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Abstract

Urban Feature Classification from Remote Sensor Imagery Using Deep Neural Networks

Bodhiswatta Chatterjee

Convolutional neural networks have been shown to have a very high accuracy when applied to

certain visual tasks and in particular semantic segmentation. In this thesis we address the problem of

semantic segmentation of buildings from remote sensor imagery. We explore different architectures

to semantic segmentation and propose ICT-Net: a novel network with the underlying architecture

of a fully convolutional network, infused with feature re-calibrated Dense blocks at each layer.

Uniquely, the proposed network (ICT-Net) combines the localization accuracy and use of context

of the U-Net network architecture, the compact internal representations and reduced feature redun-

dancy of the Dense blocks, and the dynamic channel-wise feature re-weighting of the Squeeze-and-

Excitation(SE) blocks. The proposed network has been tested on two benchmark datasets and is

shown to outperform all other state-of-the-art by more than 1.5% on the Jaccard index on INRIA’s

dataset and 1.8% on the Jaccard index on AIRS dataset.

Furthermore, as the building classification is typically the first step of the reconstruction pro-

cess, in the latter part of the work we investigate the relationship of the classification accuracy to

the reconstruction accuracy. A comparative quantitative analysis of reconstruction accuracies cor-

responding to different classification accuracies confirms the strong correlation between the two.

We present the results which show a consistent and considerable reduction in the reconstruction

accuracy.

The work presented in this thesis has been published in the 16th Conference on Computer and

Robot Vision 2019.
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Chapter 1

Introduction

Reconstructing large-scale urban areas is an inherently complex problem which involves a number

of vision tasks. Typically, the first step is classification where the objective is to label each pixel into

an urban feature type e.g., building, road, tree, car, ground, vegetation, etc. Next, the pixel-level

labels are used to cluster the pixels into contiguous groups corresponding to instances of the urban

features they represent. Finally, the reconstruction is performed on each cluster. A reconstruction

algorithm is applied on each cluster according to the urban feature type the cluster corresponds

to. In the case of clusters corresponding to buildings, a boundary refinement process is typically

performed prior to extruding the building facades.

The objectives and contributions of this work are twofold. Firstly, we address the problem of

the classification of buildings in remote sensor imagery. We investigate a number of state-of-the-

art deep neural network architectures and present a comparative study of the results along with a

reasoned justification on the design decisions for the proposed network named ICT-Net: a novel

network with the underlying architecture of a fully convolutional network infused with Dense fea-

ture re-calibrated blocks at each layer. We demonstrate that this combination of components leads

to superior performance. The proposed network is ranked first (since January 2019) at two inter-

national benchmark competitions: (a) the INRIA Aerial Image labeling challenge with more than

1.5% difference in terms of performance from the second best and other ensemble networks, and

(b) the Aerial Imagery for Roof Segmentation(AIRS) challenge with more than 1.8% difference

in terms of performance from the second best by Pyramid Scene Parsing Network [65] (PSPNet),
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which is one of the state-of-the-art deep learning models for semantic image segmentation and the

winner of ImageNet scene parsing challenge 2016.

Secondly, we address the problem of reconstruction of the classified buildings and in particular

study the relationship between the classification accuracy and reconstruction accuracy. We perform

a comparative quantitative analysis on the reconstructions corresponding to classifications of dif-

ferent accuracies and report the results. Due to the lack of depth information, reconstructing 3D

models is not feasible therefore the accuracy of the border localization is used as proxy for the eval-

uation since it is tightly coupled to the reconstruction accuracy i.e. buildings are extruded using

their boundaries. As anticipated there is a strong correlation between the classification accuracy

and the accuracy of the reconstruction however the analysis has shown that there is a consistent and

considerable decrease in the reconstruction accuracy in terms of the per-pixel and per-building Jac-

card indices. To the best of our knowledge this is the first time a quantitative analysis is performed

in order to establish how the classification accuracy relates to the accuracy of the reconstruction as

determined by the accuracy of the border localization.

Thesis organization: This Thesis is organized as follows: Chapter 2 presents an overview of state-

of-the-art in the area of image classification, semantic segmentation, capsule networks and building

foot-print extraction in satellite images using deep neural networks. Chapter 3 summarizes our work

related to building classification using a capsule-based architecture. The proposed neural network

ICT-Net is explained in chapter 4 including a reasoned justification of the design decisions, and

details on the training and testing of the network. Chapter 5 presents a quantitative analysis of the

reconstruction accuracies resulting from different classification accuracies, and chapter 6 concludes

the work and discusses future directions.
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Chapter 2

Literature Review

Starting from a summer project at MIT in 1966 to a complete field, computer vision has evolved and

matured to a stage where recent systems have super human level accuracy on image classification

tasks like ImageNet [12]. A typical pipeline for most computer vision systems involve feature

extraction from the imagery followed by processing of those features to accomplish a task. Initially

for the most common task of image classification, hand-engineered features like (SIFT [40], SURF

[4], Spatial pyramid features [6]) were extracted from the imagery and a classifier (SVM [22],

Decision tree [49], Neural Networks [51]) was trained using the extracted features to classify the

image.

Yann Lecun’s designed architecture LeNet [35] was the first to have an end-to-end trainable sys-

tem where the feature extraction was trained using Convolutional layers followed by fully connected

layers to recognize (classify) hand-written digits on cheques. At the time of its invention scaling the

LeNet architecture to larger images was challenging due to the amount of computational power re-

quired, but with the advent of Graphics Processing Units (GPU) it became feasible to run massively

parallel computation and more complicated architectures of Convolutional Neural Networks started

to takeover the ImageNet leader-board. Other tasks like object localization and semantic segmen-

tation are also influenced by the classification network architecture research as they are used as the

backbone or building block for most object localization and semantic segmentation networks. In the

next few sections we discuss about the most popular CNN architectures for image classification and

semantic segmentation networks, followed by a new approach to image classification called Capsule
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networks and a brief overview of current state-of-art techniques for building footprint extraction.

2.1 Image Classification

Image classification is the task of classifying a whole image into a category. Supervised deep

learning based approaches require a huge amount of labeled data to train a model to perform this

task. ImageNet [12] dataset was proposed in 2009 for this purpose, it has over 15 million labeled

high-resolution images belonging to roughly 22,000 categories. The images were collected from the

web and were manually labeled using Amazon’s Mechanical Turk crowd-sourcing tool. Starting

in 2010, an annual competition called the ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) has been held. ILSVRC uses a subset of ImageNet with roughly 1.2 million training

images, 50,000 validation images, and 150,000 testing images. Since then many breakthroughs in

image classification have been reported on this dataset. We will look at some of the important deep

neural network architectures which were able to able to improve the state-of-art on ILSVRC as well

as image classification in general.

2.1.1 AlexNet

Krizhevsky et al. [33] started the deep learning revolution in computer vision. The authors in this

paper define a Convolutional Neural Network architecture (now popularly known as AlexNet) which

was architecturally similar to Yann Lecun’s designed architecture LeNet-5 but outperformed the

previous state-of-art on ILSVRC challenge by a large margin. AlexNet introduced a lot of new

concepts which later became the standard for training of deep neural networks. It consists of 8

layers with 60 million parameters. The first 5 are convolutional layers followed by 3 fully connected

layers. An architecture diagram of AlexNet can be seen in Figure 2.1. Few of the most notable

contributions of this paper were

• use of non-saturating non-linearity, ReLU [44] for training of convolutional networks

• very efficient implementation of the network spread over 2 GPU

• data augmentation as a technique to increase the size of dataset by many folds
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• Dropout as an additional technique to reduce over fitting

Figure 2.1: An illustration of the AlexNet [33] architecture, explicitly showing the delineation of
responsibilities between the two GPUs.

