Login | Register

Spectral Efficiency Maximization of a Single Cell Massive MU-MIMO Down-Link TDD System by Appropriate Resource Allocation

Title:

Spectral Efficiency Maximization of a Single Cell Massive MU-MIMO Down-Link TDD System by Appropriate Resource Allocation

Saatlou, O. ORCID: https://orcid.org/0000-0002-0545-4904, Ahmad, M. Omair ORCID: https://orcid.org/0000-0002-2924-6659 and Swamy, M. N. S. ORCID: https://orcid.org/0000-0002-3989-5476 (2019) Spectral Efficiency Maximization of a Single Cell Massive MU-MIMO Down-Link TDD System by Appropriate Resource Allocation. IEEE Access, 7 . pp. 182758-182771. ISSN 2169-3536

[thumbnail of Swamy-IEEE Access-2020.pdf]
Preview
Text (application/pdf)
Swamy-IEEE Access-2020.pdf - Published Version
Available under License Creative Commons Attribution.
3MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2959711

Abstract

This paper deals with the problem of maximizing the spectral efficiency in a massive multi-user MIMO downlink system, where a base station is equipped with a very large number of antennas and serves single-antenna users simultaneously in the same frequency band, and the beamforming training scheme is employed in the time-division duplex mode. An optimal resource allocation that jointly selects the training duration on uplink transmission, the training signal power on downlink transmission, the training signal power on uplink transmission, and the data signal power on downlink transmission is proposed in such a way that the spectral efficiency is maximized given the total energy budget. Since the spectral efficiency is the main concern of this work, and its calculation using the lower bound on the achievable rate is computationally very intensive, in this paper, we also derive approximate expressions for the lower bound of achievable downlink rate for the maximum ratio transmission (MRT) and zero-forcing (ZF) precoders. The computational simplicity and accuracy of the approximate expressions for the lower bound of achievable downlink rate are validated through simulations. By employing these approximate expressions, experiments are conducted to obtain the spectral efficiency of the massive MIMO downlink time-division duplexing system with the optimal resource allocation and that of the beamforming training scheme. It is shown that the spectral efficiency of the former system using the optimal resource allocation is superior to that yielded by the latter scheme in the cases of both MRT and ZF precoders.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Saatlou, O. and Ahmad, M. Omair and Swamy, M. N. S.
Journal or Publication:IEEE Access
Date:2019
Funders:
  • Concordia Open Access Author Fund
  • Natural Sciences and Engineering Research Council (NSERC) of Canada
  • Regroupement Strategique en Microelectronique du Quebec (ReSMiQ)
Digital Object Identifier (DOI):10.1109/ACCESS.2019.2959711
Keywords:Massive MIMO, power control, resource allocation, spectral efficiency, channel state information acquisition
ID Code:986324
Deposited By: Krista Alexander
Deposited On:21 Jan 2020 20:57
Last Modified:21 Jan 2020 20:57

References:

1. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays", IEEE Signal Process. Mag., vol. 30, pp. 40-60, Jan. 2013.

2. L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, R. Zhang, "An overview of massive MIMO: Benefits and challenges", IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742-758, Oct. 2014.

3. E. Björnson, E. G. Larsson, T. L. Marzetta, "Massive MIMO: Ten myths and one critical question", IEEE Commun. Mag., vol. 54, no. 2, pp. 114-123, Feb. 2016.

4. T. L. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge, U.K.:Cambridge Univ. Press, 2016.

5. A. Chockalingam, B. S. Rajan, Large MIMO Systems, Cambridge, U.K.:Cambridge Univ. Press, 2014.

6. O. Saatlou, M. O. Ahmad, M. N. S. Swamy, "Spectral efficiency maximization of multiuser massive MIMO systems with finite-dimensional channel via control of users power", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 65, no. 7, pp. 883-887, Jul. 2018.

7. T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas", IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.

8. H. Q. Ngo, E. G. Larsson, T. L. Marzetta, "Energy and spectral efficiency of very large multiuser MIMO systems", IEEE Trans. Commun., vol. 61, no. 4, pp. 1436-1449, Apr. 2013.

