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ABSTRACT 

The priming effect of rewards and the role of dopamine transmission 

 

Czarina Evangelista, Ph.D. 

Concordia University, 2019 

 

After receiving a reward, motivation to obtain more is boosted. For example, a taste of 

chocolate drives me to want and consume more chocolate—sometimes to the point that I finish 

an entire bar! This phenomenon is called the priming effect of rewards. The priming effect of 

rewards has primarily been studied with electrical brain stimulation. Rats primed with brain 

stimulation have been shown to prefer brain stimulation over competing rewards. Additionally, 

they work harder for more rewarding brain stimulation. Although over half a century of research 

implicates dopamine transmission in reward and motivation, the priming effect may not depend 

on dopamine transmission. 

This thesis investigated the priming effect of electrical brain stimulation and food and the 

role of dopamine transmission. First, expanding on the original work on the priming effect of 

electrical brain stimulation, we examined whether the priming effect depends on the strength and 

cost of reward. We showed that the priming effect of electrical brain stimulation is more likely to 

be observed when the reward intensity is high and the cost is low. Secondly, we investigated 

whether the priming effect generalizes to other rewards such as food. We demonstrated that food 

also elicits a priming effect. Lastly, it was studied whether dopamine transmission is necessary 

for the priming effect of electrical brain stimulation and food. We showed that the priming effect 

of those rewards persists following dopamine receptor antagonism. 

Although dopamine transmission is important for reward and motivation, the present 

thesis provides evidence that it may not be essential for the priming effect. This emphasizes the 

need to reconsider and investigate the role of non-dopamine systems in reward and motivation. 
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Chapter 1: General Introduction 

Elucidating the neurobiological basis of reward pursuit holds important implications for 

understanding both adaptive behaviors such as foraging and pathological behaviors such as binge 

eating and drug abuse. Decades of research on reward and motivation has implicated dopamine 

transmission. Advances in that research may have obscured the contributions of non-dopamine 

neurotransmitter systems. Research on the priming effect of rewards provides evidence that 

certain aspects of motivation may not depend on dopamine signaling. 

1. Terminology 

 As mentioned by Cofer (1972), many of the terms used in psychology, like reward and 

motivation, derive from popular vocabulary. Over the course of borrowing those terms, 

researchers have given them more specific meanings that are often distant from their popular, 

non-scientific origins. As such, it is important to define how the terms reward and motivation are 

used in a scientific setting, specifically in this thesis. 

A reward is any goal object (e.g., food, drugs, brain stimulation) that elicits approach and 

consumption (Young, 1959; White, 1989; Schultz, 2015). On a scorching hot summer day, 

people may approach trees that offer shade or shops that sell cold, refreshing beverages. In those 

cases, the shade and cold beverages elicit approach and are thus rewarding. 

Two key properties of a boost in motivation are that 1) behavior is directed to achieve a 

specific goal and 2) that goal-directed behavior is invigorated (Cofer, 1972). In a T-maze, 

Deustch et al. (1964) showed that thirsty rats typically choose the arm baited with water instead 

of the opposite arm baited with rewarding brain stimulation. However, when thirsty rats receive a 

pre-trial sample (i.e., prime) of brain stimulation, they are more likely to choose brain 

stimulation over water. Thus, their behavior is directed toward the primed reward over the 

competing reward. In another study, Gallistel et al. (1974) showed that rats primed with brain 

stimulation run faster to the end of a runway to earn more rewarding brain stimulation. Thus, 

goal-directed behavior is invigorated following receipt of a prime.  

 Dopamine transmission encompasses a) the release of dopamine from the presynaptic 

neuron into the synaptic cleft, b) dopamine binding to receptors located on the postsynaptic 

neuron and autoreceptors on the presynaptic neuron, and c) receptor-activated second-messenger 

cascades influencing firing of the postsynaptic neuron. Dopamine transmission has been highly 

implicated in reward and motivation: Manipulation of dopamine transmission alters goal-directed 
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behavior (Wise et al., 1978; Randall et al., 2015) and changes in the activity of dopamine 

neurons accompany different stages of the reward pursuit and procurement (e.g., Mohebi et al., 

2019). 

Dopamine is released over different timescales, which are commonly used to distinguish 

phasic and tonic responses (Schultz, 2016). Phasic dopamine release is a short-lasting response 

produced by burst firing of the dopamine neuron. Behaviorally salient stimuli typically induce 

phasic dopamine release. Tonic dopamine release is a continuous response that maintains steady-

state concentrations of extracellular dopamine. Tonic dopamine depends on the baseline firing of 

the dopamine neuron, but other factors can also influence tonic dopamine release (Grace, 1991). 

In this paper, we review research that demonstrates the importance of dopamine 

transmission in reward and motivation. We also discuss a motivational phenomenon called the 

priming effect of rewards that provides evidence that dopamine signaling may not be essential 

for certain aspects of motivation. Findings from this research highlight the importance of 

reconsidering the role of non-dopamine neurotransmitter systems in reward and motivation. 

2. Dopamine and Reward 

Research on the neurobiology of reward began in earnest following the observation by 

Olds and Milner (1954) that rats are willing to work for electrical stimulation of certain sites in 

their brains. The catecholamine hypothesis proposes that neurons that release catecholamines, 

such as norepinephrine and dopamine, mediate electrical intracranial self-stimulation (eICSS) 

(Poschel & Ninteman, 1963; Stein, 1968; Crow, 1969, 1970, 1972; Crow et al., 1972; Arbuthnott 

et al., 1970; German & Bowden, 1974). Many anatomical, pharmacological, and lesion studies 

demonstrate the importance of these catecholamines in eICSS (for reviews see German & 

Bowden, 1974; Fibiger, 1978; Wise, 1978). However, greater evidence in support of the role of 

dopamine in reward rather than that of norepinephrine accumulated over time (for reviews see 

Wise & Rompre, 1989; Wise, 2008). For example, Corbett and Wise (1979) found no correlation 

between the robustness of eICSS and the density of noradrenergic fibers near the electrode. This 

led researchers to focus more specifically on dopamine’s role in reward. 

Currently, reward is most commonly linked with the dopamine system. For example, 

rewards such as food, drugs, and electrical brain stimulation are associated with increases in 

midbrain dopamine activity (Fibiger, 1978; Wise, 1978; Wise & Rompre, 1989; Fiorino et al., 

1993; You et al., 2001; Phillips et al., 2003; Roitman et al., 2004; Rodeberg et al., 2016). One 
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particular dopamine projection that has received a lot of attention for its involvement in reward is 

the mesocorticolimbic dopamine pathway (You et al., 2001; Witten et al., 2011; Steinberg et al., 

2014). Those dopamine neurons project from the midbrain (i.e., the ventral tegmental area; 

VTA) to cortical (e.g., prefrontal cortex; PFC) and limbic structures (e.g., the nucleus 

accumbens; NAc). 

The mesocorticolimbic pathway is one of many circuits that runs through the medial 

forebrain bundle (MFB) (Nieuwenhuys et al., 1982; Geeraedts et al., 1990a, 1990b). Stimulating 

various regions of the MFB promotes eICSS (Olds & Milner, 1954; Olds, 1956; Olds & Olds, 

1963; Koob et al., 1978; Phillips, 1984). However, the MFB fibers directly responsible for 

eICSS appear to not be dopaminergic (Yeomans, 1979; Shizgal et al., 1980; Bielajew et al., 

1982; Bielajew & Shizgal, 1982; Murray & Shizgal, 1994, 1996a, 1996b). The directly-

stimulated MFB fibers are proposed to transsynaptically activate midbrain dopamine neurons to 

support eICSS (Shizgal et al., 1980; Wise, 1980; Gallistel et al., 1981; Shizgal, 1989; Yeomans, 

1989). 

Enhancing or inhibiting midbrain dopamine activity increases or attenuates eICSS, 

respectively (Crow, 1970; Franklin & McCoy, 1979). One interpretation of these findings is that 

dopamine transmission mediates the rewarding properties of electrical brain stimulation. An 

alternative interpretation is that manipulating dopamine transmission affects performance 

capacity (Fibiger et al., 1976). Studies have shown that manipulating dopamine transmission 

affects reward above and beyond any changes in the capacity to respond (Edmonds & Gallistel, 

1977; Franklin, 1978; Franklin & McCoy, 1979; Gallistel & Karras, 1984). For example, 

Franklin and McCoy (1979) showed that following pimozide administration, a D2 family 

receptor (D2R) antagonist, rats’ responding declines and eventually disappears. Presentation of a 

Pavlovian cue paired with reward re-establishes responding for brain stimulation. This indicates 

that pimozide did not abolish performance capacity but instead diminished the rewarding effect 

of brain stimulation. 

Wise proposed the anhedonia hypothesis as a corollary to the dopamine hypothesis of 

reward (Wise, 1982). This corollary posits that mesocorticolimbic dopamine transmission is 

involved in the subjective pleasure associated with rewards. Wise et al.’s (1978) seminal study 

on dopamine receptor antagonism and food reward quality was fundamental to the anhedonia 

hypothesis. D2R blockade with pimozide attenuates lever pressing for food, but only if the food 
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was previously experienced with pimozide. It was thought that disrupting dopamine transmission 

removes the pleasurable properties of the food and thus causes the decline in lever pressing for 

food across tests. 

Wise (2008) later clarified that the anhedonia hypothesis proposes only a partial 

relationship between dopamine transmission and pleasure since rewards are often—but not 

always—associated with pleasure. Lamb et al. (1991) observed that participants are willing to 

work for low doses of heroin despite not reporting pleasurable effects. Correlations between 

dopamine transmission and the pleasurable effects of drugs of abuse are weak (Volkow et al., 

1999; Drevets et al., 2001). Additionally, rodent studies have shown that implicit facial 

reactions, which are interpreted to reflect the hedonic value of reward, to palatable rewards 

persist following dopamine receptor antagonism (Peciña et al., 1997). Regardless of dopamine’s 

role in pleasure, it is evident that dopamine transmission is important for reward. 

2.1 Summary of the Role of Dopamine in Reward  

Decades of research has implicated dopamine transmission in reward. There is evidence 

that perturbations of dopamine transmission affect reward seeking independent of dopamine’s 

effect on performance. The anhedonia hypothesis posits that dopamine transmission also 

mediates pleasure experienced from rewards, but the evidence is equivocal. Although the 

specific contributions of dopamine transmission in reward are yet to be fully understood, it is 

clear that dopamine transmission plays an integral role in reward pursuit. 

3. Dopamine and Motivation 

 Motivated behavior is influenced by many internal and external factors. Hull (1943) 

proposed that entering a state of deprivation or need (e.g., hunger or thirst) disrupts the body’s 

equilibrium and activates a motivational state called drive. In what he referred to as the drive-

reduction theory of motivation, it was proposed that drive energizes behavioral responses to 

reduce the state of need and restore homeostasis. According to this idea, rewards serve to reduce 

the state of need. For example, rats consume food to alleviate hunger or drink water to alleviate 

thirst. It has been shown that hungry or thirsty rats are quicker to start consuming food or water, 

respectively, than when they are sated (Kimble, 1951; Bolles, 1962). Food or water deprivation 

also causes rats to lever press more for food or water, respectively (Collier & Levitsky, 1967). 

These studies support the notion that motivated behavior is a response to need. 
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However, the drive-reduction theory does not explain all motivated behavior. Humans 

and rats alike may eat food even when they are not hungry. We may eat to avoid future hunger 

(Collier et al., 1977), or because we eat on a regular schedule (Siegal, 1961) or because the food 

itself is desirable (Barbano & Cador, 2005; Lowe & Butryn, 2007). Additionally, rats work for 

MFB stimulation, which induces feeding (Hoebel & Teitelbaum, 1962; Margules & Olds, 1962). 

In other words, MFB stimulation induces drive rather than attenuating it. Consistent with that 

phenomenon is the idea of incentive motivation, which holds that rewards and reward-related 

cues can augment motivation and thereby influence reward pursuit (Bindra, 1969, 1978; Bolles 

& Moot, 1973; Toates, 1981, 1986). 

3.1 Incentive Salience 

 Robinson and Berridge (1993) proposed that the psychological experiences of wanting 

and liking are involved in incentive motivation, and separate neural circuits are thought to 

mediate those two processes. The midbrain dopamine system is thought to be the neural substrate 

of incentive salience, which is what makes rewards and reward-related cues attractive and 

wanted. Thus, the dopamine system is hypothesized to directly play a role in wanting but not 

liking (Robinson & Berridge, 1993; Berridge & Robinson, 1998). 

Changes in wanting or liking are interpreted by certain behavioral measures. Vigor of 

goal-directed behavior is one measure thought to reflect the incentive salience of reward. Wise et 

al. (1978) noted a similar decline in responding for food when reward was omitted and when 

responding was rewarded but D2Rs were blocked. One interpretation of these results is that the 

incentive salience of reward relies on D2R signaling. 

The contributions of dopamine transmission in wanting have also been well documented 

in studies that use a reinstatement model of drug relapse (de Wit & Stewart, 1981, 1983; Self & 

Nestler, 1998; Shaham et al., 2003). In this model, rats are trained to self-administer drugs of 

abuse such as cocaine or heroin (de Wit & Stewart, 1981; 1983). Later, they are forced into a 

period of abstinence when operant responding no longer delivers the drug, resulting in extinction 

of the drug-seeking behavior. A subsequent presentation of a non-contingent sample of the drug 

(priming) reinstates drug seeking. It is proposed that the drug prime promotes wanting by 

enhancing the incentive salience of the drug and drug-associated cues (Leri & Stewart, 2001; 

Robinson et al., 2013). 
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Drugs of abuse are not the only substances that can re-direct and re-invigorate goal-

seeking behavior in a reinstatement paradigm. Priming with the D2R agonist, bromocriptine, 

reinstates cocaine seeking (Wise et al., 1990). In contrast, blocking D2Rs with haloperidol 

prevents amphetamine-induced reinstatement (Ettenberg, 1990). These results demonstrate the 

importance of D2R signaling in wanting. 

Liking is commonly inferred from reward seeking because it is thought that rewards that 

are wanted are also liked. This assumption may be incorrect considering that addicts continue to 

seek drugs although they reportedly no longer experience pleasure from those drugs (Lamb et al., 

1991; Robinson & Berridge, 1993; Robinson et al., 2013). One behavioral measure thought to 

reflect changes in liking is the taste reactivity test (for reviews see Berridge, 2000; Steiner et al., 

2001). Hedonic taste reactions can be expressed as rhythmic tongue protrusions and aversive 

responses can be expressed as gaping. Rats maintain hedonic responses to sucrose following 

dopamine receptor antagonism (Peciña et al., 1997) or lesions of the mesolimbic dopamine 

system (Berridge & Robinson, 1998). Additionally, microinjections of amphetamine into the 

NAc shell potentiates cue-induced instrumental responding for sucrose but not hedonic reactions 

to sucrose (Wyvell & Berridge, 2000). These findings suggest that dopamine transmission is 

involved in wanting but not liking of rewards. 

3.2 Strength and Cost of Reward 

Other variables that affect motivation to pursue rewards are the strength and cost of 

reward. Previous studies showed that cocaine enhances eICSS by lowering the strength of brain 

stimulation required to support eICSS (Esposito et al., 1978; Bauco & Wise, 1997). By elevating 

synaptic dopamine through inhibition of dopamine reuptake, cocaine was thought to increase the 

sensitivity of neural circuitry involved in reward (i.e., brain reward circuitry) and thus lower the 

strength of brain stimulation necessary to sustain eICSS. Based on this, dopamine transmission 

affects reward intensity. Another interpretation is that dopamine transmission alters the 

subjective cost of reward (Salamone et al., 2007, 2009; Hernandez et al., 2010; Trujillo-Pisanty 

et al., 2014). For example, elevated dopamine levels may enhance eICSS by increasing 

willingness to exert effort or attenuating the perceived effort. Shizgal and colleagues 

(Arvanitogiannis & Shizgal, 2008; Hernandez et al., 2010) proposed that the conventional 

methods used to measure reward seeking are unable to fully distinguish dopamine’s role in 

reward strength versus reward cost. 
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Historically, two methods were commonly used to investigate reward seeking, 

particularly for brain stimulation. In the first method, response rates were observed only at a 

single value of reward strength (e.g., a single pulse frequency). The effect of cocaine was 

examined by measuring how it changes response rates for brain stimulation at a single value of 

reward strength. Cocaine may have potentiated responding for brain stimulation by increasing 

the sensitivity of brain reward circuitry (Crow, 1970) or decreasing the subjective reward cost 

(Salamone et al., 1997, 2003, 2005; Hernandez et al., 2010; Trujillo-Pisanty et al., 2014). There 

is no way to distinguish between these two interpretations with this method. 

It was thought that a curve-shift method could separate the effects of reward strength or 

cost (Edmonds & Gallistel, 1974; Miliaressis et al., 1986). With this method performance is 

measured at varying reward strengths as opposed to a single value of reward strength, and 

response rate is often used as the dependent variable. Reward seeking is highest when brain 

stimulation is intense and decreases in an S-shaped fashion as the stimulation weakens. In such 

cases, the sigmoidal function mapping stimulation strength into performance is called a “rate-

frequency” function. 

Interactions between drugs and electrical brain stimulation are indexed by lateral or 

vertical shifts of the curve. Lateral shifts were interpreted to reflect to changes in reward-system 

sensitivity and vertical shifts were thought to reflect changes in subjective reward cost (Edmonds 

& Gallistel, 1974). However, it was later shown that changes in both reward strength and cost 

produce similar lateral shifts in the curve (Frank & Williams, 1985; Fouriezos et al., 1990). 

These findings demonstrate that it was incorrect to assume that lateral shifts exclusively reflect 

changes in reward-system sensitivity. Thus, a curve-shift method does not reveal the degree to 

which a change in reward pursuit is due to a change in reward-system sensitivity or subjective 

cost. 

To reduce the ambiguity of which stages of processing neurochemical manipulations 

change in reward pursuit, Arvanitogiannis and Shizgal (2008) developed the reward-mountain 

model, which measures reward seeking as a function of both the strength and cost of reward. 

This produces a three-dimensional structure, referred to as a reward mountain, that has two 

horizontal axes that represent reward strength and reward cost, and a vertical axis that represents 

performance. The net contribution of reward intensity and subjective costs is called the payoff 

from brain stimulation. To determine behavioral allocation toward working for brain stimulation, 
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the payoff from brain stimulation is compared to the payoff from alternative activities such as 

grooming and resting. Reward seeking is highest when the payoff is high (e.g., when the reward 

is intense and cost is low) and declines in an S-shaped fashion as the payoff decreases (e.g., 

when the reward is weak and cost is high). 

In an extension of the curve-shift method, interactions between drugs and brain 

stimulation are indexed by shifts in the reward mountain (Arvanitogiannis & Shizgal, 2008). A 

vertical shift in the reward mountain indicates a change in reward-system gain. This rescales the 

reward-intensity function to produce equal, proportional changes in the intensity of all reward 

values. Thus, altering reward-system gain changes the absolute value of rewards. A shift along 

the reward-strength axis indicates a change in reward-system sensitivity. This changes the 

stimulation strength required to produce a given reward intensity, but it does not change the 

maximum intensity. Thus, altering reward-system sensitivity changes the relative value of 

rewards. A shift along the reward-cost axis indicates a change in the value of competing 

activities, reward-system gain, and/or subjective costs. Two of such subjective costs include 1) 

opportunity cost, which is the work time required to earn a reward, and 2) effort cost, which is 

the physical effort exertion required to obtain a reward. The reward-mountain model cannot 

distinguish changes among the value of competing activities, reward-system gain, or subjective 

costs. 

It had been proposed that changes in dopamine transmission affect eICSS by altering 

reward-system sensitivity (Crow, 1970; Esposito et al., 1978). The application of the reward-

mountain model shows that this is not the case. Rats treated with a dopamine reuptake inhibitor, 

cocaine or GBR-12909, work for rewarding brain stimulation at higher costs (Hernandez et al., 

2010, 2012). Boosting dopamine tone may have decreased subjective costs, increased reward-

system gain, and/or decreased the value of competing activities. D2R antagonism with pimozide 

diminishes willingness to work for rewarding brain stimulation at high costs (Trujillo-Pisanty et 

al., 2014). Thus, blocking D2Rs may have increased subjective costs, decreased reward-system 

gain, and/or increased the value of competing activities. These findings indicate dopamine tone 

influences reward pursuit by affecting subjective costs, reward-system gain, and/or the value of 

competing activities rather than by affecting reward-system sensitivity. 
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3.3 Effort Cost 

 Midbrain dopamine activity, specifically those dopamine neurons projecting to the NAc, 

is proposed to regulate the effort cost of reward (Salamone et al., 2003, 2005, 2007, 2009; 

Salamone & Correa, 2012). Salamone and colleagues have investigated this theory by using ratio 

schedules to manipulate effort cost and by impairing NAc dopamine transmission. Aberman and 

Salamone (1999) trained rats to press a lever for a fixed number of times (FR schedule), ranging 

from one to 64 presses, to earn a palatable food reward. NAc dopamine was depleted with 6-

hydroxydopamine (6-OHDA). At FR64, responding of non-treated rats was greater by ten-fold 

than dopamine-depleted rats. Similar results were observed when the ratio requirement ranged 

from FR5 to FR300 (Salamone et al., 2001). Dopamine-depleted rats are not willing to work as 

hard as non-treated rats when the effort cost is high. 

Manipulating effort via ratio requirement also affects the time requirement to obtain 

rewards. Higher FR schedules require more time to complete compared to lower FR schedules. 

To dissociate the effect of dopamine depletion on time and ratio requirements, Salamone and 

colleagues used variable interval (VI) and FR schedules in tandem. On a VI schedule, an average 

variable period of time must elapse before a response is rewarded. For example, on a 30-second 

(s) VI (VI30) schedule, a response is rewarded when it is made after 30 s have elapsed, on 

average. In a tandem VI-FR schedule, the interval requirement is followed by a ratio 

requirement. On a VI30-FR5 schedule, in addition to waiting for 30 s, on average, the rat is 

required to press five times to earn a reward. 

Dopamine depletion does not alter responding on a VI30 schedule but responding is 

attenuated on a tandem VI30-FR5 schedule (Correa et al., 2002). In a wide variety of VI and 

tandem VI-FR schedules, response rates are reduced in dopamine-depleted rats only in the 

tandem VI-FR schedule (Mingote et al., 2005). These findings are consistent with the idea that 

NAc dopamine affects the effort cost of reward. However, dopamine depletion may produce a 

similar decline in responding when reward strength is systematically manipulated. Thus, it is 

unclear whether the findings by Salamone and colleagues are due to a change in reward intensity 

or subjective effort cost. 

3.4 Response Vigor 

Although there is substantial empirical evidence highlighting the importance of dopamine 

transmission in vigor (Beierholm et al., 2013; Hamid et al., 2015; du Hoffmann & Nicola, 2016; 
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Mohebi et al., 2019), there has been a lack of computational models that attempt to explain 

dopamine’s role. Theories on incentive salience (Robinson & Berridge, 1993; Berridge & 

Robinson, 1998) and effort cost (Salamone & Correa, 2002) do not discuss computational 

explanations for dopamine’s role in vigor. The reward-mountain model (Arvanitogiannis & 

Shizgal, 2008; Hernandez et al., 2010) offers a computational model but it is not designed to 

directly study response vigor. Reinforcement learning models provide potential explanations on 

how animals learn to select actions but they do not explain how much vigor an animal will exert 

on those actions (Montague et al., 1996; Schultz et al., 1997; for review see Colombo, 2014). 

