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ABSTRACT 

 

Comparison of Lift Planning Algorithms for Mobile Crane Operations in 

Heavy Industrial Project 

 

Serim Park 

 

 

Heavy industrial projects, especially oil refineries, are constructed by modules 

prefabricated in factories, transported to sites and installed by mobile cranes. Due to a large number 

of lifts on the congested and dynamic site layouts in heavy industrial projects, the lift path planning 

has been attention for not only safe and efficient mobile crane operation but also better project 

productivity and safety. Although the path planning algorithms have been introduced over the 

years, they have not been used actively in practice since the comparison of these algorithms has 

not been examined yet based on the realistic mobility of mobile cranes and real site environment. 

Therefore, this thesis compares the path planning algorithms including A* search, rapidly-

exploring random tree (RRT), genetic algorithms (GA) and 3D visualization-based mathematical 

algorithm (3DVMA) under the same site environment in order to find a competent method using 

measurement metrics considering collision-free and optimal lift paths with the lower crane 

operation cost and less computation time. The proposed comparison is implemented in a case study 

that includes a series of modules lifted by a mobile crane on various site conditions. This 

comparison shows the advantages and disadvantages of each algorithm for the crane path planning 

in heavy industrial projects and suggests the direction of further research in this field. 
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Chapter 1:   INTRODUCTION 

1.1 Introduction  

Modular construction, which is also known as off-site construction, delivers the pre-

assembled modules to sites; it is increasingly recognized as a cost-effective method that reduces 

on-site labor usage, material waste, and construction time for project safety and productivity 

improvement. Because of these benefits, a modular approach has been widely adopted particularly 

in apartment buildings and heavy industrial projects [1, 2]. Heavy industrial projects have several 

characteristics: (i) an numerous lifting operations on large scale sites; (ii) dynamic site layouts that 

are changed in accordance with the lifting sequences; and (iii) a large  mobile crane configuration 

mounted a superlift (counterweight) to allow the crane lift heavy objects.. Mobile cranes are 

commonly used to install the modules on their positions at project sites due to its high capacity, 

thus efficient and safe utilization of the mobile crane is a key for successful completion of the 

modular projects. In other words, insufficient planning and analysis of crane utilizations can cause 

not only productivity reduction but also result in accidents with high fatality rates. According to a 

report on the causes of death in crane-related accidents [3], at least 71% of all crane-related fatal 

accidents are involved with mobile cranes, which are caused by crane collapses (39%), overhead 

power line contacts (14%), struck by crane load (14%), struck by other crane parts (11%), and 

other causes such as highway incidents, falls, and caught in/between (23%). To reduce these crane 

accidents, a considerable number of algorithms and methodologies have been introduced to 

generate collision-free crane lift paths in the construction domain using computer-aided 

computation and simulation technologies that satisfy the three main factors for the successful lift 

path planning: efficiency, solution quality, and success rate [4].  
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The conventional manual lift analysis by lift engineers is not suitable in  heavy industrial 

projects including a number of modules which requires considerations of all lifting alternatives 

rapidly without errors [5]. In early adaptation phase of the lift analysis, an interactive computer-

aided planning environment (COPE) was proposed for critical and heavy lifts [6, 7]. According to 

advanced technologies, automatic lift path planning systems have been introduced by using 

mathematical methods and optimization algorithms; yet, these endeavors do not sufficiently 

address the practical requirements which  considers the  dynamic and congested site layouts, least 

crane motions, and the complexity of crane lift constraints [2, 8, 9]. For example, the lift path 

planning is developed using hill climbing, A* algorithm, and genetic algorithm (GA) based on the 

configuration space (C-space), that can represent high degrees of freedom (DOF) environment 

effectively for the single crane and cooperative crane operations [10–12]. Cai et al. [4] have 

proposed parallel GA applying hybrid configuration concepts to handle complex site conditions 

based on considering energy cost, human cost, and workability of operator while overcoming 

collisions and crane constraints. Additionally, the research by Chang et al. [13] has used a 

probabilistic road-map (PRM) method for the crane erection planning as near real-time solutions. 

Rapidly exploring Random Trees (RRT), as one of the popular randomized path planning 

algorithms in robotics, has  been introduced by several researchers for lifting path planning [14–

16]. Also, the multiagent-based approach [17] has been developed to not only avoid collision but 

also re-plan the paths in real-time lifting process. 

Although previous attempts have introduced numerous algorithms and methodologies to 

plan optimal lift paths for mobile crane operations, these efforts have not fully been adapted yet in 

the heavy industrial sector due to the lack of the following requirements: (i) design times of 

collision-free lift paths on practical site environment which is reflected by the features of heavy 
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industrial projects; (ii) applicability of natural and realistic mobility of mobile cranes (e.g., step 

resolution and safety factor considering for estimating the cycle times of crane operations) based 

on practical crane lift rules depending on the company regulation; and (iii) advantages and 

disadvantages of algorithms which can be used to select an optimal algorithm in accordance with 

the features of heavy construction projects (e.g., congested and dynamic site layout changes). In 

terms of the step resolution for luffing, swing, and hoisting motions of mobile cranes during 

running algorithms, previous research has adopted (10, 5, 2) per step which can lead to not only 

prevent the crane lift paths reach to the destination exactly but also neglect possible collisions. In 

this respect, this thesis set (1, 1, 1) per step reflecting the realistic motions of mobile cranes.  

To address this information, this thesis implements the comprehensive comparison of lift 

paths using existing algorithms, which are A* search, RRT, GA, and 3D visualization-based 

mathematical algorithm (3DVMA), based on measurement metrics. The results of this comparison 

can not only identify the well-performed crane lift path algorithm for heavy industrial projects but 

also provide directions of future research to develop a new algorithm in crane lift path planning if 

the existing algorithms do not satisfy the requirements described above. At this junction, it should 

be noted that this thesis selects algorithms used to design mobile crane lift paths in the previous 

researches based on the following reasons: (i) algorithms are selected among the previously 

implemented algorithms for optimal mobile crane lift paths based on the most common adoption 

and different searching methods;; (ii) A* tends to find the optimal path using an admissible 

heuristic function with the high accuracy; (iii) RRT is a randomized algorithm by building a space-

filling tree biased toward the unsearched area to solve problems with high DOFs on sites which 

have numerous obstacles; (iv) GA is an evolutionary algorithm inspired by the natural selection 

used to design optimal crane lifts; and (v) 3DVMA as a recent work is the combination of 
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mathematical methods and 3D visualization to plan crane lift paths for heavy industrial projects. 

The comparison of these algorithms is implemented in a real heavy industrial project.  

1.2 Research Objectives 

The research is proposed to: 

1) Appling path planning algorithms into the crane lift path problems in heavy industrial 

projects with the consideration of the practical site environment and realistic crane 

mobility. 

2) Comparing the quality of the results based on the multi-measurement matrix and site 

constraints. 

3) Providing a guidance to select the algorithm based on the characteristics of the heavy 

industrial projects. 

4) Introducing the direction of lift path planning algorithm for mobile crane that integrates 

the advantages of compared algorithms. 
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1.3 Structure of Thesis 

The overall structure of the study takes the form of five chapters, including this introductory 

Chapter 1. Chapter 2 begins by laying out the literature review that introduces the recent and 

significant topics regarding simulation and automation in construction, path planning algorithms, 

and their implementation in construction industry and comparison. Chapter 3 is concerned with 

the methodology used for this study. It first explains the structural basis that applied in common 

to three algorithms (A*, RRT, and GA) in terms of problem formulation, crane constraint, and 

collision detection. Second, the development process of each algorithm is proposed. Chapter 4 

presents the detail of case project and the results of four cases by applying the methodology from 

Chapter 3. Visualized path images and the comparison results are provided. Finally, Chapter 5 

includes a brief summary and a discussion of the implication of the findings to future research into 

this area.  
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Chapter 2: LITERATURE REVIEW 

2.1 Introduction 

To provide a constructive analysis, this section reviews the previous researches regarding 

simulation/automation in the construction industry, path planning algorithms, and comparison of 

path planning algorithms for the crane operation. This ensures that this research avoids duplicated 

works and identifies inconsistencies and gaps to discover the safe and efficient algorithm by 

comparing widely used path planning algorithms for the crane lift planning. 

2.2 Simulation and Automation in Construction Operation 

2.2.1 General 

Computer-aided system has been implemented widely in construction industry to achieve 

improved efficiency and safety. For the purpose of generic maintenance, several studies regarding 

site layout and construction planning have been carried out. For instance, Chen et al. [18] 

developed an automated site layout system called ArcSite, which combines a geographic 

information system (GIS) with data management systems (DBMSs) to generate the design of 

temporary facilities (TF) automatically for the optimal site. The proposed system uses the 

elimination technique to find the best location for each facility. A study by Mawdesley et al. [19] 

integrated genetic algorithm to solve site layout problem by formulating the relationship between 

temporary facilities, access, and connection to generate the low site cost layout. Simulation in two 

cases proved the feasibility of the system while arising the necessity of integrating time parameter 

and the level of detail. Later, Sanad et al. [20] suggested optimization model for the site layout 

using genetic algorithm that considered the aspect of safety and environment. Furthermore, with 

the consideration of site space change over time, dynamic site planning is required. In this aspect, 
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Xu et al. [21] proposed a multi-objective decision making system with the fuzzy random 

uncertainty to provide more realistic solution that minimize the total cost and maximize the 

distance between the facilities that have potential risk. For tower cranes, a mixed-integer linear 

program (MILP) was introduced to suggest an efficient layout of a single tower crane in the 

confined site. The authors concluded that MILP optimized the site layout problem resulting in 7 % 

less cost of the total material transportation than GA algorithm with more flexibility to add 

potential constraints [22]. 

As narrow down to the crane related topic in the crane, crane type selection and location 

become initial subtasks in site planning. Hanna el al. [23] developed a fuzzy logic approach for 

the crane type selectin from the main crane types, which are mobile, tower, and derrick cranes. 

Linguistic information of crane types and dynamic/ static factors are translated into fuzzy relations. 

Then, aggregated importance weights are identified to select best crane that has the highest 

expected efficiency. Al-Hussein et al. [24] addressed the procedural algorithm for selecting and 

locating mobile cranes supported by databases such as crane lifting capacity charts, rigging 

equipment, and project information with graphical capabilities using MS-Visual Basic 

programming. Di el al. [25] suggested an mathematical algorithm for heavy lifts with lattice boom 

crane, which has more complex clearance issue due to the combination of boom and jib, that 

considers lifting capacity chart, geometrical constraint, and the ground bearing pressure 

incorporating in 3D modeling system. Olearczyk el al. [2] solved the crane selection problem by 

using optimized weighted distance, which considers the clearance of crane configuration such as 

swing tail, out rigger and boom. The crane operation components that are mathematically 

expressed by disaggregating enabled to implement the optimization algorithm easily in software 

languages for the full automation in the future. 
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After selecting the crane type and location, the feasibility of existing path has to be 

evaluated. With a popularity of module construction by mobile cranes in industrial projects, the 

importance of checking feasible path of the equipment becomes critical to avoid tedious work and 

inefficiency. Lei et al. [26] suggested automated path checking method that mapped the crane 

feasible operation range (CFOR) in each elevation based on the crane capacity, clearance, and site 

constraints to check with obstacle region.  After that Lei el al. [5] discussed about the problem that 

requires crane walking path due to the far distance between pick location and set location. In this 

thesis, possible crane pick area and collision-free area are calculated to determine the walking path.  

