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ABSTRACT

Bounded Support Finite Mixtures for Multidimensional Data Modeling and Clustering

Muhammad Azam, Ph.D.

Concordia University, 2019

Data is ever increasing with today’s many technological advances in terms of both quantity

and dimensions. Such inflation has posed various challenges in statistical and data analysis meth-

ods and hence requires the development of new powerful models for transforming the data into

useful information. Therefore, it was necessary to explore and develop new ideas and techniques

to keep pace with challenging learning applications in data analysis, modeling and pattern recogni-

tion. Finite mixture models have received considerable attention due to their ability to effectively

and efficiently model high dimensional data. In mixtures, choice of distribution is a critical issue

and it has been observed that in many real life applications, data exist in a bounded support region,

whereas distributions adopted to model the data lie in unbounded support regions. Therefore, it

was proposed to define bounded support distributions in mixtures and introduce a modified pro-

cedure for parameters estimation by considering the bounded support of underlying distributions.

The main goal of this thesis is to introduce bounded support mixtures, their parameters estimation,

automatic determination of number of mixture components and application of mixtures in feature

extraction techniques to overall improve the learning pipeline. Five different unbounded support

distributions are selected for applying the idea of bounded support mixtures and modified pa-

rameters estimation using maximum likelihood via Expectation-Maximization (EM). Probability

density functions selected for this thesis include Gaussian, Laplace, generalized Gaussian, asym-

metric Gaussian and asymmetric generalized Gaussian distributions, which are chosen due to their

flexibility and broad applications in speech and image processing. The proposed bounded support

mixtures are applied in various speech and images datasets to create leaning applications to demon-

strate the effectiveness of proposed approach. Mixtures of bounded Gaussian and bounded Laplace

are also applied in feature extraction and data representation techniques, which further improves

the learning and modeling capability of underlying models. The proposed feature representation

via bounded support mixtures is applied in both speech and images datasets to examine its per-

formance. Automatic selection of number of mixture components is very important in clustering

and parameter learning is highly dependent on model selection and it is proposed for mixture of

bounded Gaussian and bounded asymmetric generalized Gaussian using minimum message length.

Proposed model selection criterion and parameter learning are simultaneously applied in speech

and images datasets for both models to examine the model selection performance in clustering.
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Chapter 1
Introduction

Recently, due to the rapid development in sensor networks and communication technologies, data

storage and data collection capabilities have been increased. Due to the accumulation of large

databases, data analysis and modeling provide a platform to revolutionize all science and engi-

neering domains and provide great opportunities in a many areas including, e-commerce, industry,

medical and social media [4, 5]. Several applications of data analysis in different areas have in-

creased the demand for development of advanced data mining techniques. Development in this

area is needed to improve information retrieval, knowledge discovery and learning from the pat-

terns in data for making smart and intelligent decisions [5–7]. In last few years, application of

machine learning has tremendously increased to extract information and patterns from data. The

information and patterns extracted from data help machines to learn and improve their intelli-

gence which further assist in smart decision making in broad areas of applications. Development

of machine learning algorithms and techniques has become an active area of research in last few

decades due to fast growing need in application of AI in different areas. Machine learning algo-

rithms are backbone of AI in numerous applications of data mining in all engineering and natural

sciences domains, including business, finance, physical, cognitive, biological and biomedical sci-

ences [4, 8, 9].

In machine learning, data clustering is defined as unsupervised classification of patterns into

groups which are called clusters. The task of data clustering has been addressed in different ways

and in many research fields [10]. Clustering algorithms aim to classify elements of data into cat-

egories, or clusters based on their similarity [11], where degree of similarity is represented by

an affinity function, which takes a data-pair as its input [12]. Data clustering has been extensively

used in image segmentation, object and character recognition, information retrieval and many more

applications of speech and image processing [13, 14]. Many clustering techniques have been pro-

posed in last few decades to solve different pattern recognition tasks. As cluster analysis is quite

1



prevalent for multivariate data [15], it is not limited to few algorithms or techniques. K-Means is

a well known and a popular algorithm for data clustering but it has several limitations in cluster

analysis such as sensitivity to the initialization and outliers, choosing the number of clusters and

problems with high dimensional data.

Finite mixture model is well known clustering approach that provides solution to many prob-

lems observed with K-Means. Mixture models can be employed to model complex data sets by

assuming that each observation of data has arisen from one of the different groups or compo-

nents [16, 17]. Mixture model is a probabilistic approach, which is capable of utilizing prior in-

formation to model uncertainty [18–20]. Popular applications of mixture models include anomaly

detection [21], image segmentation [22, 23], biomedical diagnostics and prediction of diseases i.e.

Alzheimer [24, 25], speech recognition, speaker identification and classification [1, 26–29].

1.1 Finite Mixture Models and Parameters Learning via EM

Finite mixture models are created by considering a linear combinations of a finite number of basic

distributions. These densities are called components of the mixture model. If we consider that,
�X = [X1, ...,XD]

T is a D-dimensional vector, which follows a K component mixture distribution,

then its probability density function can be written as:

p(�X |Θ) =
K

∑
j=1

p(�X |ξ j)p j (1.1)

with the constraints that p j ≥ 0 and ∑K
j=1 p j = 1. In Eq. (1.1), ξ j represents the mixture model

parameters of jth component, p j is mixing weight, Θ = {ξ1, ...,ξK, p1, ..., pK} represents the com-

plete set of parameters to characterize the mixture model and K ≥ 1 is number of components in

the mixture model [30–34]. For data X = (�X1, ...,�XN), having a mixture of K distributions, the

model is given by:

p(X |Θ) =
N

∏
i=1

K

∑
j=1

p(�Xi|ξ j)p j (1.2)

In a finite mixture, parameters estimation is performed by computation of maximum likelihood

(ML) estimate which is described as follows:

Θ̂ML = argmax
Θ

{p(X |Θ)} (1.3)

The ML estimate for the computation of parameters of mixture model cannot be found analytically

and usual choice for estimation is EM algorithm [30, 31, 35, 36], which is an iterative procedure to
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find the local maxima of log-likelihood. In EM algorithm, it is assumed that our data are incomplete

and in mixture models, the missing part is label associated with each data sample. In EM algorithm,

parameters are estimated in two steps which are called expectation (E-step) and maximization

(M-step). In E-step, conditional expectation of complete log-likelihood is computed whereas in

M-step, parameters of mixture model are updated [30, 35, 37].

1.2 Probability Density Function Selection

Gaussian mixture model is one of the most popular approaches in this family which utilizes Gaus-

sian distribution for modeling the data and it has been employed in many applications. Although,

GMM has been the first choice for many clustering applications, it has some limitations due to

its high sensitivity to outliers. The choice of distribution in a mixture model is very important

and it depends on many factors including nature of data, modeling capabilities, handling issues

posed by outliers, ability to cluster high dimensional datasets and ease for applying in real appli-

cations. Mixture models are an active area of research and a lot of work has been performed to

introduce new techniques and algorithms to deal with more complex and challenging tasks in data

modeling [38–44]. Student’s t mixture model (SMM) was introduced to improve the robustness of

mixture model for different shapes of data [16, 18, 45, 46]. Generalized Gaussian mixture model

has been proposed to improve the data modeling capabilities since generalized Gaussian distribu-

tion has an extra shape parameter that helps to model Laplacian and Gaussian data [47–51]. A

mixture of Laplace distributions was introduced as a generalization to k-median algorithm, which

can be used in clustering applications primarily to handle outliers and this approach proves to be

very effective in many data modeling applications where density of data is more close to Laplace

distribution [52–54]. With a mixture of Gaussians, it is assumed that component distribution is

symmetric in nature. In many applications, it is possible that data might not be symmetrical and

GMM could not model the data very well. For applications with asymmetric nature of data, sym-

metric distribution is better choice for data modeling [32, 55–57]. One such example is asymmetric

Gaussian distribution which has two standard deviation parameters on the left and right side of dis-

tribution, which make it possible to model the asymmetric data [32]. It should be noted that by

considering the equal left and right standard deviations, it turns out to be a symmetric distribution.

Another such example is asymmetric generalized Gaussian distribution which also has a shape pa-

rameter. By considering the equal left and right standard deviations in this distribution will make

it a generalized Gaussian distribution which can be used further to generalize the Laplace and

Gaussian distributions by changing the value of shape parameter [32, 56, 58, 59].
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1.3 Bounded Support Mixture Models

One limitation with above mentioned models is that their distributions have unbounded support
range (−∞,+∞). In many real applications, it is observed that data lie within bounded support re-
gions [60–62]. Bounded support mixture has been proposed to overcome the problems associated
with unbounded mixture models [18, 61–66], which has demonstrated its success for many speech
processing applications [67]. In majority of data applications modeled through Gaussian mixtures,
the problems in modeling posed by unbounded support have not been addressed. Considering
bounded support in a mixture model results in a modified probability density function and a mod-
ified expectation maximization algorithm. In order to accurately model the data by considering
a bounded support region (∂ j) in R, an indicator function H(X | j) for each component of mixture
model is defined as:

H(X | j) =
⎧⎨
⎩1 if X ∈ ∂ j

0 otherwise
(1.4)

If we consider the finite mixture model discussed in Eq. (1.1) with uni-variate data, then bounded
support model can be obtained by multiplying unbounded mixture model with H(X | j) and normal-
ize

p(Xi|Θ) =
p(X |Θ)H(X | j)∫

R
p(u|Θ)H(u| j)du

(1.5)

=

⎧⎪⎨
⎪⎩

∑K
j=1 p(X |ξ j)p j

∑K
j=1 p j

∫
∂ j

p(u|ξ j)du if X ∈ ∂ j

0 otherwise

=

⎧⎨
⎩

∑K
j=1 p(X |ξ j)p j

∑K
j=1 p j f j

if X ∈ ∂ j

0 otherwise

where f j =
∫

∂ j
p(u|ξ j)du is the share of p(u|ξ j) that belongs to the support region. The denomina-

tor in Eq. (1.5) guarantees that p(X |Θ) integrates to unity and can be indicated as Fs = ∑K
j=1 p j f j

of the whole underlying mixture model that belongs to the support region. The bounded support
mixture model can be rewritten as:

p(X |Θ) =
H(X | j)∑K

j=1 p(X |ξ j)p j

Fs
=

K

∑
j=1

π j
p(X |ξ j)

f j
H(X | j), where π j = p j

f j

Fs
(1.6)

The parameters of a bounded support mixture model can be estimated by maximum likelihood ap-

proach using EM algorithm for optimization of estimated parameters as described in [18, 62]. Due

to flexibility in modeling and requirements in many applications, Gaussian, Laplace, generalized

Gaussian, asymmetric Gaussian and asymmetric generalized Guaissain distributions are adopted
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to create bounded support mixtures in this thesis.

1.4 Selection of number of components

In the clustering process performed by finite mixture models, a very important problem is to find

the best number of components of mixture model called model selection. There is a trade off in

selection of number of components in a mixture model. By selecting too many components, mix-

ture model may lead to an over-fitting, while selecting too few components may not be flexible

enough to effectively model the behavior of different patterns of data [30, 68, 69]. A lot of research

has been performed in the past to find the optimal number of components in a mixture model.

There are several deterministic and stochastic algorithms to estimate the optimal number of mix-

ture components [30]. An approximate Bayesian criteria was introduced in [39], which was later

termed as Laplace-empirical criterion [31] and it has been proven very effective in model selection

in many studies [31]. Bayesian inference criterion was introduced in [70–73] which got a lot of

attention in many applications due to its simplicity. Minimum description length (MDL) is based

on information theory and it was presented in [74]. Akaike’s information criterion (AIC) and infor-

mational complexity criterion (ICOMP) were introduced in [75] and [76], respectively and these

approaches also use concepts from information theory. Approximate weight of evidence (AWE)

and classification likelihood criterion (CLC) were introduced in [77, 78] and these approaches are

dependent on the use of complete likelihood of data. Normalized entropy criterion (NEC) and in-

tegrated classification likelihood (ICL) method were introduced in [79, 80] and [81], respectively.

Minimum message length (MML) criterion to find the optimal number of components in mixtures

was introduced in [82–84], which has been found very effective in model selection in numerous

studies and applications in the past.

1.5 Contributions

The aim of this thesis is to propose several novel approaches for multidimensional data modeling

and clustering. The overall contributions of this thesis are as follows:

� Multivariate Bounded Gaussian Mixture Model with Minimum Message Length Cri-

terion for Model Selection

We propose BGMM to speech and image processing applications for clustering and fur-

ther extend our experiments by proposing it to code-book generation for speech and image

datasets. A model selection criterion is also proposed and tested with different datasets.
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� Speaker Verification Using Adapted Bounded Gaussian Mixture Model

We proposed a speaker verification framework using BGMM. In the proposed framework,

a universal background model is trained via BGMM. In adapted speaker approach, hypoth-

esized speaker model is derived by adapting the parameters of BGMM based UBM using

speaker’s training speech and maximum a posteriori (MAP).

� Bounded Laplace Mixture Model with Applications to Image Clustering and Content

Based Image Retrieval

We proposed BLMM for texture images categorization and CBIR. In both frameworks,

feature are also extracted using BLMM and experiments are conducted with 3 datasets to

demonstrate the effectiveness of proposed approach in feature extraction, image categoriza-

tion and CBIR.

� Multivariate Bounded Support Laplace Mixture Model

We extended our previous work and proposed BLMM in clustering synthetic data, 10 med-

ical datasets and feature extraction in wavelet domain, texture image categorization and

CBIR. We also introduced 3 different similarity measures for CBIR and proposed a closed

form solution for one measure. Texture image categorization and CBIR experiments are

conducted with 5 different datasets.

� Texture Image Categorization in Wavelet Domain via Naive Bayes Classifier Based on

Laplace and Generalized Gaussian Distribution

We proposed Naive Bayes classifiers using Laplace and generalized Gaussian distributions

for texture image categorization with feature extraction using BLMM adopted from previous

work. Experiments are conducted on 3 different datasets with texture images.

� Unsupervised keyword spotting using bounded generalized Gaussian mixture model

with ICA

We proposed an ICA mixture in unsupervised keyword spotting for the generation of poste-

riorgrams for test speech files and reference keyword examples. The posteriorgrms are com-

pared using segmental dynamic time warping for making a decision about the occurrence of

keywords in speech data. The experiments are performed using TIMIT speech corpus.

� Speaker Classification via Supervised Hierarchical Clustering Using ICA Mixture Model

In this work, a speaker classification framework is developed using ICA mixture model and

experiments are conducted using TSP and TIMIT speech datasets. The experiments are

performed for male and female speakers categorization and 10 speakers classification.
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� Blind Source Separation as Pre-processing to Unsupervised Keyword Spotting via an

ICA Mixture Model

This work is an extension of unsupervised keyword spotting, where test data is mixed with

other speech files and it is observed that source mixing cause a decrease in recognition for

keyword spotting and application of BSS in the pre-processing improves the keyword spot-

ting task.

� Bounded Generalized Gaussian Mixture Model with ICA

This work is an extension of BSS and unsupervised keyword spotting. Several experiments

are performed to see the effectiveness of ICA mixture in BSS. BSS is also applied to un-

supervised keyword spotting and performance is observed with BSS being applied in the

pre-processing with test data is mixed with other sources.

� Multivariate Bounded Asymmetric Gaussian Mixture Model

We proposed BAGMM, which uses ML and EM along Newton-Raphson for parameter es-

timation. The proposed model is applied in textual spam detection, object clustering and

texture image clustering and experiments are conducted with 4 different datasets.

� Multivariate Bounded Support Asymmetric Generalized Gaussian Mixture Model with

Model Selection using Minimum Message Length

We proposed Bounded Support Asymmetric Generalized Gaussian Mixture Model, which

uses ML and EM along Newton-Raphson for parameter estimation. The proposed model

is applied in image spam detection, object recognition and visual scene categorization. A

model selection criteria is also proposed using MML with is tested datasets from clustering

experiments.

1.6 Thesis Overview

The organization of this thesis is as follows:

� Chapter 1, contains an introduction to mixture models and an overview over the thesis.

� In chapter 2, BGMM is proposed to different clustering applications in speech and images

datasets. For experiments, male and female speakers categorization, spoken and written dig-

its recognition and clustering of fashion images are chosen from speech and images datasets.

