI-ULS-IB was studied by Akbalik et al. [15]. The authors showed that the problem

is NP-hard, even for the case of Wagner-Within cost structure. Most recently, Melo

and Ribeiro [86] presented a shortest path formulation and a formulation based on

the addition of (l, S)-inequalities. The authors also proposed a rounding and relax-

and-fix heuristics, which is an MIP based heuristic that has been successfully applied

to various NP-hard production planning problems.

5.1.1 Problem description and formulation

The MI-ULS-IB can be described as having m di↵erent items to be produced over

a finite planning horizon of n periods to satisfy the demand d
i
t for each item i =

1, . . . ,m and each period t = 1, . . . , n (we assume backlogging is not allowed). Let

M and T be the set of all items and all periods, respectively. We assume demand
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is immediately satisfied at the beginning of each period t. Any produced units that

are not immediately used to satisfy demand are inventoried in a common storage

space. The total amount of inventory in period t is limited by the storage capacity

ut (considering that any item consumes one unit of storage capacity). Producing an

item i in any period t incurs a fixed setup cost qit and a variable production cost pit

(joint setup costs are not considered). In addition, a holding cost h
i
t is incurred for

each unit of item i in stock between period t and t + 1. We assume no initial and

final stocks and nonnegative demands and costs.

Using a classical approach for LS problems to formulate the MI-ULS-IB, we let

variables xi
t represent the amount of item i produced in period t, and s

i
t the amount

of item i in stock at the end of period t. Finally, y
i
t = 1 if and only if there is

production of item i in period t and y
i
t = 0 otherwise. Figure 5.1 shows a graphical

representation of the MI-ULS-IB using a network where the total amount of product

inventory
Pm

i=1 s
i
t flowing between each pair of time periods (t, t + 1) is bounded by

storage capacity ut.

Figure 5.1: Graphical representation of the MI-ULS-IB

Similarly to [98] and [87], the MI-ULS-IB can be initially formulated as:

MI-ULS-IB minimize
mX

i=1

nX

t=1

�
p
i
tx

i
t + h

i
ts

i
t + q

i
ty

i
t

�
(5.1)
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subject to s
i
t�1 + x

i
t = d

i
t + s

i
t i 2M, t 2 T (5.2)

x
i
t My

i
t i 2M, t 2 T, (5.3)

mX

i=1

s
i
t  ut t 2 T, (5.4)

x
i
t, s

i
t � 0 i 2M, t 2 T (5.5)

y
i
t 2 {0, 1} i 2M, t 2 T. (5.6)

The objective function (5.1) minimizes the sum of all related costs: variable pro-

duction, storage, and fixed production costs. Constraint set (5.2) is the inventory

balance equation and (5.3) the set-up enforcing equation. Constraint set (5.4) limits

the total inventory at a given period t by the inventory bound ut. Finally, constraint

sets (5.5) and (5.6) are non-negativity and integrality constraints, respectively.

5.1.2 Facility location reformulation

To formulate the MI-ULS-IB using the facility location approach for LS problems

[73], let a new set of variables w
i
lt represent the amount of item i, measured as a

fraction of the demand d
i
t, that is produced in period l to satisfy demand of period t.

Accordingly, the facility location MIP reformulation is:

FLF minimize
mX

i=1

nX

t=1

 
nX

l=t

c
i
tlw

i
tl + q

i
ty

i
t

!
(5.7)
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subject to
tX

k=1

w
i
kt = 1 i 2M, t 2 T, k  t (5.8)

w
i
kt  y

i
k i 2M, k 2 T, t 2 T, (5.9)

mX

i=1

tX

k=1

nX

l=t+1

d
i
tw

i
kl  ut 1  t  n� 1, (5.10)

w
i
kt � 0 i 2M, k 2 T, t 2 T, k  t (5.11)

y
i
t 2 {0, 1} i 2M, t 2 T (5.12)

where c
i
tl = d

i
t

⇣
p
i
t +
Pl�1

r=t h
i
r

⌘
.

The objective function (5.7) minimizes the sum of all related costs, and also scales

the proportional variable wi
lt using the corresponding demand d

i
t. Constraint set (5.8)

ensures that for each item i at each period t, demand is met at its entirety using all

variables w
i
kt from 1  k  t. Constraint set (5.9) is the set-up enforcing equation.