2.2.2 Mobile crane path planning algorithms and their comparison 

Performance evaluation of path planning with 3 algorithms, which are Dijkstra, A* and 

GA, was completed with multi-objective approach of visibility, safety and transportation to check 

the effectiveness of algorithms to optimize the cost in construction sites regarding the path finding 

in the sites. A* tends to find more optimal solution than Dijkstra algorithm, but both are not 

producing efficient results in big scale problem. GA produced near-optimal solution with less 

computation time, but it is complicated to set up the process of search algorithm, and it provides 

less optimal solution than the other algorithms [10]. Also, Sivakumar el al. [27] applied GA for 

path planning of construction manipulators in a 2 DOF model.  

Since heavy lifting operation can overcome their difficulties associated with maintenance 

problems regarding specialized equipment, transportation, availability, and tremendous cost by 

using cooperative cranes, Sivakumar el al. [11] suggested lift path planning algorithm with hill 

climbing and A* algorithm in the configuration space (C-space), which can represent high DOF 

environment effectively. Later, GA was used for exploring the near-optimized path planning of 

cooperative crane in an attempt to find a solution with less search time and cost [12]. The 
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performance was compared with heuristic search by Sivakumar el al. [11] in the C-space. To avoid 

the complexity of fitness formation and computation time, the author introduced dual fitness 

phases, which evaluates coordination and collision separately. The tests showed that the 

performance of GA was exceeding A *’s performance in terms of search time, and path cost 

calculated by module travelling distance; however, GA has limitation that it only generates the 

path with fixed number of configuration and, forming suitable fitness equation requires 

tremendous works. The results of hill climbing and A* algorithm was compared in the cases with 

synchronous and asynchronous movements. It showed that whenever there was a trapping space, 

hill climbing search tends to be trapped or take long detour to avoid obstacles because it only 

considered the neighbor node that has shortest distance to the set point. The results were evaluated 

with search time, number of movements, and the path cost. Even though A* took more time to 

search the feasible path than hill climbing, it generated more optimal and less costly path than hill 

climbing.  

Cai el al. [4] proposed parallel genetic algorithm applying hybrid configuration concept to 

handle complex site condition. The optimization problem considered various costs such as energy 

cost, human cost and workability of operator while overcome collision and constrains of crane 

operation. The result was compared to GA algorithm in Ali et al. [12] after altering it into single 

crane problem from cooperative cranes problem. It shows that the results of proposed method 

require less operations, which decrease the human involvement, with stable convergence within 

fewer iterations.  

Improved bidirectional RRTs algorithm was used to find an efficient lift path for a crawler 

crane [14]. This thesis considered mobility of cranes and nonholonomic kinematics to reflect real-

world problem. By using a sampling strategy and expansion strategy, the paths are guided towards 
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the unexplored collision-free and high-quality space. This bidirectional RRTs method can provide 

the feasible result of crane path, which includes crane’s turning, crane’s travelling, slewing, luffing, 

and hoisting, quickly without collision 

Han et al. [5] proposed an algorithm for automated path planning of the mobile crane, in 

which cases that requires crane’s mobility to deliver modules at the set point. Furthermore, this 

crane walking path was visualized in 3ds Max in an attempt to reduce planning time and cost [28].  

Also, Han et al. [29] proposed 3D crane evaluation system to provide better operation and lift 

schedule by adding productivity that considers crane work cycle calculated by velocity of the 

movements, which is affected by safety factor at the location of lifted module,.  

2.3 Path Planning Algorithms 

2.3.1 Hill-climbing algorithm 

Hill climbing belongs to local search that uses a mathematical optimization approach [30]. 

It starts from an arbitrary solution, then iterates to find a better solution by generating an 

incremental change each time. The incremental change is made until there are no further 

improvements in the solution. Hill climbing is easy to implement and fast to execute. However, It 

may converge and get stuck at local optima depend on the problem.  

2.3.2 A * algorithm 

A* was initially introduced by Hart et al. [31], which was an alternative of Dijkstra’s 

algorithm [32]. This heuristic algorithm targets to find the smallest cost path from a start node to 

an end node with a following formula: 

f(n) = g(n) + h(n)  (2-1) 
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Where g(n) is the cost from the start node to node n, h(n) is the expected cost from n node to the 

end node, and f(n) is the total cost of node n.  

The algorithm starts with OPEN list which contains the start node and empty CLOSED list. 

Here, OPEN list contains generated nodes with heuristic function value, but not yet exanimated, 

and CLOSED list contains nodes already exanimated. Nodes in CLOSED list are kept in memory 

to check whether a new generated node was generated before. Until reaching to the end node, the 

best node in OPEN list, which is the node with the lowest f value, is examined. If the best node is 

equal to the end node, the algorithm terminates the process because it successes to find the solution. 

Otherwise, this best node is removed from OPEN list and saved in CLOSED list. Also, neighbor 

nodes of the best node are generated, and these new nodes are added in OPEN list if they are not 

already generated, which means they are not in CLOSED list. The node with the lowest f value 

will be picked and iterated the above procedure until reaching the end node or OPEN list is empty 

[30]. Fig. 1 shows the flowchart of A * algorithm. 
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Figure 1. A* algorithm flowchart [33] 
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2.3.3 Rapidly-exploring Random Trees (RRT) 

Rapidly-exploring Random Trees (RRT) was suggested by Lavalle [34] to solve 

nonholonomic path planning problem with high DOFs. It employs the randomized sampling 

strategy to extend the tree biased towards unsearched areas [35].  

 

Figure 2. The EXPEND operation [36] 

 

Figure 3. RRT pseudocode 
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As shown in Fig. 2, the tree incrementally expands by unit length rooted from initial 

configuration (x_init). The random configuration (x_rand) in the figure is uniformly sampled in 

the specified search area. The tree is extended towards the random configuration (x_rand) from 

the nearest configuration (x_near), in the existing tree. This process is repeated until the tree 

reaches to the predefined goal configuration. The growth of tree can be controlled by the sampling 

strategy to guide the exploring towards the goal. RRT has several advantages in terms of agility 

and efficiency mainly due to the randomness characteristic of the algorithm [15], [36]. Due to the 

randomness nature of RRT, the generated path tends to have zigzag pattern, which is not suitable 

for the practical crane operation that requires the short cycle path.  Fig. 3 represents the pseudocode 

of the RRT algorithm. 

2.3.4 Genetic algorithm 

Genetic algorithm (GA) was first introduced by John Holland based on Darwin’s theory of 

evolution, which is an evolutionary algorithm that is used for optimization and search problems. 

GA uses the concept of natural selection that has operators such as crossover, mutation and 

selection. In GA, solution candidates (individual) in a population is evolved towards the improved 

solution by evaluating each individual with the fitness, which is a function for the optimization. 

The individuals with better fit are selected to generate a next generation. The individual is consisted 

of members, called genome, that form the solution. After better individuals in a generation are 

randomly selected, the genomes in the individuals are randomly compounded and mutated to form 

a next generation. The whole process is iterated until the generation reaches maximum or the 

fitness value is satisfied [37]. Fig. 4 shows the flowchart of GA. 
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Figure 4. GA flowchart [38] 

2.3.4.1 Initialization 

The size of population depends on a characteristic of the problem. Most of time, the initial 

population is generated randomly to cover the entire search space for the possible solutions [37]. 

In previous researches [4, 12], the start and end configurations are fixed. Therefore, initial 

population is randomly generated by changing internal configurations within the bound values.  

2.3.4.2 Selection 

To breed a succeeding generation, individuals in the existing population are selected by a 

fitness function, where fitter individuals have more chance to be selected. The fitness function is 

defined according to a nature of problems to measure the quality of the solution. Defining fitness 
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function is challenging because it is hard to develop the fitness function that considers all the 

factors and their relation of the problem when the problem becomes complicated [37].  

2.3.4.3 Genetic operators: Crossover and Mutation 

After selecting parent individuals from the existing population, a set of new population is 

generated through generic operators: crossover, and mutation. 

Crossover allows to combine genetic information of two parents to generate the new 

offspring, which has potential to be fitter than the parents since it is generated by selected 

individuals from the previous population. Depend on how to associate the genetic information 

from parent individuals, there are several popular crossover methods: single-point crossover, two-

point and k-point crossover, and uniform crossover. 

Mutation is used for the diversity of a population when it evolves to the next generation. 

Also, mutation prevents to have the offspring individuals too analogous to the parent individuals 

that could cause the local minima. Mutation alters the genetic information according to the 

mutation probability. If the mutation probability is set high value, the search will be close to a 

random search. Therefore, mutation probability is set as a low value in most cases [37].   

2.3.4.4 Termination 

The process above is iterated until the predefined number of generations is reached, 

satisfied solution is found, or any conditions that set in the algorithm are satisfied [37]. 

2.3.5 3D visualization-based mathematical algorithm (3DVMA) 

3D visualization-based mathematical algorithm (3DMVA) which is an offline motion 

planning system introduced by Han at al.[28] for the efficient and safe design of collision-free 

mobile crane operations in congested sites. This thesis proposed a methodology based on two types 



17 

 

of interactive analyses using a mathematical algorithm and nature of 3D visualization using a 

centralizing project information which are: (i) rotation analysis is used to visualize 3D motions of 

the crane body configurations by calculating angles indicating the orientations of mechanical 

components in the crane system. These angles are calculated by the coordinates of the crane 

location and the pick point/set point of the lifted objects; and (ii) spatial analysis is used to design 

collision-free crane operations by inspecting the potential collision errors. The sufficient 

clearances between the obstacles and the crane body configurations are maintained and monitored 

to prevent potential collisions. This method is beneficial for the dynamic design changes and 

automated design of collision-free 3D-based motions of crane operation. As a result, it supports 

lifting schedules and site layouts in terms of the safety, quality, and time saving. 
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2.4 Limitation of Previous Research 

According to the literature review, algorithms for the lift path planning of the mobile crane 

have been introduced and the results were compared in the construction industry. However, there 

are several limitations from the previous research as follows: 

1) Previous works didn’t fully apply the realistic crane mobility (i.e. step resolution, and 

the safety factor). For example, due to the low step resolution for swing, luffing, and 

hoisting which 10 °, 5 °, and 2 ft units respectively, the path results didn’t reflect the 

realistic solution of crane operation. 

2) The practical site environments (i.e., congested and dynamic site layout changes due to 

the lifting schedule and obstacle environment) were not sufficiently implemented in the 

methodology and case study.  

3) The comprehensive comparison that considers the multi-factor measurement and site 

constraints are not done yet. For example, the comparison of previous works was limited 

to computation time, and travel distance of lifted objects, which doesn’t fully evaluate 

the quality of path. 
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Chapter 3: METHODOLOGY 

The objective of the crane lift path planning is to find collision-free sequences of crane 

motions based on various pick and set positions on a site while overcoming the limitations of 

previous works. There are several requirements which should be satisfied in order to be considered 

as a feasible path reflecting the practical rules and the natural mobility of the crane lifts: (i) the 

crane configurations should be moved based on the kinematics constraints of the configurations 

represented as degree of freedoms (DOF) in the permissible range; (ii) the crane lift paths must be 

collision-free among the lifted object and obstacles already installed; (iii) the total weight of the 

lifted object should not exceed the allowable crane capacity that is provided by a manufacturer’s 

capacity chart; and (iv) dynamic site layout should be reflected in accordance with scheduled 

sequences of the selected objects. It should be noted that this thesis considers only lattice-boom 

mobile cranes mounted with superlift which is mainly adopted in heavy industrial projects that 

require high capacity to lift heavy modules and facility elements (e.g., vessels). 

