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Abstract

Connectivity Preservation in Multi-Agent

Systems using Model Predictive Control

Ahmed El-Hamamsy

Flocking of multi-agent systems is one of the basic behaviors in the field of control of multi-

agent systems and it is an essential element of many real-life applications. Such systems

under various network structures and environment modes have been extensively studied in the

past decades. Navigation of agents in a leader-follower structure while operating in environ-

ments with obstacles is particularly challenging. One of the main challenges in flocking of

multi-agent systems is to preserve connectivity. Gradient descent method is widely utilized to

achieve this goal. But the main shortcoming of applying this method for the leader-follower

structure is the need for continuous data transmission between agents and/or the preservation

of a fixed connection topology. In this research, we propose an innovative model predictive

controller based on a potential field that maintains the connectivity of a flock of agents in a

leader-follower structure with dynamic topology. The agents navigate through an environment

with obstacles that form a path leading to a certain target. Such a control technique avoids

collisions of followers with each other without using any communication links while follow-

ing their leader which navigates in the environment through potential functions for modelling

the neighbors and obstacles. The potential field is dynamically updated by introducing weight

variables in order to preserve connectivity among the followers as we assume only the leader

knows the target position. The values of these weights are changed in real-time according to

trajectories of the agents when the critical neighbors of each agent is determined. We compare

the performance of our predictive-control based algorithm with other approaches. The results

show that our algorithm causes the agents to reach the target in less time. However, our algo-

rithm faces more deadlock cases when the agents go through relatively narrow paths. Due to

the consideration of the input costs in our controller, the group of agents reaching the target

faster does not necessarily result in the followers consuming more energy than the leader.

iii

am7amamsy@gmail.com


Acknowledgements

I would like to thank my supervisors Dr. Amir Aghdam and Dr. Farhad Aghili for their

help, guidance, and patience during my research period. I am also grateful for my friends and

colleagues for their helpful suggestions during the research meetings. Lastly, I cannot express

enough gratitude for my family and teachers whom without their sacrifices and encouragement

I would not have been able to reach this point.

iv



Contents

List of Figures vii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Behaviors of Multi-agent Systems . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Components of Multiagent Systems . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Connectivity Preservation in an Obstacle-Free Environment 14
2.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Models of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Behavior of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Dynamics of the Network Topology . . . . . . . . . . . . . . . . . . 16

2.2 Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Modeling of the Potential Field . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Obtaining the Input of the Agents . . . . . . . . . . . . . . . . . . . 25

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Connectivity Preservation in Obstacle Environments 36
3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Models of Agents and Obstacles . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Behavior of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Dynamics of the Network Topology . . . . . . . . . . . . . . . . . . 39

3.2 Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Modeling of the Potential Field . . . . . . . . . . . . . . . . . . . . 42

v



Contents vi

3.2.2 Obtaining the Input of the Agents . . . . . . . . . . . . . . . . . . . 50
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Conclusion 64
4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 66



List of Figures

1.1 An example of a directed graph from [1] . . . . . . . . . . . . . . . . . . . . 5
1.2 A hierarchy that shows the structure of an MAS based on its components . . . 8

2.1 The method of classification of agents according to agent i . . . . . . . . . . 17
2.2 An illustration of the two conditions from left to right . . . . . . . . . . . . . 18
2.3 Agent j moves away from agent i . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Plot of the potential function f1 which shows its domain and fundamental pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Plot of the potential function f2 which shows its domain and fundamental pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Agent i is surrounded by four neighbors with equal distances from it of value Dc 29
2.7 Investigating the trajectory of agent i while trying to move away from its neigh-

bors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Investigating the trajectory of agent i while trying to maintain connection with

its two neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Snapshots for the navigation algorithm with the leader moving at constant

speed of uN = 0.1m per time step . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 An illustration of the failure of navigation without the implementation of link

deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.11 (a) The Fiedler value of the neighborhood connectivity matrix and (b) the input

magnitude of an agent during the simulation run . . . . . . . . . . . . . . . . 35

3.1 Forming a path made of obstacles with varying angles and lengths from [2] . 37
3.2 The highlighted obstacle point is sensed since no other obstacle point is be-

tween itself and the agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 An illustration of the two conditions from left to right . . . . . . . . . . . . . 41
3.4 Plot of the potential function f1 which shows its domain and fundamental pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Plot of the potential function f2 which shows its domain and fundamental pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 (a) A plot of different polynomial functions and (b) the difference in cost be-

tween the two functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 An illustration of the closest obstacle point to an LOS . . . . . . . . . . . . . 47

vii



List of Figures viii

3.8 Plot of the potential function f3 which shows its domain and fundamental pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Plot of the potential function f4 which shows its domain and fundamental pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Agent i is surrounded by four obstacles with equal distances from it of value Do 52
3.11 A deadlock case for agent i based on f3 . . . . . . . . . . . . . . . . . . . . 53
3.12 Snapshots for our algorithm with no turns φ = 0◦, the gap size of the path is

equal to 0.5m, and the speed of the leader is uN = 0.1m per time step . . . . . 57
3.13 Snapshots for our algorithm with two turns of angle φ = 30◦, the gap size of

the path is equal to 0.45m, and the speed of the leader is uN = 0.05m per time
step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.14 Snapshots for our algorithm with two turns of angle φ = 90◦, the gap size of
the path is equal to 0.4m, and the speed of the leader is uN = 0.025m per time
step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.15 A comparison of the path width and the deadlock percentage between the al-
gorithm from [2] and three different speeds of the leader in ours for φi = 0◦,
φ = 30◦, and φ = 90◦ from left to right . . . . . . . . . . . . . . . . . . . . . 60

3.16 A comparison of the path width and time steps taken to reach the target be-
tween the algorithm from [2] and three different speeds of the leader in ours
for φi = 0◦, φ = 30◦, and φ = 90◦ from left to right . . . . . . . . . . . . . . 60

3.17 The agents in [2] are regrouping after the last follower exits the path made of
obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.18 (a) The Fiedler value of the neighborhood connectivity matrix and (b) the input
magnitude of an agent during the simulation run . . . . . . . . . . . . . . . . 62



List of Tables

2.1 Table to illustrate the similarities and differences between the two controllers 27

3.1 Table that shows the average input magnitude of the agents in the system . . . 63

ix



List of Abbreviations

MAS Multi Agent Systems

MPC Model Predictive Controller

PoF Point of Failure

UAV Unmanned Aerial Vehicle

x



Chapter 1

Introduction

In search for cheaper, more efficient, and more robust solutions for control problems across

different fields, control of multi-agent systems has attracted researchers from vastly different

fields in the past few decades. multi-agent systems (MAS) is a branch of control systems

that utilizes groups of autonomous agents connected through a network operating in a specific

environment in order to implement control algorithms that are able to achieve a specified task.

One of the most important advantages of MAS is their robustness with respect to a single

point of failure (PoF) represented by a single complex agent, for example. Instead, having

multiple simpler agents interact in the environment significantly reduces the risks since the

malfunctioning of one agent does not necessarily jeopardize the whole mission. This can

prove vital in operations that can benefit from taking risks such as space exploration missions.

An MAS can be described as a group of agents that function in a networked environment

whose most important feature is their autonomous nature which allows the scalability of the

system without increasing its complexity. Therefore, global control objectives can be reached

using design strategies through distributed sensing, communication, computation, and control.

1



Chapter 1: Introduction 2

A significant aspect of MAS is their applicability in a plethora of fields including both technical

and social sciences. Examples of small-scale MAS can be formation of unmanned aerial ve-

hicles (UAVs), cooperative micro robots, coordination of autonomous cars, air transportation

systems, and aerospace explorations while examples of large-scale MAS can be smart grids in

a power system, traffic networks, sensor networks, biological systems, and social networks.

A good survey of the general framework and the details of the collective control of MAS can

be found in books such as [3–10] and survey papers such as [1, 11–14]. The following section

will review the related works in the literature.

1.1 Behaviors of Multi-agent Systems

The most important property of MAS is the emergence of complex behaviors on the collective

level from very basic behaviors on the individual one. In this section, we discuss some of these

basic collective behaviors in a brief manner.

The first collective behavior we discuss here is consensus. Consensus among multi-agents is

considered to be the main pillar upon the rest of behaviors are built on. Consensus means the

agreement between the agents on certain values or states that are related to the environment

or to the agents themselves. Examples of these states can be the temperature of a room or the

positions of an obstacle or the distance to a target.

Formation control, a behavior based on consensus, is where the agents move through space

in certain shapes and in an ordered manner along a desired trajectory reference. In formation

control, the main factor for its success is based on reaching certain positions, velocities, and

maintaining inter-agent distances. The connectivity between the agents can be assumed but

when connectivity is not assumed, it can be maintained by setting algorithms or requirements

that aim to preserve the connectivity.
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Flocking is a behavior that is inspired from nature where flocks of birds or schools of fish

move together in harmony through space. Therefore, in MAS, agents are to move through

space while following the three rules proposed by [15] as follows:

1. Flock Centering: each agent has an idea where the center or the majority of the agents

are in the environment not to lose connection.

2. Collision Avoidance: each agent has to be able to avoid collisions either with natural

elements in the environment or with other agents.

3. Velocity Matching: each agent needs to synchronise its velocity with the other agents in

the flock in order to achieve the previous two behaviors.

A flock can have a leader, multiple leaders, a virtual leader i.e.: just a trajectory to go by, or it

can have no leaders at all.

1.2 Components of Multiagent Systems

After going through some of the basic behaviors that multi-agents do, we now explain how they

can interact with each other in an environment. Cooperative agents performing a common task

require links among them whether these links are sensing links where agents have sensors to

be able to locate other neighbors or objects in the environment or communication links for

agents to share relevant information about a state in the environment or states concerning the

agents themselves.

The nature of these links change significantly from one work to another based on the appli-

cation needed and the physical structure of the agents themselves. We classify the possible

structures of links between the agents as follows:

1. Undirected Link Structure

This structure means that that the link between two agents goes in both directions, e.g., if
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agent A can sense or communicate with agent B, then agent B can sense or communicate

with agent A as well.

2. Directed Link Structure

This structure means that the link between two agent does not necessarily go in both

directions, e.g., if there is a directed link that goes from agent A to agent B, then agent

B can sense or obtain information from agent A but agent A can not do the same unless

there exists a directed link from agent A to agent B.

A strongly connected directed graph is defined as a graph that has information able to be

transmitted from one agent to any other agent contrary to a weakly connected directed

graph. A directed graph can be weakly connected but can have a directed spanning tree

where there is a directed path from one agent known as the root to any other agent.

