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Abstract

Impact of climate change on urban water consumption: a case study for Greater Montreal

Niousha RasiFaghihi

Smart cities need a sustainable plan and management of urban water consumption (UWC). A

reliable long-term forecast of UWC is one of the key tasks to ensure water security and to achieve a

balance between future water demand and supply. Long-term forecasts of UWC inevitably contain

uncertainties. The uncertainties can associate with: 1) historical data of UWC; 2) existing observa-

tions of hydrological/climate variables as potential drivers of UWC; 3) the dependence of UWC on

the potential drivers; and 4) projections of future climate change. The purpose of this research is

to improve our understanding of the climate-change impact on UWC and of feasible ways to han-

dle the foregoing uncertainties. Specifically, this research seeks answers to two key questions: 1)

What quantity of water will be needed in the long-term? 2) To what extent will long-term UWC be

affected by climate change? This research took the probabilistic approach to the problem of UWC

forecast and made an application to the City of Brossard in the Greater Montreal metropolitan area.

The methodologies involve Bayesian statistics as well as cluster analyses, which are a frequently

used technique in machine learning. The analyses were performed on multiple year records of daily

water consumption (DWC) in the city as well as field measurements of climate variables from the

Montreal area. The analyses produced results of decomposed base water consumption (BWC) and

seasonal water consumption (SWC). The DWC time-series was shown to have a transition from

BWC to SWC at a threshold air temperature. The BWC was independent of climate change but

subject to weekend effects, being higher on a weekend than weekdays. The SWC was a function of

daily minimum air-temperature, daily maximum air-temperature, and daily total precipitation. The

SWC forecasts allowed for inherent uncertainties in climate variables. Markov Chain Monte Carlo
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was used as a sampling method in approximating the posterior distribution of regression parame-

ters. The results from Bayesian linear regression gave a probability distribution of DWC. To quan-

tify the impact of climate change on UWC, future projections of air temperature and precipitation

were obtained from 21 General Circulation Models and downscaled for the city. The downscaled

daily air temperature and precipitation corresponded to two scenarios of levels of greenhouse gas

concentrations. Using quantile mapping methods, bias corrections were made to the downscaled

daily minimum temperature, daily maximum temperature and daily total precipitation. These data

gave input to the Bayesian linear regression model and produced SWC forecasts for the next three

decades. The SWC was shown to display a positive trend over time in response to changing climate.

The methodologies discussed in this thesis can be applied to other cities, producing results useful

for upgrade and/or construction planning of water supply infrastructures.
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Chapter 1

Thesis Overview

1.1 Background

It is challenging to achieve sustainable management of UWC. The challenges are due to ur-

banism, climate change and limited freshwater resources. Traditionally, water shortages have been

particularly problematic for water-scarce countries. However, countries with abundant freshwater

resources like Canada face the same issue in the past few decades. Canada has freshwater resources

in different forms of water bodies. However, sustainable management is a significant issue in major

cities and municipalities. Thus, it is crucial to study sustainable strategies for UWC.

Long-term forecasting is necessary for enhancing water security and keeping the balance be-

tween supply and demand. In the years following World War II, as the water was considered an

inexpensive commodity, excess capacity was developed to avoid risks of water shortage Rinaudo

[2015]. However, economic and population growth continued, and water resources were not readily

available. On the other hand, in some parts of the world (the western US states), an unantici-

pated decline in per capita water use led to costly oversized water supply systems Rinaudo [2015].

Therefore, researches in this field followed the path through water demand forecasting. Long-term

forecasting is useful for infrastructure and capital planning and can provide valuable information for

determining efficient pricing Buck, Soldati, and Sunding [2015]. Accurate forecasts of UWC lead

a profound understanding of past till present correlations of water consumption drivers with water

consumption for water resources planning and management in the long run.
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Water demand projections are subject to a large uncertainty about the future, as well as the

causes of historical and recent trends in water consumption patterns. The uncertainties can asso-

ciate with: 1) historical data of UWC, 2) existing observations of hydrological/climate variables as

potential drivers of UWC, 3) the dependence of UWC on the potential drivers, and 4) projections

of future climate change Tiwari and Adamowski [2014]. Inaccurate forecasts would result in costs

to water utilities, water consumers, and the environment. For instance, the associated uncertainties

in the estimates of water demand in California by 2040 were addressed by increasing total demand

up to 10% Miro, Groves, Catt, Miller, and Social [2018]. Recently, researches developed multiple

scenarios and complex uncertainty analyses to provide insights into the range of possible future

outcomes.

Climate change impacts have consequences for human health, assets and livelihood. The im-

pacts on each city depend on the actual changes in climate, such as higher annual temperature

or increased precipitation, and vary from place to place. Also, the water consumption pattern of

households can be influenced by changes in outdoor weather condition. According to Canada’s

Changing Climate Report (CCCR) 2019, between 1948 and 2016, the best estimate of mean annual

temperature increase is 1.7◦C for Canada as a whole and 2.3◦C for northern Canada Zhang et al.

[2019]. Also, there is high confidence that daily extreme precipitation is projected to increase in

future Zhang et al. [2019]. UWC is not equally distributed over time and space as households and

services tend to demand more water in hot and dry periods. There is a particular need to manage

water consumption, including the control of both peak and daily-averaged water demands, and help

plan future consumption for growing cities under a changing climate.

1.2 Objectives

This research explores the impact of climate change on DWC in the next three decades. A

stochastic methodology is developed to forecast residential water demand taking associated uncer-

tainty into account. The application of the proposed model is examined in the City of Brossard

(Greater Montreal) in the Canadian Province of Quebec. The main objectives of this thesis are as

follows:
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• To reveal the effects of climate change on UWC in long-term.

• To develop a prediction model for forecasting of DWC addressing uncertainties.

1.3 Major contributions

The contributions of this research are:

• Decomposition of UWC into main components that are affected by distinct variables using a

machine learning approach.

• Quantification of uncertainties associated with random fluctuations of the climatic variable in

future by using an ensemble model of General Circulation Models (GCMs).

• Development of a stochastic model for predicting DWC. In this model, DWC is a function of

weather variables.

• Analysis of historical and future weather data from GCMs. The data is spatially downscaled

to find the future projection for the area of study.

• Forecast of DWC as a probability distribution by 2050. The probability distribution embodies

uncertainties in weather variables as well as the dependence of UWC on the potential drivers.

1.4 Organization of the thesis

To provide the relevant context, the rest of the thesis is organized as follows:

• Chapter 2 provides a comprehensive background and literature review on UWC forecasting,

as well as the science of climate change assessment. Various forecasting approaches along

with their application are also described.

• Chapter 3 describes the collected data and presents the methodologies. It includes the UWC

decomposition and explains the applied algorithm. The steps toward building the prediction

model, downscaling the GCMs and forecasting DWC are also provided.

• Chapter 4 presents the results of UWC decomposition, spatial downscaling and the predictor

model. This chapter provides discussion of uncertainties in the long-term forecast of UWC.
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• Chapter 5 concludes the thesis and provides some directions for future research.
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Chapter 2

Background and Literature Review

In this chapter, a review of UWC forecasting is given. The main elements of the science of

climate change impact assessment are also addressed. Besides, various methodologies for water

consumption forecasting along with their limitations are discussed.

2.1 UWC components

UWC is affected by various climatic and socio-economic factors that are different and spe-

cific from place to place G. Singh, Goel, and Choudhary [2015]. It is far from being straightfor-

ward to distinguish the influence of climatic factors from that of the socio-economic. Some of the

early studies decomposed UWC into two components: a) BWC; and b) SWC Eslamian, Li, and

Haghighat [2016]; Gato, Jayasuriya, Hadgraft, and Roberts [2005]; Gato, Jayasuriya, and Roberts

[2007]; Wong, Zhang, and Chen [2010]. In the early studies, the indoor water use was taken as

BWC, whereas the outdoor water use was taken as SWC. BWC was thought to be insensitive to

climate effects Eslamian et al. [2016]; Gato et al. [2007]; House-Peters, Pratt, and Chang [2010];

Syme, Shao, Po, and Campbell [2004]; Wong et al. [2010]; Zhou, McMahon, Walton, and Lewis

[2000], but sensitive to the socio-economic factors. The socio-economic factors include population,

household income, and water price (or consumption payment). SWC was considered as dependent

on changes in air temperature and precipitation. In most of the cases, the forecast results reflect the

conditions of application regions and hence are site-specific.
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It is worth to mention that in the majority of studies, the actual amount of households water

use in individual were not available; therefore, similar to other studies Chang, Praskievicz, and

Parandvash [2014]; Eslamian et al. [2016]; Hamlet et al. [2010]; Parandvash and Chang [2016],

water used per capita per day was estimated by dividing daily total supply of water for the city by

its population.

2.1.1 Transition from BWC to SWC

Some studies have simply assumed that BWC is equal to water consumption in winter House-

Peters et al. [2010]; Praskievicz and Chang [2009]; Syme et al. [2004]. Eslamian et al. [2016]

discussed two alternative methods for determining BWC. One approach is to identify a BWC curve

based on water use during the winter months. If the curve exhibits an upward or downward trend

over time, the curve is described by a polynomial function of time Eslamian et al. [2016]; Wong et

al. [2010]; Zhou et al. [2000]. Then, the transition from BWC to SWC is determined based on the

calendar date. Given that the transition point can be quite sensitive to weather conditions in some

regions, the alternative method is to define threshold values of air temperature and precipitation, at

which the transition occurs, and water consumption starts to be dependent on climatic variables Gato

et al. [2007]. Discerning the transition is more robust in the second than the first method. The reason

is that the second method uses physical variables (air temperature and precipitation), as opposed to

calendar date applied in the first method.