Further, BGMM is also applied in code-book generation to improve pre-processing and ex-

periments are conducted on same datasets for speech and images. A model selection criterion

is also proposed using MML for BGMM, which is applied in medical datasets and all the
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datasets used in clustering experiments from speech and images. This work is submitted

to Expert Systems journal. BGMM is also proposed for speaker verification in adapted

speaker model and universal background model. This work is published in 2018 IEEE In-

ternational Conference on Information Reuse and Integration (IRI) [67].

� In chapter 3, BLMM is proposed, which adopt maximum likelihood via EM along with New-

ton Raphson for its parameter estimation. Proposed model is applied in clustering synthetic

data, medical datasets, feature extraction and modeling the texture images and CBIR. In this

chapter, 3 similarity measures are also used and a close form solution for one of the measures

is proposed. Initial results of this research are published in 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA) [85] and complete work

is submitted to Soft Computing journal. The features extracted from BLMM in wavelet

domain are further used in supervised learning and modeled through proposed Naive Bayes

classifiers using Laplace and generalized Gaussian distributions. This work is published in

2019 IEEE 20th International Conference on Information Reuse and Integration for

Data Science (IRI) [86].

� In chapter 4, multivariate bounded generalized Gaussian mixture model with ICA is pro-

posed which is initially applied to unsupervised keyword spotting. This work is published in

2015 IEEE Global Conference on Signal and Information Processing [2]. The proposed

model was applied in speaker classification via hierarchical clustering and published in 2016

7th International Conference on Image and Signal Processing (ICISP) [87]. This was

further applied to BSS and unsupervised keyword spotting and initial results were published

in 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWS-

CAS) [88] and the complete work was published in Neural Processing Letters [89].

� In chapter 5, two asymmetric bounded mixture are proposed. First model is bounded asym-

metric Gaussian mixture which uses ML and EM with Newton-Raphson for parameter es-

timate. The proposed model is applied to textual spam detection, object categorization and

texture image clustering. Overall 4 different datasets are used in experiments and this work

is published as a book chapter in Mixture Models and Applications [90]. Our second pro-

posed model is bounded asymmetric generalized Gaussian mixture which also uses ML and

EM with Newton-Raphson for parameter estimate. The model is applied in image spam de-

tection, object recognition, and visual scene categorization. A model selection criteria using

MML is also proposed tested with all the datasets used in clustering experiments. This work

is submitted to Multimedia Tools and Applications journal.

� Chapter 6 summarizes our contributions and present some potential future works.
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Chapter 2
Multivariate Bounded Support Gaussian

Mixture Model

Bounded support Gaussian mixture model (BGMM) has been proposed for data modeling as an

alternative to unbounded support mixture models for the cases when the data lies in bounded

support. In this chapter, we propose applications of multivariate BGMM in data clustering for

more insightful analysis of the model. We also propose minimum message length (MML) criterion

for model selection in data clustering using multivariate BGMM. The presented model is applied

to data clustering in several speech (TSP and Spoken Digits) and image databases (MNIST and

Fashion MNIST). We also propose the application of BGMM in code-book generation at feature

extraction phase. Inspired by the success of bag of visual words approach in computer vision, it is

also introduced in speech data representation and validated through experiments presented in this

chapter. For validation of model selection criterion, MML is applied to different medical, speech

and image datasets. Experimental results obtained during the model selection through MML are

further compared with 7 different model selection criteria. The results presented in the chapter

demonstrate the effectiveness of BGMM.

We also propose the application of bounded Gaussian mixture model (BGMM) to speaker

verification. In the proposed approach, BGMM is employed for universal background model

(UBM) and adapted speaker model. The proposed UBM is a large BGMM trained to represent

speaker-independent distribution of features. In adapted speaker approach, hypothesized speaker

model is derived by adapting the parameters of BGMM based UBM using speaker’s training speech

and maximum a posteriori (MAP). We have applied TIMIT and TSP speech corpora for the de-

velopment of UBM and further testing of speaker verification by adapted speaker model. The

proposed framework has demonstrated its effectiveness by improved speaker detection rate.
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2.1 Introduction

In majority of data applications modeled through Gaussian mixtures, the problems in modeling

posed by unbounded support have not been addressed. Considering bounded support in a mixture

model results in a modified probability density function and a modified expectation maximization

algorithm. BGMM was proposed in [62] for speech data applications and it was applied to images

in [60], but it has not been further discussed and applied to more applications in speech and image

datasets. We intend to apply BGMM in various high dimensional datasets for more insightful

analysis and also propose model selection criterion for BGMM to accurately find the number of

clusters in a dataset to support unsupervised learning of mixture model.

In this chapter, BGMM is further explored in clustering applications and analyzed for multi-

cluster and high dimensional datasets in speech and image processing applications. For speech data

clustering, TSP and Spoken Digits datasets are selected and MNIST and Fashion MNIST datasets

are employed for image data clustering [91–94]. TSP dataset is composed of two categories of

data namely male and female speakers. As first step in our data clustering applications, BGMM

is applied on TSP dataset to categorize the speech signals of male and female speakers. Inspired

from bag of visual words (BoVW) approach in computer vision and image processing and bag

of words (BoW) approach in natural language processing (NLP), BoW approach is extended to

speech dataset [95–99] and we applied Mel Frequency Cepstral Coefficients (MFCC) to represent

the speech files before BoW stage. For speech data representation, this approach is termed as bag

of audio words (BoAW) and it has been successfully applied in many speech processing application

recently [100–102]. As next step in our data clustering applications, BGMM is applied to Spoken

Digits dataset which is composed of 10 categories of audio digits and features are extracted in

a similar manner as described for TSP dataset. Clustering is performed by selecting the data

from 2, 3, 4, 5 and 10 different categories to examine the behavior and modeling capabilities of

BGMM in a multi-cluster scenario. As our next step, BGMM is applied to MNIST and Fashion

MNIST datasets where each dataset is composed of 10 different categories. BoVW approach is

used to represent the data which are generated through Scale-Invariant Feature Transform (SIFT)

descriptors for each image. Similar to clustering experiments on Spoken Digits dataset, data from

2, 3, 4, 5 and 10 different classes are chosen to examine the clustering performance of BGMM in

a multi-cluster and high dimensional scenario.

BoW approach is used to represent the data for both kinds of applications (speech and image)

discussed in this chapter. Code-Book generation through BoW requires clustering which is mostly

done by K-Means. In literature, it is proved by several studies that application of mixtures to

replace the K-Means in Code-Book generation can improve the effectiveness of data representation

for model learning [59, 103]. In this chapter, we also propose the application of mixture model
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in Code-Book generation instead of K-Means and we examine the performance of BGMM in

clustering the features to create BoW for more effective representation of data. We have previously

examined the performance of BGMM in second stage, where it is applied to cluster the data after

feature extraction from BoW stage. In order to differentiate these experiments from the above

mentioned set of experiments, application of mixtures to clusters the data in BoW is called stage

1 clustering and application of mixture in clustering the data after feature extraction to categorize

it into different groups is called stage 2 clustering. Several experiments are performed to examine

the performance of proposed approach using BGMM in Code-Book generation and it is compared

with K-Means and GMM in a similar setting. In these experiments, 2 categories of data are selected

from TSP dataset, and 10 categories of data are chosen from Spoken Words, MNIST and Fashion

MNIST datasets. For these experiments we have 3 comparison options at stage 1 (BGMM, GMM,

K-Means) and 2 options at stage 2 (BGMM, GMM) clustering.

MML criterion for model selection is proposed for BGMM in this chapter and validated

through application on several medical datasets which are found to be difficult in clustering and

model selection by conventional approaches. In order to validate the proposed model selection

criterion, similar experiments are conducted with different approaches selected from literature.

We also extended our experiments on model selection for speech and images datasets discussed in

the clustering process. TSP dataset with 2 classes is selected for our experiments, whereas parts of

rest of datasets are chosen with 2, 3, 4 and 5 classes to validate the model selection and compared

with other algorithms.

2.2 Multivariate Bounded Support Gaussian Mixture Model

Bounded support mixtures were introduced to overcome the problems and challenges posed by

unbounded support range of underlying distribution when observed data have a bounded support

range. A bounded Gaussian mixture was presented in [62]. In this section, we present BGMM and

its parameters estimation using maximum likelihood estimate via EM algorithm.

2.2.1 Mixture of Multivariate Gaussian Distributions

Mixture of Gaussian distributions using EM algorithm was introduced in [104], however one of the

first major studies that used the mixture of Gaussian distributions was around 125 years ago by the

renowned biometrician Karl Pearson [105]. If a vector �X , follows a K component mixture which is

represented by Eq. (1.1), then Gaussian distribution for each component of mixture model is given
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Figure 2.1: Example demonstrating mixtures of different numbers of Gaussian distributions for two dimensional data

π

μ ∑ 

Zi

Xi

N

Figure 2.2: Graphical representation of Gaussian mixture model
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as follows:

f (�X |�μ j,Σ j) =
1

(2π)D/2
1

|Σ j|1/2 exp
{
−1

2
(�X −�μ j)

TΣ j
−1(�X −�μ j)

}
(2.1)

where �μ j and Σ j are mean and co-variance of Gaussian distribution for each component. For

estimation of parameters in Gaussian mixture model, ML approach via EM algorithm gives a

closed form solution for all parameters of mixture model as follows:

�̂μ j =
1

∑N
i=1 Ẑi j

N

∑
i=1

Ẑi j�Xi (2.2)

Σ̂ j =
1

∑N
i=1 Ẑi j

N

∑
i=1

Ẑi j

(
�Xi −�μ j

)(
�Xi −�μ j

)T
(2.3)

p̂ j =
1
N

N

∑
i=1

p( j|�Xi) (2.4)

where p( j|�Xi) is posterior probability estimated for GMM and N represents the total number of

observations. Some examples of data modeling via Gaussian mixture for two dimensional data for

several numbers of components are shown in Fig. (2.1) and graphical representation of Gaussian

mixture model is given in Fig. (2.2).

2.2.2 Mixture of Bounded Gaussian Distributions

For BGMM, the term p(�X |ξ j) in Eq. (1.2), is bounded Gaussian distribution (BGD). For defining

the BGD, it is required to present the indicator function defining the boundary conditions. For

each component of mixture model, ∂ is defined as bounded support region in R, and the indicator

function is defined as:

H(�X | j) =
⎧⎨
⎩1 if �X ∈ ∂ j

0 otherwise
(2.5)

By using the indicator function H(�X | j), BGD is defined as:

p(�X |ξ j) =
f (�X |�μ j,Σ j)H(�X | j)∫

∂ j
f (�u|�μ j,Σ j)du

(2.6)

where f (�X |�μ j,Σ j) represents the multivariate Gaussian distribution as given in Eq. (2.1). In Eq.

(2.6), ξ j = (�μ j,Σ j) is set of parameters with �μ j = (μ j1, ...,μ jD) and Σ j as D-dimensional mean and

D×D co-variance matrix of the BGD, respectively [62]. The term
∫

∂ j
f (�u|�μ j,Σ j)du in Eq. (2.6)

is the normalization constant that indicates the share of f (�X |�μ j,Σ j) which belongs to the support
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region ∂ j.

We introduce stochastic indicator vectors �Zi = (Zi1, ...,ZiK), one vector for each observation

of data. The role is to encode the membership of each observation into the relative component of

the mixture model. In other words, Zi j, the unobserved variable in each indicator vector, equals 1

if �Xi belongs to class j and 0, otherwise. The complete data likelihood is given below.

p(X ,Z |Θ) =
N

∏
i=1

K

∏
j=1

(
p(�Xi|ξ j)p j

)Zi j
(2.7)

where Zi j is the posterior probability and its expectation can be written as:

Ẑi j = p( j|�Xi) =
p(�Xi|ξ j)p j

∑K
j=1 p(�Xi|ξ j)p j

(2.8)

and Z = {�Z1, ...,�ZN}.

2.2.3 Parameters Learning

The parameters are estimated from the maximization of log-likelihood function. The log-likelihood

function can be written as:

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Ẑi j log
(

p(�Xi|ξ j)p j

)
(2.9)

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Ẑi j ×
{

log p j + log f (�Xi|ξ j)+ logH(�Xi|Ω j)− log
∫

∂ j

f (�u|ξ j)du
}

(2.10)

The complete-data log-likelihood can be maximized with respect to the model parameters. This

can be done by taking the gradient of the log-likelihood with respect to p j, �μ j and Σ j. The param-

eters estimation for bounded support Gaussian mixture model is given below.

2.2.3.1 Mixing parameter estimation

For the estimation of mixing parameter, in order to ensure the constraints p j > 0 and ∑M
j=1 p j =

1, a Lagrange multiplier is introduced while estimating p j. Thus, the augmented log-likelihood
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function can be expressed by:

Φ(X ,Z ,Θ,Λ) =
N

∑
i=1

K

∑
j=1

Ẑi j log
(

p(�Xi|ξ j)p j

)
+Λ

(
1−

K

∑
j=1

p j

)
(2.11)

where Λ is the Lagrange multiplier. Differentiating the augmented function with respect to p j and

equating it to zero, we get the estimated value of p j as follows:

p̂ j =
1
N

N

∑
i=1

p( j|�Xi) (2.12)

The complete derivation procedure is given in Appendix A.1.

2.2.3.2 Mean Parameter estimation

The new value of mean, can be estimated by maximizing the log-likelihood function given in Eq.

2.10 with respect to �μ j.

(2.13)
∂L (X ,Z |Θ)

∂�μ j
= 0

The computation of log-likelihood derivative with respect to �μ j is given in Appendix A.2

and by using this derivative in Eq. (2.13), an estimate of �̂μ j can be compute with procedure given

in Appendix A.3. An estimate of �̂μ j is as follows:

�̂μ j =

∑N
i=1 Ẑi j

{
�Xi −

∫
∂ j

f (�u|ξ j)(�u−�μ j)du∫
∂ j

f (�u|ξ j)du

}
∑N

i=1 Ẑi j
(2.14)

Note that, in (2.14), the term
∫

∂ j
f (�u|ξ j)(�u−�μ j)du is the expectation of function (�u−�μ j) under

the probability distribution f (�u|ξ j). Then, this expectation can be approximated as:

(2.15)
∫

∂ j

f (�u|ξ j)(�u −�μ j)du ≈ 1
M

M

∑
m=1

(sm j − μ jd)H(sm j |Ω j)

where sm j ∼ f (�u|ξ j) is a set of random variables drawn from the Gaussian distribution for

the jth component of the mixture model. The set of data with random variables have M vectors

with D dimensions. M is a large integer chosen to generate the set of random variables.

Similarly, term
∫

∂ j
f (�u|ξ j)du in (2.14) can be approximated as:

(2.16)
∫

∂ j

f (�u|ξ j)du ≈ 1
M

M

∑
m=1

H(sm j |Ω j)
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�̂μ j =

∑N
i=1 Ẑi j

{
�Xi − ∑M

m=1 (sm j−�μ j)H(sm j |Ω j)

∑M
m=1 H(sm j |Ω j)

}
∑N

i=1 Ẑi j
(2.17)

2.2.3.3 Co-variance Matrix estimation

The new value of co-variance Σ̂ j, can be estimated by maximizing the log-likelihood function

given in Eq. 2.10 with respect to Σ j.

(2.18)
∂L (X ,Z |Θ)

∂Σ j
= 0

The computation of derivative of log-likelihood with respect to Σ j is given in Appendix A.4

and by using this derivative in Eq. (2.18), we can estimate Σ̂ j as follows:

Σ̂ j =

∑N
i=1 Ẑi j

{
(�Xi −�μ j)(�Xi −�μ j)

T −
∫

∂ j
(−Σ j+(�u−�μ j)(�u−�μ j)

T ) f (�u|ξ j)du∫
∂ j

f (�u|ξ j)du

}
∑N

i=1 Ẑi j
(2.19)

The estimation procedure using maximum likelihood for Σ̂ j is described in Appendix A.5. The

term
∫

∂ j
f (u|ξ j)(�u−�μ j)(�u−�μ j)

T du can be approximated as below:

∫
∂ j

(−Σ j +(�u−�μ j)(�u−�μ j)
T ) f (�u|ξ j)du ≈ (2.20)

1
M

M

∑
m=1

(−Σ j − (sm j −�μ j)(sm j −�μ j)
T )H(sm j |Ω j)

where sm j ∼ f (�u|ξ j) is a set of random variables drawn from the Gaussian distribution for the

particular component j of the mixture model.