2.1.2 VGG

Simonyan et al. [56] have observed that deeper networks have the capacity to learn better features.

The authors were able to train a 16 layer and a 19 layer network by (popularly known as VGG)

with only last 3 layers being fully connected and the rest were all convolutional layers. Another

very significant contribution of this paper was the authors show that the use of (3x3) convolutional

filters is sufficient to train a deep neural network instead of (11x11) convolutional filters used in

AlexNet [33] or (7x7) convolutional filters used in Visualizing and Understanding Convolutional

Networks [64]. Reducing the size of convolutional filters reduces the number of parameters learnt

by the network which in-turn reduces over-fitting to the training data. A diagram of the architecture

of the VGG network can be seen in Figure 2.2.

Figure 2.2: An illustration of the VGG-16 architecture. Image courtesy to wikipedia [60]
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2.1.3 Inception

Szegedy et al. [58] were able to train a 22 layer deep neural network (named as Inception) to get

state-of-art results on ILSVRC. The authors emphasized on the efficiency of the network architec-

ture design as it has 12 times less parameters than [33] but have much higher accuracy. The network

introduced the concept of modules (inception blocks) inside the network which run multiple convo-

lutions using different filter sizes and can be done in parallel. One of the most notable contributions

of this paper is that the design of Inception Network allows to have classification results without

using a fully connected layers at the end which was not common for most classification network

of that time. Removal of the fully connected layers played the most important role in reducing the

number of parameters in the network. Inception network also introduced the use of multiple sized

convolutional filters in the same network and showed how convolutional layers with (1x1) filters can

be used for dimensionality reduction to remove computational bottlenecks. An architecture diagram

of GoogLeNet (Inception) network can be seen in Figure 2.3.

Figure 2.3: An illustration of the GoogLeNet architecture. [58]

2.1.4 ResNet

He et al. [21] were able to train a 152 layer convolutional network on the ImageNet dataset and

improve the ILSVRC state-of-art significantly by introducing residual learning with the help of

Residual blocks. They also show experimentally that just increasing the depth of the network does

not improve classification performance. Using Residual blocks the authors were able to train a

variant of the ResNet network which is 1000 layers deep on the CIFAR dataset. Some variants

of this network like ResNet-34 and ResNet-50 have been very commonly used as a backbone in

segmentation networks or to extract learned features from an image. Due to the high performance
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of the network there are a huge number of variants of this network like ResNext [61], WideResNext

[63], Inception-ResNet [57], etc. An architecture diagram of 2 different ResNet blocks can be seen

in Figure 2.4.

Figure 2.4: An illustration of the 2 different types of ResNet [21] block. Left: a ResNet building
block for ResNet34. Right: a “bottleneck” ResNet building block for ResNet-50/101/152

2.1.5 DenseNet

Huang et al. [27] introduced the idea of Dense Convolutional blocks (DenseNet), which connects

each layer to every other layer in a feed-forward fashion. They were able to outperform the state-of-

art on ImageNet and many other image classification challenges. The advantages of this architecture

are that they alleviate the vanishing-gradient problem and strengthen feature propagation by reusing

lower layer features, which also substantially reduces the number of parameters in the network as

the convolutional layers are very narrow with a growth rate of k which is significantly lower than

traditional convolutional layers. An architecture diagram of 5 layer Dense blocks can be seen in

Figure 2.5.

2.1.6 Squeeze and Excitation Network

Most deep neural networks for object recognition consider all extracted features at each layer to

be of equal importance. This was until the method proposed in [25] showed that adaptive re-

calibration of channel-wise feature i.e. weighing of the features, can be used effectively to model

inter-dependencies between channels and produce even better performance with little computational
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Figure 2.5: An illustration of 5-layer dense block [27] with a growth rate of k = 4. Each layer uses
all preceding feature-maps as input

overhead. It can be used as a drop-in replacement block with most commonly used CNN architec-

tures. The authors used SE blocks with multiple base networks and were able to achieve better

performance than the base networks. Using SE-ResNet-154 the authors were able to achieve better

than previous state-of-art on ILSVRC 2017. An architecture diagram of SE blocks can be seen in

Figure 2.6.

Figure 2.6: An illustration of a Squeeze-and-Excitation [25] block.

2.2 Semantic Segmentation

With super-human performance on image classification tasks, the current focus of computer vision

research has shifted towards more challenging tasks like object localization or per-pixel semantic

object segmentation. Prior to deep learning, semantic labeling required extraction of hand engi-

neered features. One of these methods [54] proposed the generation of features that were classified
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into unary potentials and fed into conditional random fields (CRF), localizing the label and seg-

menting objects.

Recent techniques using deep neural networks have demonstrated excellent results. It is useful

to have per-pixel semantic label in many situations like shape or geometry analysis of objects,

3D modeling of objects from 2D imagery, medical imaging, Self-Driving cars, etc. Some of the

benchmark datasets in this domain are Pascal Visual Object Classes (VOC) Challenge [15] and

Microsoft COCO: Common Objects in Context [38]. Cityscapes is another very renowned dataset

for Semantic Urban Scene Understanding [10] which provides semantic labels on urban scenes

focused on self-driving automobile research. Recently there has been an increasing interest on pixel-

wise classification and extraction of urban features from Satellite or Aerial imagery. Few renowned

datasets for classification of urban features are SpaceNet [14], Inria Aerial Image Labeling Dataset

[41], ISPRS dataset for Potsdam, Vaihingen and Toronto.

In recent years there has been a plethora of work on the design of Semantic Segmentation

architectures. Typical semantic segmentation architectures comprise of a down-sampling path re-

sponsible for feature extraction and an up-sampling path to restore the resolution of the semantic

labels. Skip connections between the two paths help to have a smooth gradient back propagation

and fast training of the network. Below we provide a brief overview of the state-of-the-art related

to the area of semantic labeling with an emphasis on how the architectures evolved overtime. We

discuss the architectures which are closely related to our work but a comprehensive review of neural

network architectures for semantic segmentation can be found in [17].

2.2.1 Fully Convolutional Network (FCN)

Long et al. [39] adapt classification networks (AlexNet [33], the VGG net [56], and GoogLeNet

[58]) into fully convolutional networks and transfer their learned representations to the segmentation

task. They define a skip architecture that combines semantic information from a deep, coarse layer

with appearance information from a shallow, fine layer to get high quality segmentation results.

Multiple variants of the network were proposed by the authors from which FCN-8s (using VGG

backbone) delivered the best performance and was able to outperform the previous state-of-art by a

significant margin. An architecture diagram of Fully convolutional networks(FCN) can be seen in
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Figure 2.7.

Figure 2.7: An illustration of Fully convolutional networks [39] can efficiently learn to make dense
predictions for per-pixel tasks like semantic segmentation

2.2.2 SegNet

Badrinarayanan et al. [1] has an encoder-decoder architecture (SegNet) where the encoder part of

the network is topologically identical to 13 convolutional layers of VGG16 network [56]. The role

of the decoder network is to map the low resolution encoder feature maps to full input resolution

feature maps for pixel-wise classification. The decoder uses pooling indices computed in the max-

pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the

need for learning to upsample. The sparse upsampled maps are then convolved with trainable filters

to produce dense feature maps. The authors of SegNet dataset have shown very good results on

scene understanding benchmark datasets. An architecture diagram of SegNet can be seen in Figure

2.8.