A number of studies tried to identify the temperature threshold level to discriminate BWC and

SWC. Eslamian et al. [2016] plotted daily water use against daily maximum temperature and sug-

gested 10◦C as the daily maximum temperature threshold in Montreal, Canada. Gato et al. [2007]

failed to identify the temperature threshold by regressing the daily water use against daily maxi-

mum temperature. Therefore, they proposed a polynomial function of daily maximum temperature

against the reciprocal of the corresponding daily water use. By taking the derivative of the poly-

nomial function and setting the derivative to zero yields, Gato et al. [2007] determined the daily

maximum temperature threshold as 15.27◦C. In another study, the use of the wavelet analysis gave

a daily mean temperature threshold of 12◦C in Montreal, Canada Tiwari and Adamowski [2013].
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2.2 Climate change impact assessment

As mentioned before, SWC is sensitive to the changes in weather condition. Parandvash and

Chang [2016] suggested that any change in climate can affect UWC in the long-term. Several re-

searchers Haque, Rahman, Hagare, and Kibria [2014]; Khatri and Vairavamoorthy [2009]; Parand-

vash and Chang [2016]; Ruth, Bernier, Jollands, and Golubiewski [2007] have reported the impact

of climate variabilities on water demand. It is essential to account for uncertainties due to a wide

range of possible greenhouse gases emission scenarios, the variability of different global climate

models, downscaling, and uncertainties in hydrological and impact models Khatri and Vairavamoor-

thy [2009]. Commonly, economic and demographic factors are used in long-term forecast of water

demand, whereas climatic factors are used in the short-term forecast Khatri and Vairavamoorthy

[2009].

2.2.1 General circulation models

There are various General Circulation Models (GCMs) that are developed around the globe to

look at the past and future evolutions in the global climate. GCMs represent the three-dimensional

climate system by describing movement of energy, momentum and the conservation of mass and

water vapour Alexander et al. [2009]. GCMs give the notion of future climate in a coarse-scale, and

they are usually presented under different greenhouse gasses emission scenarios known as Represen-

tative Concentration Pathways (RCPs) Meinshausen et al. [2011]. The GCMs cover the atmosphere

by coarse grids. The horizontal spatial resolutions are typically 250 to 600 km, and the vertical res-

olutions are 10 to 20 layers. GCMs may produce projections that are globally accurate but locally

biased in their descriptive statistics (i.e., mean, variance, and so forth).

2.2.2 Representative concentration pathways

The Coupled Model Intercomparison Project Phase 5 provides new pathways for projecting fu-

ture climate that is called RCPs and provide four scenarios for various levels of greenhouse gas

concentrations. The four pathways also refer to the amount of total radiative forcing that is expe-

rienced until the year 2100. These four different climate scenarios have been labelled RCP 2.6,

7



Figure 2.1: RCPs based on radiative forcing Meinshausen et al. [2011]

RCP 4.5, RCP 6, and RCP 8.5, and are based on the change in the radiative forcing compared to

pre-industrial conditions with the rate of +2.6, +4.5, +6.0, and +8.5 W/m2, respectively. Fig. 2.1

displays the behaviour of all future scenarios of RCPs. RCP 4.5 is a stabilization scenario with

policies for limiting emissions and radiative forcing Thomson et al. [2011], whereas RCP 8.5 is the

worst-case scenario Riahi et al. [2011].

Several recent studies have addressed the impacts of climate change on water resources and

drought risk. The vulnerability-based assessment of global freshwater availability of Koutroulis

et al. [2019] considered climate change for RCP 8.5. Zhuang, Li, Nie, Fan, and Huang [2018]

proposed a method for evaluating climate change impacts on water resources using multi-ensemble

GCMs. J. Liu et al. [2017]; Prusty, Das, and Patra [2018] analyzed water management and allocation

on the scale of a river basin considering the impact of climate change under RCP 2.6, RCP 4.5 and

RCP 8.5. Wang, Duan, Liu, Li, and Feng [2019] assessed drought response to climate change. They

forecast drought tendency using three GCMs for RCP 4.5 and RCP 8.5. Ahmadalipour, Morad-

khani, Castelletti, and Magliocca [2019] investigated drought risk by quantifying drought hazard

using an ensemble of 10 regional climate models for RCP 4.5 and RCP 8.5.
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2.2.3 Downscaling of climate model projections

GCMs grid resolution is too coarse to be used at the local and/or regional scale. Impact as-

sessment needs to be done at a much finer spatiotemporal resolution. A standard method to derive

the high resolution information needed by the impact model from the coarse-scale resolution is

downscaling Boé, Terray, Habets, and Martin [2007]. Downscaling the process of relating data

at relatively coarse spatial and temporal scales to desired products at finer spatial and temporal

scales. There are two types of downscaling, spatial and temporal. Temporal downscaling is the

derivation of fine-scale temporal data from coarser-scale temporal information. Spatial downscal-

ing refers to transforming simulated climate patterns at a coarse grid to a finer spatial resolution of

local interest H. Li, Sheffield, and Wood [2010]. Spatial downscaling can be divided into two main

approaches, namely dynamical and statistical downscaling. Dynamical downscaling refers to using

regional climate models and uses the GCMs as boundary conditions to increase the resolution.

2.2.4 Bias correction downscaling

The bias correction downscaling method is one of the statistical downscaling methods. This

mathematical approach is not only straightforward and fast but also, can be preferable for large

weather data sets (e.g. for 30 years and more). In this method, the gridded observation parameters

are aggregated to the GCM grid scale. Then, using the quantile mapping, bias in the GCM data is

removed. Bennett et al. [2014] have shown that quantile mapping is effective at correcting climate

model biases across a range of values and variables. Fig. 2.2 shows the procedure for performing

the quantile mapping method. The quantile mapping method is defined based on the one-by-one

mapping between the cumulative distribution functions (CDF) of the historical GCM data and the

observed data. Bias correction methods have been developed in different literature Boé et al. [2007];

H. Li et al. [2010]; Schmidli, Frei, and Vidale [2006].

2.2.5 NASA Earth Exchange Global Daily Downscaled Projections

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) data set is com-

prised of downscaled climate scenarios for the globe that are derived from the GCM runs conducted
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Figure 2.2: The procedure of bias correction quantile mapping downscaling method Hamlet et al. [2010]

under Coupled Model Intercomparison Project Phase 5. This data set is an archive of downscaled

climate scenarios for the conterminous United States at a 0.25-degree (25 km in 25 km) spatial reso-

lution.The archived climate scenarios were derived from the GCMs implemented under the Coupled

Model Intercomparison Project Phase 5 Taylor, Stouffer, and Meehl [2012] and developed in support

of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The archived

results are downscaled projections for RCP 4.5 and RCP 8.5 from the 21 models and comprise daily

maximum temperature, daily minimum temperature and precipitation from the time period of 1950

to 2005 and of 2006 to 2099.

As per Jain, Salunke, Mishra, Sahany, and Choudhary [2019], compared to Coupled Model In-

tercomparison Project Phase 5, the NEX-GDDP data captures the spatial patterns of seasonal mean

temperatures and precipitation with highest accuracy and the inter-annual variations in precipita-

tion are closer to the observations. According to NEX-GDDP data set, the combined effects of

precipitation and temperature variations reveals severe future drought in the western United States

Ahmadalipour, Moradkhani, and Svoboda [2017]. Mandapaka and Lo [2018] conducted a study

on the assessment of future changes of precipitation in Southeast Asian using the NEX-GDDP data

set. They indicated the substantial increases in mean and extreme precipitation by the end of 21st

century under RCP 4.5 and RCP 8.5. Raghavan, Hur, and Liong [2018] evaluated NEX-GDDP

data set, compared to gridded observations on daily scales in Southeast Asia. They concluded that
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NEX-GDDP are in better agreement with monthly observations over the historical rather than daily

scale.

2.3 UWC forecasting

The topic of forecasting UWC is of importance to proper planning and sustainable development

of urban centres. Early researchers have attempted to forecast UWC as a function of a variety of

influence factors, including climatic as well as socio-economic factors. Various methods in literature

assess the correlation between UWC and different variables. These methods are ranging from the

most straightforward methods, such as linear regression to the most sophisticated ones. Although

complex models provide accurate predictions, they require fine-scale data. In the previous literature,

researchers demonstrated that water consumption has a stochastic non-stationary pattern; hence,

they came up with various ideas and methodologies to interpret stochastic water demand time series.

There is a particular need for forecasting the future water demand addressing uncertainties as-

sociated with 1) individual influence factors (a lack or incompleteness of data; data outliers; math-

ematical models; parameters subject to future changes); 2) a combination of some of these factors

or all of them. Forecasting models can be categorized into deterministic and probabilistic, wherein

the deterministic approaches the stochastic nature of predictor variables are not considered Almu-

taz, Ajbar, Khalid, and Ali [2012]; Stoker and Rothfeder [2014]. In probabilistic or stochastic

approaches, the uncertainties associated with the influencing variables themselves, including cli-

matic and socio-economic variables, and with their correlation are considered; accordingly, the

results can be potentially adequate and efficient. In the literature, Monte Carlo simulation is the

only stochastic approach in the area of water demand forecasting which was applied by a number of

studies Almutaz et al. [2012]; Haque et al. [2014]; Khatri and Vairavamoorthy [2009]. Moreover,

bootstrap is the other methodology that was proved to be capable of addressing uncertainties Khatri

and Vairavamoorthy [2009]; Tiwari and Adamowski [2013, 2014].
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2.4 UWC forecasting using machine learning approaches

In this section, it is tried to collect the most recent papers that implied any of machine learning

approaches to make prediction or forecasting of a variable in different subjects. Apparently, there are

many studies in the area of building energy consumption in the last decade that is developed based

on machine learning algorithms (Table 2.1). In Table 2.1, eight papers have been reviewed and

categorized into four groups based on their objectives. For each paper, applied tools and objectives

have been listed. The most well-known and conventional machine learning approaches are included

in separate columns.
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As per Table 2.1, one can notice that there is a substantial similarity between water and energy

consumption correlation with their influencing factors. Since both contexts consist of a massive

amount of data, the approaches to forecast demand of these utilities can be considered similar.