3. Leader-Follower Structure

This structure is used when the agents are classified into leaders and followers which can

be based on the type of problem that the multi-agents need to solve. Usually, links that

the leader has are only directed links going towards its followers and the links between

the followers themselves can either be directed or undirected.

A leader is usually used in tracking problems where the followers track the state of the

leader to achieve consensus. The followers achieve tracking of an active leader i.e.: with

a changing state and estimate this state when the direct measurement of states is not

available and they have to be estimated based on their neighbors in [16] and [17]. Esti-

mation of states is commonly studied in leader-follower topologies that need to be robust

since the agents can be subject to measurement noise as in [18], model uncertainties as

in [19] and [20], or delays as in [21].

An example of the relation between the agents in an undirected graph is shown in Figure 1.1

from [1] where agents 1 and 2 share their information while agent 6 only receives information

from agent 5 without sending it to any agent, for example.
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FIGURE 1.1: An example of a directed graph from [1]

Another method by which we can classify the links is by their dynamics that change based

on the restrictions put, application required, and assumptions made regarding the environment

and the agents as follows:

1. Fixed Topologies

This means that the links between the agent remain the same throughout time. This

topology is usually used in works where connectivity is assumed continuously or the

loss of the links between the agents is not probable.

In [22], velocity consensus between agents was achieved with the desired inter-agent

distances while avoiding collisions with each other in a fixed topology. The authors

in [23] show that consensus is achieved if the directed communication topology has a

rooted directed spanning tree or the undirected communication topology is connected.

Non-holonomic agents were studied in [24] where agents move towards the average

positions of their neighbors under the effect of external disturbances using a distributed

sliding mode control.

2. Switching Topologies

This means that agents change their connections based on a finite known set of distinct

graphs as time passes i.e.: for each time step, each agent can have a new set of agents
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that it links with. The set of graphs should maintain the global connectivity where no

agent will lose all links in a time step.

The authors in [23] show that consensus in switching networks with directed communi-

cation topology is reached if the union of the directed interaction graphs has a spanning

tree frequently enough.

3. Time-Varying Topologies

This type is the same as switching topologies except that the set of graphs is infinite in

this case. The links that each agent has, however, do not change in the same manner as

in switching networks but mostly the change is dependant on the trajectories that mobile

agents have during the process. Time-varying or time-dependant graphs are heavily used

in research works that study connectivity preservation.

The condition for consensus in switching networks for undirected graphs is shown in

[25] to be able to extend to time-varying topologies where consensus is achieved if there

exists an infinite sequence of time intervals such that the union of the graphs is connected

frequently enough as system evolves. Flocking behavior is studied in [26] and the agents

are proven to have their velocity aligned as long as connectivity is maintained regardless

of changes occurring in the network graph.

After looking into the links between agents and their dynamics, the dynamics of the agents

themselves can be classified into:

1. Linear Homogeneous Agents

which means that all the agents follow the same linear dynamics where ẋk(t) = Axk(t)+

Buk(t), x is the agent state at time t, u is the agent input at time t, k is the agent index,

and A and B are constant matrices.

2. Linear Heterogeneous Agents

which means that the agents do not necessarily have similar dynamics but they are still
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linear in nature where in ẋk(t) = Akxk(t)+Bkuk(t), the constant matrices Ak and Bk are

specific for each agent k.

The cooperation in a linear heterogeneous agent is different from synchronisation in

homogeneous agents where consensus is needed. The agents should be able to regulate

their outputs to cooperate while having different final trajectories which is known as

the cooperative output regulation problem as in [27] and [28]. Robust approaches were

developed in [29] and [30].

3. Nonlinear Dynamics

where they can be either homogeneous as in ẋk(t) = φ(xk(t))+Buk(t) or heterogeneous

as in ẋk(t) = φk(xk(t))+Bkuk(t).

One approach that is used when dealing with nonlinear dynamics is the virtual exosystem

approach where the output of each agent is regulated individually to its reference then

the references for all the agents are to reach consensus. Some of the papers that study

the synchronisation of nonlinear agents using this approach are [31–35].

Figure 1.2 shows how the components of an MAS are related to each other.

The MAS can be classified into three categories based on the decision making strategy:

1. Centralized Control which means that all information, measurements, and calculations

done by the agents are gathered by a main agent that determines the control actions that

should be done by each agent.

2. Distributed Control which takes into consideration that having a central agent implies a

single point of failure and distributes the decision across multiple central agents across

all the other agents.

3. Decentralized Control which takes the distributed approach to its full and removes cen-

tralization completely where each agent is its own decision maker based on the informa-

tion and measurements done gathered from the neighbors and the environment.
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FIGURE 1.2: A hierarchy that shows the structure of an MAS based on its components

And for the environment in an MAS, it can have obstacles or be obstacle-free. The presence

or the lack of presence of obstacles in an environment affects heavily how the agents interact

with each other and the environment depending on the type of links the agents have since the

connections between the agents can be based on either communication or sensory devices or

both.

Despite the massive research efforts exerted in the field of MAS, it remains a broad area of

research and in this section, we go through some of the challenges that we have in small-scale

MAS such as navigation of unmanned aerial vehicles and coordination between autonomous

cars which can be considered some of the most essential applications of cooperative control of

MAS in the modern world and some of the challenges that appear to emerge when looking at

previous literature are:

• The negligence of direct physical coupling between the agents in addition to the designed

cooperative connections.
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• Heavy dependence on communication to perform collective behaviors such as informa-

tion exchange needed for distributed estimation or connectivity preserving algorithms.

• Addressing the synchronization problem of nonlinear and heterogeneous dynamics of

MAS such as different unmanned aerial vehicles in a flight formation control or power

stations in a smart grid with different load and supply characteristics.

• Investigation of collective behaviors of non-holonomic agents in a complicated network

contrary to the usual modeling of agents as point masses without any input cost consid-

erations or moving through obstacle-free spaces.

We can see that these challenges are mostly linked to real life situations and applications and

addressing them is the necessary and logical step in this area of research.

1.3 Literature Review

In this thesis, we focus on applications that utilize the navigation of multiple agents in a leader-

follower structure in an environment with obstacles without reliable communication links and

where the agents are to conserve their energies. and since flocking of multi-agents is one of

the basic applications of the field of MAS, it has been studied extensively in the past couple of

decades. In this section, we review some of the literature that discuss the algorithms used in

flocking in different situations in order to demonstrate how we were able to reach our point of

interest in this work.

One of the most influential papers in this area is [36] as it presents a theoretical framework for

the design and analysis of flocking in a distributed manner and divides the three main factors

in the environment into agents which are the flock members (α- agents), the obstacles (β -

agents), and the collective potential or objective (γ- agents) which is viewed in this paper as a

moving rendez-vous point. A construction of the cost function or collective potentials based on

these three types of agents, therefore, is provided systematically. It is to be noted that, although
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the topology is time-varying, it only moves towards increasing connectivity by adding more

links where connectivity is already assumed.

Since connectivity can not always be assumed in real life applications. The authors in [37] pro-

vide algorithms for both cases where connectivity is assumed and when it is not. In this paper,

they study the distributed tracking problem with a virtual leader that moves with constant or

varying velocity in fixed and switching networks and places a connectivity requirement based

on potential fields in the second case. The virtual leader in this paper is a neighbor of a limited

number of followers and can only perform communications and local interactions with this

limited group of neighbors.

A lot of literature, as well as this thesis, focus on the connectivity maintenance aspect that

is related to flocking, tracking, or navigation in the workspace. One of the earliest papers

that worked on ensuring connectivity of the agents is [38] as it was necessarily needed while

performing a certain global objective such as: rendezvous or formation control and this paper

proposed assigning certain positive weights to the links between the agents that the Laplacian

is built on but the graph of the agents is fixed, nonetheless, and the environment is free from

obstacles.

Another paper that focused on the rendezvous problem in an obstacle-free environment without

assuming connectivity is [39] where they have a virtual leader and new links keep getting

added by constructing bounded potential functions that do not go to infinity. They showed that

their algorithm works and rendezvous is achieved even if at least one agent has access to the

information about the virtual leader.

The papers we have mentioned so far have assumed that the status of global connectivity is

known for the agents, now, we start looking into some papers that utilize data transmission

between agents as in [40] where a bounded controller is used to maintain the connectivity of

the limited sensing and communications links between the agents while navigating through an

environment with obstacles. The algorithm provided in this paper has its focus on connectivity

preservation but other important aspects such as inter-agent collision are not considered.
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The authors in [41] propose an algorithm that obtains a decentralized gradient controller that

is based on an artificial potential field. The connectivity between the agents is quantified by

the second smallest eigenvalue of the Laplacian graph which is estimated from information

received from neighbors and the objective of the algorithm is to maximize this value which

increases the connectivity.

The authors in [42] also use estimations of the algebraic connectivity to preserve connectivity

but take into consideration bounded measurement errors of the information obtained from

communication links between neighbors. In addition to that, the paper also introduces the

concept of critical robots, which a disconnection from leads to the disconnection of the whole

network, and limits the control actions to these critical robots to avoid unnecessary actions.

The dynamics of the agents are single-integrator dynamics and the agents flock in an obstacled

environment.

Till now, the topology in our discussion has either been fixed or increasing in links. The

concept of deleting the communication links of the agents is introduced in [43] where agents

flock in an obstacle-free environment so a discrete network topology controller is combined

with a continuous controller that ensures velocity synchronization and collision avoidance that

is based on an artificial potential field into a hybrid architecture.

In some papers, the leader-follower structure is implemented in the flocking of multi-agents

where only the leaders in the network graph have the global knowledge in the environment

whether in an obstacle-free environment as in [44] or in an obstacled one as in [45]. In [44],

the agents estimate the flocking center by using a consensus algorithm that is implemented by

utilizing data transmission through communication links. And in [45], the leaders steer the rest

of the agents into desired formations to maneuver their path in an environment with obstacles.

An approach that is studied is the flocking of MAS without data transmission which we see in

literature such as [46] which reaches a sub-optimal solution for leader-follower navigation in

an obstacle-free environment utilizing a negative gradient controller based on potential fields

and constraints the inputs of the agents to maintain connectivity. The authors in [2] build
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on this paper and put explicit input constraints that are applied on all agents, the leader and

the followers, for maintaining connectivity in a flock with dynamic topology while navigating

through an obstacled environment.

1.4 Challenges and Contributions

Most of the previous literature reviewed have had one or more of the following limitations:

1. The consideration of an obstacle-free environment

2. The requirement of data transmission through communication links between the agents

for estimation, auction algorithms, formation maneuver strategies, or otherwise.

3. Maintaining connectivity of the agents through either preserving a fixed network topol-

ogy or increasing the links between the agents compared to the initial graph.