2.2.3 U-Net

Ronneberger et al. [50] proposed the U-Net architecture which was able to achieve end-to-end se-

mantic labeling with high accuracy in the field of medical image segmentation. Architecturally it

is very similar to SegNet but instead of pooling indices from the encoder it concatenates the en-

coder activations with the upsampled feature maps. The original version of U-Net used VGG style

backbone as the encoder but since then the U-Net [50] architecture has been extensively used and
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Figure 2.8: An illustration of the SegNet architecture. A decoder upsamples its input using the
transferred pool indices from its encoder to produce a sparse feature map(s). It then performs
convolution with a trainable filter bank to densify the feature map.

adapted to many other domains with different variants of ResNet as the backbone especially label-

ing of buildings from aerial imagery as in [20,28]. An architecture diagram of U-Net can be seen in

Figure 2.9.

Figure 2.9: An illustration of the U-Net [50] architecture.

2.2.4 Fully Convolutional DenseNets for Semantic Segmentation

Jegou et al. [30] proposed a U-Net style segmentation network with a very promising pattern known

as Dense blocks proposed in [27] for the problem of image classification. In a Dense block every

layer is connected to every other layer in a feed forward fashion. This provides implicit deep su-

pervision and feature reuse which in turn improves the feature extraction power without making
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it difficult to train the network. The one hundred layers Tiramisu network architecture proposed

in [30] extended the use of Dense blocks for semantic segmentation and was able to outperform

state-of-the-art on two benchmark data sets: Gatech and CamVid. An architecture diagram of Fully

Convolutional DenseNets for Semantic Segmentation can be seen in Figure 2.10.

Figure 2.10: An illustration of the Fully Convolutional DenseNets for Semantic Segmentation [30]
architecture. It is built from dense blocks. The diagram is composed of a downsampling path with
2 Transitions Down (TD) and an upsampling path with 2 Transitions Up (TU)

2.3 Capsule Networks

Convolutional Neural Networks(CNN) have been able to dominate in most fields of computer vision

for the last decade but there are few weaknesses to the CNN approach to computer vision. CNN

architectures need pooling layers to achieve local invariance where they should actually strive for

equivariance. Another important property of CNN architectures is it does not account for parts-to-

whole relationships for objects. Also there is growing interest in the vulnerability of neural networks

to adversarial examples; inputs that have been slightly changed by an attacker to trick a neural net

classifier into making the wrong classification [18].

Capsule networks [23] proposed by Hinton et al. tries to resolve these problems by introducing
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Figure 2.11: An illustration of a simple Capsule Network [52] with 3 layers. The length of the
activity vector of each capsule in DigitCaps layer indicates presence of an instance of each class
and is used to calculate the classification loss.

capsules, which are group of neurons whose activity vector represents the instantiation parameters

of a specific type of entity such as an object or an object part. Activation maps produced by capsule

layers is an n-dimensional array of vectors instead of scalars where the Vector Length signifies

the estimated probability of presence of object or object part and the vector dimensions contains

estimated pose parameters of object or object part. An architecture diagram of Capsule Networks

can be seen in Figure 2.11. The pooling operation of CNN architectures is replaced by a voting

mechanism where active capsules at one level make predictions , via transformation matrices, for

the higher-level capsules. When there is consensus on a higher level capsule by multiple lower

level capsules, it becomes active. To date, the known techniques for voting mechanisms include

Dynamic routing [52] by Sabour et al. and EM routing [24] by Hinton et al. Capsule networks

have achieved state-of-art results on MNIST Hand written Digit recognition [34] dataset, even with

multiple overlapping digits and on the smallNORB [36] dataset. Hinton et al. [24] also show that

capsule networks are significantly less vulnerable to adversarial attacks.

Although Capsule networks look like a very promising direction, the currently known routing

algorithms are iterative in nature which makes the training of these networks very time consuming

and the number of iterations for the best performance of the routing algorithm is a hyper-parameter

that needs to be tuned. Also scaling Capsule layers to large images is a very challenging task as

capsules require large chunks of memory.
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2.4 Building Footprint Extraction

With respect to urban reconstruction, the extraction of urban geospatial features such as build-

ings from remote sensor imagery has also been an area of research interest for a very long time

[19,53,59]. Automatic reconstruction of 3D models from the extracted features is extremely useful

for many applications ranging from urban and community planning, development and architec-

tural design, training of emergency response personnel, military personnel, etc. In [45] the authors

propose a novel, robust, automatic segmentation technique based on the statistical analysis of the

geometric properties of the data as well as an efficient and automatic modeling pipeline for the

reconstruction of large-scale areas containing several thousands of buildings. With the recent ad-

vances in deep neural network architectures the pipeline has been upgraded to feature extraction

using a semantic labeling CNN followed by clustering the points based on their label, and special-

ized processing for each of the labels of geospatial objects as proposed in [16].

Recently there has been a lot of interest for semantic labeling of buildings [28, 31, 43] fueled

by the release of very large datasets like INRIA Aerial Image Labeling dataset [41], and SpaceNet

where a corpus of commercial satellite imagery with labeled training data was made publicly avail-

able for use in machine learning research. In [28] the authors use a variant of the aforementioned

U-Net network architectures replacing the VGG11 [56] encoder with a more powerful activated

Batch Normalized [7] WideResnet-38 [63] in the context of instance segmentation of buildings for

DeepGlobe-CVPR 2018 building detection sub-challenge, and were able to get very good results.

Conclusion

Although many architectures have been proposed for classification, there still remains a large gap

between the current state-of-the-art and the ultimate goal of semantic segmentation of large-scale

remote sensed images. In this thesis, we focus on bridging the gap by exploring different archi-

tectures and proposing ICT-Net: a novel network architecture that combines the strengths of deep

neural network architectures (UNet) and building blocks (DenseNet block, SE block) which when

applied to the problem of semantic labeling of buildings is proven to achieve better classification

accuracy than state-of-the-art on the INRIA Aerial Image Labeling dataset. As of Nov 2019 the
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proposed network is top ranked on the competitions’ leaderboard with more than 1.5% difference

from the second best entry on INRIA and 1.8% difference AIRS benchmark datasets.
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Chapter 3

Building Classification with Capsule

Network

In this chapter we describe the details of our approach to pixel-wise classification of building from

aerial imagery using our proposed capsule network architectures. We also include the justification

for our design decision choice of using capsule network. Along with the architectures we also

discuss about the second most important aspect of any supervised classification system - the dataset.

We used the INRIA Aerial Image labeling [41] benchmark datasets to evaluate the performance of

our networks. We also provide extensive details of training/validation, and testing of the model and

end the chapter with some quantitative and qualitative results obtained by the models.

3.1 Dataset

The Inria benchmark datasets is organized as an open challenge where the publishers provided

imagery and ground truth with per-pixel building vs non-building labels. Only a part (training data)

of the dataset’s ground truth is publicly available for training of neural networks and to maintain

fairness of evaluation they have made it mandatory to submit the prediction on the other part (test

data). It is evaluated and published on a leaderboard which is publicly accessible.

The training of the networks is performed using the INRIA Aerial Image labeling dataset which

consists of pixelwise labeled aerial imagery for building classification. The dataset covers 810km2
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area across 10 different cities with spatial resolution of 30cm, and is split into two equal sets

(405Km2 each) for training and testing. The dataset consists of 3-band orthorectified RGB im-

ages and the training labels consist of ground truth data for two semantic classes: building and

non-building. The training data covers parts of the cities of Austin, Chicago, Kitsap county, western

Tyrol, and Vienna. The test data covers parts of the cities of Bellingham, Bloomington, Innsbruck,

San Francisco and Eastern Tyrol. There are 36 tiles with resolution of 5000× 5000 pixels for each

city, each tile covering 1500× 1500m2 area on the ground. The training data is further divided into

two sets: (1) the validation set which comprises of the first 5 tiles of each city, and (2) the training

set which consists of the rest of the tiles as suggested in [41]. An example image from the dataset

can be seen in Figure 3.1.