Interestingly, researchers in the field of building energy consumption have included variables such

as weather and socio-economic factors in their forecasting models.

Two well-known terminologies in the machine learning context are supervised and unsupervised

learning. Supervised learning is considered as a synonym for classification; whereas, unsupervised

learning can be a synonym for clustering Han, Pei, and Kamber [2011]. In supervised learning,

the training data set has a labeled example; while in unsupervised learning, the input examples are

not class labeled; therefore, classes within the data need to be discovered Han et al. [2011]. In

the following subsections, various supervised and unsupervised methodologies are discussed. Also,

approaches that are not classified in any of the learning categories are covered.

2.4.1 Decision tree

Decision tree is one of the commonly used classification methodologies or supervised training

techniques in many scientific fields. It is simple to use and capable of generating an accurate model

that is understandable and interpretable Z. Yu, Haghighat, Fung, and Yoshino [2010]. Decision tree

consists of three kinds of nodes: root, internal, and leaf. A root node and internal node represents

a binary split test on an attribute, while a leaf node denotes an outcome of the classification, and

thus holding a categorical target label. Decision tree is generated in two main steps; learning and

classification. In classification, the data set split into training and test data; then, the training data

is analyzed by the algorithm to generate decision tree. In the next step, the accuracy of the ob-

tained decision tree is estimating using test data. Although, decision tree is capable of possessing

both categorical and numerical data; however, they are more appropriate in predicting categorical

variables Z. Yu, Fung, Haghighat, Yoshino, and Morofsky [2011].

2.4.2 Bayesian Networks

Bayesian Networks (BNs) are the graphical model which are based on Bayes’ theorem and are

capable of modeling probabilistic relationships among a set of variables Heckerman [1997]. This
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methodology is considered as a classification approach and can also be used for prediction Sriram

[n.d.]. One of the most significant characteristics of BNs is their ability to account for the un-

certainty associated with inaccurate and incomplete databases. In a BN, variables of interest are

represented by nodes, and the links between them indicate informational or causal dependencies

among them Ismail, Sadiq, Soleymani, and Tesfamariam [2011]. Constructing a BN consists of

two steps, 1) structure learning: finding a graphical structure of dependencies between nodes and 2)

parameter learning: defining conditional probability distribution among nodes.

2.4.3 Associated Rule Mining

Associated Rule Mining (ARM) is a data mining approach that is capable of representing the

patterns of parameters that are frequently associated together G. Liu, Yang, Hao, and Zhang [2018];

Z. Yu et al. [2011]. In this unsupervised training approach, there are two common-used terminolo-

gies; support and confidence to denote the validity and certainty of an association rule. ARM is an

unsupervised learning process which is implemented in items frequently associated and represents

the frequency of two items happen together Ashouri, Haghighat, Fung, Lazrak, and Yoshino [2018].

Technically, in performing ARM, the value of quantitative attributes requires to be classified into

categorical values Ashouri et al. [2018]; Z. Yu et al. [2011].

2.4.4 Artificial Neural Network

Artificial Neural Network (ANN) has become a feasible, multipurpose methodology with po-

tential influence on any discipline. ANNs are considered as predictive and unsupervised learning

models that are built based on inputs and outputs of historical data and is able to predict outputs of

new input Fayyad, Piatetsky-Shapiro, and Smyth [1996]. Even though, ANNs are capable of solving

highly nonlinear and complex problems; however, they have the shortcoming of being black boxes,

meaning that there is no chance to interpret the process and calculations inside of them. This data-

driven approach is capable of modeling the nonlinear relationship among the factors influencing

water demand and implementing the trained ANN to forecast future water demand Ghiassi, Zimbra,

and Saidane [2008].
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2.4.5 Clustering analysis

Cluster analysis is the process of dividing the observations into classes or clusters so that objects

in the same cluster have a high similarity, while objects in different clusters have low similarity.

Clustering can be regarded as a form of classification that creates labeling of objects with cluster

labels derive from data Z. J. Yu, Haghighat, Fung, Morofsky, and Yoshino [2011]. Hence this

methodology might be referred to as unsupervised classification. Fundamental clustering methods

can be classified as of the four categories: partitioning methods, hierarchical methods, density-based

methods, and grid-based methods Han et al. [2011].

2.4.6 Coupled models

There are several developed approaches which adopted various machine learning approaches

and coupled them to benefit from a more advanced and potential tool for machine learning. Z. Yu et

al. [2011] proposed clustering, decision tree and ARM to study occupant’s behaviour in residential

buildings. Two years later, they applied an integrated models including decision tree, clustering

and ARM for the same purpose as the previous study. Decision tree was developed as a predic-

tive model to predict building energy demand; clustering adopted to examine only the effect of

occupants’ behaviour on building energy consumption; eventually, the associations and correlations

were addressed using ARM. S. Singh and Yassine [2018] proposed clustering analysis, ARM, and

BN to analyze and forecasted the energy time series to extract various temporal energy consump-

tion patterns. Initially, the appliance-to-appliance association was uncovered using ARM; then, the

appliance-to-time association was evaluated through clustering. Then, they utilized BN to fore-

cast multiple appliance usage in the future. Ashouri et al. [2018] developed a machine learning

model contacting clustering, ARM and ANN. They aimed to reduce the effect of weather condition

by clustering, finding the correlation among the appliances by ARM and eventually, build ANN

models based on the rules to make the prediction.
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2.5 UWC studies

In this section, the aim is to give an overview of studies in the area of UWC prediction, forecast

and management considering various climatic and socio-economic factors. As it was discussed in

ection 2.3, there is a considerable amount of uncertainty associated with influence factors in the

future and their impact on UWC. In addition, there is a limited number of studies that propose a

method to forecast UWC. Table 2.2 summarizes the early literature that addressed uncertainties and

forecast UWC. Likewise, Table 2.3 covers studies that do not consider uncertainties, but forecast

UWC and Table 2.4 embody researches that only predict UWC without communicating uncertain-

ties. In each table, tool(s), the purpose of study, predictor variables and contribution(s), are listed.

Papers are descending ordered based on the date with the newest records listed first.
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The early studies of UWC can be grouped into four categories as per their objectives and the

capability of the proposed methodologies. In the first category, the methodologies are suitable

for estimates of UWC under the current socio-economic and/or climatic conditions Adamowski,

Adamowski, and Prokoph [2013]; Adamowski, Fung Chan, Prasher, Ozga-Zielinski, and Sliusarieva

[2012]; Adamowski and Karapataki [2010]; Arturo, Alvarez-Chavez, Ramos-Corella, and Soto-

Hernandez [2017]; Chang et al. [2014]; Eslamian et al. [2016]; Gato et al. [2005, 2007]; Kenney,

Goemans, Klein, Lowrey, and Reidy [2008]; Panagopoulos [2014]; Polebitski and Palmer [2009];

Praskievicz and Chang [2009]; Stoker and Rothfeder [2014]. Overall, regression is the most fre-

quently used method to estimate UWC. Other proposed approaches are linear mixed effects model,

factor analysis and wavelet transform. Literature in the first category are not concerned about the

future usage of water.

In the secondary category, UWC forecast takes the econometric approach. Most commonly,

UWC forecasting includes end-use forecast, time series forecast, and econometric forecast Almutaz

et al. [2012]; Khatri and Vairavamoorthy [2009]; Zhou et al. [2000]. The end-use forecast gives

water demand based on a forecast of water uses. The time series forecast determines water con-

sumption directly, without considering other influence factors. The econometric approach estimates

the historical relationships between independent variables, and the dependent variable, under the

assumption that the relationships continue in the future. Parandvash and Chang [2016] obtained es-

timates of future per capita water demand, by assuming a consistent difference between the average

weather effects on the demand over the historical and future periods. Mouatadid and Adamowski

[2017] performed econometric forecast, using an artificial neural network, support vector machine,

and regression models. Several other researchers used regression models for econometric forecast

Al-Zahrani and Abo-Monasar [2015]; Parandvash and Chang [2016]; Ruth et al. [2007].

In the third category, UWC forecast uses stochastic methodologies. Only a limited number

of researchers have developed probabilistic forecast models to account for the stochastic nature of

water consumption. They performed Mont Carlo simulations, and assigned probability distribu-

tions to variables in order to communicate uncertainties Almutaz et al. [2012]; Haque et al. [2014];

Khatri and Vairavamoorthy [2009]. Haque et al. [2014] and Khatri and Vairavamoorthy [2009]

23



considered future climate variations. Other researchers have used the bootstrap simulation method-

ology to address uncertainties Al-Zahrani and Abo-Monasar [2015]; Haque et al. [2014]; Tiwari and

Adamowski [2014].

In the fourth category, UWC forecast considers climate change. Available GCMs predict future

climate at a coarse-scale under different greenhouse gases emission scenarios. Parandvash and

Chang [2016] compared the impacts of climate change on urban and suburban water demand. They

used three GCMs to represent a set of 30 years of historical climate projections and 30 years of

future projection. Using future projection from rescaled models under two emission scenarios, Ruth

et al. [2007] analyzed the impact of climate change on water consumption in the long-term. Very

few studied have been carried out to forecast future UWC using the probabilistic approach and

GCMs estimate long-term climate variables.