3.1 Configuration space and Degree of freedom 

Configuration space (C-space) was started form the idea to present the manipulator’s 

configuration to a point by Udupa [39], then it was introduced to plan collision-free paths by 

Lozano-Pérez [40]. C-space has several benefits comparing to real space when it comes to solve 

the path finding problem. In real space, the dimensions are limited to the Cartesian space which 

has X, Y, Z coordinates; However, in C-space, each DOF of manipulator becomes an axis that 

means each configuration of manipulator can be presented as a point in C-space [11]. Due to the 

high DOF in mobile crane as shown in Fig. 5, representing crane configuration using C-space 

concept with active DOFs will be beneficial to solve the path planning problem. Fig. 5 described 
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7 DOFs in mobile crane as following: swing, luffing, hoisting, hook rotating, boom extension, 

turning, and travelling. 

 

Figure 5. DOF of lattice-boom mobile crane configurations 

Based on the consideration of constrains (e.g., obstacles and crane capacity) which do not 

allow the mobility of the crane (e.g., swing, luffing, and hoisting), there are two types of crane 

operations: (i) pick from fixed operation (PFP), which completes all lifts on one single location; 

and (ii) pick and walk operation (PWO), which includes turning and travelling as parts of active 

DOFs. The scope of this thesis considers the lifting method with PFP, which is usually preferred 

from the practitioner’s perspective since it minimizes collision errors and crane capacity issues 

(e.g., required capacity exceeds the allowable capacity) [28]. In addition, hook rotation and boom 
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extension are practically not allowed during the crane operations. Accordingly, the mobile crane 

mainly is operated by three active DOFs, which involve swing (𝛼𝑠𝑤𝑖𝑛𝑔), luffing ( 𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔), and 

hoisting (𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔). In this respect, the configuration of one single crane motion (CCM) used in 

this thesis to implement algorithms is expressed as Eq. (3-1) and Eq. (3-2).  

𝑃𝑗 =  {𝐶𝑖} 𝑖=0,1,…,𝑛−1 (3-1) 

𝐶𝑖 = (𝛼𝑠𝑤𝑖𝑛𝑔 ,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 , 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔) (3-2) 

It is also noted that the increment value to search for swing, luffing, and hoisting is 1°, 1°, 

and 1 ft, respectively, to reflect a high step resolution that considers the realistic crane mobility. 

For example, when the configuration of current crane motion (𝛼𝑠𝑤𝑖𝑛𝑔 ,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 , 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 ) was 

examined to form one of crane motions in a path with a corresponding search method, six 

neighboring CCM ( 𝛼𝑠𝑤𝑖𝑛𝑔 − 1,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 , 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 ), ( 𝛼𝑠𝑤𝑖𝑛𝑔 + 1,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 , 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 ), 

(𝛼𝑠𝑤𝑖𝑛𝑔 ,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 − 1, 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 ), (𝛼𝑠𝑤𝑖𝑛𝑔,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 + 1, 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 ), (𝛼𝑠𝑤𝑖𝑛𝑔,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 , 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 −

1), (𝛼𝑠𝑤𝑖𝑛𝑔 ,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 , 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 + 1) are created to search the optimal crane lift path.  
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3.2 Problem Structure 

 

Figure 6. Proposed Methodology 

In order to apply multiple algorithms in the specified problem, it is mandatory to set up the 

base structure for a reasonable comparison and flexible implementation. Fig. 6. illustrates the 

proposed methodology for the comparison of the lift path algorithms. The database consists of: (i) 

site information, (ii) project information such as dimensions, weights and set locations of the 

modules, sequences of the modules to be lifted, and the size of the site; and (iii) the crane 

information including the type of the mobile crane, capacity chart, dimensions of crane 

configurations (e.g., boom length) and dimensions and weights of the rigging. In order to apply 

multiple lifting path searching algorithms, this thesis develops a base structure which facilitates 

the comparisons of various algorithms in the same environment and constraints. The base structure 

consists of: (i) selecting the object to be lifted; (ii) developing the obstacle environment (i.e., site 
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layout) by importing the project information from the database. According to the sequence of lifted 

module, previously installed objects become obstacles for the current lifted module; (iii) searching 

for optimal lift paths using algorithms with A* algorithm, RRT algorithm, GA, and 3DVMA based 

on assessing the crane capacity, safety factor, and collision detection described in the next section 

for detail information; (iv) extracting the results by implementing measurement metrics which are 

consist of computation time, total crane movements, travelling distance of the lifted object, success 

rate of the algorithms, and the expected cane operation time; and (v) visualizing results of lift paths 

for validation in 3D Max. The proposed methodology in implemented in a Visual Studio Code 

environment with Python, and Matplotlib is used to plot the lift paths of each algorithms promptly.  

3.3 Crane capacity assessment 

40% of the mobile crane accidents [3] are related to crane collapse which can be occurred 

mainly by the capacity failure and incorrect crane support design. To prevent the crane capacity 

failure, it is important to assess the crane load capacity and the safety factor to perform the safe 

crane operation prior to the actual lifting.  

Crane capacity and safety factor are evaluated by calculating of the required lifting weight 

(𝑊𝑇𝑜𝑡𝑎𝑙) and the working radius (RA) expressed in Eq. (3-3, 3-4, 3-5), and Fig. 7 shows the crane 

configurations of active DOF. The safety factor is calculated by 𝑊𝑇𝑜𝑡𝑎𝑙  and the gross capacity (GC) 

at allowable crane working radius (RL)  which are obtained from the capacity chart provided by 

the crane manufacturers. This safety factor is also used to calculate the expected crane operation 

times (cycle time) of paths which are computed based on the speeds of the crane motions 

determined by the safety factors: the lower safety factor results in higher speed and the higher 

safety factor results in slower speed. To ensure the realism of the lifting planning, the preparation 

time (i.e., time lag among swing, luffing, and hoisting) is incorporated by applying penalty time 
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matrix with the intention that: if there is a change of motion types in the lifting process, a penalty 

is applied. Therefore, the path results reflect the realistic outcomes that can be applied into the 

actual project. The penalty time matrix of crane operation and the detail descriptions of calculating 

crane operation time is referred to Han et al. [26]. 

GC ≥  𝑊𝑇𝑜𝑡𝑎𝑙  =  𝑊𝐿𝑖𝑓𝑡𝑒𝑑 +  𝑊𝐻𝑜𝑜𝑘 +  𝑊𝑆𝑙𝑖𝑛𝑔 +  𝑊𝑆𝑝𝑟𝑒𝑎𝑑𝑏𝑎𝑟  (3-3) 

RL  ≥  RA  (3-4) 

Safety factor (%) =  
WTotal

GC 
× 100  (3-5) 

Where GC = gross capacity from the database; 𝑊𝑇𝑜𝑡𝑎𝑙  = total weight; 𝑊𝐿𝑖𝑓𝑡𝑒𝑑  = lifted 

object weight; 𝑊𝐻𝑜𝑜𝑘  = hook weight; 𝑊𝑆𝑙𝑖𝑛𝑔  = sling weight; 𝑊𝑆𝑝𝑟𝑒𝑎𝑑𝑏𝑜𝑟  = spreadbar weight; 

𝑊𝐻𝑜𝑖𝑠𝑡  = hoist weight; 𝑅𝐿 = allowable crane working radius; and 𝑅𝐴 = required working radius 

from a crane center point to a lifted object center point.  

 

Figure 7. Crane configurations of active DOF 

In this thesis, from the module ID of the lifted object, the information such as total lifting 

weight (𝑊𝑇𝑜𝑡𝑎𝑙) which is a sum of the lifted object’s weight and corresponding rigging system 
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weight, coordinates of pick position based on the center point of lifted object, and initial crane 

configuration at the pick position are obtained. Therefore, obtained 𝑊𝑇𝑜𝑡𝑎𝑙  can be compared with 

GC in the lifting capacity chart in the database using Eq. (3-3). Since the proposed algorithms 

generate the concatenated crane motions as the result, interrelated coordinates should be calculated 

upon the change of the crane motions. The Cartesian coordinates (x, y, z) at current crane 

configuration are obtained by Eq. (3-6). 

𝑅𝐴 = 𝐿 cos 𝛳 

x =  𝑅𝐴 cos Ø 

y =  𝑅𝐴 sin Ø 

z =  L sin 𝛳 − ℎ 

(3-6) 

Where L = boom length; ϴ = luffing angle (degree), Ø = swing angle (degree), 𝑅𝐴  = 

distance between crane center point and lifted object center point; and h = hoist length (ft). This 

(x, y, z) coordinates are based on the center point of lifted object and the pivot point of the crane. 

Once 𝑅𝐴  had been decided upon, it is compared with 𝑅𝐿  as Eq. (3-4) for the crane capacity 

assessment. Following this, GC and 𝑊𝑇𝑜𝑡𝑎𝑙  are used to calculate the safety factor at current 

configuration using Eq. (3-5). 

Commonly, safety factor between 85 % to 90 % is set to the upper limit depend on the 

company’s safety regulation. Safety factor between 90 % to 95 % is acceptable under the lift 

engineer’s supervision while more than 95 % of safety factor is unacceptable [29]. In this thesis, 

the crane operation with the safety factor exceeding 85% is considered as unsafe operation. Hence, 
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the crane configuration within the allowable working radius and safety factor of 85 % is considered 

as safe operation.  

The safety factor is not solely used to identify the safety of operation; however, it is also 

used to calculate the operation time of path by indicating the speed of the motion depending on the 

corresponding safety factor. Since the slewing and hoist speeds (S) that provided by manufacturer 

are maximum values, the allowable minimum (𝑃𝑚𝑖𝑛) and maximum (𝑃𝑚𝑎𝑥) percentages defined 

by users based on company’s regulation are used to present a distribution of speed range. Thus, 

the accepted speeds range distribution is calculated by Eq. (3-7) and shown in Fig. 5 when the 

minimum (𝐹𝑚𝑖𝑛) and maximum (𝐹𝑚𝑎𝑥) safety factor is 0% and 100%, respectively. In this thesis, 

𝑃𝑚𝑖𝑛 = 20 % and 𝑃𝑚𝑎𝑥 = 60% are applied. 

𝑉𝑠𝑙𝑒𝑤𝑖𝑛𝑔 𝑚𝑎𝑥(°/𝑚𝑖𝑛) = (𝑃𝑚𝑎𝑥  × 0.01)  ×  𝑆𝑠𝑙𝑒𝑤  × 360° 

𝑎𝑛𝑑 𝑉ℎ𝑜𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑎𝑥(𝑓𝑡/𝑚𝑖𝑛) = (𝑃𝑚𝑎𝑥  × 0.01)  ×  𝑆ℎ𝑜𝑖𝑠𝑡  × 360° 

𝑉𝑠𝑙𝑒𝑤𝑖𝑛𝑔 𝑚𝑖𝑛(°/𝑚𝑖𝑛) = (𝑃𝑚𝑖𝑛  × 0.01) × 𝑆𝑠𝑙𝑒𝑤  × 360° 

𝑎𝑛𝑑 𝑉ℎ𝑜𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑖𝑛(𝑓𝑡/𝑚𝑖𝑛) = (𝑃𝑚𝑖𝑛  × 0.01)  × 𝑆ℎ𝑜𝑖𝑠𝑡  × 360° 

(3-7) 
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Figure 8. Interval range of speeds [29] 

 

y =  
Vmin− Vmax

Fmin− Fmax
x +  Vmax (°/min, m/min) (

Vmin− Vmax

Fmin− Fmax
< 0)                     (3-8) 

As shown in the Fig. 8, the speed of motion is influenced by the safety factor as higher 

speed at lower safety factor and vice versa. The corresponding speed at safety factor is calculated 

by Eq. (3-8) from the variation diagram Fig. 8. This calculated speed is used to obtain the operation 

time of crane operation; however, to reflect the realistic analysis, preparation time to convert the 

crane motions has to be considered. To reflect this, the modified time penalty matrix of crane 

movements are applied as shown in Fig. 9 [29]. When the motion is changed, the extra penalty 

time is added based on the time penalty matrix. For example, if the crane motion is changed from 
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rotation (e.g., swing) to boom up or down, 0.75 minute is added up as a penalty time as a 

consequence of the motion change. At the end, the cycle time for the module lifting operation will 

be the sum of operation time and the time penalties. 