Figure 3.1: Sample imagery from INRIA Aerial Image labeling dataset.

We have chosen the INRIA benchmark dataset over other available options because it uniquely
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offers two significant advantages. Firstly, the training and testing datasets are from completely dif-

ferent cities with no overlap i.e. all images of 5 cities (Austin, Chicago, Kitsap, Western-Tyrol,

Vienna) are provided for training, and all images of another 5 different cities (Bellingham, Bloom-

ington, Innsbruck, San Francisco, Eastern-Tyrol) are used for testing. Secondly,the dataset covers

dissimilar urban settlements e.g., European, American, etc, with large variations in building density,

architecture, and overall characteristics e.g., red shingles, flat roofs, etc. For these reasons, we have

chosen this benchmark dataset because it is ideal for assessing the generalization capacity of the

network.

3.2 Network Architecture

Convolutional neural networks are very good at classifying objects by detecting the presence of

features related to object parts and objects in a hierarchical fashion inside the network for any input

image. The activation in a CNN architecture are scalar values so it can only indicate presence or

absence of a feature in an image. Capsule networks [23] proposed by Hinton et al. introduces enti-

ties in a network, these entities are known as capsules which indicate the presence and instantiation

parameters of an object or object parts. In capsule-based architectures the activation maps produced

by capsule layers is an n-dimensional array of vectors instead of scalars where Vector Length signi-

fies the estimated probability of presence of object or object part and the vector dimensions contains

estimated pose parameters or other properties of object or object part.

Requirement: An important aspect of 3D reconstruction of urban features(ie. buildings in this

case) using the per-pixel semantic classification from the network and depth information, is more

information (like roof-type, roof-materials, etc) about each building can improve the quality of 3D

reconstruction.

Decision: Based on the promise of capsule networks, it is perfect fit to the situation. The magnitude

of a capsules activation vector can indicate the presence or absence of a buildings and if present

other dimensions of the vector can encode the properties of the building.

Architecture: Scaling capsule layers to large images is a very challenging task as capsules require

large chunks of memory. To get rid of the scaling problem we take inspiration from Sabor et al.
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[52] and try a combination of convolution and capsule layers where the core or bottleneck of the

network is made up of capsule layers and it is enclosed with convolution and up-convolution layers.

The network takes as input a patch of size 128 × 128. It is followed by 5 layers of convolution

operation which extracts features from the image. For 2nd and 4th convolution layer we use a strided

convolution with a stride of 2 which helps us extract features as well as reduce the spatial extent

of features to 1
4

th of the input size. The activations from convolution layer 5 is fed to the primary

capsule layer whose activations are 16 dimensional vectors. It leads to a classification capsule layer

which has 32 dimensional activation vectors. It is followed by a fully connected decoder module

which uses the activation from classification capsule to reconstruct a 16 × 16 segmentation mask.

It is followed by 2 up-convolution blocks where each block consists of one transpose convolution

followed by a convolution layer. The output of last convolution block is a 128× 128 segmentation

mask.

3.3 Training and Validation

The network is trained on 155 tiles each with resolution 5000 × 5000 from the available training

data with their corresponding ground truth. The training is performed for 30 epochs on a single

nVidiaGTX 1080Ti. We used Tensorflow API for the development and training/testing of the net-

work. Due to the iterative process in dynamic routing algorithm the training process is very slow

and requires approximately 20 hours to complete 1 epoch of training. Every epoch was divided into

31 sub-epochs each consisting of 5 tiles (1 from each city). Limited by GPU memory we had to

choose a small batch size of 4 to have a comparatively larger patch size of 128×128 as we observed

context is very important for semantic labeling of buildings.

Implementation details: The network was trained using a Margin loss as in the dynamic rout-

ing [52] paper. Our margin loss was defined as a combination of cross-entropy classification loss

and regression reconstruction loss with equal weight for both the losses. Adam Optimizer with a

learning rate of 0.0001 was used to train the network for 30 epoch.

Data input: Our network takes in patches of 128 × 128 out of the entire tile with 50% overlap.

At the time of training a patch is classified as building if its mask has at least 100 pixels labeled
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as building. Among all the (approximately 30000) patches, 5000 randomly sampled patched are

selected for each mini-epoch of training. At testing the same input patch size of 128 × 128 had to

be used.

Network output: Generally CNN architectures are slow to train but at inference time they are

much faster but Capsule based architectures are slow even at inference time due to the iterative

routing algorithm. The output produced by the network is a 1-channel gray-scale image of the same

size as the input image where each pixel has a probability score of being a building in the range

[0, 1]. We convert the probability map into a binary mask by applying threshold. Predictions for

each patch are generated and then they are combined to form a 5000× 5000 segmentation mask. It

takes approximately 40min to generate prediction for 1 input tile of 5000× 5000.

3.4 Results

The INRIA dataset uses two main performance measures: Intersection over Union (Jaccard index)

and Accuracy. Intersection over Union (IoU) is defined as the number of pixels labeled as buildings

in both the prediction and the reference, divided by the number of pixels labeled as buildings in

the prediction or the reference. Accuracy is defined as the percentage of correctly classified pixels.

On the validation set of 25 image tiles we achieved 70.42% (IoU) and 95.14% (accuracy). An il-

lustration of prediction by the network can be seen in Figure 3.2. The test set evaluation is done

by the organizers of the competition and involves the classification of 5 cities for which no images

have been used for training and validation, and for which no ground truth is available to the partici-

pants. We achieved 65.83% (IoU) and 94.80% (accuracy) on the test set which can be found on the

competition’s leaderboard 1. City-wise performance on the test dataset can be found in table 3.1.

Our capsule-based architecture achieves 65.83% IoU and 94.80% accuracy on the overall

test dataset of INRIA.

1https://project.inria.fr/aerialimagelabeling/leaderboard/
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City IoU (%) Accuracy (%)
Bellingham 66.14 96.53
Bloomington 50.30 95.33
Innsbruck 64.50 95.60
San Francisco 71.05 90.11
East Tyrol 63.94 96.46
Overall 65.83 94.80

Table 3.1: Performance evaluation of capsule based architecture on the test dataset.

Conclusion

The concept of Capsule networks look very promising but the currently known iterative routing

algorithms make both training and inference very slow for these networks. It took us approximately

5 days to generate inference prediction on the test dataset of 180 image tiles of 5000×5000. Another

challenge with Capsule layers is to use large patch size as input to the network because it requires

large chunks of memory. However, context is very important in the classification of remote sensing

imagery due to variation in shape and size of objects like buildings and the ability to increase the

patch size can have a huge impact on final prediction as demonstrated by the AMLL team in [26].

Due to the challenges discussed above we continued exploring other CNN-based architectures for

segmentation of buildings the best of which is discussed in chapter 4.

Figure 3.2: Building Classification of a patch from vienna city, tile 02. Result for an image from
the validation dataset. Left: A patch from vienna city as input image. Middle: The semantically
labeled ground truth image. Right: The binary map prediction resulting after the thresholding of the
probability output from the capsule based segmentation network.
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Chapter 4

Building Segmentation with ICT-Net

In this chapter we describe our approach to pixel-wise classification of building from aerial imagery

using our proposed neural network architectures ICT-Net. In the discussion of network architecture

we include the justification for all design decision choices. We will also provide a detailed overview

of the datasets used to benchmark our network, namely INRIA Aerial Image labeling [41] and

Aerial Imagery for Roof Segmentation(AIRS) [9]. We will also provide extensive details of train-

ing/validation, and testing of the model on both datasets and end the chapter with some qualitative

and quantitative results of the models.