4. No consideration of the occurrence of inter-agent collisions

5. No explicit consideration of input constraints

6. Placing connectivity constraints on the leaders in a leader-follower structure

In this thesis, we propose a Model Predictive Controller (MPC) based on potential fields that

maintains the connectivity of a flock of agents while navigating through an environment with

obstacles in a leader-follower structure. The followers, in our case, which have limited sensing

capabilities have to avoid collisions with each other and with the obstacles in the environment

while following the leader which is the only agent that has access to the desired trajectory and

moves with constant velocity with no constraint placed on it.

A contribution of our thesis is the introduction of weights of links between the agents into the

construction of the potential functions that are used in the control algorithm used for the agents.

By adding these weights, the agents can move into the general direction of the leader without
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knowing which particular agent is actually the leader in our graph. Therefore, our problem

can be described as a flocking problem in a leader-follower topology where the leader moves

in a constant velocity through space with static obstacles towards a certain trajectory and the

agents are to follow the leader while maintaining global connectivity and avoiding collisions

with obstacles or with each other depending only on sensing links without any communication.

The agents model their neighbors and the obstacles as weighted potential functions and decide

their input for each time step based on a Model Predictive Controller (MPC) while taking into

consideration their input costs as well.

1.5 Outline

This thesis is composed of four chapters. In Chapter 2, we describe the problem formulation,

assumptions, and the rules used in this work along with the reasons for their choices. It follows

by illustrating the results obtained in an environment free from obstacles. In Chapter 3, we

expand our problem formulation and derive the control laws needed in an environment with

obstacles, then, the results are compared with those reported in the literature. Finally, Chapter

4 presents the conclusions of this thesis and provides comments for future work.



Chapter 2

Connectivity Preservation in an

Obstacle-Free Environment

This chapter formulates and solves the connectivity preservation problem in an obstacle-free

environment. The topics to be discussed include: i) how the environment is structured, ii)

the dynamics of the agents, iii) how the obstacles are modeled, iv) the conditions placed on

the agents, and v) the assumptions needed. Next, we explain how our algorithm works and

the reason for the choice of specific methods instead of other ones. Finally, we illustrate the

simulation results based on the proposed control law and then we examine the results when

some of the parameters are changed.

14
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2.1 Problem Setting

2.1.1 Models of Agents

Suppose the number of agents that flock in the 2D workspace be N and their dynamics be

described as:

xk+1
i = xk

i +uk
i , xi =

xi

yi

 ,ui =

ui
x

ui
y

 (2.1)

where i∈V := {1,2, ...,N} is the agent index and k is the time step. That means that the agents

change their positions each time step based on the input signal ui in the x and y axes. As can

be seen, the dynamics of the agents in our system are discrete where the path of the agent is

composed of line segments L(xk
i ,x

k+1
i ). If the agents are described by the continuous model

ẋi(t) = ui(t), then a fixed ui(t) between time steps k and k+1 will produce the same behavior.

2.1.2 Behavior of Agents

The agents in our system should display two fundamental behaviors:

1. Connectivity maintenance

2. Collision avoidance

First, we establish the conditions surrounding the agents to make sure that they avoid collisions

and have other agents stay in their sensing ranges.

Agent i can avoid collisions with other agents if:

‖xi− x j‖2 > Dc ∀ j ∈V \{i} (2.2)

where Dc is a constant value based on the physical structure of the agents where the agents are

not assumed as point masses.
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Agent i can sense other agents if:

‖x j− xi‖2 6 Ds (2.3)

Therefore, an agent j is sensed by agent i if it falls into its sensing range and is not colliding

with it. In the following section, we will show how the sensing will be affected if there exists

other agents between agents i and j.

2.1.3 Dynamics of the Network Topology

By establishing these conditions, we can define our sensing network graph Gs := (V,Es(xk)),

where Es(xk) is the set of edges of the sensing graph at time k and construct our sensing

Laplacian matrix Ls(xk) where, for i 6= j,

si j :=

−1 if (2.2) and (2.3) hold

0 Otherwise,
(2.4)

and

sii =− ∑
j∈Sσ

i

si j (2.5)

where Si(xk) := { j|(i, j) ∈ Es(xk)} is defined as the set of agents that agent i can sense.

If the network sensing graph Gs is connected, each follower has a path going to the leader

with a maximum length of (N−1)Ds. Trying to maintain the connectivity of our network just

through guaranteeing the preservation of Gs can be unreliable since connecting edges between

agents can be lost by having very minor movements or changes in the positions of the agents.

Therefore, we aim to preserve connectivity of Gn(xk) := (V,En(xk)) where En(xk) := {(i, j) ∈

Es(xk)|‖xk
i − xk

j‖2 6 Dn} and Dc 6 Dn 6 Ds which is a subgraph of the sensing graph Gs and
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FIGURE 2.1: The method of classification of agents according to agent i

the neighbor Laplacian matrix Ln(xk) is, for i 6= j,

li j :=

−1 if si j =−1 and ‖xk
i − xk

j‖2 6 Dn

0 Otherwise,
(2.6)

and

lii =− ∑
j∈Ni

li j (2.7)

where Ni := { j|(i, j) ∈ En(xk)} is defined as the set of agents that are neighbors to agent i.

The classification of the different relationships that agent i can have with other agents is shown

in Figure 2.1 where agent j ∈ Es(xk)∩En(xk), agent m ∈ Es(xk) and m /∈ En(xk), and agent

p /∈ Es(xk)∪En(xk)

Assumption 2.1: The leader is connected initially at (k = 0) to at least one follower.

Having this assumption, commonly, lots of papers aim to keep increasing the links between

the agents as the system evolves, however, this can prove impractical in our problem since the

leader agent is unknown to the followers and it is not bounded by the same desired behaviors

imposed on the followers. Therefore, the followers should aim at preserving the connectivity

with all of their neighbors. As the number of neighbors increase for a follower, the ability to

find a solution gets harder and harder until the agent reaches a point where it can no longer

move without losing its connection with at least one of its neighbors which is defined as a
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deadlock case in our problem. Therefore, to be able to navigate narrow spaces in our envi-

ronment and maintain connectivity of the graph at the same time, we need to deactivate the

links that hinder the navigation process and keep the other links present in En(xk), so the set

of neighbors to be preserved is defined as Nσ
i (x

k) := { j ∈ Ni(xk)|σ k
i j = 1} and the following

subgraph is defined as Gσ (xk) := (V,Eσ (xk)) where Eσ (xk) := {(i, j) ∈ En(xk)|σ k
i j = 1} where

σ k
i j is a systematic indicator function defined as

σ
k
i j :=

0 if edge (i, j) is deactivated

1 otherwise

We have two cases for link deactivation in narrow spaces:

1. For the set of triplets (i, j,m) illustrated in the left side of Figure 2.2 where (i, j) ∈ En,

( j,m) ∈ En, and (m, i) ∈ En, the agent i does not include the edge (i, j) ∈ En in Eσ if

‖Φ(xmi,x ji‖2 < Dc sin(π/3) (2.8)

sin(αm)> 0, αi,α j < π/2, (2.9)

which means that agent m is about to obstruct the vision between agent i and agent j,

therefore, instead of having a direct sensing link between agents i and j, this link is

removed and agent m becomes the connecting node that links between these two agents.

FIGURE 2.2: An illustration of the two conditions from left to right
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2. For the set of triplets (i, j,m) illustrated in the right side of Figure 2.2 where (i, j) ∈ En,

( j,m) ∈ En, and (m, i) ∈ En, the agent i does not include the edge (i, j) ∈ En in Eσ if

‖xi j‖2 = ‖x jm‖2 = Dn (2.10)

‖xmi‖2 = Dc (2.11)

sin(αm)> 0, (2.12)

which means that agent i and agent m are about to collide with each other and lose their

connection to agent j, therefore, agent i drops its sensing link with agent j to avoid

collision with agent m and allow it to maintain connectivity between itself and agent j,

and hence agent m becomes the connecting node between agents i and j.

N.B.: The conditions for the second set of triplets allow for a certain range of tolerance because

it is not practical to reach exact equality for these conditions, so, instead, we have:

Dn− εn 6 ‖xi j‖2 6 Dn (2.13)

Dn− εn 6 ‖x jm‖2 6 Dn (2.14)

Dc 6 ‖xmi‖2 6 Dc + εc, (2.15)

where εn and εc are small positive numbers.

Assumption 2.2: The agents in the system have no measurement errors, therefore, if any of

the two conditions for dropping links is fulfilled for one agent, it should be fulfilled for the

other, i.e: if agent i drops its link with agent j at time k, then agent j drops its link with agent

i at the same time step as well without any need for communication.

In order to ensure the connectivity of our sensing network after applying the two conditions of

dropping links mentioned above, we mention the theorem that [2] used to prove the connectiv-

ity of Gσ (xk) and the proof of this theorem is presented there as well.
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Theorem 2.1 [2]: Suppose that the following assumptions hold:

1. Gn(xk) is connected,

2. All agents satisfy (2.2),

3. The constraint in (2.8) is satisfied,

4. π is not an integer multiple of sin−1(Dc/2Dn),

then Gσ (xk) obtained by the rule of σ k
i j is connected. This means that σi j is determined

such that if no edge is lost in Gσ , the connectivity of Gn is preserved.

N.B: The rule is decentralized and does not require data transmission between agents and

multiple links of Gσ are deleted at the same time.

In [2], the leader of the agents in the network holds the same objectives that the followers do,

so it can not move with an input that will cause connectivity with its followers to terminate.

This is a constriction that is placed on the leader in this case and is represented explicitly by

having an input constraint umax that can change every time step but still has an upper bound

based on the physical parameters of the agents in the system.

Such a constraint can be considered as unrealistic and, instead, the leader should move freely

in the environment without considering connectivity preservation with the followers and the

followers should be solely the ones with these constraints.

In our problem, the leader moves in the environment towards its designated target with the

same input magnitude for each time step where the followers need to keep moving with the

leader without knowing either the destination target or which agent is actually the leader.

Finally, this problem can be summarized as follows: A group of autonomous agents are to

move in an environment without obstacles that form a path leading towards a target only known

to the leader of the group. The followers have to maintain connectivity with their neighbors

and, by extension, with the leader and form connections with new agents found along the way
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while taking collision avoidance into consideration in a dynamic network sensing topology

where links can be added or removed under certain scenarios and without any communication

present between the agents.

2.2 Control Algorithm

After we have explored the foundations of our system and its modeling, in this section, we

explain how the agents should interact with the environment in order to achieve the desired

behaviors explained previously. Since the dynamics of the agents are discrete, an agent moves

through space in discrete inputs with fixed time steps, therefore our objective is obtain the

input for each time step that preserves connectivity and avoids collisions.