  

Figure 9. Time penalty matrix [29] 

3.4 Collision Detection 

During mobile crane operations, there are three types of the potential collision: (i) type 1: 

between the crane configurations and obstacles represented in Fig. 10(a); (ii) type 2: between the 

crane configurations (mostly boom) and the lifted object shown in Fig. 10(b); and (iii) type 3: 

between the lifted object and obstacles illustrated in Fig. 10(b). Type 1 collision is prevented by 

the allowable permissible range of superstructure swing angle determined by a minimum 

superstructure swing angle (𝑆𝑚𝑖𝑛) and a maximum superstructure swing angle (𝑆𝑚𝑎𝑥) as shown in 

Fig. 3(a). Type 2 collision is prevented by limiting the hoisting length with a consideration of the 

clearance between the boom and the lifted object as shown in Fig. 3(b). The corresponding 

equation to calculate the hoisting range is expressed in Eq. (3-9, 3-10). 
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(a) Type 1                                                 (b) Type 2 and Type 3 

Figure 10. Three types of potential collisions 

ℎ𝑚𝑖𝑛 = (
𝐶𝑏𝑜𝑜𝑚

sin(𝐿𝑚𝑖𝑛)
+

𝑂𝑤𝑖𝑑𝑡ℎ

2
 ) tan(𝐿𝑚𝑖𝑛) (3-9) 

ℎ𝑚𝑎𝑥 = (𝑙𝑏𝑜𝑜𝑚 sin(𝐿𝑚𝑎𝑥)) −  𝑂ℎ𝑒𝑖𝑔ℎ𝑡 − 𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒  (3-10) 

Where ℎ𝑚𝑖𝑛  = the minimum hoisting length; 𝐶𝑏𝑜𝑜𝑚  = allowable clearance between the 

boom and the lifted object defined by users; 𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒  = allowable clearance between the lifted 

object and existing obstacles defined by users; 𝐿𝑚𝑖𝑛 = the minimum luffing angle; 𝑂𝑤𝑖𝑑𝑡ℎ = the 

width of the lifted object; ℎ𝑚𝑎𝑥 = the maximum hoisting length; h = the vertical distance between 

boom top to the ground level;  𝐿𝑚𝑎𝑥 = the maximum luffing angle; 𝑙𝑏𝑜𝑜𝑚 = the length of the boom 

given by the crane information; ℎ𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒  = the height of the obstacle; and 𝑂ℎ𝑒𝑖𝑔ℎ𝑡 = the height of 

the lifted object. Here,  𝐿𝑚𝑖𝑛  and  𝐿𝑚𝑎𝑥  are given by the manufactures.  𝐿𝑚𝑖𝑛   and  𝐿𝑚𝑎𝑥  are 

determined by minimum and maximum working radii from a crane capacity table provided by a 

crane manufacturer and 𝑙𝑏𝑜𝑜𝑚.  In this thesis, the allowable clearances between the boom, existing 

obstacles and lifted object are defined as 2.5 ft, respectively. 
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Type 3 collision is solely monitored in the algorithms under the conditions which are: (i) 

the lifted object does not rotate during the operation; and (ii) in a practical view, the boom and the 

lifted objects are always at a perpendicular position during the crane operation instead of parallel 

position. Based on the geometry arrays of the objects, collisions can be detected by identifying the 

interruption between the lifted object and obstacles in the coordinate system by comparing 

minimum and maximum x, y, and z coordinates of the modules and existing obstacles, which are 

the previously installed objects.  

It should be noted that all modules are presented as rectangular shape in this thesis. In a 

top-down plane view, each corner of the lifted object (LO) and existing obstacle (EO) has x, y, and 

z coordinates during the entire lift path. To describe the example of collision detection efficiently, 

x coordinates of LO and EO are expressed as Min (LOx), Max (LOx), Min (EOx), and Max (EOx), 

respectively. As shown in Fig. 11(b) and (c), collision can be occurred when Max (LOx) is smaller 

than Max (EOx) and Max (LOx) is greater than Min (EOx). Otherwise, current motion of the lifting 

path has no collision as represented in Fig. 11(a) and (d). To have collision detection in 3D 

environment, the algorithms also apply this method into y and z dimensions, respectively. Fig. 12 

represents the pseudo code which represents the process flow of a 3D collision detection method.  
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The value of the clearance is considered at the minimum and maximum coordinates in each 

dimension of the lifted object to ensure the safe operation. Based on the sequences of the module 

installation in the database, some modules, which the sequences of them are earlier than the 

sequence of the lifted object, become existing obstacles if these obstacles are in the crane 

maximum radius. For example, if a module is lifted with sequencing number 10, the modules with 

sequencing number 1 to 9 will be considered as potential obstacles. If these potential obstacles are 

located within the crane maximum radius at the current crane position, those are loaded as the 

actual obstacles and they are used for the collision detection.  

 

 

 

 

 

 

 

 

 

 

Figure 11. Examples of the collision identification in x axis 
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3.5 Algorithms Development 

3.5.1 A * algorithm 

 The A* search is a heuristic algorithm to find the lowest “cost” path which is a minimum 

travel distance from a start node to an end node expressed as Eq. (3-11): 

f(n) = g(n) + h(n)                                                      (3-11) 

Where g(n) is the cost of the path from the start node to the 𝑛𝑡ℎ node, h(n) is the heuristic 

function that estimates the cost of the cheapest path from the 𝑛𝑡ℎ node to the goal node, and f(n) 

is the total cost of the path.  

S: set of all modules in a project 

LO: lifted object 

O: [ ] /*Empty list*/ 

/* Identification of the existing obstacles*/ 

For each module M in S do: 

   If (sequence of M < sequence of LO): 

 If M is within the crane working radius: 

  Append M to O 

/* Collision detection*/ 

For each obstacle EO in O do: 

    If min(LOx) < max(EOx) and max(LOx) > min(EOx), 

       min(LOy) < max(EOy) and max(LOy) > min(EOy) and 

       min(LOz) < max(EOz) and max(LOz) > min(EOz) : 

       Collision = True 

    End if 

Figure 12. Pseudo code and for the process flow of the collision detection 
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A* search algorithm initially defines the start and end nodes which are the pick CCM and 

set CCM, respectively. This algorithm initializes to create two lists: (i) OPEN list involves pick 

CCM and expanded nodes which are not yet used to generate the neighboring nodes to identify 

optimal lift paths; and (ii) an empty CLOSED includes the nodes which are the best nodes 

identified by the lowest f(n) among the nodes in OPEN list. Once the best node moves to CLOSED 

list, it is removed from OPEN list to prevent repetitive works with the same nodes. When the best 

node in CLOSED list is not the same as the end node, the neighboring nodes are generated to 

expand search areas around the best node since A* algorithm does not find out a crane lift path yet.  

These neighboring nodes must satisfy the requirements: (i) the CCMs of the neighboring 

nodes are within the permissible range of the superstructure swing angle, collision-free and  safety 

factor is less than 85%; (ii) the nodes must not be the same as ones in the CLOSED list; and (iii) 

when the CCM is the same, g(n) of the neighboring node must be less than g(n) of an existing node 

in OPEN list because it is efficient to only consider the less costly node. Once the new nodes 

satisfy these requirements, they are involved in OPEN list and the same procedure is repeated until 

the best node reaches to the end node. At this junction, it should be noted that the requirement (iii) 

is essential to not only prevent excessive calculations of f(n) by minimizing the number of nodes 

in OPEN list but also reduce the computation time of the algorithm to identify the optimal crane 

lift path. When the best node reaches to the end node, the algorithm traces back the parent nodes 

in order to present the entire lift path for a lifted object. Fig. 13 represents the flowchart of the A* 

algorithm used in this thesis. 
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Figure 13. Flowchart of A* Search 

3.5.2 Rapidly exploring Random Trees (RRT) 

Rapidly-exploring Random Trees (RRT) is initially suggested by Lavalle [34] to solve 

nonholonomic path planning problem with high DOFs. It employs the randomized sampling 

strategy to extend the tree biased towards unsearched areas in order to find out a lift path [35].  
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The flowchart of RRT algorithm used in this thesis is represented in Fig. 14. A tree is 

initiated by adding the start node in the node list, then it is expanded by one unit of each crane 

motions based on the sampling strategy which provides to improve the quality of the lift path and 

the efficiency of the algorithm.  

The sampling strategy have a key role to control the direction of the tree growth to find the 

optimal path with the prevention of collision and local confinement [14]. In this thesis, sample rate 

(p) is used to get the random sample configuration (RSC). In this respect, there are two types of 

the RSC: (i) the tree expands toward the end node when the RSC is the end node represented as 

CCM with the probability of the sample rate; and (ii) with the probability of (100- p), the RSC is 

the random CCM, which must be in the permissible range of the crane configurations and the tree 

expands randomly within the unsearched areas. Previous research recommends 5% to 10% as p to 

bias towards the end node [41]. Otherwise, 100% of probability possibly gets the node stuck by 

failing to avoid obstacles. In this respect, this thesis uses 10% as sample rate.  

To determine the direction of expanding the tree, the nearest node to RSC is obtained from 

the node list (existing tree). Based on the location of the nearest node, the neighboring nodes are 

generated and one of them is selected by two methods: (i) identification of a node which has a 

minimum distance between neighboring node and RSC; and (ii) the node that has the smallest 

difference of CCM values comparing to the CCM of the RSC. Both methods are implemented in 

the case study and compared to verify which one results in a better path solution based on the 

consideration of the measurement metric described below.  

After selecting the node candidate to expand the tree, the collision detection and safety 

factor assessment are implemented. When the node candidate does not meet the requirements, 

which means detected collision and the safety factor less than 85%, the sampling process is 
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repeated. Otherwise, the node candidate becomes one of the expanded nodes which is connected 

to find out the optimal crane lift path. Furthermore, when the expanded node reaches to the end 

node, the path is printed by tracing back the parent nodes that saved in the node information. If the 

expanded node is not equal to the end node, it is added to the tree and the same procedure is 

repeated from sampling nodes until it reaches the end node. 

 

Figure 14. Flowchart of RRT 
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3.5.3 Genetic Algorithm 

The genetic algorithm (GA) is an evolutionary algorithm which is mainly used for 

optimization and search problems in various domains including construction. GA uses a concept 

of natural selection using genetic operators such as selection, crossover, and mutation. In GA, a 

population consisting of solution candidates (individuals) is evolved towards the improved 

solution by evaluating each of individuals with a fitness function for the optimization by generation. 

Since the fitness function assigns fitness scores to individuals, it is mainly used to select the fittest 

individuals in the population for a next generation. The main process flow of GA is represented in 

Fig. 15.  

 

 

Figure 15. Flowchart of GA 
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3.5.3.1 Initial Population and Fitness Evaluation 

An initial population of paths is randomly built by satisfying one constraint which is the 

permissible range of crane configurations. For example, if population is set as 100 by a user, 100 

individuals (crane lift paths) are created randomly for one generation. Then, each of individuals in 

this population is evaluated by the fitness function as represented in Fig. 16.  