4.1 Dataset

The Inria benchmark dataset is one of the most popular dataset for Building segmentation as it has

a huge variety of imagery as it is acquired from 10 different cities with different urban settlement

types and density. So we choose to that as our primary dataset for training and experiments. More

details about this dataset can be found in chapter 3.1 and some sample imagery from the dataset can

be seen in Figure 3.1.

In addition to INRIA, we also use the AIRS dataset for benchmarking ICT-Net. Similar to the

INRIA dataset, publishers for the AIRS benchmark dataset also provide imagery and ground truth

with per-pixel roof vs non-roof labels. Only a part (training and validation) of the dataset’s ground

truth is publicly available for training of neural network and to maintain fairness of evaluation they
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have made it mandatory to submit the prediction on the test data. It is evaluated and published on a

leaderboard which is publicly accessible.

Figure 4.1: Sample imagery from Aerial Imagery for Roof Segmentation (AIRS) dataset.

AIRS (Aerial Imagery for Roof Segmentation) is a public dataset that aims at benchmarking

the algorithms of roof segmentation from very high-resolution aerial imagery. AIRS dataset covers

almost the full area of Christchurch, the largest city in the South Island of New Zealand. Although

the aerial imagery is from one city but there is huge variety of settlement types. An illustration of

sample images from the AIRS dataset can be seen in 4.1. The imagery contains 3-band orthorectified

RGB images at 7.5cm ground resolution. It has a coverage of 457Km2 aerial images with over

220,000(approx.) buildings and refined ground truths that strictly align with roof outlines.There are

1046 tiles with resolution of 10000× 10000 pixels which are already split into train, validation and

test split of 857, 94 and 95 as the dataset has been published. The ground truth for buildings is

carefully refined to align with their roofs and the segmentation task for AIRS contains two semantic

classes: roof and non-roof pixels. We have chosen the AIRS benchmark dataset as it covers a

completely different geographic location with different urban settlements and the aerial imagery

is very high resolution so we are able to validate the generalization capacity of the trained neural

network.
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4.2 Network Architecture

A vast number of networks has been proposed for image classification and semantic labeling. State-

of-the-art performance is generally achieved with deep networks however these are difficult to train

due to vanishing or exploding gradients. Many networks [21, 27, 30, 50] have shown that skip

connections play an important role in having good gradient propagation through the network. In our

work, as part of the network design process, we first identified the requirements for the particular

task at hand i.e. semantic segmentation of buildings from remote sensor images, and then decisions

were made to address these:

• Requirement 1: An important aspect of semantic segmentation of buildings is to have high

localization accuracy and take into account as much context information as possible. This

is necessary in order to address the wide variability in buildings typically relating to their

function e.g., shape, size, color and/or region they appear in e.g., density in urban/rural, etc.

Decision: To that end, the U-Net architecture [50] takes into account spatial information and

combines it with contextual information via the direct downsampling-upsampling links.

• Requirement 2: In order to be able to process large chunks of data at a time it is imperative

that the network contains as few parameters as possible.

Decision: Dense blocks connect every layer to every other layer in a feed-forward fashion.

Along with good gradient propagation they also encourage feature reuse and reduce the num-

ber of parameters substantially as there is no need to relearn the redundant feature maps. At

the end of every Dense block all the extracted features accumulate creating a very diverse

set of features. As a result of this feature redundancy there is a substantial reduction in the

network parameters leading to faster training times. This allows the processing of larger

patch (and batch) sizes (which also addresses Requirement 1) therefore allowing additional

contextual information during each feed-forward pass.

• Requirement 3: The contribution of the feature maps at each layer to the output must depend

on their importance.
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Figure 4.2: Proposed feature recalibrated Dense block with 4 convolutional layers and a growth rate
κ = 12 used by the ICT-Net. c stands for concatenation.

Decision: Using the Squeeze-and-Excitation (SE) blocks the dynamic channel-wise feature

re-weighting mechanism provides a way to upweigh important feature maps and downweigh

the rest. In [25] authors show adaptive re-calibration of channel-wise feature responses by

explicitly modelling inter-dependencies between channels using squeeze and excitation block

on existing architectures [21, 58, 61] results in improved performance.

The proposed network architecture is distinct and combines the strengths of the U-Net architec-

ture, Dense blocks, and Squeeze-and-Excitation (SE) blocks. This results in improved prediction

accuracy and it has been shown to outperform other state-of-the-art network architectures such as

the ones proposed in [26] which have a much higher number of learning parameters on the INRIA

benchmark dataset. Figure 4.2 shows a diagram of the proposed feature recalibrated Dense block

with 4 convolutional layers and a growth rate κ = 12 used by the ICT-Net. The proposed network

has 11 feature recalibrated dense blocks with [4,5,7,10,12,15,12,10,7,5,4] number of convolutional

layers in each dense block, respectively.

Perhaps the closest architecture to the one proposed was discussed in section 2.2.4 [30] which

uses 103 convolutional layers. If SE blocks are introduced at the output of every layer this will

cause a vast increase in the number of parameters which will hinder the training. In contrast, in

our work we have chosen to include an SE block only at the end of every Dense block in order

to re-calibrate the accumulated feature-maps of all preceding layers. Thus, the variations in the

information learned at each layer - in the form of the features maps - are weighted by the SE block

according to their importance as determined by the loss function.

Discussion: To verify the validity of the above design decisions we performed a comparative study
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involving a number of state-of-the-art architectures and blocks. Following the same training proce-

dure for all architectures reported, and without any data augmentation the ICT-Net was compared

with U-Net [50] and Tiramisu-103 [30]. The results on the validation dataset are shown in Table 4.1

where it is evident that the proposed architecture outperforms both U-Net and Tiramisu-103.

Paper Method Overall IoU (%) Overall Accuracy (%)
[50] UNet 70.86 95.51
[30] Tiramisu-103 73.91 95.71
Ours ICT-Net 75.5 96.05

Table 4.1: Performance evaluation of SOTA architectures (U-Net [50] and Tiramisu-103 [30]) on
the validation dataset

4.3 Training and Validation on INRIA dataset

The network is trained on 155 tiles each with resolution 5000 × 5000 from the available training

data with their corresponding ground truth. The training is performed for 100 epochs on a single

nVidiaGTX 1080Ti. We used Tensorflow API for the development and training/testing of the net-

work. Due to the large size of the dataset it requires approximately 6 hours to complete 1 epoch of

training. Every epoch was divided into 31 sub-epochs each consisting of 5 tiles (1 from each city).

Limited by GPU memory we had to choose a small batch size of 4 to have a comparatively larger

patch size of 256×256 as we observed context is very important for semantic labeling of buildings.

Implementation details: The network was trained using cross-entropy loss with RMSProp Opti-

mizer with an initial learning rate of 0.001 and decay of 0.995 for the first 50 epochs. After the 50th

epoch the learning rate was reduced to 0.0001 and trained for another 50 epochs. Instead of using

dropout as a regularization technique we applied a large number of data augmentations in order to

restrict the network from overfitting to the training dataset.

Data input: Our network takes in patches of 256× 256 out of the entire tile with 50% overlap. The

patches are selected sequentially for every odd epoch and the same number of patches is selected

randomly for every even epoch during the training. We use the alternating patch generation strategy

to restrict the network from overfitting while still having the opportunity to learn all the features

from every tile. At testing the input patch size is increased to 768 × 768 (the maximum that could
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Figure 4.3: Empirical study to determine the optimal thresholding value for converting the grayscale
classification map produced by the network to a binary map. The models shown correspond to the
same network ICT-Net at different training snapshots for which the classification accuracy (i.e. IoU
in the graph) was calculated after the thresholding at every 0.05 intervals as shown. The optimal
threshold value is τ = 0.4.

fit in the GPU memory) so that we are able to increase the context for large building in every patch.

