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Abstract

Estimation and Enhancement of Tissue Motion Using Ultrasound

Imaging

Md Ashikuzzaman

One of the major advantages of ultrasound is its ability to image at very high frame
rates, which can be exploited to track tissue motion. In this thesis, we focus on two
important applications of motion estimation, namely ultrasound elastography and
clutter suppression. In both of these applications, the tracking problem poses several
technical challenges and as such is an active field of research. In elastography, tracking
motion while a tissue undergoes some deformation reveals the physiological condition
of the tissue by mapping its mechanical properties. We process ultrasound Radio-
Frequency (RF) frames acquired before and after tissue deformation to estimate tissue
displacement and eventually tissue strain. We propose a novel ultrasound elastogra-
phy method where unlike conventional techniques, three ultrasound RF frames are
taken into account to devise a cost function consisting of data term, spatial regular-
ization terms and temporal continuity prior. We find the strain map by taking the
spatial derivative of frame to frame displacement field estimated by efficient optimiza-
tion of the aforementioned cost function. Validation with simulation, phantom and
in-vivo liver data shows that the proposed technique substantially outperforms the
state-of-the-art ultrasound elastography algorithms in terms of conventional quality
metrics such as Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR) and
Strain Ratio (SR).

In clutter suppression, enhancement of blood flow by suppressing the clutter (i.e.
non-moving stationary tissue) components is vital for assessing vascular health. In
this thesis, a novel technique for suppressing clutter in ultrasound Color Flow Imag-
ing (CFI) has also been proposed. Since the state-of-the-art Singular Value Decom-
position (SVD) based technique is highly dependent on the proper selection of the
boundaries between different subspaces, it is prone to producing nonoptimal clutter
suppressed power Doppler images. In addition, extensive manual intervention typi-

cally needed to find the correct subspace ranks makes SVD difficult to be implemented
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on clinical ultrasound machines. To overcome these limitations, we propose to look
at the clutter suppression problem from the standpoint of separating the foreground
from the background. Precisely, we adapt the fast Robust Matrix Completion Algo-
rithm (fRMC) where the in-face extended Frank-Wolfe method has been taken into
account to decompose the Casorati matrix into low rank clutter and sparse blood com-
ponents without requiring any manual tuning. We validate the proposed algorithm
with simulation, experimental flow phantom, in-vivo animal and human datasets to
show that our technique confidently attains the optimal result without requiring any

manual intervention.
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Chapter 1

Introduction

1.1 Basics of Ultrasound Imaging

Ultrasonic imaging is one of the most widely used medical imaging modalities which
operates using the transmission and reflection of high frequency sound wave. Al-
though acoustic waves which have frequencies higher than 20 kHz are considered to
be ultrasound, medical ultrasound systems utilize sound waves of the frequency range
1-20 M Hz. Ultrasound has gained popularity due to its non-invasive, cost-effective
and easy-to-use nature. In addition, numerous applications such as determining the
gender, position and overall condition of the fetus, diagnosing the physiological con-
dition of the tissue and vasculature, detection of kidney stones and prostate cancer
etc. have made ultrasound attractive for wide clinical adoption.

The probe is a very important component of an ultrasound system. It consists of a
series of piezoelectric crystals called transducers which are responsible for generating
and transmitting the sound pulse using the piezoelectric effect. Once the crystals are
electrically excited, they immediately change shape or start to vibrate. This vibration
produces acoustic signal and this signal is transmitted outward. When the probe is
attached to the body, sound wave generated from the transducers travel through the
tissue. Whenever this travelling longitudinal acoustic wave encounters a boundary
between two different types of tissue, a portion of it reflects back to the probe. The
amount of sound wave reflected back to the probe depends on the reflectivity of the
tissue. The remaining portion of the wave keeps propagating through the tissue until
it finds another tissue boundary. The portion of the sound wave which gets back to the

probe is received by the same piezoelectric crystals which generated the waves. This



reflected sound wave is then converted back to the electrical signal by the transducers.
This raw signal is known as Radio-Frequency (RF) or unprocessed ultrasound signal.
RF data is processed in several steps before being displayed on the screen of the
ultrasound machine. Logarithmic (log) compression of the envelope of the RF data
is performed internally and a two dimensional Brightness image (B-mode) is formed.
This B-mode image is shown on the screen of the ultrasound machine. A more
comprehensive overview of ultrasound imaging can be found in [1-3]. Figure 1.1
shows the picture of the Alpinion E-Cube R12 research ultrasound system at the
PERFORM centre of Concordia University.

Depending on the arrangement of the piezoelectric crystals, probes are mainly
divided into two classes: linear array and curvilinear. As the name suggests, the
transducers are organized along a line in case of a linear array probe. Usually, linear
array probes utilize high frequency ultrasound waves. Since high frequency waves
attenuate very fast, linear array probes are used to image the structures at shallow
depth. The main advantage of using a linear array probe is that it can acquire images
at high spatial resolution. In contrast to linear array probes, curvilinear probes are
used to image deeper structures such as abdomen since they deal with low frequency
waves. Although curvilinear ultrasound probes are capable of collecting images with
a wide field of view, they suffer from lower resolution. Figure 1.2 shows the pictures
of linear array and curvilinear probes. The aforesaid two types of probes do not work
for organs which are only observable from a small acoustical window because of their
large footprint. For instance, it is very difficult to perform cardiac or transcranial
imaging with linear or curvilinear ultrasound probes. Having a small footprint, a
phased array probe resolves this issue by imaging through small acoustic window
with wide field of view and low frequency. A depiction of linear, curvilinear and
phased-array ultrasound probes is provided in Figure 1.3. In addition, some probes
are specially designed to be able to get closer to the target organ through different
openings of the body. Furthermore, 3D ultrasound image can be collected by using
a probe containing a 2D array of transducers. More details about ultrasound probes

can be found in [4].



Figure 1.1: Alpinion E-Cube R12 research ultrasound machine at PERFORM centre, Con-
cordia University.



(a) Linear array probe (b) Curvilinear probe

Figure 1.2: Different types of ultrasound probes. The left and right figures show linear
array and curvilinear probes respectively.

Figure 1.3: From left to right: linear, curvilinear and phased-array ultrasound probes and
images collected by them. Picture courtesy of Luca et al., 2018.



1.2 Motion Tracking and Enhancement Using Ul-

trasound

Over the last few decades, tracking and enhancing the tissue motion using ultrasound
have facilitated the diagnosis of different disease states. Ultrasound elastography is a
promising technique to track tissue motion for detecting the physiological condition
of the tissue undergoing deformation. On the other hand, enhancing the blood flow
by suppressing the clutter components of ultrasound color flow images have been
successful in characterizing the vasculature. We provide a brief overview of these two

different fields below.

1.2.1 Ultrasound Elastography

Ultrasound elastography is a non-invasive method to infer the elasticity of a tissue un-
der consideration. Elastography has become increasingly popular in disease diagnosis,
image-guided surgery and many other clinical interventions. Ultrasound elastography
has been successful in diagnosing cyst in the liver [5,6], solid and fluid filled breast
lesions [7]. Since the malignant cells are prone to be harder than the normal cells [8],
tissue elasticity mapping is a promising tool for classifying malignancy. Ultrasound
elastography can be categorized into several classes: dynamic [9], quasi-static [5-7],
Acoustic Radiation Force Impulse Imaging (ARFI) [10] etc. This thesis focuses on
quasi-static elastography technique. Two ultrasound RF frames are taken into con-
sideration in quasi-static ultrasound elastography: one before and another after the
tissue deformation. The displacement field between these two frames are calculated
using a speckle tracking algorithm. Spatial differentiation of this displacement field
is performed to obtain the strain map which is capable of distinguishing the patho-
logical tissue from the normal one. A schematic depiction of the steps involved in

quasi-static ultrasound elastography is presented in Figure 1.4.

1.2.2 Ultrasound Clutter Suppression

Suppressing clutter components in ultrasound Color Flow Imaging (CFI) is necessary
to ensure a clear visualization of the vascular network. An unambiguous view of the
vascular structure is important to assess diabetes and its related diseases, ischemia,

aneurysm and coronary heart diseases [11-14]. Blood exhibits a different frequency
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Figure 1.4: Schematic depiction of quasi-static ultrasound elastography. Courtesy: Treece
et al., Interface Focus, 2011.
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Figure 1.5: Schematic presentation of ultrasound clutter suppression.

spectrum than normal tissue since it has higher velocity. A difference in strength of
backscattered signal is another important factor behind the frequency spectra being
different. This difference in frequency components was initially exploited to reject
clutter by high pass filtering [15,16]. However, high pass filtering fails to find the cor-
rect boundary between the frequency components corresponding to blood and clutter
in cases of dominant tissue motion or unintentional hand motion of the sonographer
since the frequency spectra overlaps with each other. To mitigate this drawback, eigen
based clutter filtering methods have been proposed [17-23]. In these techniques, the
blood subspace is separated from the clutter based on the eigen components of the
data matrix (see Figure 1.5). Although these methods are capable of distinguishing
blood from clutter adaptively, extensive manual tuning is needed to find the proper

boundary between blood and clutter subspaces.

1.3 Objectives of the Thesis

This objective of this thesis is to exploit the high frame-rate of ultrasound to enhance
its capabilities. To that end, we focus on two active fields of research, namely elas-
tography and clutter suppression. First, we propose a novel ultrasound elastography

algorithm that unlike conventional methods, utilizes three ultrasound RF frames in a



novel cost function. This cost function consists of echo intensity similarity terms, spa-
tial continuity terms and temporal regularization terms. This non-linear cost function
has been optimized efficiently and a sparse system of equations has been formulated
to solve for millions of variables for obtaining the frame to frame displacement fields.
Adaptive spatial regularization has been taken into account to amend the possible
underestimation of the displacement. In addition, an adaptive temporal continuity
term is introduced to handle the instances of temporal decorrelation. The parame-
ters of the technique have been tuned carefully to obtain the optimal result for the
displacement map. Finally, the displacement field has been differentiated spatially to
find the strain image. The method has been validated with simulation data contain-
ing a soft inclusion. Different levels of noise has been added to the simulation data to
show the robustness of the proposed method to noise. In addition to simulation, re-
sults have been reported for experimental breast phantom. Finally, the in-vivo (data
collected from a living organism) feasibility of the technique has been demonstrated
by validating against three sets of liver cancer data.

Second, we develop a novel technique to suppress clutter components in ultrasound
color flow imaging. The primary goal of this method is to facilitate clutter rejection
without requiring any manual tuning. The clutter suppression problem has been
solved by modelling the steady clutter and blood as low rank and sparse components
respectively. Specifically, an optimization problem formulated with the fast Robust
Matrix Completion (fRMC) algorithm [24] has been solved by in-face extended Frank-
Wolfe algorithm [25] to extract the sparse blood component from the spatio-temporal
data matrix. This method requires no manual intervention and is capable of obtaining
clutter suppressed power Doppler images as good as the conventional Singular Value
Decomposition (SVD) and Principal Component Analysis (PCA) based techniques.
Validation with simulation, phantom, in-vivo animal and human datasets proves the
viability of the proposed method. Extensive quantitative and statistical analysis have

been performed to validate the method and compare it to previous work.

1.4 Organization of the Thesis

This thesis has been outlined as follows. In Chapter 2, a novel real time quasi-
static ultrasound elastography algorithm GUEST: Global Ultrasound Elastography
in Spatial and Temporal Domains [26] has been presented. Chapter 3 describes
RAPID: Robust mAtrix decomPosition for suppressIng clutter in ultrasounD [27],



a novel algorithm for ultrasound clutter rejection. This work is an extension of [28].
Chapter 4 wraps up the thesis with possible future work and concluding remarks.
In Appendices A and B, additional results and analyses have been presented for

Chapter 2 and Chapter 3 respectively.

1.5 Publications

This thesis has culminated in the following publications:

e M. Ashikuzzaman, C. J. Gauthier, and H. Rivaz, “Global Ultrasound Elastog-
raphy in Spatial and Temporal Domains”, IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control (TUFFC), vol. 66, no. 5, pp. 876-837,
2019.

e M. Ashikuzzaman, C. Belasso, C. J. Gauthier, and H. Rivaz, “Suppressing clut-
ter components in ultrasound color flow imaging using robust matrix completion
algorithm: Simulation and phantom study”, in IEFE International Symposium
on Biomedical Imaging (IEEE ISBI), Venice, Italy, 2019.

e M. Ashikuzzaman, C. J. Gauthier, and H. Rivaz, “Temporally Regularized
Global Ultrasound Elastography”, 16th International Tissue FElasticity Con-
ference (ITEC), Avignon, France, 2018 (Selected as a finalist for the best

student paper award).

e M. Ashikuzzaman, C. Belasso, M. G. Kibria, A. Bergdahl, C. J. Gauthier and H.
Rivaz, “Low Rank and Sparse Decomposition of Ultrasound Color Flow Images
for Suppressing Clutter in Real Time”, IEEFE Transactions on Medical Imaging
(TMI), revision under review, 2019.



Chapter 2

Global Ultrasound Elastography

in Spatial and Temporal Domains

In this chapter, a novel computationally efficient quasi-static ultrasound elastogra-
phy technique is introduced by optimizing an energy function. Unlike conventional
elastography techniques, three Radio-Frequency (RF) frames are considered to de-
vise a non-linear cost function consisting of a data-intensity similarity term, spatial
regularization terms and most importantly, temporal continuity terms. We opti-
mize the aforesaid cost function efficiently to obtain Time Delay Estimation (TDE)
of all samples between the first two and last two frames of ultrasound images si-
multaneously, and spatially differentiate the TDE to generate axial strain map. A
novelty in our spatial and temporal regularizations is that they adaptively change
based on the data, which leads to substantial improvements in TDE. We handle the
computational complexity resulting from incorporation of all samples from all three
frames by converting our optimization problem to a sparse linear system of equa-
tions. Consideration of both spatial and temporal continuity makes the algorithm
more robust to signal decorrelation than the previous algorithms. We name the pro-
posed method GUEST: Global Ultrasound Elastography in Spatial and Temporal
directions. We validated our technique with simulation, experimental phantom and
in-vivo liver data and compare the results with two recently proposed TDE methods.
In all experiments, GUEST substantially outperforms other techniques in terms of
Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and Strain Ratio (SR)

of the strain images.



2.1 Introduction

Ultrasound Elastography is a non-invasive medical imaging technique to infer mechan-
ical properties of tissue by utilizing ultrasound Radio-Frequency (RF) data. Elastog-
raphy is increasingly being applied in diagnosis, image-guided surgery and numerous
other clinical applications [29,30]. Among several types of clinically adopted elas-
tography techniques, it can broadly be classified into two classes: “dynamic” which
involves constant monitoring of tissue response to time-varying forces to quantify the
mechanical properties of the tissue, and “quasi-static” which estimates slow defor-
mation of tissue due to an approximately constant force [31-34]. Within the broad
class of quasi-static elastography, our work is based on free-hand palpation elastogra-
phy. Free-hand palpation elastography often suffers from decorrelation between pre-
and post-compression images due to out-of-plane motion of the probe, blood flow in
vessels, incoherent motion of fluid in fluid-filled lesions and the 3D nature of tissue
deformation even with purely an axial probe motion [5]. Despite these drawbacks,
this method has generated interest due to its ease-of-use, since free-hand palpation
elastography involves holding the probe and pressing the region of interest without
requiring any additional tool [35-39)].