9. E. Björnson, L. Sanguinetti, J. Hoydis, M. Debbah, "Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?", IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3059-3075, Oct. 2015.

10. S. K. Mohammed, "Impact of transceiver power consumption on the energy efficiency of zero-forcing detector in massive MIMO systems", IEEE Trans. Commun., vol. 62, no. 11, pp. 3874-3890, Nov. 2014.

11. C. Xu, Y. Hu, C. Liang, J. Ma, L. Ping, "Massive MIMO non-orthogonal multiple access and interleave division multiple access", IEEE Access, vol. 5, pp. 14728-14748, 2017.

12. E. L. Bengtsson, F. Rusek, S. Malkowsky, F. Tufvesson, P. C. Karlsson, O. Edfors, "A simulation framework for multiple-antenna terminals in 5G massive MIMO systems", IEEE Access, vol. 5, pp. 26819-26831, 2017.

13. J. Li, D. Wang, P. Zhu, X. You, "Energy efficiency optimization of distributed massive MIMO systems under Ergodic QoS and Per-RAU power constraints", IEEE Access, vol. 7, pp. 5001-5013, 2019.

14. W. Cheng, H. Zhang, L. Liang, H. Jing, Z. Li, "Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmWave communications", IEEE Access, vol. 6, pp. 2732-2745, Dec. 2018.

15. J. Zhang, X. Xue, E. Björnson, B. Ai, S. Jin, "Performance analysis and power control of cell-free massive MIMO systems with hardware impairments", IEEE Access, vol. 6, pp. 55302-55314, Sep. 2018.
16. A. Khansefid, H. Minn, "Achievable downlink rates of MRC and ZF precoders in massive MIMO with uplink and downlink pilot contamination", IEEE Trans. Commun., vol. 63, no. 12, pp. 4849-4864, Dec. 2015.

17. Y. Wang, C. Li, Y. Huang, D. Wang, T. Ban, L. Yang, "Energy-efficient optimization for downlink massive MIMO FDD systems with transmit-side channel correlation", IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7228-7243, Sep. 2016.

18. J. Hoydis, S. ten Brink, M. Debbah, "Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?", IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160-171, Feb. 2013.

19. J. Jose, A. Ashikhmin, T. L. Marzetta, S. Vishwanath, "Pilot contamination and precoding in multi-cell TDD systems", IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640-2651, Aug. 2011.

20. H. Yang, T. L. Marzetta, "Performance of conjugate and zero-forcing beamforming in large-scale antenna systems", IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 172-179, Feb. 2013.

21. H. Q. Ngo, E. G. Larsson, T. L. Marzetta, "Massive MU-MIMO downlink TDD systems with linear precoding and downlink pilots", Proc. Allerton Conf. Commun. Control Comput., pp. 293-298, Oct. 2013.

22. J. Zuo, J. Zhang, C. Yuen, W. Jiang, W. Luo, "Multicell multiuser massive MIMO transmission with downlink training and pilot contamination precoding", IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6301-6314, Aug. 2016.

23. H. Q. Ngo, E. G. Larsson, "No downlink pilots are needed in TDD massive MIMO", IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2921-2935, May 2017.

24. X. Xia, K. Xu, D. Zhang, Y. Xu, Y. Wang, "Beam-domain full-duplex massive MIMO: Realizing co-time co-frequency uplink and downlink transmission in the cellular system", IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 8845-8862, Oct. 2017.

25. K. Xu, Z. Shen, Y. Wang, X. Xia, D. Zhang, "Hybrid time-switching and power splitting swipt for full-duplex massive MIMO systems: A beam-domain approach", IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 7257-7274, Aug. 2018.

26. J. Baltersee, G. Fock, H. Meyr, "Achievable rate of MIMO channels with data-aided channel estimation and perfect interleaving", IEEE J. Sel. Areas Commun., vol. 19, no. 12, pp. 2358-2368, Dec. 2001.

27. X. Ma, L. Yang, G. B. Giannakis, "Optimal training for MIMO frequency-selective fading channels", IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 453-466, Mar. 2005.