The fitness evaluation has a critical role in GA which improves the quality of paths by 

identifying the constraints of crane operation such as collisions, permissible range, and safety 

factor which are defined by a user. In this thesis, higher fitness value indicates more suitable 

solution for the problem. To implement the fitness evaluation, there are a few evaluation setting 

values: maximum number of crane motions (𝑀𝑚), and maximum number of CCM (𝐶𝑚). These 

values are used to not only prevent unlimited generations of the paths but also search for the 

practical and optimal crane lift paths. At this junction, it should be noted that minimum numbers 

Figure 16. Process flow of fitness evaluation 
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of crane motion changes are preferred in practice for safety and productivity improvement. Based 

on these evaluation setting values, the fitness value (𝑓𝑖 ) represents the suitability of the paths. That 

is, when the path does not satisfy the evaluation setting values or collision is detected in the path, 

𝑓𝑖 is 0. It should be noted that the number of crane motions counts on the number of CCM grouped 

by the same crane motion such as swinging, luffing or hoisting. For example, a part of the CCM 

in the path is (10, 10, 10), (11, 10, 10), (12, 10, 10), (13, 10, 10), and (14, 10, 10) in accordance 

with the increment value by one unit described in previous section. In this respect, the number of 

CCM is five but the number of crane motions is only one since the crane swings from 10° to 14°.  

As shown in Fig.16, if there are any violation in three requirements, which are collision, 

number of CCM, and number of crane motions, 𝑓𝑖 becomes 0. if the path has no violation in three 

requirements, the last landing node of the path is identified whether it arrives at the end node which 

is the set CCM of the lifted object. When it is landed at the end node, the 𝑓𝑖  is evaluated by the 

number of CCMs involved in the path, the number of crane motions, and the scaling factor (λ1) 

which is used as input to improve current generation in next generation. Otherwise, the distance 

from the landing node to the end node is measured and used to calculate the fitness value of the 

path in current generation. Lastly, the constraints of the crane’s permissible range and safety 

factors are evaluated. If the CCMs of the path are not located in the permissible range of crane 

operations and the safety factor of the path is more than 85%, the scale factor (λ2) is used to 

subtract it from the overall  𝑓𝑖 . Based on the experiments by authors, 𝑀𝑚 , 𝐶𝑚 , λ1 , and λ2  are 

determined by 25, 500, 1000, and 20, respectively.  

3.5.3.2 Selection 

After evaluating the fitness of all the paths in the population, the next generation to identify 

the optimal crane lift path is reproduced by three procedures which are selection, crossover, and 
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mutation. In the selection, the paths, which have high 𝑓𝑖 in previous generation, are selected by the 

percentage of the best individuals ( 𝑃𝑏𝑒𝑠𝑡)  which guarantee the evolution of the results by 

generations. Selected individuals become parents to generate the children individuals for the next 

generation by using crossover and mutation. 

3.5.3.3 Crossover and Mutation 

Selected individuals from selection process are used to reproduce a set of new population 

for the next generation by using two genetic operators, which are crossover and mutation. The 

crossover rate (𝑅𝑐 ) enables the lift paths to evolve towards a local optimal solution and the 

mutation rate (𝑅𝑚) prevents the lift paths not to be stuck in one search area. The 𝑅𝑐 is generally a 

high value between 0.8 and 0.95 to generate the better solutions than the lift paths in previous 

generation [42]. There are a few types of the crossover such as the single point, multi-point, 

uniform, and arithmetic method. The multi-point crossover method, which alters some CCMs at 

the multiple crossing points among the selected lift paths, is adopted in this thesis as described in 

Fig. 17. In this respect, the crossover is to produce the different characteristics (i.e., CCMs) of the 

crane lift paths in the next generation which inherits some characteristics of the crane lift paths 

selected in previous generation.  
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Due to this feature of the crossover, GA can have difficulty to identify the optimal crane lift 

path by evolving the CCMs of the crane lift paths since the paths may tend to be placed in 

confinement. To overcome this limitation, a mutation process is required to maintain the diversity 

of the crane lift paths during the evolution by mutating CCMs randomly and replacing them in the 

lift paths of succeeding generation. In this respect, the 𝑅𝑚 should be a low value between 0.005 

and 0.5 since the high value of the 𝑅𝑚 leads to pure random searches which make GA slow down 

the evolution [43].  

3.5.3.4 Termination 

The reproduction process for new generations is repeated until it reaches the number of 

generation (G) set by users and identifies the optimal lift path which has the highest fitness score. 

Based on the experiments by authors, 𝑃𝑏𝑒𝑠𝑡 , 𝑅𝑐 , and 𝑅𝑚  are defined by 50%, 0.8, and 0.05, 

respectively. Furthermore, the initial population in the generation is 50 in this thesis.  

Figure 17. Multi-point Crossover 
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3.6 3D visualization-based mathematical algorithm (3DMVA) 

Chapter 2 explains the detail of 3D visualization-based mathematical algorithm (3DMVA). 

In the Chapter 4. Case study, the results of 3DMVA will be compared with results of other 

algorithms based on the same project information to identify the advantages and disadvantages of 

each algorithm. 

3.7 Comparison Criteria 

Previous comparisons of the lift planning algorithms for mobile crane operation mainly 

focused on the computation time, travelling distance and the number of motions as the comparison 

criteria [4, 10–14]. These criteria helped to analyze which algorithm provides better performance 

in terms of the computation costs and less motions during the crane operations. However, it is 

necessary to improve these criteria, called as the measurement metric in this thesis, in order to 

evaluate and compare characteristics of algorithms to address the lack of information described in 

introduction section. In this respect, this thesis introduces five criteria: 

1) The computation time, also called as computation time, which is total time to search 

for an optimal lifting path. 

2) The travel distance of the lifted object computed by the sum of distances from the 

start node and to end node on the lifting path identified by algorithms. 

3) The number of crane motions consisting of swing, luffing, and hoisting operations 

since the changes of crane motions affect the crane operation time in practice.  

4) The expected cycle time of the crane operation for the lifted object corresponding to 

the practical perspective view considering safety factor, speed of each operations, 

and the penalty matrix.  
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5) The success rate which shows the probability to find the solution on different 

difficulties of site layouts.  

At this junction, it should be noted that RRT and GA require to run multiple times to obtain 

the optimal crane lift paths of lifted objects due to the nature of randomness. Therefore, RRT and 

GA’s success rate is a percentage of pass/fail of the multiple iterations but A * and 3DVMA 

represent pass/fail of one single iteration.  
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Chapter 4: CASE STUDY 

4.1 General Information 

The case study is implemented using a real industrial project located in Alberta, Canada, 

which includes 168 modules lifted by crawler cranes mounted with superlift with 660 ton and the 

boom length is 275 ft. Since the case study has a large number of modules which are lifted on the 

various site layouts, this thesis selects four modules to facilitate the comparison of the algorithms 

based on the different types of site layouts in terms of the elevation levels of installing the lifted 

objects, the lifting sequences scheduled, the number of obstacles on the crane working radius, 

linear distances between pick points (PPs) and set points (SPs) of the lifted objects, and total CCM 

differences between the CCM at pick points (PPs) and set points (SPs) of the lifted objects. In 

terms of total CCM difference, for instance, it is 30 when CCMs at the SP and PP for a module is 

(5, 5, 5) and (15, 15, 15), respectively. Fig. 18 shows site layouts and the various lift conditions of 

the selected modules. It is noted that the number of obstacles for the lifted modules are affected by 

the scheduled sequence and the crane working radius. For example, in the case of module ID 21, 

the complexity of path planning is relatively low because the elevation level to install the lifted 

module is the ground floor, the linear distance between the PP and SP is 93.4 ft, and the CCM 

difference between the PP and SP is 69, which is smaller than others in the lifted modules. Also, 

there are only three applicable obstacles in the crane working radius among the obstacles with the 

lower sequence as illustrated in Fig. 19(a).  
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 Once the site layout is built based on the lifting schedule, A*, RRT, GA, and 3DVMA are 

implemented to find out the crane lift paths of the selected module and the results are compared 

by measurement metric. It should be noted that the module 21 is used to describe how these 

algorithms are applied in the case study.  

 

 

 

 

Figure 18. Various lift conditions for four selected modules 
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4.2 Case Study Example: Module 21 

As shown in Fig. 18, the elevation level is the first floor, sequence of installation is 32, 

applicable obstacles are three, and CCM difference is 69. Since the sequence of installation of 

module 21 is 32, 31 modules are installed previously, and these preinstalled modules will behave 

as the obstacles for module 21. However, only three of those are applicable obstacles that 

algorithms will consider since those are placed in the crane working radius. In this way, algorithms 

can avoid unnecessary calculation to provide the results more efficiently.  

Before implementing the algorithms, the permissible range of crane motions is defined using 

the crane specifications and calculations. Based on the crane capacity chart given by the 

manufacture, the minimum and maximum luffing angles are 28° and 82°, respectively. Since there 

is no obstacle in the range of the superstructure swing, the permissible range of the superstructure 

rotation is from 0° to 360°. The length, width and height of module 21 are 24ft, 83ft and 24ft, 

respectively. The allowable clearances between the boom, existing obstacles and lifted object are 

defined as 2.5 ft. Lastly, as shown in Fig. 19(b), minimum and maximum lift heights are 25 ft and 

246 ft. The dimensions of the existing obstacles, which are modules already installed before lifting 

the module 21, are identified from the database and applied into the algorithms.  
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Figure 19. Crane permissible range and applicable obstacles in module 21 
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To calculate the expecting cycle time of a crane lift path, 0.7 rpm for swing and luffing 

speeds and 171 ft/minute for hoisting speed are used in all of algorithms. Once the project and 

crane information are defined, optimal crane lift paths are designed by four algorithms.  

As an example, Table 4-1 shows the raw result of A* algorithm in the python environment 

to generate lift path for module 21. It shows the part of lift path generated by A* algorithm. Each 

row reflects a unit resolution step of either swing, luffing, or hoisting depend on the logic of the 

algorithm. It also shows the corresponding coordinates of the lifted object, distance that is moved 

from the previous position, radius, capacity, safety factor, speed, and the operation time.  

Table 4-1 Raw result of A* algorithm for module 21 lift planning 

 

To compare the results, it is required to extract the crane motions from this raw result by 

grouping the consecutive motions. In this respect, Table 4-2 shows the aggregated result from the 
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raw result. As it shows, the first motion is hosting that moved from 260ft to 214ft. It moved 46 ft, 

and the time penalty is 1 minute to change to the next motion, which is swing, according to the 

penalty matrix as shown in Fig. 9. To operate this crane motion, the expected operation time is 

46.87 seconds. Once all the crane motions are identified, the sum of time penalty and operation 

time will be the total expected cycle time. 

Table 4-2 Aggregated result of A* algorithm for module 21 lift planning 

 
Motion Start End Difference 

Time Penalty 

(min) 

Distance 

(ft) 

Operation 

Time (s) 

0 Hoisting 260 ft 214 ft 46 1 46 46.87 

1 Swing -82 ° -139° 57 0.75 84.54 38.70 

2 Luffing 72 ° 67 ° 5 0.5 24.00 3.88 

3 Hoisting 214 ft 239 ft 25 0 25.00 31.74 

Each crane lift path results are generated through the same process. Table 4-3 shows the 

results of A* and RRT for module 21. As shown in Table 4-3, a total of 4 crane motions are 

required to deliver the module 21 from the pick point to the set point in A*. The processing time 

to find the path was 5,085 seconds, the total travelling distance of the module was 179.54 ft, and 

the total crane operation time (cycle time) was 4.27 minutes.  