Niv et al. (2007) developed the model of optimal responding to address vigor and the role 

of dopamine transmission. In this model, vigor is determined by weighing the cost of behaving 

quickly against the cost of delaying future rewards (Niv, 2007; Niv et al., 2007). It is assumed 

that behaving quickly is effortful because otherwise responding should always be performed 

vigorously (Niv, 2007). The cost of delaying future rewards reflects the maximum reward rate 

minus the cost. Other descriptions of the cost of delaying future rewards are the cost of wasting 

time or the net reward rate. Imagine that the net reward rate is one reward per second. Every 

second the operant response is performed leads to an average reward gain. Correspondingly, 

every second the operant response is not performed leads to an average reward loss (i.e., cost of 

wasted time). This could explain why hungry rats perform all actions at faster rates (Hull, 1943; 

Niv et al., 2005, 2006) A high net reward rate puts greater pressure to generally respond at a 

faster rate to maximize the acquisition of rewards and minimize reward loss (Niv et al., 2007). 

Vigor is proposed to be signaled by tonic firing (Niv et al., 2006, 2007; Niv, 2007). Since 

motivational states such as hunger have general effects on response vigor for all actions, it was 

thought that the signal that influences vigor should reflect this generalized effect. Niv 

hypothesizes that tonic dopamine in the basal ganglia and some prefrontal areas signal the cost of 

wasted time. More specifically higher concentrations of tonic dopamine are proposed to increase 

the cost of wasted time to potentiate vigor. Conversely, lower tonic dopamine levels decrease the 

cost of wasted time, resulting in attenuated vigor. To test these hypotheses, Niv et al. (2006) 

decreased the cost of wasted time by 60% in their computational model. This lowers the rate of 

responding, which is similar to the effect of dopamine depletion observed by Salamone and 

colleagues (Aberman & Salamone, 1999; Mingote et al., 2005). This evidence supports the 

hypothesis that tonic dopamine affects vigor. 
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3.5 Summary of the Role of Dopamine in Motivation 

Two key features of an enhancement in motivation are that 1) behavior is directed toward 

a specific goal and 2) that goal-directed behavior is invigorated. The incentive salience 

hypothesis proposes that dopamine transmission controls motivation by mediating the incentive 

salience, or attractiveness, of reward but not the pleasurable aspects of it. An alternative idea is 

that dopamine transmission mediates the cost of reward. Results from the reward-mountain 

model are consistent with the idea that subjective costs are modulated by tonic dopamine. There 

is also evidence that dopamine transmission affects the effort cost of reward. The model of 

optimal responding proposes that tonic dopamine determines the vigor of actions. The variation 

in these theories emphasizes that the mechanisms of dopamine transmission in motivation are 

complex and still to be determined. 

4. The Priming Effect of Rewards 

Receipt of reward boosts motivation to work for more, which is a phenomenon called the 

priming effect of rewards (Gallistel, 1966; Reid et al., 1973; Gallistel et al., 1974; Stellar & 

Gallistel, 1975). For example, the taste of one chip may lead to wanting another chip. This is 

different from the identically named priming effect observed in a reinstatement model of drug 

relapse (de Wit & Stewart, 1981, 1983). In the latter, drug seeking is learned and then 

extinguished. Non-contingent delivery of a reward (priming) can re-establish the previously 

extinguished drug-seeking behavior. That priming effect is also commonly referred to as 

priming-induced reinstatement. In contrast, the priming effect of rewards invigorates a well-

established behavior that has not undergone extinction. 

4.1 The Priming Effect of Electrical Brain Stimulation 

The majority of the research on the priming effect of rewards have been conducted using 

electrical brain stimulation as the reward and have used a runway paradigm (Gallistel, 1966, 

1969a, 1969b; Reid et al., 1973; Edmonds & Gallistel, 1974; Gallistel et al., 1974; Stellar & 

Gallistel, 1975; Wasserman et al., 1982). The runway generally consists of a start box, an alley, 

and a goal box. Rats are primed with non-contingent brain stimulation in a start box. Following a 

delay, a start door opens to give the rats access to the alley. Rats travel to a goal box located at 

the end of the alley, which contains a lever that delivers rewarding brain stimulation when 

pressed. 
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Two distinct effects of electrical brain stimulation have been measured in the runway 

paradigm: a priming effect and a rewarding effect. The priming effect of the non-contingent 

brain stimulation received in the start box is expressed as a transient increase running speed to 

travel to the goal box to lever press for brain stimulation. The rewarding effect of the response-

contingent brain stimulation received in the goal box is expressed as the proclivity of the rat to 

run down the alley and the value it assigns to the stimulation available there. Gallistel et al. 

(1974) showed that a change in the strength of response-contingent goal-box stimulation leads to 

gradual adjustments of performance over multiple trials. Once the rat learns the updated value of 

the stimulation, a new, stable performance level is attained. In contrast, they also demonstrated 

that performance adjusts immediately following a change in the strength of the non-contingent 

start-box stimulation. Moreover, they showed that the effect of priming stimulation is a 

systematic function of response-contingent goal-box stimulation. If the rat learns that the 

rewarding goal-box stimulation is weak and without value, no amount of priming would induce 

the rat to run down the alley. These results indicate that the priming effect and rewarding effect 

of brain stimulation are independent. 

The priming effect of rewards manifests two defining properties of an increase in 

motivation: it directs and invigorates reward-seeking behavior (Cofer, 1972). In a T-maze, 

Deutsch et al. (1964) offered thirsty rats a choice between water and brain stimulation. Rats 

primed with brain stimulation are more likely to choose the arm that delivers brain stimulation. 

Thus, priming directs behavior toward pursuing a primed reward over a competing reward. In a 

runway paradigm, rats run faster to the goal box after having received priming stimulation in the 

start box (Gallistel, 1966; Reid et al., 1973; Gallistel et al., 1974; Stellar & Gallistel, 1975). 

Thus, priming invigorates reward seeking. 

4.2 The Priming Effect of Food and Drugs 

Although the priming effect of rewards has mainly been studied with electrical brain 

stimulation as the reward, there is also evidence that it extends to other rewards such as food and 

drugs (for review see de Wit, 1996). Previous research on the priming effect of food used mazes 

or runways. van der Kooy and Hogan (1978) used a square maze with each corner baited with 

food pellets. There was a delay before each opportunity to run to the next corner (ITI). The ITIs 

varied from short to long intervals. In other words, the reward received in each corner also 
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served as a prime. It was shown that hamsters run faster to the next corner following shorter ITIs 

(10 s), which constitutes as a priming effect. 

Terry (1980, 1983) studied the priming effect of food using a runway paradigm 

comparable to the one used by Gallistel and colleagues (Edmonds & Gallistel, 1974; Gallistel et 

al., 1974; Stellar & Gallistel, 1975). A trial starts after a 0.5-minute or 5-minute delay from 

consuming all the priming food pellets. A priming effect is seen at the 0.5-minute delay on the 

first day but then largely disappears with further training. Another study showed that the 

detection of a priming effect depends on whether comparisons were made within- or between-

subjects (Terry, 1983). Thus, unlike with brain stimulation, there is more variability in the 

incidence of a priming effect of food. 

The priming effect associated with drugs is usually priming-induced reinstatement. That 

involves extinction of a learned behavior; thus, it is different from the priming effect of rewards. 

However, studies on the priming effect of drugs conducted in humans rarely involve extinction. 

Participants may abstain from using drugs, but this is not equivalent to extinction. Because of 

this, the priming effect of drugs studied in humans could be considered comparable to the 

priming effect of rewards discussed in this paper. 

Most studies on the priming effect of drugs have concerned alcohol. Alcohol-dependent 

participants report increased craving for alcohol in response to priming (Ludwig & Wikler, 

1974). Bigelow et al. (1977) showed that priming alcohol-dependent participant increases their 

willingness to work for alcohol. Stockwell et al. (1982) showed that primed alcohol-dependent 

participants consume alcohol faster. These studies demonstrate that alcohol-dependent 

participants are sensitive to the priming effect of alcohol.  

The priming effect of alcohol has also been observed in social drinkers. In an experiment 

conducted by Chutuape et al. (1994), social drinkers performed two separate tasks: one task 

earned them money and another earned them alcohol. The probability of winning money varied 

from low to high, and the probability of winning alcohol was constantly moderate. Following 

priming, social drinkers work more for alcoholic beverages when the probability of earning 

money is low and they report greater desire for alcohol. Interestingly, Kirk and de Wit (2000) 

used the same methods as Chutuape et al. (1994) but they did not find that alcohol priming 

increased the probability of choosing alcohol over money in the choice task. Although social 

drinkers are also susceptible to the priming effect of alcohol, there is variability in its incidence. 
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Other drugs, such as cocaine, can also induce a priming effect. Jaffe et al. (1989) showed 

that cocaine users report higher craving and wanting for cocaine in response to priming with 

cocaine or the D2R agonist bromocriptine. Priming-induced craving and wanting diminish over 

time, which demonstrates the transient nature of the priming effect (Deutsch et al., 1964; 

Gallistel, 1966). 

The priming effect of rewards does not exclusively apply to electrical brain stimulation. 

Food priming produces a short-lasting invigoration of food seeking. Accordingly, drug priming 

directs and invigorates drug seeking. Compared to electrical brain stimulation, there is greater 

variability in the incidence of a priming effect of food or drugs. 

4.3 Dopamine and the Priming Effect of Electrical Brain Stimulation 

There is abundant evidence that dopamine transmission is important for reward 

(Edmonds & Gallistel, 1977; Franklin, 1978; Franklin & McCoy, 1979; Gallistel & Karras, 

1984) and motivation (Robinson & Berridge, 1993; Berridge & Robinson, 1998; Niv et al., 2005, 

2007; Niv, 2007; Hernandez et al., 2010, 2012; Salamone & Correa, 2012; Trujillo-Pisanty et al., 

2014; Salamone et al., 2016). Prior to this thesis, there has only been one study that investigates 

the role of dopamine transmission in the priming effect.  

Wasserman et al. (1982) administered pimozide, a D2R antagonist, and then examined 

whether this blocks the priming effect. Following high doses of pimozide, thirsty rats primed 

with electrical brain stimulation continue to choose brain stimulation more often than water. 

Additionally, primed rats continue to run faster to the goal box to earn rewarding brain 

stimulation. They show a priming effect in the first few trials and then cease to perform 

altogether. Since the rewarding effect of brain stimulation is sensitive to dopamine receptor 

antagonism (Gallistel et al., 1982), administration of pimozide diminishes performance across 

the session. Nevertheless, a priming effect of rewards is present prior to pimozide blocking the 

rewarding effect of brain stimulation. Therefore, D2R antagonism with pimozide fails to 

eliminate the goal-directing and energizing effects of priming. 

4.4 Summary of the Priming Effect of Rewards 

Receipt of a reward enhances motivation to work for more, which is called the priming 

effect of rewards. This phenomenon occurs with electrical brain stimulation, food, and drugs of 

abuse. Based on dopamine’s role in incentive motivation, dopamine transmission would be 
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expected to mediate the priming effect. On the contrary, there is evidence that indicates that the 

priming effect may not depend on dopamine signaling. 

5. Rationale and Hypotheses 

 The majority of the research on reward and motivation has focused on the contributions 

of the dopamine system. As a consequence, the complementary roles of other non-dopamine 

systems may have been insufficiently studied. There is evidence from previous research that 

certain motivational phenomenon, such as the priming effect of electrical brain stimulation, may 

not depend on dopamine transmission. 

The goal of the present thesis was to investigate the priming effect of rewards and the 

role of dopamine transmission. To study this, we developed a new paradigm to measure the 

priming effect, we examined variables that affect priming, and we assessed whether priming 

generalizes to other rewards. Lastly, we investigated whether the priming effect depends on 

dopamine receptor signaling. 

In Chapter 2, we developed a new method to measure the priming effect of electrical 

brain stimulation using a standard operant-conditioning paradigm that indexes changes in 

motivation based on lever-pressing behavior. Chapter 2 also investigated whether the priming 

effect of electrical brain stimulation is affected by reward strength, reward cost, or both. We 

hypothesized that this novel method can measure a priming effect of electrical brain stimulation 

and that the incidence of a priming effect depends on the strength and cost of reward. 

In Chapter 3, we aimed to make our design more analogous to a runway after observing 

high variability in the incidence of a priming effect in Chapter 2. Additionally, we hoped to 

reduce the potentially aversive effect of the high-frequency, free priming stimulation by allowing 

rats to self-administer the priming stimulations. We posited that these methodological changes 

would produce a more consistent priming effect comparable to those observed by Gallistel and 

colleagues (Reid et al., 1973; Gallistel et al., 1974). 

Most of the previous research on the priming effect used brain stimulation as a reward 

and the limited research on the priming effect of food were inconsistent. In Chapter 3, we 

examined whether the priming effect generalizes to other rewards such as food. We predicted 

that with our design we would show that food elicits a priming effect. 

Lastly, Chapters 3 and 4 tested whether the priming effect of electrical brain stimulation 

or food, respectively, is eliminated by selective dopamine receptor antagonists. Wasserman et al. 
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(1982) previously tested the priming effect against pimozide, which binds to D2Rs, D3Rs, 5-HT7 

receptors. It also has very low affinity for D1Rs. Prior to this thesis, the priming effect of food 

has not been challenged with dopamine receptor antagonists. We employed more selective 

dopamine receptor antagonists to better discern the role of dopamine transmission in the priming 

effect. We hypothesized that the priming effect persists following dopamine receptor blockade. 
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Chapter 2: The Priming Effect of Electrical Brain Stimulation Depends on the Strength 

and Cost of Reward 

 

Abstract 

Receipt of an intense reward boosts motivation to work for more of that reward. This 

phenomenon is called the priming effect of rewards. Since motivation to pursue a reward is 

affected by variables such as the strength and cost of reward, the priming effect might also 

depend on these variables. A new method was developed for measuring the priming effect of 

electrical brain stimulation that relies on lever-pressing behavior. Using this method, 

performance was measured as a function of reward strength or cost. We observed how those 

variables impact the priming effect. Lastly, we examined whether the priming effect is 

eliminated with the administration of a dopamine D2 receptor family antagonist. Our findings 

indicate that the priming effect of electrical brain stimulation is sensitive to reward strength and 

cost. Additionally, unlike other motivational constructs, the priming effect may not depend on 

dopamine signaling. 
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1. Introduction 

Receipt of an intense reward boosts motivation to seek a subsequent reward. This 

phenomenon is called the priming effect of rewards. It is different from the priming effect 

observed in a reinstatement model of drug relapse (de Wit & Stewart, 1981, 1983). In that model, 

drug seeking is learned and then extinguished. Non-contingent delivery of a reward (priming) 

can re-establish the previously extinguished drug-seeking behavior. That phenomenon is also 

commonly referred to as priming-induced reinstatement. In contrast, the priming effect of 

rewards discussed here invigorates a well-established behavior that has not undergone extinction. 

 Most studies that examined the priming effect of rewards have been conducted in rats 

working for electrical brain stimulation in a runway paradigm (Reid et al., 1973; Edmonds & 

Gallistel, 1974; Gallistel et al., 1974; Stellar & Gallistel, 1975). The runway apparatus consists 

of a start box, an alley, and a goal box. Before a trial starts, rats are placed in the start box and 

access to the alley is blocked by a start door. A trial starts when the start door opens, which 

permits access to the alley. Rats travel to the goal box located at the end of the alley, which 

contains a lever that delivers rewarding brain stimulation when pressed. Receipt of priming 

stimulation in the start box potentiates running to the goal box to lever press for rewarding brain 

stimulation. 

In that runway paradigm, running speed is measured as an index for change in 

motivation. Faster running speeds indicate a boost in motivation. However, this measure presents 

an issue because brain stimulation produces locomotor movement of the hind legs that can 

potentiate running speed. Electrical stimulation of midbrain regions such as the lateral 

hypothalamus (LH) has been shown to cause stepping movements of the hind legs in awake 

(Sinnamon & Sklow, 1990) and anesthetized (Sinnamon et al., 1987; Levy & Sinnamon, 1990) 

rats. Thus, the increase in running speed thought to be induced by priming stimulation could be 

contaminated by the hind-limb locomotor effect of brain stimulation. Based on this, the effect of 

priming stimulation on motivation should be measured independent of the hind-limb locomotor 

effect of brain stimulation. 

The priming effect of electrical brain stimulation manifests two key characteristics of a 

boost in motivation: it directs and energizes goal-seeking behavior. Rats have been shown to 

direct their goal-seeking behavior toward the primed reward over competing rewards (Deutsch et 

al., 1964). Additionally, that goal-directed behavior is energized when rats are primed (Gallistel 
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et al., 1974). Tasks designed to measure the priming effect should take into consideration 

variables that influence motivation to pursue rewards, such as reward strength and cost. 

Reward seeking is highest when brain stimulation is intense and decreases in an S-shaped 

fashion as the stimulation weakens (Edmonds & Gallistel, 1974; Miliaressis et al., 1986). Pulse 

frequency is typically used as the strength variable in electrical intracranial self-stimulation 

(eICSS) studies, and response rate is often used as the dependent variable. In such cases, the 

sigmoidal function mapping stimulation strength into response rate is called a “rate-frequency” 

function. Priming stimulation stretches rate-frequency curves vertically (Edmonds & Gallistel, 

1974). In other words, it enhances performance substantially when the reward is intense, 

moderately when the reward is intermediate, and trivially when the reward is weak. 

Reward seeking is also affected by reward cost. These are of at least two types: 

opportunity and effort costs. Opportunity cost is the work time required to obtain a reward. 

Effort cost is the physical effort exertion required to earn a reward. Reward seeking is highest 

when the opportunity cost is low and decreases as the cost grows (Hernandez et al., 2010, 2012; 

Trujillo-Pisanty et al., 2014). Similarly, rats are less willing to work as the effort cost increases 

(Aberman & Salamone, 1999; Salamone et al., 2001). The impact of reward cost on the priming 

effect has not been documented previously. 

The goals of the present study were 1) to design a new task to measure the priming effect 

of electrical brain stimulation, 2) to examine whether the priming effect depends on reward 

strength, cost, or both, and 3) to use the new task to study the neurochemical basis of the priming 

effect. In experiment 1, we assessed a new method for measuring the priming effect of electrical 

brain stimulation that does not rely on running speed. This was achieved by using standard 

operant-conditioning chambers and measuring lever-pressing behavior. The locomotor effect of 

brain stimulation seems to be localized to the hind legs and thus should not contaminate lever-

pressing behavior in this paradigm. Experiment 2 observed how reward strength and cost impact 

the priming effect. Performance was measured as a function of reward strength or cost and it was 

observed how priming stimulation shifts those functions. In experiment 3, the effects of 

pimozide, a dopamine D2 receptor family (D2R) antagonist, were examined. Wasserman et al. 

(1982) has provided evidence that the priming effect of electrical brain stimulation may not be 

mediated by dopamine transmission. We hypothesized that the present method would enable 

measurement of the priming effect of electrical brain stimulation in a manner uncontaminated by 
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the hind-limb locomotor effect of brain stimulation. Secondly, we predicted that the priming 

effect would depend on both the strength and cost of reward. Lastly, we expected that the 

priming effect of electrical brain stimulation measured in the present behavioral design would 

persist following D2R antagonism. 

2. Method 

2.1 Subjects 

      Male Long-Evans rats (bred at Concordia University, n = 9 in experiment 1, n = 8 in 

experiment 2 &3) were pair-housed in Plexiglas®  cages (46 cm length x 26 cm width x 21 cm 

height) located in a vivarium with a reversed 12-hour light-dark cycle (lights off from 0800 to 

2000 h). Throughout the study, rats had ad libitum access to food and water. A mix of Teklad 

corncob and Sani-Chips® (Envigo, Madison, Wisconsin, USA) were used as bedding and cages 

were enriched with shredded paper and a tunnel toy. After the rats received bilateral electrode 

implantations, they were housed individually for the remainder of the experiment. Behavioral 

tests were conducted during the dark phase of the diurnal cycle. The protocols used were in 

accordance with guidelines established by Concordia University’s Animal Research Ethics 

Committee’s Terms of Reference and the Canadian Council on Animal Care’s Guide to the Care 

and Use of Experimental Animals. 

2.2 Electrode Implantation 

Each rat weighed at least 350 g at the time of surgery. Ketamine-xylazine (10 mg/kg, 

Bioniche, Belleville, ON, Canada; Bayer Healthcare, Toronto, ON, Canada) was administered 

intraperitoneally (i.p) to induce anesthesia. This was followed by a subcutaneous (s.c.) injection 

of atropine sulfate (0.05 mg/kg, Sandoz, Boucherville, QC, Canada) to reduce bronchial 

secretions, and penicillin (0.3 ml, s.c., Vetoquinol, Lavaltrie, QC, Canada) to prevent infections. 

Xylocaine jelly (AstraZeneca, Mississauga, ON, Canada) was applied to the external auditory 

meatus to diminish discomfort due to the stereotaxic ear bars. After placing the rat in the 

stereotaxic frame, a mixture of isoflurane and oxygen (Pharmaceutical Partners of Canada Inc., 

Richmond Hill, ON, Canada) was delivered through a snout mask to maintain anesthesia. Four to 

six burr holes were drilled into the skull and stainless-steel screws were threaded. The free end of 

the current-return wire was wrapped around two skull screws (which served as the anode), and 

the opposite end was terminated in a gold-plated Amphenol connector. Monopolar stainless-steel 

electrodes were custom-made from insect pins (size: 000) insulated with Formvar enamel, 
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leaving 0.5 mm of tip bare. The unsharpened end was soldered to a copper wire that was attached 

to a gold-plated Amphenol connector. Electrodes were bilaterally aimed at the LH level (AP: -

2.8 from bregma, ML: ±1.7, DV: -8.8-9.0 from skull surface) of the medial forebrain bundle 

(MFB) and secured to the skull with dental acrylic. The Amphenol connectors were inserted into 

a McIntyre miniature connector (Scientific Technology Centre, Carleton University, Ottawa, 

ON, Canada) that was attached to the skull and skull-screw anchors using dental acrylic. The rats 

were allowed at least one week to recover from the surgery before self-stimulation training 

commenced. See Figure 1 for electrode placements. 
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Figure 1. Placement of electrode tips of rats in (a) experiment 1 and (b) experiments 2 and 3. 

Each electrode tip was located within the boundary of the LH level of the MFB, as determined 

by the Paxinos and Watson (2007) atlas. Due to issues with tissue collection and histology, 

electrode placements are missing from two rats (17 and 21) that completed experiment 1.   
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2.3 Apparatus 

The operant chambers (34 cm long x 24 cm wide x 66 cm high) were composed of wire-

mesh floors (8 cm above the base), a transparent Plexiglas front panel, an amber house light (10 

cm above the mesh floor), and two retractable levers (ENV-112B, MED Associates, St. Albans, 

Vermont, USA). A lever was located on the left and right sides of the box and a cue light (1 cm) 

positioned 4 cm above each lever. An electrical swivel centered at the top of the box allowed 

animals to move freely with the stimulation leads (Figure 2a). 

The temporal parameters of the electrical stimulation and pulse amplitude were 

determined by a computer-controlled digital pulse generator and constant-current amplifier, 

respectively. Experiments were controlled by, and data were collected with, a custom-written 

computer program (“PREF3”, Steve Cabilio, Concordia University, Montreal, QC, Canada). 

2.4 Procedures: Experiment 1 

Training. Rats were each screened to determine which electrode (left or right 

hemisphere) and which electrical current promoted vigorous lever pressing with minimal to no 

motor effects. The rats in this experiment responded to currents between 264 to 650 

microamperes (μA). This is a common range of current that promotes eICSS of the LH 

(Hernandez et al., 2007, 2012; Solomon et al., 2015). The settings determined for each rat were 

used throughout the subsequent experiments. 