2.6 Applied methodologies in urban water consumption studies

2.6.1 Regression

Regression is a widely utilized statistical technique in various disciplines and is well-known

due to its simplicity. As opposed to the classification that predicts categorical labels, regression

can model continuous-valued functions. Besides, it is capable of predicting missing or unavailable

numerical data values rather than (discrete) class labels Han et al. [2011]. There are different appli-

cations of regression in the literature. According to Gato et al. [2005] and Parandvash and Chang

[2016], structural time series regression model was adopted to represent the demand for water, based

on its drivers to predict future water demand. Ordinary least square (OLS) multiple linear regression

is a statistical method for studying the relationship between a single dependent variable and one or

more independent variables Allison [1999]. Ordinary differentiates the simplest and the most com-

plicated of least square, least square indicate the approach to determine regression equation, and

linear serves to describe linear regression equation and multiple refers to two or more independent

variables. Therefore, different combinations of these words might be seen in the literature, such as

multiple regression, linear regression, least square regression and, so forth.
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2.6.2 Linear Mixed Models

In linear models, it is assumed that observations are drawn from the same population and are

independent; whereas in linear mixed models, observations are not independent, and they handle

the data in a complex multilevel or hierarchical structure Romano, Salvati, and Guerrini [2014]. In

this approach, observations are grouped in various levels (clusters), which are dependent within the

same level and independent among different levels. Linear mixed models consider random effects,

hierarchical effects, repeated measures and spatial correlations in various applications to address

sources of variations. As per Romano et al. [2014], two linear mixed models are fitted, one to

estimate consumption and the other to measure tariff independently.

2.6.3 Wavelet Transform

Wavelet Transform (WT) is an approach to transform time series data into the frequency domain

to remove the influence of time in the data. In order to perform this task, various shapes and sizes

of short filtering functions called wavelets have been applied. Hence, unlike the Fourier transform,

where a sinusoidal wave function has been frequently used as the basis of decomposition, in WT,

other basis functions can be selected according to the attributes of the variables Kim and Melhem

[2004]. WT is a potential method for detecting patterns in UWC both in terms of the wavelength

of cycles and the time of occurrence of them Adamowski et al. [2013]. Adamowski et al. [2013]

adopted WT to identify the association between UWC and two climatic variables; precipitation and

temperature.

2.6.4 Support Vector Machine

Besides ANNs, Support Vector Machines (SVMs) are another machine learning technique that

has been used in UWC forecasting Shabani, Yousefi, and Naser [2017]. Similar to decision tree

and BN, SVMs are under the category of classification training algorithms and supervised training,

which develops a classifier to predicate the class of the new sample Sriram [n.d.]. SVM imple-

ments a nonlinear mapping to transform the original training data into a higher dimension Han et al.

[2011]. Then, considering the new dimension, it searches for the linear optimal separating decision
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boundary in order to separate the tuples of one class from another Han et al. [2011]. Since SVMs

are able to model complex nonlinear decision boundaries, they are highly accurate; however, their

training time is slow Han et al. [2011].

2.6.5 Monte Carlo simulation

Monte Carlo simulation is a potential methodology in the probabilistic analysis due to its capa-

bility of considering uncertainty in modeling. Monte Carlo simulation uses random samples from

known populations of simulated data to track a statistic’s behaviour Mooney [1997]. Apparently,

in each experiment, the population, including values of the random input variables, are simulated;

then, using a computational method, the statistic concept is developed. Eventually, based on the

sampling distribution, the output variables are calculated Mahadevan [1997].

2.6.6 Factor analysis

Factor analysis is known as the data reduction method, which is capable of identifying intercon-

nection among various components of a system. This approach assumes that the observed factors

(variables) are linear combinations of some underlying source factors and tries to exploit this corre-

spondence to make conclusions about the factors (Kim et al., 1978). Accordingly, Factor analysis

provides more interpretable insights into the data set so as to recognize the relationship among data

components Panagopoulos [2014]. Panagopoulos [2014] adopted Factor analysis to identify inter-

connection between the demographic, socio-economic and hydrological variables influence UWC.

2.6.7 Coupled models applied in UWC

Altunkaynak and Nigussie [2017] developed a WT in combination with ANNs to predict

monthly water consumption. Adamowski et al. [2012] proposed a method based on coupling discrete

model wavelet-neural in order to forecast short-term UWC. They claimed that because data-based

methods, including ANN, have limitations with nonstationary water consumption data, WT can ef-

fectively resolve this issue. Moreover, they suggested using bootstrap method to account for the

uncertainty which was not considered in the proposed method. One year later, a paper published
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to suggest a coupled model, wavelet-bootstrap-neural network, to study short-term UWC forecast-

ing Tiwari and Adamowski [2013]. Then, Tiwari and Adamowski published another research, and

they adopted wavelet-bootstrap-neural network again to implement mid-term UWC forecast Tiwari

and Adamowski [2014]. A few years later, they applied their developed methodology in the other

cities in Canada with the same purpose as before Tiwari and Adamowski [2017]. In all of those

papers, they made efforts to test their methodology by comparing it with different approaches, in-

cluding traditional WT, ANN, bootstrap and various forms of autoregression. All in all, even though

they proposed a potentially applicable methodology for short-term and mid-term UWC forecasting,

their approach was limited to climatic variables and socio-economic variables were not addressed.

All of the papers verified the effectiveness of the proposed coupled model.

The other coupled model in the literature is the combination of times series and ANN in water

demand prediction Al-Zahrani and Abo-Monasar [2015]. In the first stage, they used moving av-

erage and autoregressive techniques for time series forecasting. Afterwards, ANN prediction and

combination of both mentioned methods were adopted as second and third stages, respectively.

Results indicated that the coupled model is more capable of simulating daily water consumption

pattern and seasonal trend of water consumption.

2.7 Shortcoming of the existing literature

A couple of noteworthy drawbacks exist in the previous literature, which is necessary to be

considered in order to enhance the level of accuracy and application of UWC studies.

• The transition from BWC to SWC is determined based on the calendar date. The transition

point can be quite sensitive to weather conditions in some regions; therefore, the alterna-

tive method is to define threshold values of air temperature and precipitation, at which the

transition occurs, and water consumption starts to be dependent on climatic variables.

• The majority of studies that aimed to forecast UWC applied the techniques which are not

capable of addressing uncertainties associated to the future changes in the variables. These

approaches include regression approach, linear mixed effect models, factor analysis, wavelet

transform, and, so forth.

27



• UWC was estimated by assuming a consistent difference between the average weather effects

on water consumption over the historical and future periods. Hence, the future projection does

not consider future uncertainties associated with climate change effects on future weather

data.
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Chapter 3

Methodologies

3.1 Data collection

The city of Brossard, Quebec, Canada, is chosen as a study site. The main land-use types in

Brossard are residential and commercial with many parks scattered through the city Eslamian et

al. [2016]. The city is a part of the metropolitan area of Montreal on the south shore of the Saint

Lawrence River, which is the source of drinking water for the city Fig. 3.1.

Figure 3.1: Location map of city of Brossard in the census metropolitan area (CMA) of Montreal, Que-
bec Statistics-Canada [2019]
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According to the last two census, city of Brossard population in 2011 is 79, 273 and in 2016 is

85, 721, representing a percentage growth of 8.13% from 2011 Statistics-Canada [2019]. As per the

city by-law Brossard [2019a], watering with sprinklers not equipped with a timer is permitted for

even-numbered addresses on Wednesdays, Fridays and Sundays, while for odd numbered addresses

permitted days are Tuesdays, Thursdays and Saturdays Brossard [2019b]. This example points to

the need to manage both peak and daily-averaged water demands.

Time series of total DWC in cubic meter per day are obtained from the city of Brossard from

January 2011 to October 2015. To eliminate the effect of population variation, for each year of the

time period, values of total DWC are divided by the population for the year. The population from

2012 to 2015 are obtained by interpolation. Thus, values of DWC q have the units of cubic meter

per capita per day. Time series of q is shown in Fig 3.2a.

For the same time period as UWC data, time series of climatic variables are also obtained:

daily minimum temperature θ, daily maximum temperature Θ, daily mean temperature θ0, and total

daily precipitation p. Measurements of these climatic variables were made from an Environment

Canada station in the Pierre Elliott Trudeau International Airport (YUL), located at (45◦28’11.06”

N, 73◦44’41.71” W). Time series of daily mean temperature, and total daily precipitation are plotted

in Fig 3.2b and Fig 3.2c, respectively.

3.2 Overall approach

The proposed methodology of this research is covered in this chapter. Fig 3.3 shows the general

steps of the work.

Total DWC and the climatic variables are obtained for the same period of time in data collection.

The first step is data pre-processing where values are normalised, and missing values are replaced to

prepare the suitable input for clustering. This step also includes outlier detection and replacement.

Then, UWC is decomposed to SWC and BWC. Finally, SWC and downscaled data are used as the

input for the predictor model. The model output and the estimated BWC are merged to forecast

long-term UWC. Further details of each step are elaborated in the following sections.
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(c)

(a)

(b)

Figure 3.2: Time series of (a) metered DWC (cubic meter per capita per day) in the city of Brossard in the
metropolitan area of Montreal, Quebec; (b) observed daily mean temperature (◦C); and (c) observed total
precipitation (mm). The temperature and precipitation observations were made in the Montreal area. The
starting date is January first, 2011 and the ending date is October 10th, 2015.
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Figure 3.3: Framework to forecast long-term UWC

3.3 Normalisation of raw data

Normalising the raw data is one of the steps of data pre-processing. There are many methodolo-

gies such as various clustering algorithms that are based on the distance of data points; therefore,

they require normalised data as the input.