To design optimal crane lift paths using RRT successfully, expanding the tree from the 

initial node is determined by two approaches which are: (i) to measure the distance from 

neighboring nodes of the selected node to the set point; and (ii) to calculate the different CCM 

between CCMs of neighboring nodes of the selected node and the CCM at the set point. Each 

approach was iterated to get an average outcome over a set of 10 iterations to determine the 

appropriate method that leads to result optimal crane lift paths. In this respect, the final result of 

each approach in RRT is represented as decimal numbers which are the average results of 10 

iterations. As a result, expanding the trees by the distance approach provides the better crane lift 

path in all aspects of measurement metric than results using the CCM approach in modules 21 case. 
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At this junction, the procedures to identify the best approach for other modules are also 

implemented since each lifted module has various lifting conditions such as site layouts, distances 

from pick points, CCM differences to set points and installation levels. In addition, the number of 

iterations is determined based on the experiments implemented by authors. 

Table 4-3 Results of A* and RRT for Module 21 

 Iteration 
Computation 

Time (s) 

Travel 

Distance 

(ft) 

# of crane motions 
Cycle time 

(min) 

Success 

rate (%) S L H Total 

A* 1 5085.3 179.5 1 1 2 4 4.3 100 

RRT 

Distance 10 37.1 217.0 18.0 3.1 19.4 40.5 32.8 100 

CCM 10 56.2 262.6 27.3 7.2 28.1 62.6 49.6 100 

*S: Swing, L: Luffing, H: Hoisting 

GA was tested with various numbers of generations which are 20, 50, 100, 200, 500, 1000, 

2000, 4000, and 8000 in order to identify the evolution of results by increasing the generation that 

leads to find the optimal crane path. Each generation was iterated 10 times to have the reliable and 

optimal crane lift paths. Table 4-4 represents the results which are acquired based on different 

generations in GA for module 21. When the number of generations in GA set as 100, the average 

computation time was 36.8 seconds, the average travel distance was 199.7 ft, the average number 

of motions was 22.8, and the average expecting crane operation time was 18.0 minutes. Also, 

among 10 iterations, the success rate to find the optimal crane lift path was 40%. By increasing the 

number of generations, the number of total motions and expecting cycle time of crane operation 

tend to decrease but the computation time and the success rate increase. However, the travel 

distances are not affected by the number of generations. Although GA is designed to find optimal 

crane lift paths with the least number of crane motions and expecting cycle times of crane 

operations when the number of generations is increased, the increase of the computation time 
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cannot be ignored to select an algorithm of crane lift paths since the designing times and costs for 

crane lift paths become large and expensive in heavy industrial construction projects which involve 

a large number of modules. Therefore, this thesis selects a number of generations that reaches 100 % 

of success rate for the first time. In this respect, 500 generation is selected for module 21 which 

provides 100 % of success rate for the first time. This GA generation tests for other modules are 

implemented and the number of generations for each of other modules are various due to different 

site layouts and constraints (e.g., number of obstacles).  

Table 4-4 Results of GA with generations in Module 21 

Generation 
Computation 

Time (s) 

Travel 

Distance (ft) 

# of crane motions Cycle Time 

(min) 

Success 

Rate (%) S L H Total 

20 5.5 180.2 8.7 5.9 8.6 23.2 17.0 0 

50 18.3 200.1 9.7 6.2 9.2 25.1 19.0 10 

100 36.8 199.7 9.4 5.1 8.3 22.8 18.0 40 

200 93.2 211.4 8.8 4.8 8.2 21.8 17.2 70 

500 262.3 203.9 7.5 3.7 7.4 18.6 14.8 100 

1000 606.4 194.8 5.3 3.2 5.6 14.1 12.0 100 

2000 1143.7 208.7 4.3 2.7 4.3 11.3 10.2 100 

4000 2013.1 216.0 3.3 2.0 5.0 10.3 9.2 100 

8000 4870.9 201.6 4.0 2.3 4.0 10.3 9.5 100 

Since 3DVMA [28] uses 3D visualization-based mathematical models, it either designs 

only one single crane lift path for each of the lifted objects or fails to provide a crane lift path, 

which means it doesn’t require the iteration. In this respect, 3DVMA succeeds to design the crane 

lift path for module 21 which contains 321 seconds for computation time, 321 ft for travel distance, 

8 crane motions and approximately 5 minutes for expecting cycle time of crane operation.  
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Once the crane lift paths are designed by algorithms and evaluated by the measurement 

metrics, the CCMs of the crane lift paths are visualized in 3D environment for validation in terms 

of collision-free and further analysis such as patterns of the crane lift paths which can help to 

determine if the crane lift paths designed by algorithms can not only satisfy the mobility of mobile 

crane fully but also be accepted by industry practically. In this respect, as shown in Fig. 21, A* 

and 3DVMA generate a similar trend which consists of a simple and practical mobility of the 

mobile crane operation that has less numbers of mobile crane motions. However, RRT and GA 

tend to have a greater number of mobile crane motions comparing to the results of A* and 3DVMA. 

This large number of crane motion changes can lead to the following results: (i) to increase the 

expecting cycle times of crane operation; (ii) to increase the collision risks during the crane motion 

changes which are not preferred and acceptable crane lift paths in practice; and (iii) a zig-zag 

pattern (e.g., vertically and horizontally up and down) resulting the unpractical crane lift even 

though the path satisfies the requirements of the natural mobility of mobile cranes.  
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Figure 20. 3D visualization of crane lift paths for module 21 

4.3 Combined Results 

Based on the same procedures used for module 21, crane lift paths for other modules have 

been designed by algorithms and evaluated by the measurement metric. As a result, Table 4-5 

represents the results of evaluation using measurement metric for four selected modules, which 

are module 21, 32, 56, and 98.  

According to the site and lift path conditions such as the number of obstacles on the work 

radius, elevation level for installation, distance between the PP and the SP and CCM difference 

between the PP and SP, each algorithm generates different characteristics of the optimal crane lift 

paths. A* search plans the optimal crane lift paths for all of modules which involve minimum 
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expected cycle time of the crane operations due to a smaller number of crane motions than ones in 

other algorithms.  However, as shown in Fig. 22(a) and (b), the computation times to design the 

optimal crane lift paths are tremendously increased when both the distances and CCM difference 

between the SPs and PPs are increased. This trend is caused by: (i) large-scale construction sites 

which lead to generate the huge search space including massive coordinates evaluated by A* 

search; and (ii) the characteristic of A* search which keeps all the previous CCMs to identify the 

optimal crane lift path using heuristic function until reaching to the goal node. As an example of 

the first cause, in the case of module 32, total 129,527 CCMs were evaluated during the 

computation time, 212705.1 seconds; whereas module 21 tested a total of 8,895 CCMs within 

5085.3 seconds.  

Comparing to other algorithms, RRT provides the result in the shortest computation time 

regardless the complexity of the site layouts since it rapidly explores the searching areas without 

concerning neighborhood nodes unlike A* search. In a practical view, the crane lift paths identified 

by RRT may not be suitable since the expecting cycle times of crane operations affected by the 

number of crane motions shown in Fig. 22(c) are the highest among other algorithms. The reason 

of this feature is that RRT is based on randomness and it has a nature of generating zig-zag patterns 

to search for the crane lift paths. Although RRT succeeds to find the feasible paths in the shortest 

computation time, it does not have an optimization function comparing to the heuristic search in 

A* and the evolution process in GA in order to not only reduce the number of crane motions but 

also design practical motions of mobile crane operation (e.g., prevention of zig-zag motions).  

As shown in Fig. 22(b), the computation times of GA are influenced by the CCM difference 

which represents the level of site complexity. In this respect, the increase of the CCM difference 

can result many failures in the phase of reproducing initial populations which is required to provide 
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the sources to run the next generation for the feasible crane lift paths. When these paths are 

designed successfully, the paths are evolved in the way of shortening the number of motions as 

defined in the fitness evaluation. Comparing to the results of other algorithms based on the 

practical motions of the mobile crane lift and number of crane motions, GA provides better 

practical lift paths than RRT, with less computation time than A*. One of advantages in GA is 

flexible application in various sizes and complexity of sites based on the input changes such as 

generations, populations, mutation rate, and crossover rate. For example, the number of 

generations to compare to other algorithms in this thesis is the generation that obtains the success 

rate of 100% for the first. To optimize smooth lift paths such as ones in A* and 3DVMA, the 

number of generations can be increased but this requires more process times. Therefore, GA results 

can be flexible depend on the focus of the outcomes. 

Based on the view of results in the measurement metrics, 3DVMA requires less process 

time than other algorithms except RRT to design crane lift paths which represent smooth and 

practical crane motions with small number of crane motion changes leading to the shorter expected 

cycle times of crane operations than other algorithms except A*. However, this algorithm may not 

have flexibility to other types of projects which may have different lift design constraints due to 

the following reasons: (i) 3DVMA is not fully validated yet in other types of projects but others 

done by previous research; and (ii) it does not have randomness search functions with/without 

evolutions; and (iii) the crane lift paths designed by 3DVMA may not be optimal paths since it 

follows the practical and preferred sequences of crane motions defined by the users. 
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Table 4-5 Results of algorithms 

Module Algorithm 
Process  

Time (s) 

Travel 

Distance 

(ft) 

# of crane motions Cycle  

time 

(min) 

Success 

Rate 

(%) 
S L H Total 

21 

A* 5085.3 189.1 1.0 1.0 2.0 4.0 4.3 Pass 

RRT 

(distance) 
37.1 217.0 18.0 3.1 19.4 40.5 32.8 100 

GA (500) 262.3 203.9 7.5 3.7 7.4 18.6 14.8 100 

3DVMA 321.0 158.7 3.0 2.0 3.0 8.0 5.0 Pass 

32 

A* 212705.1 257.5 1.0 1.0 2.0 4.0 4.6 Pass 

RRT 

(distance) 
6.2 384.1 33.9 23.5 35.2 92.6 74.0 100 

GA (4000) 9470.0 290.2 6.3 5.0 7.7 19.0 17.0 100 

3DVMA 200.0 156.8 3.0 1.0 4.0 8.0 5.8 Pass 

56 

A* 24526.8 201.5 4.0 2.0 7.0 13.0 10.0 Pass 

RRT 

(distance) 
28.8 228.1 15.9 11.0 14.9 41.8 31.5 100 

GA (2000) 5132.1 225.0 6.0 4.3 5.7 16.0 13.3 100 

3DVMA 335.0 525.4 4.0 1.0 4.0 9.0 10.6 Pass 

98 

A* 25146.2 208.1 1.0 1.0 3.0 5.0 6.4 Pass 

RRT 

(distance) 
11.8 204.5 22.8 2.2 23.8 48.8 38.9 100 

GA (1000) 2116.6 229.7 7.0 2.1 7.4 16.5 15.1 100 

3DVMA 661.0 157.6 2.0 1.0 4.0 7.0 7.0 Pass 
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Figure 21. 3D visualization of crane lift paths for module 21 
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Chapter 5: CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Due to a numerous number of modules lifted mainly by mobile cranes in heavy industrial 

projects, the lift path planning has been highly attention to design the efficient and safe mobile 

crane operations which influence to improve productivity and safety. This lift path planning 

analysis can be done mainly in not only the planning phase of the project, but also in the 

construction phase. Since heavy industrial projects involve a large number of lift operations, this 

lift analysis helps to predict the total required time for the lift operation used for the equipment 

management and scheduling in the planning phase. In the construction phase, the lift analysis can 

be done for any changes on site, which is more efficient and faster than manual analysis by the lift 

engineer. Although previous research introduces algorithms which are applied to plan the optimal 

crane lift paths leading to support the project schedule before construction, there is no 

comprehensive comparison study yet to identify the best algorithm based on considering the 

features of the heavy industrial projects such as dynamic site layout changes and a large number 

of modules (generally 200-300 modules to be lifted per project) which should satisfy the following 

requirements: (i) fast computation time without design errors; (ii) collision-free lifts; (iii) less 

expected cycle times of crane operations; and (iv) applying practical mobility of mobile crane lifts. 