Σ̂ j =

∑N
i=1 Ẑi j

{
(�Xi −�μ j)(�Xi −�μ j)

T − ∑M
m=1(−Σ j−(sm j−�μ j)(sm j−�μ j)

T )H(sm j |Ω j)

∑M
m=1 H(sm j |Ω j)

}
∑N

i=1 Ẑi j
(2.21)

The complete learning procedure for BGMM is given in Algorithm 1, where tmin is minimum

threshold used to examine convergence criteria in each iteration.
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Algorithm 1 Model Learning with BGMM

1: Input:Dataset X = {�X1, . . . ,�XN}, tmin.
2: Output: Θ.
3: {Initialization}: K-Means Algorithm.
4: K-Means Algorithm (Computation of �μ1, . . . ,�μK & cluster assignment)
5: for all 1 ≤ j ≤ K do
6: Computation of p j

7: Computation of Σ j

8: end for

9: {Expectation Maximization}:
10: while relative change in log-likelihood ≥ tmin do
11: {[E Step]}:
12: for all 1 ≤ j ≤ K do
13: Compute p( j|�Xi) for i = 1, . . . ,N. using Eq. (2.8).
14: end for

15: {[M step]}:
16: for all 1 ≤ j ≤ K do
17: Update the mixing parameter p̂ j using Eq. (2.12).
18: Update the mean �̂μ j using Eq. (2.17).
19: Update Co-variance matrix Σ̂ j using Eq. (2.21).
20: end for

21: end while

2.3 Experiments and results for Clustering via BGMM applied

to speech and images datasets

We propose the application of BGMM to speech and image datasets for categorizing the data

in an unsupervised manner. For the validation of clustering performance of BGMM, we have

chosen speech and image datasets. Speech data clustering is backbone in many speech processing

applications including speaker verification, classification, speech recognition and dialog systems.

TSP and Spoken Digits datasets are selected for our experiments. TSP dataset is composed of

categories from male and female speakers. Spoken Digits dataset is composed of 10 categories of

data from different speakers.

Image clustering is one of the most challenging tasks in computer vision. In case of hand-

written characters, as each person has unique writing style, the same digit could vary from one

individual to another with different angles, stress and complexity. In this experiment, we focus on

two widely used datasets: MNIST containing real-life handwritten digits and Fashion MNIST with

images of 10 different clothing pieces. The performance of the proposed method is compared with

the widely used Gaussian mixture model to validate its effectiveness.

The clustering performance is examined through different metrics and performance measure
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used in our experiments are defined here. It is worthy to mention that accuracy computed through

the ratio of correctly predicted instances to all the instances, i.e., T P+T N
T P+T N+FP+FN , is used to interpret

the performance of clustering tasks. In this expression, T P, T N, FP and FN represents the true

positives, true negatives, false positives and false negatives, respectively. In general, accuracy itself

is not sufficient to ensure the effectiveness of the clustering approach. For this it is required to con-

sider some other fundamental metrics, for instance, i) precision ( T P
T P+FP ), ii) sensitivity ( T P

T P+FN ),

iii) specificity ( T N
T N+FP ) and iv) false positive rate ( FP

FP+T N ). Particularly, precision measures the ra-

tio of accurately returned class labels to all the returned ones, sensitivity calculates the ratio of the

correctly predicted true classes to the total actual true classes, specificity evaluates the proportion of

the correctly predicted negative classes to all the actual negative classes and lastly false positive rate

gives the ratio of inaccurate predicted positive classes to all actual negative classes. Moreover, for

the case of imbalance in classes, it becomes necessary to examine the harmonic mean of precision

and sensitivity, i.e., F1-Score (((β
2+1)×sensitivity×precision
sensitivity+β×precision ),β > 0), the geometric mean of precision

and sensitivity, i.e., G-mean1 (
√

precision× sensitivity), the geometric mean of specificity and

sensitivity, i.e., G-mean2 (
√

speci f icity× sensitivity) and Mathew’s correlation coefficient (MCC)

for measuring quality of classification, i.e., ( T P.T N−FP.FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

) [106–109]. Pri-

marily, these measures are used for classification task but they are equally valid to demonstrate the

clustering performance.

2.3.1 TSP dataset

In this experiment our objective is to check how our model performs, when it comes to clustering

between male and female voices. For this we use the TSP dataset [91], which is composed of

speech files contributed by 22 speakers among which 11 are male and 11 are female. Each speaker

contributes with 60 speech utterances. Hence, we have 660 samples from each class, contributing

1320 samples overall. This dataset has momentary pauses between the speeches which makes it

important to removing these pauses before feature extraction. We do this by using voice activity

detection (VAD) that makes sure that unnecessary data are not used for training the model. As a

next step we extract MFCC feature descriptors and create a bag of audio words representation of

the data. We compare the results of clustering using our model with GMM. Table 2.1 clearly shows

the pre-eminence of our model compared to GMM. The confusion matrices are given in first row

of Fig. (2.3), where first matrix represents the results when clustering was performed with GMM

and second matrix indicates when clustering was performed with BGMM.
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Table 2.1: Performance on TSP data for male and female data categorization based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 72.65 76.67 68.64 70.97 31.36 73.71 45.45 73.76 72.54
GMM 70.38 73.33 67.42 69.24 32.58 71.23 40.83 71.26 70.32

Table 2.2: Performance of Free Spoken Digit categorization based on different metrics (2 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 88.25 78.00 98.50 88.11 01.50 86.91 78.16 87.48 87.65
GMM 86.00 81.00 91.00 90.00 09.00 85.26 72.36 85.38 85.85

2.3.2 Free Spoken Digit Dataset

Recognizing spoken digits has been an important task in a number of voice recognition based

security applications. The dataset we used for this experiment is the Free Spoken Digit Dataset

(FSDD) [92]. The dataset consists of 2000 .wav recordings collected from 4 speakers. Each

speaker contributes 50 recordings to each digit. All the recordings are at 8kHz frequency and

are trimmed at both the ends. We extract Mel Frequency Cepstral Coefficients (MFCC) from the

recordings. MFCC is the Cepstral representation of the recordings which is a better approximation

of the response of human auditory system when compared to other linearly space frequency band

representations. This method outputs multiple feature descriptors for a single audio file. We use

a bag of audio words histogram of features model inspired from the bag of visual words approach

on the feature descriptors thus obtained. This data acts as input to our model. We evaluate the

performance of our model for different number of clusters against GMM. Tables 2.2, 2.3, 2.4, 2.5

and 2.6 clearly show that our model performs better than the standard GMM model.

2.3.3 MNIST Dataset for Hand Written Digits

We randomly sampled 1000 images from each category of the MNIST database of handwritten

digits making the dataset size of 10000. Sample images from MNIST dataset are presented in

Fig. (2.7). For pre-processing steps, as the representation of images is one of the crucial aspects

Table 2.3: Performance of Free Spoken Digit categorization based on different metrics (3 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 85.33 85.33 92.67 86.20 07.33 85.30 78.51 85.77 88.92
GMM 83.17 83.17 91.58 84.22 08.42 83.12 75.37 83.69 87.27
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Figure 2.3: TSP Dataset with BGMM applied for code-book generation (compared with K-Means and GMM) and in
learning data after feature extraction (compared with GMM)
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Table 2.4: Performance of Free Spoken Digit categorization based on different metrics (4 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 84.25 84.25 94.75 84.49 05.25 84.34 79.11 84.37 89.35
GMM 82.67 82.64 94.22 84.18 05.78 82.83 77.58 83.41 88.24

Table 2.5: Performance of Free Spoken Digit categorization based on different metrics (5 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 83.90 83.90 95.97 84.76 04.02 84.02 80.23 84.33 89.73
GMM 81.10 81.10 95.27 83.27 04.73 80.89 77.22 82.18 87.90

Table 2.6: Performance of Free Spoken Digit categorization based on different metrics (10 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 71.93 71.95 96.88 78.96 03.12 73.63 71.67 75.38 83.49
GMM 68.60 68.60 96.51 75.62 03.49 69.80 67.76 72.03 81.37
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Figure 2.4: Spoken Digit Dataset with BGMM (K-Means in code-book generation and BGMM at second stage)

21



Confusion Matrix

69.5%

3.5%

17.0%

14.5%

14.0%

0.0%

7.5%

0.0%

8.0%

0.0%

0.5%

79.5%

0.5%

0.0%

0.5%

7.0%

0.5%

6.5%

0.0%

9.5%

0.0%

0.0%

70.0%

0.0%

0.0%

0.0%

0.0%

0.5%

0.0%

0.5%

30.0%

7.5%

0.0%

85.0%

10.0%

4.5%

7.5%

5.0%

10.0%

9.0%

0.0%

0.0%

0.0%

0.0%

74.5%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

2.5%

0.0%

0.0%

1.0%

71.0%

0.0%

10.0%

0.0%

6.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

74.5%

0.0%

0.0%

0.0%

0.0%

0.5%

7.5%

0.5%

0.0%

2.5%

10.0%

67.5%

0.0%

5.5%

0.0%

0.0%

5.0%

0.0%

0.0%

6.5%

0.0%

3.5%

82.0%

0.0%

0.0%

6.5%

0.0%

0.0%

0.0%

8.5%

0.0%

7.0%

0.0%

69.5%

One Two Three Four Five Six Seven Eight Nine Ten

Output Class

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

T
ar

ge
t C

la
ss

Figure 2.5: Spoken Digit Dataset with BGMM (BGMM in code-book generation and GMM at second stage)
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Figure 2.6: Spoken Digit Dataset with BGMM (BGMM at both stages)
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Table 2.7: Performance of MNIST data categorization based on different metrics (2 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 92.95 87.00 98.90 98.75 01.10 92.50 86.51 92.69 92.76
GMM 91.40 90.50 92.30 92.16 07.70 91.32 82.81 91.33 91.40

Table 2.8: Performance of MNIST data categorization based on different metrics (3 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 91.20 91.20 95.60 92.02 04.40 91.25 87.25 91.61 93.37
GMM 89.60 89.60 94.80 90.07 05.20 89.52 84.68 89.83 92.16

of the test, we extracted scale-invariant feature transform (SIFT). All the 128D descriptors are

assembled to a collection of features and K-means is then used for clustering the corpus to build

our Bag of visual words (BoVW), in which each visual word is represented by a centroid. For this

experiment, we tested our model’s clustering performance with 2, 3, 4, and 5 classes randomly

selected from the dataset. After that, we have also tested with all 10 categories to ensure the

effectiveness for further large data applications. From the results in Tables 2.7, 2.8, 2.9, 2.10, and

2.11, the proposed method (BGMM) outperforms conventional Gaussian mixture (GMM) using

most performance metrics. Furthermore, from confusion matrix presented in Fig. (2.8), most of

the data points are accurately categorized despite the size of the dataset and number of classes,

which validates the performance of the proposed method.

2.3.4 Fashion MNIST

Similar to previous application on MNIST dataset, we also tested on 10000 images randomly

selected from the Fashion MNIST dataset with 1000 images in each category. Sample images from

Fashion MNIST dataset are presented in Fig. (2.11). Likewise, the experiment is also conducted

with 2, 3, 4, and 5 classes randomly selected from the dataset. Then, we also raised the difficulty

up to all 10 classes to further challenge the proposed method. The feature extraction is performed

by SIFT and building BoVW is done by gathering all the 128D feature vectors into a corpus

Table 2.9: Performance of MNIST data categorization based on different metrics (4 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 88.98 88.98 96.33 89.01 03.68 88.89 85.32 88.99 92.58
GMM 85.43 85.43 95.14 86.29 04.86 85.40 80.94 85.86 90.15
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Table 2.10: Performance of MNIST data categorization based on different metrics (5 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 86.18 86.18 96.55 86.34 03.45 86.11 82.78 86.26 91.22
GMM 83.34 83.34 95.83 83.90 04.17 83.24 79.40 83.62 89.37

Table 2.11: Performance of MNIST data categorization based on different metrics (10 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 76.13 76.13 97.35 77.71 02.65 76.44 74.09 76.91 86.09
GMM 74.20 74.20 97.13 74.97 02.87 74.30 71.61 74.58 84.90

Figure 2.7: Samples of MNIST Dataset
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Figure 2.8: MNIST dataset with BGMM (K-Means in code-book generation and BGMM at second stage)
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Figure 2.9: MNIST dataset with BGMM ( BGMM in code-book generation and GMM at second stage)
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Figure 2.10: MNIST dataset with BGMM (BGMM at both stages)

Table 2.12: Performance of Fashion MNIST data categorization based on different metrics (2 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 91.90 92.70 91.10 91.24 08.90 91.96 83.81 91.96 91.89
GMM 89.75 87.00 92.50 92.06 07.50 89.46 79.62 89.49 89.70

and cluster them with K-Means. The outcomes of each case in Tables 2.12, 2.13, 2.14, 2.15

and 2.16 indicates the effectiveness of BGMM compared with the widely used GMM using most

performance metrics. It is noteworthy that BGMM outperforms GMM when testing with 10 classes

as most datapoints are accurately classified with minimum mis-classification as shown in confusion

matrix given in Fig. (2.12).

Table 2.13: Performance of Fashion MNIST data categorization based on different metrics (3 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 88.73 88.73 94.36 88.74 05.63 88.73 83.10 88.73 91.50
GMM 85.10 85.10 92.55 85.18 07.45 85.13 77.68 85.14 88.74
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Table 2.14: Performance of Fashion MNIST data categorization based on different metrics (4 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 87.30 87.30 95.76 87.50 04.23 87.24 83.15 87.40 91.43
GMM 84.47 84.47 94.82 84.798 05.17 84.47 79.44 84.63 89.50

Table 2.15: Performance of Fashion MNIST data categorization based on different metrics (5 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 86.34 86.34 96.58 86.42 03.41 86.34 82.96 86.38 91.31
GMM 84.26 84.26 96.06 84.42 03.93 84.16 80.37 84.34 89.96

2.3.5 Discussion on Application of BGMM for Speech and Image Data Clus-

tering

As first step to apply BGMM, in data clustering, we choose two speech and two images datasets.

In order to evaluate the performance of any clustering algorithm, it is needed to examine its per-

formance by choosing data from different types. In our experiments on TSP speech data, BGMM

is applied to categorize the male and female speakers and it has shown better performance as com-

pared to GMM in a similar setting. TSP dataset is composed of only two classes and it is very

important to examine the performance with datasets having higher number of classes and Spoken

Digits dataset is selected for this task. With Spoken Digits dataset, we created several multi-cluster

scenarios (2, 3, 4, 5 and 10) and it is observed that BGMM is always better in performance as

compared to GMM. However, performance of clustering is decreased when we consider higher

number of classes in the dataset for speech categorization which makes sense due to the increase

in complexity caused in model learning with higher number of classes. We conducted our clus-

tering experiments on images datasets with a similar multi-cluster scenario described for Spoken

Digits, however images datasets (MNIST and Fashion MNIST) have larger size as compared to

speech datasets. Experimental results indicates that BGMM has demonstrated its success for im-

ages categorization as compared to GMM in a similar experimental setting. However clustering

performance starts decreasing slightly when we choose higher number of classes for an experiment.

Table 2.16: Performance of Fashion MNIST data categorization based on different metrics (10 Classes)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 74.86 74.86 97.21 75.78 02.79 74.89 72.37 75.32 85.30
GMM 73.16 73.16 97.02 75.18 02.98 73.36 70.88 74.16 84.25
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Figure 2.11: Samples of Fashion MNIST Dataset

2.4 Application of BGMM in Code Book Generation

Feature extraction and pre-processing is always considered to be very important in learning appli-

cations and representation of data in an effective manner can improve the performance of modeling

capabilities of machine learning algorithms. In our experiments for speech data clustering, we have

examined the performance of BGMM for different number of categories as compared to GMM in

a similar setting. Feature extraction from speech signals is performed using MFCCs, which are

further used to create the BoAW. In the creation of BoAW, K-means is used which is very stan-

dard in BoW applications for image, text and speech datasets. We propose to apply BGMM for

the creation of code-book in a similar manner as it is being used to represent data with K-Means.