During testing, the patches are selected using 50% overlap similar to what is done during training.

Network output: The output produced by the network is a 1-channel gray-scale image of the

same size as the input image where each pixel has a probability score of being a building in the

range [0, 1]. We convert the probability map into a binary mask by thresholding. We conducted an

empirical study on the validation dataset and have chosen τ = 0.4 as the optimal threshold value

for converting the gray-scale image to a binary map as shown in Figure 4.3. The output patches are

then assembled into tiles of size 5000 × 5000 by weighted average and overlapping areas near the

edges are down-weighted. During the testing, the standard test time augmentations are applied to

each tile and they are merged back using an average of the probability scores.

ICT-Net achieves 75.50% IoU and 96.05% accuracy on the overall validation dataset of

INRIA.

Data augmentations: Based on the validation results we used the pretrained weights and trained

our network with the following data augmentations with a probability of 70% to be applied to

every patch: random rotations in the range [0◦, 360◦] using reflection padding, random flip, random
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selection of a patch in the range of [0.75, 1.25] of the image patch size and re-size it to original patch

size of 256. Data augmentations significantly improved the performance of the network in terms of

accuracy.

4.4 Results - INRIA dataset

The INRIA dataset uses two main performance measures: Intersection over Union (Jaccard index)

and Accuracy. Intersection over Union (IoU) is defined as the number of pixels labeled as buildings

in both the prediction and the reference, divided by the number of pixels labeled as buildings in the

prediction or the reference. Accuracy is defined as the percentage of correctly classified pixels.

The measures are calculated by the organizers of the competition and involve the classification

of 5 cities for which no images have been used for training and validation, and for which no ground

truth is available to the participants. As of Nov 2019 the proposed architecture is ranked as the top

performing in terms of both IoU (80.32%) and accuracy (97.14%) on the competition’s leaderboard

1 since February 2019. Figure 4.4 shows an example of a result for a small area of an image from

the test dataset (top left). The probability image produced by the network is shown as a heat map

(bottom right) overlaid on top of the RGB image (bottom left). The binary map resulting after the

thresholding is shown in the top right image.

ICT-Net achieves 80.32% IoU and 97.14% accuracy on the overall test dataset of INRIA,

which is 1.5% IoU above the second best on the leaderboard.

As previously mentioned, the proposed network is currently ranked as the top performing net-

work with the second best having more than 1.5% difference in terms of the IoU. The authors

in [26] provide details of the next 4 top performing techniques on the INRIA aerial image labeling

benchmark dataset. All 4 methods are Convolutional Neural Networks(CNNs), amongst which 3 of

them are based on U-Net architecture. Table 4.2 shows a quantitative comparison between the pro-

posed network ICT-Net and these other techniques on the test dataset as reported by the competition

organizers.
1https://project.inria.fr/aerialimagelabeling/leaderboard/
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Figure 4.4: Building Classification of Bellingham city, tile 17. Result for an image from the test
dataset. Top left: A closeup of a small area of an input image. Bottom left: The probability image
overlaid on top of the RGB image. Bottom right: The probability image shown as a heat map. Top
right: The binary map resulting after the thresholding of the probability image.

Paper Method Overall IoU Overall Accuracy
[26] Raisa 69.57 95.30
[26] ONERA 71.02 95.63
[26] NUS 72.45 95.90
[26] AMLL 72.55 95.91
[29] N/A 78.31 96.76
[29] N/A 78.39 96.84
[29] N/A 78.45 96.74
[29] N/A 78.80 96.91
Ours ICT-Net 80.32 97.14

Table 4.2: Performance evaluation of the best performing networks on the test dataset. First 4 entries
are defined as State of the art by INRIA [26]. Next 4 entries are other top performances from the
leaderboard [29]. ICT-Net outperforms all others with more than 1.5% difference in terms of the
IoU.

Below we provide a brief overview of the main characteristics of these four other networks.

Stacked U-Nets by Raisa [32] uses a U-Net based architecture where instead of using a single

U-Net they use a stack of two U-Nets arranged end-to-end. The second network works as a post-

processor for the previous one to enhance its predictions. The network uses a loss function that

combines both binary cross entropy and a differential form of Intersection-over-Union (IoU) [42].
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Signed distance transform regression by ONERA - uses a standard fully convolutional network

[1] architecture, which is adapted to include spatial context in the optimization process by adding a

regularization loss computed on the Euclidean signed distance transform (SDT) [62]. The network

also outputs a regression of the SDT along with the standard classification.

The authors of Dual Resolution U-Net (NUS) propose dual resolution images as input to the

U-Net architecture with a combined loss of sigmoid cross-entropy and soft Jaccard loss [42]. One

high-resolution 384×384 patch from the original image and a crop of 768×768 with the same center

and down-sampled to a twice lower resolution 384×384 image is fed to the network. Features from

both high and low resolution patches are extracted by a U-Net, then score maps for each resolution

are computed. A weight map is further learned on merging score maps from different resolutions.

This weight map determines, for each pixel, how much the network relies on different resolution

inputs. To summarize, the final result is a weighted sum of dual-resolution score maps.

Applied Machine Learning Lab AMLL at Duke University - proposed the use of the original

U-Net architecture with half as many filters at each layers to reduce the chances of overfitting to the

training dataset. To reduce poor performance of the network at the edge of the patches the patch

size was increased to 2636× 2636 during inference time.

City 2nd Best IoU (%) 2nd Best Accuracy (%) Our IoU (%) Our Accuracy (%)
Bellingham 74.15 97.44 74.63 97.47
Bloomington 75.55 97.72 80.80 98.18
Innsbruck 78.62 97.43 79.50 97.58
San Francisco 80.65 93.63 81.85 94.08
East Tyrol 80.80 98.31 81.71 98.39
Overall 78.80 96.91 80.32 97.14

Table 4.3: Comparison of performance evaluation of ICT-Net and the previous best entry on the
leaderboard for the test dataset.

We compare the performance of ICT-Net with the 2nd best entry on the leaderboard and observe

that ICT-Net outperforms the previous best entry in overall(average over 5 cities) as well as in

every city. This demonstrates the generalization capacity of our proposed ICT-Net. The comparison

results can be found in table 4.3.
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4.5 Training and Validation on AIRS dataset

Initially we use the pre-trained ICT-Net trained on INRIA dataset to test the generalization ability of

the network on AIRS validation dataset of 94 tiles. Then the network is trained on 857 tiles of AIRS

training dataset where each tile is of resolution 10000 × 10000 with their corresponding ground

truth. The training is performed for 5 epochs on a single nVidiaGTX 1080Ti. Due to huge size of

the dataset it requires approximately 30 hours to complete 1 epoch of training. Every epoch was

divided into sub-epochs where each sub-epoch consisting of 5 tiles from the training dataset. We

use the same batch and patch size of 256× 256 and 4 respectively as we used for INRIA dataset.

Implementation details: Loss remain the same as training for INRIA dataset. The optimization

hyper-parameters mostly remain same and the learning rate used was 0.0001. The network was

trained until the loss saturated which took 5 epochs. Data augmentations were used in order to

restrict the network from overfitting to the training dataset.

Data input: ICT-Net takes in patches of 256 × 256 out of the entire tile with 50% overlap. At

testing the input patch size in increased to 768 × 768 to increase the context for large building in

every patch. The patch generation strategies remain the same as was used for INRIA dataset.

Network output: The output produced by the network is a 1-channel gray-scale image of the same

size as the input image where each pixel has a probability score of being a building in the range

[0, 1]. We convert the probability map into a binary mask by thresholding. The output patches are

then assembled into tiles of size 10000×10000 by weighted average and overlapping areas near the

edges are down-weighted.