2.2.1 Modeling of the Potential Field

One of the most popular methods in literature to reach the desired behaviors is to model them

as functions where each agent has a cost function that it tries to minimize by choosing the

suitable input. The cost function is a potential field comprised of the sum of the potential

functions that lead us to the behavioral objectives where each potential function focuses on

one aspect of the behaviors.

In our algorithm, the agents are subjected to the potential field

U(xi) := ∑
j∈Nσ

i

c1 f1 + c2 f2 (2.16)

that aims for connectivity maintenance and collision avoidance represented by its two func-

tions. These two components will be explained in this section individually.

The first component f1 takes into account the desired value of the relative distance to neigh-

bors j ∈ Nσ
i as agent i should maintain a distance value with its neighbors that maintains the



Chapter 2: Connectivity Preservation in an Obstacle-Free Environment 22

connectivity and prevents collisions with them at the same time. Therefore, the functions is

defined as:

f1(‖xi j‖2) := wi j(‖xi j‖2−Dr)
2 (2.17)

where ‖xi j‖2 := ‖xi−x j‖2 , and wi j is a variable that determines the weight of agent j assigned

by agent i, meaning, neighbors of agent i do not necessarily hold the same value or cost when

their relative distances to agent i are equal.

Since we have removed the constraint of connectivity preservation placed on the leader which,

for the most part, will result in the leader moving away from its neighbors to reach the target,

we needed to come up with a method for the followers to identify the leader or agents which

follow the leader. Therefore, to preserve connectivity, a follower keeps increasing the weight

of the neighbors that keep moving away from it relative to the other neighbors that do not, so

i f dk+1
i j > dk

i j:

wk+1
i j := wk

i j +
(wk

ii−1)
wk

ii
(2.18)

wk+1
im

m 6= j
:= wk

im−
1

wk
ii

(2.19)

The rationale behind (2.18) and (2.19) is increasing the weight of one neighbor while decreas-

ing the weight of all the other ones so that the total weight assigned by agent i to its neighbors

remains constant. The sum of weights for agent i is defined as:

wii = ∑
j∈Nσ

i

wi j := |Nσ
i | (2.20)

where |Nσ
i | is the number of neighbors of agent i. The reason for keeping the total weight

assigned for each agent constant is to keep the cost of function f1 relatively the same as func-

tion f2. Therefore, the only means to prioritize one of them over the other is through the gain

values c1 and c2.
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FIGURE 2.3: Agent j moves away from agent i

Assumption 2.3: Each agent stores the values of the positions of its neighbors for a certain

number of the previous time steps.

Figure 2.3 is an illustration of how agent i monitors the way its neighbors move. This method of

identifying the general direction to which the leader moves can be considered intuitive because

if the leader were to reach its target, it would need to keep moving towards it regardless of the

presence of the followers near it or not. Therefore, if an agent keeps moving away from its

neighbors for a relatively long period of time, it means that it is either following another agent

that is moving away from it or it is the leader going towards the target.

FIGURE 2.4: Plot of the potential function f1 which shows its domain and fundamental pa-
rameters
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The weight term added to function f1 accomplishes our objective because even if two neigh-

bors of agent i have the same distance from it, agent i will prioritize the connectivity with the

neighbor with the larger weight because this agent keeps moving away in pursuit of either the

target in case of the leader or another neighbor with a higher weight in case of the followers.

The function f1 is modeled as a quadratic function whose minimum value is at Dr and increases

in both directions to prevent collision and preserve connectivity as shown in Figure 2.4. We can

see that function f1 takes effect only between the collision distance Dc and the neighborhood

distance Dn and other than that the value of the function goes to infinity as either collision

occurs or neighbors are lost for the agent.

The second component f2 is introduced to make the group more cohesive as long as it does not

affect the functional behaviors of those agents. For example, assume agent i senses agent p,

then it is not necessary that they are neighbors, but they also need to have a certain threshold

distance of Dn between them for them to be considered neighbors. So, the function f2 is

presented where agent p is not a neighbor for agent i and agent i has little or no forces in

terms of connectivity preservation or collision avoidance that are pushing it away from agent

p. Therefore, in general, agent i moves closer to agents whose relative distances to it is larger

than Dn and smaller than Ds at time step k. The function f2 is defined as follows:

f2(‖xi j‖2) := (‖xi j‖2−Dn)
2 if Ds > ‖xi j‖2 > Dn (2.21)

The function f2 is modeled as a quadratic function whose minimum value is at Dn because, as

the distance goes smaller than that, function f2 ceases to have an effect regarding this particular

agent and function f1 becomes the main force affecting in regards to connectivity preservation.

Unlike function f1, function f2 does not go to infinity if the domain goes beyond the sensing

distance Ds as it is not a crucial part of the connectivity preservation behavior of the agents to

keep sensing agents that are not within its neighborhood set as shown in Figure 2.5.

Since the two functions that constitute our potential field have ranges of different values, we
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FIGURE 2.5: Plot of the potential function f2 which shows its domain and fundamental pa-
rameters

need to re-scale them so that they both have the same values for their minimums and maxi-

mums and the same influence on the agent as they go towards their extremes.

If we desire to change the influence of one of the functions in relation to the other one, we can

do that by changing the values of c1 and c2 of U(xi) in (2.16).

2.2.2 Obtaining the Input of the Agents

After modeling the potential field, utilizing it to acquire the inputs for the agents is the next step

logically. An algorithm that is used commonly to do that is the negative gradient controller.

The negative gradient controller or gradient descent, as defined in [47], is an optimization

algorithm which is classified as a black-box optimizer and is used to minimize a cost function

J(x) by updating the states in the opposite direction of its gradient ∇xJ(x). This iteratively

reduces the value of the cost function till it reaches a value that does not change and that is

then considered the minimum of the function and the corresponding states as the minimizers.

There are three variants of gradient descent based on how much data is used to compute the

value of the cost function at a time:
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1. Batch gradient descent: the entire state or input set is computed for the whole mission at

one time which can be considered as offline optimization.

2. Stochastic gradient descent: the input is computed for each time step after updating the

states and parameters of the environment. This is considered as online optimization and

the most popular variant used in the literature dealing with navigation of multiple agents.

3. Mini-batch gradient descent: this variant utilizes both of the previous variants and up-

dates the states and parameters of the environment every mini-batch of time steps instead

of each time step.

Although gradient descent algorithm is used extensively in papers that model the environment

as a potential field to navigate as in [11, 39, 41, 42, 46], it has the following shortcomings

when it comes to some of the desired behaviors we want our agents to express:

1. Not considering the cost of the inputs needed to optimize the states of the agents

2. The difficulty of minimizing highly non-convex cost functions with local minimums and

saddle points

Another alternative controller that is used in algorithms that utilize potential function models is

the model predictive controller (MPC) despite not being used extensively in MAS navigation.

In an MPC, at time step k, the behavior of the agents is considered and the cost function J(x) is

computed over a horizon p, and the inputs are calculated responding to the variables predicted

and aiming to minimize the cost function. After implementing the input for time step k, the

whole operation repeats for time step k+1. As mentioned in [48], minimizing the cost function

can be based on the presence of constraints to the input or the states or it can be unconstrained.

In literature, MPC was used to solve control problems such as path planning of autonomous

vehicles in [49], formation control in [50] and [51]. Decentralized MPC (DMPC) is a type

of MPC controller which considers each agent as a decoupled subsystem that solves a local

sub-problem such as in [52] where it is used to control Unmanned Aerial Vehicles (UAVs)
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and avoid collisions with each other. [53] used DMPC to control two UAV teams to encircle

movable or stationary targets.

A small comparison is presented in table 2.1:

Gradient Descent vs. Model Predictive Controller
Type of Controller Gradient Descent Model Predictive Controller

Dynamics can be used to solve linear
and non-linear systems

can be used to solve both
types of systems as well

Cost Function limited to differentiable func-
tions and can not solve non-
differentiable ones

explicit MPCs can solve
piecewise affine functions

Horizon the horizon of the data is
based on one of the three vari-
ants explained above

the MPC works in a variable
finite-time horizon

Input the input magnitude is not
usually explicitly considered

the input cost can separately
be considered

States constraints can be added by
projecting their sets

can deal with both con-
strained and unconstrained
state sets

TABLE 2.1: Table to illustrate the similarities and differences between the two controllers

We can see that the model predictive controller has wider scopes that it can be used for in terms

of the cost function, horizon chosen, and input and state constraints. For this reason, we utilize

the model predictive controller in our algorithm to put a cost to the inputs of the agents without

needing to put an explicit input bound for connectivity maintenance which is already covered

by our model of potential functions but, instead, the input cost is used to ensure that the agents

do not unnecessarily take big leaps in their movements through space that will consume lots

of energy and do not, in return, have a big impact on the connectivity of the agents which is

more in line with real-life restrictions. Therefore, our problem can be defined as follows:

minimize J =U(xi)+uT
i Rui (2.22)

subject to xk+1
i = xk

i +uk
i (2.23)
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where J is the cost function and R is a positive-definite matrix. The big O notation shows

that the computational complexity of this solution is of order O(N3) where N is the number of

agents.

In certain cases, our algorithm fails to reach a solution where the agents experience deadlock

and can no longer continue the mission without losing connectivity, colliding with obstacles,

or colliding with each other. Therefore, we need to inspect these cases, as well as, the effect

of changing the weight values of the links between the agents.

Theorem 2.2: If agent i is connected to agent j at time k, then ∃ui ∈ IR2 for which the

agent i stays connected and does not collide with agent j at time k+1 if:

1. the weight assignment of agent j by agent i is done in such a way to satisfy the

following bounds

0 6 wi j 6 |Nσ
i |

2. The value of c1 f1 in U(xi) does not go to infinity and the cost for each neighbor

lies in the following range

c1wk
im(‖xk

im‖2−Dr)
2 6 1, m ∈ Nσ

i

Before going into the proof of this theorem, we need to examine the two conditions mentioned

above. The first condition is based on our choice of the weight values in function f1 which

will be explained later in the proof. For the second condition, it depends on the exact circum-

stances present in our environment during time step k, therefore, it does not always hold which

leads to a deadlock case where the agent can not find a solution or an input that will make it

move without violating at least one of the conditions of connectivity preservation or collision

avoidance.