Constraint set (5.10) limits the total inventory at a given period t by the inventory

bound ut. Finally, constraints set (5.11) and (5.12) are non-negativity and integrality

constraints, respectively.

Alternatively, one can calculate the original production x
i
t and inventory s

i
t vari-

ables by adding the following sets of constraints:

x
i
t =

tX

l=1

d
i
tw

i
tl i 2M, t 2 T, (5.13)

s
i
t�1 + x

i
t = d

i
t + s

i
t i 2M, t 2 T. (5.14)

5.1.3 Cumulative-demand reformulation

We now propose an alternative MIP formulation for the case of non-speculative costs

(also known as Wagner-Whitin costs) where producing and storing one unit in a

period costs more than producing it later, that is pit + h
i
t � p

i
t+1 for any item i in any

period t. This cost structure is very frequent in practical situations and appears in a
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vast set of the lot-sizing literature. This alternative formulation extends the binary

variables yit to determine the production time intervals [k, t], 1  k  t  n, for each

item and are defined as y
i
kt = 1 if and only if there is production of item i to cover

all demand from period k to t and all other yiut = 0 for k  u  t  n.

Figure 5.2 shows these extended y
i
kt variables graphically in a feasible solution for

a hypothetical instance with m = 4 items and n periods. As the graph shows, a

Figure 5.2: Solution for instance with m = 4 with extended y
i
kt variables

feasible solution is to produce the cumulative demand from periods 1 to 3 for item i1,

to produce just the demand for period 4 in that same period, and then from 5 to n.

This is represented by y
1
13 = y

1
44 = y

1
5n, and all the rest of variables y1kt = 0. Similarly,

for item i2, the solution involves producing the cumulative demand from period 1 to

2, 3 to 4, and 5 to n, represented by y
2
12 = y

2
34 = y

2
5n = 1, and all the rest of variables

y
2
kt = 0. And so too with the rest of the items.

The alternative MIP formulation for the MI-ULS-IB is:

CDF minimize
mX

i=1

nX

k=1

nX

t=k

c
i
kty

i
kt (5.15)

subject to
tX

k=1

nX

l=t

y
i
kl = 1 i 2M, t 2 T (5.16)

mX

i=1

nX

l=t+1

tX

k=1

D
i
tly

i
kl  ut t 2 T, (5.17)

y
i
kt 2 {0, 1} i 2M, k 2 T, t 2 T, k  t, (5.18)
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where c
i
kt =

8
>><

>>:

q
i
k + pkd

i
k, if k = t,

p
i
k

Pt
l=k d

i
l +
Pt�1

l=k h
i
ld

i
l+1 if k < t,

and D
i
tl =

Pl
k=t+1 d

i
k.

5.2 Variable-splitting reformulation

Based on our CDF, we now apply variable-splitting technique (also known as La-

grangean decomposition), originally presented in [91]. More specifically, by duplicat-

ing the original variables yikt with a new set of binary variables zikt. We let zikt = 1 if

and only if there is production of item i at period k to cover all demand from period

k to t, and y
i
kt = 1 if and only if there is inventory of item i to cover all demand from

period k to t. Accordingly, we obtain the following reformulation:

VPR minimize
mX

i=1

nX

k=1

nX

t=k

q
i
kz

i
kt (5.19)

subject to
tX

k=1

nX

l=t

z
i
kl = 1 i 2M, t 2 T (5.20)

tX

k=1

z
i
kl = y

i
tl i 2M, 1  t  n� 1, t+ 1  l  n (5.21)

mX

i=1

nX

l=t+1

D
i
tly

i
tl  ut t 2 T, (5.22)

z
i
kl 2 {0, 1} i 2M, 1  k  l  n (5.23)

y
i
kt 2 {0, 1} i 2M, 1  t  n� 1, t+ 1  l  n, (5.24)

where constraint 5.21 are added as the linking constrains for the two sets of variables z

and y. Thus, the VPR enables us to decompose the MI-ULS-IB into two independent

sub-problems. The first sub-problem, associated with variables z
i
kt, constitutes an

ULS for each i 2 M , making sure that demand d
i
t is satisfied at every period t 2 T .