Data augmentations: On the AIRS dataset we use the same set of data augmentation techniques

that were used while training ICT-Net on INRIA dataset. The details for training on the INRIA

dataset can be found in 4.3.

4.6 Results - AIRS dataset

The AIRS dataset uses the following performance measures: Intersection over Union (Jaccard in-

dex), F1-Score, Precision and Recall. The evaluation metrics of intersection over union (IoU) and

F1-score are used to reflect the overall performance of the baseline methods. On the other hand,
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precision and recall indicate the correctness and completeness of the roof segmentation results re-

spectively.

ICT-Net achieves 91.70% IoU and 95.70% F1-score on the test dataset of AIRS, which

is the highest accuracy so far; 1.8% IoU, and 1% F1-score above the second best on the

leaderboard.

The evaluation provided by the organizers of the competition involves the segmentation of roofs

for 95 tiles of imagery for which no images have been used for training and validation, and no

ground truth is available to the participants. As of Nov 2019 the proposed architecture is ranked

as the top performing in terms of both IoU (91.70%) and F1-score (95.70%) on the competition’s

leaderboard 2. Figure 4.5 shows an example of a result for a small area of an image from the

test dataset (top left). The probability image produced by the network is shown as a heat map

(bottom right) overlaid on top of the RGB image (bottom left). The binary map resulting after the

thresholding is shown in the top right image.

As already mentioned, the proposed network is currently ranked as the top performing network

with the second best having 1.8% difference in terms of the IoU and 1% difference in terms of

F1-score. The authors in [9] provide details of the top performing techniques on the AIRS (Aerial

Imagery for Roof Segmentation) benchmark dataset. All of the methods are Convolutional Neural

Networks based approaches(CNNs). Table 4.4 shows a quantitative comparison between the pro-

posed network ICT-Net and these other techniques on the test dataset as reported by the competition

organizers.

Paper Method IoU F1-score Precision Recall
[37] FPN 0.882 0.937 0.963 0.913
[9] FPN+MSFF 0.888 0.941 0.958 0.924
[65] PSP 0.899 0.947 0.961 0.933
[8] ICT-Net 0.917 0.957 0.955 0.959

Table 4.4: Performance evaluation of the top performing networks on the AIRS test dataset. ICT-Net
outperforms all others with 1.8% difference in terms of the IoU and 1% in terms of F1-Score.

2https://www.airs-dataset.com/leaderboard/
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Figure 4.5: Building Classification of AIRS sample data. 1st row: sample RGB input image. 2nd

row: ground truth label for the sample images. 3rd row: The prediction from ICT-Net 4th row:
The probability map from ICT-Net shown as a heat map. 5th row: The prediction from ICT-Net
overlayed on the image.
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Conclusion

We present ICT-Net: a novel network architecture which combines the strengths of U-Net, Dense

blocks and feature recalibration using SE blocks. We evaluate the performance of ICT-Net on 2

benchmark datasets: INRIA and AIRS, and validate our design choices. The proposed network

outperformed all other techniques on the competitions’ leaderboard with more than 1.5% and 1.8%

IoU difference from the second best entry on INRIA and AIRS benchmark datasets, respectively.

Additional predictions from INRIA test dataset and Google imagery used by Bastani et al. [2] can

be found here3. Our final goal is to have rapid and automatic 3D reconstruction of urban scene,

so we took at a technique to reconstruct urban features (buildings in this case) and compare the

classification accuracy to reconstruction accuracy in chapter 5.

3https://theictlab.org/lp/2019ICTNet/START_HERE.html
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Chapter 5

3D Reconstruction

As previously stated the contributions of our work are two-fold. In chapter 4 we proposed a novel,

top ranked architecture for classifying buildings from remote sensor imagery. This binary classifica-

tion map is typically used as a first step to the reconstruction process since it allows the application

of specialized reconstruction algorithms according to the classified type of the pixels. In this chapter

we use a very well known technique by Poullis et al. [45] for reconstructing urban features (build-

ings in this case) using an RGB orthophoto image, the depth map and the building prediction mask

from ICT-Net. Using the same technique on INRIA dataset we analyze the relation between classi-

fication accuracy and the accuracy of the reconstruction, with by boundary localization as a proxy

to depth (since depth information was not available for INRIA dataset).

5.1 Dataset

For the purpose of 3D reconstruction of buildings using [45] we need Orthorectified RGB imagery,

ground truth or prediction masks of building and the depth map of the image tile. We were able

to acquire one tile of 30cm orthophoto RGB imagery of downtown Montreal (image courtesy of

Defence Research and Development Canada and Thales Canada) and a depth map for the same tile

(depth map courtesy Presagis Inc Canada). Using our proposed ICT-Net architecture we were able

to predict the building masks for the same tile, an illustration of building segmentation mask can be

see in figure 5.1.

Figure 5.2 shows an example of the downtown Montreal. The building classification is generated
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Figure 5.1: Building Classification of Montreal data. Top left: The orthophoto RGB input image.
Bottom left: The prediction of ICT-Net overlaid on top of the RGB image(Red-Prediction). Bottom
right: The probability mask of ICT-Net shown as a heat map. Top right: The binary segmentation
map resulting after the thresholding of the raw ICT-Net output. The orthophoto RGB image is
courtesy of Defence Research and Development Canada and Thales Canada.

with the proposed ICT-NET network and refined as explained above. In this example, LiDAR

information was available which after resampling at the same resolution as the orthorectified image

was used to extrude the 3D buildings from the extracted boundaries. The result shown is fully

automated and no post-processing was performed. It should be noted that no images of the city of

Montreal have been used in the training. We have manually evaluated the result by counting the

number of buildings and confirming that all of them have been classified correctly by the network

and therefore reconstructed. The accuracy of the classification is also evident from the fact that
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Figure 5.2: A fully automated result without any post-processing. Downtown Montreal for which
no training images were used and no ground truth is available. Classification by ICT-Net and re-
construction by extruding the extracted boundaries of the buildings using the LiDAR pointcloud
corresponding to the same area. The elevation of all non-building points is set to zero. All buildings
have been manually verified that they are correctly classified. The accuracy of the classification
can also be visually verified since there is no "bleeding" between the buildings and any other urban
features e.g., roads, trees, cars, etc. The Depth map for Montreal data was provided by Presagis
Inc Canada.

there is no "bleeding" between the buildings and any other urban features e.g., roads, trees, cars, etc

in the final result. A fly-through video animation of our 3D reconstructed downtown Montreal can

be found at our website 1.

5.2 Methodology

Since it is extremely difficult to acquire building blueprints or CAD models for such large areas,

and no 3D/depth information is available as part of the benchmark dataset we posit that the build-

ing boundaries extracted from the classification binary map can serve as a proxy to the quality of

the reconstruction since the boundaries are typically extruded in order to create the 3D models

corresponding to the buildings. More specifically, the procedure for quantitatively evaluating the
1https://theictlab.org/lp/2019ICTNet/
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accuracy of the reconstruction is as follows:

Figure 5.3: The diagram summarizes the work presented in this paper. Firstly, we focus on the
building classification and propose a novel network architecture which outperforms state-of-the-art
on benchmark datasets and is currently top-ranking. Secondly, we investigate the relation between
the classification accuracy and the reconstruction accuracy and conduct a comparative quantitative
analysis which shows a strong correlation but also a consistent and considerable decrease of the
reconstruction accuracy when compared to the classification accuracy.

• Building boundaries Bg are extracted from the ground truth provided as part of the training

dataset.

• The RGB image corresponding to the ground truth above is used as input to the ICT-Net. The

binary classification map Cb resulting from feeding forward the RGB image classifies pixels

into buildings and non-buildings.