This should improve the pre-processing of speech data and BoAW representation for clustering.

We have conducted several experiments to see the effectiveness of BGMM in pre-processing and

compared with GMM and K-Means for TSP and Spoken Digits dataset.

We extend our focus on pre-processing for images datasets as well which will improve the
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Figure 2.12: Fashion MNIST dataset with BGMM (K-Means in code-book generation and BGMM at second stage)
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Figure 2.13: Fashion MNIST dataset with BGMM (BGMM in code-book generation and GMM at second stage)
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Figure 2.14: Fashion MNIST dataset with BGMM (BGMM at both stages)

data representation in learning applications. In computer vision analysis, the pre-processing step

has always been considered among the most important aspects. Indeed, there are many methods

to efficiently extract features of an image to convert it to a descriptor such as SIFT, which has

been extensively applied to various applications [110–112]. After that, the code-book construction

is usually done with K-Means, a vector quantization method which minimizes squared errors for

clustering. We propose applying BGMM to the building step to enhance the robustness of the code

book compared with GMM and K-means.

2.4.1 TSP Dataset

In this section, we test the performance of BGMM for code-book generation for speech. In Section

2.3.1, BGMM was applied in categorizing male and female speakers for TSP dataset. In our pre-

vious experiment, BOAW was chosen as methods for speech data representation where code-book

was generated using MFCC features with K-Means. We extend the same experimental framework

for testing the performance of BGMM in code-book generation and propose to apply BGMM in

the pre-processing stage. The proposed framework in the pre-processing will be compared with

GMM and K-Means. In our previous experiments, we examined the performance of BGMM in

clustering after the code-book generation and compared with GMM. With use of BGMM in the
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Table 2.17: Performance of BGMM in Code Book Generation using TSP Dataset

Models in Performance Metrics (%) with second stage clustering using GMM
BOW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BGMM 75.08 79.09 71.06 73.21 28.94 76.04 50.31 76.09 74.97
GMM 73.41 77.27 69.55 71.73 30.45 74.40 46.96 74.45 73.31

K-Means 70.38 73.33 67.42 69.24 32.58 71.23 40.83 71.26 70.32

Table 2.18: Performance of BGMM in Code Book Generation using TSP Dataset

Models in Performance Metrics (%) with second stage clustering using BGMM
BOW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BGMM 77.12 81.67 72.58 74.86 27.42 78.12 54.47 78.19 76.99
GMM 75.83 80.30 71.36 73.71 28.64 76.87 51.87 76.94 75.70

K-Means 72.65 76.67 68.64 70.97 31.36 73.71 45.45 73.76 72.54

pre-processing stage, the performance of BGMM has to be evaluated in two steps of clustering. The

first step is to generate the code-book and the second step is the clustering of data. In the first step

we use BGMM, GMM and K-Means for clustering whereas in the second step we use BGMM and

GMM. Hence, there are 6 combinations and the results for all combinations are shown in Tables

2.17 and 2.18. In the first case, we applied the BGMM in the pre-processing stage and compared

it with GMM and K-Means whereas second stage in this scenario is modeled with GMM and best

performance is achieved with BGMM. In the second scenario, we choose the pre-processing with

BGMM (and both comparison scenarios using GMM and K-Means) and replace the second stage

of clustering from GMM to BGMM to see the effect of proposed model in both stages of cluster-

ing. It is observed that best performance for clustering is achieved when BGMM is applied in both

stages. The results from Tables 2.17 and 2.18 explain that BGMM has effectively demonstrated its

viability in clustering speech feature vectors to improve the representation of speech data. It also

explains that BGMM has improved the clustering performance when it is also used in the second

stage within the same pipeline for speech data clustering. The clustering performance indicated

in Tables 2.17 and 2.18 also demonstrates that False Positive Rate (FPR) is low with BGMM as

compared to the other cases.

2.4.2 Free Spoken Digit Dataset

The experiments for code-book generation on TSP dataset are further extended with Spoken Dig-

its and BGMM is applied in a similar manner. The performance of the proposed approach for

code-book generation is compared for both stages which make 6 possible comparison scenarios

as described in Tables 2.19 and 2.20. The clustering performance is evident from both tables and
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Table 2.19: Performance of BGMM in Code Book Generation using Spoken Digits Dataset

Models in Performance Metrics (%) with second stage clustering using GMM
BOW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BGMM 74.30 74.30 97.14 78.77 02.86 75.31 73.22 76.50 84.96
GMM 71.35 71.35 96.82 76.46 03.18 72.43 70.15 73.86 83.11

K-Means 68.60 68.60 96.51 75.62 03.49 69.80 67.76 72.03 81.37

Table 2.20: Performance of BGMM in Code Book Generation using Spoken Digits Dataset

Models in Performance Metrics (%) with second stage clustering using BGMM
BOW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BGMM 76.35 76.35 97.37 82.30 02.63 77.92 76.16 79.27 86.22
GMM 74.10 74.10 97.12 77.21 02.88 74.95 72.50 75.64 84.83

K-Means 71.93 71.95 96.88 78.96 03.12 73.63 71.67 75.38 83.49

different performance measures are computed for each combination. The results clearly show that

BGMM has demonstrated its success in code-book generation as compared to GMM and K-Means

and the performance is further improved when BGMM is applied on both stages of clustering

pipeline. It is also observed that in all our experiments FPR for our BGMM is always low. This

proves the efficiency of our proposed model.

2.4.3 MNIST Dataset

In the first stage, unlike the last experiment where the BoVW is constructed based on solely K-

means, we applied also GMM, and BGMM to test the efficiency of the proposed method compared

with other widely used models in the construction of BoVW. Then, the proposed method and GMM

are applied to test with all three scenarios in the second stage and their performances are shown

in Tables 2.21 and 2.22, respectively. It is clear that the performance of using BGMM in creating

BoVW is significantly better than conventional GMM and K-Means. Furthermore, from Fig. 2.9,

which presents the best performance of Table 2.21, it is observed that applying BGMM only in

first stage has significantly improved the clustering performance. From Fig. 2.10, which indicates

the best performance of Table 2.22, it is evident that when BGMM is applied in both stages, most

observations have been accurately clustered with minimum mis-classification which verifies the

capability of the proposed method.

2.4.4 Fashion MNIST Dataset

Encouraged by the efficiency of our model in previous experiment, we extended the work with

code book generation using Fashion MNIST dataset. Results in Tables 2.23 and 2.24 along with
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Table 2.21: Performance of BGMM in Code Book Generation using MNIST data

Models in Performance Metrics (%) with second stage clustering using GMM
BOVW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 77.18 77.18 97.46 77.72 02.54 77.24 74.84 77.45 86.73
GMM 76.24 76.24 97.36 76.80 02.64 76.29 73.79 76.52 86.16

K-Means 74.20 74.20 97.13 74.97 02.87 74.30 71.61 74.58 84.90

Table 2.22: Performance of BGMM in Code Book Generation using MNIST data

Models in Performance Metrics (%) with second stage clustering using BGMM
BOVW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 78.57 78.57 97.62 79.66 02.38 78.71 76.58 79.11 87.58
GMM 77.61 77.61 97.51 78.84 02.49 77.83 75.58 78.22 86.99

K-Means 76.13 76.13 97.35 77.71 02.65 76.44 74.09 76.91 86.09

confusion matrices presented in Figs. (2.13 & 2.14) clearly describe that the proposed method

outperforms GMM and K-means in both the construction of BoVW and clustering with extracted

features.

2.5 Model Selection with Minimum Message Length (MML)

Criterion

In order to estimate the number of components of mixture model, different model selection meth-

ods have been discussed in [39, 71, 72, 74, 75, 82–84]. We have proposed a deterministic approach

using MML for model selection in BGMM. By applying MML, the optimal number of classes is

obtained by minimizing the following equation [113, 114]:

MessLen(K)	− log(p(ΘK))−L (ΘK,Z,X )+
1
2

log |F(ΘK)|+ Np

2
(1+ log(kNp)) (2.22)

where Np is number of free parameters, ΘK is set of parameters when mixture contains K compo-

nents, p(ΘK) is prior probability and |F(ΘK)| is determinant of the Fisher information matrix of

Table 2.23: Performance of BGMM in Code Book Generation using Fashion MNIST data

Models in Performance Metrics (%) with second stage clustering using GMM
BOVW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 76.91 76.91 97.43 78.33 02.57 76.89 74.79 77.62 86.57
GMM 75.34 75.34 97.26 77.54 02.74 75.16 73.22 76.43 85.60

K-Means 73.16 73.16 97.02 75.18 02.98 73.36 70.88 74.16 84.25

33



Table 2.24: Performance of BGMM in Code Book Generation using Fashion MNIST data

Models in Performance Metrics (%) with second stage clustering using BGMM
BOVW Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2
BGMM 78.40 78.40 97.60 80.02 02.40 78.51 76.56 79.21 87.47
GMM 77.11 77.11 97.46 79.59 02.54 77.35 75.44 78.34 86.69

K-Means 74.86 74.86 97.21 75.78 02.79 74.89 72.37 75.32 85.30

minus the log-likelihood of mixture model. kNp is optimal quantization lattice constant RNp [115]

and its written as k1 = 1/12 	 0.83 for Np = 1. As Np grows, kNp will become an asymptotic value

as 1/2πe 	 0.05855 and it is noted that kNp does not vary a lot and it can be approximated by

1/12 [116]. The estimation of the number of classes is carried out by finding the minimum with

respect to Θ of the message length [32, 47, 116]. The derivation of p(ΘK) and |F(ΘK)| is given as

follows.

2.5.1 Derivation of the prior p(Θ)

In the model selection, a prior p(Θ) is specified to express the lack of knowledge about the parame-

ters of mixture model. It is logic to assume that different components of mixture have independent

parameters, since having information about the parameters in one class does not provide any in-

formation about the parameters of another class. Thus, it is assumed that parameters of a mixture

model are mutually independent, which cede the following prior distribution over the parameters

π , μ and Σ:

p(Θ) = p(π)p(μ)p(Σ) (2.23)

where π = (p1, ..., pK). Each of these densities in the prior distribution is defined separately.

Beginning with p(π), we know that vector π is defined on the simplex as {(p1, ..., pK) : ∑K
j=1 p j =

1}. In this case, a natural choice as a prior for vector π is Dirichlet distribution, which is defined

as:

p(π) =
Γ(∑K

j=1 η j)

∑K
j=1 Γ(η j)

K

∑
j=1

p j
η j

−1
(2.24)

where (η1, ...,ηK) is the parameters vector of Dirichlet distribution. By choosing, η1 = 1, ...,ηK =

1, we get a uniform prior over the space p1 + ...+ pK = 1, which is represented as:

p(π) = (K −1)! (2.25)

For the prior distributions of parameters μ and σ , a methodology described in [39, 82, 117, 118] is

adopted. A flat prior is normally considered for μ and a conjugate inverted Wishart prior is adopted
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for covariance matrix Σ. In [39], it is described that dependent and independent prior distributions

will be equivalent in this case and in [118], a joint prior distribution for μ and Σ is proposed as

follows:

p(μ,Σ) ∝
K

∏
j=1

|Σ|−D+1
2 (2.26)

Finally, by replacing the priors of parameters in Eq. (2.23) by Eqs. (2.25 & 2.26), we get:

p(Θ) ∝ ((K −1)!)|Σ|−K D+1
2 (2.27)

2.5.2 Derivation of the Fisher information matrix |F(Θ)|
Fisher information matrix is defined as expected value of Hessian matrix. It is difficult to reproduce

the expected Fisher Information matrix because it leads to a complicated analytical form of MML.

Therefore, Hessian matrix can be approximated by complete Fisher information matrix, where its

determinant is computed by taking the product of determinant of Fisher information matrix of each

mixture component which is further multiplied by determinant of Fisher information matrix for π
as follows:

|F(Θ)|= |F(π)|
K

∏
j=1

∣∣F(�μ j)
∣∣ ∣∣F(Σ j)

∣∣ (2.28)

where
∣∣F(�μ j)

∣∣ and
∣∣F(Σ j)

∣∣ are the determinants of Fisher information matrices with respect to the

mean and covariance, respectively, for BGMM, corresponding to jth mixture component. |F(π)|
is Fisher information matrix with respect to mixing parameter, where it is required to satisfy the

constraint ∑K
j=1 p j = 1. We consider the generalized Bernoulli process with a sequence of trials

with K possible outcomes labeling the first cluster, second cluster and then continue until Kth

cluster. The number of trials for each component in this case, can be represented by multinomial

distribution of mixing parameters of p1, p2, ..., pK [32, 47]. The determinant of Fisher information

matrix for mixing parameters can be given as follows:

|F(π)|= NK−1

∑K
j=1 p j

(2.29)

where N is number of observations. For the computation of
∣∣F(�μ j)

∣∣ and
∣∣F(Σ j)

∣∣, we consider the

data in jth cluster, after classifying all data X using maximum a posteriori probability defined

in Eq. (2.8), which is represented as X j = (�Xl, ...,�Xl+n j−1). Here n j is number of observations

belonging to the jth cluster. Here notation of data in each class can be simplified by the choice of

jth class without loss of generality. The Hessian matrices with respect to parameters �μ j and Σ j for
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each jth component are represented as follows:

F(�μ j)k1,k2 =
∂ 2L (Θ,Z,X j)

∂ μ jk1∂ μ jk2

(2.30)

F(Σ j) =
∂ 2L (Θ,Z,X j)

∂Σ jk1∂Σ jk2

(2.31)

where (k1,k2) ∈ (1, ...,D). The computations of derivatives for Eqs. (2.30 & 2.31) is given in
Appendix A.6 and we have used only diagonal values from the Hessian matrices for computation
of Fisher information. The computation of

∣∣F(�μ j)
∣∣ for jth class of data is given below:

∣∣F(�μ j)
∣∣= D

∏
d=1

l+n j−1

∑
i=l

∣∣∣∣∣∣∣Σ
−1
j

⎧⎪⎨
⎪⎩−1+

Σ−1
j

(∫
∂ j

f (�u|ξ j)(�u−�μ j)du
)2

(∫
∂ j

f (�u|ξ j)du
)2 (2.32)

−
∫

∂ j
f (�u|ξ j)

(
(�u−�μ j)Σ−1

j (�u−�μ j)
T −1

)
du∫

∂ j
f (�u|ξ j)du

⎫⎬
⎭
∣∣∣∣∣∣

By considering the approximations for estimation of mean parameters as mentioned in Section 2.2,∣∣F(�μ j)
∣∣ can be written as follows:

∣∣F(�μ j)
∣∣= D

∏
d=1

N

∑
i=1

∣∣∣∣∣∣Σ−1
j

⎧⎨
⎩−1+

Σ−1
j

(
∑M

m=1(sm j −�μ j)H(sm j |Ω j)
)2

(
∑M

m=1 H(sm j |Ω j)
)2 (2.33)

−
∑M

m=1 H(sm j |Ω j)
(
(sm j −�μ j)Σ−1

j (sm j −�μ j)
T −1

)
du

∑M
m=1 H(sm j |Ω j)

⎫⎬
⎭
∣∣∣∣∣∣

The computation of
∣∣F(Σ j)

∣∣ for jth class is given below:

∣∣F(Σ j)
∣∣= l+n j−1

∑
i=l

∣∣∣∣
{

1
2

Σ−2
j − (�X −�μ j)Σ j

−3(�X −�μ j)
T (2.34)

+

(∫
∂ j

f (�u|ξ j){− 1
2 Σ−1

j + 1
2 (�u−�μ j)Σ−2

j (�u−�μ j)}du
)2

(∫
∂ j

f (�u|ξ j)du
)2

−
∫

∂ j
f (�u|ξ j)

[(
− 1

2 Σ−1
j + 1

2 (�u−�μ j)Σ−2
j (�u−�μ j)

T
)2
]

du∫
∂ j

f (�u|ξ j)du

−
∫

∂ j
f (�u|ξ j)

[(
1
2 Σ−2

j +(�u−�μ j)Σ−3
j (�u−�μ j)

T
)]

du∫
∂ j

f (�u|ξ j)du

⎫⎬
⎭
∣∣∣∣∣∣
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By considering the approximations for estimation of co-variance parameters as mentioned in Sec-
tion 2.2,

∣∣F(Σ j)
∣∣ can be written as follows:

∣∣F(Σ j)
∣∣= l+n j−1

∑
i=l

∣∣∣∣
{

1
2

Σ−2
j − (�X −�μ j)Σ j

−3(�X −�μ j)
T (2.35)

+

(
∑M

m=1 H(sm j |Ω j){− 1
2 Σ−1

j + 1
2 (sm j −�μ j)Σ−2

j (sm j −�μ j)}
)2

(
∑M

m=1 H(sm j |Ω j)
)2

−
∑M

m=1 H(sm j |Ω j)

[(
− 1

2 Σ−1
j + 1

2 (sm j −�μ j)Σ−2
j (sm j −�μ j)

T
)2
]

∑M
m=1 H(sm j |Ω j)

−
∑M

m=1 H(sm j |Ω j)
[(

1
2 Σ−2

j +(sm j −�μ j)Σ−3
j (sm j −�μ j)

T
)]

∑M
m=1 H(sm j |Ω j)

⎫⎬
⎭
∣∣∣∣∣∣

Model selection algorithm also serves as a complete clustering solution because it provides the

optimal number of mixture components which helps to estimate the optimal parameters learned

through EM. The complete learning of model selection with MML in an EM algorithm is given in

Algorithm 2.