We check the cases where any input for agent i will lead function f1 to infinity. In Figure 2.6,

we can see an example of a deadlock case for agent i due to the lack of a solution that keeps
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FIGURE 2.6: Agent i is surrounded by four neighbors with equal distances from it of value Dc

function f1 within range. To prove that it is a deadlock case, we show a case where agent

i needs to move away from agents p and q for example, we will have to know what angle

the projectile of the agent can make with the other agents in its neighbourhood set without

colliding with them. In the triangle shown in Figure 2.7, we should have b > Dc if agent i

is to have moved away from its neighbors and since the cosine law can be written as b2 =

a2 +D2
c−2aDc cosφ , we can have:

b2 > D2
c by squaring both sides (2.24)

a2 +D2
c−2aDc cosφ > D2

c from the cosine law (2.25)

a2−2aDc cosφ > 0 (2.26)

a(a−2Dc cosφ) > 0 (2.27)

The solution of this inequality can be either (a < 0) meaning vector a goes in the opposite

direction or (a > 2Dc cosφ ). However, to preserve convexity, this solution is only valid if

φ > π/2. This means that agent i will collide with agents m or q because if π is less than that,

this solution is going to cause the collision with agents p, q, or both which proves the deadlock

in this example. A solution that satisfies the inequality but does not preserve convexity will

require that a be greater than a certain positive value, but it is not enough for the agent to

have a safe position or destination in the next time step k+1, it also needs to go there without

colliding as well.

For the other aspect of function f1, we check the condition for connectivity maintenance for
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FIGURE 2.7: Investigating the trajectory of agent i while trying to move away from its neigh-
bors

FIGURE 2.8: Investigating the trajectory of agent i while trying to maintain connection with
its two neighbors

agent i. In order to maintain connectivity in the illustration shown in Figure 2.8, we should

have b < Dn and since the cosine law can be written as b2 = a2 +D2
n− 2aDn cosφ , we can

have:

b2 < D2
n by squaring both sides (2.28)

a2 +D2
n−2aDn cosφ < D2

n from the cosine law (2.29)

a2−2aDn cosφ < 0 (2.30)

a(a−2Dn cosφ) < 0 (2.31)

The solution of this inequality can be either (a > 0) or (a < 2Dn cosφ ), therefore, this leads to

deadlock when φ = π because a will always be bigger than zero as long as φ is less than 180

degrees i.e: the three agents are not colinear which is an intuitive result.
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After going through the conditions of the theorem, now, we present the proof. The next steps

are focusing on inter-agent collision avoidance or connectivity preservation because of our

choice of f1 as a symmetric function. We will go with the former in this proof.

Considering agent j as the neighbor agent i wants to avoid collision with and based on the

second condition, we want to have:

c1 f1(‖xk
i j‖2) 6 1 (2.32)

c1wk
i j(‖xk

i j‖2−Dr)
2 6 1 from (2.17) (2.33)

and applying the same inequality from the perspective of agent j with agent i as its neighbor,

we get:

c1wk
ji(‖xk

ji‖2−Dr)
2 6 1 (2.34)

Since ‖xk
i j‖2 = ‖xk

ji‖2 based on Assumption 2.2, we get:

c1(‖xk
i j‖2−Dr)

2(wk
i j +wk

ji)6 2 (2.35)

by adding (2.33) and (2.34).

We define c1 := 1
(N−1)(Dc−Dr)2 to get:

(
1

(N−1)(Dc−Dr)2

)
(‖xk

i j‖2−Dr)
2(wk

i j +wk
ji)6 2 (2.36)

Since max(‖xk
i j‖2−Dr)

2 = (Dc−Dr)
2, we can rewrite (2.36) as the worst case where agent j

is the closest to agent i without colliding and, in this case, we seek the inequality in (2.36) to

be in the following forms:

(
1

(N−1)(Dc−Dr)2

)
(Dc−Dr)

2(wk
i j +wk

ji) 6 2 (2.37)

1
(N−1)

(wk
i j +wk

ji) 6 2 (2.38)

wk
i j 6 2(N−1)−wk

ji (2.39)
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and since 0 6 w ji 6 |Nσ
j | based on generalizing the first condition of the theorem to all agents,

we rerwite (2.39) as:

wk
i j 6 2(N−1)−|Nσ

j | (2.40)

where |Nσ
j | is the number of neighbors of agent j. Since 1 6 |Nσ

j | 6 N− 1 for a connected

network, we get:

wk
i j 6 N−1 for |Nσ

j | equals to N−1 (2.41)

since min (2(N−1)−|Nσ
j |) = N−1. This shows that even for the highest possible value wk

i j

can have, The inequality is not violated and we the weight agent i assigns for agent j will

always fall within a range that will maintain the connectivity between the two agents as long

as the two conditions in the theorem hold.

By applying the second condition of the theorem for the entire neighborhood set of agent i, we

will have:

∑
j∈Nσ

i

c1 f1(‖xk
i j‖2)6 |N

σ
i |−1 (2.42)

2.3 Simulation Results

To explore the effectiveness of the proposed algorithms explained in the previous section, we

run various simulations in MatlabTM environment using the fmincon function. We use the

default algorithm used in the fmincon function which is the interior-point method as it satisfies

our requirements in this work regarding the computation time and the number of agents.

The parameters in our formulation can be classified into two types:

1. Physical parameters that can not be changed unless we change the physical structure of

the agents or the environment

2. Parameters that we choose based on our models and algorithms
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The parameters that fall into the first category are:

(a) The maximum sensing range (Ds) of the agents which depends on their physical sensors.

(b) The minimum distance between the agents and each other (Dc) at which collision occurs

which depends on the physical structure of the agents.

(c) The minimum distance between the line of sight between two agents and the obstacles

(Dl) at which the vision between the agents is obstructed. This parameter depends on

the placement of the sensors on the agents and the structure of the obstacles in the envi-

ronment.

We have Ds = 2m, Dc = 0.3m, and Dl = 0.05m which are the same values as in [2]. And the

parameters that fall into the second category are:

(a) The number of agents (N)

(b) The maximum distance between neighboring agents (Dn)

(c) The desired distance between the agents and each other (Dr)

(d) The tolerance values εn and εc assigned to fulfill the second condition of link deactivation

(e) The gain values c1 and c2 of the functions in the potential field and the value of the

positive definite matrix R for the cost input

We choose N = 5, Dn = 1m, Dr = 0.7m, εn = εc = 0.1m, R =

1 0

0 1

, c1 = 1.04, and c2 = 0.16

to have the functions are equal in terms of their maximum costs.

We show in Figure 2.9 how the agents navigate the environment based on our algorithm where

the leader goes through a certain trajectory towards a designated target. We see how links keep

increasing between the agents and how new links are formed with other agents as the agents

sense each other.
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FIGURE 2.9: Snapshots for the navigation algorithm with the leader moving at constant speed
of uN = 0.1m per time step

We show in Figure 2.10 how the navigation process can be hindered where the system eventu-

ally faces a deadlock case where the agents can no longer resume navigation without an agent

losing connectivity with at least one of its followers. We use the the second smallest eigen-

value, known as the Fiedler value, of the Laplacian matrix Ln defined previously as a measure

of connectivity and we show, in Figure 2.11(a), an example of the connectivity status of the

agents while flocking. In Figure 2.11(b), the input magnitude of one of the followers is shown

where the input of the leader is at uN = 0.1m per time step.

In summary, we can see from simulations that despite not constraining the leader with any

connectivity-preserving behavior, the followers are able to identify the trajectory that the leader
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FIGURE 2.10: An illustration of the failure of navigation without the implementation of link
deactivation

FIGURE 2.11: (a) The Fiedler value of the neighborhood connectivity matrix and (b) the input
magnitude of an agent during the simulation run

takes to reach the target. It is also shown that link deactivation is necessary in order to avoid

hindering the flocking process of the agents where extra links that are not needed are removed.



Chapter 3

Connectivity Preservation in Obstacle

Environments

In this chapter, we expand our control algorithm to solve the navigation problem in environ-

ments with obstacles. First, we explain how the problem formulation changes by discussing

how the environment is structured, the dynamics of the agents and the obstacles are modeled.

Next, we explain how our algorithm is modified and, finally, we show our simulation results

and compare them to previous works.

3.1 Problem Setting

3.1.1 Models of Agents and Obstacles

Let the number of agents that flock in the 2D workspace be N and their dynamics be described

as:

xk+1
i = xk

i +uk
i , xi =

xi

yi

 ,ui =

ui
x

ui
y

 (3.1)

36
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FIGURE 3.1: Forming a path made of obstacles with varying angles and lengths from [2]

where i∈V := {1,2, ...,N} is the agent index and k is the time step. We can see that the agents

have the same dynamics as in Chapter 2, as for the obstacles present in the environment, they

are modeled as static circles with equal fixed radii where a chain of consecutive circles can

form a path in the workspace as shown in Figure 3.1.

The obstacles can be modeled as to resemble a couple of straight lines, or curves, or any other

shape simply by changing where and how the circles are placed. In our problem formulation,

the obstacles form a path that can have a certain width, turns, and length. The reason that

circles are specifically chosen instead of other geometric shapes is that the agents in our system

can calculate basic rules of geometry concerning circular shapes to achieve obstacle avoidance

and connectivity preservation. This point will be further demonstrated when explaining the

function models. Therefore, this does not mean that our algorithm is limited to only circular

obstacles and obstacle modeling can be done in various ways based on the sensing capabilities

of the agents in those systems.

3.1.2 Behavior of Agents

The agents in our system should display three fundamental behaviors:

1. Connectivity maintenance
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2. Collision avoidance

3. Obstacle avoidance

First, we establish the conditions surrounding the agents to make sure that they avoid collisions

and have other agents and obstacles stay in their sensing ranges.

Agent i can avoid collisions with other agents and obstacles if:

‖xi− x j‖ > Dc ∀ j ∈V \{i} (3.2)

‖xi− xo‖ > Do ∀xo ∈ O (3.3)

where Dc and Do are constant values based on real-life parameters assuming the agents have

non-zero dimensions.

Agent i can sense other agents if:

‖x j− xi‖ 6 Ds (3.4)

‖q− xo‖ > Dl ∀q ∈ Li j (3.5)

where the line of sight between i and j and Li j is defined as L(p,q) := (1−λ )p+λq, ∀λ ∈

[0,1], so an agent j is sensed by agent i if it falls into its sensing range and there exists no

obstacles or other agents between them.

Agent i senses an obstacle point in the environment if:

‖xo− xi‖ 6 Ds (3.6)

‖xo− xi‖ > ‖q− xi‖ ∀q ∈ L̄(xi,xo)∩O (3.7)

where the line of sight between i and the obstacle point xo extends as a ray to make sure

this obstacle point is not obstructed by another one as illustrated in Figure 3.2. These two

conditions are similar to the ones needed to sense the agents.
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FIGURE 3.2: The highlighted obstacle point is sensed since no other obstacle point is between
itself and the agent

3.1.3 Dynamics of the Network Topology

By establishing these conditions, we can define our sensing network graph Gs := (V,Es(xk)),

where Es(xk) is the set of edges of the sensing graph at time k and construct our sensing

Laplacian matrix Ls(xk) where

si j :=

−1 if (3.2), (3.3), (3.4), and (3.5) hold

0 Otherwise,
(3.8)

for i 6= j and sii = − ∑
j∈Sσ

i

si j where Si, the set of agents that agent i can sense, is defined as

Si(xk) := { j|(i, j) ∈ Es(xk)}.