• The binary classification map Cb is refined Crefined
b using a CRF-based technique where an

energy function is minimized via graph-cut optimization for finding an optimal labeling fp

for every pixel p such that fp → l, where l is the new label. The data term of the energy

function of a pixel p with label lpi is defined as,

Ed =


10, if f(pi) 6= lpi

0, otherwise
(1)

The smoothness term of the energy function of two neighbouring pixels p1 and p2 with labels

lp1 and lp2 respectively is defined as,

Es =


20, if lp1 == lp2and f(p1) 6= f(p2)

0, otherwise
(2)
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The values of 10 and 20 in the equations were selected such that smoothness is favored over

the observed data.

• Building boundaries Bb are extracted from the refined classification map Crefined
b . A simpli-

fication process i.e. Douglas-Pecker approximation with a tolerance of τ = 0.5, is applied to

the boundaries. This simplification process is a step applied to the building boundaries prior

to extruding the 3D model if 3D/depth information is available [48], [46], [47].

• The simplified boundaries Bapprox
b are finally converted back to a binary classification map

and quantitatively compared to the ground truth Bg. This comparison involves IoU metrics

on (i) a per-pixel and (ii) a per-building bases. In the case of the per-building IoU metric, a

true positive is considered only if a building has at least 75% of its pixels overlap the pixels

of the same building in the ground truth.

5.3 Comparative Quantitative Analysis of Reconstruction Accuracies

The procedure described above is followed for all input images with no changes to the values and

thresholds used; the only varying condition is the classification accuracy. In our experiments, the

input images are processed by the proposed ICT-Net at different training snapshots having different

classification accuracies. Thus, multiple binary classification maps were produced each with a

different classification accuracy.

Table 5.1 shows the quantitative results of the comparison. A total of 5 cities were processed us-

ing the aforementioned procedure. Figures 5.4 and 5.5 show the relation between the reconstruction

accuracy with respect to the classification accuracy. We have used increasing classification accura-

cies based on the same architecture (ICT-Net) at different snapshots during the training. Using the

binary classification maps we have followed the aforementioned procedure which is typical to the

reconstruction process. Two metrics have been used to assess the reconstruction accuracy, namely

per-pixel IoU and per-building IoU (with 75% threshold for being considered a true positive). As

expected, the graph shows a strong correlation between the classification accuracy and the recon-

struction accuracy. However the reconstruction accuracy is consistently lower than the classification
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Figure 5.4: Reconstruction vs Classification accuracy (per-pixel IoU). The classification accuracy
ranges from [0.6451, 0.8441] as calculated on the validation test. There is an average decrease
of 4.43% ± 1.65% (confidence level 95%) in per-pixel IoU of the reconstruction accuracy. The
reported averages are calculated across the accuracy levels.

Classification
Accuracy

Austin1 IoU Tyrol-W1 IoU Vienna1 IoU Kitsap1 IoU Chicago1 IoU Average IoU
per-
pix.

per-
bldg

per-
pix.

per-
bldg

per-
pix.

per-
bldg

per-
pix.

per-
bldg

per-
pix.

per-
bldg

per-
pix.

per-
bldg

0.6451 0.7038 0.5004 0.4683 0.1887 0.7291 0.3880 0.1063 0.02384 0.6445 0.4952 0.5304 0.3192
0.6637 0.7583 0.7583 0.6749 0.4213 0.7514 0.4776 0.3575 0.1354 0.6765 0.6481 0.6437 0.4881
0.6893 0.6443 0.3451 0.6084 0.2944 0.6660 0.3080 0.5949 0.3770 0.6747 0.5734 0.6377 0.3796
0.7064 0.7034 0.5240 0.6046 0.2780 0.6855 0.3728 0.6671 0.3704 0.6760 0.5420 0.6673 0.41745
0.7254 0.7049 0.5520 0.6735 0.4325 0.7160 0.4820 0.5432 0.3194 0.7516 0.7386 0.6778 0.5049
0.7449 0.7812 0.6926 0.7032 0.4643 0.7881 0.5829 0.6026 0.3230 0.7056 0.7011 0.7162 0.5528
0.7611 0.7630 0.5976 0.7256 0.4850 0.7597 0.5128 0.6561 0.4286 0.7088 0.7336 0.7226 0.5515
0.7809 0.8408 0.7914 0.7907 0.5756 0.8078 0.5879 0.5059 0.3973 0.7436 0.7782 0.7378 0.6261
0.7939 0.8498 0.7936 0.7891 0.6016 0.8153 0.6202 0.6131 0.4328 0.7259 0.7703 0.7586 0.6437
0.8441 0.8549 0.8073 0.8212 0.6634 0.8490 0.6519 0.7541 0.5714 0.8179 0.8050 0.8194 0.6998

Table 5.1: The ICT-Net at different training snapshots having different classification accuracy vs the reconstruction
accuracy measured using two metrics: per-pixel IoU, and per-building IoU (with a threshold of 75% overlap for true
positives)

accuracy by an average of 4.43% ± 1.65% (confidence level 95%) on the per-pixel IoU and an av-

erage of 21.7%± 4.21% (confidence level 95%) on the per-building IoU. This discrepancy can be
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Figure 5.5: Reconstruction vs Classification accuracy (per-building IoU). The classification accu-
racy ranges from [0.6451, 0.8441] as calculated on the validation test. There is an average decrease
of an average decrease of 21.7%± 4.21% (confidence level 95%) in per-building IoU of the recon-
struction accuracy. The reported averages are calculated across the accuracy levels.

attributed to the fact that the ground truth images used for training the network may contain errors

and are in most cases manually created which results in much higher classification accuracy than the

reconstruction accuracy. Moreover, the high discrepancy on the per-building IoU can be attributed

to the fact that a threshold must be used i.e. 75%, when calculating the true positives.

Conclusion

The results of this analysis clearly indicate that high classification accuracy does not translate into

high reconstruction accuracy. More importantly though, the results of the analysis clearly indicate

that the reconstruction accuracy must be taken into account as part of the loss function along with

the classification accuracy during the training of the network.
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Chapter 6

Conclusion and Future work

In this work we investigated different network architectures including a capsule based neural net-

work to design a robust and generalizable building segmentation architecture. We justify the design

choices made for our proposed network and validate our design choice using 2 benchmark datasets.

We also investigated the relation between the classification accuracy and the reconstruction accuracy

for 3D of reconstruction of building in urban scene.

6.1 Concluding Remarks

We have presented a novel network which combines the strengths of state-of-the-art techniques like

Dense blocks in fully convolutional networks and feature recalibration using SE blocks. We have

identified the requirements for the particular task and based our decisions on the actual characteris-

tics and observations. We have shown that the proposed architecture outperforms other state-of-the-

art including ensemble techniques.

Furthermore, we investigated the relation between the classification accuracy and the recon-

struction accuracy. Due to the extreme difficulty of acquiring blueprints for such large areas and the

unavailability of 3D information we have used the building boundaries as a proxy to the reconstruc-

tion accuracy. The proposed ICT-Net at different training snapshots was used to generate binary

maps of different classification accuracies which were then used for extracting the boundaries. We

presented a comparative quantitative analysis which shows a strong correlation between the two but
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also a consistent and considerable decrease of the reconstruction accuracy when compared to the

classification accuracy.

6.2 Future Work

With respect to the future work, we plan on extending this work to (i) the classification of multiple

urban feature types with limited amount of labeled data available with techniques like [11, 55], (ii)

exploit the feature space used for building classification to find building properties like roof type,

roof materials, etc [3,5,13] and (iii) conduct a comparative quantitative analysis using ground-truth

3D information acquired by LiDAR and manually processed.
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