Time Delay Estimation (TDE) is a necessary step in all ultrasound elastography
methods. Unfortunately, TDE is an ill-posed problem because one sample of RF data
by itself does not provide enough information for tracking. Therefore, two distinct
classes of methods have emerged to solve this problem. In the first class, RF data
is divided into several windows and it is assumed that the displacements of all sam-
ples in a particular window are same. The additional samples in the window provide
enough information for tracking [7,40-43]. The second class penalizes displacement
discontinuity between neighboring samples and calculates a displacement estimate for
all samples of RF data. These methods are named regularized optimization-based or
energy-based techniques [5,6,44-47]. The windowing in the first class and disconti-
nuity penalty in the second class can be considered as hard and soft regularization
respectively. Between the two aforementioned techniques, window-based or block
matching algorithms are more commonly used. In window-based techniques, RF
data is divided into several blocks and displacement of each block is found either by
looking at the maximum cross correlation [32,48-51] or zero phase crossing [43,52,53].

Block matching algorithms make an inherent compromise between spatial resolution
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Figure 2.1: Estimation of displacement field in window-based, DPAM, GLUE and GUEST
algorithms. Blue dots represent samples of RF data used in displacement estimation, and
the dashed window shows how the data is divided to estimate displacement fields. In (a), the
data in the window is used to estimate the displacement of the central sample. In (b) and
(¢), displacement of all samples in an RF-line and the entire image are used, respectively,
to estimate the displacement field of all these samples simultaneously. In (d), three RF
frames are considered and both spatial and temporal continuity constraints are enforced.
Displacement of all samples in these frames are calculated simultaneously.

and accuracy based on the size of window. On the one hand, a more accurate displace-
ment field can be obtained if the window size is ten times the ultrasound wavelength
or even larger [54]. The accuracy is higher because a large correlation window reduces
the estimation variance, also known as jitter error [51,55]. Since the RF signal is non-
stationary, a large window induces signal decorrelation [51,56] and hence amplifies
noise. On the other hand, better spatial resolution can be achieved by sacrificing ac-
curacy and selecting smaller windows. The displacement estimation can be performed
in either the axial direction [32,57,58] or both axial and lateral directions [59-61].
The downside of the two-dimensional search is that it is computationally more ex-
pensive. In addition, the lateral displacement field is substantially less accurate than
the axial displacement field due to the low resolution of ultrasound in this direction.

TDE techniques that are based on minimization of cost functions are robust to
signal decorrelation as the displacement continuity assumption is exploited to reduce
estimation variance. The drawback of optimization based techniques lies in the fact
that these techniques are hard to implement in real-time due to their computational
complexity [45,62]. This problem can be alleviated by using Dynamic Programming
(DP) [44] which efficiently calculates the integer displacement field between two RF
frames. However, integer displacement field alone does not suffice for the accurate and
smooth TDE requirement. Efficient minimization of a cost function involving data

and displacement continuity terms to calculate the subsample displacement field was
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introduced in Dynamic Programming Analytic Minimization (DPAM) [5]. DPAM
takes the initial integer displacement field from DP [44], and calculates the subsam-
ple axial and lateral displacements of all samples of one column of RF data. Since
each column of RF data is optimized independently, discontinuity between the RF
lines leads to some vertical stripes in the TDE. GLobal Ultrasound Elastography
(GLUE) [6] resolved this drawback by considering the whole image for calculating
the subsample displacement field. It is worth mentioning that, like DPAM, GLUE
takes the initial displacement field from DP.

Though the displacement field estimated by GLUE is spatially accurate and
smooth, information in the temporal domain still remains unexploited. In this chap-
ter, we introduce a novel technique called Global Ultrasound Elastography in Spatial
and Temporal directions (GUEST) where three consecutive RF frames are incorpo-
rated instead of two to estimate the axial and lateral displacement fields. We utilize
information in 3 frames, and enforce temporal continuity constraints on the displace-
ment field to simultaneously estimate two 2D displacement fields. In other words,
assuming that the 3 frames are I;, I, and I3, and the 2D displacement fields between
I, and I, is d', and between I, and I3 is d?, we impose temporal constraints on d'
and d?. Window-based methods, DPAM, GLUE and GUEST can be summarized as

follows (see also Figure 2.1):

¢ Window-based methods: The displacement of each window (few ultrasound

wavelengths) is calculated together.

e DPAM: Displacements of all samples of a single RF line are calculated together.

Axial continuity is utilized to reduce estimation variance.

e GLUE: Displacements of all samples of a single image are calculated together.

Axial and lateral continuities are utilized to reduce estimation variance.

e GUEST: The displacement of all samples of multiple images is calculated to-
gether. Axial, lateral and temporal continuities are utilized to reduce estimation

variance.

In addition to utilizing multiple images, another contribution of this work is the
introduction of adaptive regularization terms. Instead of assuming equal displace-
ments in the spatial domain or constant velocity in the temporal domain, we propose

data-driven spatial and temporal regularization terms. Exploiting multiple images
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and using adaptive regularization terms leads to substantial improvements in the
quality of the strain images in GUEST compared to GLUE. Specifically, adaptive
spatial regularization prevents underestimation of the displacement field. Adaptive
temporal regularization accounts for variations in probe velocity, which leads to dif-
ferent strain levels between consecutive frames. We describe these two regularization
terms in the Methods Section.

TDE using three images has been considered before [47]. However, there are two
major differences. First, TDE optimization was limited to single RF lines like DPAM.
Second, a linear stress-strain relationship was assumed, which may not always hold.
GUEST is validated using simulation, phantom and in-vivo data, and is compared
to recent window-based and optimization-based methods [6,7]. GUEST substantially
outperforms both methods in all experiments. An implementation of GUEST can be

found at https://users.encs.concordia.ca/~hrivaz/Ultrasound Elastography/.

2.2 Methods

Assume I; and I, are two RF frames of size m x n collected from a tissue before
and after deformation respectively. Our aim is to calculate the axial and lateral
displacement fields @ and [ which accurately map the pre-compression image I; to
the post-compression image I,. After finding the displacement fields, it is common to
spatially differentiate them to obtain strain images. We first briefly explain GLUE [6],
a closely related previous technique which calculates a and [. We then present GUEST
and derive the mathematical equations to calculate displacement fields while enforcing

spatio-temporal continuity constraints.

2.2.1 Global Time Delay Estimation (GLUE)

GLUE uses DP [44], an efficient non-iterative method for global optimization, to
get initial time delay estimations in axial (a;;) and lateral (I;;) directions, where
1 <i<mand1 < j < ndenote the location in the image. DP alone provides integer
displacement estimates, which is not enough to provide an accurate displacement
estimation. To this end, GLUE adds subsample estimation Aa(7,j) and Al(i,j) to
DP displacements. Aa(i,j) and Al(i,7) are obtained from the minimization of the

following regularized cost function:
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Figure 2.2: An illustration of the cost function.

C’(Aal I Aamyn, All,l) ceny Alm,n) =

Z Z {[11(i,7) — I(i + a;j+Aaij,j+1li; + Alm’)P

ar(aij + Aai; — a1 — Aag_1;)? (1)
+ ozg(a” + Aajj; —a; -1 — Aam_l)z
b By + Al — Loy — Al )
+ Ba(lig + Aliy —lij1 — Al j1)*}

where o and ay are regularization parameters for axial displacements, and f; and
[, are regularization parameters for lateral displacements. By minimizing this cost
function, GLUE converts the optimization problem into a linear set of equations of
the classical form Ax = b. By solving the aforemention linear set of equations, GLUE
finds the subsample displacement field and adds it to the initial estimate to obtain

total displacement field.

2.2.2 GUEST: Global Ultrasound Elastography,
Spatio-Temporal

We utilize three frames during tissue compression, and enforce adaptive spatial and
temporal priors on the displacement field. This is in contrast to GLUE, which only
considers spatial priors, and further does not adapt the priors to better represent the
data. Let I,, I, and I5 be three RF frames, and a', ', a? and [? be axial and lateral
DP integer displacement estimates from frame 1 to frame 2, and from frame 2 to
frame 3 respectively.

GUEST simultaneously estimates refinements Aa', Al', Aa? and Al? and adds

them to integer DP displacement fields. To that end, we construct a cost function
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Table 2.1: Definition of the variables, parameters, vectors and matrices

Notation Definition

I, I, I3 RF frames

aj, az; Axial displacement estimates from DP

l},j, lﬁ ; Lateral displacement estimates from DP
Aa, ;, Aa;;  Subsample axial displacements from GUEST
Alj;, Al7;  Subsample Lateral displacements from GUEST
D, Data intensity similarity term

R Spatial continuity term

R, Temporal continuity term

a1, Qo Axial regularization parameters

B, Ba Lateral regularization parameters

s, O3 Temporal regularization parameters

v el Adaptive spatial regularization parameters
Yas Vi Adaptive temporal regularization parameters
D Matrix containing regularization parameters
H, H Matrices containing data derivatives

14 Vector containing data differences

d Vector containing TDEs from DP

Ad Vector containing subsample TDEs

by Adaptive temporal continuity vector

by Adaptive spatial continuity vector

including data terms, spatial continuity terms and temporal continuity terms as fol-

lows (see also Figure 2.2):

C(Aayy, Alyy, ... Aay, AL, Aaf AL A

m,n? m,n’

Ali%,n) = Z Z{Dg + Rs + Rt}

j=1i=1

Here, D, stands for data of the GUEST method and is defined as follows:

Dy = [I(i,§) — Ii(i — a} ; — Aaj;,j — Ii; — Al )
+ [I5(i,5) — I3(i + a;{j + Aaij,j + lij + Alij)]2
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Figure 2.3: Flow diagram demonstration of the proposed GUEST algorithm.

R, and R, are adaptive spatial and temporal regularization terms respectively and

are elaborated below.

Adaptive Spatial and Temporal Regularizations

Spatial regularization terms considered in GLUE assumed that displacement of a
sample should ideally be the same as the displacement of neighbouring sample. How-
ever, this assumption is not necessarily correct in elastography. Often, such constraint
results in the underestimation of the displacement field [5]. To compensate for the
anticipated underestimation, we introduce adaptive spatial regularization terms of
the form a(disp; — disp;_, — ¢€)? instead of a(disp; — disp;_1)?, where € is the average
difference between the displacement of two neighboring pixels ¢ and i — 1. As such,

the spatial regularization Ry is defined as follows:

R, = oq(a + Aa ' —Aa) 1 €h)?

+ al(w 4 Aa- C—a; 1] Aal P 62)2

+anag; +Naj;—aj; o —Aay; ) —e,)?

+ Oég(a + Aa 123—1 — Aa?,j—l —e2)? n
+5l( +Al'1 — I 1j — Al 1j — )

+61(12 + AL =17, A =)

+ Bl + AL =1 — AL —¢)°

+ 52(12 + Al? l?] 1 Al?] L —6)°

where aq, ag, (1, P2 are axial and lateral regularization weights respectively. eﬁ and
ef are axial and lateral offset terms respectively that adaptively change based on

the level of strain. The superscript k£ is 1 when comparing [, to Is, and is 2 when
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comparing I, to Is. They are average difference in axial and lateral displacements

between two neighboring samples and are calculated as follows:

E_ k k_gk
k _ Gp—af E_ =l
€= "Tm1 9T (5)

Before introducing the temporal regularization, it is useful to revisit some basic
physics concepts. Both a and [ are displacements with a unit such as mm. However,
the ultrasound frame rate usually does not change during a single data collection and
therefore a and [ can also be considered velocity with a unit such as mm/T, where T
is the time interval between two frames. Now a? — a' is the changes in velocity and
therefore can be considered as acceleration with a unit such as mm/T?. In free hand
palpation elastography, it is unlikely that velocity of the probe is constant. Therefore,
we introduce an adaptive temporal regularization that takes into account non-zero

accelerations. As such, R; is defined as:

_ 2 2 1 1 2
Ry = 043(%]' + Aai,j — Aaz}j ~ Ya)

A (6)

where, a3 and (3 denote temporal regularization weights in the axial and lateral
directions respectively. Intuitively, instead of penalizing a® —a' or [? — ', the 7 terms
allow them to be different without any penalty. 7, and 7, approximate axial and

lateral accelerations respectively and are defined as follows:

3

n m n

Z E{Kg*af,j—Kg*aij} E _ {Kg*lf,j_Kg*lz‘l,j} (7)
_J= _ j=1li=1

Yo = mn y N = mn

,_.
.
Il

—

where K, is a Gaussian kernel, which is used to average displacement estimates to

obtain an estimate of acceleration with small variance.

Optimization of the Cost Function

Ry and R, in (2) are quadratic in the unknowns, but the data term D, is highly
nonlinear since all the unknowns appear inside the nonlinear “functions” I, I, and
I3. Our goal is now to simplify this nonlinear function into a quadratic function by

using 2D Taylor series expansion of the data term as follows:
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Dy~ 3" 3 Al(i,j) = (i — aj;,5 = 1) + Aaj 1,

+[L(i,§) — L+ a};, 5 + 12;) — Aa} I, — AIZ I3 *) (8)

This equation is now quadratic in unknowns, and therefore, the cost function of Eq. 2

can be optimized by setting the partial derivatives with respect to unknowns to zero.

Namely,wesetmf—_—O, ()All = ,daACz OandjTCI%—Ofori=1 2,3,....,m and

1=1,2,3,...,n. We organize unknown Subsample dlsplacements of 2mn samples in
Ad = [Aalvl, Alfy, ..., Aay, AL Aal LA A Al2 )" and the known

mn’ m'l‘L’
initial estimates in d = [a] 1.0 1, ..., Qs Lyps @15 005y G0 s lfn 27 After some
algebraic operations, we get:
(H + D)Ad = Hyp — Dd + b, + b, (9)

H = diag(F}, F3) is a symmetric tridiagonal matrix where F; = diag(h, (1 1),
h;Q(l, 2), .., hf(m, n)). Here, t € {1,3}. The entries of F; are defined by:

;2 ’ 7

h;Q(Z]) _ / Ita (Z j) It,a(l7])1tl(z j) (10)

It,a(iJ)It,l(Zvj) [tl (Z ])

where I, ,(i,5) and I, (i, j) denote the derivatives of I, in the axial and lateral direc-
tions at the point (¢ + a;j,j + 1; ).