Each of these problems for i 2 M is considered as the most simple dynamic lot-

sizing problem. The second sub-problem, which is our ”hard” problem, is associated
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with variables yikt, and it constitutes a special case of a multi-item knapsack problem

(CAP) for t = 1, . . . , n � 1, making sure that inventory bounds ut are satisfied for

every t 2 T .

5.3 Dantzig-Wolfe column generation approach

Based on VPR, we now propose a Dantzig-Wolfe column generation (DW-CG) ap-

proach to decompose and solve the problem. The DW-CG decomposition principle

is a standard way to decompose an integer linear programming model with a large

number of variables [40]. In general terms, the idea behind DW-CG is to divide

an original linear program, denoted as the master problem (MP), into two or more

inter-related problems: a restricted master problem (RMP) and one or several pricing

problems (PPs). Given the large number of variables in the MP, which in our case

refers to VPR, the RMP contains a small subset of them. The RMP is solved to

optimality and additional variables are dynamically added at every iteration. Solving

the RMP is equivalent to solving the original MP with several variables fixed to zero,

and so the PPs are solved to determine whether the current solution is optimal or to

identify additional variables to be added to the RMP.

5.3.1 The restricted master problem

We let Ui denote the subset of feasible configurations for the ULS sub-problem for

each i 2 M , that is the set of production plans satisfying all demands for each

item, i.e.,
Pt

k=1

Pn
l=t z̄

i
kl = 1 for t 2 T and i 2 M . We let Ct denote the subset

of feasible configurations for the CAP sub-problem for t = 1, . . . , n � 1, that is the

set of production plans satisfying all inventory bounds ut, i.e.,
Pm

i=1

Pn
l=t+1 D

i
tlȳ

i
tl 

ut for t 2 T . Consider also decision variable L
c
i , which is the weight (of fraction) of

production plan c for item i, c 2 Ui; and X
c
t , which is the weight (or fraction) of
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production plan c for time period t, c 2 Ct. The cost parameter for each production

plan c 2 Ui is given by F
c
i for i 2M .

Accordingly, the RMP can be stated as follows:

RMP minimize
X

i2M

X

c2Ui

F
c
i L

c
i (5.25)

subject to
X

c2Ui

L
c
i = 1 i 2M (5.26)

X

c2Ct

X
c
t = 1 1  t  n� 1 (5.27)

X

c2Ui:
Pt

k=1 z̄
i
kl=1

L
c
i =

X

c2Ct:ȳitl=1

X
c
t i 2M,

1  t  n� 1, t+ 1  l  n (5.28)

L
c
i � 0 c 2 Ui (5.29)

X
c
t � 0 c 2 Ct. (5.30)

Figure 5.3 illustrates an example of how the feasible configurations Ct for the CAP

are structured using the y
i
kt variables.

(a) c 2 Ct confirgurations for t = 1 (b) c 2 Ct confirgurations for t = 2

Figure 5.3: Illustrative examples of Ct feasible configurations for the CAP sub-
problem

Of the two sub-problems in which we have decomposed the original problem, the

CAP sub-problem implies a greater complexity. To improve the performance of the

column generation, we further decompose the CAP sub-problem into a smaller set of
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sub-problems. Instead of solving the overall problem at each iteration, we can divide

the problem into blocks of time periods (or time intervals) of the planning horizon

T . For this, we let T (1), . . . , T (r) denote the set of r blocks (or time intervals) in

which the planning horizon T is partitioned into. For b 2 [1, . . . , r], each block T (b)

corresponds to a time period interval within T , i.e., T (b) = [lb, . . . , ub] 2 T . We

consider a sequential ordering of time periods into block such that l1 = 1, ur = n, and

lb = ub�1 +1 for b 2 [2, . . . , n]. The set of decision variables Xc
b denotes the weight of

production plan c for b 2 [1, . . . , r]. Thus, the RMP with block-partitioning can be

stated as follows:

RMP-Block minimize
X

i2M

X

c2Ui

F
c
i L

c
i (5.31)

subject to
X

c2Ui

L
c
i = 1 i 2M (5.32)

X

c2Cb

X
c
b = 1 1  b  |r| (5.33)

X

c2Ui:
Pt

k=1 z̄
i
kl=1

L
c
i =

X

c2Cb:ȳitl=1

X
c
b i 2M,

1  b  |r|, lb  t  ub, (ub + 1)  l  n (5.34)