Rats were trained to lever press for electrical brain stimulation on a 10-second (s) 

variable interval (VI10) schedule. The rewarding stimulation consisted of a single 0.5-s train of 

0.1-milisecond (ms) cathodal pulses at 178 pulses per second (pps). Once the operant behavior 

was stable, rats were trained on the testing procedures. Rats learned to press a setup lever that did 

not deliver reward but instead activated the extension of a separate reward lever located on the 

opposite wall of the chamber. The purpose of the setup lever was to position the rat in the same 

location before each trial and to prevent superstitious behaviors. 

Testing. Rats initially underwent a warm-up session, during which they pressed a single 

lever for electrical brain stimulation. Immediately after this warm-up, testing commenced. As 

illustrated in Figure 2b, before a trial started there was a 70-s inter-trial interval (ITI), during 

which the levers were retracted. The first component of the ITI was a waiting period and the 

house light remained off. The waiting period was followed by 10 s of pretrial cues that signaled 

the start of a trial. Cues included flashing of the amber house light (10 cycles of 0.5s on, 0.5s off) 
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and delivery of electrical stimulation on primed trials but not on non-primed trials. The priming 

stimulation consisted of 10 separate 0.5-s trains of 0.1 ms cathodal pulses delivered at a rate of 

one train per second. At the end of the pretrial cue period, the house light turned off and there 

was a five-s delay. At the end of the delay, a trial commenced with the extension of the setup 

lever and its cue light. A single press on the setup lever (fixed-ratio 1; FR1) activated the 

extension of the reward lever, which was armed on a VI10 schedule. After the rat completed the 

response requirement and received a single train of reward, a new ITI began. If the setup lever 

was not pressed, then the reward lever did not extend and a new ITI immediately commenced. 

Each test session had a total of 80 trials, which consisted of 40 primed and 40 non-primed trials 

that were presented randomly. 
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Figure 2. An image of the operant-conditioning chamber and a schematic of events during an ITI 

and a single trial. (a) The operant-conditioning chamber contains a setup lever (left) and a reward 

lever (right). (b) Preceding a trial was an ITI, which started with a waiting period. This was 

followed by a pretrial cues period, during which cues were delivered to signal that the start of a 

trial was approaching. On primed trials, priming stimulation was delivered during the pretrial 

cues period. This was followed by a delay and then the extension of the setup lever marked the 

start of a trial. A single press on the setup lever activated the extension of the reward lever 

located at the opposite side of the chamber. Completion of the response requirement on the 

reward lever delivered rewarding brain stimulation and initiated the start of a new ITI. The 

duration of each event within an ITI and trial is mentioned in the method section.  
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2.5 Statistical Analyses 

For each rat, data were analyzed for each priming condition (primed, non-primed). Means 

were calculated for the cumulative response and response rate measures. Analyses and graphs 

were conducted using custom-written MatLab scripts (The Mathworks, Natick, MA). 

 Cumulative Response. The number of lever presses was calculated for each one-s time 

bin of each trial and cumulated. Cumulative responses between the primed and non-primed trials 

were compared at the 10-s time bin. This is because on a VI10 schedule, on average, a reward 

could be earned within 10 s of a trial. 

 Response Rate. The number of lever presses was calculated for each one-s time bin of 

each trial. These response frequencies were divided by the number of trials in which that time 

bin was sampled to yield the mean response per trial for each time bin. These means were 

multiplied by 60 to obtain the mean response rate per minute. 

Confidence Intervals. Bootstrapping (Efron & Tibshirani, 1986) was used to determine 

means and their surrounding confidence intervals (CI). Data were randomly sampled with 

replacement to generate 500 re-sampled datasets. The upper and lower 2.5% of the distribution 

were defined as the bounds of a 95% CI. Non-overlap of the 95% CIs was used as the criterion 

for a statistically reliable effect between the primed and non-primed trials.  

2.6 Procedures: Experiments 2 & 3 

Training. Rats were each screened to determine which electrode, electrical current, and 

pulse frequency promoted vigorous lever pressing with minimal to no motor effects. The rats in 

these experiments responded for currents between 320 μA to 400 μA. The maximum pulse 

frequency of the reward stimulation ranged from 266 pps to 320 pps. The pulse frequency of the 

priming stimulation was lower, ranging from 198 pps to 222 pps. The consecutive trains of 

priming stimulation produced motor effects, so reducing the pulse frequency served to minimize 

those motor effects. The settings determined for each rat were used throughout the subsequent 

experiments. 

Experiment 2 differed from experiment 1 in that a ratio schedule was used in lieu of a VI 

schedule. The rewarding stimulation consisted of a single 0.5-s train of 0.1-ms cathodal pulses. 

Once the operant behavior was stable, rats were trained in a testing procedure comparable to that 

in experiment 1. Rats learned to press a setup lever armed on a FR1 schedule that did not deliver 
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reward but instead activated the extension of a reward lever located at the opposite side of the 

operant-conditioning chamber. Here, the reward lever was armed on a ratio schedule. 

To obtain curves expressing response rate as a function of reward strength, the response 

requirement was held constant at FR2 for all trials while the strength of the reward was 

systematically decreased. To obtain curves expressing response rate as a function of effort cost, 

the response requirement was progressively increased while the strength of the reward was held 

constant at a high value.  

Responding on VI schedules tends to steady and slow; alterations in response rate have 

little or no effect on the rate at which rewards are delivered. In contrast, the rate of reward 

delivery is directly proportional to response rate on FR schedules. Thus, we expected that 

response rates would be more sensitive to the strength and cost of reward when a ratio schedule 

was in effect. 

Testing. Rats initially underwent a warm-up session, during which they pressed a single 

lever for rewarding brain stimulation. A trial started with a 30-s ITI, during which the levers 

were retracted. The house light remained off during the first 15 s of the ITI. This waiting period 

was followed by pretrial cues signaling the start of a trial, which lasted for 10 s. Cues included 

flashing of the amber house light (10 cycles of 0.5s on, 0.5s off) and delivery of priming 

stimulation. Rats received 10 (high priming) or two (low priming) separate 0.5-s trains of 0.1 ms 

cathodal pulses, delivered at a rate of one train per second. On high-priming trials, primes were 

delivered at the start of the pretrial cue period, 15 s into the ITI. On low-priming trials, primes 

were delivered eight s into the pretrial cues period, or 23 s into the ITI. At the end of the pretrial 

cues period, the house light turned off and the five-s delay started. A trial began with the 

extension of the setup lever. A single response on the setup lever activated the extension of the 

reward lever, which was armed on a ratio schedule. Completion of the response requirement on 

the reward lever earned the rat a single train of reward, and a new ITI started. See Figure 1 for 

schematic of events in an ITI and a trial. 

A set of 15 trials was called a block of trials (Figure 3a). The reward strength or cost 

remained constant within a block. Across blocks of trials, the strength or cost of the reward was 

varied systematically (Figure 3b & c). For example, to measure response curves as a function of 

reward strength, the pulse frequency was systematically decreased after every block of trials. 

Each test session consisted of 10 blocks of trials, totaling 150 trials. During a single test day, rats 
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underwent one session in the high-priming condition and a second session in the low-priming 

condition. The session order of the priming conditions was counterbalanced across days. 

Previous studies that measured response curves as a function of reward strength or cost 

delivered priming stimulation prior to the start of each trial (Arvanitogiannis & Shizgal, 2008; 

Trujillo-Pisanty et al., 2012; Solomon et al., 2015). In those studies, the strength or cost of 

reward changed following each trial. In this experiment, the strength or cost of the reward 

changed after a block of trials. Two stimulation trains served as primes in the low-priming 

condition rather than no stimulation at all. This was done in the hope that the low-priming 

stimulation would help motivate rats to sample the lever in the next trial so they could learn the 

new reward strength or cost. 

Experiment 2a: Rate-Cost Curve. To measure curves expressing response rate as a 

function of reward cost, the ratio requirement was increased while the pulse frequency was held 

at a constant high value. The first block of trials started at the lowest cost (FR2) and increased 

across the blocks until the highest cost was reached (FR30). Data from the first block of trials 

and the first trial of each block served as a warmup block and a learning trial, respectively, and 

were excluded from analyses (Figure 3a). The lowest cost was in effect in both the first and 

second blocks; the cost was then increased in each subsequent block (Figure 3b). At least 10 test 

sessions were collected for each priming condition. Test sessions lasted approximately three 

hours. 

Experiment 2b: Rate-Frequency Curve. To measure curves expressing response rate as 

a function of reward strength, the pulse frequency was systematically decreased and the response 

requirement was set to FR2. The first block of trials consisted of a highest pulse frequency and 

decreased across the blocks. Data from the first block of trials and the first trial of each block 

served as a warmup block and a learning trial, respectively, and were excluded from analyses 

(Figure 3a). The highest pulse frequency was in effect in both the first and second block; the 

pulse frequency was then reduced in equal proportional steps across the remaining blocks 

(Figure 3c). The step size between the pulse frequencies was adjusted for each rat to achieve a 

sigmoidal rate-frequency curve. The step sizes used in this experiment ranged from 0.08 to 0.18 

log units. The curve was aimed to consist of nine different pulse frequencies that demonstrated 

maximal performance, decreasing performance, and no performance. At least 10 test sessions 

were collected for each priming condition. Test sessions lasted approximately two to three hours. 
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Experiment 3: Pimozide & Rate-Cost Curve. Pimozide, a D2R antagonist, was 

administered prior to obtaining curves that express response rate as a function of reward cost. 

Pimozide (0.1, 0.2, or 0.5 mg/kg; Sigma-Aldrich, St. Louis, MO) was dissolved in nanopure 

water. These doses were chosen based on previous experiments with electrical brain stimulation 

and pimozide (Atalay & Wise, 1983; Trujillo-Pisanty et al., 2014). Test procedures were similar 

to those used in experiment 2a, with the exception that vehicle or one of the three doses of 

pimozide was administered i.p. three hours prior to the test session. Tests were conducted in 

three-day cycles consisting of a vehicle day, drug day, and washout day (Figure 3d). The session 

order of the priming conditions was counterbalanced across the three-day cycles. Tests were first 

conducted with the lowest dose of pimozide (0.1 mg/kg). Rats received each dose of pimozide at 

least 10 times in 10 separate tests. At least 10 test sessions were collected for each dose of 

pimozide before the next, higher dose was administered.  
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Figure 3. Schematic of procedures in experiments 2 and 3. (a) A block of trials consisted of 15 

trials. The first trial (T1) was considered a “learning” trial and was not included in the analyses. 

The remaining 14 “keeper” trials (T2-T15) were analyzed. The reward strength or cost remained 

constant within a block. (b) In a rate-cost curve, the reward strength was set to a high value and 

the cost systematically increased across blocks. (c) In a rate-frequency curve, the cost was 

constantly low and the reward strength systematically declined across blocks. The first and 

second block of trials (B1 & B2) are in effect the same. However, B1 served as a warmup block 

and its data were not included in the analyses. (d) In experiment 3, tests were conducted in three-

day cycles consisting of a vehicle day, drug day, and washout day. A single dose of pimozide 

was administered in at least 10 separate tests. After one dose was completed, new tests were 

conducted with a higher dose. 
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2.7 Statistical Analyses 

For each rat, data were analyzed for each type of curve (rate-cost, rate-frequency), each 

priming condition (high or low), and drug dose (0, 0.1, 0.2, 0.5 mg/kg). The mean and median 

were calculated for the reward rate measure. Data were analyzed and graphs were plotted using 

custom-written MatLab scripts (The Mathworks, Natick, MA). 

Reward Rate. Reward rate is the inverse of the total time (s) elapsed between the start of 

the trial and the delivery of the reward. Higher reward rates reflect more vigorous reward pursuit. 

This transformation is analogous to the running speed measure reported in Gallistel’s 

investigations on the priming effect of electrical brain stimulation (Gallistel et al., 1974; Stellar 

& Gallistel, 1975; Wasserman et al., 1982). 

Confidence Intervals. Bootstrapping (Efron & Tibshirani, 1986) was used to determine 

mean and median reward rates and their surrounding CIs. Trials in each block were randomly 

sampled with replacement to generate 1000 re-sampled datasets. Non-overlap of the 95% CIs 

was used as the criterion for a statistically reliable effect between the high- and low-priming 

conditions. 

Distributions. The distribution of the data was visualized with violin plots based on 

kernel-density estimation (KDE). This is a non-parametric method for estimating the probability 

density function of a random variable, such as response speed. In contrast to traditional statistics, 

KDE addresses the data smoothing problem without prior parametric assumptions (e.g., 

normality). Instead, KDE creates smooth distributions based on a given sample of data. 

Cliff’s Delta. Visual inspection shows that the speed measure is both skewed and 

bimodal. Thus, a non-parametric analysis of effect size was employed. Cliff’s delta is an effect 

size measure used for ordinal data that does not require assumptions about the distribution of the 

data. A Cliff’s delta value near one indicates that high priming produced reliably faster response 

speeds compared to low priming. No difference between the high- and low-priming medians 

would yield a Cliff’s delta value of zero. Bootstrapping (Efron & Tibshirani, 1986) with 

replacement was used to calculate both Cliff’s delta and its surrounding 95% CI. 

Difference ratio. A statistic was developed to assess the magnitude of the difference 

between speed measures obtained in the high- and low-priming conditions. The ratio of the 

difference between the two group medians was first calculated by means of bootstrapping with 

replacement (1000 resampled medians for both the high and no priming conditions). The 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
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difference between the resampled medians was then normalized by the resampled grand median 

to yield the median difference ratio. 

Criteria for a priming effect. A two-criterion approach was used to determine whether 

the results demonstrate a reliable and meaningful behavioral difference between the high- and 

low-priming conditions. The first criterion was a Cliff’s delta greater than zero surrounded by a 

95% CI excluding zero. The second criterion was a median difference ratio equal to or greater 

than .10 surrounded by a 95% CI excluding zero. A difference that met the criterion for Cliff’s 

delta but not the median-difference-ratio criterion was considered statistically reliable but too 

small to be regarded as meaningful. 

3. Results 

3.1 Experiment 1: Measuring the Priming Effect of Electrical Brain Stimulation 

         Analyses of mean cumulative responding across the trial duration for each rat showed 

that the priming effect of electrical brain stimulation was observed in some, but not all, rats 

(Figure 4). Of the nine rats tested, three of them showed greater responding on the primed trials 

compared to the non-primed trials, which constitutes as a priming effect (Figure 4a). The 

remaining six rats showed no priming effect (Figure 4b) or a debatably trivial priming effect 

(Figure 4c). 

 The transient nature of the priming effect of electrical brain stimulation was observed 

when response rates were calculated across the trial duration (Figure 4d). The priming effect was 

observed during the first four s to 14 s of the trial duration. After these initial periods of higher 

responding on the primed trials, responding declined to levels similar to those in the non-primed 

trials. Thus, these data demonstrate that the priming effect decays with time. 
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Figure 4. Priming elicits a transient increase in responding on a VI10 schedule in some, but not 

all, rats. In the cumulative response graphs, (a) blue arrows indicate a reliable priming effect, (b) 

red arrows indicate no priming effect, and (c) orange arrows indicate a debatably trivial priming 

effect. (d) Response rate graphs of rats that demonstrated a reliable priming effect. Red arrows 

indicate the time when the priming effect decays. Sold lines represent means and shaded regions 

represent 95% CIs. Non-overlap of the 95% CIs indicates a statistically reliable difference 

between the primed and non-primed trials.   
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3.2 Experiment 2a: Rate-Cost Curves 

Analyses of the rate-cost curves showed that the mean reward rate was highest when the 

ratio requirement was low and the mean reward rate declined as the ratio requirement increased 

(Figure 5). High priming reliably increased the mean reward rate when the ratio requirement was 

low. As the ratio requirement increased, this difference shrunk and ultimately disappeared. Based 

on visual inspection, we observed that the slope of the rate-cost curve was steeper in response to 

high priming when the reward cost was inexpensive. 

For the non-parametric analyses, the median reward rate at the lowest cost (e.g., FR2) 

was used to calculate effect sizes and difference ratios. The 95% CIs around Cliff’s delta 

excluded zero for all eight rats, indicating a statistically reliable difference between the high- and 

low-priming conditions. Seven out of the eight rats met the .10 criterion for the median 

difference ratio. Thus, in one case, the difference between the high- and low-priming conditions 

was statistically reliable but was too small to be considered meaningful. The remaining rats 

showed a 12% to 24% difference between the high- and low-priming conditions relative to the 

grand median. Based on our two-criterion approach, seven out of eight rats showed reliable and 

meaningful increases in the median reward rate in response to high priming when the reward cost 

was inexpensive (Table 1).  
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Figure 5. Rewards are obtained faster following high priming, and this depends on reward cost. 

(a) Effort-cost curve of rat 26 shows a (b) reliable and meaningful priming effect when the 

reward is inexpensive. (c) Effort-cost curve of rat 32 (d) does not show a meaningful priming 

effect when the reward is inexpensive. In the rate-cost curves (a & c), sold lines represent means 

and shaded regions represent 95% CIs. In the violin plots (b & d), blue open-dots represent 

individual data points, red-filled dots represent outliers, green lines represent the median, red 

diamonds represent the mean, and blue boxes represent the interquartile range. 
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Table 1 

 

Reward Rates at the Lowest Reward Cost in the Rate-Cost Curve a 

 

Rat No. Median Median Difference Cliff’s Delta 

  

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

26 1.19 0.93 1.06 0.24 [0.20, 0.26] 0.92 [0.88, 0.95] 

28 1.20 1.00 1.10 0.18 [0.15, 0.21] 0.70 [0.60, 0.78] 

29 1.20 1.02 1.11 0.19 [0.15, 0.24] 0.57 [0.48, 0.66] 

30 1.10 0.94 1.02 0.15 [0.11, 0.20] 0.47 [0.35, 0.58] 

31 0.93 0.71 0.85 0.24 [0.19, 0.28] 0.73 [0.65, 0.81] 

32 0.97 0.90 0.93 0.07* [0.04, 0.09] 0.41 [0.31, 0.51] 

33 0.76 0.63 0.70 0.19 [0.14, 0.23] 0.46 [0.35, 0.57] 

34 0.94 0.83 0.89 0.12 [0.08, 0.17] 0.47 [0.36, 0.58] 

 

a Curves were calculated from all trials in the counterbalanced high- and low-priming sessions. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. LP = low priming. Grey highlight emphasizes which rats did not show 

a reliable and/or meaningful priming effect. 
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3.3 Experiment 2b: Rate-Frequency Curves 

Analyses of the rate-frequency curves showed that the mean reward rate was maximal 

when the reward was intense and then decreased as the reward weakened (Figure 6). High 

priming reliably increased the mean reward rate when the pulse frequency was high. That 

difference disappeared as the pulse frequency decreased. Based on visual inspection, the slope of 

the rate-frequency curve was steeper following high priming when the reward was intense. 

Using non-parametric analyses, all eight rats showed that the median reward rate at the 

highest reward strength was greater following high priming compared to low priming. The 95% 

CIs of Cliff’s delta excluded zero for all rats, indicating a statistically reliable difference between 

the high- and low-priming conditions. There was a 14% to 38% difference between the high- and 

low-priming conditions relative to the grand median, which indicates that all rats showed a 

meaningful priming effect (Table 2).  
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Figure 6. Rewards are obtained faster following high priming, and this depends on reward 

strength. (a) Rate-frequency curve of rat 29 show (b) a reliable and meaningful priming effect 

when the reward is intense. This rat showed the largest magnitude of difference between the 

high- and low-priming conditions at the strongest pulse frequency in the rate-frequency curve. 

(c) Rate-frequency curve of rat 34 shows (b) a reliable and meaningful priming effect. This rat 

showed the smallest magnitude of difference between the high- and low-priming conditions at 

the strongest pulse frequency in the rate-frequency curve. In the rate-frequency curves (a & c), 

sold lines represent means and shaded regions represent 95% CIs. In the violin plots (b & d), 

blue open-dots represent individual data points, red-filled dots represent outliers, green lines 

represent the median, red diamonds represent the mean, and blue boxes represent the 

interquartile range. 
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Table 2 

 

Reward Rates at the Strongest Pulse Frequency in the Rate-Frequency Curvesa 

 

Rat No. Median Median Difference Cliff’s Delta 

  

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

26 1.20 1.00 1.10 0.20 [0.18, 0.23] 0.96 [0.92, 0.98] 

28 1.25 1.02 1.14 0.20 [0.18, 0.23] 0.80 [0.71, 0.87] 

29 1.06 0.72 0.92 0.38 [0.31, 0.43] 0.80 [0.73, 0.86] 

30 1.30 0.89 1.16 0.37 [0.32, 0.41] 0.87 [0.80, 0.92] 

31 0.98 0.70 0.85 0.32 [0.29, 0.36] 0.90 [0.86, 0.94] 

32 1.00 0.80 0.92 0.22 [0.18, 0.25] 0.63 [0.53, 0.71] 

33 0.82 0.63 0.71 0.27 [0.24, 0.31] 0.65 [0.55, 0.74] 

34 0.93 0.80 0.88 0.14 [0.11, 0.18] 0.56 [0.47, 0.64] 

 

a Curves were calculated from all trials in the counterbalanced high- and low-priming sessions. 

Notes. HP = high priming. LP = low priming. 
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3.4 Effect of Session Order 

In experiments 2a and 2b, all trials were collectively analyzed, regardless of the session 

order of the priming conditions (Figures 5 & 6, Tables 1 & 2). Later, we assessed whether there 

was an effect of session order of the priming conditions (Figures 7 & 8). The rate-cost and rate-

frequency curves were stable regardless of whether the high-priming condition was conducted as 

the first or second session (Figure 7b & 8b). This was not the case for the low-priming condition. 

The slopes of the rate-cost and rate-frequency curves were lower when the low-priming 

condition was conducted as the second session than when it was conducted first (Figure 7c & 

8c). When the high-priming condition occurred first, subsequent maximal performance in the 

low-priming condition was impaired. This suppression in maximal performance on the following 

low-priming condition may have exaggerated or even mimicked a priming effect. 
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Figure 7. Effect of session order on rate-cost curves. (a) Initially, all trials from counterbalanced 

sessions were analyzed. (b) When only the high-priming sessions were analyzed, maximal 

performance is stable regardless of whether the high-priming session occurred before or after the 

low-priming session. (c) When the low-priming sessions were analyzed, maximal performance is 

blunted when the low-priming session was preceded by a high-priming session. (d) Due to this 

session order effect, the curves were re-analyzed to include data only from high- and low-

priming sessions that were conducted as the first session. 
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Figure 8. Effect of session order on rate-frequency curves. (a) Initially, all trials from 

counterbalanced sessions were analyzed. (b) When only the high-priming sessions were 

analyzed, maximal performance is stable regardless of whether the high-priming session 

occurred before or after the low-priming session. (c) When the low-priming sessions were 

analyzed, maximal performance is blunted when the low-priming session was preceded by a 

high-priming session. (d) Due to this session order effect, the curves were re-analyzed to include 

data only from high- and low-priming sessions that were conducted as the first session. 
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3.5 Re-Analyzed Rate-Cost Curves: First Session Only 

To address the effect of session order, rate-cost curves were re-analyzed to include data 

only from the high- and low-priming conditions that were conducted as the first session. When 

this was conducted, analyses of the rate-cost curves showed that the mean reward rate was 

maximal when the reward was inexpensive and then decreased as the reward cost grew (Figure 

9). There was a reliable difference in the mean reward rate between the high- and low-priming 

conditions when the reward cost was low. This difference dissipated as the reward cost 

increased. Based on visual inspection and non-overlap of the CIs, the slope of the rate-cost curve 

was steeper following high priming when the reward was inexpensive. 