2.6 Experiments on model selection and results

Model selection using MML is applied to different data clustering applications in order to validate

the performance of proposed approach. As first step in our experiments, it is applied to 10 different

medical datasets which are used to model the behavior of different human conditions and prediction

based on this model. In unsupervised learning, finding the correct number of clusters is very

important in correctly categorizing the data. Experiments and results on model selection are given

in Section 2.6.2. In all our experiments for model selection, MML is compared with seven other

model selection criteria to examine and validate its performance. Details of several model selection

criteria used for a comparison with MML in all our experiments are given in Section 2.6.1. Our

next experiments for model selection are conducted on the datasets used in clustering for speech

and image processing datasets with different clustering scenarios and they are discussed in details

in Sections 2.6.1-2.6.6 along with comparisons with other model selection criteria.

2.6.1 Comparison with other model selection criteria

The proposed model selection via MML approach is compared with different deterministic model

selection criteria given in literature. The comparison methods for model selection include MDL

[74], AIC [119], Bayesian inference criterion (BIC) [73], Consistent AIC (CAIC) [120], Mixture
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Algorithm 2 Complete Model Learning with BGMM and Model Selection using MML

1: Input:Dataset X = {�X1, . . . ,�XN}, tmin and Kmax.
2: Output: K∗ and ΘK∗ .
3: Step 1: for M = 1 : Kmax do{
4: {Initialization}:
5: K-Means Algorithm (Computation of �μ1, . . . ,�μK & cluster assignment)
6: for all 1 ≤ j ≤ K do
7: Computation of p j

8: Computation of Σ j

9: end for

10: {Expectation Maximization}:
11: while relative change in log-likelihood ≥ tmin do
12: {[E Step]}:
13: for all 1 ≤ j ≤ K do
14: Compute p( j|�Xi) for i = 1, . . . ,N. using Eq. (2.8).
15: end for

16: {[M step]}:
17: for all 1 ≤ j ≤ K do
18: Update the mixing parameter p̂ j using Eq. (2.12).
19: Update the mean �̂μ j using Eq. (2.17).
20: Update Co-variance matrix Σ̂ j using Eq. (2.21).
21: end for

22: end while

23: Calculate the associated message length using Eq. (5.71).
24: }end for

25: Step 2: Select the Model K∗ with smallest message length

MDL (MMDL) [121], MMLlike [30], LEC [16, 39]. In general, any deterministic model selection

criterion can be written in the following form:

C(Θ̂(K),K) =−L (ΘK,Z,X )+ f (K) (2.36)

where f (K) is an increasing function which penalizes higher values of K and optimal number of

components in a mixture is determined as follows:

K̂ = arg min{C(Θ̂(K),K),K = Kmin, ...,Kmax} (2.37)

Although model selection criteria have this common point, they are different conceptually and they

are described by the following equations:

MDL(K) =−L (ΘK,Z,X )+
Np

2
log(N) (2.38)
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where Np is number of free mixture parameters and computed as K ∗ ((D∗D−D)/2+2D+1)−1

in our case.

AIC(K) =−L (ΘK,Z,X )+
Np

2
(2.39)

BIC(K) =−2L (ΘK,Z,X )+Np log(N) (2.40)

CAIC(K) =−2L (ΘK,Z,X )+Np(1+ log(N)) (2.41)

MMDL(K) =−L (ΘK,Z,X )+
1
2

Np log(N)+
c
2

K

∑
j=1

log(p j) (2.42)

where c is the number of free parameters for each mixture component and computed as (D ∗D−
D)/2+2D+1 in our case.

MMLLike(K) =−L (ΘK,Z,X )+
K
2

log
(

N
12

)
+

c
2

K

∑
j=1

log
(

N
p j

12

)
+

Np

2
(2.43)

For model selection through LEC, prior probability and determinant of Fisher information matrix

computed for MML is adopted in the following equation.

LEC(K) = L (ΘK,Z,X )− log(P(ΘK))− 1
2

Np log(2π)+
1
2

log(|F(ΘK)|) (2.44)

2.6.2 Model Selection on Medical Datasets

In this section, performance of model selection via MML is validated through 10 different real

medical datasets taken from UCI repository [122–130]. The results of MML are compared with

other model selection criteria to examine the effectiveness of our proposed approach and on the

basis of these results, important conclusions are made. In order to perform the clustering on these

datasets, class labels were removed. Each dataset is unique and hence tested to examine the perfor-

mance and demonstrate the viability of the MML which eventually improves the whole clustering

process. Table 2.25 summarizes the results of each method against each dataset. Model selection

performance is also shown graphically in Figs (2.15-2.24 ) which reflects the performance of each

method. A detailed discussion on model selection performance for each datasets is described as

follows.

2.6.2.1 Cryotherapy Dataset

This dataset is composed of cryotherapy treatment for 90 patients and it has 7 features for each

observation. The dataset is divided into two groups that either the patient was cured after treatment

or he still has the symptoms of disease. We applied model selection criteria to find the correct
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Figure 2.15: Model Selection Criteria for Cryotherapy Dataset

number of clusters in the dataset and it was observed that MML has successfully determined the

number of categories in the dataset. We also observed that MDL and LEC have also determined

the correct categories in the dataset. However, rest of the criteria have failed to find the correct

number of clusters. The results of this experiments are given in first row of Table 2.25 and plotted

in Fig. (2.15).

2.6.2.2 Statlog (Heart) Dataset

This dataset is collected from the information of 270 patients and each observation has 13 at-

tributes. The dataset is divided into two groups where heart disease is present or absent in a

patient. We applied our model selection and clustering algorithm to examine the performance of

proposed technique. It was observed that MML, MDL and LEC have correctly determined the

number of classes in the dataset, but rest of approaches could find the correct number of classes

in our experiment. The results are given in second row of Table 2.25 and plotted in Fig. (2.16) to

examine the performance of each model selection criterion as compared to MML.

2.6.2.3 Parkinsons Dataset

This dataset is composed of biomedical voice measurements from 31 people, where 23 of them

were diagnosed with Parkinson disease. The data were collected by recording 195 voices from

these individuals and each observation has 23 features. These features represent particular voice
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Figure 2.16: Model Selection Criteria for Statlog (Heart) Dataset
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Figure 2.17: Model Selection Criteria for Parkinsons Dataset

measures. The objective of this dataset is to categorize between healthy and people with Parkinson

disease [124, 125]. We applied the model selection to determine the number of classes from this

dataset and MML, MDL, MMDL, MMLLike and LEC have correctly identified the number of

categories. However, AIC, BIC and CAIC failed to determine the number of clusters. Model

selection results are given in Table 2.25 and plotted in Fig. (2.17).
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Figure 2.18: Model Selection Criteria for Haberman Dataset

2.6.2.4 Haberman’s Survival Dataset

This dataset is composed of information from a study on patients who survived from breast cancer

after treatment. The data is categorized between patients who survived 5 years or longer after the

surgery or died within 5 years. We have applied model selection through MML to facilitate the

clustering process and it is observed that MML, MDL, MMDL, MMLLike and LEC have success-

fully identified the number of classes whereas rest of model selection techniques have failed to

give the correct information. The results are give in Table 2.25 and plotted in Fig. (2.18).

2.6.2.5 Breast Cancer Coimbra Dataset

The dataset is composed of 116 observations recorded for 64 patients and 52 healthy persons and

it has 10 quantitative features from anthropometric data, gathered from routine blood analysis.

The dataset was created to make prediction model which can potentially be used as biomarker

for breast cancer. We applied model selection criteria to investigate the performance of our pro-

posed approach and it was observed that MML, MDL MMDL, MMLLike and LEC have correctly

identified the number of clusters in the dataset whereas rest of the criteria (AIC, BIC and CAIC)

were unsuccessful in this test. Experimental results are provided in Table 2.25 and plotted in Fig.

(2.19).
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Figure 2.19: Model Selection Criteria for Breast Cancer Dataset
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Figure 2.20: Model Selection Criteria for Immunotherapy Dataset

2.6.2.6 Immunotherapy Dataset

This dataset was collected with information about Immunotherapy treatment on 90 patients and it

contains 8 features for each observation. The classes are defined as whether the patient is cured

after the treatment or not. We conducted our experiments for finding the number of clusters in

the dataset and it was observed that MML, MDL MMDL, MMLLike and LEC have successfully
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identified the number of clusters in the dataset and AIC, BIC and CAIC have been unsuccessful

during this experiment. The results of this experiment are provided in 6th row of Table 2.25 and

plotted in Fig. (2.20).

2.6.2.7 Mammographic-Masses Dataset

Mammography is considered to be the most effective method for breast cancer screening and the

purpose of this dataset is to help and improve the diagnostic of breast cancer after mammographic

screening which is very difficult task and many computer aided systems have been developed to

improve this process [124]. The dataset is composed of 961 observations, with 6 attributes and

data is categorized into benign or malignant categories. We conducted our experiments for model

selection using MML and other criteria and it was observed that MML, MDL and LEC were

successful for determining the number of clusters in data whereas rest of techniques were unable

to give correct results. Experimental results are given in 7th row of Table 2.25 and they are plotted

in Fig. (2.22).

2.6.2.8 Blood Transfusion Service Center Dataset

This dataset was created from blood donation information to demonstrate a RFMTC marketing

model which has details given in [124, 128]. The dataset was created by selecting the information

of 748 donors randomly from donor database of blood donor transfusion service center and it is

composed of 5 attributes and categorized into blood donated or not donated. We applied model

selection criteria to examine the performance of our proposed approach and it was observed that

MML, MDL MMDL, MMLLike and LEC have correctly identified the number of mixture compo-

nents during clustering. The results of this test are demonstrated in Table 2.25 and Fig. (2.23).

2.6.2.9 Fertility Diagnosis Dataset

The dataset is composed of semen samples from 100 volunteers, which are analyzed according to

WHO 2010 criteria and each observation has 10 attributes and classified as normal or altered. We

conducted our model selection experiments on this dataset and it was observed that only MML and

LEC have correctly identified the number of clusters in the data. The results of this experiment are

provided in Table 2.25 and demonstrated in Fig. (2.21).

2.6.2.10 SPECTF Heart Dataset

This dataset deals with diagnosis of cardiac Single Proton Emission Computed Tomography (SPECT)

images. The database is composed of SPECT images from 267 patients, and it was processed to
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Figure 2.21: Model Selection Criteria for Fertility Diagnosis Dataset

Table 2.25: Number of Clusters Determined by Different Criteria using BGMM for Medical Datasets

Data set D N K*̂ Model Selection Criteria
MML MDL AIC BIC CAIC MMDL MML_Like LEC

Cryotherapy 7 90 2 2 2 3 3 3 4 4 2

Statlog (Heart) 13 270 2 2 2 3 4 4 4 4 2

Parkinsons 23 195 2 2 2 3 3 3 2 2 2

Haberman 3 306 2 2 2 3 3 3 2 2 2

Breast Cancer 10 116 2 2 2 3 3 3 2 2 2

Immunotherapy 8 90 2 2 2 4 4 4 2 2 2

Mammographic 6 961 2 2 2 4 3 3 3 3 2

Transfusion 5 748 2 2 2 4 3 3 2 2 2

Fertility 10 100 2 2 4 5 4 4 4 4 2

SPECTF Heart 44 267 2 2 2 3 3 3 4 4 2

extract the features to represent original images and it is composed of 44 features for each image

and classified as normal or abnormal. We conducted our experiment to examine the viability of

model selection on this dataset and it was observed that MML, MDL and LEC have correctly iden-

tified the number of categories in the data and rest of criteria used in the test were unable to get the

correct result. The results are provided in Table 2.25 and demonstrated in Fig. (2.24).
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Figure 2.22: Model Selection Criteria for Mammographic-Masses Dataset
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Figure 2.23: Model Selection Criteria for Transfusion Dataset
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Figure 2.24: Model Selection Criteria for SPECTF Heart Dataset
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Figure 2.25: Model Selection Criteria for TSP Speech Dataset

2.6.3 Model Selection on TSP Speech Dataset

After observing the performance of proposed model selection in several medical datasets, we con-

ducted a similar set of experiments on TSP dataset which is composed of data from two speaker

classes (male and female). The feature are extracted in a similar manner are described in our clus-

tering experiment for this dataset. From the set of experiments conducted on TSP dataset, it is
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observed that MML, MDL MMDL, MMLLike and LEC have successfully identified the number of

classes whereas AIC, BIC and CAIC were unable to give correct results. Experimental results for

model selection on TSP dataset are demonstrated in Table 2.26 and Fig. (2.25).

2.6.4 Model Selection on Free Spoken Digits Dataset

We extended our experiments on model selection using MML for Spoken Digits dataset and se-

lected the parts of dataset with 2, 3, 4 and 5 categories for a comprehensive analysis of model

selection criteria to examine the performance of proposed approach in speech data applications.

For the experiments, 400, 600, 800 and 1000 speech files were selected for 2, 3, 4 and 5 classes,

respectively. The features are extracted in a similar fashion described in our clustering experiment

for this dataset. We conducted experiments for all the mentioned scenarios for different classes and

it is observed that for 2 classes, MML and LEC have demonstrated their success in determining the

number of clusters. For experiments with 3 categories of speech data from spoken digits, MML,

MDL MMDL, MMLLike and LEC have correctly identified number of clusters. With data from 4

categories, MML, MDL MMDL, MMLLike and LEC have their success in model selection. For the

case with 5 categories, MML, MDL and LEC have demonstrated their success in correctly identi-

fying the number of classes in the data. The results of these experiments are provided in Table 2.26

and plotted in Figs. (2.26, 2.27, 2.28 & 2.29) to examine the performance of each model selection

criterion as compared to MML.

2.6.5 Model Selection on MNIST Dataset

We have selected MNIST dataset for testing the proposed model selection criteria with 2, 3, 4 and

5 classes. We have selected 2000, 3000, 4000 and 5000 images for 2, 3, 4 and 5 categories, re-

spectively and features are extracted in a similar fashion as described in the clustering experiments

for this dataset. Model selection criteria with MML and different techniques are applied in all

these experimental scenarios and for the case when data is composed of 2 and 3 categories, it is

observed that MML and LEC have demonstrated their success in model selection. For 4 categories

of data from MNIST dataset, MML, MDL MMDL, MMLLike and LEC have correctly identified

the number of clusters in the dataset. For 5 categories, MML, MMDL, MMLLike and LEC have

shown their success in model selection. Complete results of model selection for MNIST dataset is

provided in Table (2.26) plotted in Figs. (2.30,2.31,2.32 & 2.33) to demonstrate the performance

of model selection using MML.
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Table 2.26: Number of Clusters Determined by Different Criteria using BGMM for Speech and Image Datasets used
in clustering applications

Data set D N K*̂ Model Selection Criteria
MML MDL AIC BIC CAIC MMDL MML_Like LEC

TSP 40 1320 2 2 2 4 4 4 2 2 2

Spoken Digits 2 40 400 2 2 3 3 3 3 3 3 2

Spoken Digits 3 40 600 3 3 3 2 2 2 3 3 3

Spoken Digits 4 40 800 4 4 4 3 3 3 4 4 4

Spoken Digits 5 40 1000 5 5 5 6 6 6 4 4 5

MNIST 2 50 2000 2 2 5 5 5 5 5 5 2

MNIST 3 50 3000 3 3 5 5 5 5 5 5 3

MNIST 4 50 4000 4 4 4 7 7 7 4 4 4

MNIST 5 50 5000 5 5 4 6 6 6 5 5 5

Fashion MNIST 2 50 2000 2 2 3 4 4 4 3 3 2

Fashion MNIST 3 50 3000 3 3 3 5 5 3 3 3 3

Fashion MNIST 4 50 4000 4 4 4 6 6 6 4 4 4

Fashion MNIST 5 50 5000 5 5 4 6 6 6 4 4 5
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Figure 2.26: Model Selection Criteria for Spoken Digits Dataset with 2 classes

2.6.6 Model Selection on Fashion MNIST Dataset

We conducted our experiments to test the model selection using MML on Fashion MNIST dataset.