L
c
i � 0 c 2 Ui (5.35)

X
c
b � 0 c 2 Cb, b 2 [1, . . . , r]. (5.36)

Using a small subset of variables from the original sets, the LP relaxation of the RMP-

Block can be solved using a general-purpose solver. The original master problem

(VPR) corresponds to the RMP-Block in which L
c
i = X

c
b for every i 2 M and

b 2 [1, . . . , r].
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5.3.2 The pricing problems

We let �
i
tl be the dual variables associated with constraints 5.34. Given that the

VPR contains two sets of decision variables, y and z, there are two pricing problems,

one for each set. In each iteration of the column generation algorithm, we solve the

pricing problems and add all the variables with negative reduced costs coe�cients.

The first pricing problem is associated with the configurations for the ULS sub-

problem (variables z):

Pricing Problem for i 2M

ULS minimize
nX

k=1

nX

l=k+1

 
q
i
kl +

l�1X

t=k

�
i
tl

!
z
i
kl +

nX

k=1

q
i
kkz

i
kk (5.37)

subject to
tX

k=1

nX

l=t

z
i
kl = 1 t 2 T (5.38)

z
i
kl 2 {0, 1} 1  k  l  T. (5.39)

The ULS implicitly evaluates the reduced cost of all feasible configurations in Ui.

The optimal solution to ULS is thus the configuration for the demand d
i
t of each item

i 2M being satisfied at every period t 2 T having the smallest reduced cost.

Once the ULS is solved, the second pricing problem, which is associated with the

configurations for the CAP sub-problem (variables y), can be stated as:

Pricing Problem (Block) for 1  b  |r|

CAP-Block minimize
mX

i=1

ubX

t=lb

nX

l=t+1

�
i
tly

i
tl (5.40)
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subject to
tX

k=lb

nX

l=t

z
i
kl = 1 i 2M, lb  t  ub (5.41)

tX

k=lb

z
i
kl = y

i
tl i 2M, lb  t  ub, (t+ 1)  l  n (5.42)

mX

i=1

nX

l=t+1

D
i
tly

i
tl  ut lb  t  ub (5.43)

y
i
t�1,l  y

i
tl lb  t  ub, (t+ 1)  l  n (5.44)

y
i
tl 2 {0, 1} i 2M, lb  t  ub, (t+ 1)  l  n (5.45)

The CAP-Block implicitly evaluates the reduced cost of the feasible configurations

in Ct. The solution to CAP-Block is thus a configuration for the inventory bounds ut

being satisfied at every period t 2 T having negative reduced cost.

Our implementation of the column generation algorithm starts by solving the ULS

(with no inventory bounds). Using the information from the ULS optimal solution,

we solve the CAP-Block and find feasibility for the RMP-Block. Once new columns

with negative reduced costs coe�cients are found, they are added to RMP-Block and

the process is repeated with updated sets of columns Ui and Ct.

For our preliminary experiments, the algorithm terminates when the time limit of

two hours is reached.

5.4 Preliminary computational experiments

In this section, we present our initial preliminary computational experiments compar-

ing the results obtained with our CDF formulation, its linear programming relaxation

(LP) and our proposed DW-CG algorithm using the RMP-Block formulation.

The experiments were implemented using the Callable Library of IBM CPLEX

12.7.0. All tests were carried out on an Intel(R) Xeon(R) CPU E3-1270 v3 processor

with 3.50GHz and 24GB of RAM memory and Microsoft Windows 7 Enterprise op-
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erating system. For our preliminary experiments, the DW-CG algorithm terminates

when the time limit of two hours is reached or when no more columns with negative

reduced costs can be found.

In order to assess the performance of each approach, we used an adaptation of the

same instances used by Melo and Ribeiro [86]. These instances consider neither pro-

duction not storage costs. Initially, we are solving smaller versions of these instances

with |M | = 15 and |M | = 30 items and shorter planning horizons of |T | = 12 periods.

We are evaluating the quality of the solutions by comparing the lower bounds

obtained with our column generation algorithm for di↵erent partitions of the planning

horizon: r = {2, 3, 4}.