If the network sensing graph Gs is connected, each follower has a path going to the leader with

a maximum length of (N− 1)Ds. However, to maintain the connectivity of our network just

through guaranteeing the preservation of Gs may become unreliable since connecting edges

between agents can be lost by having very minor movements or changes in the positions of the

agents, therefore, we aim to preserve connectivity of Gn(xk) := (V,En(xk)) where En(xk) :=

{(i, j) ∈ Es(xk)|‖xk
i − xk

j‖ 6 Dn} and Dc 6 Dn 6 Ds which is a subgraph of the sensing graph
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Gs and the neighbor Laplacian matrix Ln(xk) is, for i 6= j,

li j :=

−1 if si j =−1 and ‖xk
i − xk

j‖2 6 Dn

0 Otherwise,
(3.9)

and

lii =− ∑
j∈Ni

li j (3.10)

It is proven in [2] that in order to preserve connectivity of Gs, a constriction to have is (D2
o +

D2
n)

1/2 6 Ds.

Assumption 3.1: The neighbor network graph Gn is connected initially at (k = 0) so there

exists a path from any follower to the leader of the group of agents.

Hence, when initial connectivity is assumed, a lot of papers simply aim to preserve the connec-

tivity of the initial edge set En(x0). Therefore, the network topology remains fixed throughout

the whole process. However, this can prove impractical in the presence of obstacles in the

environment where network topology needs to change for agents to appropriately navigate

through a narrow space. Therefore, to be able to navigate narrow spaces in our environment

and maintain connectivity of the graph at the same time, we need to deactivate the links that

hinder the navigation process and keep the other links present in En(xk). In this case, the set

of neighbors to be preserved is defined as Nσ
i (x

k) := { j ∈ Ni(xk)|σ k
i j = 1} and the following

subgraph is defined as Gσ (xk) := (V,Eσ (xk)) where Eσ (xk) := {(i, j) ∈ En(xk)|σ k
i j = 1} and

σ k
i j is a systematic indicator function defined as

σ
k
i j :=

0 if edge (i, j) is deactivated

1 otherwise

The two cases we have for link deletion are the same as in Chapter 2 where in Figure 3.3, the

link between agents i and j is removed if (2.9) and (2.10) hold for the left figure and (2.11),
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FIGURE 3.3: An illustration of the two conditions from left to right

(2.12), and (2.13) hold for the right one.

Assumption 3.2: The agents in the system have no measurement errors, therefore, if any of the

two conditions for dropping links is fulfilled for one agent, it should be fulfilled for the other,

i.e: if agent i drops its link with agent j at time k, then agent j drops its link with agent i at the

same time step as well without any need for information exchange through communication.

In order to ensure the connectivity of our sensing network after applying the two conditions of

dropping links mentioned above, we mention the theorem that [2] used to prove the connectiv-

ity of Gσ (xk) and the proof of this theorem is presented there as well.

Theorem 3.1 [2]: Suppose that the following assumptions hold:

1. Gn(xk) is connected,

2. All agents satisfy (3.2) and (3.3) at time k,

3. The constraint in (2.8) is satisfied,

4. Dn is chosen such that sin(kπ) 6= Dc/2Dn ∀k = 0,1,2, ...,

then Gσ (xk) obtained by the rule of σ k
i j is connected. This means that σi j is determined

such that if no edge is lost in Gσ , the connectivity of Gn is preserved.
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As in Chapter 2, the leader is not bound by the same behaviors as the followers are but the

leader moves with a constant speed towards a certain target. In an environment with obstacles,

the leader, in this problem, moves through a path made of obstacles towards the target without

considering the preservation of connectivity.

Finally, this problem can be summarized as follows: A group of autonomous agents are to

move in an environment with the presence of obstacles that form a path leading towards a

target only known to the leader of the group. The followers have to maintain connectivity

with their neighbors and the leader while taking collision avoidance and obstacle avoidance

into consideration in a leader-follower topology where links can be added or removed under

certain conditions and without any communication links present between the agents.

3.2 Control Algorithm

Having explored the foundations of our system and its modeling, in this section, we explain

how the agents should interact with the environment in order to achieve the desired behaviors

explained previously. Since the dynamics of the agents are discrete, an agent moves through

space in discrete inputs with fixed time steps, therefore our objective is to obtain the input for

each time step that preserves connectivity and avoids collisions.

3.2.1 Modeling of the Potential Field

As we have established in Chapter 2, the cost function is a potential field comprised of the

sum of the potential functions that lead us to the behavioral objectives where each potential

function focuses on one aspect of the behaviors. The cost function here is expanded to include

the obstacle avoidance behavior needed in environments with risk of collision with obstacles.
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In our algorithm, the agents are subjected to the following potential field

U(xi) := ∑
j∈Nσ

i

c1 f1 + c2 f2 + c3 f3 + c4 f4 (3.11)

which is specifically defined to achieve connectivity maintenance, collision avoidance, and

obstacle avoidance represented by its four functions. f1, f2, f3, and f4 that constitute the

potential and will be explained in this section individually and c1, c2, c3, and c4 are scalar

values.

The first component f1 takes into account the desired value of the relative distance to neigh-

bors j ∈ Nσ
i as agent i should maintain a distance value with its neighbors that maintains the

connectivity and prevents collisions with them at the same time. Therefore, the functions is

defined as:

f1(‖xi j‖2) := wi j(‖xi j‖2−Dr)
4 ‖xi j‖2 := ‖xi− x j‖2 (3.12)

As in Chapter 2, to preserve connectivity, a follower keeps increasing the weight of the neigh-

bors that keep moving away from it relative to the other neighbors that do not.

We model the function f1 as a polynomial function of the fourth degree instead of a quadratic

FIGURE 3.4: Plot of the potential function f1 which shows its domain and fundamental pa-
rameters
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function, as shown in Figure 3.4 in order to decrease the values of the cost imposed on the

agents if the distances between themselves and their neighbors fall within an acceptable range

around Dr. We can see that function f1 takes effect only between the collision distance Dc and

the neighborhood distance Dn and other than that the value of the function goes to infinity as

either collision occurs or neighbors are lost for the agent.

As we have mentioned previously, since we want the importance of the functions to be toned

only using the gain values c1, c2, c3, and c4, adding weights to the function f1 has to accom-

modate this. Therefore, the sum of weights for agent i is defined as:

wii = ∑
j∈Nσ

i

wi j := |Nσ
i | (3.13)

where |Nσ
i | is the number of neighbors of agent i. This condition will approximately keep the

total weight of function f1 the same relative to the three other functions.

The second component f2 is introduced for obstacle avoidance as to move away from the

closest obstacle point detected at time k. The function takes into account the distance between

agent i and the closest obstacle point it senses within its vicinity. In other words, the objective

of this functions is to keep a minimum distance of Dor between agent i and the closest obstacle

point denoted as oi at time step k as illustrated in Figure ??.

In order to calculate the closest obstacle point to agent i, we utilize geometric laws where

modeling the obstacles as circles comes into play. The closest obstacle point, represented by

a point on the outline of a circle, can be obtained by calculating the shortest distance between

the agent represented by a point mass and the center of all the obstacles, represented by circles,

sensed by agent i. Therefore, the function is defined as:

f2(‖xio‖2) := (‖xio‖2−Dor)
2, ‖xio‖2 := ‖xi−oi‖2 (3.14)

oi := min
o∈O

co(1)+ r xi(1)−co(1)
‖xi−co‖2

co(2)+ r xi(2)−co(2)
‖xi−co‖2

 (3.15)
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FIGURE 3.5: Plot of the potential function f2 which shows its domain and fundamental pa-
rameters

We model function f2 as a quadratic function whose maximum value occurs at the collision

distance Do between agent i and the obstacle point and this value decreases till it reaches its

minimum when the agent lies at an acceptable distance Dor from the obstacle point then the

value continues as minimum as the distance increases. The domain of distance that function

f2 deals with is higher than the collision distance Do and any values lower than that makes the

function go to infinity as it is shown in Figure 3.5.

After explaining the functions f1 and f2, one can notice the difference in the power of the

function, where in function f1, the function is raised to the fourth power, while for function f2,

the functions is a simple quadratic function.

Since we introduce obstacles in our environment in this chapter, we do not want function f1

to be an inconvenience to the other desired behaviors such as obstacle avoidance. Therefore,

in our modeling, we give a margin of tolerance to the inter-agent desired distances which we

choose to be 60% further from Dr in both directions of the function.

Due to the nature of the polynomial functions raised to an even power, the values on the x-axis

flatten around the minimizer to have corresponding low values on the y-axis as the power of
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the functions increase and then grow steeper as we move further from the minimizer as shown

in Figure 3.6(a).

In order to determine the value of the even power n to be used in function f1, we check the

relation between the power of the function f1 and the area till which the function f1 has a lower

cost than function f2. In other words, we want f1 6 f2 where:

‖xi j‖2 6 Dr− p(Dr−Dc) (3.16)

‖xio‖2 6 Dor− p(Dor−Do) (3.17)

where 0 6 p 6 1. By substituting from (3.12) and (3.14), we have:

(Dr− p(Dr−Dc)−Dr)
n 6 (Dor− p(Dor−Do)−Dor)

2 (3.18)

(p(Dc−Dr))
n 6 (p(Do−Dor))

2 (3.19)

pn−2 6
(Do−Dor)

2

(Dc−Dr)n (3.20)

At Dc = 0.3, Dr = 0.7, Do = 0.1, and Dor = 0.2, we can see that at n = 2, the condition

becomes invalid and the only n that keeps the percentage p within the range where p 6 0.625

is n = 4. Therefore, we choose the function f1 to be raised to the fourth power because:

FIGURE 3.6: (a) A plot of different polynomial functions and (b) the difference in cost be-
tween the two functions
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1. it has lower cost than the quadratic function f2 in the tolerance margin defined above.

2. it has a smaller margin of tolerance than the other functions with higher powers.

In order to show the cost difference between functions f1 and f2, we scale the x-axis values

and y-axis values to have the same domain and range as shown in Figure 3.6(b). We can see

that the cost difference keeps increasing till it reaches 62.5% far from the minimizer in both

functions then it starts decreasing again since the agent needs to perform the behaviors implied

by both functions simultaneously.