Hy = diag(Fy, Fy) is a diagonal matrix where F, = diag(1, ,(1,1),1,,(1,1), I, ,(1,2),
It’J(l, 2), .0y Im(m, n), Lﬁ,l(mv n)) and

n= o gg]T (11)
where

B

mn (12)

1—aj 117,

1
o= Iy -1, U O
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_Ozl-i-ozz-i-ag 0 —a 0 0 0 T
0 B1+ B2+ B3 0 —B2 0 0
—an 0 a1 + 209 + as 0 —ay - 0
Q = 0 —f2 0 BL+2824+B: 0  —fo 0
—B2
. —Qg 0 a1 + a2 + a3 0
L 0 0 — B2 0 B1 + B2 + B3 |
(13)
(201 + a2 + a3 0 —az 0 0 0 i
0 261 + B2+ B3 0 —B2 0 0
—Qg 0 2c01 + 22 + a3 0 —Q2 0
R = 0 B 0 B1+28+6 0 B 0
—B2
—ag 0 2a1 + a2 + a3 0
L 0 0 —p2 0 281 + B2 + B3 |
(14)
. 1.1 14+a2 | 1+12 , m+a2, , n+2
gs = [12, — I, Lt I;nn — I (15)
b, a vector of size 4mn, is defined as:
T
b = [—el —€y ... —€ —€3 € € ... € 62] (16)

where €; = a3y, and €, = f37;. The adaptive regularization term b, is defined as:

b= b b (17)
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Here, b, (k € {1,2}) is a vector of size 2mn. by, is defined as:

bk = Dl Uhia -+ i blecnd} (18)

bE s D and bE . are vectors of size 2n and are defined as follows:
- —(a1 + el —(B1 + Ba)ef, —aach, —Pac', ..., (19)
i —aa€l, —Boe), —ai€l + asel, — i€} + Paef
bsﬂd - [—CYQGI; —62€é€ 0O ... 0 062612 BQEﬂ (20)
; (a1 — ag)el, (61 = Ba)ef, cauel, Bref, .. .,
bena = kopo ko k ko ok k (21)
1€, P1€] 1€, + Qaey, P16 + Pa€
D is defined as:
A B
D= (22)
B A
A is: ) -
Ql S/ O/ O/
s R S
o s R
A= (23)
RS
_O/ O/ S/ Q/_
S' = diag(—ay, —Bi,...,—ai, —31) and O is zero matrix of size 2n x 2n. B =
diag(S",S",...,8") is a diagonal matrix of size 2mn x 2mn where
S// = diag(—()ég,—,63,...,—@3,—53). (24)

Q" and R’ are tridiagonal matrices of size 2n x 2n and are defined as Eq. 13 and 14
respectively. For a quick look-up, we have provided short definitions of the variables,
parameters, vectors and matrices associated with our technique in Table 2.1. Fur-
thermore, for a better understanding of our method, we present a flow diagram in

Figure 2.3.
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2.2.3 Ultrasound Simulation

The simulation phantom is generated using Field II, a commonly used ultrasound
image simulator [63]. Once the phantom is generated, it is compressed by ABAQUS
(Province, RI), a FEM package. The mechanical property of the simulated phantom
is assumed to be homogeneous with a cylindrical inclusion with an elasticity of 0 kPa
in the middle (i.e. a hole). The elasticity modulus of the background is considered
to be 4 kPa. The cylindrical inclusion simulates a vein with a diameter of 8 mm
which easily collapses under pressure. For simulation in Field II, the parameters
of the ultrasound probe are set to values consistent with a commercial probe. The
frequency of the probe is 7.27M H z, the sampling rate is 40M Hz and the fractional

bandwidth is 60%. The number of active elements for beamforming is set to 64.

2.3 Results

For evaluating the efficacy of our algorithm, we have tested our algorithm on Fi-
nite Element Method (FEM) simulation data, a CIRS tissue-mimicking breast phan-
tom (Norfolk,VA) and clinical data. We have compared the results with two previ-
ously published algorithms Hybrid [7] (a window-based method) and GLUE [6] (an
optimization-based method). Along with qualitative comparison by inspection, we
have used three conventional quality metrics Signal to Noise Ratio (SNR), Contrast
to Noise Ratio (CNR) [32] and Strain Ratio (SR) to allow quantitative comparisons:

C 2(5, — §)?

CNR = — =
N oy + 02

SNR = il

SR = (25)

Sp

Q | »

where §, and 3; are spatial strain average of background and target, 03, and 0,2 rep-
resent spatial variance of background and target, and s and o denote spatial average
and standard deviation of background window respectively. It is worth mentioning
that windows where the underlying true strain is relatively uniform should be chosen
to calculate SNR and CNR.

For simulation and phantom experiments, spatial regularization parameters oy, ag,
B, B2 are set to 5, 1, 5, 1 respectively. For in-vivo experiments, «; and 3, are
fixed at 20 while the other two spatial regularization parameters are kept the same.
The temporal regularization parameters as and [3 are fixed at 20 for simulation

and 1.5 for phantom and in-vivo experiments. For comparison purposes, results
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for GLUE and Hybrid are also generated. The tunable regularization parameters
for GLUE are set to the values as described in GLUE [6], which are also different
for different applications. Ultrasound machines have presets for imaging different
organs. For the Hybrid method, optimal results are obtained considering window
size, inter-window shift, nearest neighbor factors and weighting factors of 380, 32, 5
and 0.4 respectively for simulation and phantom experiments. For in-vivo data, the
Hybrid method produces optimal strain images when nearest neighbor factors are
set to 3 while all other parameters are similar to those of simulation and phantom
experiments. We incorporate three frames for our proposed method, and therefore
have two axial strain fields. To keep this chapter concise, we show only one of the

strain images.

2.3.1 Simulation Results

We compress the simulation phantom by a maximum of 1% with the strain between
two consecutive frames set to 0.5%. While dealing with real data, we encounter
various unknown types of noise. Hence it is more realistic to add random noise to
simulation RF data. We add two levels of noise with uniform distribution having
Peak Signal-to-Noise Ratio (PSNR) values of 18.75 dB and 10.78 dB. Figure 2.4
shows the ground truth axial strain (i.e. the FEM strain).

Along with the results for the case of no additive noise, we report the results for the
aforesaid two levels of additive noise. Figure 2.5 shows the axial strain images for
Hybrid, GLUE and GUEST. For all of the cases, GUEST produces visually better
strain images than Hybrid and GLUE. In Figure 2.5, the inclusion edge might be
diffused due to two factors: first, the regularization terms in GLUE and GUEST;
second, the large kernel size of the least squares method for generating strain images
from displacement estimates. Table 2.2 shows the quantitative comparison of perfor-
mance among the three methods. GUEST outperforms Hybrid and GLUE in terms
of SNR, CNR and SR. It is worth noting that since our inclusion in this experiment is
easily deformable, higher SR value corresponds to a better strain image. The target
and background windows for calculating these quantitative values are demonstrated
in Figure 2.5(b).

To provide a more comprehensive view of CNR values, histograms are shown in Fig-
ure 2.5. We have moved the small blue colored window in Figure 2.5(c) within a

big window to take 6 target windows. At the same time, we sweep the small red
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Figure 2.4: Ground truth axial strain from FEM.

colored window within 2 large windows to consider 20 background windows. We have
calculated the CNR value for every combination of target and background windows,
which results in 120 total combinations. The histograms for this 120 CNR values
show that, at lower CNR values, GUEST has a lower frequency than the other two
algorithms under consideration. The histograms show that GUEST has much higher
frequencies than Hybrid and GLUE at higher CNR values. We have performed sta-
tistical analysis using the paired t-test with the aforementioned 120 CNR values. For
the case of no additive noise, GLUE is statistically better than the hybrid method

Table 2.2: SNR, CNR and SR of the strain images for simulation phantom. CNR is cal-
culated from blue colored target windows and red colored background windows depicted
in Figure 2.5(b). SR is calculated on blue colored target windows and white colored back-
ground windows. SNR is calculated on red colored background windows. Elasticity moduli
of inclusion and background are 0 kPa and 4 kPa respectively.

No additive noise PSNR = 18.75 dB PSNR = 10.78 dB

SNR CNR SR SNR CNR SR SNR CNR SR
Hybrid 1.80 16.57 3.31 4.15  13.07 2.53 fails fails  fails
GLUE 190 17.27 2.90 1.89 15.89 2.81 1.63  13.07 2.75
GUEST 5.72 23.64 3.06 5.09 23.67 3.00 2.28 20.02 3.05
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Figure 2.5: Axial strain images and histograms of CNR values for the simulation phantom.
Row 1 corresponds to the case of no additive noise. Rows 2 and 3 correspond to PSNR
values 18.75 dB and 10.78 dB respectively. Columns 1-3 show strain images for Hybrid,
GLUE and GUEST respectively. Column 4 depicts the histograms of CNR values. (m)
shows the color bar for strain images.



with a p-value of 0.2551. For this case, GUEST is statistically better than GLUE
with a p-value close to zero. For both PSNR values of 18.75 d B and 10.78 d B, GLUE
is statistically better than the hybrid method with p-values close to zero. In addition,

GUEST statistically outperforms GLUE with p-values nearly zero.

2.3.2 Experimental Results

The phantom experiment was carried out at PERFORM centre, Concordia Univeristy.
RF data was collected using an E-Cube R12 research ultrasound machine with an
L3-12H linear array probe at the center frequency of 10M Hz and sampling rate
of 40M Hz. Clinical data was collected at Johns Hopkins Hospital from a research
Antares Siemens system at 6.67M Hz center frequency with a VF 10-5 linear array

at a sampling rate of 40M H z.

Phantom Results

Compression was performed on a tissue-mimicking breast phantom made from Zerdine®
(Model 059, CIRS: Tissue Simulation & Phantom Technology, Norfolk, VA) with
Young’s elasticity modulus of 20 + 5 kPa corresponding to the background, which
mimics the ultrasound reflective properties of average human breast. The elasticity
modulus of the spherical hard inclusion is at least twice as large as the modulus of the
background. Three consecutive frames are selected to generate axial strain images.
Axial strain images for phantom data are provided in Figure 2.6. Quantitative values
of image quality in terms of SNR, CNR and SR are represented in Table 2.3. CNR
is calculated between white colored target windows and red colored background win-
dows, whereas SR is calculated from white colored target windows and blue colored
background windows (shown in Figure 2.6(b)). SNR is calculated for background
windows only. It is clear that GUEST produces less noisy images with sharper edges.
SNR and CNR values support our visual assessment by showing substantially higher
numbers for GUEST compared to both the hybrid method and GLUE. In this ex-
periment, the inclusion being stiffer than the background, the better strain image
provides a lower SR value. Hence, according to Table 2.3, SR values depict the fact
that GUEST outperforms Hybrid and GLUE.

Similar to the simulation experiment, we have calculated CNR values for 120 com-
binations of target and background windows (6 target and 20 background windows)
shown in Figure 2.6(c). We show the histogram with the CNR values in Figure 2.6(d).
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Figure 2.6: Axial strain images and histogram of CNR values for the CIRS breast clas-
tography phantom. Columns 1 to 3 show strain images for Hybrid, GLUE and GUEST
respectively. Column 4 represents the histogram of CNR values. (e) represents the color
bar.

Table 2.3: SNR, CNR and SR of the strain images for experimental phantom. CNR is
calculated from white colored target windows and red colored background windows depicted
in Figure 2.6(b). SR is calculated between white colored target windows and blue colored
background windows. SNR is calculated on red colored background windows.

SNR CNR SR
Hybrid 16.26 3.11  0.79
GLUE 1551 544 0.72
GUEST 19.91 6.51 0.65

GUEST has higher frequency in higher CNR values and lower frequency in relatively
lower CNR values. This complete quantitative analysis of the overall image shows
that GUEST performs better than GLUE and Hybrid. To compare different methods,
we performed paired t-test. GLUE statistically outperforms the hybrid method with
a p-value close to zero. In addition, GUEST is statistically better than GLUE with

a p-value in the vicinity of zero.

In-vivo Results

For the clinical study, in-vivo data were collected from three patients undergoing
open-surgical RF thermal ablation for liver cancer at Johns Hopkins Hospital. Full
details of the experimental procedure are elaborated in [5]. The study was approved

by the institutional review board and informed consent was obtained from all patients.
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For the administration of RF ablation, RITA Model 1500 XRF generator (Rita Med-
ical Systems, Fremont, CA) was used. The tissue was compressed simply by pushing
the probe against the liver with the hand-held probe at a frequency of approximately
1 compression per 2 sec. The location of the tumor and the small surgical opening
resulted in compressions with substantial out-of-plane motion of the probe. Further-
more, hepatic blood flow and other biological sources introduced additional sources
of noise.

The B-mode and strain images for patient 1 are shown in Figure 2.7. GLUE and
GUEST provide substantially better visualizations of the tumor compared to the B-
mode image. From Table 2.4, one can see that GUEST outperforms both the hybrid
method and GLUE. Target and background windows for quantitative comparison are
shown in Figure 2.7(c). Figure 2.8 presents B-mode and strain images for patient 2.
The strain image from GUEST is less noisy than for the hybrid method and GLUE.
Although the Hybrid method provides the most noisy strain image, it might show
lesion boundary more clearly. This clearer lesion boundary could be due to the post-
processing steps performed in the Hybrid method. The values in Table 2.4 show that
GUEST substantially outperforms both the hybrid method and GLUE in terms of
SNR, CNR and SR. Target and background windows for calculating SNR and CNR
are marked in Figure 2.8(b) while target and background windows for calculating SR
are indicated in Figure 2.8(c).

Similar to the simulation and phantom experiments, the histogram analysis for 120
CNR values (6 blue target and 20 red background windows shown in Figure 2.7(d) and
Figure 2.8(d)) is performed for data both from patient 1 and patient 2 (Figure 2.7(e)
and Figure 2.8(e)). In both cases, most high CNR values are observed with GUEST.
For CNR values obtained from patient 1, GLUE performs statistically better than the
hybrid method with a p-value nearly zero. GUEST statistically outperforms GLUE
with a p-value around zero. For 120 CNR values from patient 2, GLUE is statistically
better than the hybrid method with a p-value of 5.2270 x 107°. GUEST is better
than GLUE with a p-value close to zero.

B-mode and axial strain images for patient 3 from GLUE and GUEST are depicted
in Figure 2.9. This figure shows that GUEST provides a better visualization of the
stiffer region of the tissue than GLUE. Quantitative values of SNR, CNR and SR
in Table 2.5 agree with the visual assessment. Target and background windows for
quantitative evaluation are shown in Figure 2.9(b). As the hybrid method fails to

estimate the displacement map, we report the results from GLUE and GUEST only.

27



S o o
n)
S o o

&

E
£
Z1
3
[}
T

3
depth (mrr
S
Frequency

IS
x

3 B L 5 kY
0 5 10 15 2 2 3 0 5 10 15 2 2 30 0 5 10 15 2 2 30 0 5 10 15 20 2 30 0 20 2 50
width (mm) width (mm) width (mm) width (mm) CNR

(a) B-mode (b) Hybrid (¢) GLUE (d) GUEST (e) Histogram  of
CNR values
%1073
0 0.005 0.01 0.015 2 3 4 5 6 7 8
BT ]
(f) Color bar for Hybrid (g) Color bar for GLUE and
GUEST

Figure 2.7: Results of in-vivo data from patient 1. (a) represents the B-mode image. (b)-(d)
show strain images for Hybrid, GLUE and GUEST respectively. The tumor is clearly visible
as a dark region in (c) and (d). (e) shows the histogram of CNR values. (f) represents the
color bar for Hybrid whereas (g) shows the color bar for GLUE and GUEST.

Table 2.4: SNR, CNR and SR of the strain images of patients 1 and 2. CNR and SR are
calculated from blue colored target windows and red colored background windows depicted
in Figures 2.7(c), 2.8(b) and 2.8(c), and SNR is calculated on red colored background

windows.

Patient 1 Patient 2
SNR CNR SR SNR CNR SR
Hybrid  2.18 1.16 1.50 11.36  7.78  0.98
GLUE 13.21 581 0.67 21.59 497 0.61
GUEST 21.53 9.67 0.64 26.99 10.52 0.54

Histogram (Figure 2.9(d)) for 120 CNR values (6 blue target and 20 red background
windows shown in Figure 2.9(c)) from patient 3 shows that most of the higher CNR
values belong to GUEST. Statistically, GUEST is better than GLUE with a p-value

close to zero.

2.3.3 Computation Time

We have implemented our algorithm on a 4 generation 3.6 GHz Intel core-i7 PC. The
other two methods (hybrid and GLUE) were also executed on the same computer.
MATLAB R2015a platform was used for the implementation. For three conventional
ultrasound frames of size 1000 x 100, the computation time of two displacement fields

(frame 1 to 2 and frame 2 to 3) are reported in Table 2.6.
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Figure 2.9: Results of in-vivo data from patient 3. (a) represents the B-mode image. (b)

and (c¢) show strain images for GLUE and GUEST respectively. (d) depicts the histogram
of CNR values. (e) represents the color bar for strain images.
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Table 2.5: SNR, CNR and SR of the strain images of patient 3. CNR and SR are calcu-
lated with blue colored target windows and red colored background windows depicted in
Figure 2.9. SNR is calculated on red colored background windows.