Let xi denote the ith value of a raw series of the variable in question, µ denotes the mean of the

data series, and σ denotes the standard deviation. The values are converted into a z-score, Zi, using

the z-transform method, given by

Zi =
xi − µ
σ

, for i = 1, 2, 3, . . . , n, , (1)

Eq. (1) is applied to time series of q = (q1, q2, q3, . . . , qn); θ = (θ1,θ2 ,θ3 , . . . ,θn); and Θ =

(Θ1,Θ2 ,Θ3 , . . . ,Θn). Outputs of z-score or normalised time series are used as input to clustering

analysis. The purpose of clustering analysis is:

• to detect data point outliers Ashouri et al. [2018]; Z. Yu, Fung, and Haghighat [2013].

• to decompose UWC into BWC and SWC.

The suitability of the minimum-maximum method for data normalisation was tested. It was
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found that using the results from this method as input, clustering analysis did not yield proper

differentiation between BWC and SWC (results not shown).

3.4 Cluster analysis

Cluster analysis divides data points of q, Θ and θ into classes or clusters such that objects in the

same cluster have high similarity, while objects in different clusters have low similarity. This form

of classification gives objects with cluster labels derived from data, known as unsupervised classi-

fication. A distance matrix is used as clustering criteria and hierarchical clustering is implemented

by agglomerative nesting. This algorithm begins with assigning each data point to a cluster by its

own. Therefore, initially, the total number of clusters is equal to the number of data points. Then, it

merges the data points of the least dissimilarity until all the data points belong to the same cluster. In

this research, the agglomerative nesting is based on Euclidian distance Taleb and Kaddour [2017],

which is a measure of similarity levels.

The presence of missing values in a data set is very typical in real life data. According to litera-

ture, there are some methodologies including Bayesian statistics that are robust to the missing data.

However, some algorithms including clustering, fail in handling missing data. Before performing

the clustering analysis, the missing values of q, Θ and θ are replaced by interpolation.

The performance of the clustering algorithm is evaluated by using the Silhouette coefficient Ashouri

et al. [2018] given by

S =
b− a

max(a, b)
(2)

where a is the mean Euclidian distance between a sample and all other data points in the same

class; and b is the mean Euclidian distance between a sample and all other points in the next nearest

cluster. The coefficient S is the mean of all samples in the dataset. The coefficient reveals the

capability of the algorithm in grouping the objects and satisfying intra class similarity and interclass

dissimilarity. The values of S range from −1 to 1, with S = 1 corresponding to a high quality of

clustering, and S = −1 to false clustering.

In the clustering analysis of q, the effect of socio-economic variables is ignored and the focus
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is on climatic variables. This helps isolate the influence of temperature changes during a year on

UWC patterns. The attributes used in the clustering are Θ, θ and θ0. The reason for selecting Θ

and θ is the wide range of daily air temperature for the city of Brossard. Through the clustering

analysis, hidden groups in data points is found and the influence of seasonality (air temperature)

on q are verified. At the same time, data point outliers or data points that behave in an unexpected

manner are detected.

3.5 Detection and replacement of data point outliers

Outliers are values that behave differently from expectation Han et al. [2011]. Clustering-based

methods and statistical methods are available for outlier detection. The statistical methods assume

a normal distribution of data points. Therefore, values in a low probability region are considered

as outliers. The clustering-based methods accept that outliers might belong to a small or sparse

cluster or might be far from the clusters to which they are closest. Both the clustering-based and

statistical methods are used to detect unusual patterns and outliers. The concept of maximum likeli-

hood Rousseeuw and Hubert [2011] in the statistical methods is applied to those clusters that contain

values with abnormal behaviours. Values of q outside the range of µ ± 2σ are labeled as an outlier.

Note that µ ± 2σ contains 95% of data under the assumption of normal distribution.

The presence of data outliers in a cluster potentially misleads the training process and reduce

the accuracy of models to be developed for forecasting UWC. In this research, upon detecting an

outlier, it is replaced by the average between the two values for the dates that precede and follow

the date of the outlier. After the replacement of outliers, so-called clean and consistent data sets are

obtained for the development of forecast model for UWC.

3.6 Forecast model

Assume that the transition from BWC to SWC is sensitive to weather. The temperature threshold

is determined, θt, for the transition. When θ0 ≤ θt, UWC is no longer sensitive to the actual values

of θ0 and p Eslamian et al. [2016]; Gato et al. [2007]. The DWC, q, is considered as a numerical

target, with two components: BWC and SWC. In this research, a forecast model is developed by
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combining Bayesian statistics Heckerman [1997] with a predictor model. One advantage is an

enhanced accuracy of the long-term forecast and reduced uncertainties. The developed method uses

a Bayesian linear regression model Bańbura, Giannone, and Reichlin [2010]; Raftery, Madigan, and

Hoeting [1997]; Yuan et al. [2017] and downscaled values of air temperature and precipitation.

3.6.1 Temperature threshold

To determine the temperature threshold, θt, for the transition from BWC to SWC, scatter plots of

q versus θ0 are made for each year of the records and for the entire time period of records. Separate

straight lines are fitted for SWC and BWC, respectively. The slopes of these lines are estimated

using a non-parametric method known as Sen’s estimator Sen [1968]. The intersection of the two

lines is considered as the transition point. The lines are merged to obtain the best fit of q versus

θ0. The temperature associated with the elbow of the best fit is θt for the year in question or for the

entire time period of records.

3.6.2 BWC estimation

Some early studies Eslamian et al. [2016]; Gato et al. [2007] reported a negative or positive

trend of BWC over time. For convenience, this research considers BWC as stationary. In fact,

nonstationary features of water use records are captured in SWC and are lumped into variations

affected by climate change.

3.6.3 Bayesian statistics

Bayesian statistics represent the probability by quantifying uncertainties. Uncertainties in model

parameters are expressed by a probability distribution over possible parameter values. Bayes theo-

rem Heckerman, Geiger, and Chickering [1995] is the key rule in the Bayesian statistics. If H is a

hypothesis and D is observed data, the theorem is as follows

P (H|D) =
P (D|H)× P (H)

P (D)
(3)
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where P (H|D) represents the posterior probability of hypothesis given the condition that D occurs.

P (H) is the prior probability of hypothesis, P (D) is the marginal (total) probability of observed

data and is effectively a normalising constant, and P (D|H) is the probability (likelihood) of data

given hypothesis.

3.6.4 Bayesian linear regression

Bayesian statistics is a powerful technique for probabilistic modeling that have been adopted in

a wide range of statistical modeling, including linear regression models to make prediction about a

system Han et al. [2011]; Mudgal, Hallmark, Carriquiry, and Gkritza [2014]; Raftery et al. [1997];

Yuan et al. [2017]. A linear regression model is expressed as

q = β0 + β1θ + β2Θ + β3p+ ε, (4)

where β0 is the intercept; β1, β2 and β3 are the weights (known as the model parameters); θ, Θ

and p are called the predictor variables; and ε is an error term representing random noise or the

effect of variables not included in the model equation. Eq. (4) can be rewritten as q =Xβ+ε, where

β = (β0, β1, β2, β3)’; and X = (1, θ, Θ, p) Han et al. [2011]; Taleb and Kaddour [2017]. The

linear regression is formulated using probability distributions rather than point estimates to predict

q. Therefore, q is not estimated as a single value but is assumed to be drawn from a probability

distribution.

The model for Bayesian linear regression with the response sampled from a normal (Gaussian)

distribution N is q ∼ N (Xβ, σ2). The output, q, is generated from a normal distribution charac-

terised by a mean and variance. The mean for the normal distribution is the regression coefficient

matrix (β) multiplied by the predictor matrix (X). The variance is the square of the standard devi-

ation, σ.

Bayesian linear regression model provides the representation of the uncertainties in predictor

variables and determine the posterior distribution for the model parameters. Not only is the response

generated from a probability distribution, but the model parameters are assumed to come from a

distribution as well. The posterior probability of the model parameters comes from Bayes theorem
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[Eq. (5)]:

(β|q,X) =
P (q|β,X)× P (β|X)∫

P (q,X|βi)dβi
, (5)

where P (β|q,X) is the posterior probability distribution of the model parameter given the predictors

and the dependent variable; P (q|β,X) is the likelihood of data; P (β|X) is the prior probability of

parameters and the denominator of the equation is the marginal probability that can be found as per

the law of total probability.

3.6.5 Marcove Chain Monte Carlo

In practice, it is difficult to compute the marginal likelihood for continuous values; it is in-

tractable to calculate the exact posterior distribution. As a solution, a sampling method Markov

Chain Monte Carlo is involved in approximating the posterior without computing the marginal like-

lihood Godsill [2001]; Q. Li, Gu, Augenbroe, Wu, and Brown [2015]; Yuan et al. [2017]. Monte

Carlo is a general technique of drawing random samples, and Markov Chain means the next sample

drawn is based only on the previous sample value. By bringing more samples, the approximation of

the posterior will eventually converge on the actual posterior distribution for β1, β2 and β3.

As the starting point in applying Markov Chain Monte Carlo, parameter space is defined cover-

ing all the possible values for β1, β2 and β3. Then, following the study of Davidson-Pilon [2015]

and other similar studies Bańbura et al. [2010]; Bishop and Tipping [2003]; Ghosh, Basu, and

O’Mahony [2007]; Lambert [2018],the prior probability is defined for each of the parameters as a

normal distribution. Next, the likelihood for each possible parameter is computed. Last, prior ×

likelihood for any given point in parameter space is computed.