N.B.: Our choice for function f1 instead of a standard quadratic function is based solely on the

specific model used in this work, and is not a desirable choice in general.

The third component f3 is included in order to avoid obstruction of the line of sight (LOS)

between the agent and its neighbors. The function f3 takes into consideration the lines of sight

between agent i and its neighbors and obtains the line of sight which is closest to an obstacle

point at time k. Henceforth, the objective of function f3 is to keep this shortest line of sight

from being obstructed by obstacles in order to maintain the connectivity between agent i and

that agent.

FIGURE 3.7: An illustration of the closest obstacle point to an LOS
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Based on geometric laws, the shortest distance between a line and a circle is a perpendicular

to that line. In other words, the shortest distance between the line of sight between agent

i and a neighbor, represented by a line segment, and the closest obstacle point is obtained

by calculating the shortest perpendicular line segment extending from the point on the LOS

denoted by li j and the obstacle point denoted by oi j as illustrated in Figure 3.7 among all

neighbors of agent i and obstacles sensed by the agent. Therefore, function f3 is defined as:

f3(‖xi j∗o‖2) := (‖xi j∗o‖2−Dlr)
2, ‖xi j∗o‖2 := min

j∈Nσ
i

‖li j−oi j‖2 (3.21)

li j :=

co(1)+mi j(co(2)−bi j)

1+m2
i j

mi jli j(1)+bi j

 (3.22)

oi j :=

 co(1)± r√
1+m2

i j

co(2)+
co(1)−oi j(1)

mi j

 (3.23)

where

mi j =
x j(2)− xi(2)
x j(1)− xi(1)

(3.24)

bi j = xi(2)− (mi jxi(1)) (3.25)

as the line between agent i and agent j is defined as y = mi jx+bi j

The function f3 is modeled the same as f2 as a quadratic function whose maximum value is at

the point of losing connection between the two agents Dl . The value of the function decreases

till it reaches the minimum at an acceptable distance of Dlr between the link and the obstacle

point and continues as minimum value as the distance increases. The function f3 becomes

unbounded if its argument is lower than Dlr as shown in Figure 3.8.

The fourth component f4 is introduced to make the group more cohesive as long as the be-

haviors desired from the agents remain intact. So, the function f4 resembles the function f2 in
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Chapter 2 in its objective. For example, assume agent p is not a neighbor for agent i and agent

i has little or no forces in terms of connectivity preservation, collision avoidance, or obstacle

avoidance that are pushing it away from agent p, agent i moves closer to agent p due to the

effect of function f4 which is defined as follows:

f4(‖xi j‖2) :=

(‖xi j‖2−Dn)
2 if Ds > ‖xi j‖2 > Dn, Oi = Φ

0.1(‖xi j‖2−Dn)
2 if Ds > ‖xi j‖2 > Dn, Oi 6= Φ

(3.26)

where Oi is defined as the set of obstacles that agent i senses at time step k.

We see in (3.26) that the effect of the potential function f4 drops to tenth of its value when

obstacles exist within the sensing range of agent i in order not to compromise the obstacle-

avoidance capability of the system.

The function f4 is modeled as a quadratic function whose minimum value is at Dn because, as

the distance goes smaller than that, function f4 ceases to have an effect regarding this particular

agent and function f1 becomes the main force affecting in regards to connectivity preservation.

Unlike the previous three functions, function f4 does not go to infinity if the domain goes be-

yond the sensing distance Ds as it is not a crucial part of the connectivity preservation behavior

FIGURE 3.8: Plot of the potential function f3 which shows its domain and fundamental pa-
rameters



Chapter 3: Connectivity Preservation in Obstacle Environments 50

of the agents to keep sensing agents that are not within its neighborhood set as it is shown in

Figure 3.9.

Since the four functions that constitute our potential field have ranges of different values, we

need to re-scale the functions so that they all have the same values for their minimums and

maximums. Therefore, they all can have the same influence on the agent as they go towards

their extremes.

If we desire to change the influence of one of the functions in relation to the others, one can

do so by changing the values of c1, c2, c3, and c4 of U(xi) in (3.11).

3.2.2 Obtaining the Input of the Agents

Having completed the modeling of the potential field, we are ready to acquire the inputs for

the agents is the next step logically.

In this subsection, we go briefly through the gradient descent algorithm used in [2] to highlight

the difference between our algorithm and theirs and to make it easier to understand how both

methodologies perform differently under the same conditions.

FIGURE 3.9: Plot of the potential function f4 which shows its domain and fundamental pa-
rameters
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In [2], the direction and magnitude of the input vector are obtained separately. The direction

of the input vector is denoted by νi := −∇xiΨi(x), i ∈ V \N where Ψi(x) is the artificial

potential field set by the functions modeled and chosen by [2]. In their model, as we have

mentioned previously, the direction of the input vector of the leader N is already predetermined

based on the position of the target and the trajectory the leader takes to reach the target.

Regarding the magnitude of the input vector denoted by ui(k), it needs to satisfy four condi-

tions during the transition of the agent from the state xi(k) to xi(k+1):

1. The maximum distance condition for each j ∈ Nσ
i (x

k)

2. The inter-agent collision avoidance condition for each j ∈ Si(xk)

3. The obstacle avoidance condition for each xo ∈ Oi(xk)

4. The LOS preservation condition for each j ∈ Nσ
i (x

k)

These conditions are stated to ensure that the input acquired by the agent not only make the

agent achieve the desired behaviors but also achieve them while maintaining convexity i.e.:

the agent remains safe while going from the position xi(k) to xi(k+ 1). Therefore, the upper

bounds obtained from the four above conditions were denoted by ūcon1
i and ūcon2

i for the first

condition, ūcol
i , ūobs

i , and ūlos
i for the second, third, and fourth condition respectively.

Although gradient descent algorithm is used extensively in papers that model the environment

as a potential field to navigate as in [11, 39, 41, 42, 46], we utilize the model predictive con-

troller in our algorithm, and our problem can be described by the following formulation:

minimize J =U(xi)+uT
i Rui (3.27)

subject to xk+1
i = xk

i +uk
i (3.28)

Here J is the cost function and R is a positive-definite matrix as the cost of the input is taken

into consideration for each time step to avoid unnecessarily large shifts in the positions of the
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FIGURE 3.10: Agent i is surrounded by four obstacles with equal distances from it of value
Do

agents which is more in line with real-life restrictions. The big O notation shows that the

computational complexity of this solution is of order O(N3 +NO2) where N is the number of

agents and O is the number of obstacles.

In certain cases, our algorithm fails to reach a solution where the agents experience deadlock

and thus they can no longer continue the mission without losing connectivity, colliding with

obstacles, or colliding with each other, therefore, we need to inspect these cases. We have

already inspected the effect of changing the weight values of the links between the agents in

Chapter 2 in Theorem 2.2.

We can extend Theorem 2.2 by applying the same condition for function f2 in the potential

function U(xi) where

c2 f2(‖xk
io‖2) 6 1 (3.29)

c2(‖xk
io‖2−Dor)

2 6 1 from (3.14) (3.30)

We can ensure that this condition holds all the time since the deadlock cases for this function

depend solely on the obstacle structure in the environment and as shown in Figure 3.10. Here

agent i is about to collide with obstacles that surround it from all directions, any action that
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FIGURE 3.11: A deadlock case for agent i based on f3

agent i takes, in this case, will lead to it colliding because of the parameters of the system:

obstacle collision distance Do and the obstacle radius r. Therefore, it is not possible for the

agent to end up in a deadlock position for function f2 unless it started in that position initially

at (K = 0).

The same extension of theorem 2.2 can be done for function f3 where

c3 f3(‖xk
i j∗o‖2) 6 1 (3.31)

c3(‖xk
i j∗o‖2−Dlr)

2 6 1 from (3.21) (3.32)

We demonstrate an example of the cases where agent i faces deadlock based on function f3 in

Figure 3.11 where any movement leads agent i to lose connection with at least one neighbor

because the lines of sight with the neighbors are at distances of Dl with the obstacles and will

be obstructed by these obstacles in case of any input.

Finally, we can conclude that agent i preserves connectivity with its neighbors and avoids

collision with them and the obstacle points if:

∑
j∈Nσ

i

c1 f1 + c2 f2 + c3 f3 6 |Nσ
i |+2 (3.33)
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by adding (2.42),(3.29), and (3.31). This means that agent i does not find an input that satisfies

all the desired behaviors and deadlock occurs if and only if a combination of the three functions

f1, f2, and f3 violate the inequality condition set in (3.33).

3.3 Simulation Results

In order to examine the effectiveness of the proposed algorithms explained in the previous

chapter, we run various simulations in MatlabTM environment using the fmincon function. We

use the default algorithm used in the fmincon function which is the interior-point method as

it satisfies our requirements in this work regarding the computation time and the number of

agents.

The parameters in our formulation can be classified into two types:

1. Physical parameters that can not be changed unless we change the physical structure of

the agents or the environment

2. Artificial parameters that we choose for the models and algorithms presented in our work

The parameters that fall into the first category are:

(a) The maximum sensing range (Ds) of the agents which depends on their physical sensors.

(b) The minimum distance between the agents and each other (Dc) at which collision occurs

which depends on the physical structure of the agents.

(c) The minimum distance between the agents and the obstacles (Do) at which collision

occurs which depends on the physical structure of the agents and the obstacles in the

environment.
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(d) The minimum distance between the line of sight between two agents and the obstacles

(Dl) at which the vision between the agents is obstructed. This parameter depends on

the placement of the sensors on the agents and the structure of the obstacles in the envi-

ronment.

We have Ds = 2m, Dc = 0.3m, Do = 0.1m, and Dl = 0.05m which are the same values as in

[2]. And the parameters that fall into the second category are:

(a) The number of the agents (N)

(b) The maximum distance between agents (Dn) at which agents are considered neighbors

with one another

(c) The distance desired to be between the agents and each other (Dr)

(d) The minimum distance desired to be between the agents and the obstacles (Dor) at which

function f2 takes effect

(e) The minimum distance desired to be between the line of sight between two agents and

the obstacles (Dlr) at which function f3 takes effect

(f) The tolerance values εn and εc that are taken into account when measuring the distances

between the agents in the second condition of link deactivation

(g) The gain values c1, c2, c3, and c4 of the functions in the potential field

We choose N = 5, Dn = 1m, Dr = 0.7m, Dor = 0.2m, Dlr = 0.1m, εn = εc = 0.1m, c1 = 9.77,

c2 = 100, c3 = 400, c4 = 0.25, and R =

0.1 0

0 0.1

 so that the functions have a balanced effect

on the inputs of the agents.