Using non-parametric analyses, two out of eight rats showed that the median reward rate 

at the cheapest reward cost was greater following high priming. The 95% CIs of Cliff’s delta 

excluded zero for those rats, which indicates a statistically reliable difference between the high- 

and low-priming conditions. They also demonstrated a 13% to 16% increase in the median 

reward rate relative to the grand median following high priming, which indicates a meaningful 

priming effect (Figure 9, Table 3). 
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Figure 9. Re-analyzed reward rates show that the priming effect depends on reward cost, but 

there is greater variability in the incidence of a priming effect. (a) Rate-cost curve of rat 31 

shows (b) a reliable and meaningful priming effect. (c) Rate-cost curve of rat 32 (b) does not 

show a reliable or meaningful priming effect. In the effort-cost curves (a & c), sold lines 

represent means and shaded regions represent 95% CIs. In the violin plots (b & d), blue open-

dots represent individual data points, red-filled dots represent outliers, green lines represent the 

median, red diamonds represent the mean, and blue boxes represent the interquartile range. 
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Table 3 

 

Re-analyzed Reward Rates at the Lowest Reward Cost in the Rate-Cost Curvesb 

 

Rat No. Median Median Difference Cliff’s Delta 

  

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

26 1.16 1.03 1.06 0.13 [0.09, 0.17] 0.75 [0.62, 0.85] 

28 1.18 1.09 1.10 0.09* [0.03, 0.15] 0.45 [0.29, 0.60] 

29 1.20 1.08 1.15 0.09* [0.02, 0.14] 0.21 [0.09, 0.33] 

30 1.11 1.05 1.09 0.05* [0.02, 0.10] 0.30 [0.13, 0.46] 

31 0.95 0.84 0.90 0.16 [0.11, 0.21] 0.65 [0.54, 0.75] 

32 0.97 0.97 0.97 0.00* [-0.03, 0.06] 0.16 [0.00, 0.31]* 

33 0.77 0.75 0.75 0.04* [0.01, 0.08] 0.17 [0.02, 0.33] 

34 1.00 0.93 0.95 0.07* [0.03, 0.11] 0.38 [0.24, 0.51] 

 

b Curves were calculated from trials when the high- and low-priming sessions were conducted as 

the first session. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. LP = low priming. Grey highlight emphasizes which rats did not show 

a reliable and/or meaningful priming effect. 
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3.6 Re-Analyzed Rate-Frequency Curves: First Session Only 

Due to the session order effect, rate-frequency curves were re-analyzed to include data 

only from the high- and low-priming conditions that were conducted as the first session. When 

this was conducted, analyses of the rate-frequency curves showed that the mean reward rate was 

maximal when the reward was intense and decreased as the reward weakened (Figure 10). There 

was a reliable difference in the mean reward rate between the high- and low-priming conditions 

when the pulse frequency was high. This difference reduced and eventually disappeared as the 

pulse frequency decreased. Based on visual inspection, the slope of the rate-frequency curve was 

steeper following high priming when the reward was intense. 

Using non-parametric analyses, six out of eight rats showed that the median reward rate 

at the highest pulse frequency was greater following high priming. The 95% CIs of Cliff’s delta 

excluded zero for those rats, which indicates a statistically reliable difference between the high- 

and low-priming conditions. They also demonstrated a 17% to 31% increase in the median 

reward rate relative to the grand median following high priming, which indicates a meaningful 

priming effect (Figure 10, Table 4). 
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Figure 10. Re-analyzed reward rates show that the priming effect depends on reward strength, 

but there is greater variability in the incidence a priming effect. (a) Rate-frequency curve of rat 

30 shows (b) a reliable and meaningful priming effect. (c) Rate-frequency curve of rat 32 (b) 

does not show a meaningful priming effect. In the rate-frequency curves (a & c), sold lines 

represent means and shaded regions represent 95% CIs. In the violin plots (b & d), blue open-

dots represent individual data points, red-filled dots represent outliers, green lines represent the 

median, red diamonds represent the mean, and blue boxes represent the interquartile range. 

  



 48 

Table 4 

 

Re-analyzed Reward Rates at the Strongest Pulse Frequency in the Rate-Frequency Curvesb 

 

Rat No. Median Median Difference Cliff’s Delta 

  

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

26 1.23 1.03 1.13 0.18 [0.16, 0.20] 0.93 [0.84, 0.99] 

28 1.25 1.06 1.19 0.17 [0.14, 0.20] 0.75 [0.61, 0.87] 

29 1.09 0.86 0.97 0.25 [0.19, 0.37] 0.80 [0.70, 0.88] 

30 1.33 0.96 1.19 0.31 [0.22, 0.41] 0.88 [0.80, 0.94] 

31 1.00 0.76 0.89 0.26 [0.22, 0.31] 0.84 [0.76, 0.90] 

32 1.00 0.95 0.98 0.07* [0.03, 0.10] 0.31 [0.17, 0.44] 

33 0.83 0.66 0.78 0.21 [0.17, 0.27] 0.60 [0.48, 0.70] 

34 0.94 0.87 0.90 0.09* [0.05, 0.12] 0.48 [0.34, 0.61] 

 

b Curves were calculated from trials when the high- and low-priming sessions were conducted as 

the first session. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. LP = low priming. Grey highlight emphasizes which rats did not show 

a reliable and/or meaningful priming effect. 
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3.7 Experiment 3: Pimozide & Rate-Cost Curve 

 To assess the role of dopamine transmission in the priming effect, rats were tested with 

three doses of pimozide (0.1 mg/kg, n = 4; 0.2 mg/kg, n = 8; 0.5 mg/kg, n = 5). All four rats 

tested with 0.1 mg/kg of pimozide showed a reliable and meaningful priming effect in response 

to either vehicle or pimozide. Their rate-cost curves showed that the mean reward rate was 

maximal when the reward was inexpensive and decreased as the reward cost grew (Figure 11). 

When the reward cost was low, the slope of the rate-cost curve was steeper following high 

priming. The difference between the high- and low-priming conditions relative to the grand 

median was 14% to 27% following vehicle and 13% to 32% following 0.1 mg/kg of pimozide 

(Table 5). 

Eight rats were tested with vehicle before testing with 0.2 mg/kg of pimozide. Four 

showed a reliable and meaningful priming effect in response to vehicle. Their rate-cost curves 

showed that the mean reward rate was maximal when the reward cost was low and decreased as 

the reward cost grew (Figure 12). When the reward cost was low, the slope of the rate-cost curve 

was steeper following high priming. They showed a 12% to 13% difference between the high- 

and low-priming conditions relative to the grand median following vehicle (Table 6). Two out of 

four rats that showed a priming effect in response to vehicle also showed a priming effect in 

response to 0.2 mg/kg of pimozide. They showed a 15% difference between the high- and low-

priming conditions relative to the grand median (Table 6). 

Five rats were tested with vehicle before testing with 0.5 mg/kg of pimozide. Four rats 

showed a reliable and meaningful priming effect in response to vehicle. Their rate-cost curves 

showed that the mean reward rate was maximal when the reward cost was low and decreased as 

the reward cost became more expensive (Figure 12). When the reward cost was inexpensive, the 

slope of the rate-cost curve was steeper following high priming. They showed an 11% to 19% 

difference between the high- and low-priming conditions relative to the grand median following 

vehicle (Table 7). Of those four rats, three showed a reliable and meaningful priming effect 

following 0.5 mg/kg of pimozide. The difference between the high- and low-priming conditions 

relative to the grand median was 13% to 18% following 0.5 mg/kg of pimozide (Table 7). 
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Figure 11. The priming effect of electrical brain stimulation persists following 0.1 mg/kg of 

pimozide. These are representative data from rat 26. (a) Rate-cost curve following (a) vehicle 

shows (b) a reliable and meaningful priming effect. (b) Rate-cost curve following 0.1 mg/kg of 

pimozide shows (c) a reliable and meaningful priming effect. In the effort-cost curves (a & c), 

broken lines represent means and shaded regions represent 95% CIs. In the violin plots (b & d), 

blue open-dots represent individual data points, red-filled dots represent outliers, green lines 

represent the median, red diamonds represent the mean, and blue boxes represent the 

interquartile range. 
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Table 5 

 

Reward Rates at the Lowest Reward Cost in the Rate-Cost Curvesb following Vehicle and 0.1 mg/kg of Pimozide 

 

 Vehicle Pimozide (0.1 mg/kg) 

Rat 

No. 

Median Median 

Difference 

Cliff’s Delta Median Median 

Difference 

Cliff’s Delta 

  

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

 

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

26 1.28 1.12 1.19 0.14 [0.12, 

0.17] 

0.92 [0.84, 

0.97] 

1.23 1.06 1.12 0.16 [0.13, 

0.19] 

0.87 [0.76, 

0.96] 

28 1.28 1.10 1.19 0.15 [0.10, 

0.19] 

0.76 [0.63, 

0.86] 

1.20 1.06 1.13 0.13 [0.09, 

0.18] 

0.71 [0.57, 

0.86] 

29 1.10 0.85 0.95 0.27 [0.19, 

0.35] 

0.62 [0.47, 

0.75] 

1.01 0.84 0.89 0.19 [0.07, 

0.28] 

0.42 [0.24, 

0.57] 

30 1.37 1.05 1.16 0.27 [0.20, 

0.30] 

0.68 [0.54, 

0.80] 

1.35 1.02 1.06 0.32 [0.25, 

0.36] 

0.81 [0.64, 

0.91] 

 

b Curves were calculated from trials when the high- and low-priming sessions were conducted as the first session. 

Notes. HP = high priming. LP = low priming. Grey highlight emphasizes which rats did not show a meaningful priming effect. 
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Figure 12. The priming effect of electrical brain stimulation persists following 0.2 mg/kg of 

pimozide. These are representative data from rat 26. (a) Rate-cost curve following vehicle shows 

(b) a reliable meaningful priming effect. (B) Rate-cost curve following 0.2 mg/kg of pimozide 

shows (c) a reliable meaningful priming effect. In the effort-cost curves (a & c), broken lines 

represent means and shaded regions represent 95% CIs. In the violin plots (b & d), blue open-

dots represent individual data points, red-filled dots represent outliers, green lines represent the 

median, red diamonds represent the mean, and blue boxes represent the interquartile range.  
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Table 6 

 

Reward Rates at the Lowest Reward Cost in the Rate-Cost Curvesb following Vehicle and 0.2 mg/kg of Pimozide 

 

 Vehicle Pimozide (0.2 mg/kg) 

Rat 

No. 

Median Median 

Difference 

Cliff’s Delta Median Median 

Difference 

Cliff’s Delta 

  

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

 

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

26 1.23 1.10 1.14 0.12 [0.07, 

0.14] 

0.85 [0.77, 

0.92] 

1.23 1.06 1.14 0.15 [0.11, 

0.17] 

0.95 [0.90, 

0.98] 

28 1.20 1.06 1.14 0.12 [0.09, 

0.15] 

0.67 [0.53, 

0.79] 

1.16 1.00 1.09 0.15 [0.10, 

0.23] 

0.73 [0.60, 

0.85] 

29 1.10 1.01 1.06 0.09* [-0.03, 

0.16]* 

0.24 [0.05, 

0.42] 

       

30 1.06 1.02 1.05 0.05* [0.02, 

0.09]* 

0.38 [0.24, 

0.52] 

       

31 1.00 0.88 0.95 0.13 [0.07, 

0.18] 

0.62 [0.48, 

0.75] 

0.95 0.90 0.93 .06* [0.03, 

0.12] 

0.40 [0.23, 

0.56] 

32 0.94 0.89 0.92 0.05* [0.02, 

0.07] 

0.23 [0.11, 

0.35] 

       

33 0.85 0.75 0.82 0.13 [0.09, 

0.19] 

0.41 [0.29, 

0.52] 

0.84 0.76 0.82 .09* [0.04, 

0.13] 

0.28 [0.16, 

0.40] 

34 0.98 1.00 0.98 -0.02* [-0.06, 

0.02]* 

-0.15* [-0.32, 

0.03] 

       

 
b Curves were calculated from trials when the high- and low-priming sessions were conducted as the first session. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. LP = low priming. Grey highlight emphasizes which rats did not show a reliable and/or meaningful priming 

effect.
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Figure 13. The priming effect of electrical brain stimulation persists following 0.5 mg/kg of 

pimozide. These are representative data from rat 26. (a) Rate-cost curve following vehicle shows 

(b) a reliable and meaningful priming effect. (B) Rate-cost curve following 0.5 mg/kg of 

pimozide shows (c) a reliable and meaningful priming effect. In the effort-cost curves (a & c), 

broken lines represent means and shaded regions represent 95% CIs. In the violin plots (b & d), 

blue open-dots represent individual data points, red-filled dots represent outliers, green lines 

represent the median, red diamonds represent the mean, and blue boxes represent the 

interquartile range.
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Table 7 

 

Reward Rates at the Lowest Reward Cost in the Rate-Cost Curvesb following Vehicle and 0.5 mg/kg of Pimozide 

 

 Vehicle Pimozide (0.5 mg/kg) 

Rat 

No. 

Median Median 

Difference 

Cliff’s Delta Median Median 

Difference 

Cliff’s Delta 

  

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

 

HP 

 

LP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

26 1.20 1.06 1.14 0.11 [0.09, 

0.13] 

0.85 [0.78, 

0.91] 

1.16 0.96 1.06 0.18 [0.13, 

0.27] 

0.86 [0.80, 

0.91] 

28 1.12 0.93 1.02 0.19 [0.14, 

0.22] 

0.70 [0.61, 

0.79] 

1.03 0.90 0.95 0.14 [0.11, 

0.17] 

0.51 [0.38, 

0.63] 

29 1.10 0.95 1.03 0.14 [0.08, 

0.17] 

0.48 [0.36, 

0.59] 

1.04 0.92 0.97 0.13 [0.07, 

0.18] 

0.44 [0.33, 

0.55] 

30 0.97 1.02 1.00 -0.05* [-0.07, 

-0.02]* 

-0.15* [-0.25, 

-0.04]* 

       

32 0.90 0.86 0.88 0.04* [0.02, 

0.07] 

0.37 [0.19, 

0.54] 

       

33 0.83 0.72 0.78 0.13 [0.08, 

0.19] 

0.42 [0.30, 

0.53] 

0.78 0.76 0.78 0.03* [-0.02, 

0.09]* 

0.10 [-0.04, 

0.24]* 

 
b Curves were calculated  from trials when the high- and low-priming sessions were conducted as the first session. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. LP = low priming. Grey highlight emphasizes which rats did not show a reliable and/or meaningful priming 

effect. 
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4. Discussion 

Receipt of a reward enhances motivation to work for more, and this phenomenon is 

called the priming effect of rewards. Motivation to pursue a reward is affected by variables such 

as the strength and cost of reward. When electrical brain stimulation is used as a reward, we 

showed that its priming effect depends on these two variables. Specifically, the priming effect of 

electrical brain stimulation is more likely to be observed when the reward is intense and 

inexpensive. 

 In experiment 1, a new method was developed for measuring the priming effect of 

electrical brain stimulation. After it was observed that only a third of the rats showed a priming 

effect, experiment 2 aimed to reduce the variability in the incidence of a priming effect by 

examining how priming is affected by reward strength and cost. A priming effect was 

consistently observed in the rate-frequency and rate-cost curves when all trials from the 

counterbalanced sessions were analyzed. However, an effect of session order of the priming 

conditions may have exaggerated or mimicked a priming effect. To address this issue, only the 

first sessions were analyzed. Although the number of rats that showed a priming effect 

decreased, we are more confident that the resulting priming effect is bona fide. Lastly, 

experiment 3 examined if the priming effect depends on D2R signaling. The results showed that 

the priming effect of electrical brain stimulation persists following dopamine receptor 

antagonism with pimozide. 

4.1 Reward Strength & Effort Cost 

 Reward seeking is highest when the reward is intense and declines as the reward weakens 

(Edmonds & Gallistel, 1974; Miliaressis et al., 1986). Similarly, reward seeking is greatest when 

the reward cost is low and dissipates as the cost grows (Arvanitogiannis & Shizgal, 2008; 

Trujillo-Pisanty et al., 2014). Since the priming effect of rewards is a boost in motivation to seek 

rewards, it was thought that priming would be affected by reward strength and cost. 

 We showed that the priming effect of electrical brain stimulation occurs when a reward is 

intense and the cost is low. No other studies have examined the effect of reward cost on priming. 

Edmonds and Gallistel (1974) conducted the only other study on whether the priming effect is 

affected by reward strength. They measured eICSS at varying reward strengths to produce a rate-

frequency curve. Priming was found to enhance maximal performance for intense rewards, 

which is in accordance with the present study’s results. 
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 The findings from experiment 2 can explain the results from experiment 1. Only a third 

of the rats tested in experiment 1 showed a priming effect. There, only a single value of reward 

strength (178 pps) was used, which may have been perceived as too weak for some rats to elicit a 

priming effect. Although experiment 2 shows that a priming effect is more likely to be observed 

when the reward is intense, there was still a large amount of variability in the incidence of a 

priming effect. This is discussed in the following sections. 

4.2 A Novel Method for Measuring the Priming Effect of Electrical Brain Stimulation 

 We developed a new method to measure the priming effect of electrical brain stimulation 

based on rates of lever pressing. To earn a reward, rats were required to press a setup lever to 

activate the extension of a second, separate reward lever that was armed on a pre-determined 

reinforcement schedule. During preliminary tests, only a single reward lever was used. It was 

observed that rats did not consistently start a trial in the same location and they performed 

superstitious behaviors, which added variability to the response latency and reward rate 

measures. Introduction of a setup lever required each rat to start a trial in the same location and it 

helped eliminate superstitious behaviors during operant conditioning. 

The work performed on the setup and reward levers may be considered comparable to the 

work performed on the start box, alley, and goal box of the runway paradigm. In the runway 

paradigm, rats receive priming stimulation in a start box. They then travel to the end of an alley 

to reach a goal box that contains a lever that delivers rewarding brain stimulation when pressed 

(Gallistel et al., 1974). Pressing the setup lever in our paradigm is similar to a rat exiting the start 

box in the runway paradigm. Afterwards, in our paradigm, the rat presses the reward lever to 

earn a reward. This is comparable to the rat traveling the distance of the alley to reach the goal 

box to lever press for rewarding brain stimulation. Thus, the paradigm used here was developed 

to be similar to the runway paradigm. 

In experiment 1, the reward lever was armed on VI10 schedule. Only a third the rats 

tested showed a priming effect. A potential reason for this result is that a single value of reward 

strength (178 pps) was used for all rats. Due to variability in electrode placement, 178 pps of 

stimulation could have been intense for one rat but weak for another rat. Another potential reason 

is that the rate of reward delivery on VI schedules is little affected by changes in the rate of 

responding. In that sense, increases in response rate in the high-priming condition were largely 

futile. 
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To address these issues and in an effort to optimize our paradigm, operant responding 

was measured at varying reward strengths and costs in experiment 2. To vary reward strength, 

we determined the highest pulse frequency that promotes eICSS for each rat and produces 

minimal to no motor effects. Varying reward cost required using a different reinforcement 

schedule. In a preliminary test, a cumulative hold-down schedule was implemented because it 

has previously been used to measure performance as a function of reward strength and cost in the 

reward-mountain model (Arvanitogiannis & Shizgal, 2008; Hernandez et al., 2010; Breton et al., 

2013; Trujillo-Pisanty et al., 2014; Solomon et al., 2015). Rats were required to depress a lever 

for four s to earn a reward. Results from our preliminary experiment showed an inconsistent 

priming effect (Ewusi-Boisvert, 2016). The cumulative hold-down schedule presents a similar 

problem to the VI schedule used in experiment 1: the rat has little control over how soon it can 

earn a reward. In contrast, in the runway paradigm, if the rat runs faster down the alley then it 

can obtain the reward sooner. Thus, in experiment 2, a ratio schedule was used because the rate 

of reward delivery in that schedule is related to the response rate. 

After applying these changes in experiment 2, rate-cost curves showed that 25% of the 

rats tested demonstrated invigorated maximal responding following high priming (Table 3). On 

the other hand, rate-frequency curves showed that 75% of the rats tested demonstrated a boost in 

maximal responding following high priming (Table 4). These results indicate that our new 

method is far from optimal. Nevertheless, it was observed in some rats that priming invigorates 

responding when the reward is intense and inexpensive. 

4.3 Variability in the Observation of the Priming Effect of Electrical Brain Stimulation 

 After refining the method for measuring the priming effect of electrical brain stimulation 

in experiment 2, the number of rats that showed a priming effect was still variable. In contrast, 

Reid et al. (1973) consistently showed a priming effect of electrical brain stimulation when using 

a runway paradigm. The magnitude of the priming effect varied among rats; nevertheless, they 

reported a 100% incidence of a priming effect. 

We observed a priming effect of electrical brain stimulation in 88% to 100% of the rats 

when all trials from the counterbalanced priming conditions were analyzed (Tables 1 & 2). 

However, an effect of session order of the priming conditions biased those results. Maximal 

performance was stable regardless of whether the high-priming session occurred before or after 

the low-priming session (Figure 7b & 8b). However, maximal performance was blunted when 
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the high-priming session occurred prior to the low-priming session (Figure 7c & 8c). This 

indicates that the session order effect inflated or falsely produced a priming effect when all 

sessions were analyzed. When data were analyzed from the high- and low-priming conditions 

that were conducted as the first session of the day, incidence of a priming effect varied from 25% 

to 75% of the rats (Tables 3 & 4). 

A plausible explanation for this result is that stimulation during the high-priming 

condition may have depleted dopamine levels. Hernandez et al. (2006) investigated the effect of 

prolonged MFB stimulation on tonic dopamine levels in the nucleus accumbens using in vivo 

microdialysis. Rats stimulated at a rate of five trains per minute showed elevated dopamine 

levels that plateaued during a two-hour stimulation period. When 40 trains were delivered per 

minute, dopamine levels increased but then sharply decreased after approximately 30 minutes of 

stimulation. Dopamine depletion has been related to reduced motivation to seek rewards 

(Cousins et al., 1996; Salamone et al., 2001, 2009). Therefore, it is possible that high priming 

stimulation depleted dopamine levels and consequently suppressed maximal performance in the 

following low-priming condition. 

4.4 The Priming Effect of Electrical Brain Stimulation & Pimozide 

 It is well-established that dopamine transmission is important for reward and motivation. 

Pimozide has been shown to attenuate eICSS but does not abolish the capacity to perform 

(Franklin & McCoy, 1979). Thus, the rewarding effect of brain stimulation depends on D2R 

signaling. Dopamine depletion and dopamine receptor antagonism attenuate willingness to work 

for reward (Aberman & Salamone, 1999; Salamone et al., 2001). Based on these studies 

evidence, it would be expected that the priming effect of rewards is mediated by dopamine 

transmission. 