If we have domain knowledge, or a guess for what the model parameters should be, informative

prior distributions should be incorporated into the analysis. In the absence of any estimates ahead

of time, we can use non-informative priors for the parameters that express uncertainty about the pa-

rameters and also represents the priori constraints Bishop and Tipping [2003]; Raftery et al. [1997].

There are a large range of distributions available to use as prior distribution. The popular choices

of prior distribution for regression coefficients are Normal, Student-t and cauchy Lambert [2018].
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According to Lambert [2018], these three distributions are suitable for continuous unconstrained

parameters. Also, the distributions are characterized by a mean, the location parameters, and a vari-

ance, the scale parameter. For the purpose of simplicity and following the similar studies Bańbura

et al. [2010]; Bishop and Tipping [2003]; Ghosh et al. [2007], the prior probability for each of the

parameters is defined as a normal distribution.

Markov Chain Monte Carlo is implemented using the No-U-Turn algorithm Hoffman and Gel-

man [2014]. This algorithm is efficient when the variables involved are continuous. There is no

need to set the number of steps. This is an advantage over Hamiltonian Monte Carlo, which takes a

series of steps informed by first-order gradient information, and is sensitive to the number of steps.

A set of parameter values for accepted moves are generated (if the proposed move is not ac-

cepted, the previous value is repeated) and after many repetitions, the empirical approximation of

the distribution is found. Eventually, the result of performing Bayesian Linear Regression is the

probability density function of possible model parameters based on the data and the prior.

3.6.6 Model performance measure

The entire data set is splitted into training and testing sets. The training set contains 75% of

data and used to build the model; while, the testing set contains 25% and is utilized for verifying the

accuracy of prediction. Also, two goodness-of-fit measures are used to evaluate the performance of

models developed in this study. These measures are Mean Absolute Error and Root Mean Squared

Error. Mean Absolute Error is the average of the absolute value of the difference between predic-

tions and the actual values [Eq. (7)], and Root Mean Squared Error is the square root of the average

of the squared differences between the predictions and the actual values [Eq. (6)].

RMSE =

√∑
(ŷi − yi)2
n

, (6)

where yi is the observed value for the ith observation, ŷi is the predicted value and n is the number

of observations.
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MAE =

∑
|ŷi − yi|
n

, (7)

3.7 Future climate projection

This research uses the NASA earth exchange global daily downscaled projections. The archived

results comprise daily θ, Θ and p from the time period of 1950 to 2005 and of 2006 to 2050.

Table 3.1 shows all the 21 models. All these models are downscaled into a unique 0.25◦ × 0.25◦

grid resolution.

The closest grid to the climate station (station ID: 30165) is found and the past and future

GCMs data are downloaded from https://cds.nccs.nasa.gov/nex-gddp/. To do so,

we click on NCCS THREDDS from data access section. This link directs us to the catalog including

minimum temperature, maximum temperature and precipitation. This data is available for all 21

GCMs and in form of historical data, future data under RCP 4.5 and RCP 8.5.

3.7.1 Implementation of bias correction

Bias correction is applied to obtain fine-scale weather data. To make bias corrections, the down-

scaled projections is compared to observations. Assume that the GCM bias is stationary. The

correction algorithm for current climate conditions are also valid for future conditions. The per-

formance of corrections requires historical/current climate data at large scale and fine scale. The

historical climate condition at large scale is extracted from the GCMs at the stations close to Mon-

treal and the fine scale data is the observed historical temperature and precipitation collected from

YUL. Then, the same correction algorithm is applied on the future climate data from the GCMs to

obtain the fine scale future climate variables data.

The correction algorithm is quantile mapping. The quantile relationship between simulated

GCM outputs and climate observations remains unchanged. Following Bennett et al. [2014], p is

corrected by multiplying correction factors (‘multiplicative quantile mapping’), θ and Θ by adding

correction factors (‘additive quantile mapping’).
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In multiplicative quantile mapping, the change factor is calculated at each percentile as

R(x) = F−1
O (x)/F−1

G (x), (8)

where R is the change factor function. The right hand side is the ratio of inverse function F−1
O to

inverse function F−1
G . The argument of R is a function itself, given by x = FGf (HGf ). F−1

O is

the inverse function of the empirical cumulative distribution function of the historical daily climate

observation; F−1
G is the inverse cumulative distribution function of the GCM future data; the argu-

mentHGf is the daily future GCM projection and FGf is the cumulative distribution function of the

GCM future data.

For multiplicative quantile mapping, the GCM future data is multiplied by R to give the down-

scaled future data HGd as HGd = HGf × R. For additive quantile mapping, the change factor is

calculated at each percentile as

R(x) = F−1
O (x)− F−1

G (x), (9)

R is calculated for all given percentile levels, made corrections to the future daily GCM projec-

tion as HGd = HGf + R. The corrections are applied to each of the calendar months.

3.8 Ensemble GCM model

Following making bias correction, the corrected future fine-scale weather variables are used in

the forecast of long-term UWC up to the year of 2050. There is uncertainty in climate predictions

resulting from structural differences in the GCMs as well as uncertainty due to variations in initial

conditions or model parameterisations Semenov and Stratonovitch [2010].

To avoid the challenge of the uncertainty in climate projections, Intergovernmental Panel on

Climate Chang guidelines is followed for handling uncertainties in climate projections, and treated

the four GCMs using the ensemble approach Stocker et al. [2014]. Therefore, all the 21 models are

downscaled for RCP 4.5 and RCP 8.5. Specifically, all available 21 GCMs are obtained from NASA

earth exchange global daily downscaled projections for RCP 4.5 and RCP 8.5 in terms of minimum
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temperature, maximum temperature and total precipitation. The temporal variations of the three

climate variables are plotted and identified the lower and the upper bound of the variations. The

four GCMs are selected to give the lower bound, upper bound and representative temporal variations

between the lower and upper bounds, and used the average of their outputs. Then, Ensemble GCM

model is used as the input for the Bayesian linear regression model.
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Table 3.1: Description of the 21 IPCC-CMIP5 climate models included in the NEX-GDDP downscaled
climate scenarios Jaramillo and Nazemi [2018]

Models name Institution
Latitude
resolution
(◦)

Longitude
resolution
(◦)

ACCESS1-0
CSIRO (Commonwealth Scientific and Industrial
Research Organization, Australia), and BOM
(Bureau of Meteorology, Australia)

1.25 1.875

CSIRO-MK3-6-0
Commonwealth Scientific and Industrial Research
Organization in collaboration with the Queensland
Climate Change Centre of Excellence

1.8653 1.875

MIROC-ESM

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and National
Institute for Environmental Studies

2.7906 2.8125

BCC-CSM1-1
Beijing Climate Center, China Meteorological
Administration

2.7906 2.8125

GFDL-CM3 NOAA’s Geophysical Fluid Dynamics Laboratory 2 2.5

MIROC-ESM-CHEM

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and National
Institute for Environmental Studies

2.7906 2.8125

BNU-ESM
College of Global Change and Earth System
Science, Beijing Normal University

2.7906 2.8125

GFDL-ESM2G NOAA’s Geophysical Fluid Dynamics Laboratory 2.0225 2

MIROC5

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and
National Institute for Environmental Studies

1.4008 1.40625

CanESM2
Canadian Centre for Climate Modelling
and Analysis

2.7906 2.8125

GFDL-ESM2M NOAA’s Geophysical Fluid Dynamics Laboratory 2.0225 2.5
MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 1.8653 1.875
CCSM4 National Center for Atmospheric Research 0.9424 1.25

INMCM4
Institute for Numerical Mathematics,
Moscow, Russia

1.5 2

MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M) 1.8653 1.875

CESM1-BGC
National Science Foundation, Department of
Energy, National Center for Atmospheric Research

0.9424 1.25

IPSL-CM5A-LR Institut Pierre-Simon Laplace 1.8947 3.75
MRI-CGCM3 Meteorological Research Institute 1.12148 1.125

CNRM-CM5

Centre National de Recherches
Météorologiques/Centre Européen
de Recherche et Formation Avancées
en Calcul Scientifique

1.4008 1.40625

IPSL-CM5A-MR Institut Pierre-Simon Laplace 1.2676 2.5
NorESM1-M Norwegian Climate Centre 1.8947 2.542



Chapter 4

Results and discussion

We performed data analysis tasks using Python code, including some libraries (Numpy, Scipy,

Seaborn, Pandas, Matplotlib, Scikit-learn, and Pymc3). The results from the analysis are discussed

in this chapter.

4.1 Clustering UWC based on θ and Θ

The z-scores [Eq. (1)] of daily water consumption q, minimum air temperature θ and maximum

air temperature Θ each contain 1744 records (or objects). The transformed q, θ and Θ values are

in the range of -3.4 to 3.5, -2.6 to 1.8, and -2.7 to 1.8, respectively. For example, on January 1,

2012, the transformed values are: q = -0.22, θ = -0.42 and Θ = -0.52, compared to q = 1.32, θ =

1.17 and Θ = 1.10 for July 1, 2012. The January and July objects are significantly different and thus

are expected to belong to different clusters. In order to determine how many clusters into which the

objects should be grouped, a hierarchical clustering analysis of the three variables was performed

and grouped the q records by weather (air temperature) conditions in order to identify the temporal

variations in q. The results are shown in Fig. 4.1 as a dendrogram (a tree diagram).

The results may be interpreted as follows:

• Choice A: The 1744 objects can possibly be grouped into two clusters (namely 0 and 1).