Furthermore, the lack of this study may be one of main barriers to facilitate to apply the proposed 

optimal algorithms into the crane lift path planning in practice in accordance with the features of 

their projects. To address this challenge, this thesis implements the comprehensive comparison 

study using A* search, RRT, GA, and 3DVMA in mobile crane path optimization problem with 

the measurement metrics. 
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Based on the results of the case study, all algorithms do not have any collision issues in the 

crane lift paths designed by this study. In other words, all algorithms generate collision-free crane 

lift paths without matters issued by the features of the heavy industrial projects (e.g., congested 

and dynamic site layouts). In terms of nature mobility of the mobile crane, RRT is not suitable in 

heavy industrial projects since it tends to produce the zig-zag pattern leading to produce the largest 

number of crane motions and highest expected cycle times. Due to this feature, the crane lifts 

designed by RRT considers as unsafe, impractical and inefficient lifts even though the shortest 

computation times are achieved. GA plans acceptable crane lifts without matters issued by the site 

constraints such as number of obstacles and linear distances. Since the number of generations in 

GA is defined as first generation that obtains the success rate of 100% in this thesis, the crane lift 

paths resulted by GA can be improved by adjusting parameters such as number of generations, 

crossover rate, and mutual rate for each lift. Due to the difficulty of finding the proper parameters 

and their relationship to implement into the fitness evaluation, GA may not be the best algorithm 

for numerous numbers of lifts in the heavy industrial projects. As a result, the best results are 

designed by A* and 3DVMA due to smaller number of motions and smooth trajectories of crane 

lifts than ones from the other algorithms. At this junction, it should be noted that the practitioners 

consider that crane lifts are potentially high risk when the number of motions is large. In this 

respect, A* designs more safe crane lifts than 3DVMA in most of cases except module ID 56. 

However, A* requires large computation times which are maximum 3545 minutes and minimum 

84 minutes to design one single crane lift paths.  
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Table 5-1 Heavy industrial project characteristics & algorithm suitability 

 
Large # of 

Modules 
Flexibility Practicality 

Dynamic Site 

Layout 

Mobile Crane 

Configuration 

A* X X O O O 

RRT O O X O O 

GA ∆ O ∆ O O 

3DMVA O X O O O 

* ∆ represents undefined/unknown. 

Table 5-1 shows the characteristics of heavy industrial project and the suitability of 

algorithms. Regarding to the large number of modules, A* is not beneficial because of its 

tremendous computation time, and GA is undefined since the results may vary depending on the 

number of generations. Also, A* and 3DMVA are lack of flexibility since those are deterministic 

algorithm, which means that it only generates one possible solution for the problem. In terms of 

practicality, RRT is not beneficial because of its unfeasible solution. Therefore, A* is not fitted in 

heavy industrial projects but may be the best model when the computation time can be significantly 

reduced and there is no need for the extra solutions. Based on considering all requirements 

described above, 3DVMA is a competent crane lift path planning method for heavy industrial 

projects. However, as shown in the case of module ID 56, it has a limitation which is the lack of 

an evolution/search function to optimize crane lift paths in terms of the travel distance affecting 

the expected cycle times of the crane lifts even though it produces a smaller number of motions 

than A*’s one. In this respect, this algorithm requires additional improvement by integrating with 

the strengths of other optimization algorithms such as evolution functions.  
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5.2 Contributions 

The main contribution of the current research is described below: 

1) Various algorithms for the lift path planning of the mobile crane were implemented in the 

heavy industrial project with the consideration of the dynamic site layout and realistic crane 

mobility. 

2) The results of the lift path planning in each algorithm were compared comprehensively 

based on the multi-measurement matrix and site constraints, which represent the 

advantages and disadvantages of each algorithm more accusatively than previous studies. 

5) The outcome of this research suggested the direction of lift path planning algorithm for 

mobile crane that integrates the advantages of compared algorithms for the future work to 

accomplish the automation of the construction industry. 

 

5.3 Limitations and Future Work 

In the current methodology, the algorithms are developed with the limited operation type, 

which is PFP, with 3 active DOFs. Future works could implement all kind of collision types for 

the collision detection and the PWO operation with more DOFs to fully simulate the path planning 

result that reflects more realistic environment.  

For the algorithm based on the randomness such as RRT and GA, several inputs such as 

sample rate of RRT and crossover rate, mutation rate, population, initial size of population, and 

generation of GA are adopted from the previous research or experiments in the current thesis, 

which can be customized in each module case to draw the best result.  



62 

 

 Since current study only considered algorithms that previously applied in the lift path 

planning for the mobile crane operation, other widely used algorithms for the path planning such 

as anti colony optimization algorithm could be implemented and compared with the current results 

for the future works.   

The combined parallel hybrid algorithm with the advantages of three algorithms can be 

suggested in the future works for the mobile crane path planning. For instance, with evaluating the 

complexity of the path finding problem automatically, A* search can be executed for the low 

complexity problems while hybrid algorithms with RRT and GA is executed for the high 

complexity problems. Since RRT is beneficial to find solutions in short time, the results of RRT 

can be used to generate the initial population of the GA that could reduce computation time of GA 

significantly while improving the quality of the result. 
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APPENDIX A: Capacity Check 

Reference: https://www.barnhartcrane.com/cranecharts/cc-2800_600t_demag.pdf 

• Working ranges main boom with superlift 
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• Lifting Capacity main boom with superlift 

 

For example, in module 21 case, the weight of the module is 313,926 lbs. If current working 

radius is 95 ft, 98 ft is used in the lifting capacity chart between 92 ft and 98ft because 98ft has 

smaller gross capacity. Therefore, the gross capacity becomes 421,100lbs. Then, Safety factor is  

313,926lbs/421,100lbs x 100% = 74.5 %.  
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APPENDIX B: Module Information 

 Object ID 21 32 56 98 

 Tracking 

ID 
2068 3453 5631 11834 

Crane Coordinates 

x 100045 99955 99665 99550 

y 71625 71680 71690 71500 

z 1173.74 1173.74 1173.74 1173.74 

Module Pick Coordinates 

x 100056.4 99923 99600 99474 

y 71539.59 71623 71625 71560 

z 1175 1175 1175 1175 

Module Set Coordinates 

x 99964.4 99823.65 99697.34 99461.94 

y 71555.61 71682.09 71661.25 71461.61 

z 1174.918 1199.947 1174.827 1214.587 

Module Weight (lb) 313926 215561 318777 338379 

Pick angle 

Swing -82.3879 240.69 -135 141.7098 

Luffing 71.74007 76.24902 70.47193 69.38369 

Hoisting 259.8923 265.858 257.9214 256.1288 

Set angle (Calculation) 

Swing -139.274 179.09 -41.6327 203.5529 

Luffing 67.2481 61.46572 80.94699 69.55474 

Hoisting 252.4241 215.3887 270.487 216.83 

 

* Tracking ID indicates the crane location in the database. 

* All coordinates are based on the center point of the object. 
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APPENDIX C: Object Information 

MODULE  21 Sequence 32 
Module ID Sequence x y z width length height 

22 31 99952 71516 1163 22 81 24 

78 30 99976 71470 1163 22 53 24 

117 25 99984 71742 1164 10 11 31 

 

MODULE  32 Sequence 19 
Module ID Sequence x y z width length height 

30 18 99797 71648 1162 64 20 22 

31 17 99797 71672 1162 64 20 24 

156 16 99782 71743 1183 23 20 19 

 

MODULE  56 Sequence 45 
Module 
ID Sequence x y z 

width length height 

11 40 99688 71539 1163 62 20 24 

12 43 99626 71539 1187 120 24 23 

29 21 99797 71590 1162 64 20 22 

30 18 99797 71648 1162 64 20 22 

31 17 99797 71672 1162 64 20 24 

32 19 99797 71672 1188 54 20 25 

72 41 99624 71539 1163 61 22 24 

90 36 99757 71629 1163 20 98 23 

91 37 99757 71639 1188 20 98 25 

141 38 99757 71736 1164 20 38 23 

142 39 99757 71736 1188 20 42 19 

156 16 99782 71743 1183 23 20 19 

 

MODULE  98 Sequence 82 
Module 
ID Sequence x y z 

width length height 

11 40 99688 71539 1163 62 20 24 

12 43 99626 71539 1187 120 24 23 

13 28 99705 71515 1163 39 22 24 

14 44 99626 71515 1187 118 22 21 

17 11 99665 71509 1214 20 20 76 



73 

 

36 33 99679 71491 1164 67 24 18 

37 77 99626 71491 1180 120 24 24 

38 78 99644 71491 1207 101 24 27 

45 72 99554 71393 1163 58 24 22 

46 73 99554 71393 1187 58 24 20 

47 74 99645 71393 1163 61 24 22 

48 75 99647 71393 1187 59 24 21 

63 60 99491 71414 1187 20 36 22 

64 59 99568 71414 1187 22 36 35 

65 2 99669 71414 1187 22 37 22 

72 41 99624 71539 1163 61 22 24 

73 42 99626 71515 1163 75 22 23 

79 76 99623 71491 1164 64 20 20 

89 35 99689 71437 1163 57 12 23 

92 68 99639 71452 1164 118 20 26 

93 70 99639 71452 1188 118 20 24 

94 69 99521 71452 1164 118 20 26 

95 71 99521 71452 1188 118 20 25 

96 80 99403 71452 1164 98 20 26 

97 81 99403 71452 1188 118 20 21 
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Appendix D: Result Example (Module 98: A* Algorithm) 

• Raw result 

  
Swing Luffing Hoisting x y z 

distance 
(ft) 

Radius 
(ft) 

Capacity 
(lb) 

Safety 
 factor (%) 

speed  
(ft/min) 

operation 
 time (s) 

0 142 69 256 -76 60 1 25.00 96.83 491600 79.97 47.90 31.32 

1 142 69 231 -76 60 26 9.98 96.83 491600 79.97 70.59 0.85 

2 142 70 231 -74.12 57.91 16.42 1.00 94.06 491600 79.97 47.90 1.25 

3 142 70 230 -74.12 57.91 17.42 1.00 94.06 491600 79.97 47.90 1.25 

4 142 70 229 -74.12 57.91 18.42 1.00 94.06 491600 79.97 47.90 1.25 

5 142 70 228 -74.12 57.91 19.42 1.00 94.06 491600 79.97 47.90 1.25 

6 142 70 227 -74.12 57.91 20.42 1.00 94.06 491600 79.97 47.90 1.25 

7 142 70 226 -74.12 57.91 21.42 1.00 94.06 491600 79.97 47.90 1.25 

8 142 70 225 -74.12 57.91 22.42 1.00 94.06 491600 79.97 47.90 1.25 

9 142 70 224 -74.12 57.91 23.42 1.00 94.06 491600 79.97 47.90 1.25 

10 142 70 223 -74.12 57.91 24.42 1.00 94.06 491600 79.97 47.90 1.25 

11 142 70 222 -74.12 57.91 25.42 1.00 94.06 491600 79.97 47.90 1.25 
12 142 70 221 -74.12 57.91 26.42 1.00 94.06 491600 79.97 47.90 1.25 