Both in Table 5.1 and in Table 5.2, the first column gives the name of the instance,

based on the following structure: “I M N counter”. The second, third, and fourth

columns show the value of the optimal solution for each instance obtained with the

CDF, the linear programming (LP) relaxation bound, and the LP relaxation gap

(%). These values were obtained without the time limit of two hours. The last three

columns present the lower bounds obtained with our DW-CG algorithm using three

di↵erent planning horizon partitions, 2, 3, and 4, respectively.

Table 5.1: Results for instances with |M | = 15 items and |T | = 12 periods

CDF DW-CG (Dev%)

Instance Opt LP LP Gap % r = 2 r = 3 r = 4

I 15 12 01 2,923 2,851.80 2.44 0.29 0.05 1.58
I 15 12 02 2,810 2,750.69 2.11 - 0.64 2.55
I 15 12 03 3,331 3,251.52 2.39 1.46 1.31 1.8
I 15 12 04 3,085 3,035.65 1.60 1.92 0.05 0.94
I 15 12 05 2,655 2,593.59 2.31 1.22 0.61 1.34
I 15 12 06 3,300 3,221.93 2.37 0.47 - 0.97
I 15 12 07 4,466 4,379.62 1.93 0.89 0.05 0.53
I 15 12 08 3,837 3,745.84 2.38 0.32 - 0.93
I 15 12 09 3,633 3,559.72 2.02 0.52 0.62 0.84
I 15 12 10 3,685 3,619.05 1.79 1.52 2.41 2.29

2.13 0.96 0.72 1.38

95



Table 5.2: Results for instances with |M | = 30 items and |T | = 12 periods

CDF DW-CG (Dev%)

Instance Opt LP LP Gap % r = 2 r = 3 r = 4

I 30 12 01 3,115 3,057.34 1.85 2.02 2.04 6.07
I 30 12 02 2,882 2,834.79 1.64 1.71 2.12 4.35
I 30 12 03 3,025 2,950.59 2.46 2.73 4.14 3.53
I 30 12 04 2,652 2,605.26 1.76 1.72 3.08 1.59
I 30 12 05 3,420 3,337.34 2.42 3.33 1.12 3.21
I 30 12 06 2,651 2,590.14 2.3 1.31 2.07 2.49
I 30 12 07 2,572 2,532.46 1.54 2.93 1.99 3.79
I 30 12 08 2,800 2,742.50 2.05 0.05 3.29 2.18
I 30 12 09 2,933 2,861.78 2.43 0.67 3.34 1.38
I 30 12 10 2,806 2,743.64 2.22 0.05 1.33 2.27

2.07 1.65 2.45 3.09

As seen in table 5.1, for instances with |M | = 15 items and |T | = 12 periods, our

DW-CG algorithm is able to obtain average lower bound gaps in the order of 0.96%,

0.72%, and 1.38% using r = {2, 3, 4} blocks, respectively. When using r = 3 blocks,

the DW-CG algorithm is able to reach lower bound gaps as low as 0.05% within the

time limit of two hours. This shows the promising potential of the algorithm when

comparing these gaps with the LP Gap average of 2.13%.

For the larger-size instances shown in table 5.2 with |M | = 30 items and |T | = 12

periods, the DW-CG algorithm is able to average a 1.65% lower bound gap when

using r = 2 blocks. For these larger-size instances the DW-CG algorithm is also able

to reach lower bound gaps in the order of 0.05%.

These results show promising potential of our models and algorithms to extend

the problems and instances studied in Chapters 3 and 4 related to composite man-

ufacturing applications [122], to consider the case of few large carbon-fiber based

structural components as finished products with IB considerations.
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5.5 Conclusions and future research

In this chapter, we have studied the multi-item uncapacitated lot-sizing problem with

inventory bounds (MI-ULS-IB). We presented a new MIP formulation for the case

of non-speculative (Wagner-Whitin) cost structure using a set of variables to de-

termine the production intervals for each item. We then reformulate the problem

using a variable-splitting technique to a general split-variable model that allows for a

Dantzig-Wolfe decomposition. The Dantzig-Wolfe principle exploits the structure of

the MI-ULS-IB by decomposing it into two sub-problems: one relating to the produc-

tion decisions per item and another that relates to the inventory decisions per period.

We propose a column generation algorithm for solving the Dantzig-Wolfe reformu-

lation and present preliminary computational experiments to evaluate the proposed

formulations and algorithms on a set of benchmark instances involving up to 30 items

and 12 periods.