28. T. L. Marzetta, "How much training is required for multiuser MIMO?", Proc. Asilomar Conf. Signals Syst. Comput. (ACSSC), pp. 359-363, Oct. 2006.

29. B. Hassibi, B. M. Hochwald, "How much training is needed in multiple-antenna wireless links?", IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951-963, Apr. 2003.

30. M. Dong, L. Tong, "Optimal design and placement of pilot symbols for channel estimation", Proc. IEEE Int. Conf. Acoust. Speech Signal Proc. (ICASSP), pp. 2109-2112, May 2001.

31. L. Berriche, K. Abed-Meraim, J. C. Belfiore, "Cramer-Rao bounds for MIMO channel estimation", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 397-400, May 2004.

32. J. Li, C. Yuen, D. Li, X. Wu, H. Zhang, "On hybrid pilot for channel estimation in massive MIMO uplink", IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6670-6685, Jul. 2019.

33. H. V. Cheng, E. Björnson, E. G. Larsson, "Optimal pilot and payload power control in single-cell massive MIMO systems", IEEE Trans. Signal Process., vol. 65, no. 9, pp. 2363-2378, May 2017.

34. H. Q. Ngo, M. Matthaiou, E. G. Larsson, "Massive MIMO with optimal power and training duration allocation", IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 605-608, Dec. 2014.

35. H. V. Cheng, E. Björnson, E. G. Larsson, "Uplink pilot and data power control for single cell massive MIMO systems with MRC", Proc. Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 396-400, Aug. 2015.

36. O. Saatlou, M. O. Ahmad, M. N. S. Swamy, "Spectral efficiency maximization of single cell massive multiuser MIMO systems via optimal power control with ZF receiver", Proc. IEEE Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), pp. 1-5, Oct. 2017.

37. Q. Zhang, S. Jin, M. McKay, D. Morales-Jimenez, H. Zhu, "Power allocation schemes for multicell massive MIMO systems", IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 5941-5955, Nov. 2015.

38. S. Zarei, W. Gerstacker, R. R. Müller, R. Schober, "Low-complexity linear precoding for downlink large-scale MIMO systems", Proc. IEEE Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), pp. 1119-1124, Sep. 2013.

39. J. Zuo, J. Zhang, C. Yuen, W. Jiang, W. Luo, "Energy efficient downlink transmission for multi-cell massive DAS with pilot contamination", IEEE Trans. Veh. Technol., vol. 66, pp. 1209-1221, Feb. 2017.

40. T. Van Chien, E. Bjornson, E. G. Larsson, "Joint pilot design and uplink power allocation in multi-cell massive MIMO systems", IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2000-2015, 2018.

41. O. Saatlou, M. O. Ahmad, M. N. S. Swamy, "Spectral efficiency maximization for massive multiuser MIMO downlink TDD systems via data power allocation with MRT precoding", Proc. IEEE Veh. Technol. Conf. (VTC-Fall), pp. 1-5, Sep. 2017.

42. O. Saatlou, M. O. Ahmad, M. N. S. Swamy, "Optimal power allocation for massive MU-MIMO downlink TDD systems", Proc. IEEE Can. Conf. Elect. Comput. Eng. (CCECE), pp. 1-4, May 2016.

43. O. Saatlou, M. O. Ahmad, M. N. S. Swamy, "Joint data and pilot power allocation for massive MU-MIMO downlink TDD systems", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 3, pp. 512-516, Mar. 2019.

44. S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Englewood Cliffs, NJ, USA:Prentice-Hall, 2006.
45. H. Q. Ngo, E. G. Larsson, T. L. Marzetta, "The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel", IEEE Trans. Commun., vol. 61, no. 6, pp. 2350-2361, Jun. 2013.

46. A. D. Shoaei, M. Derakhshani, T. Le-Ngoc, "Efficient LTE/Wi-Fi coexistence in unlicensed spectrum using virtual network entity: Optimization and performance analysis", IEEE Trans. Commun., vol. 66, no. 6, pp. 2617-2629, Jun. 2018.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top