On the contrary, Wasserman et al. (1982) showed that primed rats continue to run faster 

to the end of the alley to lever press for rewarding brain stimulation following administration of 

high doses of pimozide. Similarly, when rate-cost curves were measured in experiment 3, a 

majority of the rats that showed a priming effect in response to vehicle also showed a priming 

effect following pimozide. However, pimozide binds to dopamine D2Rs, D3Rs, and serotonin 

5HT7 receptors. Thus, the involvement of dopamine transmission in the priming effect cannot be 

ruled out based on studies with pimozide. 
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4.5 Conclusion 

 In conclusion, the priming effect of electrical brain stimulation is sensitive to reward 

strength and cost. With our new method that measures the priming effect based on rates of lever 

pressing, we showed that the priming effect is more likely to be observed when the reward is 

intense and inexpensive. In accordance with previous research, the priming effect of electrical 

brain stimulation is not blocked by pimozide. Nevertheless, additional studies are needed to 

provide more compelling evidence for whether the priming effect of electrical brain stimulation 

depends on dopamine transmission. 
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Chapter 3: Dopamine D2-like Receptor Antagonism Does Not Block the Priming Effect of 

Electrical Brain Stimulation 

 

Abstract 

Electrical brain stimulation elicits a rewarding effect and a priming effect. The rewarding effect 

is expressed as the proclivity to seek electrical brain stimulation. The priming effect is expressed 

as invigoration of that behavior following receipt of an intense reward. Reward and motivation 

have both been linked with dopamine transmission. However, there is evidence that indicates 

that the priming effect of electrical brain stimulation may not rely on dopamine transmission. 

Here, we used a novel method to investigate whether dopamine transmission is necessary for the 

priming effect of electrical brain stimulation. In experiment 1, a behavioral design was modified 

from a previous study (Chapter 2) in the hope of obtaining a more consistent priming effect. To 

assess if the priming effect of electrical brain stimulation depends on dopamine transmission, a 

dopamine D2 receptor family (D2R) antagonist, eticlopride, was administered at two doses (0.1 

mg/kg, 0.05 mg/kg) in experiment 2. The method used in the present study yielded a more 

consistent priming effect than in the previous study (Chapter 2). Furthermore, we found that the 

priming effect of electrical brain stimulation persists following dopamine receptor antagonism. 

These results indicate that although dopamine transmission is important role for reward and 

motivation, we provide evidence that the priming effect does not depend on D2R signaling.  
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1. Introduction 

 Electrical brain stimulation produces a rewarding effect and a priming effect (Wasserman 

et al., 1982). These effects have been studied using a runway paradigm that consists of a start 

box, an alley, and a goal box. Rats are primed with non-contingent brain stimulation in the start 

box. Following a delay, a start door opens to allow rats to travel to the goal box located at the 

end of the alley, which contains a lever that delivers brain stimulation when pressed. The 

rewarding effect of the response-contingent brain stimulation received in the goal box is 

expressed as the proclivity of the rat to run down the alley and the value it assigns to the 

stimulation available there. The priming effect of the non-contingent start-box stimulation is 

expressed as a transient increase in running speed to lever press for rewarding brain stimulation 

in the goal box. 

 The priming effect discussed here is different from the identically named priming effect 

observed in a reinstatement model of drug relapse. In that model, rats are trained to self-

administer drugs of abuse such as cocaine or heroin (de Wit & Stewart, 1981, 1983). That drug-

seeking behavior is later extinguished. Presentation of a non-contingent sample of the drug 

(priming) reinstates drug seeking. That type of priming effect is commonly referred to as 

priming-induced reinstatement, which is the re-establishment of a learned behavior that had 

previously been extinguished. In contrast, the priming effect of rewards discussed here is the 

invigoration a well-established behavior that has not undergone extinction. 

Dopamine transmission is highly implicated in reward (Edmonds & Gallistel, 1977; 

Franklin, 1978; Franklin & McCoy, 1979; Gallistel & Karras, 1984; White, 1989; Berridge & 

Robinson, 2003; Wise, 2008). For example, Franklin and McCoy (1979) showed that following 

pimozide administration, a D2 family receptor (D2R) antagonist, electrical intracranial self-

stimulation (eICSS) declines and eventually disappears. Presentation of a Pavlovian cue paired 

with reward re-establishes responding for brain stimulation. This indicates that pimozide did not 

abolish performance capacity but instead diminished the rewarding effect of brain stimulation. In 

addition, photoactivation of ventral tegmental area (VTA) dopamine neurons is sufficient to 

promote optical intracranial self-stimulation (oICSS) (Witten et al., 2011; Steinberg et al., 2014). 

 Dopamine transmission is also implicated in the motivating effect of reward. For 

example, the incentive salience theory (Robinson & Berridge, 1993; Berridge & Robinson, 1998) 

posits separate neural systems mediate wanting (incentive salience) and liking (hedonic value) of 
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reward, and that the dopamine system specifically mediates wanting (Wyvell & Berridge, 2000). 

In support of this, elevating dopamine levels enhances rats’ willingness to work for rewarding 

brain stimulation at a high opportunity cost, which is the required work time to earn a reward 

(Hernandez et al., 2010, 2012). In contrast, D2R antagonism diminishes willingness to work for 

rewarding brain stimulation at high opportunity cost (Trujillo-Pisanty et al., 2014). 

Based on those studies, it is expected that the priming effect of electrical brain 

stimulation is also mediated by dopamine transmission. On the contrary, the priming effect of 

electrical brain stimulation persists following D2R antagonism with pimozide (Wasserman et al., 

1982; Chapter 2). However, pimozide also has affinity for serotonin 5HT7 receptors. Thus, the 

involvement of dopamine transmission in the priming effect of rewards cannot be ruled out based 

on those studies. 

In the present study, we studied whether dopamine transmission is necessary for the 

priming effect of electrical brain stimulation using a more selective D2R antagonist. In 

experiment 1, the behavioral design previously used in Chapter 2 was modified to become more 

analogous to the runway paradigm used by Gallistel and colleagues (Reid et al., 1973; Edmonds 

& Gallistel, 1974; Gallistel et al., 1974; Stellar & Gallistel, 1975; Wasserman et al., 1982). This 

was done in the hope of eliminating a discrepancy between the results reported in Chapter 2 and 

those reported by Reid et al. (1973). Whereas a priming effect was seen in every rat tested by 

Reid et al. (1973), we observed them in 25% to 75% of our rats in Chapter 2. In experiment 2, 

we examined whether administration of a selective D2R antagonist, eticlopride, would block the 

priming effect. This drug is a more selective D2R antagonist (Hall et al., 1985; Martelle & 

Nader, 2008) than pimozide, the drug employed by Wasserman et al. (1982) and in Chapter 2. 

We predicted that modifications to our method would improve the incidence of a priming effect 

of electrical brain stimulation, and that this priming effect would persist following D2R 

antagonism. 

2. Method 

2.1 Subjects 

 Male Long-Evans rats (bred at Concordia University, n = 8) were pair-housed in 

Plexiglas® cages (46 cm length x 26 cm width x 21 cm height) located in a vivarium with a 

reversed 12-hour light-dark cycle (lights off from 0800 to 2000 h). Throughout the study, rats 

had ad libitum access to food and water. A mix of Teklad corncob and Sani-Chips® (Envigo, 
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Madison, Wisconsin, USA) was used as bedding and cages were enriched with shredded paper 

and a tunnel toy. After the rats received bilateral electrode implantations, they were housed 

individually for the remainder of the experiment. Behavioral tests were conducted during the 

dark phase of the diurnal cycle. The protocols used were in accordance with guidelines 

established by Concordia University’s Animal Research Ethics Committee’s Terms of Reference 

and the Canadian Council on Animal Care’s Guide to the Care and Use of Experimental 

Animals. 

2.2 Electrode Implantation 

Each rat weighed at least 350 g at the time of surgery. Ketamine-xylazine (10 mg/kg, 

Bioniche, Belleville, ON, Canada; Bayer Healthcare, Toronto, ON, Canada) was administered 

intraperitoneally (i.p) to induce anesthesia. This was followed by a subcutaneous (s.c.) injection 

of atropine sulfate (0.05 mg/kg, Sandoz, Boucherville, QC, Canada) to reduce bronchial 

secretions and penicillin (0.3 ml, s.c., Vetoquinol, Lavaltrie, QC, Canada) to prevent infections. 

Xylocaine jelly (AstraZeneca, Mississauga, ON, Canada) was applied to the external auditory 

meatus to diminish discomfort due to the stereotaxic ear bars. After placing the rat in the 

stereotaxic frame, a mixture of isoflurane and oxygen (Pharmaceutical Partners of Canada Inc., 

Richmond Hill, ON, Canada) was delivered through a snout mask to maintain anesthesia. Four to 

six burr holes were drilled into the skull and stainless-steel screws were threaded. The copper 

wire end of the current return (anode) was wrapped around two screws, and the opposite end had 

a gold-plated Amphenol connector. Monopolar stainless-steel electrodes were custom-made from 

insect pins (size: 000) insulated with Formvar enamel, leaving 0.5 mm of tip bare. The free end 

of the current-return wire was wrapped around two skull screws (which served as the anode), and 

the opposite end was terminated in a gold-plated Amphenol connector. Electrodes were 

bilaterally aimed at the lateral hypothalamic level (LH, AP: -2.8 from bregma, ML: ±1.7, DV: -

8.8-9.0 from skull surface) of the medial forebrain bundle (MFB) and secured to the skull with 

dental acrylic. The Amphenol connectors were inserted into a McIntyre miniature connector 

(Scientific Technology Centre, Carleton University, Ottawa, ON, Canada) that was attached to 

the skull and skull-screw anchors using dental acrylic. The rats were allowed at least one week to 

recover from the surgery before self-stimulation training commenced. See Figure 1 for electrode 

placements. 
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Figure 1. Placement of electrode tips. Each electrode tip was located within the boundary of the 

LH level of the MFB, as determined by the Paxinos and Watson (2007) atlas. Due to issues with 

tissue collection, the electrode placement for rat 47 is missing.   
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2. 3 Apparatus 

The operant chambers (34 cm long x 24 cm wide x 66 cm high) were composed of wire-

mesh floors (8 cm above the base), a transparent Plexiglas® front panel, an amber house light (10 

cm above the mesh floor), and two retractable levers (ENV-112B, MED Associates, St. Albans, 

Vermont, USA). A lever was located on the left and right sides of the box and a cue light (1 cm) 

positioned 4 cm above each lever. An electrical swivel centered at the top of the box allowed 

animals to move freely with the stimulation leads. 

The temporal parameters of the electrical stimulation and pulse amplitude were 

determined by a computer-controlled digital pulse generator and constant-current amplifier, 

respectively. Experiments were controlled by, and data were collected with, a custom-written 

computer program (“PREF3”, Steve Cabilio, Concordia University, Montreal, QC, Canada). 

Training. Rats were each screened to determine which electrode (left or right 

hemisphere) and which electrical current promoted vigorous lever pressing with minimal to no 

motor effects. The rats responded to currents between 210 to 440 microamperes (μA). This is a 

common range of current that promotes eICSS of the LH (Hernandez et al., 2007; Solomon et 

al., 2015). The pulse frequency of the priming and reward stimulation ranged from 184 pulses 

per second (pps) to 242 pps. The settings determined for each rat were used throughout the 

subsequent experiments. 

Rats were trained to press a single lever for electrical brain stimulation on a fixed-ratio 

eight (FR8) schedule. The reward stimulation consisted of a single 0.5-second (s) train of 0.1-

millisecond (ms) cathodal pulses. Once the operant behavior was stable, rats were trained in the 

testing paradigm. Rats learned to press a setup that did not deliver reward but activated the 

extension of a reward lever that was located on the opposite wall of the chamber and armed on 

an FR1 schedule. Initially, the setup lever was armed on an FR1 schedule; the response 

requirement was then increased gradually to FR8. 

As in our previous method for measuring the priming effect of electrical brain stimulation 

(Chapter 2), the purpose of the setup lever was for the rat to be located in the same position at the 

start of each trial and to prevent superstitious behaviors. However, in the previous studies, the 

response requirement on the setup lever was only one press followed by a variable number of 

presses on the reward lever to earn brain stimulation. In the present study, rats pressed the setup 
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lever eight times, which activated the extension of the reward lever. A single response on the 

reward lever delivered a single train of brain stimulation. 

Testing. Rats initially underwent a warm-up session during which they pressed a single 

lever for electrical brain stimulation. The test session commenced following the warm-up. As 

illustrated in Figure 2b, before a trial started there was a 30-s inter-trial interval (ITI) that 

consisted of a waiting period, a pretrial cues period, and a delay. The first component of the ITI 

was a waiting period, during which the house light remained off for 20 s. The waiting period was 

followed by delivery of pretrial cues that signaled the start of a trial. Cues included flashing of 

the amber house light (10 cycles of 0.5 s on, 0.5 s off) and delivery of priming stimulation. On 

primed trials, the reward lever extended and was armed on an FR1 schedule. The reward lever 

remained extended for 20 s, giving the rats the opportunity to press for 10 separate priming 

stimulations that consisted of 0.5-s trains of 0.1ms cathodal pulses. After completing each FR1 

response requirement, there was a 1-s timeout period during which the priming stimulation was 

delivered and the reward lever retracted. The 20-s timer was paused during this timeout period. 

After the last priming stimulation was obtained, there was a 5-s delay. On non-primed trials, the 

reward lever did not extend at the end of the 10-s flashing period of the amber house light. 

Instead, the end of the ITI was followed by the post-priming delay. During the delay, the house 

light returned to its off state and the reward lever remained retracted. At the end of the delay, a 

trial began with the extension of the setup lever and its cue light. The rat was required to press 

the setup lever eight times (FR8) to activate the extension of the reward lever, which was armed 

on a FR1 schedule. Upon completion of the response requirement and receipt of the reward 

stimulation, a new ITI began. If the setup lever was not pressed, then the reward lever did not 

extend and a new ITI immediately commenced. 

Each test session consisted of 42 trials. The first two trials of a session were primed trials 

that served as warmup trials and were excluded from analyses. Subsequent trials consisted of 

four cycles of five primed and five non-primed trials (Figure 2c). Each test session lasted 

approximately 35 minutes. Data from each rat in each experimental condition were collected 

from at least 10 test sessions, unless otherwise stated. 
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Figure 2. An image of the operant-conditioning chamber and schematics of test procedures. (a) 

The operant-conditioning chamber contains a setup lever (left) and a reward lever (right). (b) 

Preceding a trial was an ITI, which started with a waiting period. This was followed by a pretrial 

cues period, during which cues were delivered to signal that the start of a trial was approaching. 

On primed trials, the reward lever extended to allow rats to self-administer priming stimulations. 

The pretrial cues period was followed by a delay. A trial commenced with the extension of the 

setup lever. Eight presses (FR8) on the setup lever activated the extension of the reward lever 

located at the opposite side of the chamber. A single press on the reward lever delivered 
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rewarding brain stimulation and initiated the start of a new ITI. The duration of each event 

within an ITI or trial is mentioned in the method section. (c) The first two trials (T1-T2) in a test 

were primed trials that served as “learning” trials, which were excluded from data analyses. 

Subsequent “keeper trials” (T3-T42) were analyzed. The keeper trials consisted of a set of five 

primed trials and five non-primed trials, which were repeated in four cycles to reach a total to 40 

keeper trials. (d) Tests with drug were conducted in three-day cycles consisting of a vehicle day, 

drug day, and washout day. A single dose of eticlopride was administered in at least 10 separate 

tests, unless otherwise stated. 
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2.4 Experiment 1 

 We did not consistently observe a priming effect of electrical brain stimulation in Chapter 

2. In contrast, Reid et al. (1973) reported that the priming effect of electrical brain stimulation 

was observed in 100% of the rats tested when measured using a runway paradigm. In the hope of 

obtaining a more consistent priming effect, we modified the operant paradigm used in Chapter 2 

to become more analogous to the runway paradigm used by Gallistel and colleagues (Reid et al., 

1973; Edmonds & Gallistel, 1974; Gallistel et al., 1974; Stellar & Gallistel, 1975). 

A chained schedule was in effect, requiring rats to press a setup lever eight times to gain 

access to a reward lever. The work performed in meeting the response requirement on the setup 

lever could be considered analogous to the work performed in traversing the runway. Once the 

rat completed the response requirement on the setup lever the reward lever became available. 

This is comparable to the rat reaching the goal box located at the end of the alley. When rats 

reached the goal box, they pressed the lever in the goal box once (FR1) to obtain a single train of 

brain stimulation. Likewise, in the present study, once the reward lever became available, a 

single press on the reward lever delivered electrical brain stimulation. 

An additional change implemented in the present study was the mode of delivering the 

priming stimulations. In chapter 2, priming stimulations were automatically delivered to the rats. 

These high frequency priming stimulations could have produced aversive effects that affected the 

incidence of a priming effect. Here, rats self-administered the priming stimulations. Allowing the 

rats to control the pace of receiving the priming stimulations was thought to reduce the aversive 

effects of high frequency priming stimulations. Gallistel et al. (1974) showed that self-

administered priming stimulations can produce a priming effect of electrical brain stimulation. 

All in all, these modifications to the operant design were hypothesized to improve the incidence 

of a priming effect. 
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2.5 Experiment 2 

 To examine the role of dopamine transmission in the priming effect of electrical brain 

stimulation, eticlopride, a D2R antagonist, was administered. Eticlopride (0.1 or 0.05 mg/kg, 

Sigma, St. Louis, MO) was dissolved in physiological saline (0.9%). These doses were based on 

data from a previous pilot study (data not shown) and Lazenka et al. (2016). Vehicle (0.9% 

physiological saline) or one of the two doses of eticlopride was administered intraperitoneally 

(i.p) 30 minutes prior to testing. Tests were conducted in three-day cycles consisting of a vehicle 

day, drug day, and washout day (Figure 2d). Tests were first conducted at the highest dose of 

eticlopride (0.1 mg/kg) followed by the lower dose (0.05 mg/kg). We aimed to collect 10 

vehicle-drug cycles for each dose of eticlopride, unless otherwise stated, before collecting data 

for the next lower dose. 

2.6 Statistical Analyses 

For each rat, data were analyzed for each priming condition (high or no priming) and 

drug dose (0, 0.1, or 0.5 mg/kg). The mean and median were calculated for both initial speed and 

reward rate measures. The medians were used to calculate effect sizes and difference ratios. Data 

were analyzed and graphs were plotted using custom-written MatLab scripts (The MathWorks, 

Natick, MA). 

Initial Speed. Initial speed is the inverse of the latency (s) to press the setup lever 

following lever extension. A larger initial speed number indicates that a rat was quicker to 

initiate the first press on the setup lever. This is akin to how fast a rat exited the start box to 

traverse the alley in the runway paradigm.  

Reward Rate. Reward rate is the inverse of the total time (s) elapsed between the start of 

the trial and the delivery of the reward. Higher reward rates reflect more vigorous reward pursuit. 

This transformation is analogous to the running speed measure reported in Gallistel’s 

investigations on the priming effect of electrical brain stimulation (Gallistel et al., 1974; Stellar 

& Gallistel, 1975; Wasserman et al., 1982). 

Confidence Intervals. Bootstrapping (Efron & Tibshirani, 1986) was used to determine 

mean and median speeds and their surrounding confidence intervals (CI). Data from each 

priming condition were randomly sampled with replacement to generate 1000 resampled 

datasets. The upper and lower 2.5% of the distribution were defined as the bounds of a 95% CI. 
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Distributions. The distribution of the data was visualized with violin plots based on 

kernel-density estimation (KDE). This is a non-parametric method for estimating the probability- 

density function of a random variable, such as response speed. In contrast to traditional statistics, 

KDE addresses the data smoothing problem without prior parametric assumptions (e.g., 

normality). Instead, KDE creates smooth distributions based on a given sample of data. 

Cliff’s Delta. Visual inspection shows that the speed measures are both skewed and 

bimodal. Thus, a non-parametric analysis of effect size was employed. Cliff’s delta is an effect 

size measure used for ordinal data that does not require assumptions about the distribution of the 

data. A Cliff’s delta value near one indicates that high priming produced reliably faster response 

speeds compared to no priming. No difference between the high- and no-priming medians would 

yield a Cliff’s delta value of zero. Bootstrapping (Efron & Tibshirani, 1986) with replacement 

was used to calculate both Cliff’s delta and its surrounding 95% CI. 

Difference ratio. A statistic was developed to assess the magnitude of the difference 

between speed measures obtained in the high- and no-priming conditions. The ratio of the 

difference between the two group medians was first calculated by means of, bootstrapping with 

replacement (1000 resampled medians for both the high and no priming conditions). The 

difference between the resampled medians was then normalized by the resampled grand median 

to yield the median difference ratio. 

Criteria for a priming effect. A two-criterion approach was used to determine whether 

the results demonstrate a reliable and meaningful behavioral difference between the high- and 

no-priming conditions. The first criterion was a Cliff’s delta greater than zero surrounded by a 

95% CI excluding zero. The second criterion was a median difference ratio equal to or greater 

than .10 surrounded by a 95% CI excluding zero. A difference that met the criterion for Cliff’s 

delta but not the median-difference-ratio criterion was considered statistically reliable but too 

small to be regarded as meaningful. 

3. Results 

3.1 Experiment 1: Self-Administered Priming Stimulation 

Based on the two-criterion approach, we showed a reliable and meaningful priming effect 

of electrical brain stimulation with our modified method. Following high priming, seven out of 

eight rats showed a 25% to 98% increase in initial speed relative to the grand median (Figure 4a 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
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& 4c; Table 1). All eight rats showed a 13% to 43% increase in reward rate relative to the grand 

median in response to high priming (Figure 4b & 4d; Table 2). 
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Figure 3. The priming effect is present when rats self-administer the priming stimulations. These 

are representative data from rats 44 and 58. Rat 44 shows (a) no priming effect on the initial 

speed measure but (b) does show a meaningful and reliable priming effect on the reward rate 

measure. (c & d) Rat 58 shows a reliable and meaningful priming effect on both speed measures. 

Blue open-dots represent individual data points, red-filled dots represent outliers, the green line 

represents the median, the red diamond represents the mean, and blue boxes represent the 

interquartile range.  
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Table 1 

 

Initial Speed following Self-Administered Priming Stimulation 

 

Rat No. Median Median Difference Cliff’s Delta 

  

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

44 0.50 0.53 0.52 -0.05* [-0.15, 0.06]* -0.02* [-0.09, 0.06]* 

45 0.98 0.75 0.93 0.25 [0.12, 0.30] .034 [0.27, .041] 

46 1.56 0.81 1.14 0.65 [0.60, 0.72] 0.81 [0.77, 0.85] 

47 1.61 0.65 1.10 0.88 [0.80, 0.97] .085 [0.80, 0.88] 

48 1.25 0.62 0.90 0.70 [0.65, 0.76] .90 [0.87, 0.93] 

50 1.92 1.30 1.56 0.40 [0.32, 0.47] 0.71 [0.66, 0.76] 

55 1.52 0.93 1.25 0.48 [0.44, 0.52] 0.87 [0.83, 0.91] 

58 1.43 0.55 0.90 0.98 [.89, 1.09] 0.67 [0.60, 0.72] 

 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. NP = no priming. Grey highlight emphasizes which rats did not show 

a reliable and/or meaningful priming effect. 
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Table 2 

 

Reward Rate following Self-Administered Priming Stimulation 

 

Rat No. Median Median Difference Cliff’s Delta 

  

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

44 0.19 0.16 0.17 0.13 [0.09, 0.17] 0.24 [0.17, 0.31] 

45 0.28 0.23 0.25 0.20 [0.18, 0.23] 0.51 [0.44, 0.57] 

46 0.34 0.22 0.26 0.43 [0.39, 0.45] 0.89 [0.86, 0.91] 

47 0.31 0.21 0.25 0.39 [0.36, 0.41] 0.81 [0.77, 0.85] 

48 0.25 0.19 0.22 0.27 [0.24, 0.30] 0.66 [0.61, 0.70] 

50 0.35 0.31 0.32 0.13 [0.11, 0.15] 0.54 [0.47, 0.60] 

55 0.30 0.23 0.26 0.28 [0.25, 0.31] 0.67 [0.60, 0.73] 

58 0.22 0.15 0.18 0.39 [0.36, 0.42] 0.74 [0.69, 0.79] 

 

Notes. HP = high priming. NP = no priming. Grey highlight emphasizes which rats did not show 

a reliable and/or meaningful priming effect. 
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3.2 Experiment 2: Eticlopride & The Priming Effect of Electrical Brain Stimulation 

 To examine if the priming effect of electrical brain stimulation depends on D2R 

signaling, rats were tested with eticlopride (0.1mg/kg, n = 6; 0.05 mg/kg, n = 3). Of the six rats 

tested with 0.1 mg/kg of eticlopride, all six rats showed a reliable and meaningful priming effect 

in response to vehicle on the initial speed measure. Five rats showed a reliable and meaningful 

priming effect in response to vehicle on the reward rate measure. Relative to the grand median, 

high priming increased initial speed by 24% to 89% (Figure 5a; Table 3) and it increased reward 

rate by 23% to 93% (Figure 5b; Table 3). In response to 0.1 mg/kg of eticlopride, two rats 

showed a reliable and meaningful priming effect in the initial speed and reward rate measures. 