Cluster 0 contains 811 objects, whereas cluster 1 contains the remaining 933 objects. The

sizes of the two clusters are somewhat different. The Euclidean distance between the two
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Figure 4.1: Dendrogram showing the Euclidean distances for possible data clusters. The number in of
objects within the cluster in question is indicated.

clusters is 74. The distance is a measure of dissimilarity between the two clusters.

• Choice B: If the 1744 objects are to be grouped into three clusters (namely 0, 1, and 2),

one way to do so is to keep the 811 objects in cluster 0, but to split the 933 objects into

two clusters. The split creates new cluster 1 with 130 objects and cluster 2 with 803 objects.

Between clusters 1 and 2, the Euclidean distance will be 39.

• Choice C: If the objects are to be grouped into four clusters (namely 0, 1, 2, and 3), one may

further slip the 803 objects into two clusters. The further split gives new cluster 2 with 295

objects and cluster 3 with 508 objects. The Euclidean distance between these two clusters is

smaller than 39.

There is a need to validate the consistency within clusters of q observations, by examining the

associated values of Silhouette coefficient S [Eq. (2)]. Silhouette plots for choices A, B and C are

shown in Fig. 4.2a, Fig. 4.3a, and Fig. 4.4a, respectively. In all the three choices, for each of objects,

the coefficient is calculated using Eq. (2), and the coefficients for the objects are sorted based on the

actual S values from the calculations. For each of the objects, the figures show a straight horizontal

line, displaying an S value in the horizontal axis. For example, for cluster 0 in choice A, there
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is a total of 811 horizontal lines stacked vertically (Fig. 4.2a), adjacent lines being close and thus

appearing to merge. Similarly, for the objects within clusters 1, 2 and 3, the sorted values of S are

shown Fig. 4.2a.

The S values for all the objects (or samples) in choice B give an average S of 0.469, higher

than an average S of 0.467 in choice A, and an S average of 0.444 in choice C. These averages

are marked in Fig. 4.2a, Fig. 4.3a, and Fig. 4.4a by the vertical dashed lines. The data points of q

are showed within clusters 0 and 1 of choice A in Fig. 4.2a as a time series and in Fig. 4.2c as a q

versus θ0 scatter. The data points are shown within clusters 0, 1 and 2 for choice B (Fig. 4.3b and

Fig. 4.3c) and those within clusters 0, 1, 2, and 3 for choice C (Fig. 4.4b and Fig. 4.4c) in the same

way.

ChoiceA effectively separates SWC, the green data points (Fig. 4.2b) within cluster 1 (Fig. 4.2a)

from BWC, the black data points (Fig. 4.2b) within cluster 0 (Fig. 4.2a). In Fig. 4.2b, the SWC data

points are from the warm months (May to October), whereas the BWC data points are from the

cold months (November to April). In Fig. 4.2c, there exists a good correlation between q and θ0

during the warm season (the green data points), and the vast majority of the black data points show

a narrow range of BWC. However, cluster 0 contains data points of abnormally high or low BWC.

Thus, choice A is not suitable.

Choice B also effectively separates SWC, the light blue data points (Fig. 4.3b) within cluster 1

(Fig. 4.3a) from BWC, the black data points (Fig. 4.3b) within cluster 0 (Fig. 4.3a). At the same

time, choice B groups a small number of abnormal data points (Fig. 4.3b, the red data points from

January to May 2011) into cluster 2 (Fig. 4.3a). These data points are outliers. Overall, choice B

produces desirable clustering results:

• SWC (cluster 1) separates from BWC (cluster 0);

• SWC and temperature are well correlated (Fig. 4.3c, the light blue data points); and

• Data outliers (cluster 2) are identified and removed from the data set.

Choice C produces the above-mentioned desirable results (Fig. 4.4) as choice B. However,

choice C splits BWC into two clusters (Fig. 4.4a, clusters 1 and 3; Fig. 4.4b, the yellow data points

45



Silhouette coefficient S

-0.2-0.4 0.20.0 0.6 0.80.4

1

0

C
lu

st
e

r

(a)

(b)

2011 2012 2013 2014 2015 2016

Date

D
a

ily
 w

a
te

r 
co

n
su

m
p

ti
o

n
 q

 

   
   

   
  [

m
 /

(c
a

p
it

a
.d

ay
)]

3

0.2

0.3

0.4

0.5

0.6

Mean air temperature θ  (  C)

(c)

D
a

ily
 w

a
te

r 
co

n
su

m
p

ti
o

n
 q

 

   
   

   
  [

m
 /

(c
a

p
it

a
.d

ay
)]

3

0.2

0.3

0.4

0.5

0.6

-20 -10 0 10 20 30
o

ο

Figure 4.2: Results of hierarchical clustering of daily water consumption observation: (a) Silhouette plot
showing two clusters; (b) observations of daily water consumption; (c) scatter plot of daily water consump-
tion vs. mean air temperature.
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Figure 4.3: Results of hierarchical clustering of daily water consumption observation: (a) Silhouette plot
showing two clusters; (b) observations of daily water consumption; (c) scatter plot of daily water consump-
tion vs. mean air temperature.
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Figure 4.4: Results of hierarchical clustering of daily water consumption observation: (a) Silhouette plot
showing two clusters; (b) observations of daily water consumption; (c) scatter plot of daily water consump-
tion vs. mean air temperature.
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Figure 4.5: Lines of best-fit to observations of daily water consumption versus mean air temperature.

and the light blue data points). Cluster 1 represents BWC for the season of θ0 ≤ -3◦C and cluster

3 contains BWC for the season of -3◦C ≤ θ0 ≤ 10◦C. Thus, choice C is not suitable because of

the split of BWC into two clusters. For further analysis, it is much convenient to have BWC in one

cluster only, as is the case in choice B. Thus, the preference is choice B.

4.2 Threshold temperature

To determine the threshold temperature, θt, q is regressed against θ0 for BWC and SWC. In

Fig. 4.5, lines of best fit to scatter data of q vs. θ0 are plotted for the individual years of 2012, 2013,

and 2014 and for the entire record period of 2012 to 2014. The corresponding lines for BWC and

SWC intersect at certain values of θ0. These values are the threshold temperature . The results show

that θt is equal to 9.5◦C for 2012 and 2014, and 5.2◦C for 2013. For 2013, the transition from BWC

to SWC took place at lower temperature, and more data points fall into the SWC cluster. Given that

other random weather variables can affect the transition, for practical purposes of accommodating

uncertainties, θt is taken as 9◦C.
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Figure 4.6: Base water use for weekends and weekdays for the period of 2011 to 2015.

4.3 BWC calculations

Some early studies Eslamian et al. [2016]; Gato et al. [2007] reported a negative or positive

trend of BWC over time. For convenience, this research considers BWC as stationary. In fact,

nonstationary features of water use records are captured in SWC and are lumped into variations

affected by climate change. In Fig. 4.6, it is shown that BWC ranges from 0.33 to 0.36 m3 per

capita per day for weekend, and from 0.32 to 0.35 m3 per capita per day for weekdays. Although

the BWC levels differ between weekends and weekdays, but the lower and upper values of the

ranges give the same interval. This interval is 0.03 m3 per capita per day. It is assumed that this

interval is valid for the future three decades.

4.4 SWC calculations

Model Eq. (4) gives predictions of q as the dependent variable, with θ, Θ, and p as predictors,

and with β1, β2 and β3 as model parameters. In Bayesian statistics, the determination of β1, β2 and

β3 requires posterior of the parameters, resulting in a probability distribution for each parameter.
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The probability density functions of the posterior for intercept β0, parameters β1, β2 and β3 (for θ,

Θ, and p, respectively) and standard deviation σ [Eq. (5)] are derived using Monte Carlo Markov

Chain.

The results are illustrated in Fig. 4.7 as posterior histograms for β0, β1, β2 and β3, and σ.

The histograms show 95% Highest Posterior Density (HPD), which is a credible interval for the

parameters. A credible interval in Bayesian statistics is an equivalent of a confidence interval Curran

[2005]. The probability of 0.034 ≤ σ ≤ 0.037 is 95%.

Before using the predictor model [Eq. (4)] to forecast UWC, its accuracy is assessed in terms of

two goodness of fit measures: Root Mean Squared Error and Mean Absolute Error. The assessments

indicate that the two errors are 0.0450 and 0.0378, respectively. Therefore, it is concluded that the

predictor model has a good accuracy.

4.5 Ensemble GCM model

All the 21 GCMs are downscaled for RCP 4.5 and RCP 8.5. The comparison between observa-

tion data, future coarse-scale GCM and future downscaled data in the station of interest in the form

of cumulative distribution function (CDF) are demonstrated under two emission scenarios. Fig. 4.8

and Fig. 4.9 show this comparison for the three variables for RCP 4.5 and RCP 8.5.

Based on Fig. 4.8 and Fig. 4.9, the future bias-corrected or downscaled CDF curves is in the

middle of observation CDF curve and future coarse-scale GCM which is precisely in accordance

with the technical concept of empirical quantile bias-correction. Apparently, in precipitation plots,

it is shown that observation and future coarse-scale GCMs are close; hence, downscaled CDF does

not give a clear demonstration.

To make the comparison between the models’ outputs, annual minimum temperature, annual

maximum temperature and annual precipitation are plotted for RCP 4.5 and 8.5 by 2050. For the

purpose of visualization, 21 models’ outputs of the three variables are broken into three graphs and

are shown in Fig. 4.10 to Fig. 4.15.