SNR  CNR SR
GLUE 21.75 10.96 0.22
GUEST 25.09 14.36 0.14

Table 2.6: Computation time of two displacement fields between three ultrasound frames
of size 1000 x 100.

Time (seconds)
Hybrid  96.91
GLUE 1.34
GUEST 1.77

It is evident that GLUE and GUEST show much better timing performance than
hybrid method. Although GUEST is slightly more expensive than GLUE, execution
time can be reduced by implementing GUEST with the MATLAB MEX function. In
addition to that, using GPU instead of CPU can accelerate the algorithm dramati-

cally.

2.4 Discussion

It is shown in DPAM [5] and GLUE [6] that spatial regularization improves time delay
estimation by reducing the effect of signal decorrelation. As ultrasound machines can
collect data at a very high rate, displacement of a speckle from frame 1 to frame 2 and
frame 2 to frame 3 should not be very different and hence temporal continuity is also
an important property which can be utilized in improving displacement estimation.

The extent of temporal regularization is slightly tissue dependent. A rule of thumb
is that a large regularization weight is needed for data collected at very high rate for
imaging an organ which is expected to have a smooth displacement field. Otherwise
if the tissue deforms quickly and in a complicated manner, a moderate regularization
weight is preferred. In this work, the optimum value for the temporal regularization
parameter was achieved by manual tuning. These values can be stored for imaging
different types of tissue as pre-sets. A similar approach is commonly utilized in com-

mercial ultrasound machines which have some imaging parameters that are embedded
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in the pre-settings for imaging different organs.

Free-hand palpation elastography is performed by pressing the tissue with a hand-held
probe, which results in probe motion in all possible six degrees of freedom (three ro-
tations and three translations). In this work, we select RF frames that exhibit mostly
axial deformations by visual inspection. Since the probe velocity, which resembles
a sinusoidal function, is not constant, the average strain levels between consecutive
frames is different. This issue is addressed by making the temporal continuity term
adaptive. As the difference of two consecutive initial displacement estimates is aver-
aged over many samples using a Gaussian kernel to obtain the temporal adaptation
terms, low variance estimates of the acceleration are utilized in the temporal regular-
ization term.

As reported in [5], spatial regularization may result in underestimation of displace-
ment field due to tissue inhomogeneity. However, this issue was not taken into account
in GLUE. Adaptive spatial regularization makes the proposed method (GUEST) ca-
pable of preventing such underestimation of displacement.

Memory usage is always an important concern while dealing with ultrasound RF
frames, and is even more important when more than two frames are incorporated for
TDE. In our work, the coefficient matrix is of size 4mmn x 4mn for 3 consecutive frames
of size m x n, requiring a prohibitive amount of memory for RF frames of conventional
size. For example, the size of the coefficient matrix will be 400000 x 400000 for
3 ultrasound frames of size 1000 x 100, which requires a memory of few hundred
gigabytes. But, the matrices used in our method are band matrices whose non-zero
entries are confined to diagonal bands. Hence during implementation, treating the
aforementioned matrices as sparse allowed us to limit the memory requirement to
approximately 100M B.

As incorporating more than two frames in ultrasound elastography is unconventional,
it may advocate the impression that employment of more frames keeps improving the
result. However, as more frames are included, the time-delay from the reference frame
also increases which may further introduce signal decorrelation noise. Computational
cost is another factor which increases substantially along with the addition of new
frames. Taking these two points into consideration, the optimal number of frames is
an interesting avenue of further investigation.

State-of-the-art ultrasound imaging techniques have been proposed with plane-wave
imaging in several applications such as vascular and cardiac imaging. The quality of

ultrasound images is usually sacrificed to some extent to achieve higher frame rates.
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As such, temporal regularization can be a very powerful tool for these applications
to produce more accurate tracking results.

Any regularization may increase estimation bias, which may lead to strain images with
lower contrast. However, the results presented in this chapter show that GUEST
maintains a bias-variance trade-off by improving both SNR and CNR. In each ex-
periment, we calculated CNR in 120 windows and showed that GUEST provides a
substantially higher CNR. In addition to this, we report results for both a soft inclu-
sion (simulation experiment) and hard inclusions (phantom and in-vivo experiments).

Our method obtains optimal results for both cases.

2.5 Summary

In this chapter, we proposed GUEST: Global Ultrasound Elastography in Spatial
and Temporal domains. We utilized information on continuity of displacement field
in the temporal direction to reduce the variance of the estimated displacement field.
We used three frames of RF data to formulate a cost function that is regularized both
spatially and temporally. This cost function had more than a million variables and
was highly nonlinear. We simplified this complex optimization problem into a sparse
linear system of equations and showed that it can be efficiently solved, which makes it
an attractive technique for real-time implementation on commercial ultrasound ma-
chines. We showed using simulation, phantom and in-vivo experiments that GUEST

substantially outperforms two recent ultrasound elastography techniques.
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Chapter 3

Low Rank and Sparse
Decomposition of Ultrasound

Color Flow Images for Suppressing
Clutter in Real-Time

In this chapter, a novel technique for real-time clutter rejection in ultrasound Color
Flow Imaging (CFI) is proposed. Suppressing undesired clutter signal is important
because clutter prohibits an unambiguous view of the vascular network. Although
conventional eigen-based filters are potentially efficient in suppressing clutter sig-
nal, their performance is highly dependent on proper selection of a clutter to blood
boundary which is done manually. Herein, we challenge the state-of-the-art tech-
niques to resolve this limitation by formulating the clutter suppression problem as a
foreground-background separation problem to extract the moving blood component.
To that end, we adapt the fast Robust Matrix Completion (fRMC) algorithm, and
utilize the in-face extended Frank-Wolfe method to minimize the rank of the ma-
trix of ultrasound frames. Our method automates the clutter suppression process,
which is critical for clinical use. We name the method RAPID (Robust mAtrix de-
comPosition for suppressIng clutter in ultrasounD) since the automation step can
substantially streamline clutter suppression. The technique is validated with simu-
lation, flow phantom and two sets of in-vivo data. Similar to our previous work, we

will release our code as well as almost all of our data online.
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3.1 Introduction

Delineating the vasculature and measuring blood flow velocity in order to examine
the physiological condition of the local tissue has seen a growing interest during the
past few years. Visualizing the vascular structure is immensely important because
architectural change in the vascular network may indicate tissue and cell damage
leading to ischemia [12], diabetes related diseases [11,64,65] and coronary heart dis-
ease [14,66,67]). Aneurysms which appear on the ventricular or atrial vessels may lead
to fatal heart attacks [13,68]. An increased size of the aneurysm might be a potential
source of uncontrollable bleeding in the circle of Willis of the brain, abdominal aorta
and thoracic aorta [69-71]. Furthermore, the gradual development of malignant cells
from benign tumors is highly affected by angiogenesis, the physiological process of
development of new blood vessels from pre-existing ones [72-74]|. Visualizing and
monitoring of such microscopic change in early stages is of immense importance to
warrant better treatment outcomes.

Ultrasound Color Flow Imaging (CFI) is an easy-to-use and cost-effective modality
that can be used to observe the blood flow direction and velocity across various vas-
cular networks in the body. The color encoded information in this modality can then
be analyzed to determine any potential abnormalities in the region of interest (ROI).
However, ultrasound suffers in its ability to produce a clear visualization of the ROI
due to scattering of the ultrasound beam from clusters of red blood cells. In addition,
clutter signals originating from stationary or slowly moving tissue components and
wave reverberations are the biggest hindrances to visualizing microvascular changes.
This is due to the fact that backscattered signals from blood and other tissue ex-
hibit similar properties, especially when blood is moving slowly or tissue is moving
rapidly [22,75,76]. Since the backscattered signal from the normal tissue is usually
40 to 100 dB stronger than that of blood [75], it dominates the signal component
resulting from moving Red Blood Cell (RBC) speckles [16] which negatively affects
the vessel visualization process. Another important fact is that blood and clutter
components possess non-overlapping frequency spectra [22].

The backscattered signal from tissue has a lower Doppler shift than that of blood as
tissue velocity is usually slower [75]. This led to using high pass filtering as a promising
tool for clutter filtering in the early stages of Color Flow Imaging (CFI) research.
Many methods have been developed to optimally reject unexpected clutter signals

from the desired blood components [77-79]. Clutter suppression techniques based on
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high pass filtering can be divided into two broad classes: Finite Impulse Response
(FIR) filters [15] and Infinite Impulse Response (IIR) filters [16]. Each of the classes
has its own advantages and downsides. Despite having a steeper roll-off, IIR filters
suffer from longer settling time [22]. In contrast, FIR filters minimize the settling
time, but require a higher order to separate clutter component from blood signal.
However, FIR and IIR filters share a common problem of having inadequate slow-
time samples leading to ineffective classification of data generated from slowly moving
soft tissue and blood [19,76]. In addition, in cases where unexpected tissue movement
dominates, high pass filters fail to adaptively select the filter cut-off frequency based
on clutter characteristics [76].

To resolve the issue of proper cut-off selection, several eigen-based filtering methods
have been proposed to discriminate clutter and blood [17,19-21]. The underlying
assumption prompting the development of eigen-based techniques is that tissue is
spatio-temporally more coherent than blood [22]. The principal idea is to discard
the eigen subspace representing the clutter component in the slow-time signal [76].
Initially, one-dimensional spatial and temporal information was taken into account
to filter out the clutter signal [18,80]. These one-dimensional approaches fail to
distinguish tissue subspace from blood subspace when the speed of blood is low or
the tissue motion is faster than normal [22].

To address the aforementioned shortcomings of one-dimensional investigation, Singu-
lar Value Decomposition (SVD) and Principal Component Analysis (PCA) of a large
Casorati matrix [81] consisting of 2D spatial and temporal coherence [22] has been
proposed. Along similar lines, recent work proposed processing the power Doppler
images obtained from SVD using Non-local mean based framework, morphological
filtering and Hessian-based vessel enhancement techniques [82-84]. In addition, mo-
tion correction of the acquired ultrasound frames has been introduced to improve
the sensitivity of power Doppler imaging [85]. The eigen-based filter has been ex-
tended to the 3" dimension in [23,86,87] using the higher order SVD technique [88].
However, determining the threshold value that separates blood from normal tissue
is challenging in this method. More specifically, it is assumed that the first few
eigen-values are associated with clutter, the next few represents blood, while the rest
denote noise [23]. The dimensions of clutter and blood are manually chosen to reject
clutter and noise [23]. Having no rigid ground to determine the dimension of clut-
ter, this manual approach is prone to inefficient suppression of clutter. Therefore,

recent work [89] proposed 5 parametric and 5 non-parametric methods to select the
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boundary between clutter and blood subspaces.

To address the aforementioned limitations of PCA- and SVD-based techniques, we
propose to look at the clutter suppression problem from the viewpoint of decomposing
the data matrix into low rank and sparse components in a computationally efficient
manner. The decomposition makes use of the Robust Matrix Completion algorithm,
where the low rank component represents the steady tissue signal and the sparse
component represents the moving blood echo. More specifically, we organize a series
of acquired ultrasound RF frames into a data matrix. Since an ultrasound RF frame
contains some measure of echo for each of its sample, the data matrix is complete
with no missing element. Therefore, the Robust Matrix Completion Algorithm acts
like Robust Principal Component Analysis (RPCA) [90,91]. Comprehensive stud-
ies [92-95] have been conducted during the last few years to resolve the matrix rank
minimization problem. Many of these algorithms [90,96] have been successful in the
field of computer vision to separate the foreground from the background resulting in
automatic separation of foreground and background. However, these techniques are
computationally very expensive and also have high memory requirement.

Herein, our goal is to consider blood as the foreground since it is the rapidly mov-
ing component, and clutter as the background. Instead of using computationally
expensive and memory exhaustive RPCA methods, we have adapted the recently
proposed fast Robust Matrix Completion (fRMC algorithm) [24] and the in-face ex-
tended Frank-Wolfe method [25] for the purpose of separating the blood component
from the stationary tissue echo. As such, we call the algorithm RAPID (Robust
mAtrix decomPosition for suppressIng clutter in ultrasounD). RAPID is briefly il-
lustrated in Figure 3.1. The main advantage of RAPID is that there is no need to
select any threshold manually to separate the blood and clutter components.

We have validated our technique with simulation, flow phantom, in-vivo rat and
human datasets. The RF data of the phantom experiment and the in-vivo rat dataset
collected for this work will be publicly available. Additionally, we will publicly release
the MATLAB code of RAPID, similar to our previous work [6, 26].
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Figure 3.1: A flowchart of the proposed RAPID algorithm.

3.2 Experimental set-up and data acquisition

3.2.1 Design and Materials for Phantom Experiment

The phantom gel is created from a mixture of water, Knox unflavored gelatin, sugar-
free Metamucil psyllium fiber supplement [97], and a container to store the mixture.
The venous structure model consisted in an intra-venous (IV) tube passed through
a container which has two holes bored on parallel faces of the container. Once the
gel mixture is made, it is allowed to congeal and solidify overnight. The solidified
gel is then placed in a bain-marie to heat the mixture so that it can liquefy without
burning, and is slowly poured into a container with the IV tube, and placed in the

refrigerator to solidify.

Design and Implementation of the Flow Circuit

The flow circuit is designed to have the fluid of choice flow through the venous struc-
ture model at a desired flow rate. The circuit is a closed system, as all the liquids
being pumped from the main reservoir returns back to it after having traversed the
various channels of the system. The oncoming flow is produced by a siphon pump
and controlled by a stopper valve. For the first two phantom experiments, our fluid
of choice was water with small amounts of oil and detergent mixed in to create small
scatterers. For the third and fourth phantom experiments, we used Blood Mimicking
Fluid (CIRS: Tissue Simulation & Phantom Technology, Norfolk, VA). Figure 3.2

shows the experimental set-up.
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Figure 3.2: Data acquisition from the flow phantom with a hand-held L3-12H linear array
probe.

3.2.2 Simulation of Ultrasound Data

We simulated a tissue with dimensions 3.6 cm x 2 em X 1 em containing a horizontal
blood vessel (i.e. perpendicular to the direction of ultrasound wave propagation) of
0.4 cm diameter in the middle using the Field II software package [63,98]. The flow
was laminar with a parabolic velocity profile with the peak velocity of 25 ems *. The
frame-rate of ultrasound was set to 1000 fps. The elements of the probe had a width
and height of 0.02 em and 0.5 em with a kerf of 0.002 em. The sampling frequency
was set to 40 M Hz whereas the frequency of the probe and fractional bandwidth
were 7.27 M Hz and 60% respectively, unless otherwise specified. For beamforming,

64 active elements were used.

3.2.3 Ultrasound Data Collection

Ultrasound RF data collections were conducted using an Alpinion E-Cube R12 re-
search ultrasound system with an L3-12H linear array probe. In all experiments, the

frequency of the probe and the sampling frequency were set to 10 M Hz and 40 M H z,
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Figure 3.3: Data acquisition from the abdomen of a Sprague-Dawley male rat with a hand-
held L3-12H linear array probe. 20 RF frames are collected from one rat.

respectively, unless otherwise specified.

The in-vivo experiment on rat was carried out at the Animal Care Facility (ACF)
of Concordia University. A 27 week old, Sprague-Dawley male rat was anesthetized
before scanning. The rat was placed on a surgery table in supine position as shown
in Figure 3.3. A portion of the abdominal hair was shaved to prevent large attenu-
ation of waves in the hair. Ultrasound RF data was collected from the abdomen of
the rat using the L3-12H linear array probe by conventional focused beamforming.
All procedures were approved by the Animal Ethics Committee of Concordia Univer-
sity (#30000259) and were conducted in accordance with guidelines of the Canadian
Council on Animal Care.