They showed a 58% to 60% increase in initial speed relative to the grand median following high 

priming (Figure 5c; Table 4) and a 34% to 43% increase in reward rate relative to the grand 

median following high priming (Figure 5d; Table 4). 

All three rats tested with 0.05 mg/kg of eticlopride showed a reliable and meaningful 

priming effect in the initial speed measure in response to vehicle and eticlopride. Relative to the 

grand median, high priming increased initial speed by 15% to 89% following vehicle and 15% to 

55% following 0.05 mg/kg of eticlopride (Figure 6a & 6c; Table 5). Two out of the three rats 

showed a reliable and meaningful priming effect in the reward rate measure in response to 

vehicle and eticlopride. Relative to the grand median, high priming increased the reward rate by 

22% to 28% in response to vehicle and 26% to 28% in response to eticlopride (Figure 6b & 6d; 

Table 6). 
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Figure 4. Two of out six rats show a priming effect following both vehicle and 0.1 mg/kg of 

eticlopride. These are representative data from rat 47. (a) Initial speed and (b) reward rate in 

response to vehicle. (a) Initial speed and (b) reward rate in response to 0.1 mg/kg of eticlopride. 

Blue open-dots represent individual data points, red-filled dots represent outliers, the green lines 

represent medians, red diamonds represent means, and blue boxes represent interquartile ranges.  
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Table 3 

Initial Speed following Self-Administered Priming Stimulation: Vehicle vs. 0.1 mg/kg Eticlopride 

 

 Vehicle Eticlopride (0.1 mg/kg) 

Rat 

No. 

Median Median 

Difference 

Cliff’s Delta Median Median 

Difference 

Cliff’s Delta 

  

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

 

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

46a 1.56 1.15 1.41 0.31 [0.21, 

0.39] 

0.89 [0.79, 

0.97] 

1.43 0.82 1.13 0.58 [0.39, 

0.94] 

0.70 [0.46, 

0.90] 

47 1.64 0.83 1.45 0.55 [0.47, 

0.61] 

0.87 [0.81, 

0.92] 

0.85 0.45 0.65 0.60 [0.36, 

1.23] 

0.54 [0.42, 

.064] 

48 1.16 0.89 1.05 0.25 [0.18, 

0.33] 

0.41 [0.29, 

0.53] 

0.92 0.78 0.85 0.14 [-0.05, 

0.32]* 

0.23 [0.05, 

0.38] 

50a 2.94 1.38 1.87 0.84 [0.50, 

1.32] 

0.81 [0.65, 

0.92] 

1.25 1.09 1.11 0.14 [-0.53, 

0.80]* 

0.21 [0.00, 

0.40]* 

55 1.29 0.69 0.84 0.70 [0.54, 

0.81] 

0.59 [0.50, 

0.68] 

0.58 0.57 0.58 0.02* [-0.10, 

0.15]* 

0.08 [0.00, 

.018]* 

58 1.39 1.06 1.27 0.24 [0.14, 

0.30] 

0.24 [0.13, 

0.33] 

0.63 0.64 0.64 -0.09* [-0.71, 

0.54]* 

0.00 [-0.14, 

0.15]* 

 
a Data are from two test sessions only. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. NP = no priming. Grey highlight emphasizes which rats did not show a reliable and/or meaningful priming 

effect. 
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Table 4 

Reward Rate following Self-Administered Priming Stimulation: Vehicle vs. 0.1 mg/kg Eticlopride 

 

 Vehicle Eticlopride (0.1 mg/kg) 

Rat 

No. 

Median Median 

Difference 

Cliff’s Delta Median Median 

Difference 

Cliff’s Delta 

  

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

 

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

46a 0.33 0.23 0.27 0.34 [0.26, 

0.42] 

0.93 [0.83, 

0.99] 

0.33 0.21 0.27 0.43 [0.34, 

0.51] 

0.90 [0.68, 

1.00] 

47 0.33 0.24 0.28 0.34 [0.30, 

0.38] 

0.77 [0.70, 

0.84] 

0.29 0.21 0.24 0.34 [0.24, 

0.43] 

0.65 [0.55, 

0.76] 

48 0.78 0.24 0.22 0.09* [0.05, 

0.13] 

0.23 [0.12, 

0.34] 

       

50a 0.39 0.32 0.34 0.19 [0.13, 

0.24] 

0.64 [0.43, 

0.82] 

0.32 0.28 0.30 0.13 [-0.01, 

0.59]* 

0.32 [0.16, 

0.47] 

55 0.25 0.19 0.21 0.29 [0.24, 

0.34] 

0.59 [0.50, 

0.67] 

0.20 0.18 0.19 0.09* [0.02, 

0.17] 

0.22 [0.11, 

0.32] 

58 0.22 0.19 0.21 0.16 [0.10, 

0.20] 

0.26 [0.16, 

0.36] 

0.19 0.19 0.19 -0.02* [-0.22, 

0.13]* 

0.07 [-0.08, 

0.21] 

 
a Data are from two test sessions only. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. NP = no priming. Grey highlight emphasizes which rats did not show a reliable and/or meaningful priming 

effect.
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Figure 5. The priming effect persists following 0.05 mg/kg of eticlopride. These are 

representative data from rat 46. (a) Initial speed and (b) reward rate in response to vehicle. (a) 

Initial speed and (b) reward rate in response to 0.05 mg/kg of eticlopride. Blue open-dots 

represent individual data points, red-filled dots represent outliers, the green lines represent 

medians, red diamonds represent means, and blue boxes represent interquartile ranges.  
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Table 5 

Initial Speed following Self-Administered Priming Stimulation: Vehicle vs. 0.05 mg/kg Eticlopride 

 

 Vehicle Eticlopride (0.05 mg/kg) 

Rat 

No. 

Median Median 

Difference 

Cliff’s Delta Median Median 

Difference 

Cliff’s Delta 

  

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

 

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

46 1.69 1.19 1.45 0.34 [0.28, 

0.39] 

0.84 [0.77, 

0.89] 

1.61 1.10 1.37 0.38 [0.27, 

0.46] 

0.68 [0.59, 

0.76] 

48b 0.92 0.79 0.85 0.15 [0.01, 

0.28] 

0.16 [0.05, 

0.27] 

0.97 0.83 0.88 0.15 [0.03, 

0.29] 

0.19 [0.04, 

0.36] 

50 3.23 1.49 1.90 0.89 [0.71, 

1.13] 

0.80 [0.74, 

0.90] 

2.27 1.33 1.64 0.55 [0.45, 

0.66] 

0.62 [0.52, 

0.70] 

 

b Data are from nine test sessions only. 

Notes. HP = high priming. NP = no priming. Grey highlight emphasizes which rats did not show a reliable and/or meaningful priming 

effect.
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Table 6 

Reward Rate following Self-Administered Priming Stimulation: Vehicle vs. 0.05 mg/kg Eticlopride 

 

 Vehicle Eticlopride (0.05 mg/kg) 

Rat 

No. 

Median Median 

Difference 

Cliff’s Delta Median Median 

Difference 

Cliff’s Delta 

  

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

 

HP 

 

NP 

 

Grand 

 

Ratio 

 

95% CI 

 

δ 

 

95% CI 

46 0.34 0.25 0.30 0.28 [0.26, 

.32] 

0.80 [0.74, 

.86]     

0.33 0.25 0.28 0.28 [0.25 

0.31] 

0.81 [0.75, 

0.87] 

48b 0.18 0.18 0.18 0.03* [-0.02, 

0.09]* 

0.11 [0.00, 

0.22]* 

       

50 0.39 0.31 0.33 0.22 [0.19, 

0.26] 

0.68 [0.61, 

0.76] 

0.38 0.29 0.33 0.25 [0.21, 

0.29] 

0.76 [0.69, 

0.83] 

 

b Data are from nine test sessions only. 

* Did not meet the criteria for a reliable and/or meaningful priming effect. 

Notes. HP = high priming. NP = no priming. Grey highlight emphasizes which rats did not show a reliable and/or meaningful priming 

effect. 
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4. Discussion 

Electrical brain stimulation elicits a rewarding effect and a priming effect. The rewarding 

effect is expressed as an enhanced inclination to seek brain stimulation following receipt of an 

intense reward. The priming effect is thus interpreted as a transient boost in vigor to work for 

more brain stimulation. Dopamine transmission has been highly implicated in reward and 

motivation. However, results from Wasserman et al. (1982) and Chapter 2 of this thesis indicate 

that the priming effect might not depend on dopamine transmission. In accordance with those 

findings, we showed that the priming effect of electrical brain stimulation persists in response to 

a more selective D2R antagonist. Therefore, although dopamine transmission plays and 

important role in reward and motivation, the priming effect of electrical brain stimulation may 

not depend on D2R signaling. 

4.1 The Priming Effect of Electrical Brain Stimulation & Dopamine Transmission 

The priming effect of rewards manifests two key properties of an enhancement in 

motivation: it directs and invigorates goal-seeking behavior. Deutsch et al. (1964) showed that 

thirsty rats primed with electrical brain stimulation are more likely to choose brain stimulation 

over water in a T-maze. This shows that when faced with a competing reward, priming can direct 

preference for the primed stimulus. Gallistel et al. (1974) showed that following priming with 

electrical brain stimulation rats run faster to the end of a runway to work for rewarding brain 

stimulation. This increase in running speed reflects the invigorating effect of priming on reward 

seeking. 

Dopamine transmission has been implicated in many variables that affect motivation. The 

incentive salience hypothesis postulates that the midbrain dopamine system mediates the 

incentive salience (i.e., wanting) of reward but not the pleasurable aspects (i.e., liking) of reward 

(Robinson & Berridge, 1993; Berridge & Robinson, 1998). In support of this idea, Wyvell and 

Berridge (2000) showed that microinjections of amphetamine into the nucleus accumbens (NAc) 

shell potentiates cue-induced operant responding for sucrose (interpreted as a change in wanting) 

but not hedonic reactions to sucrose (interpreted as a change in liking). Another variable that 

affects motivation is the cost of obtaining rewards. Dopamine depletion in the NAc attenuates 

rats’ willingness to work for reward that requires a high effort cost (Aberman & Salamone, 1999; 

Salamone et al., 2001). Findings from the reward-mountain model are consistent with the idea 

that subjective costs are modulated by tonic dopamine (Hernandez et al., 2010, 2012; Trujillo-
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Pisanty et al., 2014). These findings demonstrate that dopamine transmission is important for 

motivation. 

The eticlopride doses employed here have previously been shown to reduce the 

rewarding effect, but not the priming effect, of brain stimulation and food. Lazenka et al. (2016) 

showed that eticlopride doses between 0.032 mg/kg and 0.1 mg/kg attenuate eICSS. In Chapter 

4, Evangelista et al. (2019) showed that 0.05 mg/kg of eticlopride diminishes responding for 

food. In a pilot study, we showed 0.1 mg/kg of eticlopride completely eliminates responding for 

food. The 0.1 mg/kg dose employed here may have been too high for most of the rats we tested. 

This may explain why the priming effect disappeared in the majority of the rats that received the 

higher dose of eticlopride (Tables 3 & 4). 

We showed that the priming effect persists following a lower, yet still behaviorally 

effective, dose of eticlopride (Tables 5 & 6). This is consistent with Wasserman et al.’s (1982) 

results that showed primed rats continue to run faster to the goal box to earn rewarding brain 

stimulation following D2R antagonism with pimozide. They observed that rats elicit a priming 

effect in the first few trials and then cease to perform altogether. Since the rewarding effect of 

brain stimulation is sensitive to dopamine receptor antagonism (Gallistel et al., 1982), pimozide 

diminishes performance across the session. Nevertheless, they showed a priming effect is present 

prior to pimozide blocking the rewarding effect of electrical brain stimulation. 

4.2 Improvements to Measuring the Priming Effect of Electrical Brain Stimulation 

 In Chapter 2, a new method was designed to measure the priming effect of electrical 

brain stimulation based on rates of lever pressing. A priming effect was observed in some, but 

not all, rats. One possible explanation for the inconsistent incidence of a priming effect is that the 

design used in Chapter 2 is not as analogous to the runway as we had thought.  

In the runway paradigm, rats are placed in a start box and the alley is blocked by a start 

door. A trial starts when the start door opens, and the rat travels to the goal box located at the end 

of the alley to lever press for brain stimulation. In the present study, the work performed in 

meeting the response requirement on the setup lever was thought to be analogous to the work 

performed in traversing the runway. After the rat completed the response requirement on the 

setup lever, a 180-degree turn was required to press the reward lever once (FR1) to earn 

rewarding brain stimulation. This is comparable to the rat reaching the goal box at the end of the 
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alley and pressing a lever there to obtain a reward. The chained schedule we employed was 

thought to be more analogous to the runway paradigm used by Gallistel et al. (1974). 

Another possible explanation for the inconsistent incidence of a priming effect of 

electrical brain stimulation seen in Chapter 2 is because of the manner in which the priming 

stimulations were received by the rats. In Chapter 2, priming stimulations were automatically 

delivered to the rats for free. However, it has been shown that rats prefer to work for a reward 

instead of receiving it for free (Jensen, 1963; Osborne, 1977; Inglis et al., 1997). Based on this, 

we thought that the incidence of a priming effect of electrical brain stimulation may be more 

likely if we allowed the rats to earn the priming stimulations instead of receiving them for free. 

Although the priming effect of electrical brain stimulation has largely been studied by 

delivering free samples of a reward (Edmonds & Gallistel, 1974; Gallistel et al., 1974; Stellar & 

Gallistel, 1975; Wasserman et al., 1982), it is also present when rewards are earned. Gallistel 

(1966) trained rats to traverse an alley to lever press for brain stimulation with no priming 

stimulation delivered in the start box. The ITI ranged from five s to 60 s. The response-

contingent goal-box stimulation transiently energized reward seeking in a subsequent trial when 

the ITI was short. In another study, Gallistel et al. (1974) trained rats to lever press for priming 

stimulation in the start box. Those rats ran faster to the goal box following receipt of response-

contingent priming stimulation earned in the start box. These studies showed that a priming 

effect of electrical brain stimulation can also be observed when rewards are earned, not free. 

After modifying our method to become more analogous to a runway and to allow rats to 

earn the priming stimulations, we observed a more consistent priming effect of electrical brain 

stimulation. In Chapter 2, a priming effect of electrical brain stimulation was observed in 25% to 

75% of the rats tested. Here, 88% of the rats were faster to start working for reward and 100% of 

the rats earned the reward faster (Tables 1 & 2). 

5. Conclusion 

 The present study shows that a more consistent priming effect of electrical brain 

stimulation can be observed when the behavioral paradigm is analogous to a runway. 

Furthermore, we obtained evidence consistent with the notion that the priming effect of electrical 

brain stimulation does not depend on D2R signaling. It is widely recognized that dopamine 

transmission plays an important role in reward and motivation. Nevertheless, evidence from the 
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present study indicates that it may not be necessary for certain aspects of motivation such as the 

priming effect. 
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Chapter 4: The Priming Effect of Food Persists Following Blockade of Dopamine 

Receptors 

 

Abstract 

The priming effect of rewards is a boost in the vigor of reward seeking resulting from the 

previous receipt of a reward. Extensive work has been carried out on the priming effect of 

electrical brain stimulation, but much less research exists on the priming effect of natural 

rewards, such as food. While both reinforcement and motivation are linked with dopamine 

transmission in the brain, the priming effect of rewards does not appear to be dopamine-

dependent. In the present study, an operant method was developed to measure the priming effect 

of food and then applied to investigate whether it is affected by dopamine receptor antagonism. 

Long-Evans rats were administered saline or one of the three doses (0.01, 0.05, 0.075 mg/kg) of 

the dopamine D1 receptor family antagonist, SCH23390, or the dopamine D2 receptor family 

antagonist, eticlopride. Although dopamine receptor antagonism affected pursuit of food, it did 

not eliminate the priming effect. These data suggest that despite the involvement of dopamine 

transmission in reinforcement and motivation, the priming effect of food does not depend on 

dopamine transmission. 
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1. Introduction 

Over a half century of research implicates dopamine transmission in reinforcement and 

motivation. This work has been so fruitful as to risk obscuring complementary roles played by 

other neurotransmitter systems and other neural pathways. Research on the priming effect of 

electrical brain stimulation provides one line of evidence that dopamine transmission may not be 

essential to certain aspects of motivation. The priming effect of rewards is a transient increase in 

the motivation to pursue a reward after having previously received that reward (Gallistel, 1966; 

Reid et al., 1973; Edmonds & Gallistel, 1974; Gallistel et al., 1974). The finding that the priming 

effect of electrical brain stimulation withstands blockade of dopamine D2-like receptors 

(Wasserman et al., 1982)  is inconsistent with ideas such as the incentive salience hypothesis that 

links increased wanting in the wake of recent exposure to rewards to dopamine signaling 

(Robinson & Berridge, 1993; Berridge & Robinson, 1998). The neurobiological bases of the 

priming effect, specifically the role of dopamine transmission, remain undetermined. 

It is important to distinguish the priming effect examined in this study from other effects 

bearing the same moniker. First, there is an identically named priming effect in a reinstatement 

model of drug relapse. In that model, rats are trained to self-administer drugs of abuse such as 

cocaine and heroin (de Wit & Stewart, 1981, 1983). Following this, the rats are forced into a 

period of abstinence when operant responding no longer delivers the drug. After drug-seeking 

behavior is extinguished, the presentation of a non-contingent sample of the drug (priming) 

reinstates the drug-seeking behavior. This type of priming effect is commonly referred to as 

priming-induced reinstatement, which is the re-establishment of a learned behavior that had 

previously been extinguished. This implies that the results of the original learning have not been 

erased but instead have been counteracted by subsequent extinction training. In contrast, the 

priming effect observed with electrical brain stimulation is the invigoration of a goal-directed 

behavior that has not undergone extinction. To differentiate these two effects, we refer to the 

priming-induced invigoration of a well-established behavior as the priming effect of rewards 

(e.g., priming effect of electrical brain stimulation or priming effect of food). 

Another identically named priming effect is an increase in drive to pursue a reward 

following long delays, ranging from 5 minutes to 24 hours, from receiving a prime of that reward 

(Morgan & Fields, 1938; Liu et al., 2016). In contrast, the priming effect of rewards is transient, 

lasting only several seconds. Deutsch et al. (1964) and Gallistel (1966) showed that the priming 
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effect of electrical brain stimulation largely dissipates within 20 seconds of the last priming 

stimulation. The long-lasting priming effect, which may be considered a pre-exposure effect, is 

not comparable to the transient priming effect of rewards discussed in this paper. Due to the 

enduring nature of the effect of pre-exposure, it may tap into a different motivational system and 

would seem to depend on memory. In contrast, there is evidence that the priming effect of 

electrical brain stimulation does not act on a memory-based system (Gallistel et al., 1974). Thus, 

the priming effect of rewards and the effect of pre-exposure are considered different phenomena. 

Two distinct effects of electrical brain stimulation are measured in a runway paradigm 

employed by Wasserman et al. (1982): a priming effect and a reinforcing effect. Rats were 

primed with non-contingent brain stimulation in a start box. Following a delay, the start door 

opened to give the rats access to an alley. The end of the alley contained a goal lever that 

delivered electrical brain stimulation when pressed. The priming effect of electrical brain 

stimulation received in the start box is expressed as a transient increase in the speed with which 

the rat traverses the alley and presses the goal box lever. The reinforcing effect of the response-

contingent brain stimulation received in the goal box is expressed as the proclivity of the rat to 

run down the alley and the value it assigns to the stimulation available there. Gallistel et al. 

(1974) showed that a change in the strength of response-contingent goal-box stimulation leads to 

gradual adjustments of performance over multiple trials until the rat learns the updated value of 

the stimulation and a new, stable performance level is attained. In contrast, they also 

demonstrated that performance adjusts immediately following a change in the strength of the 

non-contingent start-box stimulation. These results indicate that the priming and reinforcing 

effects of electrical brain stimulation are independent. 

 The priming effect of electrical brain stimulation manifests two defining properties of an 

increase in motivation: it both directs and potentiates reward-seeking behavior. In a T-maze, 

Deutsch et al. (1964) offered thirsty rats a choice between water and electrical brain stimulation. 

Rats that received no pretrial priming brain stimulation preferentially chose the arm that 

contained water, whereas priming with brain stimulation increased the probability of choosing 

electrical brain stimulation over water. Priming can thus direct behavior towards pursuing a 

primed reward over competing rewards. In a runway paradigm, rats ran faster to the goal box 

after having received pretrial priming stimulation in the start box (Gallistel, 1969; Reid et al., 
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1973; Gallistel et al., 1974; Stellar & Gallistel, 1975), thus demonstrating the potentiating effect 

of priming on the vigor of reward-seeking behavior. 

Dopamine transmission has been found to contribute differentially to the reinforcing and 

priming effects of electrical brain stimulation. For example, dopamine receptor antagonism with 

pimozide produces an extinction-like decline in operant responding for electrical brain 

stimulation (Gallistel et al., 1982). This study indicates that dopamine transmission is necessary 

for the reinforcing effect of electrical brain stimulation. In contrast, high doses of pimozide failed 

to block the priming effect of electrical brain stimulation (Wasserman et al., 1982), thus 

questioning whether the priming effect depends on dopamine transmission. 

In the present study, we investigated whether food delivered non-contingently at the start 

of a trial produces a priming effect on subsequent food seeking and, if so, whether this effect is 

altered by blockade of dopamine transmission. The priming effect of food was measured using 

standard operant chambers and then challenged with dopamine D1 receptor (D1R) or D2 

receptor (D2R) family antagonists. Experiment 1 employed a within-subject design whereby all 

rats received low, middle, and high doses of the D1R antagonist, SCH23390, and separately the 

D2R antagonist, eticlopride. In experiment 2, a between-subjects design was used: separate 

groups of rats received high doses of either SCH23390 or eticlopride. One limitation of 

Wasserman et al.’s (1982) experiment is that pimozide binds to 5-HT7 receptors (5HT7R) in 

addition to D2Rs and D3Rs, and it has very low affinity for D1Rs. In the present study, we 

employed more selective dopamine receptor antagonists to better discern the role of dopamine 

transmission in the priming effect. Thus, we examined whether the priming effect extends to a 

paradigm that uses standard operant conditioning chambers, whether food elicits a priming effect 

and, if so, whether this effect endures following treatment with highly specific dopamine 

receptor antagonists. 