Comparing the downscaled results by 2050 in Fig. 4.10 to Fig. 4.15, four GCMs: CanEMS2,

MIROC ESM, CNRM CM5, GFDL ESM2M for RCP 4.5 and RCP 8.5, are selected to cover upper
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Figure 4.7: Histograms of posteriors for: (a) intercept β0; (b) regression coefficient β1for θ; (c) regression
coefficient β2 for Θ; (d) regression coefficient β3for p; (d) standard deviation σ
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(a)

(b)

(c)

Figure 4.8: Observation, future downscaled and future coarse-scale of a) maximum temperature, b) mini-
mum temperature and c) precipitation for RCP 4.5
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(a)

(b)

(c)

Figure 4.9: Observation, future downscaled and future coarse-scale of a) maximum temperature, b) mini-
mum temperature and c) precipitation for RCP 8.5
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(b)

(c)

(a)

Figure 4.10: Annual values of annual minimum temperature a) first series; b) second series; c) third series
of GCMs outputs for RCP 4.5 from 2015 to 2050. The annual values are plotted at the end of the year.
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(b)

(c)

(a)

Figure 4.11: Annual values of annual maximum temperature a) first series; b) second series; c) third series
of GCMs outputs for RCP 4.5 from 2015 to 2050. The annual values are plotted at the end of the year.
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(b)

(c)

(a)

Figure 4.12: Annual values of annual total precipitation a) first series; b) second series; c) third series of
GCMs outputs for RCP 4.5 from 2015 to 2050. The annual values are plotted at the end of the year.
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(b)

(c)

(a)

Figure 4.13: Annual values of the a) first series, b) second series and c) third series of GCMs outputs for
annual minimum temperature for RCP 8.5 from 2015 to 2050. The annual values are presented at the end of
the year.
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(b)

(c)

(a)

Figure 4.14: Annual values of the a) first series, b) second series and c) third series of GCMs outputs for
annual maximum temperature for RCP 8.5 from 2015 to 2050. The annual values are presented at the end of
the year.
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(b)

(c)

(a)

Figure 4.15: Annual values of the a) first series, b) second series and c) third series of GCMs outputs for
annual precipitation for RCP 8.5 from 2015 to 2050. The annual values are presented at the end of the year.
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bound and lower bound of variations. The ensemble GCM is the average of the outputs of the four

selected models. Then, one can obtain downscaled future projections of minimum temperature,

maximum temperature and precipitation up to the year of 2050. Fig. 4.16 shows the trend lines for

the three variables in the next 30 years.

Fig. 4.16 shows that both minimum temperature and maximum temperature increase by time in

future for RCP 4.5 and RCP 8.5. Maximum temperature increase by the rate 0.072 degree per year

for both RCP 4.5 and RCP 8.5. Minimum temperature increase by the rate 0.072 degree per year for

RCP 8.5 and 0.037 degree per year for RCP 4.5. Also, daily precipitation gradually increase in the

next 30 years. These increasing trends have higher slope for RCP 8.5 in all three variables which is

in accordance with the expectation.

4.6 Long-term forecast of UWC under changing climate

This research gives forecast of UWC for the next three decades. Bias corrections were made to

future daily data of θ, Θ, and p for the time period of 2015 to 2050. The results of corrections are

such that R(x) ranges from 0 to 1.6 for p [Eq. (8)] and from -3.3 to 1.9 for θ [Eq. (9)] and from -5.7

to 1.3 for Θ [Eq. (9)]. For example, for July 1, 2040, R(x) for p, θ and Θ are 0.26, 0.99, and 0.39,

respectively.

The output from Bayesian linear regression is the DWC in the form of probability distributions.

The output accuracy between two distinct cases are compared: a) the mean of the probability density

function; b) the mean of 95% HPD. The comparison shows consistent results between the two cases.

Therefore, for simplicity, the mean of the probability density function is selected as the average

DWC (Fig. 4.17).

With respect to temperature threshold, if θ0 ≤ 9◦C, UWC is categorised as BWC. The average

weekend value of BWC is 0.35 cubic metre per capita per year, and the average weekday value is

0.33 cubic metre per capita per year (Fig. 4.6). In Fig. 4.17, the BWC oscillates over time due to

the assumption of stationary BWC for the next three decades. The SWC varies symmetrically about

the middle of the season. The variations follow the seasonal temperature patterns. This is the case

for both RCP 4.5 and RCP 8.5. The peak water consumption occurs in the month of July when the
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Figure 4.16: The trends for annual a) minimum temperature, b) maximum temperature, and c) precipitation
projection as the results of ensemble model by 2050
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Figure 4.17: (a) Typical daily urban water consumption using RCP4.5 and RCP 8.5 scenarios as input
to the Bayesian linear regression model. Daily values of water consumption are the mean of the probability
density function of water consumption (for the purpose of generating this graph, the year 2040 has been
chosen). (b) An example of posterior predictive distribution of water consumption.
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Figure 4.18: Annual urban water consumption forecasted for the time period of 2016 to 2050.

temperature is the highest over the year. RCP 8.5 has a greater impact on DWC than RCP 4.5, as

expected. It is concluded that the worst-case scenario of carbon dioxide emission (RCP 8.5) will

potentially lead to an increase in DWC.

The forecasted DWC over the year to obtain annual UWC are integrated, which is useful for

long-term planning of water supply. The annual UWC (Fig. 4.18) shows a trend of increasing water

consumption for the next three decades. Compared to RCP 4.5, RCP 8.5 is shown to cause a 4%

increase in annual UWC.

It is important to note that uncertainties exist in the long-term forecast of SWC. The uncertainties

are illustrated in Figure 5.10, showing the results of SWC against its predictors under the impact of

RCP 8.5. The results are the possible ranges of 100 samples of the target variable drawn from the

posterior [Eq. (5)]. The posterior of SWC comprises of 100 linear regressions in a three dimension

space including θ, Θ and p. The lower bounds of θ and Θ for SWC are determined on the basis of θt

as well as the value ranges of bias-corrected weather data for the time period of 2015 to 2050. The
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distributed lines in Fig. 4.19 demonstrate the levels of uncertainties in SWC forecast considering

the influence of any of the predictors. In Fig. 4.19a, SWC is shown to have the least variation with

Θ. In Fig. 4.19b and Fig. 4.19c, the proposed Bayesian linear regression is less certain about the

influence of θ and p on forecasted SWC for the next three decades.
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Figure 4.19: Posterior predictive distributions of: (a) θ; b) Θ; c) p. The climate projections for 2015-2050
are based on the RCP 8.5 scenario.
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Chapter 5

Conclusion and Future Research Work

5.1 Conclusion remarks

This research took the stochastic approach to the problem of UWC forecast and made an appli-

cation to the city of Brossard. The following conclusions have been reached:

(1) The proper choice of clustering UWC was determined based on θ and Θ. The choice B split

the 933 objects into two clusters to create three clusters.

(2) Choice B was the preference in this study. It successfully separated SWC from BWC and

showed that SWC and temperature were well correlated. At the same time, choice B grouped

a small number of abnormal data points (from January to May 2011).

(3) It was suitable to determine the threshold temperature, θt, by regression of q against θ0 for

the individual years of 2012, 2013, and 2014 and the entire record period. The results showed

that θt was equal to 9.5◦C for 2012 and 2014, and 5.2◦C for 2013. Given that other ran-

dom weather variables could affect the transition, for practical purposes of accommodating

uncertainties, it was suitable to take θt as 9◦C.

(4) BWC was considered as stationary. Nonstationary features of water use records were captured

in SWC and were lumped into variations affected by climate change. It was shown that BWC

ranges from 0.33 to 0.36 m3 per capita per day for the weekend, and from 0.32 to 0.35 m3
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per capita per day for weekdays. Although the BWC levels differed between weekends and

weekdays, the lower and upper values of the ranges gave the same interval.

(5) The results of Bayesian linear regression gave as posterior histograms for β0, β1, β2 and β3,

and σ. The histograms showed 95% Highest Posterior Density (HPD), which is a credible

interval for the parameters. The good accuracy of the model was verified by Root Mean

Squared Error and Mean Absolute Error, being 0.0450 and 0.0378, respectively.

(6) Both minimum temperature and maximum temperature increased with time in the future for

RCP 4.5 and RCP 8.5. They increased at a rate of 0.072◦C per year for RCP 8.5. Also, daily

precipitation gradually increased in the next three decades. These increasing trends had a

higher slope for RCP 8.5 in all three variables.

(7) The SWC varied symmetrically about the middle of the season, and the variations followed

the seasonal temperature patterns. The peak water consumption occurred in the month of July

when the temperature is the highest over the year. RCP 8.5 had a greater impact on DWC than

RCP 4.5, as expected.

(8) The forecasted DWC over the year were integrated to obtain annual UWC. This is useful for

long-term planning of water supply. The annual UWC showed a trend of increasing water

consumption for the next three decades. Compared to RCP 4.5, RCP 8.5 was shown to cause

a 4% increase in annual UWC.

(9) Uncertainties exist in the long-term forecast of SWC, considering the influence of any of the

predictors. SWC was shown to have the least variation with θ. The proposed Bayesian linear

regression was less certain about the influence of Θ and p on forecasted SWC for the next

three decades.

5.2 Future work

Important future researches that this study motivates include:
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• Investigate the effect of longer records of DWC on the estimate of temperature threshold, and

the model parameters;

• Include a disaggregate socio-economic data set (household by household) for the estimation

of BWC;

• Consider the impact of other weather variables such as wind speed and humidity on UWC.

One limitation of this study is that the available records of daily water consumption used for

the development of Bayesian linear regression model are relatively short. Further efforts should be

made to obtain longer records, which would improve the estimates of relevant model parameters.

Also, including socio-economic data set and other weather variables can improve the completeness

of the proposed predictor model.
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