The human-subject data was collected from the knee of a volunteer using a hand-
held probe at Concordia University’s PERFORM Centre. The data collection was
conducted with an approved ethics from Quebec’s Ministere de la Sante et des Services
(MSSS).

3.3 Methods

Assume that we have p ultrasound RF frames of size m x n. The complex envelopes
of the RF frames are denoted by E; € C™*" where i € {1,2,3,...,p}. All p envelopes
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are organized in a data matrix D € C™"*P where each column represents the complex
envelope of an RF frame. Our purpose is to separate blood and clutter subspaces
from the data matrix D. In this section, we first briefly describe the conventional
SVD-based algorithm [22], and then elaborate the proposed method.

3.3.1 SVD Clutter Suppression

In this method, the data matrix D is decomposed as:

D=UxVI =3 quu] (26)
=1

where U € C"™™*™" and V' € CP*P are unitary matrices containing the left and right
singular vectors of D respectively. » € R"™*P is a diagonal matrix with diagonal
entries set to the singular values of D. r = min(mn, p) denotes the rank of the matrix
D. oy, u; and v; stand for singular values and left and right singular vectors of D,
respectively. Superscript 1 denotes the conjugate transpose.

Since mn is usually a very large number, the matrix U cannot be stored in memory
of conventional computers (for typical RF signals and p = 20 frames, approximately
500 GB of RAM is required to store U). Therefore, only the first mn x p elements of
U are calculated and stored in memory instead of all mn x mn elements. Similarly
for 3, only the first p x p elements are calculated and stored in memory. This will
lead to a significant reduction in running time and memory requirement. Once the
ranks of clutter and blood subspaces ¢ and b are found by manual tuning, the blood

subspace is separated from the clutter by:

R c+b
B = Z alulv; (27)

l=c+1
where B represents the blood component of the data matrix. The magnitude of every
column of B or the power contained in the filtered data can be shown to depict the

vasculature.
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3.3.2 RAPID: Robust Matrix Decomposition in Ultrasound

Clutter Suppression

If the correlation coefficient between any two of the p frames is high, the data matrix
D can be modelled as a low rank matrix. The blood flow prevents having correlation
between entire frames, which can be removed from the data matrix D by solving the

following optimization problem [90]:
min rank(C') st. D=C+B

where C' is the low rank clutter subspace and B denotes the sparse blood component.
To solve the optimization problem, we consider the Low Rank Matrix Completion
(LRMC) technique where sparsity of the blood component is enforced by solving the

following minimization problem:
min ||C — D[, st J|C, <¢

where ||.|| » represents the Frobenius norm defined as root sum squared of magnitudes
of the matrix entries. ||.||, stands for the nuclear norm of a matrix referring to the
sum of its singular values. 9 is the radius of the nuclear norm ball of low rank clutter
matrix C'. Since D is a non-singular matrix and contains envelopes of RF frames in
each column, it usually has a large Frobenius norm. Hence the square of the Frobenius
norm of D which is defined as the sum of the square of the singular values is greater
than the nuclear norm of D. It is mathematically impossible for the nuclear norm of
C to be larger than that of D, since C' is the underlying low rank component of D.
Hence the upper bound of the nuclear norm ball § can comfortably be set to any value
greater or equal to the square of the Frobenius norm of D. In all of our validation
examples, we set 0 to ten times the square of the Frobenius norm of D. Therefore,
RAPID has no tunable parameter.

This is a convex optimization problem [24,99], which can be efficiently solved by
using the recently proposed in-face extended Frank-Wolfe method [25]. It is shown
in this work that the low rank structures lie in the boundary of the solution space
(Figure 3.4), which is exploited to substantially increase the convergence speed and
reduce the memory requirements. The algorithm is outlined in Algorithm 1.

The output of this algorithm is the optimal low rank clutter matrix C*. However,
our goal is to find the sparse blood component, which can be obtained by subtracting
C* from D. Every column of B* (= D — C*) € C™*P contains the sparse blood
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Figure 3.4: An illustration of regular and in-face steps of the in-face extended Frank-Wolfe
method.
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Figure 3.5: Results of the simulation experiment. Column 1 represents the B-mode image.
Columns 2, 3 and 4 depict the power Doppler images from SVD with different combinations
of clutter and blood subspace ranks. Column 5 shows the power Doppler image from
RAPID. (f) represents the color bar for the power Doppler images.
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Figure 3.6: Histogram of SNR values for the simulation experiment. SNR values are calcu-
lated on 50 different positions of the moving window shown in the left image.
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Figure 3.7: Results of the simulation experiment for different center frequencies. Columns
1-3 correspond to center frequencies of 7.27 MHz, 85 MHz and 10 M Hz respectively.
Rows 1 and 2 correspond to SVD and RAPID respectively. (g) shows the color bar for the
power Doppler images.
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Algorithm 1: In-face extended Frank-Wolfe algorithm for finding the low-
rank clutter subspace

Input : Data matrix D and maximum number of iterations

Output: Optimal low-rank clutter subspace C*

Definition: CY is the current iterate of the low rank clutter matrix,
F(C) = 51C7 = Df3;

2 while not converged do

3 Calculate V f(C7): the gradient of f(CY);

4 Compute the direction of next iterate d?;

5

6

ju

Compute the step size;

Compute C?1: check two conditions to determine whether to take full or
partial in-face step. If none of the conditions is satisfied, take regular
Frank-Wolfe step.

7 end

component of individual frames. B* can be decomposed into p complex frames of size
m x n. The magnitude of each of these frames B} can be shown as different images
to visualize frame to frame flow. The power Doppler image can be generated with
the magnitudes of all p clutter suppressed frames which depicts only the vasculature,

not the flow:

PG = 5 S IBGRP 25

The in-face extended Frank-Wolfe solver offers a substantially faster convergence rate
compared to traditional RPCA methods because it does not need to perform SVD in
each iteration [25], which leads to significant reductions in its memory footprint and
computational complexity. In addition, this solver calculates three directions namely
full step, partial step and regular Frank-Wolfe (FW) steps (see the illustration in
Figure 3.4) for updating the solution in each iteration. A full step is an in-face step
suggesting to go to a lower dimensional face. A partial step is also an in-face step
which proposes to stay in the relative interior of the current face. If both of the
aforesaid directions fail to meet certain criteria [25], the next iterate takes the regular
Frank-Wolfe step, which leads to a further reduction of the computational complexity
compared to standard RPCA methods.

Effective utilization of thin SVD is a distinctive attribute of in-face extended Frank-
Wolfe algorithm. In a certain iteration ¢, the thin SVD of C'? is updated and stored
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Figure 3.8: Results for the phantom data with focused conventional imaging. Column 1
shows the B-mode image. Columns 2, 3 and 4 represent the power Doppler images from
SVD with different combinations of clutter and blood subspace assumptions. Column 5
depicts the power Doppler image from RAPID. (f) represents the color bar for the power
Doppler images.
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Figure 3.9: Histogram of SNR values for the phantom data with focused conventional
imaging. SNR values are calculated on 50 different positions of the moving window shown
in the left image.
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Figure 3.10: Results for the phantom data with plane-wave imaging. Column 1 shows
the B-mode image. Columns 2, 3 and 4 represent the power Doppler images from SVD
with different combinations of clutter and blood subspace assumptions. Column 5 depicts
the power Doppler image from RAPID. (f) represents the color bar for the power Doppler

images.
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Figure 3.11: Histogram of SNR values for the phantom data with plane-wave imaging. SNR
values are calculated on 50 different positions of the moving window shown in the left image.
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Figure 3.12: Results of the conventional flow phantom experiment for different center fre-
quencies. (a) represents the B-mode image. (b) and (c) show power Doppler images obtained
by SVD and RAPID, respectively for 8.5 M Hz center frequency. (d) and (e) present power
Doppler images from SVD and RAPID, respectively for 11.5 M Hz center frequency. (f)
shows the color bar for the power Doppler images.
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Figure 3.13: Results of the conventional flow phantom experiment for different flow rates.
Columns 1-3 correspond to B-mode, power Doppler images from SVD and RAPID, respec-
tively. Rows 1 and 2 correspond to slow and fast flows, respectively. (g) represents the color
bar for the power Doppler images.
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Table 3.1: PSL of the power Doppler images from phantom experiment with conventional
imaging. PSL values are calculated on 3 landmarks depicted in Figure 3.8(d).

SVD RAPID
Landmark 1 40.79 41.44
Landmark 2 61.47 65.01
Landmark 3 35.16 36.57

Table 3.2: PSL of the power Doppler images from phantom experiment with plane-wave
imaging. PSL values are calculated on 3 landmarks depicted in Figure 3.10(d).

SVD RAPID
Landmark 1 54.40 55.25
Landmark 2 49.51  49.42
Landmark 3 61.30 61.92

instead of updating C'?. Given the thin SVD of C'? = UquVj, the number of entries of
Uy, ¥4 and VqT are mnr?, r? and pr? respectively, where r? is the rank of C9. Therefore,
while dealing with the thin SVD instead of the full matrix, only mnr? 4+ r? + pr?
number of entries are required to be stored. Since C'? corresponds to a low-rank
structure in practice, r? is small. In such a situation, in-face extended Frank-Wolfe

method enables us handle a large data matrix with minimal memory consumption.

3.4 Results

We validated the proposed RAPID algorithm using simulation, phantom and in-
vivo experiments. We used p = 20 ultrasound frames in all experiments to gener-
ate the clutter suppressed image. We compared our results with the conventional
SVD-based technique [22]. Along with qualitative comparison of clutter suppressed
power Doppler images, we performed quantitative comparison based on Peak-to-Side

Level (PSL) and Signal-to-Noise Ratio (SNR), two conventional quality metrics:

PSL = 20log, <%>,SNR — (29)

S
o
where b and ¢ denote the peak intensity at the brightest region of the vessel and
intensity at the darkest part of the power Doppler image in neighborhood of the peak
respectively. § and o stand for the mean and standard deviation of a spatial window

located on the vessel.
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The codes of SVD and RAPID were implemented in MATLAB and run on a standard
8" generation 3.2GHz Intel core-i7 computer. For SVD, we used the MATLAB
command “economy SVD”, which only calculates and stores the first p left singular
vectors for memory and computational efficiency. The runtime of RAPID is similar
to that of economy SVD. Therefore, the proposed method is an attractive technique

for real-time implementation on commercial ultrasound machines.

3.4.1 Simulation Results

Figure 3.5 depicts the B-mode image along with the clutter suppressed images for the
simulation data. The best result from SVD is usually obtained by manually tuning
the ranks of clutter and blood subspaces. Power Doppler images generated by SVD
with different combinations of clutter and blood ranks are presented in Figure 3.5.
Visually, the best clutter suppressed image is obtained by setting the clutter and
blood ranks to 1 and 15 respectively, as shown in part (d). No manual tuning is
necessary for RAPID to obtain the optimal clutter suppressed image. The proposed
technique automatically selects the best combinations of ranks. Figure 3.5 shows that
the result from RAPID is qualitatively similar to the best result obtained by SVD.
Since both SVD and RAPID fully suppress the background, we did not calculate PSL
to avoid infinite quantitative values [82]. We calculated 50 SNR values for different
positions of a moving kernel on the blood vessel. We report the histogram of these 50
SNR values in Figure 3.6, which confirms our visual assessment by showing similar
SNR values for SVD and RAPID throughout the vessel. The average SNR values
corresponding to SVD and RAPID are 2.7174 and 2.7214 respectively. These values
are very similar, despite the fact that SVD requires extensive manual intervention to
select the boundaries between the subspaces. This, therefore, highlights the quality
of our automatic parameter estimation. It is improtant to note that we performed
the quantitative comparison between the power Doppler image from RAPID and the
best power Doppler image obtained from SVD.

To examine the effect of transmit frequency on clutter rejection, we report the power
Doppler images for simulation data collected at three different center frequencies:
72T MHz, 85 MHz and 10 M Hz in Figure 3.7. In all three cases, without requiring
any parameter tuning, RAPID’s performance is similar to the best performance of
SVD. The best vessel enhancement is found at a center frequency of 8.5 M Hz for

both methods. There are two possible reasons for this. First, since ultrasound images
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suffer from lower resolution at lower frequencies, the clutter suppressed images at
8.5 M Hz are better than that at 7.27 M Hz. Second, although ultrasound images
exhibit higher resolution at lower depths in case of high frequencies, the image quality
declines beyond a certain depth due to high attenuation of ultrasound waves. Since
our simulation frames contain a vessel at a depth of about 1.8 ¢m, better performance
is achieved at 8.5 M Hz compared to 10 M Hz. Another reason is that the width of
our transducer is equal to A for the 8.5 M H z center frequency, and therefore, optimal

results are obtained with both methods at that frequency.

3.4.2 Flow Phantom Results

In the first experiment, conventional focused imaging was performed with a frame
rate of 64 fps. Figure 3.8 depicts the clutter rejected images along with the B-mode
image. The best result from SVD is selected by manually searching for the best ranks
of the clutter and foreground. The result produced by RAPID without requiring any
manual tuning (shown in (e)) looks slightly better than the best result from SVD
(shown in (d)). Quantitative values of PSL reported in Table 3.1 support our visual
assessment. PSL values are calculated on three different landmarks of the power
Doppler image indicated in Figure 3.8(d). In addition, we calculated the SNR at
50 different positions of a moving window (see Figure 3.9(a)) on the flow region of
the power Doppler image. The SNR values histogram is reported in Figure 3.9(Db).
The histogram shows that RAPID results in a higher frequency in higher SNR values
and lower frequency in lower SNR values. Paired t-test of the SNR values shows
that RAPID statistically outperforms SVD with a p-value of 2.75 x 107'®. This
very low p-value is due to the fact that RAPID outperforms SVD throughout the
vessel. Furthermore, SVD and RAPID yield average SNR values of 3.31 and 3.62,
respectively showing an improvement of 9.35% by RAPID. It is worth mentioning
that quantitative comparison is performed between the result from RAPID and the
best result obtained from SVD by manually fine-tuning the boundaries between the
subspaces.

In the second experiment, plane-wave data with 11.5 M Hz center frequency and a
scan rate of 565 fps was collected, with all other imaging parameters the same as the
conventional beamforming. Figure 3.10 shows the B-mode image, results from SVD
for different combinations of clutter and blood ranks and the result from RAPID.

Again, RAPID obtains visually superior results compared to SVD by automatically
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selecting the optimal clutter-blood boundary. We have reported the PSL values cal-
culated on three different landmarks (see Figure 3.10(d)) in Table 3.2. These quanti-
tative values also demonstrate that RAPID rejects clutter more efficiently than SVD.
In Figure 3.11(b), we show the histogram of 50 SNR values calculated at different
locations of a moving window (see Figure 3.11(a)). The histogram highlights the
fact that RAPID results in a higher frequency at higher SNR values. Furthermore,
a paired t-test shows that RAPID statistically outperforms SVD with a p-value of
6.47 x 10~7. Averaging of the aforementioned 50 SNR values corresponding to SVD
and RAPID resulted in mean values of 2.33 and 2.40, respectively. This implies that
RAPID provides a 3.02% improvement in SNR over SVD. Similar to the focused
phantom experiment, we have reported the quantitative values for the result from
RAPID and the best result from SVD.