2. Method 

2.1 Subjects 

 Forty-six male Long-Evans rats (in-house breeding colony, Concordia University, 

Montreal, QC) were used in experiments 1 and 2, respectively. Rats were housed in polyurethane 

shoebox cages, in a colony maintained at 23ºC, with a reverse 12-hour light/dark cycle (lights off 

from 0900 to 2100h). Initially, rats were pair-housed and had unrestricted access to standard lab 

chow and water. At the start of the experiment, rats were single-housed and food restricted to 
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90% of their free-feeding body weight. The rats weighed between 420 to 500 g throughout the 

experiment. All behavioral procedures were conducted during the dark phase of the diurnal cycle 

(between 1000 to 1400h). The protocols used were in accordance with guidelines established by 

the Canadian Council on Animal Care and approved by the Concordia University Animal 

Research Ethics Committee. 

2.2 Apparatus 

Tests were conducted in standard operant-conditioning chambers (30 cm length x 33 cm 

height x 27 cm width) each located within a fan-ventilated, sound-attenuating box. The chambers 

had aluminum walls and ceiling and a Plexiglas® front panel; the floors consisted of stainless-

steel bars mounted 3 cm above the base. On the right wall, there was a house light (28 cm above 

floor), retractable lever (Coulbourn Instruments, Whitehall, PA), and a food port (1 cm length x 

1.5 cm height). A nosepoke into the food port was detected by an infrared photocell beam. 

Connected to the outer right side of the chambers was an automated food dispenser that delivered 

chocolate pellets (45 g each, Bio-Serv, Pleasant Prairie, WI) into the food port. The apparatus 

was controlled by Graphic State 3.0 software (Coulbourn Instruments). 

2.3 Behavioral Procedures  

Habituation. Rats were habituated to the chambers for 20 minutes (min) per day for four 

consecutive days. Chocolate pellets were placed in the food port to associate that area with food 

reward. The last habituation day was followed by a rest day and then training.  

 Training. Rats were trained on a 1-second (s) fixed interval (FI1) schedule and progressed 

to FI2, FI4, FI6, FI8, and FI10 schedules consecutively. During the FI1 training sessions, a 

powdered form of the chocolate pellets was placed on the levers to motivate the rats to approach 

and press them. After a response was rewarded with a single chocolate pellet, the lever retracted, 

and the rat had to nose poke to trigger the re-extension of the lever. Throughout the training 

session, the house light remained on and was only briefly turned off during the delivery of the 

reward. For each operant schedule, rats were required to achieve the criterion of 50 lever-presses 

in a single training session on a given FI schedule before progressing to the next FI schedule. For 

example, if a rat produced 60 responses on its first training day on FI2, the next day the rat was 

trained on FI4. Generally, rats achieved criterion in one to two days. Each training session lasted 

45 min. After rats learned to lever press on the FI10 schedule, they were introduced to one set of 

testing procedures. In the training trials, data was not collected because the sessions were for not 



 93 

for testing purposes. 

 Testing. 

Experiment 1. The parameters used in this experiment (e.g., the number of food primes, 

ITI, delay between priming and trial onset) were chosen based on preliminary tests that showed a 

priming effect of food was demonstrated with these conditions. A testing session started with a 

five-min inter-trial interval (ITI) during which the lever was retracted. On primed trials, three 

chocolate pellets were delivered at the end of the ITI. Once a nose poke was made, the rat was 

allowed 18 s to consume the pellets. The end of the consumption period activated the extension 

of the lever, which was armed on an FI10 schedule. A single response after the expiry of the FI 

triggered the delivery of one chocolate pellet and started a new ITI. Non-primed trials were 

similar with the exception that no chocolate pellets were delivered after the ITI. A single session 

consisted of three pairs of alternating primed and non-primed trials. These tests were run daily on 

sets of four test days. On test days one and three, the tests started with a primed trial. On test 

days two and four, the tests started with a non-primed trial. 

Experiment 2. After experiment 1 and before experiment 2 was conducted, additional 

preliminary tests were carried out to optimize the reliability of the priming effect. It was found 

that the likelihood of a priming effect was increased by lengthening the time provided for pellet 

consumption to 30 s, allowing water consumption between trials, and starting tests with a primed 

trial. Thus, testing in experiment 2 was carried out identically to experiment 1 with the exception 

that rats were given 30 s to consume the pellets, water bottles were made available in the operant 

chambers, and all tests started with a primed trial. See Figure 1 for an outline of testing 

procedures. 

2.4 Dopamine Receptor Antagonists 

Experiment 1. Physiological saline (0.9 %), or the D1R antagonist SCH23390, or the D2R 

antagonist eticlopride (Sigma, St. Louis, MO), were administered intraperitoneally (i.p.) 30 min 

prior to the start of a test, on four consecutive days. Each set of tests with a dopamine receptor 

antagonist was followed by a rest day to wash out residual effects of the drug and then by four 

consecutive days on which saline was administered. The drug doses were increased across 

successive 5-day blocks so as to obtain a dose-response curve (0.01, 0.05, and 0.075 mg/kg 

dissolved in 0.9% saline).  
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 These doses were selected based on preliminary experiments in our lab on the range of 

doses that reliably modifies operant responding for food. Doses higher than 0.075 mg/kg 

prevented the rats from completing the task. In addition, an attempt was made to test the rats in 

this paradigm using both D1R and D2R blockade. However, when both drugs were combined, 

even at the lowest doses, rats showed catatonic-like behavior, were unresponsive, and did not 

complete the task. Thus, a combined drug condition was not included in this study.  

 Experiment 2. All conditions were the same as in experiment 1, with the exception that 

only the high doses of SCH23390 and eticlopride were administered, and no rat received more 

than one type or dose of drug. Rats first completed a set of tests with saline. Rats that showed a 

priming effect with saline were administered a high dose (0.075 mg/kg) of SCH23390 or 

eticlopride. 

2.5 Statistical Analyses 

 In experiment 1, data from one rat were removed because the operant chamber was later 

found to deliver pellets inconsistently. Therefore, the final n was nine. In experiment 2, data 

from 22 rats were excluded because they failed to show a priming effect with saline. Only rats 

that showed a priming effect with saline were tested with SCH23390 or eticlopride. Therefore, in 

experiment 2, six rats completed tests with SCH23390 and eight rats completed test with 

eticlopride. 

 Mean number of lever presses were calculated during the FI and the rate of responding was 

averaged over the set of four test days for each rat. Then mean total number of lever presses was 

normalized. The initial set of tests conducted with saline were used as baseline. A directional 

effect was hypothesized in that more vigorous responding was expected on the primed trials. 

Thus, planned, one-tailed paired-samples t-tests (alpha level = .05) were conducted on the 

normalized data. Effect sizes were measured with Cohen’s d. Effect sizes have not been reported 

in previous research on the priming effect of pretrial reward delivery, and thus the standard 

interpretations for Cohen’s d were adopted (Nolan & Heinzen, 2014). 

 Statistical analyses were conducted with JASP open-source statistics program (JASP 

Team, Version 0.8.5, Amsterdam, The Netherlands), and figures were created with GraphPad 

Prism (GraphPad, La Jolla, CA). 
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Figure 1. A schematic of a single trial and a 4‐day set of tests followed by a rest day. (a) 

Preceding a trial was an intertrial interval (ITI) and an intermediate period. On primed trials, 

food primes were delivered during the priming phase of the intermediate period. Upon nose entry 

to the food magazine to consume the prime, the delay started. On non‐primed trials, zero primes 

were delivered. Extension of the reward lever marked the start of the trial. A response made after 

the 10‐s fixed interval resulted in delivery of a food reward, which was followed by a new ITI. A 

single test was composed of six trials; thus, this sequence of events was repeated six times. There 

were three primed and three non‐primed trials, presented in alternating order. Values in 

parentheses represent the duration of the phase. (b) Data were collected in sets of four test days. 

For example, when rats were tested with saline, they were administered saline for four 

consecutive days. Completion of a 4‐day set of tests was followed by a rest day to give the rats a 

break from testing and to serve as a washout period. After the rest day, a new 4‐day set of tests 

started. If a drug was administered, the same drug condition and dose was used throughout the 4‐

day set of tests.  
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3. Results 

3.1 The Priming Effect of Food 

 The present study demonstrates a priming effect of food (Figures 2, 3, & 5). In 

experiment 1, rats pressed more on primed than non-primed trials following saline treatment. 

According to the conventional interpretation of Cohen’s d, this constitutes a medium to large 

effect (t(8) = 2.024, p = .039, Cohen’s d = .675, Fig. 2a & 3a). Despite this overall priming 

effect, not all nine rats showed a priming effect. Six out of nine rats did so, and thus, 33% did 

not. Only 38% of rats showed a priming effect of food following saline in experiment 2. When 

present, the priming effect was large (t(13) = 5.215, p < .001; Cohen’s d = 1.394; Fig. 5a). Thus, 

under the conditions tested here, a priming effect of food is observed but only in a select number 

of rats. 

3.2 Dopamine Receptor Antagonists 

 Experiment 1. All nine rats were administered all three doses of and both types of 

dopamine receptor antagonists. At the highest dose of SCH23390, rats pressed more during 

primed than non-primed trials, and this was a medium to large effect (0.075 mg/kg, t(8) = 2.217, 

p = .033, Cohen’s d = .712; Figures 2d & e). However, there were no statistically reliable 

differences between the normalized mean total lever presses on primed and non-primed trials at 

the lowest and middle doses of SCH23390 (0.01 mg/kg, t(8) = .423 p = .342, Cohen’s d = .141; 

0.05 mg/kg, t(8) = 1.079, p = .156, Cohen’s d = .360; Figures 2a, b, & e). 

Following treatment with eticlopride, responding was higher on primed than non-primed 

trials at the lowest and highest doses (0.01 mg/kg, t(8) = 3.335, p = .005, Cohen’s d = 1.112; 

0.075 mg/kg, t(8) = 1.859, p = .049, Cohen’s d = .620; Figures 3b, d, e). These were large and 

medium effects, respectively. There was no significant priming effect following the middle dose 

(0.05 mg/kg, t(8) = 1.794, p = .055, Cohen’s d = .598; Figures 3c & e). 
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Figure 2. In experiment 1, a higher dose of the dopamine D1‐like receptor antagonist SCH23390 

does not eliminate the priming effect of food. Mean cumulative responses ( SEM) at the end of 
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the 10‐s fixed interval with administration of (a) saline, (b) 0.01, (c) 0.05 or (d) 0.075 mg/kg of 

SCH23390. Box and whisker plots showing (e) the normalized mean total presses on non‐primed 

and primed trials following saline and the three doses of SCH23390. Planned comparisons 

showed a significant difference between normalized mean total presses on primed versus 

nonprime trials following saline, and the 0.075 mg/kg dose of SCH23390. 

* indicates statistically significant difference (p < .05)   
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Figure 3. In experiment 1, dopamine D2‐like receptor antagonism with eticlopride does not 

eliminate the priming effect of food. Mean cumulative responses ( SEM) at the end of the 10‐s 
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fixed interval with administration of (a) saline, (b) 0.01, (c) 0.05 or (d) 0.075 mg/kg of 

eticlopride. Box and whisker plots showing (e) the normalized mean total presses on nonprime 

and primed trials following saline and the three doses of eticlopride. Planned comparisons 

showed a significant difference between normalized mean total presses on primed versus non‐

primed trials following saline and the 0.01 mg/kg and 0.075 mg/kg dose of eticlopride. 

* indicates statistically significant difference (p < .05)   
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Dopamine Receptor Antagonism & Attrition Rate 

In experiment 1, the proportion of trials completed across the set of tests was calculated 

for each drug condition and dose to assess the potential effects of dopamine receptor antagonism 

on motivation to complete a trial. The proportion of completed trials decreased as the drug dose 

increased when either SCH23390 or eticlopride was administered repeatedly (Fig. 4). When the 

dopamine receptor antagonists were administered just once in experiment 2, rats completed all 

the trials. 
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Figure 4. In experiment 1, attrition rate increases with higher doses of dopamine D1‐ and D2‐

receptor family antagonists. Proportion of completed trials ( SEM) for the saline condition and 

each drug dose of (a) SCH23390 and (b) eticlopride. 
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Experiment 2. In experiment 1, all rats received the three doses of both SCH23390 and 

eticlopride at different times, which may have produced confounding order effects. Thus, in 

experiment 2, separate groups of rats were tested with a high dose (0.075 mg/kg) of only either 

SCH23390 or eticlopride. Only those rats that showed a priming effect following saline were 

then administered a dopamine receptor antagonist. Following treatment with SCH23390, rats 

responded more on primed compared to non-primed trials (t(5) = 2.042, p = .049, Cohen’s d = 

.834, Fig. 5b & d). The priming effect of food persisted with eticlopride (t(7) = 2.868, p = .012, 

Cohen’s d = 1.014, Fig. 5c & d). 
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Figure 5. In experiment 2, the priming effect of food persists following dopamine D1‐ or D2‐

like receptor antagonism in a between‐subject design. Mean cumulative responses (SEM) at 

the end of the 10‐s fixed interval with administration of (a) saline, or 0.075 mg/kg of (b) 

SCH23390 or (c) eticlopride. Box and whisker plots showing (d) the normalized mean total 

presses on non‐primed and primed trials following saline, SCH23390 and eticlopride. Planned 

comparisons showed a significant difference between normalized mean total presses on primed 

versus non‐primed trials following saline and both dopamine receptor antagonists. 

* indicates statistically significant difference (p < .05)  
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4. Discussion 

The priming effect investigated in the present study is the enhanced vigor of reward 

seeking in the wake of prior consumption of a reward. This effect is well-established in the case 

of electrical brain stimulation (Gallistel et al., 1974; Edmonds & Gallistel, 1974; Stellar et al., 

1975). In contrast, there is inconsistent evidence as to whether an analogous effect is produced 

by natural rewards. This study reduces that ambiguity by demonstrating potentiated pursuit of 

food reward following pretrial delivery of food. Furthermore, like the priming effect of electrical 

brain stimulation, this priming effect of food is not eliminated by dopamine receptor antagonism. 

This finding is not readily explained by hypotheses such as the incentive salience hypothesis, 

which posits that the incentive motivational effect of rewards, called “wanting”, is mediated by 

dopamine transmission. 

4.1 The Priming Effect of Food Reward 

Previous work on the priming effect of food was carried out largely in mazes or runways. 

van der Kooy and Hogan 1978  primed hamsters by allowing them to consume food in each 

corner of a rectangular maze prior to traversing a maze segment leading to the next corner; the 

type and level of deprivation was varied, as was the ITI. The fastest running speeds were 

recorded at the shortest ITI (10 s), a result that qualifies as a priming effect. In an initial study, 

Terry (1980)  administered food primes 0.5 or five min before rats were given access to a runway 

leading to food. A priming effect was seen at the 0.5-min delay on the first day but then largely 

disappeared with further training. 

A few studies have used standard operant method for investigating the priming effect of 

food. Deluty (1976) trained rats to press a lever for food on a one-min random interval (RI) 

schedule, and delivered food primes on a fixed or random time (FT or RT) schedule. Responding 

decreased as the reward rate on the FT or RT schedule increased, a finding that could be 

interpreted as an anti-priming effect: an inhibition of subsequent reward seeking following 

reward delivery. The observed effect could instead be due to satiation driven by the high reward 

rate. Responding increased immediately after the delivery of primes and then decreased as a 

function of time since the last prime, a time course consistent with the transient nature of the 

priming effect. Eiserer (1978)  trained rats to lever press for a single food pellet and determined 

whether food priming facilitated reinforced or non-reinforced responding. Even when lever 
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pressing was reinforced with food, there were periods of time when the rats ceased to respond. 

Delivery of a food prime increased the probability that responding would resume. 

In the present study, a standard operant design was used to measure the priming effect of 

food. Previous experiments and preliminary tests helped identify parameter values suitable for 

measuring a priming effect of food: six trials per test, 5-min ITIs, three food primes, and an 18-s 

delay between delivery of food primes and trial onset in experiment 1. Restricting the number of 

trials per test to six and setting the ITI to 5 min helps slow the onset of satiation, which are in 

accordance with the methods of van der Kooy and Hogan (1978) and Terry (1983). In previous 

food priming studies, rats were primed with one to five pellets (Deluty, 1976; Eiserer, 1978; 

Terry, 1980, 1983). The median value of three pellets was used in the present study to avoid 

quickly satiating the rats. A delay of 18 s was employed to permit the rats substantial time to 

consume the food primes and to allow time for the primes to take effect. Deluty (1976) found 

that a single food prime maximally increases responding 10 s after the delivery of the primes. He 

reasoned that the rats need 10 to 15 s to approach the food port and consume the three food 

primes and then an additional 10 s for the primes to take effect. The 18-s delay employed in 

experiment 1 met those criteria. In experiment 2, the delay was increased to 30 s because 

preliminary data from our lab that suggested allowing the animals more time to consume the 

food primes was more likely to produce a priming effect of food. 

Baseline tests with saline injections demonstrated that the chosen parameters yield a 

priming effect of food. As predicted, the rats in experiment 1 responded more during the 10-s FI 

on primed compared to non-primed trials (Figures 2 & 3). Rats in experiment 2 also showed a 

priming effect of food even with the longer delay between priming and trial onset (Figure 5). 

These results validate the use of this operant design for investigating the role of dopamine 

transmission in the priming effect of food. 

4.2 Variability of the Priming Effect of Rewards 

It is noteworthy to consider that the priming effect of food was not seen in every rat. This 

is in contrast with the 100% incidence of a priming effect of electrical brain stimulation observed 

in a runway paradigm (Reid et al., 1973). Although the magnitude of the priming effect varied 

among rats, Gallistel reported a robust priming effect of medial forebrain bundle stimulation. In 

comparison, six of nine rats showed a priming effect following saline administration in 

experiment 1, and 14 out of 36 rats showed a priming effect in experiment 2. Because of this, in 
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experiment 2, only the rats that showed a priming effect with saline were later tested with 

SCH23390 or eticlopride. 

Some of the previous work on the priming effect of food and drugs of abuse have also 

demonstrated variability in the incidence of the priming effect. In one experiment, Terry (1980) 

observed a priming effect of food following a 0.5-min delay between consumption of the food 

primes and start of a trial compared to a 5-min delay. However, this priming effect was 

specifically observed only on the first day of training. In another study, the detection of a 

priming effect depended on whether comparisons were made within or between subjects (Terry, 

1983). Rats were either primed with food immediately before the start of a trial or not primed. 

Between-subject comparisons showed no priming effect. On the other hand, within-subject 

comparisons revealed that rats were faster to run when they were primed. 

Observation of a priming effect of alcohol has also been variable. Chutuape et al. (1994) 

examined the priming effect of alcohol in social drinkers. Participants were given the opportunity 

to perform tasks that earned them money or alcohol. The probability of winning money varied 

from low to high, and the probability of winning an alcoholic beverage was constantly moderate. 

Priming social drinkers with alcohol led them to work more for alcoholic beverages when the 

probability of earning money was low. Alcohol-primed social drinkers also reported increased 

desire for alcohol and liking of alcohol. In another experiment, Kirk and de Wit (2000) used the 

same methods as above and replicated the finding that priming social drinkers with alcohol 

increases reports of liking alcohol and desire to consume more alcohol. However, they did not 

find that priming with alcohol increased probability of choosing alcohol over money in the 

choice task. The observation of a priming effect of alcohol in social drinkers was found to be 

modulated by individual differences. 

In summary, the incidence of a priming effect of rewards appears to be more variable 

when food and drugs of abuse, rather than electrical brain stimulation, serve as the reward. 

Individual preferences for certain rewards may contribute to the occurrence of a priming effect. 

In support of this idea, Kirk and de Wit (2000) found a strong priming effect of alcohol in social 

drinkers who experienced positive changes in mood from alcohol consumption. A preferred 

reward can elicit positive effects on mood and lead to overconsumption of the reward, whereas a 

less preferred reward is less likely to elicit such effects (Kampov-Polevoy et al., 2006). 
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4.3 Dopamine and Performance 

There is a large literature on the role of dopamine neurons in the reinforcing and 

motivating effects of rewards (Franklin, 1978; Wise, 1978, 1996; Wise & Rompre, 1989; 

Ikemoto & Panksepp, 1999) but, to our knowledge, there has only been a single paper published 

on the role of dopamine transmission in the priming effect of rewards (Wasserman et al., 1982). 

Much of the early literature used a one-dimensional approach that addressed the degree to which 

the changes in operant performance observed following perturbation of dopamine transmission 

reflect alterations in reward strength or changes in response capacity. A curve-shift paradigm that 

measures performance over a range of reward strengths was developed to distinguish these two 

effects in studies of intracranial self-stimulation. Proponents of the curve-shift method claim that 

lateral displacement of curves that relate response vigor to the strength of the electrical 

stimulation reflect changes in its reward strength, whereas changes in the upper asymptote of the 

curve (e.g., the maximum response rate) reflect alterations in response capacity (Edmonds & 

Gallistel, 1974; Miliaressis et al., 1986). 

Extension of the testing paradigm to a third dimension, reward cost, shows that the lateral 

displacements observed in a curve-shift paradigm are ambiguous and may be due to various 

combinations of changes in reward-system sensitivity, reward-system gain, subjective effort cost, 

or the value of alternate activities such as resting, grooming and exploring (Arvanitogiannis & 

Shizgal, 2008; Hernandez et al., 2010; Breton et al., 2013). The behavioral effects produced by 

perturbation of dopamine transmission in the present experiment point to some combination of 

the latter three effects (Hernandez et al., 2010, 2012; Trujillo-Pisanty et al., 2014). Any of these 

effects, or a combination thereof, could account for the failure of the rats to complete all trials at 

the higher drug doses in experiment 1 (Figure 4). Continued responding would no longer be 

consistently worthwhile in the face of sufficient decreases in reward-system gain, increases in the 

perceived effort entailed in pressing the lever, and/or increases in the value of competing 

activities.  

A common finding in studies of operant performance for natural or electrical rewards is 

that maximum response rates are decreased by treatment with dopamine receptor blockers. For 

example, eticlopride impairs motor activity at higher doses (Garrett & Holtzman, 1994; Collins 

et al., 2010), and SCH23390 does so even at low doses (Daniela et al., 2004; Pezze et al., 2015). 
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In experiment 1, antagonist-induced motor impairment could account for the decrease in the 

number of responses (Figures 2 & 3) and the reduced number of completed trials (Figure 4). 

4.4 Dopamine and the Priming Effect 

What is striking about the present results is that the priming effect was largely able to ride 

on top of the drug-induced decreases in responding. Although responding was attenuated, 

especially in experiment 1 following higher doses of the dopamine receptor antagonists, pretrial 

delivery of food pellets continued to augment response vigor. It would have been interesting to 

show synergistic effects of combining the dopamine D1- and D2-like receptor antagonists. 

However, when we did this, rats became unresponsive and did not complete the task. 

Nevertheless, the persistence of the priming effect in the face of drug challenge is seen following 

administration of dopamine D1- or D2-like receptor antagonists. Taken together, the results are 

consistent with what Wasserman et al. (1982) observed using a different testing paradigm (a 

runway), a different reward (medial forebrain bundle stimulation), and a different drug 

(pimozide), one with a broader and partially non-overlapping spectrum of action (Beaulieu & 

Gainetdinov, 2011).  