The dataset is composed of 10 categories and we selected data from 2, 3, 4 and 5 categories in simi-

lar way as selected in Section 2.6.5. Model selection on Fashion MNIST dataset is extension on our
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Figure 2.27: Model Selection Criteria for Spoken Digits Dataset with 3 classes
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Figure 2.28: Model Selection Criteria for Spoken Digits Dataset with 4 classes
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Figure 2.29: Model Selection Criteria for Spoken Digits Dataset with 5 classes
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Figure 2.30: Model Selection Criteria for MNIST Dataset with 2 classes
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Figure 2.31: Model Selection Criteria for MNIST Dataset with 3 classes
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Figure 2.32: Model Selection Criteria for MNIST Dataset with 4 classes
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Figure 2.33: Model Selection Criteria for MNIST Dataset with 5 classes
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Figure 2.34: Model Selection Criteria for Fashion MNIST Dataset with 2 classes
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Figure 2.35: Model Selection Criteria for Fashion MNIST Dataset with 3 classes
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Figure 2.36: Model Selection Criteria for Fashion MNIST Dataset with 4 classes
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Figure 2.37: Model Selection Criteria for Fashion MNIST Dataset with 5 classes

previous experiments for clustering using BGMM and features are extracted in a similar manner

as described in clustering experiments. We applied model selection using MML and other criteria

on this dataset and for experiments with 2 categories of data, MML and LEC have demonstrated

their success in model selection. For 3 categories, MML, MDL CAIC, MMDL, MMLLike and

LEC have correctly identified the number of categories in data. For data with 4 categories, MML,

MDL MMDL, MMLLike and LEC have shown their success in model selection. With data from 5

categories of Fashion MNIST, MML and LEC have correctly identified the number of categories

of the data. Results for all model selection experiments on Fashion MNIST dataset are presented

in Table 2.26 and demonstrated through plots for all the models applied using Figs. (2.34, 2.35,

2.34 & 2.35).

2.7 Discussion about BGMM and MML

In this chapter, multivariate bounded support Gaussian mixture model is introduced for data clus-

tering in speech and image datasets to examine its performance. For this application, two speech

datasets (TSP and Spoken Digits) and two images datasets (MNIST and Fashion MNIST) are se-

lected. In speech datasets, MFCCs are used as method for feature extraction and inspired by the

success of BoVW approach in computer vision applications, BoAW approach is also applied on

MFCC features extracted from speech files. For images datasets, BoVW extracted from SIFT de-

scriptors is employed during the pre-processing phase to represent each image of dataset. After the
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code-book generation, BGGM is applied to perform clustering in speech and image datasets. In

TSP dataset, clustering is performed to categorize the speech of male and female speakers. Spoken

Digits dataset is composed of 10 categories and clustering is performed between 2, 3, 4, 5 and 10

categories. In MNIST and Fashion MNIST datasets, we also have 10 categories of images and

BGMM is applied for clustering with 2, 3, 4, 5 and 10 classes of data. A similar experimental

setting is also created using GMM in order to have a comparison with the performance of BGMM.

From the set of experiments, it is observed that BGMM has performed well in clustering the speech

and image datasets as compared to GMM. In code-book generation using bag of words approach in

speech and image datasets, K-Means is applied to cluster the SIFT descriptors or MFCC features.

We have proposed the application of BGMM for code-book generation and in order to observe the

performance of our proposed approach, we have created a similar scenario with GMM and perfor-

mance of BGMM, GMM and K-Means is examined for code-book generation using BoW. In order

to examine the performance of BGMM in BoW creation, we have employed 3 clustering compar-

ison scenarios at stage 1 (BGMM, GMM and K-Means) and 2 clustering comparison scenarios at

stage 2 (BGMM, GMM). BGMM has demonstrated it effectiveness in clustering at both stages in

this pipeline for categorizing the data in different classes for speech and image datasets.

In this chapter, we also have proposed model selection criterion for BGMM using MML

which is validated through 10 different medical experiments datasets as first step in our validation

process. The medical experiments datasets are used to model the behavior of different symptoms

in patients which is further used to perform diagnostics using data modeling and it is very critical to

correctly find the number of categories in the datasets to improve the data modeling capabilities and

diagnostics process. The proposed MML criterion is also compared with 7 different methods for

model selection in order to examine its performance. As second step to validate the performance

of MML in model selection, speech and image datasets with different number of categories are

considered. For TSP dataset, MML is performed with data of two classes, whereas for Spoken

Digits, MNIST and Fashion MNIST, data are selected with 2, 3, 4 and 5 categories. The results of

model selection using MML are compared with other model selection criteria for speech and image

datasets and model selection criterion proposed for BGMM has demonstrated its effectiveness.

From the set of experiments performed for clustering, BGMM has demonstrated its success

in data modeling as compared to GMM and model selection via MML has also proven effectiveness

for correctly finding the number of clusters in data.
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2.8 Speaker Verification Using Adapted Bounded Gaussian Mix-

ture Model

Speaker recognition and verification has obtained significance importance and increased visibility

in society as speech and audio technology, speech content and artificial intelligence based applica-

tions in business and other aspects of life continue to expand [131]. Due to rapid growth in artificial

intelligence, speech data mining based on audio content and speaker identity is also growing and it

has come to a point where it is becoming integral part of many applications and devices. A speaker

recognition system performs two tasks: speaker identification and verification. The goal of speaker

identification is to label an unknown speech signal with a speaker identity whereas in speaker ver-

ification, the task is to validate and confirm the claim of a speaker about its identity [131, 132].

Speaker verification has been used in many applications such as human-machine dialog systems,

medical, forensics and security.

Mixture models have been extensively used in speaker verification in the past and many

frameworks have been proposed [27, 28]. Adapted Gaussian mixture model or GMM-UBM speaker

verification system was proposed in [29] and extensively applied in many applications and further

researched [131, 133–140]. We propose the application of BGMM for adapted speaker model

based on UBM. We propose to train the UBM using BGMM and then apply this trained UBM to

adapt the speaker model similar to the one proposed in [29]. This approach is termed as BGMM-

UBM or adapted bounded Gaussian mixture model for speaker verification. The proposed model

is validated through several experiments on speech data and detection results have demonstrated

its effectiveness as compared to Gaussian mixture model.

2.8.1 Universal Background Model for Speaker Verification

A UBM is employed in biometric verification system to represent speaker independent feature

characteristics as compared to the speaker-dependent feature characteristics while making the de-

cision of acceptance or rejection [134]. In [29], a verification system is modeled around likelihood

ratio test, using GMMs for likelihood functions, UBM for alternative hypothesis modeling and

Bayesian adaption to obtain speaker models from UBM. In this chapter, we have proposed BGMM

for training in UBM and adaptation of speaker model. In the subsections below, we will describe

the application of BGMM in the speaker verification system based on UBM, speaker adaptation

and likelihood ratio test. This model is an extension of the work proposed in [29] and is referred

as Bounded Gaussian Mixture Model-Universal Background Model (BGMM-UBM) speaker veri-

fication system and it is given in Fig. (2.38).
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Figure 2.38: Block diagram of Speaker Verification with BGGM-UBM

2.8.1.1 Likelihood Ratio Detector

For the development of UBM in adapted speaker model, likelihood ratio test is very important

to describe. If we have a test speech signal T and a hypothesized speaker S, the task of speaker

verification is to find out if speaker T is from S and it can be stated as hypothesis test between

H0 : T is from hypothesied speaker S

H1 : T is not from hypothesied speaker S

The likelihood ratio test for deciding these two hypothesis is as follows:

p(T |H0)

p(T |H1)

⎧⎨
⎩≥ τ accept H0

< τ reject H0

, (2.45)

where τ is the decision threshold and p(T |Hi), i = 0,1, is the probability density function for

hypothesis Hi computed for test speech signal T . It is also referred as likelihood of the hypothesis

for test speech segment T . The primary objective of developing speaker verification system is to

determine techniques to compute the likelihood ratio by computing the two likelihoods, p(T |H0)

and p(T |H1). The first stage in speaker verification system is front-end processing which has

major goal to extract features to express the speaker-dependent information for speech data. The

sequence of feature vectors for test signal T can be represented as Y = {�Y1, ...,�YL}, where �Yl is a

feature vector indexed for lth segment as: [l ∈ 1, ...,L]. The likelihoods of H0 and H1 are computed

using these features vectors extracted from test speech signal. In speaker verification systems,

hypotheses H0 and H1 are represented by λs and λ0 for test speech from hypothesized speaker
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and test speech not from hypothesized speaker, respectively. In our proposed approach, feature

vectors for test speech signal will be represented by BGD for H0 and λs will represent mean vector

and covariance matrix parameters of BGD. The alternative hypothesis is modeled through pool of

several speakers and we have proposed BGMM for this modeling [29, 131, 133–136, 141, 142]. It

is termed as universal background model and details are given in subsection (2.8.1.2). Usually,

likelihood ratio test is performed in the logarithmic scale, which can be expressed as follows:

Λ(Y ) = log p(Y |λs)− log p(Y |λ0) (2.46)

2.8.1.2 Universal Background Model using BGMM

Hypothesis test H0 can be modeled with a mixture model (BGMM in our case) and it is well

defined and it is estimated by using training speech data from speaker S. The model for λ0 is

not well defined since it has to represent the entire space of possible alternatives to hypothesized

speaker S. In the literature, two approaches for modeling λ0 have been proposed. In the first

approach, in order to cover the space for alternative hypothesis, set of other speakers can be used.

The drawback of this approach is large number of hypothesized speakers where each requires its

own background speaker set. In the second approach, λ0 is modeled thorough a pool of several

speakers and it is further applied to train a single model. From the population of speakers expected

during recognition, a collection of speech signals for all speakers is used to train a single model

for alternative hypothesis. We have applied BGMM for modeling alternative hypothesis and in

literature, it is termed as universal background model (UBM) [29, 134].

2.8.1.3 Adaptation of Speaker Model with BGMM

In our proposed BGMM-UBM system, hypothesized speaker model is derived by adapting the pa-

rameters of UBM by applying training speech of the speaker and maximum a posteriori (MAP) as

described for GMM in [29, 141]. The basic idea in adaptation approach is to obtain the hypoth-

esized speaker’s model by updating the parameters in the UBM via adaptation. The adaptation

of speaker model has two steps like EM algorithm in the estimation process. In the first step, we

estimate the sufficient statistics parameters of speaker’s training data for each mixture in the UBM.

In the second step, these new sufficient statistics are combined with old sufficient statistics from

UBM mixture parameters [29, 131]. Let Y = {�Y1, ...,�YL} represents the sequence of feature vec-

tors obtained from training data of the hypothesized speaker. Given a UBM and speakers training

data X , we compute the posterior probability for the training data with respect to the components

of mixtures of UBM. For the jth component in the UBM, posterior probability is computed as
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follows:

p( j|�Yl) =
p(�Yl|ξ j)p j

∑K
j=1 p(�Yl|ξ j)p j

(2.47)

In the next step, p( j|�Yl) and training data of the speaker is used to compute the sufficient statistics

for mixing weight, mean and covariance parameters using BGMM as follows:

Nj =
L

∑
l=1

p( j|�Yl) (2.48)

E j(Y ) =
1

Nj

L

∑
l=1

p( j|�Yl)�Yl (2.49)

E j(Y 2) =
1

Nj

L

∑
l=1

p( j|�Yl)�Yl�Y T
l (2.50)

The maximum a posteriori adaptation update equations for mixing weight, mean and covariance

are given as follows:

p̂ j = [α jNj/L+(1−α j)p j]β (2.51)

μ̂ j = α jE j(Y )+(1−α j)μ j (2.52)

Σ̂ j = α jE j(Y 2)+(1−α j)(Σ j +μ jμT
j )− μ̂ jμ̂T

j (2.53)

The scaling factor β in Eq. (2.51) is computed over all adapted mixture weights to ensure that they

sum to unity. The variable α j is represented as:

α j =
Nj

Nj + r
(2.54)

where r is relevance factor. This parameter controls the adaptation parameters of BGMM in order

to affect the hypothesized test speaker. In literature, it has been presented that only adaptation

of mean vectors is most effective. In adaptation of speaker model, the posterior probability is

computed with respect to BGD and UBM which is trained with BGMM. The rest of the adaptation

equation are followed from the procedure explained in [29, 131].
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2.8.2 Experiments and Results

2.8.2.1 Design of Experiments

In this section, we present experiments and results using our proposed BGMM-UBM system. We

have conducted our experiments with TIMIT and TSP speech databases [91, 143]. The first step

is front-end processing and we have performed feature extraction for background data, enrollment

data and test data. Before feature extraction, voice activity detection (VAD) is used to distinguish

between speech and non-speech parts of speech signals. The main reason of applying VAD is to

assure that training process is not inferred with non-speech parts of data. For feature extraction,

Mel Frequency Cepstral Coefficients (MFCCs) have been used. MFCCs has been widely used for

speech recognition and we have used 39 dimensional MFCC features for front-end processing. The

next step is to train the UBM using BGMM with the large part of data set (termed as background

data in Fig. (2.38)) selected for UBM modeling. The next step is speaker enrollment and in this

step, hypothesized speaker is adapted with BGMM-UBM. In the adaptation, first of all posterior

probability (Eq.(2.47)) is computed with BGD by taking the parameters of the trained UBM model.

Posterior probability is further used estimate the sufficient statistics (Eqs. (2.48-2.50)) required to

update the parameters (Eqs. (2.51-2.53)) of the adapted speaker based on enrollment data. In the

last step, a recognition score is calculated for test speaker, using likelihood ratio test (Eq. (2.46))

with parameters of hypothesized speaker and UBM. For the development of this framework, we

have employed TIMIT and TSP speech corpora and several experiments are performed to examine

the viability of proposed framework.

2.8.2.2 Experimental Framework and Results

The speaker verification based on our proposed approach is evaluated using TIMIT and TSP speech

databases. TIMIT speech database consists of 6300 speech utterances having 630 speakers. Each

speaker has spoken 10 speech utterances. The data set contain 4620 speech utterances (462 speak-

ers) for training and 1680 speech utterances (168 speakers) for testing. The TSP speech database

consists of 1378 speech utterances spoken by 23 speakers (11 male, 12 female). For 22 speakers,

database has 60 speech utterances for each speaker whereas one speaker has 58 speech utterances.

In order to test our framework, we have created different experimental scenarios with both

databases. First of all, we have taken the speech data of TSP database and 18 speakers (1080)

are used to train the UBM via BGMM. For enrollment, 5 speakers are selected and 10 speech

utterances are used for each speaker model and 10 speech utterances are employed for testing. The

purpose of using this small database for this task is to check rapid response of proposed approach
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Table 2.27: 5 Speakers confusion matrix using TSP database.