In the third experiment, we examined the performance of RAPID and SVD on
datasets collected at different center frequencies. We conducted a focused flow phan-
tom experiment where RF frames were acquired at 8.5 M Hz and 11.5 M Hz transmit
frequencies. The B-mode and clutter suppressed images are reported in Figure 3.12.
In all three cases, RAPID shows similar (if not better) performance as SVD. However,
we generate the best results from SVD by extensive manual intervention to select the
proper boundaries between subspaces. Best power Doppler images are observed at
11.5 M Hz center frequency for both methods. The reason is that the higher fre-
quency image has a good resolution and SNR at shallow depths, where the tube is
located.

In the fourth experiment, we investigated the performance of RAPID and SVD with
different flow rates by careful mechanical tuning of the flow phantom set-up. We
collected RF frames with focused ultrasound imaging from the phantom with flow
rates of approximately 1.67 mLs™! (slow flow) and 3.33 mLs™! (fast flow). We
show the B-mode and the power Doppler images in Figure 3.13. For both flow rates,
RAPID performs slightly better than SVD. SVD shows the best power Doppler images
when clutter and blood ranks are manually tuned to 1 and 18, respectively. On the
other hand, RAPID obtains the optimal power Doppler images automatically. As
expected, both SVD and RAPID obtain their best results for the case of fast flow
since the difference between tissue clutter and blood becomes dominant at higher flow

velocities.
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Table 3.3: PSL of the power Doppler images from the in-vivo rat experiment. PSL values
are calculated on the 3 landmarks depicted in Figure 3.14(d).

SVD RAPID
Landmark 1 34.27 34.28
Landmark 2 39.86  39.77
Landmark 3 47.81 47.86

3.4.3 in-vivo Results
Rat Abdomen

B-mode along with the clutter rejected images obtained from SVD and RAPID are
reported in Figure 3.14. The abdominal aorta and its branches are not clearly visible
in the B-mode image, whereas clutter suppressed power Doppler images reveal the
vascular structure very well. We show the power Doppler images obtained from SVD
for different combinations of ranks associated with clutter and blood subspaces. The
best result is obtained assuming clutter and blood ranks as 1 and 15 respectively
(in (d)). Visually, the result from RAPID and the best result obtained from SVD
are similar. We performed quantitative comparisons between the best power Doppler
image obtained from SVD and the power Doppler image generated by RAPID. The
PSL values reported in Table 3.3 show that SVD and RAPID perform almost equally
in terms of rejecting clutter. We calculated the PSL values on three landmarks shown
in Figure 3.14(d). For a more comprehensive investigation, we calculated the SNR
values at 50 different locations of a moving window on the vasculature. The histogram
of these 50 SNR values reported in Figure 3.15 shows that the clutter suppression
performance of RAPID is similar to that of SVD. Statistical paired t-test provides a
p-value of 0.2226, confirming that there is no significant difference in SNR, values of
power Doppler images obtained from SVD and RAPID. The average of the 50 SNR
values corresponding to SVD and RAPID are 0.9138 and 0.9146, respectively, further
highlighting the performance similarity between SVD and RAPID.

Human Knee

The conventional beamformed B-mode image as well as the power Doppler images are
shown in Figure 3.16. It is evident that suppression of clutter aids clear visualization
of the lateral inferior genicular artery and branches coming from fibular and anterior

recurrent tibial arteries. Figure 3.16 also shows that the performance of SVD is highly
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Figure 3.14: Results obtained from in-vivo data collected from the abdomen of a rat.
Column 1 depicts the B-mode image. Columns 2, 3 and 4 show the power Doppler images
from SVD with different combinations of clutter and blood subspaces. Column 5 presents
the power Doppler image from RAPID. (f) shows the color bar for the power Doppler

images.
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Figure 3.15: Histogram of SNR values for the in-vivo rat experiment. SNR values are
calculated at 50 different locations of the moving window shown in the left image.
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Figure 3.16: Results obtained from in-vivo data collected from the knee of a human subject.
Column 1 depicts the B-mode image. Columns 2, 3 and 4 show the power Doppler images
from SVD with different combinations of clutter and blood subspaces. Column 5 presents
the power Doppler image from RAPID. (f) shows the color bar for the power Doppler
images.

Table 3.4: PSL of the power Doppler images from in-vivo human knee experiment. PSL
values are calculated on the 3 landmarks shown in Figure 3.16(d).

SVD RAPID
Landmark 1 60.22 60.2
Landmark 2 47.02 47.02
Landmark 3 33.77  33.78

dependent on the selection of ranks associated with clutter and blood subspaces.
In this case, SVD shows its best performance when clutter and blood ranks are
considered to be 1 and 15, respectively. In contrast, RAPID is capable of generating
the most optimal result without any manual tuning. Visual assessment shows that
the power Doppler image obtained from RAPID is similar to the best power Doppler
image produced by SVD. Similarly to all other experiments, we compared the result
of our method to the best result obtained from SVD quantitatively. PSL values
reported in Table 3.4 confirm our visual interpretation. In addition, the histogram
of 50 SNR values on different locations of a moving window reported in Figure 3.17
also suggests that SVD and RAPID are similarly effective at suppressing clutter. The
average SNR values for SVD and RAPID are 0.9440 and 0.9441, respectively, again

showing similar performances.
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Figure 3.17: Histogram of SNR values for the in-vivo human knee experiment. SNR values
are calculated on 50 different locations of the moving window presented in the left image.

3.5 Discussion

It is evident from the results that the clutter suppression efficiency of SVD is highly
dependent on proper selection of the ranks of the subspaces, a process that is cur-
rently performed manually. This manual involvement hinders clinical adoption of
clutter suppression. On the contrary, RAPID selects the ranks automatically with a
guarantee of converging to the optimal solution.

SVD is proven to be a promising technique in ultrasound clutter suppression. How-
ever, it fails while dealing with data contaminated with outliers [90]. The robustness
of RPCA methods to noise is validated with video data in the field of computer vision.
Since RF frames acquired with ultrasound are likely to be noisy, robust matrix de-
composition methods can potentially be more advantageous than SVD in ultrasound
clutter suppression.

The number of frames used to formulate the data matrix is an important concern.
Generally, vessels are better visualized when the number of RF frames is increased
as more temporal information is incorporated. However, if the data acquisition rate
is low, including more frames leads to a significant increase in signal decorrelation
noise which might cause the SVD methods to fail. The optimal number of frames
likely depends on the imaging frame-rate and extent of physiological motions in tissue.
Selection of the optimal number of frames is an interesting avenue of further research.
Here we show that RAPID is capable of obtaining power Doppler images from ul-

trasound frames collected at different transmit frequencies. However, selection of a
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proper center frequency is vital for optimally enhancing the vessel. While looking
at the superficial vascular structure, a high frequency ultrasound probe should be
used for data acquisition to achieve the best resolution. On the other hand, a lower
frequency probe is preferable to collect frames from a deeper vascular network, since
high frequency ultrasound waves attenuate faster. When we are interested in a vas-
cular structure at moderate depth, careful tuning of transmit frequency is required
to compromise between resolution and penetration depth.

In case of slow blood flow, the task of clutter suppression becomes difficult because
slowly flowing blood is hardly distinguishable from the steady tissue clutter. However,
our investigation on the flow phantom proves that RAPID is capable of generating
high quality power Doppler images for both slow and fast flow rates. Although RAPID
does not show large improvement over SVD for different flow rates, RAPID converges
to the best attainable result without requiring the manual tuning necessary for SVD.
As the steady background is estimated as a low rank structure in robust matrix de-
composition algorithms, high frame to frame correlation is an important requirement.
The individual RF frames are stacked in different columns of the data matrix, and as
such, should be highly correlated to each other. Therefore, the method could fail in
the event of a large out-of-plane movement of the ultrasound probe while collecting
the data. Although we did not notice large performance degradation of the proposed
RAPID algorithm with possible out-of-plane motion of the probe, 3D data collection
from a 2D array can alleviate this problem. Another potential solution to this limi-
tation is introducing a robust image alignment step in every iteration of the RAPID
algorithm. The sparsity of the blood component is another important underlying
assumption of our algorithm. Although blood is sparser than tissue components in
usual scenarios, rapid signal fluctuations caused by turbulent flow in the time domain
can affect the spatial sparsity [100]. Imposing the sparsity condition on an appropri-
ate transform (e.g. Fourier Transform) of the blood component instead of the blood

component itself might be a promising technique to handle such non-sparsities [100].

3.6 Summary

In this chapter, we proposed RAPID: Robust mAtrix decomPosition for suppressIng
clutter in ultrasounD, wherein we suggested to enhance blood vessels and suppress
unexpected clutter signals by incorporating recently proposed robust matrix com-

pletion and optimization algorithms. Validation with simulation, flow phantom and
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in-vivo data proved that RAPID does not require any manual intervention required
to select the true boundary between blood subspace and clutter, and as such, auto-
mates the process of clutter rejection with a guarantee of optimality. RAPID is also
computationally efficient and can be implemented in real-time. These features can

potentially help ultrasound-based vascular imaging to reach a wider clinical adoption.
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Chapter 4

Conclusion and Future Work

4.1 Concluding Remark

Tracking tissue motion is important for numerous medical imaging applications to
investigate the physiological condition of the tissue. This motion tracking task can
be accomplished by taking advantage of the high data acquisition rate of ultrasound
imaging. However, ultrasound motion tracking is an ill-posed problem since the num-
ber of unknowns is more than the number of equations. In this thesis, two novel
methods are proposed to tackle this problem. In the first method, motion estima-
tion is developed for ultrasound elastography, and in the second method, motion is
detected to perform ultrasound clutter suppression for enhancing blood flow.

The method proposed in Chapter 2 of this thesis concerns developing an ultrasound
elastography algorithm for tracking tissue motion while undergoing deformation due
to internal or external force. This algorithm takes three ultrasound RF frames into
consideration and exploits data similarities between pre- and post-deformation frames,
as well as spatial and temporal continuities to form a non-linear cost function. This
cost function has been optimized efficiently to convert the time delay estimation
problem into a sparse system of linear equations with millions of variables. The
proposed technique is capable of solving the sparse system for this very large number
of variables to find a 2D displacement estimate of each sample in a RF frame within
a minimal period of time. This unique attribute makes the proposed method suitable
for real-time implementation on clinical ultrasound machines. Extensive quantitative
and statistical validation with simulation, phantom and in-vivo liver cancer data

proves the superiority of the proposed technique over the state-of-the-art elastography
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techniques. We have made the code associated with this chapter available online to
increase the impact of our work.

A novel ultrasound clutter suppression technique has been proposed in Chapter 3
of this thesis. Although the conventional SVD-based methods are successful in sup-
pressing clutter components of ultrasound color flow images, optimality of the result
obtained from them is highly dependent on the proper selection of boundaries be-
tween different subspaces. This selection is currently performed manually, resulting
in two important drawbacks. First, efficient clutter suppression is prone to failure
while dealing with a large dataset since it is very difficult to attain the best pos-
sible result by manually tuning over a large range. Second, extensive manual trial
makes the clutter suppression task very user-dependent, limiting its clinical value.
The algorithm proposed in this thesis resolves this well-known issue by casting the
clutter suppression problem as a foreground-background separation where clutter is
the steady background and blood is considered to be the sparse moving component.
The fast Robust Matrix Completion (fRMC) algorithm has been adapted to accom-
plish this task by utilizing the in-face extended Frank-Wolfe method. This technique
makes the clutter rejection problem automatic by eliminating the requirement of man-
ual tuning of the foreground and background dimensions. In addition, this method is
efficient in terms of execution time and memory footprint. Simulation, phantom and
in-vivo animal and human experiments validate that the proposed technique performs

as well as the conventional algorithm without requiring any manual tuning.

4.2 Future Work

The technical and clinical aspects of the proposed elastography algorithm, GUEST,
can be improved or extended in the future stages of this work. The scopes for technical

advancement are listed below:

e Instead of three frames, more RF frames can be incorporated to devise a cost
function to investigate if it improves the displacement tracking accuracy. The
optimal number of frames needed to balance the quality of the strain image

versus computational complexity can also be found from this investigation.

e Although adaptive spatial and temporal regularizations make our algorithm
less sensitive to the values of the tunable parameters, a data-driven parameter

selection step can be introduced to fully automate the proposed technique.
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e In the current version of our work, two initial displacement fields are obtained
by running DP twice: once between first and second frames and once between
second and third frames. A novel DP framework incorporating three RF frames
can be formulated to find two initial displacement estimates simultaneously
with better accuracy. In addition, DP over the whole image instead of DP
on individual RF lines might also be considered to further improve the initial

estimation.

e The proposed algorithm can be extended for working with 3D ultrasound frames
collected with a 2D linear array probe to produce 3D strain images with a
complete visualization of different types of abnormal tissue such as cyst, benign

lesion, tumor etc.

e Deep convolutional neural networks can be utilized in ultrasound elastogra-
phy [101,102]. Application of deep learning to ultrasound elastography in spa-

tial and temporal domains is an interesting avenue of future work.

In this thesis, it has been shown that GUEST is capable of improving the visual-
ization of liver tumors through high quality elasticity imaging. In the future, the
method can be validated with clinical breast elastography data to examine its abil-
ity to characterize breast cancer. In addition, the method can be applied on Breast
Cancer Related Lymphedema (BCRL) [103] data to investigate its promise to detect
BCRL. Further research might be conducted to check the method’s potential to help
monitor cardiac and neuro health by strain imaging.

The two proposed techniques are not only novel and valuable on their own, but their
combination can also lead to greater clinical usefulness and efficacy. The ultrasound
clutter suppression method, RAPID performs well when the data frames are corre-
lated with each other. In case of high temporal decorrelation due to sonographer’s
hand motion or unexpected movement of the subject, the underlying low rank struc-
ture of the data matrix no longer exists. In a future work, frame to frame movement
of the background can be estimated by GUEST (the proposed motion estimation
algorithm) as a pre-processing step to compensate for the temporal decorrelation so
that the data matrix becomes suitable for RAPID by holding a low rank structure.
Therefore, this work can be a productive combination of the two motion tracking
techniques proposed in this thesis. In addition, an adaptive motion correction step

can be embedded in RAPID to align the ultrasound frames and find the low rank
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component of the data matrix in a unified framework. Moreover, extensive amount
of slow-time temporal frames can be taken into account to assess the effect of number
of data samples on clutter suppression efficiency. Furthermore, Convolutional Neural
Network (CNN) based background suppression techniques can be adapted to solve
ultrasound clutter suppression problem with a better data dependence. Exploring
different data types to assure optimal background rejection is an interesting avenue
of future research. In this regard, the proposed technique might be extended to work
with pre-beamformed ultrasound channel data for obtaining power Doppler images
with better resolution since pre-beamformed channel data contains more information
than beamformed RF data. Processing a data tensor instead of a data matrix might
be considered to increase the clutter suppression efficiency. Besides, complete visual-
ization of blood vessels can be achieved by employing 3D ultrasound data in RAPID.
To analyze the clinical impact of the proposed theoretic work, RAPID can be tested

on in-vivo data with vasculature containing plaque or stenosis.

61



Bibliography

[1]

R. E. Davidsen and S. W. Smith, “Two-dimensional arrays for medical ultra-
sound using multilayer flexible circuit interconnection,” IFEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, no. 2, pp. 338-348,
1998.

F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, “A history of medical and bi-
ological imaging with polyvinylidene fluoride (pvdf) transducers,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 6,
pp. 1363-1371, 2000.

P. N. T. Wells, “Ultrasound imaging,” Physics in Medicine Biology, vol. 51,
no. 13, 2006.

R. De Luca, T. Dattoma, L. Forzoni, J. Bamber, P. Palchetti, and A. Gub-
bini, “Diagnostic ultrasound probes: A typology and overview of technologies,”

Current Directions in Biomedical Engineering, vol. 4, pp. 49-53, 2018.