From the study presented in Section 5.4, we can infer that our proposed DW-CG

algorithm have the potential to be of significant added value for solving MI-ULS-IB.

However, a stabilization of the DW-CG algorithm is needed in order to be able to

solve the full size instances by Melo and Ribeiro [86]. Additional research is also

proposed to develop an algorithm to more e�ciently solve the CAP subproblem and

to find upper bounds to solve larger-size instances.

We also plan to further research how the MI-ULS-IB can be integrated with the

raw-material perishability considerations studied in the previous chapters.
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Chapter 6

Summary

This thesis focuses on studying one of the most important and fundamental links in

supply chain management, production planning. Although production planning is

a field of research in which immense progress has been made since the 1910s, this

thesis presents several important contributions in relation to one of the least studied

assumptions of the multi-level production planning research: the perishable nature

of raw materials. In real life applications, whether referring to physical exhaustion,

loss of functionality, or obsolescence, most items deteriorate over time and cannot be

stored infinitely without enforcing specific constraints on a set of crucial production

planning decisions. This is specially the case for multi-level production structures.

Clear cases of this type of products can be found in the food or pharmaceutical in-

dustries, but also in industries like the advanced composite manufacturing industry,

which originally inspired this thesis. It also addresses the study of production plan-

ning involving inventory bounds. This characteristic is shown to be related to the

perishable raw-material considerations and constitutes another fundamental aspect

of this family of problems.

In Chapter 2, we introduce the fundamental characteristics in production planning

modeling and discuss some of the most common elements and assumptions used
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to model complex production planning problems. An overview of the production

planning research evolution is presented.

In Chapter 3 we structure a review of the di↵erent characteristics that must be

considered when dealing with perishability in production planning, and present a

classification framework. We present the most relevant modeling approaches for per-

ishability in production planning available in the research literature. We then present

lot-sizing problems that incorporate raw-material perishability and analyze how these

considerations enforce specific constraints on a set of fundamental decisions, tackling

three variants of the two-level lot-sizing problem incorporating di↵erent types of raw-

material perishability: fixed shelf-life, functionality deterioration, and functionality-

volume deterioration. We propose mixed-integer programming formulations for each

of these variants and perform computational experiments with sensitivity analyses,

showing the added value of explicitly incorporating perishability considerations into

production planning problems. Using a Silver-Meal-based rolling-horizon algorithm,

we develop a sequential approach to solve the studied problems and compare the

results with our proposed formulations.

With production planning in composite manufacturing as an initial motivation

and with the possibility of generalizing the problem to other applications, in Chapter

4 we study the multi-item, multi-level lot-sizing problem with raw-material perisha-

bility and batch ordering. We proposed a mixed-integer programming formulation

for the problem and perform computational experiments with sensitivity analyses,

demonstrating its potentials for practical applications in planning advanced compos-

ites manufacturing.

In Chapter 5, we formally study the multi-item uncapacitated lot-sizing problem

with inventory bounds. We present a new mixed-integer programming formulation

for the case of non-speculative (Wagner-Whitin) cost structure using a special set of

variables to determine the production intervals for each item. We then reformulate
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the problem using a variable-splitting technique that allows for a Dantzig-Wolfe de-

composition. The Dantzig-Wolfe principle exploits the structure of the problem by

decomposing it into two sub-problems: one relating to the production decisions per

item and another that relates to the inventory decisions per period. We propose a col-

umn generation algorithm for solving the Dantzig-Wolfe reformulation. Preliminary

computational experiments are performed to evaluate the proposed formulations and

algorithms on a set of benchmark instances. The results show the promising potential

of our models and algorithm to be extended and applied in composite manufacturing

production planning and optimization.

As mentioned above, this thesis constitutes an important contribution within one

of the most studied areas of supply chain management, especially for applications in

contexts in which multi-level product structures are being restricted by specific char-

acteristics associated with the nature of the raw materials. However, we believe that

this field still has ample possibilities for future research. Mainly, the integration of the

results and understanding achieved in Chapters 3 and 4 on lot-sizing with perishable

raw materials, with the study of models considering inventory bounds, constitutes a

very interesting path for future research in the field of production planning. Addi-

tionally, another opportunity for future research that arises from this study refers to

the development of e�cient solution methodologies to solve larger-size instances of

the proposed problems that could be found in some practical applications.
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