(a) BGMM-UBM

S1 S2 S3 S4 S5
S1 7 1 0 1 1
S2 1 6 2 0 1
S3 0 1 8 1 0
S4 1 0 0 9 0
S5 1 1 0 1 7

(b) GMM-UBM

S1 S2 S3 S4 S5
S1 6 1 0 2 1
S2 1 6 1 1 1
S3 0 1 7 1 1
S4 1 1 0 8 0
S5 1 0 1 1 7

in speaker verification. We have trained UBM via BGMM with different numbers of components

of mixture model (2, 4, 8, 16, 32, 64, 128, 256) and in the enrollment step, 5 separate speaker

models are adapted from trained UBM. To test each hypothesized speaker, we have 10 speech

utterances and likelihood ratio is computed with respect to the hypothesized speaker model and it

is also computed with respect to the remaining speaker models. The same process is repeated for all

test speakers with respect to all speaker models. The likelihood ratio is compared with threshold

value in order to accept or reject the particular speaker with respect to all speaker models. The

verification results are computed for UBM trained for different number of components of mixture

model and it is observed that speaker verification results are not changing much after UBM trained

for 64 components. The speaker verification results when UBM was trained with 64 mixture

components are given in Table (2.27). In the confusion matrix, [S1, ...,S5] are 5 speakers used for

enrollment and testing. A comparison of our proposed BGMM-UBM framework with GMM-UBM

is also performed with similar settings and detection results are provided in Table (2.27). From the

comparison of detection rate, it is observed that application of BGMM in UBM has improved the

recognition rate for speaker verification.

In the next experiment, TIMIT speech corpus is employed for the evaluation of proposed ap-

proach. For training the UBM via BGMM, 6200 speech utterances for 620 speakers are selected.

In this experiment, we want to train the UBM with maximum available data and rest of 10 speak-

ers are used for enrollment and testing. For each speaker having 10 speech utterances, 5 speech

utterances are used for enrollment and rest of the 5 utterances are selected for test. The UBM is

trained with the data selected for background model and it is trained for different mixture compo-

nents (2, 4, 8, 16, 32, 64, 128, 256, 512) as in the experiment for TSP data set. In the enrollment

step, 10 speaker models are adapted with trained UBM using 5 speech utterances for each speaker.

The next step is to compute the likelihood ratio for all 10 speakers with respect to hypothesized

speaker models in same manner as we have described for TSP data set. The likelihood ratio is

further used to accept or reject the test speaker based on a threshold. The selection of threshold

value is very critical in speaker verification because it can change the detection results. In this
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Table 2.28: 10 Speakers confusion matrix using TIMIT database.

(a) BGMM-UBM

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S1 5 0 0 0 0 0 0 0 0 0
S2 1 4 0 0 0 0 0 0 0 0
S3 0 0 3 1 0 0 1 0 0 0
S4 0 0 0 4 0 0 0 1 0 0
S5 0 0 0 0 4 0 0 0 0 1
S6 0 0 0 0 0 5 0 0 0 0
S7 0 0 0 1 0 0 4 0 0 0
S8 0 0 0 0 0 0 0 5 0 0
S9 0 0 0 0 0 0 0 0 5 0

S10 1 0 0 0 0 0 0 0 0 4

(b) GMM-UBM

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S1 4 0 0 0 0 0 0 1 0 0
S2 0 4 0 0 0 1 0 0 0 0
S3 0 1 3 0 0 0 0 0 0 1
S4 0 0 1 4 0 0 0 0 0 0
S5 0 0 0 0 5 0 0 0 0 0
S6 0 0 0 1 0 4 0 0 0 0
S7 0 0 0 0 0 0 4 0 0 1
S8 0 0 0 0 0 0 0 5 0 0
S9 1 0 0 0 0 0 0 0 4 0
S10 0 1 0 0 0 0 0 0 0 4

case, lowest likelihood ratio is chosen for detection of speaker with respect to all speaker models.

Detection results are computed with models having training and adaptation for different compo-

nents of mixture model and it is observed that detection results are not changing much after 128

components fo mixture model. Speaker detection results computed when the UBM is trained with

128 components of mixture models are given in Table (2.28). In confusion matrix, [S1, ...,S10]

are 10 speakers used for enrollment and testing in this experiment. A comparison of our proposed

approach is also performed with GMM-UBM for 10 speaker verification and it is observed that

our proposed approach has outperformed. However the trend of this improvement is not high and

we have observed that since only 5 speakers are used both for enrollment and testing and they are

not enough to clearly examine the improvement. In our future work, we are planning to use a large

data set to clearly examine the performance of proposed model. In Table (2.28), detection results

for BGMM-UBM and GMM-UBM are provided for a comparison.
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Table 2.29: 5 Speakers confusion matrix, TSP database (Combined training)

(a) BGMM-UBM

S1 S2 S3 S4 S5
S1 8 0 0 1 1
S2 1 9 0 0 0
S3 2 0 7 0 1
S4 0 1 1 8 0
S5 1 0 1 0 8

(b) GMM-UBM

S1 S2 S3 S4 S5
S1 7 0 1 1 1
S2 1 7 0 2 0
S3 1 1 8 0 0
S4 1 1 1 7 0
S5 1 0 1 0 8

In the next experiment, both data sets are combined for training the UBM via BGMM. From

TIMIT speech corpus, 6200 speech utterances (620 speakers) are selected and from TSP speech

data set, 1080 speech utterances (18 speakers) are used in the training process for UBM. Although

this combined data set is not well balanced, but the purpose of combining it for training is to get the

trained model on maximum available data. Training of UBM is performed for different number

of mixture components (2, 4, 8, 16, 32, 64, 128, 256, 512) and for adaptation and testing, two

scenarios given in above two experiments are selected separately. The trained UBM is used for

adaptation in 5 speakers detection (TSP) and 10 speaker detection (TIMIT). In this experiment,

optimized number of components of mixture model for UBM training is observed as 128. The

detection results for 10 speakers using TIMIT speech corpus have not changed in this experiments

and they are not reported again separately for this experiment. The reason for having no change

in detection results is that since there is not much difference in the training data as compared to

the second experiment. However, training data are much increased by combining both data sets as

compared to first experiment and for 5 speakers from TSP data set, detection results are improved

and they are reported in Table (2.29). Proposed BGMM-UBM is compared with GMM-UBM and

results are reported for both frameworks. It is observed that by employing BGMM in the training

of UBM, recognition is improved.

From the above experiments, it is observed that BGMM has effectively demonstrated its

viability in speaker verification for the training of UBM and further adaptation of speaker model

via BGMM based UBM. The detection results of our proposed framework are better than GMM-

UBM in each experiment. It is also observed that by increasing the training data for background

model, detection rate is improved.
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2.8.3 Discussion about BGMM-UBM

In this work, we have proposed BGMM for speaker verification system. In the proposed approach,

UBM is developed by BGMM and speaker adaptation is performed by the trained UBM. The pro-

posed framework is applied to the speaker verification task and two speech corpora (TIMIT &

TSP) are employed for the development of experiments in order to examine the performance of

proposed approach. Three different experimental scenarios are created for the validity of proposed

framework and it is observed that there is clear improvement in detection results for all experi-

ments and application of BGMM in speaker verification system has outperformed GMM for the

similar setting. Future works could be devoted to the consideration of a larger data sets and the

consideration of different mixture models within the same framework.
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Chapter 3
Multivariate Bounded Support Laplace

Mixture Model

In this chapter, bounded Laplace mixture model (BLMM) is proposed. The parameters of pro-

posed model are estimated by maximum likelihood approach via expectation maximization (EM)

and Newton Raphson algorithm. The model is proposed for data modeling to perform cluster-

ing using synthetic data for uni-variate and multivariate examples and real datasets of different

medical experiments. BLMM is validated through correctness of estimated parameters for syn-

thetic data and clustering accuracy of medical datasets. A new modeling scheme is also introduced

for wavelet coefficients which is based on BLMM. It is applied to image clustering and content

based image retrieval (CBIR) for feature extraction in wavelet domain. For feature extraction in

this application, each image is decomposed into a set of wavelet subspaces and BLMM with two

components is adopted to model the statistical characteristics of the wavelet coefficients for each

wavelet subspace. The model parameters adapted from BLMM, represent the image features in

wavelet domain for each subspace and selected to formulate the feature space which is further

used in clustering and CBIR. In the framework for clustering and image retrieval, features ex-

tracted in wavelet domain are further modeled through BLMM to categorize images into different

groups and trained model is adopted for CBIR. In order to perform image retrieval with trained

model via BLMM, City-block distance, posterior probability and Kullback-Leibler divergence are

introduced. We also propose a novel solution to compute Kullback-Leibler divergence which is

very effective for image retrieval due to its low computational complexity and high retrieval rate.

The effectiveness and viability of BLMM in texture image clustering and CBIR is demonstrated

through UIUC, KTH-TIPS, DTD, STex and Kylberg databases. Different experiments are per-

formed in the chosen applications and from the results, BLMM has demonstrated its effectiveness

in modeling synthetic data, real datasets from medical experiments, feature extraction in wavelet

66



domain, image clustering, and CBIR.

In the above introduced method, features are extracted via bounded Laplace mixture model

(BLMM) in wavelet domain. Due to nature of wavelet coefficients that can be modeled accurately

with Laplace distribution, it is also proposed to apply classifiers based on this distribution, which

leads us to introduce Naive Bayes classifier with Laplace distribution for image categorization.

The proposed approach is validated through experiments on different texture image datasets and it

has shown very good results as compared to the model based on Gaussian distribution. The gen-

eralized Gaussian distribution is a generalization of both Laplace and Gaussian distributions, thus

we have introduced also Naive Bayes classifier with generalized Gaussian distribution to achieve

better performance as compared to the above two models. The proposed approach is also vali-

dated through extensive experiments. Classification results are presented by different performance

metrics to ensure the effectiveness of proposed algorithms in texture image classification.

3.1 Introduction

Unsupervised learning plays an important role in pattern recognition and finite mixture models as

unsupervised learning approach are considered as flexible and powerful tool in statistical pattern

recognition, for modeling one-dimensional and multi-dimensional data. Furthermore, they have

been successfully applied in various interesting applications in computer vision, speech and image

processing, pattern recognition and machine learning [30, 31]. Mixture models are built on the idea

that data can be represented as a mixture of multiple probability distributions. Gaussian mixture

model (GMM) has become quintessential model that is widely used for several applications. It is

a well-known fact that Gaussian distributions use quadratic distance between the data points and

their means for data clustering, which makes the clustering process sensitive to outliers [52, 77].

Choosing the distributions for data modeling with L1 norm distance is one viable solution to this

problem [144]. One of the ways to handle this problem is by applying k-median algorithm in data

clustering which handles the outliers by taking the sum of the absolute distances between the data

points and its class centroid. As generalization to k-median algorithm, a mixture of Laplace dis-

tributions was introduced which can be used in clustering applications primarily to handle outliers

and this approach proves to be very effective in many data modeling applications where density

of data is more close to Laplace distribution [52–54]. Laplace mixture model (LMM) has been

used in many successful applications such as blind source separation, feature selection and feature

representation in image processing [52, 145–148].

Finding an appropriate model that is able to approximate the data without over-fitting is es-

sential to handle more complex and challenging tasks in data engineering. This has been a booming
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field of research in recent years. Various models have been proposed with different distributions

like Gaussian mixture models, student’s t mixture model, asymmetric Laplace mixture model and

generalized Gaussian mixtures models [16, 47, 51, 149, 150]. These models prove to be an effi-

cient choice for modeling the data in multiple applications. In spite of that, it is notable that these

models consider the data to run from (−∞,+∞) i.e. they are unbounded. Hence in this chapter

we introduce bounded Laplace mixture model (BLMM) as a substitute to unbounded mixtures

for modeling data. When it comes to parameter estimation, we use the maximum likelihood ap-

proach which is a norm as it has proved to be very efficient and for optimization we have used EM

algorithm and Newton-Raphson method.

In order evaluate the proposed model, it is applied to many data modeling applications in-

cluding synthetic and real datasets. As first test, uni-variate and multivariate synthetic data are

generated with known parameters of Laplace distributions and proposed model is applied to model

these data. The correctness and closeness of learned parameters to the actual parameters validate

the effectiveness of introduced model. For second test, LMM is applied to healthcare databases

due to the complex nature and the size of these heterogeneous databases, where extracting use-

ful knowledge from these sources is usually a hectic task and difficult to achieve with traditional

methods (e.g., SQL queries). Statistical models are methodical for this type of tasks involving cate-

gorizing patients based on their symptoms, diagnosis of a disease, etc. Analysis of this information

provides useful insights for clinical decision support [151]. Obviously, when it comes to model-

based clustering using mixture models, Gaussian mixture model is inevitable. For example, [152]

demonstrates an efficient implementation using GMM to cluster patients using a systematic pre-

diction of the surviving probability based on the duration of their stays in the hospital. In our

case, we use BLMM for medical data analysis. BLMM is applied to 10 different datasets and the

evaluation successfully demonstrated the efficiency of our model to learn the distinct patterns in

the data which help to predict different diseases.

In addition to the healthcare datasets, we analyze the efficiency of our model for image

clustering and extend it for image retrieval tasks as well because they are considered to be the

most essential part of image analysis tasks like object recognition, security and categorization of

medical images [153–158]. We have seen that wavelet transform can be implied efficiently for

image and video processing [159]. A lot of research has been done to apply wavelet transform

for feature extraction from images in wavelet domain, which is further used for image clustering

and CBIR [159–164]. The wavelet coefficients are heavily tailed marginal distributions as they

have very sparse data due to their energy packing property [159, 162, 165–167]. The literature

suggests that using mixture models in the wavelet domain gives good results for image cluster-

ing and CBIR [159, 162, 163, 168]. In these cases, GMM has been used to track the peaks of the
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Figure 3.1: Example demonstrating mixtures of different number of Laplace distributions for two dimensional data

distributions. However, it is more efficient to use LMM for applications related to wavelet do-

main. This has been used as a worthy model for feature extraction for image and video clustering

and retrieval [159]. In this chapter we introduce BLMM as a preprocessing model for multiple

computer vision tasks such as image clustering and classification, categorization of databases and

CBIR. This is done by using BLMM for modeling the wavelet domain representation of image to

extract features. The features being derived from adapted parameters of BLMM for each image

at different levels of decomposition, it would be an interesting idea to use BLMM for clustering

and CBIR. Our proposed model hence uses BLMM to represent the feature space and then uses

this representation to perform image clustering and retrieval. The proposed framework is validated

through several experiments on texture data for feature extraction, image clustering and retrieval

and detection results have demonstrated effectiveness of BLMM as compared to LMM for similar

settings. The experiments are performed by using 5 texture images datasets and three different

similarity measures are introduced for image retrieval, where a closed form solution is provided

for one of the similarity measures in the context of our model.

3.2 Bounded Support Laplace Mixture Model

In this section, BLMM is presented which is an extension of LMM to improve the modeling capa-

bilities of mixture model based on Laplace distribution. The idea behind bounded support mixture

model is the fact that data in most of the applications exist in bounded support range and it is

more appropriate to introduce a model with bounded support distributions. The parameters esti-

mation for BLMM is performed by maximum likelihood approach, with EM and Newton Raphson

method for optimization of estimated parameters. Before going further to explain the proposed

model, basic formulation of mixture of Laplace distributions is presented.
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3.2.1 Mixture of Laplace Distributions

LMM was introduced as generalization to k-median algorithm, which exhibits mixture based clus-

tering with distributions relying on the median [52–54]. If a uni-variate random variable X , follows

a K component mixture distribution which is represented by Eq. (1.1), then Laplace distribution

for each component of mixture model can be represented as follows:

f (X |ξ j) =
1

2b j
exp

[
−
∣∣X −μ j

∣∣
b j

]
(3.1)

where μ j and b j are mean and scale parameters of Laplace distribution for each component of

mixture model. For estimation of parameters in Laplace mixture model, ML approach via EM

algorithm gives a closed for solution for all parameters of mixture model as follows:

μ̂ j =
∑N

i=1
p( j|Xi)Xi

|Xi−μ j|
∑N

i=1
p( j|Xi)

|Xi−μ j|
(3.2)

b̂ j =
∑N

i=1 p( j|Xi)
∣∣Xi −μ j

∣∣
∑N

i=1 p( j|Xi)
(3.3)

p̂ j =
1
N

N

∑
i=1

p( j|Xi) (3.4)

where p( j|Xi) is posterior probability estimated for LMM and N represents the total number of

observations of data. Some examples of data modeling via Laplace mixture for two dimensional

data for number of components of mixture model are shown in Fig. (3.1).