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regular-
ized ultrasound elastography,” IEEE Transactions on Medical Imaging, vol. 30,
no. 4, pp. 928-945, 2011.

H. S. Hashemi and H. Rivaz, “Global time-delay estimation in ultrasound elas-
tography,” IEEE Transactions on Ultrasonics, Ferroclectrics, and Frequency
Control, vol. 64, no. 10, pp. 1625-1636, 2017.

A. Nahiyan and M. K. Hasan, “Hybrid algorithm for elastography to visualize
both solid and fluid-filled lesions,” Ultrasound in Medicine € Biology, vol. 41,
no. 4, pp. 1058 — 1078, 2015.

62



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. G. Kim, M. S. Park, J.-D. Lee, and S. Y. Park, “Ultrasound elastography
of the neonatal brain: Preliminary study,” Journal of Ultrasound in Medicine,
vol. 36, no. 7, pp. 1313-1319, 2017.

M. Tanter and M. Fink, “Ultrafast imaging in biomedical ultrasound,” IEEE
transactions on ultrasonics, ferroelectrics, and frequency control, vol. 61,
pp. 102-119, 2014.

K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On
the feasibility of remote palpation using acoustic radiation force,” The Journal
of the Acoustical Society of America, vol. 110, no. 1, pp. 625—634, 2001.

A. D. Association, “Peripheral arterial disease in people with diabetes,” Diabetes
Care, vol. 26, no. 12, pp. 3333-3341, 2003.

K. Christensen-Jeffries, J. Brown, P. Aljabar, M. Tang, C. Dunsby, and
R. J. Eckersley, “3-d in vitroacoustic super-resolution and super-resolved ve-
locity mapping using microbubbles,” IEEE Transactions on Ultrasonics, Fer-
roelectrics, and Frequency Control, vol. 64, no. 10, pp. 1478-1486, 2017.

S. C. Uppu, R. Sachdeva, and M. Imamura, “Idiopathic giant right atrial
aneurysm,” Ann Pediatr Cardiol, vol. 6, no. 1, pp. 68 — 70, 2013.

A. Alrifai, M. Kabach, J. Nieves, J. Pino, and R. Chait, “Microvascular coronary
artery disease: Review article,” US Cardiology Review, vol. 12, no. 1, pp. 41-45,
2018.

J. A. Jensen, “Stationary echo cancelling in velocity estimation by time-domain
cross-correlation,” IFEE Transactions on Medical Imaging, vol. 12, no. 3,
pp. 471-477, 1993.

A. P. Kadi and T. Loupas, “On the performance of regression and step-
initialized iir clutter filters for color doppler systems in diagnostic medical ul-
trasound,” IEEFE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 42, no. 5, pp. 927-937, 1995.

M. E. Allam, R. R. Kinnick, and J. F. Greenleaf, “Isomorphism between pulsed-
wave doppler ultrasound and direction-of-arrival estimation. ii. experimental re-

sults,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-
trol, vol. 43, no. 5, pp. 923-935, 1996.

63



18]

[19]

[21]

[22]

23]

[24]

[25]

J. Bercoft, G. Montaldo, T. Loupas, D. Savery, F. Meziere, M. Fink, and M. Tan-
ter, “Ultrafast compound doppler imaging: providing full blood flow charac-
terization,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 58, no. 1, pp. 134-147, 2011.

S. Bjaerum, H. Torp, and K. Kristoffersen, “Clutter filters adapted to tissue
motion in ultrasound color flow imaging,” IEFEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 49, no. 6, pp. 693—704, 2002.

P. J. Vaitkus, R. S. C. Cobbold, and K. W. Johnston, “A new time-domain
narrowband velocity estimation technique for doppler ultrasound flow imaging.
ii. comparative performance assessment,” IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 45, no. 4, pp. 955-971, 1998.

L. A. F. Ledoux, P. Brands, and A. P. G. Hoeks, “Reduction of the clutter
component in doppler ultrasound signals based on singular value decomposition:

A simulation study,” Ultrasonic imaging, vol. 19, pp. 1-18, 1997.

C. Demené, T. Deffieux, M. Pernot, B. Osmanski, V. Biran, J. Gennisson,
L. Sieu, A. Bergel, S. Franqui, J. Correas, I. Cohen, O. Baud, and M. Tanter,
“Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases

doppler and fultrasound sensitivity,” IFEE Transactions on Medical Imaging,
vol. 34, no. 11, pp. 2271-2285, 2015.

M. Kim, C. K. Abbey, J. Hedhli, L. W. Dobrucki, and M. F. Insana, “Expand-
ing acquisition and clutter filter dimensions for improved perfusion sensitiv-
ity,” IEEFE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 64, no. 10, pp. 1429-1438, 2017.

B. Rezaei and S. Ostadabbas, “Background subtraction via fast robust matrix
completion,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 1871-1879, 2017.

P. G. Robert M. Freund and R. Mazumder, “An extended frank-wolfe method
with “in-face” directions, and its application to low-rank matrix completion,”
SIAM J. Optimization, vol. 27, no. 1, p. 319-346, 2017.

64



[26]

[27]

32]

M. Ashikuzzaman, C. J. Gauthier, and H. Rivaz, “Global ultrasound elastog-
raphy in spatial and temporal domains,” IEEFE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 66, no. 5, pp. 876887, 2019.

M. Ashikuzzaman, C. Belasso, M. G. Kibria, A. Bergdahl, C. J. Gauthier, and
H. Rivaz, “Low rank and sparse decomposition of ultrasound color flow images
for suppressing clutter in real time,” IEEFE Transactions on Medical Imaging,

revision under review, 2019.

M. Ashikuzzaman, C. Belasso, C. J. Gauthier, and H. Rivaz, “Suppressing clut-
ter components in ultrasound color flow imaging using robust matrix completion
algorithm: Simulation and phantom study,” in IEEFE International Symposium
on Biomedical Imaging (IEEE ISBI), 2019.

J. Gennisson, T. Deffieux, M. Fink, and M. Tanter, “Ultrasound elastogra-
phy: Principles and techniques,” Diagnostic and Interventional Imaging, vol. 94,
no. 5, pp. 487 — 495, 2013.

T. Hall, P. E. Barboneg, A. A. Oberai, J. Jiang, J.-F. Dord, S. Goenezen, and
T. Fisher, “Recent results in nonlinear strain and modulus imaging,” vol. 7,
pp- 313-327, 11 2011.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties
of tissue: the 20 year perspective,” Physics in Medicine ¢ Biology, vol. 56,
no. 1, p. R1, 2011.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and
T. Varghese, “Elastography: Ultrasonic estimation and imaging of the elastic
properties of tissues,” Proceedings of the Institution of Mechanical Engineers,
Part H: Journal of Engineering in Medicine, vol. 213, no. 3, pp. 203—233, 1999.

G. Treece, J. Lindop, L. Chen, J. Housden, R. Prager, and A. Gee, “Real-time
quasi-static ultrasound elastography,” vol. 1, pp. 540-52, 08 2011.

M. Omidyeganeh, Y. Xiao, M. O. Ahmad, and H. Rivaz, “Estimation of strain
elastography from ultrasound radio-frequency data by utilizing analytic gradient

of the similarity metric,” IEEFE Transactions on Medical Imaging, vol. 36, no. 6,
pp. 13471358, 2017.

65



[35]

[36]

[37]

[40]

[41]

K. M. Hiltawsky, M. Kriiger, C. Starke, .. Heuser, H. Ermert, and A. Jensen,
“Freehand ultrasound elastography of breast lesions: clinical results,” Ultra-
sound in Medicine € Biology, vol. 27, no. 11, pp. 1461 — 1469, 2001.

M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and
E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,”
vol. 42, pp. 3265-3270, 05 2003.

E. Turgay, S. Salcudean, and R. Rohling, “Identifying the mechanical properties

2

of tissue by ultrasound strain imaging,
vol. 32, no. 2, pp. 221 — 235, 2006.

Ultrasound in Medicine € Biology,

A. Basarab, A. Lyshchik, and P. Delachartre, “Multi-frame motion estimation
for freehand elastography and its application to thyroid tumor imaging,” in
2008 5th IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, pp. 532-535, 2008.

X. Pan, K. Liu, J. Bai, and J. Luo, “A regularization-free elasticity recon-
struction method for ultrasound elastography with freehand scan,” BioMedical
Engineering OnLine, vol. 13, p. 132, Sep 2014.

M. G. Kibria and M. K. Hasan, “A class of kernel based real-time elastography
algorithms,” Ultrasonics, vol. 61, pp. 88 — 102, 2015.

X. Pan, K. Liu, J. Shao, J. Gao, L. Huang, J. Bai, and J. Luo, “Performance
comparison of rigid and affine models for motion estimation using ultrasound
radio-frequency signals,” IEEFE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 62, no. 11, pp. 1928-1943, 2015.

J. Wang, Q. Huang, and X. Zhang, “Ultrasound elastography based on the
normalized cross-correlation and the pso algorithm,” pp. 1131-1135, 11 2017.

L. Yuan and P. C. Pedersen, “Analytical phase-tracking-based strain estimation
for ultrasound elasticity,” IEEFE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 62, no. 1, pp. 185-207, 2015.

H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, and G. Hager,
“Ultrasound elastography: A dynamic programming approach,” IEEE Trans-
actions on Medical Imaging, vol. 27, no. 10, pp. 1373-1377, 2008.

66



[45]

[46]

[47]

[48]

[49]

[51]

[52]

[53]

C. Pellot-Barakat, F. Frouin, M. F. Insana, and A. Herment, “Ultrasound elas-
tography based on multiscale estimations of regularized displacement fields,”
IEEE Transactions on Medical Imaging, vol. 23, no. 2, pp. 153-163, 2004.

J. Jiang and T. J. Hall, “A generalized speckle tracking algorithm for ultra-
sonic strain imaging using dynamic programming,” Ultrasound in Medicine &
Biology, vol. 35, no. 11, pp. 1863 — 1879, 2009.

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Ultrasound elastogra-
phy using multiple images,” Medical Image Analysis, vol. 18, no. 2, pp. 314 —
329, 2014.

R. Zahiri-Azar and S. E. Salcudean, “Motion estimation in ultrasound images
using time domain cross correlation with prior estimates,” IEEE Trans. Biomed-

ical Engineering, vol. 53, no. 10, pp. 1990-2000, 2006.

A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-
frame elastography using a handheld force-controlled ultrasound probe,” IFEFE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62,
pp. 14861500, August 2015.

A. Ramalli, O. Basset, C. Cachard, E. Boni, and P. Tortoli, “Frequency-domain-
based strain estimation and high-frame-rate imaging for quasi-static elastogra-

phy,” IEEFE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 59, no. 4, pp. 817-824, 2012.

F. Viola and W. F. Walker, “A comparison of the performance of time-delay
estimators in medical ultrasound,” IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, vol. 50, no. 4, pp. 392401, 2003.

S. R. Ara, F. Mohsin, F. Alam, S. A. Rupa, S. Y. Lee, M. K. Hasan,
and R. Awwal, “Phase-based direct average strain estimation for elastogra-
phy,” IEEFE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 60, no. 11, pp. 2266—2283, 2013.

H. Hasegawa and H. Kanai, “Improving accuracy in estimation of artery-wall
displacement by referring to center frequency of rf echo,” IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 1, pp. 5263,
2006.

67



[54]

[56]

[60]

[61]

[62]

J. Grondin, E. Wan, A. Gambhir, H. Garan, and E. E. Konofagou, “Intracardiac
myocardial elastography in canines and humans in vivo,” IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 2, pp. 337-349,
2015.

W. F. Walker and G. E. Trahey, “A fundamental limit on delay estimation
using partially correlated speckle signals,” IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 42, no. 2, pp. 301-308, 1995.

M. O’Donnell, A. R. Skovoroda, B. M. Shapo, and S. Y. Emelianov, “Inter-
nal displacement and strain imaging using ultrasonic speckle tracking,” IEFE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 41,
no. 3, pp. 314-325, 1994.

R. Dickinson and C. Hill, “Measurement of soft tissue motion using correlation
between a-scans,” Ultrasound in Medicine & Biology, vol. 8, no. 3, pp. 263 —
271, 1982.

M. Bilgen and M. Insana, “Deformation models and correlation analysis in
elastography,” vol. 99, pp. 3212-24, 06 1996.

E. S. Ebbini, “Phase-coupled two-dimensional speckle tracking algorithm,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 53, no. 5, pp. 972-990, 2006.

G. M. Treece, J. E. Lindop, A. H. Gee, and R. W. Prager, “Freehand ultrasound
elastography with a 3-d probe,” Ultrasound in Medicine & Biology, vol. 34, no. 3,
pp. 463 — 474, 2008.

B. H. Friemel, L. N. Bohs, and G. E. Trahey, “Relative performance of
two-dimensional speckle-tracking techniques: normalized correlation, non-
normalized correlation and sum-absolute-difference,” in 1995 IEEE Ultrasonics

Symposium. Proceedings. An International Symposium, vol. 2, pp. 1481-1484
vol.2, 1995.

E. Brusseau, J. Kybic, J. F. Deprez, and O. Basset, “2-d locally regularized
tissue strain estimation from radio-frequency ultrasound images: Theoretical
developments and results on experimental data,” IEEE Transactions on Medical
Imaging, vol. 27, no. 2, pp. 145-160, 2008.

63



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

J. Jensen, “Field: A program for simulating ultrasound systems,” Medical and

Biological Engineering and Computing, vol. 34, pp. 351-352, 1996.

N. C. Dolan, K. Liu, M. H. Criqui, P. Greenland, J. M. Guralnik, C. Chan, J. R.
Schneider, A. L. Mandapat, G. Martin, and M. M. McDermott, “Peripheral
artery disease, diabetes, and reduced lower extremity functioning,” Diabetes
Care, vol. 25, no. 1, pp. 113-120, 2002.

R. Zatz and B. M. Brenner, “Pathogenesis of diabetic microangiopathy. the
hemodynamic view,” Am. J. Med., vol. 80, no. 3, pp. 443-453, 1986.

P. G. Camici and F. Crea, “Coronary microvascular dysfunction,” New Eng. J.
Med., vol. 356, no. 8, pp. 830-840, 2007.

M. A. Marinescu, A. I. Loffler, M. Ouellette, L. Smith, C. M. Kramer, and
J. M. Bourque, “Coronary microvascular dysfunction, microvascular angina,

and treatment strategies,” JACC: Cardiovascular Imaging, vol. 8, no. 2, pp. 210
— 220, 2015.

G. Zoffoli, D. Mangino, A. Venturini, A. Terrini, A. Asta, C. Zanchettin, and
E. Polesel, “Diagnosing left ventricular aneurysm from pseudo-aneurysm: a case

report and a review in literature,” J Cardiothorac Surg., vol. 4, no. 11, 2009.

J. Cronenwett, T. F Murphy, G. B Zelenock, W. Whitehouse, S. M Lindenauer,
L. M Graham, L. E Quint, T. M Silver, and J. Caridi, “Actuarial analysis of vari-

ables associated with rupture of small abdominal aortic aneurysms,” Surgery,
vol. 98, no. 3, pp. 472 — 483, 1985.

S. Juvela, M. Porras, and K. Poussa, “Natural history of unruptured intracra-
nial aneurysms: probability of and risk factors for aneurysm rupture,” J. Neu-
rosurgery, vol. 108, no. 5, pp. 1052 — 1060, 2008.