13 142 70 220 -74.12 57.91 27.42 1.00 94.06 491600 79.97 47.90 1.25 

14 142 70 219 -74.12 57.91 28.42 1.00 94.06 491600 79.97 47.90 1.25 

15 142 70 218 -74.12 57.91 29.42 1.00 94.06 491600 79.97 47.90 1.25 

16 142 70 217 -74.12 57.91 30.42 1.00 94.06 491600 79.97 47.90 1.25 

17 142 70 216 -74.12 57.91 31.42 1.00 94.06 491600 79.97 47.90 1.25 

18 142 70 215 -74.12 57.91 32.42 1.00 94.06 491600 79.97 47.90 1.25 

19 142 70 214 -74.12 57.91 33.42 1.00 94.06 491600 79.97 47.90 1.25 

20 142 70 213 -74.12 57.91 34.42 1.00 94.06 491600 79.97 47.90 1.25 

21 142 70 212 -74.12 57.91 35.42 1.00 94.06 491600 79.97 47.90 1.25 

22 142 70 211 -74.12 57.91 36.42 1.00 94.06 491600 79.97 47.90 1.25 

23 142 70 210 -74.12 57.91 37.42 1.00 94.06 491600 79.97 47.90 1.25 
24 142 70 209 -74.12 57.91 38.42 1.00 94.06 491600 79.97 47.90 1.25 

25 142 70 208 -74.12 57.91 39.42 1.00 94.06 491600 79.97 47.90 1.25 

26 142 70 207 -74.12 57.91 40.42 1.00 94.06 491600 79.97 47.90 1.25 

27 142 70 206 -74.12 57.91 41.42 1.00 94.06 491600 79.97 47.90 1.25 

28 142 70 205 -74.12 57.91 42.42 1.00 94.06 491600 79.97 47.90 1.25 

29 142 70 204 -74.12 57.91 43.42 1.00 94.06 491600 79.97 47.90 1.25 

30 142 70 203 -74.12 57.91 44.42 1.00 94.06 491600 79.97 47.90 1.25 

31 142 70 202 -74.12 57.91 45.42 1.00 94.06 491600 79.97 47.90 1.25 

32 142 70 201 -74.12 57.91 46.42 1.00 94.06 491600 79.97 47.90 1.25 

33 142 70 200 -74.12 57.91 47.42 1.00 94.06 491600 79.97 47.90 1.25 

34 142 70 199 -74.12 57.91 48.42 1.00 94.06 491600 79.97 47.90 1.25 
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35 142 70 198 -74.12 57.91 49.42 1.00 94.06 491600 79.97 47.90 1.25 
36 142 70 197 -74.12 57.91 50.42 1.00 94.06 491600 79.97 47.90 1.25 

37 142 70 196 -74.12 57.91 51.42 1.00 94.06 491600 79.97 47.90 1.25 

38 142 70 195 -74.12 57.91 52.42 1.00 94.06 491600 79.97 47.90 1.25 

39 142 70 194 -74.12 57.91 53.42 1.00 94.06 491600 79.97 47.90 1.25 

40 142 70 193 -74.12 57.91 54.42 1.00 94.06 491600 79.97 47.90 1.25 

41 142 70 192 -74.12 57.91 55.42 1.00 94.06 491600 79.97 47.90 1.25 

42 142 70 191 -74.12 57.91 56.42 1.00 94.06 491600 79.97 47.90 1.25 
43 142 70 190 -74.12 57.91 57.42 1.00 94.06 491600 79.97 47.90 1.25 

44 142 70 189 -74.12 57.91 58.42 1.00 94.06 491600 79.97 47.90 1.25 

45 142 70 188 -74.12 57.91 59.42 1.00 94.06 491600 79.97 47.90 1.25 

46 142 70 187 -74.12 57.91 60.42 1.00 94.06 491600 79.97 47.90 1.25 

47 142 70 186 -74.12 57.91 61.42 1.00 94.06 491600 79.97 47.90 1.25 
48 142 70 185 -74.12 57.91 62.42 1.00 94.06 491600 79.97 47.90 1.25 

49 142 70 184 -74.12 57.91 63.42 1.00 94.06 491600 79.97 47.90 1.25 

50 142 70 183 -74.12 57.91 64.42 1.65 94.06 491600 79.97 70.59 0.85 

51 143 70 183 -75.12 56.6 64.42 1.64 94.06 491600 79.97 70.59 0.85 

52 144 70 183 -76.09 55.28 64.42 1.64 94.05 491600 79.97 70.59 0.85 

53 145 70 183 -77.05 53.95 64.42 1.64 94.06 491600 79.97 70.59 0.85 

54 146 70 183 -77.98 52.6 64.42 1.64 94.06 491600 79.97 70.59 0.85 
55 147 70 183 -78.88 51.23 64.42 1.65 94.06 491600 79.97 70.59 0.85 

56 148 70 183 -79.76 49.84 64.42 1.64 94.05 491600 79.97 70.59 0.85 

57 149 70 183 -80.62 48.44 64.42 1.64 94.05 491600 79.97 70.59 0.85 

58 150 70 183 -81.45 47.03 64.42 1.64 94.05 491600 79.97 70.59 0.85 

59 151 70 183 -82.26 45.6 64.42 1.64 94.05 491600 79.97 70.59 0.85 
60 152 70 183 -83.05 44.16 64.42 1.64 94.06 491600 79.97 70.59 0.85 

61 153 70 183 -83.8 42.7 64.42 1.65 94.05 491600 79.97 70.59 0.85 

62 154 70 183 -84.54 41.23 64.42 1.64 94.06 491600 79.97 70.59 0.85 

63 155 70 183 -85.24 39.75 64.42 1.64 94.05 491600 79.97 70.59 0.85 

64 156 70 183 -85.92 38.26 64.42 1.65 94.05 491600 79.97 70.59 0.85 

65 157 70 183 -86.58 36.75 64.42 1.65 94.06 491600 79.97 70.59 0.85 

66 158 70 183 -87.21 35.23 64.42 1.63 94.06 491600 79.97 70.59 0.85 
67 159 70 183 -87.81 33.71 64.42 1.64 94.06 491600 79.97 70.59 0.85 

68 160 70 183 -88.38 32.17 64.42 1.64 94.05 491600 79.97 70.59 0.85 

69 161 70 183 -88.93 30.62 64.42 1.64 94.05 491600 79.97 70.59 0.85 

70 162 70 183 -89.45 29.06 64.42 1.64 94.05 491600 79.97 70.59 0.85 

71 163 70 183 -89.95 27.5 64.42 1.64 94.06 491600 79.97 70.59 0.85 
72 164 70 183 -90.41 25.93 64.42 1.65 94.05 491600 79.97 70.59 0.85 

73 165 70 183 -90.85 24.34 64.42 1.64 94.05 491600 79.97 70.59 0.85 

74 166 70 183 -91.26 22.75 64.42 1.63 94.05 491600 79.97 70.59 0.85 

75 167 70 183 -91.64 21.16 64.42 1.64 94.05 491600 79.97 70.59 0.85 
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76 168 70 183 -92 19.56 64.42 1.64 94.06 491600 79.97 70.59 0.85 
77 169 70 183 -92.33 17.95 64.42 1.65 94.06 491600 79.97 70.59 0.85 

78 170 70 183 -92.63 16.33 64.42 1.64 94.06 491600 79.97 70.59 0.85 

79 171 70 183 -92.9 14.71 64.42 1.64 94.06 491600 79.97 70.59 0.85 

80 172 70 183 -93.14 13.09 64.42 1.64 94.06 491600 79.97 70.59 0.85 

81 173 70 183 -93.35 11.46 64.42 1.64 94.05 491600 79.97 70.59 0.85 

82 174 70 183 -93.54 9.83 64.42 1.64 94.06 491600 79.97 70.59 0.85 

83 175 70 183 -93.7 8.2 64.42 1.65 94.06 491600 79.97 70.59 0.85 
84 176 70 183 -93.83 6.56 64.42 1.64 94.06 491600 79.97 70.59 0.85 

85 177 70 183 -93.93 4.92 64.42 1.64 94.06 491600 79.97 70.59 0.85 

86 178 70 183 -94 3.28 64.42 1.64 94.06 491600 79.97 70.59 0.85 

87 179 70 183 -94.04 1.64 64.42 1.64 94.05 491600 79.97 70.59 0.85 

88 180 70 183 -94.06 0 64.42 1.64 94.06 491600 79.97 70.59 0.85 
89 181 70 183 -94.04 -1.64 64.42 1.64 94.05 491600 79.97 70.59 0.85 

90 182 70 183 -94 -3.28 64.42 1.64 94.06 491600 79.97 70.59 0.85 

91 183 70 183 -93.93 -4.92 64.42 1.64 94.06 491600 79.97 70.59 0.85 

92 184 70 183 -93.83 -6.56 64.42 1.65 94.06 491600 79.97 70.59 0.85 

93 185 70 183 -93.7 -8.2 64.42 1.64 94.06 491600 79.97 70.59 0.85 

94 186 70 183 -93.54 -9.83 64.42 1.64 94.06 491600 79.97 70.59 0.85 

95 187 70 183 -93.35 -11.46 64.42 1.64 94.05 491600 79.97 70.59 0.85 
96 188 70 183 -93.14 -13.09 64.42 1.64 94.06 491600 79.97 70.59 0.85 

97 189 70 183 -92.9 -14.71 64.42 1.64 94.06 491600 79.97 70.59 0.85 

98 190 70 183 -92.63 -16.33 64.42 1.65 94.06 491600 79.97 70.59 0.85 

99 191 70 183 -92.33 -17.95 64.42 1.64 94.06 491600 79.97 70.59 0.85 

100 192 70 183 -92 -19.56 64.42 1.64 94.06 491600 79.97 70.59 0.85 
101 193 70 183 -91.64 -21.16 64.42 1.63 94.05 491600 79.97 70.59 0.85 

102 194 70 183 -91.26 -22.75 64.42 1.64 94.05 491600 79.97 70.59 0.85 

103 195 70 183 -90.85 -24.34 64.42 1.65 94.05 491600 79.97 70.59 0.85 

104 196 70 183 -90.41 -25.93 64.42 1.64 94.05 491600 79.97 70.59 0.85 

105 197 70 183 -89.95 -27.5 64.42 1.64 94.06 491600 79.97 70.59 0.85 

106 198 70 183 -89.45 -29.06 64.42 1.64 94.05 491600 79.97 70.59 0.85 

107 199 70 183 -88.93 -30.62 64.42 1.64 94.05 491600 79.97 70.59 0.85 
108 200 70 183 -88.38 -32.17 64.42 1.64 94.05 491600 79.97 70.59 0.85 

109 201 70 183 -87.81 -33.71 64.42 1.63 94.06 491600 79.97 70.59 0.85 

110 202 70 183 -87.21 -35.23 64.42 1.65 94.06 491600 79.97 70.59 0.85 

111 203 70 183 -86.58 -36.75 64.42 25.00 94.06 491600 79.97 47.90 31.32 

112 203 70 208 -86.58 -36.75 39.42 0.00 94.06 491600 79.97 0.00 0.00 
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• Aggregated result 

  
Movement 

Start 
(degree) 

End 
(degree) 

Difference 
(degree) 

Time 
Penalty 

(min) 

Distance 
(ft) 

Operation 
Time (s) 

0 Hoisting 256 231 25 0.75 25 31.3156715 

1 Luffing 69 70 1 1 9.983932091 0.849996798 

2 Hoisting 231 183 48 1 48 60.12608928 

3 Swing 142 203 61 0.75 100.1354785 51.84980467 

4 Hoisting 183 208 25 0 25 31.3156715 

 

  

Module 
id 

Computation 
Time (s) 

Module 
Distance (ft) 

Number  
of 

Movement 

Number 
of 

Swing 

Number 
of 

Luffing 

Number 
of 

Hoisting 

Total 
Operation 
time (min) 

0 98 25146.19857 208.1194106 5 1 1 3 6.424287229 

 