Gallistel and his team acquired a substantial body of evidence that distinguishes the 

reinforcing effect and priming effect of electrical brain stimulation (Gallistel, 1969; Gallistel et 

al., 1974; Edmonds & Gallistel, 1974). The work of both Deutch’s and Gallistel’s teams showed 

that the priming effect shares the two key attributes of motivation: it both directs and potentiates 

subsequent reward-seeking behavior (Deutch et al., 1964; Wasserman et al., 1982). Echoing and 

extending the earlier work, the findings of the present study are consistent with the notion that 

the reinforcing effect and priming effect of rewards are distinct and are mediated by different 

neural mechanisms. The present study shows that like the priming effect of medial forebrain 

bundle stimulation, the priming effect of food is insensitive to attenuation of dopamine 

transmission. Pimozide, a drug that has high affinity for D2Rs, D3Rs, and serotonin 5-HT7Rs 

(Richelson & Souder, 2000; Kroeze et al., 2003; Burstein et al., 2005), was used by Wasserman 

et al. (1982) in their study of the priming effect produced by medial forebrain bundle 

stimulation. The more specific drugs employed in the present study made it possible to 

demonstrate that the priming effect of food remains largely or wholly intact following selective 

blockade of D1Rs or D2Rs at doses sufficient to produce reductions in performance and failures 

to seek out food rewards. 
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The insensitivity of the priming effect to antagonism of D1Rs and D2Rs is surprising in 

view of the incentive salience hypothesis, which posits that incentive motivational effects of 

reward (“wanting”) are mediated by dopamine transmission (Robinson & Berridge, 1993; 

Berridge & Robinson, 1998). A broader view of the neural substrates for motivation is required 

to accommodate the empirical findings on which the incentive salience hypothesis is based along 

with the present results and those obtained by Wasserman et al. (1982). An extended view of the 

neural bases of motivation that could encompass all of these findings would include multiple 

converging pathways that direct and invigorate reward-seeking behavior. The set of pathways in 

question appears to include both dopaminergic and non-dopaminergic elements. 

5. Conclusion 

Understanding the neurobiological basis of the priming effect of rewards holds important 

implications for disorders associated with impaired motivation such as binge eating. For 

instance, the taste of a preferred food can trigger a person with a binge-eating disorder to 

overconsume. Elucidating the neurobiological mechanisms underlying the priming effect of 

rewards could help break the cycle of overconsumption. Although there has been a large body of 

research that focuses on the role of the dopamine system in reinforcement and motivation, there 

is still a lack of effective treatments for disorders associated with impairments in motivation. 

Perhaps this focus on the dopamine system has obscured the complementary roles of other 

neurotransmitter systems. This emphasizes the need to reconsider the role of non-dopamine 

systems in reward-related processes such as motivation. 
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Chapter 5: General Discussion 

Dopamine transmission has been a focal point of research on reward and motivation. In 

this thesis, reward describes the propensity of goal objects, such as electrical brain stimulation 

and food, to promote approach. Motivation is defined in terms of the direction and invigoration 

of goal-seeking behavior. Although the importance of the midbrain dopamine system in reward 

and motivation has been well documented, there is still no universally agreed upon 

neurobiological theory for dopamine’s role in reward seeking. The contributions of other 

neurotransmitter systems in reward and motivation may be important to consider. Our research 

on the priming effect of electrical brain stimulation and food indicate that priming may not 

depend on dopamine signaling. 

This thesis investigated the priming effect of electrical brain stimulation and food and the 

role of dopamine transmission. The priming effect has primarily been studied using electrical 

brain stimulation as a reward. Expanding on this work, Chapter 2 investigated whether the 

priming effect of electrical brain stimulation is affected by reward strength, cost, or both. We 

showed that the priming effect of electrical brain stimulation is more likely to be observed when 

the payoff is high (i.e, when the reward is intense and inexpensive). In addition to this, we 

investigated whether the priming effect is specific to electrical brain stimulation or generalizable 

to other rewards. Chapter 4 demonstrates that a natural reward such as food also elicits a priming 

effect. Finally, Chapters 3 and 4 examined whether dopamine transmission is necessary for the 

priming effect of electrical brain stimulation or food, respectively. We demonstrated that 

dopamine D2 family receptor (D2R) antagonism does not eliminate the priming effect of 

electrical brain stimulation and food. Additionally, the priming effect of food persists following 

D1R blockade. Thus, we provide evidence that certain aspects of motivation, such as the priming 

effect of rewards, may not primarily depend on dopamine transmission. 

1. Is the Incidence of a Priming Effect of Rewards Consistent? 

The priming effect of electrical brain stimulation was previously reported in 100% of the 

rats tested (Reid et al., 1973). In contrast, we found high variability in the incidence of a priming 

effect of electrical brain stimulation and food. In Chapter 2, a priming effect of electrical brain 

stimulation was seen in 33% of the rats in experiment 1 and 25% to 75% of the rats in 

experiment 2. In an attempt to derive a more consistent priming effect, the method used to 

measure a priming effect of electrical brain stimulation was modified in Chapter 3 to become 



 112 

more analogous to the runway paradigm used by Gallistel and colleagues (Reid et al., 1973; 

Edmonds & Gallistel, 1974; Gallistel et al., 1974; Stellar & Gallistel, 1975; Wasserman et al., 

1982). Chapter 3 results showed that following high priming 88% of the rats tested were quicker 

to initiate a lever press and 100% of the rats tested worked faster to earn a reward. Comparable 

to Reid et al.’s (1973) results, the magnitude of the priming effect varied among rats. The 

method used in Chapter 3 produced the most consistent incidence of a priming effect of electrical 

brain stimulation in this thesis. 

Another possible reason for the variability in the incidence of the priming effect of 

electrical brain stimulation could be that the runway paradigm is more sensitive to the 

motivational changes elicited by priming than the methods employed here. In experiment 1 of 

Chapter 3, the range of speed to initiate a response was as half a second to two seconds. The 

range of speed to earn a reward was three seconds to seven seconds. In the runway, the range of 

speed to earn a reward was approximately two to 20 seconds (Reid et al., 1973). Thus, the range 

for measurement is highly constricted in our paradigm. Additionally, reward procurement in the 

runway paradigm may require greater effort compared to our method, which may affect the 

sensitivity of that paradigm at detecting changes in motivation. Future experiments should 

examine whether a runway paradigm or other operant designs would be best suited for measuring 

the priming effect of electrical brain stimulation. 

 The incidence of a priming effect of food was also variable. In Chapter 4, 39% to 67% of 

the rats showed a priming effect of food. One possible reason for this variability is that the 

method we used to observe a priming effect of food requires further optimization. In the 

experiments conducted in Chapter 4, the lever was armed on a fixed interval (FI) schedule. The 

rate of reward delivery is little affected by changes in rate of responding on an FI schedule. In 

contrast, in the runway paradigm the rat has greater control of how soon reward can be harvested 

once it becomes available. That is, the faster the rat runs down the alley then the sooner it can 

earn the reward. Future experiments should examine whether the use of a ratio schedule, similar 

to the one used in Chapter 3, would result in a more consistent priming effect of food. 

Another potential reason for the variability in the incidence of the priming effect of food 

may be due to the strength of the food reward. As demonstrated in Chapter 2, rats do not show a 

priming effect when the earned reward is weak. This issue was addressed in the electrical brain 
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stimulation experiments by customizing the stimulation parameters for each rat. Customizing the 

strength of food for each rat may improve the incidence of a priming effect of food. 

It is also possible that the priming effect of food was not seen in all rats in this thesis 

simply because some rats are more sensitive to food priming than others. It is not uncommon that 

certain phenomena are observed only in a specific population. For example, not all people that 

use or consume drugs develop a drug use disorder. In 2017, it was reported by the National 

Survey on Drug Use and Health that 86.3% of persons aged 18 and older have consumed alcohol 

within their lifetime. Only 5.7% of that population reported an alcohol use disorder. This shows 

humans have individual differences in their responses to drugs of abuse. 

Similar to humans, rats have demonstrated individual differences in their proclivity to 

seek drugs of abuse (for review see Piazza & Le Moal, 1996). One method used to study drug 

use and maintenance in rats is by training them to self-administer drugs of abuse, such as 

amphetamine. A drug is self-administered by performing an operant response, such as a nose-

poke. Piazza et al. (1989)  showed that only a subset of rats acquire amphetamine self-

administration. Rats that show a strong locomotor response to a mild stressor more readily 

acquire amphetamine self-administration. Piazza et al. (1991)  provided evidence that 

corticosterone contributes to the individual vulnerabilities to amphetamine self-administration. 

Locomotor response to a mild stressor positively correlates with stress-induced corticosterone 

release. Additionally, corticosterone administration facilitates amphetamine self-administration 

in rats that showed a low locomotor response to mild stressor. These studies show that behavioral 

and biochemical reactivity to a mild stressor predict individual vulnerabilities to drug use and 

maintenance in rats. 

There are individual differences in incentive salience attribution, which is when cues 

paired with rewards lead to those cues acquiring incentive value or desirability, in rats. The 

incentive-sensitization theory proposes that compulsive reward seeking, such as drug addiction, 

results from excessive incentive salience attribution to reward-related cues (Robinson & 

Berridge, 1993). One method used to investigate incentive salience attribution is an autoshaping 

paradigm (Brown & Jenkins, 1968; Williams & Williams, 1969; Uslaner et al., 2006). This 

involves classically conditioning rats to associate a cue with the availability of a reward. Upon 

presentation of a reward-predictive cue, one group of rats respond by approaching and 
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interacting with the cue (i.e., sign-tracking) and a separate set of rats ignore the cue and directly 

approach the location of the reward (i.e., goal-tracking) (Meyer et al., 2012). 

Sign-tracking is proposed to reflect excessive incentive salience attribution to reward-

related stimuli. Rats that demonstrate sign-tracking show greater sensitization to cocaine (Flagel 

et al., 2008) and acquire self-administration of cocaine at a low dose compared to goal-trackers 

(Beckmann et al., 2011). Sign-trackers also show higher corticosterone levels and elevated 

dopamine concentration in the nucleus accumbens (NAc) (Tomie et al., 2000). These results 

indicate individual differences in incentive salience attribution are correlated with biochemical 

activity and vulnerability to reward seeking.  

Future studies should investigate which factors enhance individual susceptibility to the 

priming effect of food. To our knowledge, reward preference has been the only factor that has 

been correlated with individual differences in response to priming. Kirk and de Wit (2000) 

showed a strong priming effect of alcohol in social drinkers that experienced positive changes in 

mood from an alcohol prime. A preferred reward can elicit positive effects on mood and lead to 

overconsumption of that reward (Kampov-Polevoy et al., 2006). Other factors could affect 

sensitivity to priming such as behavioral response to mild stressors, corticosterone levels, and 

disposition to attribution incentive salience to cues. 

2. If Dopamine Isn’t the Primary Mediator of the Priming Effect of Rewards, then What 

Other Neurochemicals Might It Depend On? 

There is a rich literature that has documented the importance of dopamine transmission in 

reward and motivation (for reviews see Berridge & Robinson, 1998; Wise, 2004, 2006, 2008; 

Salamone et al., 2009; Salamone & Correa, 2012; Walton & Bouret, 2019). For example, 

rewards such as food, drugs, and electrical brain stimulation are associated with increases in 

midbrain dopamine activity (Fibiger, 1978; Wise, 1978; Wise & Rompre, 1989; Fiorino et al., 

1993; You et al., 2001; Phillips et al., 2003; Roitman et al., 2004; Rodeberg et al., 2016). 

Additionally, the incentive salience hypothesis postulates wanting, but not liking, of reward is 

specifically mediated by dopamine transmission (Robinson & Berridge, 1993; Berridge & 

Robinson, 1998). Despite this, the present thesis provides evidence consistent with the idea that 

the priming effect of electrical brain stimulation and food may not depend on D2R signaling. We 

also provide evidence that suggests the priming effect of food does not depend on D1R signaling, 

but we cannot rule out the contribution of D1Rs in the priming effect of electrical brain 
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stimulation. This elicits an important question: If the priming effect of rewards does not depend 

on both D1Rs and D2Rs, then what neurochemical(s) might it depend on? 

The medial forebrain bundle (MFB) has been highly implicated in reward. It consists of 

ascending and descending fibers that course through the olfactory regions to the brain stem 

(Nieuwenhuys et al., 1982; Geeraedts et al., 1990a, 1990b). Stimulating regions of the MFB has 

been shown to promote eICSS (Olds & Milner, 1954; Olds, 1956; Olds & Olds, 1963; Koob et 

al., 1978; Phillips, 1984). The MFB contains a heterogenous population of neurons (McMullen 

& Almli, 1981; Nieuwenhuys et al., 1982; Geeraedts et al., 1990b, 1990a), and it remains 

unknown which subset of those neurons are responsible for eICSS. 

The lateral hypothalamic (LH) level of the MFB has been one of the most commonly 

studied regions for eICSS (Wise, 1980, 1996; Gallistel et al., 1981; Gratton & Wise, 1983; 

Yeomans et al., 1985; You et al., 2001). Parametric experiments have indicated that the LH-

MFB fibers that are directly stimulated in eICSS are not dopamine neurons. The conduction 

velocity of the directly-stimulated fibers in the LH-MFB ranges from 1 to 8 m/s (Shizgal et al., 

1980; Bielajew & Shizgal, 1982; Murray & Shizgal, 1994, 1996a, 1996b) and the absolute 

refractory period ranges from 0.4 to 1.5 ms (Yeomans, 1979; Shizgal et al., 1980; Bielajew et al., 

1982). In contrast, dopamine neurons have slower conduction velocities (0.28 to 1.00 m/s) and 

longer absolute refractory periods (1.2 to 2.5 ms) (Wang, 1981; Yeomans et al., 1988; Anderson 

et al., 1996). These findings indicate that the directly-stimulated LH-MFB fibers are myelinated 

and highly excitable while dopamine neurons are unmyelinated and require high thresholds for 

excitation.  

The directly-stimulated LH-MFB fibers are predicted to transsynaptically activate 

dopamine neurons located in the ventral tegmental area (VTA) to support eICSS (Shizgal et al., 

1980; Wise, 1980; Gallistel et al., 1981; Shizgal, 1989; Yeomans, 1989). VTA-dopamine 

neurons project to a variety of cortical and subcortical structures (Swanson, 1982; Lammel et al., 

2014; Beier et al., 2015; Poulin et al., 2018). In particular, their projection to the NAc is 

implicated in motivated behavior (Ikemoto & Panksepp, 1999; Phillips et al., 2003; Ikemoto, 

2007; Mohebi et al., 2019). You et al. (2001) showed that stimulating LH-MFB neurons 

increases dopamine concentrations in the NAc. This finding supports the idea that midbrain 

dopamine, via transsynaptic activation, mediates eICSS. However, this cannot explain our 

finding that the priming effect does not depend on dopamine signaling. 
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Perhaps instead the priming effect is driven by non-dopamine neurons in the MFB. For 

example, neurons in the LH release a heterogenous population of neuropeptides (Godfrey & 

Borgland, 2019; Mickelsen et al., 2019). One such neuropeptide called orexin (or hypocretin) is 

involved in motivated behaviors such as priming-induced reinstatement and self-administration 

of drugs and food (Harris et al., 2005; Borgland et al., 2009; Aston-Jones et al., 2010). But 

orexin is most well-known for its role in arousal (de Lecea et al., 1998; Sakurai et al., 1998). Ren 

et al. (2018) showed that LH-orexin neurons that send inputs to paraventricular nucleus (PVT) 

glutamate neurons that project to the NAc are important for controlling arousal. Stimulation of 

arousal (or behavioral activation) is considered an aspect of motivation that energizes goal-

directed behavior (as mentioned in Salamone et al., 2007; Salamone & Correa, 2012). The 

energizing effect of priming may be mediated by LH-orexin neurons that send inputs to NAc-

projecting PVT-glutamate neurons. 

Alternatively, there is evidence that LH stimulation excites neurons in the amygdala 

(Rolls, 1972) and induces Fos protein expression there (Arvanitogiannis et al., 1996). Kadar et 

al. (2011) showed that eICSS in the LH is associated with c-Fos protein expression in the 

basolateral amygdala (BLA). Glutamate projections from BLA to the NAc are important for cue-

induced reward seeking (Di Ciano & Everitt, 2004; Ambroggi et al., 2008). Stuber et al. (2011) 

showed that mice optically self-stimulate those glutamate fibers, and that behavior does not 

depend on D2Rs. This is consistent with our finding that the priming effect of electrical brain 

stimulation and food does not depend on D2R signaling. Electrical stimulation of the LH may 

transsynaptically activate BLA neurons, such as glutamate, that project to the NAc to drive the 

priming effect.  

The VTA also contains a heterogenous population of neurons that express dopamine, 

GABA, glutamate (Yamaguchi et al., 2007, 2011; Nair-Roberts et al., 2008; Dobi et al., 2010; 

Morales & Root, 2014). Some VTA neurons can co-release neurotransmitters (combinatorial 

neurons) such as dopamine and glutamate or dopamine and GABA (Stuber et al., 2010; 

Mestikawy et al., 2011; Roeper, 2013; Morales & Root, 2014; Yoo, Zell, Gutierrez-Reed, et al., 

2016; Morales & Margolis, 2017; Wang et al., 2017). Another possibility is that priming is 

mediated by glutamate neurons in the VTA. There are populations of VTA-glutamate neurons 

that respond to aversive or rewarding stimuli, or both (Root et al., 2018). Two separate groups of 

researchers showed that optical activation of VTA-glutamate neurons that project to the NAc can 
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promote avoidance or approach. Qi et al. (2016) demonstrated that mice avoid a chamber paired 

with optical stimulation of VTA-glutamate neurons and that they will work to terminate VTA-

glutamate optical stimulation. In contrast, Yoo et al. (2016) showed that mice optically self-

stimulate VTA-glutamate neurons. These discrepant findings could be due to differences in their 

photostimulation settings. Qi et al. (2016) used continuous or prolonged photostimulation of 

VTA-glutamate neurons, which may be aversive. Yoo et al. (2016) showed that mice prefer to 

self-stimulate for brief VTA-glutamate photostimulation. In the present thesis, brief pulse-trains 

were used. This may have led to a brief, transsynaptic stimulation of VTA-glutamate neurons to 

produce a priming effect. 

The MFB fibers that project to the hindbrain are another possible substrate for the 

priming effect. Pritzel et al. (1983) conducted a study whereby an electrode was implanted in the 

LH level of the MFB, the forebrain ipsilateral to the stimulation site was removed, and the 

striatum contralateral to the stimulation site was isolated from the brain stem. These 

manipulations largely, but probably not completely, removed or disconnected the basal forebrain 

terminal fields of the midbrain dopamine neurons. Despite this, rats still behaved for LH-MFB 

stimulation. This finding suggests that a subset of non-dopamine neurons important for reward 

are located in the hindbrain, and those neurons may be involved in the priming effect. 

 Results from this thesis indicate that the priming effect of rewards may be mediated by 

non-dopamine systems. Here, we speculated that the priming effect may be mediated by non-

dopamine neurons in the MFB such as 1) LH-orexin neurons that project to PVT-glutamate 

neurons that send inputs to the NAc, 2) LH fibers that synapse with BLA-glutamate neurons that 

project to the NAc, 3) VTA-glutamate neurons that send inputs to the NAc, and/or 4) MFB fibers 

in the brain stem (Figure 1). This is only a selection of circuits potentially involved in the 

priming effect; thus, many others not mentioned here could also be important for priming. 
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Figure 1. Non-dopamine circuits proposed to be involved in the priming effect of rewards. 

Priming may activate non-dopamine neurons in the MFB such as 1) LH-orexin neurons that 

project to PVT-glutamate neurons that send inputs to the NAc, 2) LH fibers that synapse with 

BLA-glutamate neurons that project to the NAc, 3) VTA-glutamate neurons that send inputs to 

the NAc, and/or 4) MFB fibers in the brain stem. The legend shows that orange fibers represent 

orexin neurons, green fibers represent glutamate neurons, and black fibers represent population 

of neurons whose neurochemical identity is unknown. The dotted portion of the fibers projecting 

from the LH indicate that those fibers may project to variety of hindbrain structures and may 

arise rostral to the LH.  
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A caveat to these speculations on the neurobiological bases of priming is that the studies 

mentioned previously do not directly investigate the priming effect. The reward-related 

behavioral measures quantified preference (e.g., real-time place preference) or operant behavior 

(e.g., optical self-stimulation). The neural circuits we speculated to mediate the priming effect 

may be involved in those reward-related behaviors but not the priming effect. To determine 

which neural circuits are involved in priming, future studies should investigate whether 

activation of those circuits is sufficient and necessary to elicit a priming effect. 

It is also important to keep in mind that behaviors can have multiple causes, which is the 

problem of convergent causation. For example, conditioned-place preference and ICSS have 

been shown to involve both dopamine and non-dopamine transmission (Wise, 1978; Gallistel et 

al., 1982; Spyraki et al., 1982; Acquas et al., 1989). Demonstrating that one neurotransmitter 

system is necessary and/or sufficient to produce a behavior does not eliminate all the other 

potential causes of that behavior. Creating a computational model would allow us to better 

understand the contributions and interactions of multiple neurochemical systems in a complex 

behavior such as priming. 

3. Future Directions 

 To elucidate the primary neuronal mechanisms of the priming effect of rewards, we need 

to use techniques that allow for greater neuronal and temporal specificity than that provided by 

electrical brain stimulation and systemic dopamine receptor antagonism. Optogenetics would 

allow selective activation or silencing of neuronal circuits at specific time points. First, it should 

be examined whether optical activation of VTA-dopamine neurons produces a priming effect. 

Second, VTA dopamine should be silenced specifically when electrical priming stimulation is 

delivered. Those experiments would demonstrate whether VTA-dopamine transmission is 

sufficient and necessary to produce a priming effect. 

 Those optogenetic techniques could be used to investigate which non-dopamine circuits 

are involved in the priming effect. With the use of transgenic rodent lines, excitatory or 

inhibitory opsins can be expressed in non-dopamine neurons, such as orexin neurons. To assess 

the role of a specific projection, the opsin can be expressed in one brain region and the probe can 

be aimed at another brain region. For example, LH-orexin neurons can be transfected to express 

an opsin and an optical probe can be aimed at orexin terminals that project to the PVT. That 

method could be applied to the many other circuits implicated in motivated behavior such as 
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BLA-glutamate inputs to the NAc. Those circuits could be selectively activated during optical 

priming or silenced during electrical priming to reveal whether they are involved in the priming 

effect. 

 Lastly, the experiments conducted here studied the priming effect only in male rats. 

Historically, there has been a bias for studying the brain and behavior in male subjects. There 

have been misconceptions regarding the importance of considering sex differences (for review 

see Cahill, 2006; Beery & Zucker, 2011). More recently, there has been greater movement 

toward considering potential sex differences in behavioral neuroscience research. Although there 

is conflicting evidence that eICSS is affected by fluctuations in ovarian hormones (Woodside et 

al., 1996; Bless et al., 1997), there is evidence that operant responding for rewards such as food 

and alcohol depends on the rat estrus cycle (Roberts et al., 1998; Richard et al., 2017). Future 

priming studies that involve electrical brain stimulation, natural rewards, or drugs should be 

carried out on naturally cycling females or ovariectomized rats that receive estrogen or estrogen 

and progesterone replacement. It is important to consider sex differences in the priming effect 

because there are disorders that could be triggered by priming, such as binge eating, that are 

more prevalent in females (Udo & Grilo, 2018). 

4. Conclusion 

The priming effect of rewards can pose a serious problem for people that struggle with 

controlling food consumption or drug use. For example, food priming can lead to binge eating 

and drug priming can lead drug misuse. Elucidating the neurobiological mechanisms underlying 

the priming effect could help break the cycle of overconsuming food or misusing drugs. 

Research on reward and motivation has largely implicated dopamine transmission. Yet, 

this thesis provides evidence consistent with the notion that certain aspects of motivation, such as 

the priming effect of rewards, may not depend on dopamine transmission. This highlights the 

importance of reconsidering the role of other, non-dopamine systems in reward and motivation. 
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