S. Currie, K. Mankad, and A. Goddard, “Endovascular treatment of intracranial
aneurysms: review of current practice,” Postgrad Med J, vol. 87, no. 1023, pp. 41
— 50, 2011.

K. Christensen-Jeffries, R. J. Browning, M.-X. Tang, C. Dunsby, and R. J. Eck-
ersley, “In vivo acoustic super-resolution and super-resolved velocity mapping
using microbubbles,” IEEE Transactions on Medical Imaging, vol. 34, no. 2,
pp. 433-440, 2015.

69



[73]

[74]

[75]

[76]

[80]

[81]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Na-
ture, vol. 407, no. 6801, pp. 249 — 257, 2000.

N. Nishida, H. Yano, T. Nishida, T. Kamura, and M. Kojiro, “Angiogenesis in
cancer,” Vascular Health and Risk Management, vol. 2, no. 3, pp. 213 — 219,
2006.

S. Bjaerum, H. Torp, and K. Kristoffersen, “Clutter filter design for ultrasound
color flow imaging,” IFEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, vol. 49, no. 2, pp. 204-216, 2002.

A. C. H. Yu and L. Lovstakken, “Eigen-based clutter filter design for ultra-
sound color flow imaging: A review,” IEEE Transactions on Ultrasonics, Fer-

roelectrics, and Frequency Control, vol. 57, no. 5, pp. 1096-1111, 2010.

C. Tysoe and D. H. Evans, “Bias in mean frequency estimation of doppler
signals due to wall clutter filters,” Ultrasound in Med. & Biol., vol. 21, no. 5,
pp. 671-677, 1995.

Y. M. Yoo, R. Managuli, and Y. Kim, “Adaptive clutter filtering for ultrasound
color flow imaging,” Ultrasound in Med. & Biol., vol. 29, no. 9, pp. 1311-1320,
2003.

A. P. G. Hoeks, J. J. W. van de Vorst, A. Dabekaussen, P. J. Brands, and R. S.
Reneman, “An efficient algorithm to remove low frequency doppler signals in

digital doppler systems,” Ultrasonic Imaging, vol. 13, pp. 135—144, 1991.

E. Mace, G. Montaldo, I. Cohen, M. Baulac, M. Fink, and M. Tanter, “Func-
tional ultrasound imaging of the brain,” Nature Methods, vol. 8, pp. 662—664,
2011.

E. J. Candes, C. A. Sing-Long, and J. D. Trzasko, “Unbiased risk estimates
for singular value thresholding and spectral estimators,” IEEE Transactions on
Signal Processing, vol. 61, no. 19, pp. 4643-4657, 2013.

M. Bayat, M. Fatemi, and A. Alizad, “Background removal and vessel filtering
of noncontrast ultrasound images of microvasculature,” IEEE Transactions on
Biomedical Engineering, vol. 66, no. 3, pp. 831-842, 2019.

70



[83]

[84]

[85]

[89]

[90]

[91]

[92]

S. Adabi, S. Ghavami, M. Fatemi, and A. Alizad, “Non-local based denoising
framework for in vivo contrast-free ultrasound microvessel imaging,” Sensors,
vol. 19, 2019.

L. Ozdemir and K. Hoyt, “Morphological processing for multiscale analysis of
super-resolution ultrasound images of tissue microvascular networks,” in SPIE
Medical Imaging, 2019.

R. Nayak, V. Kumar, J. Webb, A. Gregory, M. Fatemi, and A. Alizad, “Non-
contrast agent based small vessel imaging of human thyroid using motion cor-

rected power doppler imaging,” Scientific Reports, vol. 8, 2018.

M. Kim, Y. Zhu, J. Hedhli, L. W. Dobrucki, and M. F. Insana, “Multidimen-
sional clutter filter optimization for ultrasonic perfusion imaging,” IEFEE Trans-

actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 11,
pp. 2020-2029, 2018.

G. G. Olleros, M. B. Stuart, J. A. Jensen, C. A. Villagémez Hoyos, and K. L.
Hansen, “Spatiotemporal filtering for synthetic aperture slow flow imaging,” in
IEEE TUS, pp. 1-4, 2018.

G. Bergqvist and E. G. Larsson, “The higher-order singular value decomposi-
tion: Theory and an application [lecture notes|,” IEEE Signal Processing Mag-
azine, vol. 27, no. 3, pp. 151-154, 2010.

J. Baranger, B. Arnal, F. Perren, O. Baud, M. Tanter, and C. Demené, “Adap-
tive spatiotemporal svd clutter filtering for ultrafast doppler imaging using
similarity of spatial singular vectors,” IEFE Transactions on Medical Imaging,
vol. 37, no. 7, pp. 1574-1586, 2018.

E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component anal-
ysis?,” Journal of the ACM, vol. 58, no. 3, 2011.

J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding algorithm
for matrix completion,” SIAM J. Optim., vol. 20, no. 4, 2010.

V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-
sparsity incoherence for matrix decomposition,” SIAM J. Optim., vol. 21, no. 2,
pp. H572-596, 2011.

71



[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

J. Wright and Y. Ma, “Dense error correction via ¢'-minimization,” IEEE Trans.
Information Theory, vol. 56, no. 7, pp. 3540-3560, 2010.

H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral image
restoration using low-rank matrix recovery,” IEEFE Transactions on Geoscience
and Remote Sensing, vol. 52, no. 8, pp. 4729-4743, 2014.

P. Favaro, R. Vidal, and A. Ravichandran, “A closed form solution to robust
subspace estimation and clustering,” in CVPR 2011, pp. 1801-1807, 2011.

H. Mansour and A. Vetro, “Video background subtraction using semi-supervised
robust matrix completion,” in 2014 IEEFE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 6528-6532, 2014.

J. L. Kendall and J. P. Faragher, “Ultrasound-guided central venous access: a
homemade phantom for simulation,” Canadian Journal of Emergency Medicine,
vol. 9, no. 5, p. 371-373, 2007.

J. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily
shaped, apodized, and excited ultrasound transducers,” IEEE Transactions on

Ultrasonics, Ferroclectrics, and Frequency Control, vol. 39, pp. 262-267, 1992.

X. Peng, C. Lu, Z. Yi, and H. Tang, “Connections between nuclear-norm and
frobenius-norm-based representations,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 1, pp. 218-224, 2018.

M. Bayat and M. Fatemi, “Concurrent clutter and noise suppression via low
rank plus sparse optimization for non-contrast ultrasound flow doppler pro-

Y

cessing in microvasculature,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 1080-1084, 2018.

M. G. Kibria and H. Rivaz, “Global ultrasound elastography using convolutional
neural network,” arXiv preprint arXiv:1805.07493, 2018.

M. G. Kibria and H. Rivaz, “Gluenet: Ultrasound elastography using convolu-
tional neural network,” Simulation, Image Processing, and Ultrasound Systems

for Assisted Diagnosis and Navigation. Springer, Cham, pp. 21-28, 2018.

72



[103] H. S. Hashemi, S. Fallone, M. Boily, A. Towers, R. D. Kilgour, and H. Rivaz,
“Assessment of mechanical properties of tissue in breast cancer-related lym-
phedema using ultrasound elastography,” IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 66, no. 3, pp. 541-550, 2019.

73



Appendix A

Supplementary Material for
GUEST

Figure A.1 presents the strain images from GUEST for a simulation phantom with
frame to frame strains 0.5% and 3%. For both simulations, regularization parameters
were kept the same (a1=>5, ap=1, a3=20, §;=5, f=1 and [3=20). Optimal results
for both cases were obtained using the aforesaid parameter settings. This proves
that parameter values do not depend on strain percentage which in turn says that

parameter values are unrelated to the rate of ultrasound data acquisition.
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Figure A.1: Axial strain images from GUEST for the simulation phantom with different
strain level. First and second columns correspond to the axial strain images for frame to
frame strains of 0.5% and 3% respectively.

Figure A.2 shows the strain images and histograms of CNR values for a simulation
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phantom with frame to frame strain of 1%, 2% and 3%. In Figure A.2(c), sliding blue
target and red background windows for calculating 120 (6 target and 20 background
windows) CNR values are shown. Histograms with 120 CNR values are also presented
in Figure A.2. Both visual assessment and histograms suggest that GUEST produces
better strain images than GLUE and the Hybrid method.

We have simulated a situation where Radio-Frequency (RF) frames are temporally
irregular. The strain from first frame to second frame is 0.5% and second frame
to third frame is 0.6%. Figure A.3 depicts that GUEST is successful in obtaining
a correct strain map even for this temporally discontinuous case. This experiment
supports our claim that GUEST is robust to temporal irregularity induced from
sinusoidal hand motion or other sources.

We have simulated a homogeneous phantom with an elasticity of 20 kPa using Field
II. The simulated phantom contains a hard inclusion with intra-varying elasticity
levels of 40 kPa and 80 kPa. We have compressed the phantom using closed form
equations. Let us consider the axial and lateral positions of a particular scatterer are

zp and x,. Lateral displacement of the scatterer is given by:

vs iz, if z, < D

vsox, if D; < z,<D
do(a) =4 7 roe (30)
vs3x, if Dy < 2, < D3

vs1T, otherwise

Here, v is poisson’s ratio which is considered to be 0.49 for this experiment. s;
stands for the percent axial strain in background. s, and s3 are percent strains in
the portions of the hard inclusion with elasticities 40 kPa and 80 kPa respectively.
D, < z, < D, corresponds to the axial positions with an elasticity of 40 kPa. Sim-
ilarly, Dy < 2, < Ds is the depth of the tissue with an elasticity of 80 kPa. Axial
shift of the scatterer is given by Eq. 31.
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Figure A.2: Axial strain images and histograms for the simulation phantom. Rows 1, 2 and
3 correspond to frame to frame strain levels of 1%, 2% and 3% respectively. Columns 1-3
show strain images for Hybrid, GLUE and GUEST respectively. Column 4 presents the
histograms of CNR values. (m), (n) and (o) correspond to color bars for 1%, 2% and 3%
strains respectively.
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Figure A.4: Axial strain images for a simulation phantom with an inclusion containing
intra-variation in elasticity. Column 1 represents the ideal strain image. Columns 2-4 show
strain images for Hybrid, GLUE and GUEST respectively. (e) represents the color bar.

Table A.1: SSIM and PSNR of the strain images for simulation phantom with an inclusion
with intra-variation in elasticity.

SSIM  PSNR (dB)
Hybrid  0.7280  45.7951
GLUE  0.9479  46.6852
GUEST 0.9509  46.8747

In this experiment, s; is considered to be 4%. To comment on sy and s3, let’s revisit
two basic physics concepts. First, Hooke’s law: o = sE. Here, o, s and E correspond
to stress, strain and elasticity of a portion of the tissue. Second, equilibrium which
means that stresses in different portions of the tissue are equal. In light of these two
basic rules, s and s3 turn out to be 2% and 1% respectively. The ideal and estimated
axial strain images from Hybrid, GLUE and GUEST for the simulated phantom are
presented in Figure A.4. It is visually clear that the strain image from GUEST shows
the boundaries of different layers better than Hybrid and GLUE. Quantitative values
of Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are
reported in Table A.1. GUEST provides the highest values for both of the metrics.
This particular experiment proves that our method does not over-smooth the strain
image. Instead, GUEST better depicts different layers of the tissue than the existing
methods.

In Figure A.5, we have presented axial strain images from GUEST for simulation

phantom with different sets of parameter values. We have reported results for a; =
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£ =0,1,2,5. For all four cases of a; and 3, ag and 35 are kept constant at 1 while oz
and 5 are set to 20. Additionally, we report results for ap = 5 = 0,0.1, 0.5, 1 setting
a1, B1, as and (3 to 5,5,20 and 20 respectively. Finally, we have presented axial
strain images for ag = 3 = 0, 1,5, 20 while aq, £1, as and (5 remain fixed at 5,5, 1
and 1 respectively. This experiment shows the dependence of strain estimation on
different regularization parameters. Figure A.6 shows the strain profiles from Hybrid,
GLUE and GUEST for the simulation data over a vertical cut. GUEST generates a
smoother strain profile in uniform regions compared to both GLUE and the Hybrid
methods. The strain plot from Hybrid suffers from a large fluctuation of background
strain. The diameter of the inclusion is marked with ticks in the x-axis of the strain

profile figure.
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Figure A.5: Axial strain images for simulation phantom with different sets of regularization
parameter values. Rows 1 shows the axial strain images for different values of a; and 5.
Rows 2 represents changes in axial strain images by varying as and 2. Rows 3 corresponds
to the axial strain images for different values of a3 and 3. (m) represents the color bar.
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Appendix B

Supplementary Material for
RAPID

Figure B.1 shows the schematic description of the set-up for the phantom experiment.
Figure B.2 represents the power Doppler images from SVD and RAPID for the simu-
lation data with added random noise of uniform distribution. Two levels of noise with
Peak Signal-to-Noise Ratio (PSNR) values of 58.43 dB and 39.34 dB are added to
the envelopes of RF data. It is evident from Figure B.2 that the result from SVD for
blood rank 15 is similar to that of 19 in case of the lower noise level. On that other
hand, the results from SVD for blood subspace ranks 15 and 19 are substantially
different from each other for the higher level of noise. This study indicates that the
optimal values of tunable parameters of SVD are highly dependent on the noise level.
On the contrary, RAPID automatically obtains the optimal result regardless of the
level of noise.

Figure B.3 depicts the clutter suppressed power Doppler images for simulation, phan-
tom and in-vivo data sets generated by SVD, HOSVD [23] and RAPID. We have
incorporated 15 Radio-Frequency (RF) frames to generate the power Doppler images
from SVD and RAPID. We consider a data tensor consisting of 3 matrices where each
matrix is an ensemble of 15 slow time frames. For SVD and HOSVD, the best results
obtained by careful tuning of the parameters are reported. RAPID converges to the
optimal results without the need of any manual tuning. The results from SVD and
RAPID are very similar to each other. HOSVD does not seem to improve the quality
of the power Doppler images for the datasets used in this study. However, HOSVD

is expected to improve the result when a large number of data matrices consisting
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Channel 1

Channel 2

Figure B.1: A schematic depiction of the set-up for the phantom experiment.

of more slow time frames are incorporated to form the data tensor. Therefore, it is
suggested that HOSVD improves the result at the expense of extensive amount of
data. Besides, this method suffers from much higher running time than SVD and
RAPID. To be precise, our MATLAB implementation of HOSVD takes more than 40
minutes to execute for a tensor of 3 matrices each of which consists of 15 slow time
frames of size 250 x 125. On the other hand, both SVD and RAPID take less than 1
second to process the same amount of data. Another limitation of HOSVD is that it
has 6 tunable parameters and there is no rigid criterion to select the optimal set of
values for them. Hence it is very difficult to obtain the optimal result while dealing
with a large dataset since it is subject to the manual tuning of 6 parameters over a

certain range. This drawback calls the clinical usefulness of HOSVD into question.
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Figure B.2: Power Doppler images for simulation with different noise levels. Rows 1 and 2
correspond to PSNR values of 58.43 dB and 39.34 dB respectively. Columns 1 and 2 show
results from SVD for different combinations of subspace ranks. Column 3 represents the
results from RAPID. (g) shows the color bar.
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Figure B.3: Power Doppler images for simulation, phantom and in-vivo data sets. Rows
1-5 correspond to simulation, phantom with focused imaging, phantom with plane wave
imaging, in-vivo data from a rat’s abdomen and in-vivo data from the knee of a human
subject respectively. Columns 1-4 depict B-mode, power Doppler images obtained from
SVD, HOSVD and RAPID respectively. (u), (v), (w), (x) and (y) represent the color bars.
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