In our simulations, we run the algorithm on different scenarios changing both the conditions

of the environment and the agents which are:
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1. The angles of the path that the agents go through towards the target (φi) where i is the

number of the turns that the path takes.

2. The length of the first straight line of the path before any turns (lo) which is the most

crucial in the path.

3. The width of the path (2η) that the agents pass through where η is the distance between

the leader agent and the obstacles on one side of the path.

4. The speed of the leader or the input that the leader has each time step (uN) which has a

constant magnitude for the entire run.

We show in Figure 3.12 how the agents navigate through the environment based on our algo-

rithm for φi = 0◦ (i.e.: no path turns), lo = N, 2η = 0.5m, and uN = 0.1m. We see how links

between the agents are deactivated as they go through the narrow path. However, due to the

constant speed of the leader N, cohesion by adding links is not achieved unless the leader turns

instead of keeping to move in a straight line.

In Figures 3.13 and 3.14, the path has turns of φi = 30◦ and φi = 90◦ respectively. In both

simulations, the length of the path before the first turn is lo = 1 which means that the leader

takes a turn before most of the followers even go inside the path, therefore, it is up to the

follower right behind the leader to keep the connection of the network. It should be pointed

out that the weights assigned to the leader and the rest of the followers play a huge part in that

since the leader is not concerned with connectivity preservation, so our network should act like

a string that is being pulled towards the direction of the leader. In Figure 3.13, the width of the

path is 2η = 0.45m and the speed of the leader is uN = 0.05m per time step. In Figure 3.14,

the width of the path is 2η = 0.4m and the speed of the leader is uN = 0.025m per time step.

When we compare our algorithm with the algorithm presented in [2], we see that the percent-

ages of cases without deadlock and their distributions differ as shown in Figure 3.15. For nar-

rower and direct paths, we note that the algorithm in [2] suffers from less deadlock cases than

our algorithm because of the input constraints put on the leader, but as the path gets wider, it is
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FIGURE 3.12: Snapshots for our algorithm with no turns φ = 0◦, the gap size of the path is
equal to 0.5m, and the speed of the leader is uN = 0.1m per time step

shown that both algorithms perform equally well. One important thing to note is, for sharper

turns, our algorithm begins performs better for relatively narrower paths. This shows that even

when connectivity constraints are put on the leader, some environment configurations can still

cause deadlock for the network of agents. An obvious drawback of our algorithm is that the

faster the leader goes towards the target, the more deadlock cases the agents will experience

until it reaches a points where the agents will face deadlock cases for all the scenarios explored.

The main aspect that is enhanced in our work is that the network of agents as a whole takes

fewer time steps to reach the target depending on the structure of the environment. This is
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FIGURE 3.13: Snapshots for our algorithm with two turns of angle φ = 30◦, the gap size of
the path is equal to 0.45m, and the speed of the leader is uN = 0.05m per time step

shown in Figure 3.16 where the agents move much faster than the agents utilizing the algorithm

proposed in [2] despite our algorithm facing more deadlock cases in narrower paths. We note

that, in the algorithm in [2], the time steps taken to reach the target decreases as the path gets

wider until it reaches a certain width where the number of time steps increases slightly then

starts decreasing again. This small peak is attributed to going back and forth with link addition

and removal as the agents enter the path which is aided by the small increments the leader

moves with in order to preserve connectivity.

This advantage that our proposed algorithm has over the algorithm in [2] can be attributed

partially to the connectivity requirement that is placed on the leader in [2] which is explained
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FIGURE 3.14: Snapshots for our algorithm with two turns of angle φ = 90◦, the gap size of
the path is equal to 0.4m, and the speed of the leader is uN = 0.025m per time step

in the two theorems below:

Theorem 2 [2]: Suppose that collision avoidance constraints in (2.2) and (2.3) are satisfied for

all agents at time k. Then ui(k) defined by

ui(k) :=

ūi(k)
νi(k)
‖νi(k)‖2

, if ‖νi(k)‖2 > ūi(k)

‖νi(k)‖2 Otherwise,
(3.34)



Chapter 3: Connectivity Preservation in Obstacle Environments 60

satisfies the four conditions for the input upper bounds mentioned in the previous chapter for

each agent i ∈V , if

umax 6 Do−Dl, (D2
o +D2

n)
1/2 6 Ds (3.35)

in addition to (2.10).

Theorem 3 [2]: In addition to the assumptions in Theorem 2, we assume

umax 6 min
{

Ds

2
,(D2

o−D2
l )

1/2
}
− Dc

2
(3.36)

FIGURE 3.15: A comparison of the path width and the deadlock percentage between the
algorithm from [2] and three different speeds of the leader in ours for φi = 0◦, φ = 30◦, and

φ = 90◦ from left to right

FIGURE 3.16: A comparison of the path width and time steps taken to reach the target between
the algorithm from [2] and three different speeds of the leader in ours for φi = 0◦, φ = 30◦,

and φ = 90◦ from left to right
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FIGURE 3.17: The agents in [2] are regrouping after the last follower exits the path made of
obstacles

Then, the interagent collision avoidance condition i.e.: the second condition for the input upper

bound is guaranteed for each j ∈V \Si(k). Furthermore, if

umax 6 Ds−Do, (3.37)

the obstacle avoidance condition i.e.: the third condition for the input upper bound is guar-

anteed for each xo ∈ O \Oi(k). Therefore, the ūi(k) that is mentioned in (3.34) can be put

as

umax = min{ūcon1
i , ūcon2

i , ūcol
i , ūobs

i , ūlos
i ,umax}

where umax is based on the two above theorems and this constraint or connectivity requirement

is applied on all the followers as well as the leader in the algorithm of [2].

Although our algorithm leads to the agents reaching the target faster, it also makes our agents

fall short in a different aspect. In [2], due to the connectivity requirement placed on the leader,

the agents start to regroup after exiting the narrow path, despite the long time it takes to start

happening as shown in Figure 3.17, while, in our algorithm, the agents do not regroup unless

the leader goes through certain trajectories that allow the followers to become more cohesive.

This is seen specially when the leader keeps moving in a straight line after exiting the path of

obstacles and does not take any turns till it reaches the target.
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We use the the second smallest eigenvalue, known as the Fiedler value, of the Laplacian matrix

Ln defined previously as a measure of connectivity and we show, in Figure 3.18(a), an example

of the connectivity status of the agents while going through a straight path of width 2η = 0.2m

with leader input equal to uN = 0.025.

Finally, we need to address an important aspect in our problem which is the input cost and

determine if the fulfillment of the behaviors required for the followers brings up a cost that is

too high or unpractical. In Figure 3.18(b), we show the input magnitude of an agent during

a run where uN is 0.05m/step and we can see that, although there are a few peaks in the

magnitude of the input of that agent, the average of the input speed of the agent is found to be

0.042 m/step which is less than the speed of the leader.

Table 3.1 shows the average input speeds of the agents in different conditions based on chang-

ing the angles of the turns in the path, the path width, and the speed of the leader. We were

able to keep the magnitude of the input that the agents have for each time step relatively low

or average because of the addition of the input cost term in our cost function J(xi) which was

possible due to our choice of the model predictive controller instead of the gradient descent

controller where we would have had to add an explicit hard input constraint that could have

lead to discarding solutions that fulfill the desired behaviors for the agents.

In summary, although the algorithm in [2] can reach the solution and avoid deadlocks in envi-

ronment states where the gap width is relatively small in more cases than our algorithm, we see

that our algorithm, with the same initial conditions and environment state, takes much fewer

FIGURE 3.18: (a) The Fiedler value of the neighborhood connectivity matrix and (b) the input
magnitude of an agent during the simulation run
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Average Input Cost of the Followers
Conditions Agent 1 Agent 2 Agent 3 Agent 4

φi = 0, 2η = 0.4, and uN = 0.025 0.0258 0.0272 0.0253 0.0253
φi = 0, 2η = 0.4, and uN = 0.05 0.0468 0.0488 0.0501 0.0515

φi = 30, 2η = 0.45, and uN = 0.025 0.0257 0.0278 0.0258 0.0251
φi = 30, 2η = 0.45, and uN = 0.05 0.0445 0.0496 0.0478 0.0494
φi = 30, 2η = 0.45, and uN = 0.1 0.0789 0.0901 0.0926 0.0991

φi = 90, 2η = 0.5, and uN = 0.025 0.0279 0.0278 0.0253 0.0293
φi = 90, 2η = 0.5, and uN = 0.05 0.0447 0.0469 0.0477 0.0420
φi = 90, 2η = 0.5, and uN = 0.1 0.0804 0.0780 0.0859 0.0942

TABLE 3.1: Table that shows the average input magnitude of the agents in the system

time steps for the agents to reach the target through paths of moderate to large widths as a

whole group with appropriate input costs.
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Conclusion

In this thesis, it was found that a leader-follower navigation problem of multi-agent systems

(MAS) can be solved by the modeling of the behaviors of the agents and the conditions of

the environment as potential functions to be implemented in a cost function employed in a

model predictive controller (MPC). The MPC-based algorithm was used to navigate the agents

through an obstacled environment towards an assigned target only known to the leader. There

were three main desired behaviors:

1. Connectivity Preservation

2. Collision Avoidance

3. Obstacle Avoidance

These objectives are written in the form of convex functions that constitute a potential field

whose value decreases as the input of the agents go towards achieving these behaviors. The

topology of the agent network is dynamic and links are dropped based on two rules that serve

to allow the agents to go through narrow paths in the environment without losing network

connectivity. We formulate the leader to not be constrained by the behaviors imposed on the

followers that is why we introduce the concept of weights given to the neighbors of agents

64
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that affect the potential field driving their trajectories. As illustrated in the simulation results

in Chapter 2 and Chapter 3, connectivity preservation is ensured using weight-based model

predictive control. In Chapter 3, the simulation results show that our algorithm reaches the

target faster when the agents go through paths with average or relatively large widths but faces

more deadlock cases when they go through relatively narrow ones. It was shown as well that

the input magnitude costs of the agents did not increase to a drawback point and they were

mostly around the constant input magnitude that the leader moves with which is important in

real-life application where energy conservation is taken into account.

4.1 Future Work

As it has been explained in the problem formulations, the dynamics of the agents are described

as point masses with first-order discrete agent dynamics. The utilization of a model predictive

controller can be made full use of by having the agents with more complex dynamics that

reflect real-life agent constructions. One can as well implement our proposed algorithm in an

environment with obstacles in order to compare the performance of this algorithm with the

ones in the existing literature. Last but not least, the leader in this work was assumed to have

constant speed throughout the simulation; however, a leader with varying speed during the

operation can be inspected to see how it can affect the behavior of the followers, and to find

out what adjustments are required to compensate for that.
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