3.2.2 Mixture of Bounded Laplace Distributions for Multidimensional Data

For BLMM, the term p(�X |ξ j) in Eq. (1.1) represents the bounded Laplace distribution (BLD),

which is introduced to improve the data modeling capabilities associated with unbounded support

range in Laplace distribution. The introduced BLD has the ability to model different shapes of

observed data. An indicator function is presented which serves the purpose to define the boundary

conditions for BLD. Bounded support region ∂ is presented in R and applying this indicator func-

tion in unbounded distribution defines the bounded support distribution. For each component j in

the mixture model, indicator function is defined as H(�X | j) similar to its uni-variate counterpart

given in Eq. (1.4). If we apply the indicator function H(�X | j), in unbounded support distribution

(Laplace distribution in this case), the term p(�X |ξ j) in Eq. (1.1) is referred as bounded support
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Figure 3.2: Graphical representation of Laplace mixture model

distribution (BLD in this case), for the vector �X and according to Eq. (1.6), it is defined as:

p(�X |ξ j) =
f (�X |ξ j)H(�X | j)∫

∂ j
f (�u|ξ j)du

(3.5)

where the term f (�X |ξ j) is regarded as Laplace distribution for D−dimensional vector �X :

f (�X |ξ j) =
D

∏
d=1

1
2b jd

exp

[
−
∣∣Xd −μ jd

∣∣
b jd

]
(3.6)

In Eq. (3.5), ξ j = (�μ j,�b j) represents the set of parameters of Laplace distribution with �μ j =

(μ j1, ...,μ jD) and �b j = (b j1, ...,b jD) as mean and scale parameters of D-dimensional bounded

Laplace distribution, respectively [159]. The term
∫

∂ j
f (�u|ξ j)du presented in Eq. (3.5) defines

the normalization constant that indicates the share of f (�X |ξ j) which belongs to the support re-

gion ∂ . Let the input be set of features of data represented as X = (�X1, ...,�XN). With a mixture

of K BLDs, the probability of data X can be modeled by a mixture of K BLDs as given in Eq.

(1.2), where Θ represents the parameters of mixture model having K classes as Θ = (ξ1,ξ2,ξ3),

with ξ1 = (�μ1, ...,�μK), ξ2 = (�b1, ...,�bK), and ξ3 = (p1, ..., pK). Missing group indicator vectors,
�Zi = (Zi1, ...,ZiK) can be introduced in complete likelihood of the data, where one vector is ded-

icated for each observation of data. These missing group vectors are also termed as membership

vectors, which are used to encode the membership of each data vector for relative component of

mixture model. For each membership vector, the unobserved variable Zi j is equal to 1 if �Xi be-

long to class j and 0, otherwise. The complete data likelihood after introducing the missing group
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indicator variable is given below.

p(X ,Z |Θ) =
N

∏
i=1

K

∏
j=1

(
p(�Xi|ξ j)p j

)Zi j
(3.7)

The missing group variable Zi j can be substituted by its expectation, where the expectation is

termed as posterior probability. The expectation of unobserved variable Zi j means that ith obser-

vation of data arises from jth component of the mixture model and it can be written as:

Ẑi j = p( j|�Xi) =
p(�Xi|ξ j)p j

∑K
j=1 p(�Xi|ξ j)p j

(3.8)

The complete set of vectors defining the membership of each observation of data into different

components of mixture model is represented as: Z = {�Z1, ...,�ZN}.

3.2.2.1 Parameters Learning

In a mixture model, the parameter estimation is considered to be a very important step and in

BLMM, parameters are estimated by maximum likelihood approach. The maximization of log-

likelihood is similar to maximization of likelihood and for mathematical convenience, we consider

the log-likelihood function. For parameter estimation using this approach, we suppose that we

know the number of components (K) of mixture model. The maximum likelihood approach is to

get the parameters of mixture model that maximizes the log-likelihood function given as:

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Ẑi j log
(

p(�Xi|ξ j)p j

)
(3.9)

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Ẑi j ×
{

log p j + log f (�Xi|ξ j)+ logH(�Xi|∂ j)− log
∫

∂ j

f (�u|ξ j)du
}

(3.10)

For the computation of the parameters of mixture, log-likelihood of data is required to be maxi-

mized with respect to each parameter of mixture model. It is achieved by taking the derivatives of

the log-likelihood with respect to p j, μ j, and b j separately and equating them to zero for getting

the estimated values of the parameters. The estimation of mixing parameter is provided in Section

2.2.3.1. The parameter estimation for mean and scale parameters of BLMM is presented in the

following subsections.
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3.2.2.2 Mean parameter estimation

In order to estimate the mean μ jd , log-likelihood function given in Eq. 3.10 is considered which

is differentiated with respect to mean parameter to achieve maximization of log-likelihood with

respect to �μ j as given Appendix B.1. For the estimated value of mean parameter, derivative of

log-likelihood is set to zero as given below:

∂L (X ,Z |Θ)

∂ μ jd
= 0 (3.11)

The estimation of mean parameter yields a closed form solution (Appendix B.2) and the term for

estimated value of mean parameter is represented as follows:

μ̂ jd =

∑N
i=1 Ẑi j

⎧⎪⎪⎨
⎪⎪⎩
[

Xid
b jd|Xid−μ jd|

]
−

∫
∂ j

(
f (�u|ξ j)

[
(u−μ jd )

b jd|u−μ jd|
])

du
∫

∂ j
f (�u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭

∑N
i=1

[
Ẑi j

b jd|Xid−μ jd|
] (3.12)

The term
∫

∂ j
f (u|ξ j)(u− μ jd)/b jd

∣∣u−μ jd
∣∣du in Eq. (3.12) represents the expectation of term

(u−μ jd)/b jd
∣∣u−μ jd

∣∣ under the probability distribution f (u|ξ j), which is approximated as:

∫
∂ j

(
f (�u|ξ j)

[
(u−μ jd)

b jd
∣∣u−μ jd

∣∣
])

du ≈ 1
M

M

∑
m=1

[
(sm jd −μ jd)

b jd
∣∣sm jd −μ jd

∣∣
]

H(sm jd |∂ j) (3.13)

where sm jd ∼ f (u|ξ j) is a set of random variables, which is drawn from the Laplace distribution for

the particular component j of the mixture model. The set of data with random variables drawn from

Laplace distribution have M vectors with D dimensions. M is a large integer chosen to generate

the set of random variables. Similarly, the term
∫

∂ j
f (u|ξ j)du in Eq. (3.12) can be approximated

as:

∫
∂ j

f (u|ξ j)du ≈ 1
M

M

∑
m=1

H(sm jd |∂ j) (3.14)

By replacing the approximated values from Eqs. (3.13 & 3.13) in Eq. (3.12), we get the following

expression for estimated value of mean parameter.

73



Algorithm 3 Model Learning for BLMM

1: Input:Dataset X = {�X1, . . . ,�XN}, tmin.
2: Output: Θ, Z .
3: {Initialization}:
4: K-Means Algorithm (Computation of �μ1, . . . ,�μK & cluster assignment)
5: for all 1 ≤ j ≤ K do
6: Computation of p j

7: Computation of�bK
8: end for

9: {Expectation Maximization}:
10: while relative change in log-likelihood ≥ tmin do
11: {[E Step]}:
12: for all 1 ≤ j ≤ K do
13: Compute p( j|�Xi) for i = 1, . . . ,N. using Eq. (3.8).
14: end for

15: {[M step]}:
16: for all 1 ≤ j ≤ K do
17: Estimation of mixing parameter p j using Eq. (2.12).
18: Estimation of mean �μ j using Eq. (3.12).
19: Estimation of scale parameter�b j using Eq. (3.20).
20: end for

21: end while

3.2.2.3 Scale parameter estimation

In order to estimate the scale parameter b̂ jd , log-likelihood function given in Eq. 3.10 is consid-

ered, which is differentiated with respect to scale parameter for achieving an expression for scale

parameter estimate via maximum likelihood. The first derivative does not provide a closed form

solution for the estimate of scale parameter and we need to apply Newton-Raphson method for

computation of scale parameter which also require the second derivative of the log-likelihood with

respect to scale parameter. The procedure to compute the first and second derivative of the log-

likelihood with respect to scale parameter is given in Appendix B.3 & B.4 and final expressions

are represented as follows:

∂L (X ,Z |Θ)

∂b jd
=

N

∑
i=1

Ẑi j× (3.15)

⎧⎪⎪⎨
⎪⎪⎩
[
−1
b jd

+

∣∣Xid −μ jd
∣∣

b2
jd

]
−
∫

∂ j

(
−1
b jd

f (�u|ξ j)+
|u−μ jd|

b2
jd

f (�u|ξ j)

)
du∫

∂ j
f (�u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭
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∂ 2L (X ,Z |Θ)

∂b2
jd

=
N

∑
i=1

Ẑi j

{[
1

b2
jd
− 2

∣∣Xid −μ jd
∣∣

b3
jd

]
(3.16)

−
∫

∂ j

(
1

b2
jd

f (�u|ξ j)− 1
b jd

f (�u|ξ j)
(u−μ jd)

b jd|u−μ jd|
)

du(∫
∂ j

f (�u|ξ j)du
)

+

(∫
∂ j

−1
b jd

f (�u|ξ j)du
)∫

∂ j
f (�u|ξ j)

(u−μ jd)

b jd|u−μ jd|du(∫
∂ j

f (�u|ξ j)du
)2 −

(∫
∂ j

−2|u−μ jd|
b3

jd
f (�u|ξ j)du+

∫
∂ j

(
−|u−μ jd|

b3
jd

f (�u|ξ j)+
|u−μ jd|2

b4
jd

f (�u|ξ j)

)
du
)

(∫
∂ j

f (�u|ξ j)du
)

+

(∫
∂ j

|u−μ jd|
b2

jd
f (�u|ξ j)du

)∫
∂ j

(
−1
b jd

f (�u|ξ j)+
|u−μ jd|

b2
jd

f (�u|ξ j)

)
du(∫

∂ j
f (�u|ξ j)du

)2

⎫⎪⎪⎬
⎪⎪⎭

In Eq. (3.16), the term
∫

∂ j
f (u|ξ j)

∣∣u−μ jd
∣∣2dx can be approximated as below:

∫
∂ j

f (u|ξ j)
∣∣u−μ jd

∣∣2dx ≈ 1
M

M

∑
m=1

∣∣sm jd −μ jd
∣∣2H(sm jd |∂ j) (3.17)

where sm jd ∼ f (u|ξ j) is a set of random variables drawn from the Laplace distribution for particular

component j of the mixture model. The rest of the approximations are followed from the estimation

of mean. After applying these approximations, first and second derivatives are represented as

follows:

∂L (X ,Z |Θ)

∂b jd
=

N

∑
i=1

Zi j

{[
−1
b jd

+

∣∣Xid −μ jd
∣∣

b2
jd

]
− (3.18)

∑M
m=1

−1
b jd

H(sm jd |∂ j)+∑M
m=1

∣∣∣sm jd−μ jd

∣∣∣
b2

jd
H(sm jd |∂ j)

∑M
m=1 H(sm jd |∂ j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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∂ 2L (X ,Z |Θ)

∂b2
jd

=
N

∑
i=1

Zi j

{[
1

b2
jd
− 2

∣∣Xid −μ jd
∣∣

b3
jd

]
(3.19)

−

(
∑M

m=1
1

b jd
H(sm jd |∂ j)−∑M

m=1
(sm jd−μ jd)

b2
jd

∣∣∣sm jd−μ jd

∣∣∣H(sm jd |∂ j)

)
(
∑M

m=1 H(sm jd |∂ j)
)

+

(
∑M

m=1
−1
b jd

H(sm jd |∂ j)
)(

∑M
m=1

(sm jd−μ jd)

b jd

∣∣∣sm jd−μ jd

∣∣∣H(sm jd |∂ j)

)
(
∑M

m=1 H(sm jd |∂ j)
)2

−

(
∑M

m=1
−2
∣∣∣sm jd−μ jd

∣∣∣
b3

jd
H(sm jd |∂ j)+∑M

m=1
−
∣∣∣sm jd−μ jd

∣∣∣
b3

jd
H(sm jd |∂ j)

)
(
∑M

m=1 H(sm jd |∂ j)
)

−

(
∑M

m=1

∣∣∣sm jd−μ jd

∣∣∣2
b4

jd
H(sm jd |∂ j)

)
(
∑M

m=1 H(sm jd |∂ j)
) +

(
∑M

m=1

∣∣∣sm jd−μ jd

∣∣∣
b2

jd
H(sm jd |∂ j)

)
(
∑M

m=1 H(sm jd |∂ j)
)2 ×

(
M

∑
m=1

−1
b jd

H(sm jd |∂ j)+
M

∑
m=1

∣∣sm jd −μ jd
∣∣

b2
jd

H(sm jd |∂ j)

)}

It is observed from Eq. (3.15), that first derivative is non-linear and does not provide any closed

form in the maximization of log-likelihood, we apply Newton-Raphson method for the estimation

of b̂ j as follows:

b̂ jd 	 b jd −
[(

∂ 2L (X ,Z |Θ)]

∂b2
jd

)−1(∂L (X ,Z |Θ)

∂b jd

)]
(3.20)

The complete learning of BLMM is given in Algorithm 3, where tmin is minimum threshold used

to monitor the convergence criteria in each iteration. In the initialization phase, K-Means is applied

for computation of mean and data assignment in each cluster. This information is further used for

computation of scale parameter and mixing weights during initialization phase.
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Figure 3.3: Examples demonstrating real and estimated components of mixtures of Bounded Laplace distributions via
one dimensional artificial histograms
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3.3 Proof of concept through experiments on Synthetic Data

Clustering

In this section, the proposed algorithm is validated to perform clustering on synthetic data. The

consideration of synthetic data for clustering is very important to examine the performance of

proposed model because the distribution of generated data is known and it can be observed after

learning through the proposed model. In the first subsection, experiments on one dimensional syn-

thetic data are presented whereas in subsection two, experiments on multi-dimensional synthetic

data are provided. The data are generated with different parameters using Laplace with 2,3,4 and

5 components for uni-variate and multi-variate case.

3.3.1 One-dimensional data

We generate single dimensional data from an artificial mixture model based on Laplace distribution

and evaluate the performance of our model on this data. 4 different datasets are used with increas-

ing number of components starting from 2 to 5. The first set contains 2 components with 200 data

points each and rest of the datasets have 150 data points belonging each of its components. Table

3.1 shows the real values of the parameters and the ones estimated by our model. We can clearly

see that the estimated parameters are so close to the real values. Our model was able to maintain

its accuracy even with increasing number of components. This is also depicted in Fig. (3.3) which

shows the histograms of the real and estimated histograms of the PDFs. The similarities between

the two histograms depict the efficiency of our model. It is to be noted that we use five components

only for ease of representation. Our model was capable of achieving similar accuracies with more

components as well.

3.3.2 Multidimensional data

Like our experiment with one-dimensional data, we create two-dimensional datasets to test the

performance of our model for the multivariate case. This experiment involves four datasets with 2,

3, 4 and 5 components respectively with each component having 200 data points assigned to them.

Table 3.2 shows the results we obtained with these datasets comparing the real parameter values of

each dimension with the estimated parameters. The results reflect the fact that our model is very

stable even in the multivariate case. It is also evident from the histograms presented in Figs. (3.4

& 3.5) that the estimation of the parameters by our model is quite accurate.
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Table 3.1: Real and estimated parameters of different datasets. N denotes the total number of data points, Nj de-
notes the number of data points in the cluster j. Here μ j,b j and π j are the real parameters and μ̂ j, b̂ j and π̂ j are the
parameters estimated by our proposed model.

Data set Nj j μ j b j π j μ̂ j b̂ j π̂ j

D1 200 1 10 0.7071 0.5 10.04 0.7216 0.5094
(N = 400) 200 2 20 2.1213 0.5 19.92 2.1327 0.4906

D2 150 1 7 0.7071 0.33 6.988 0.7324 0.3373
(N = 450) 150 2 20 2.1213 0.33 19.965 2.22 0.3340

150 3 13 1.4142 0.33 13.015 1.36 0.3286

150 1 5 0.7071 0.25 4.9802 0.715 0.2431
D3 150 2 10 2.1213 0.25 9.8625 2.0658 0.2477

(N = 600) 150 3 15 1.4142 0.25 14.8156 1.4623 0.2516
150 4 20 1.7678 0.25 20.0641 1.695 0.2576

150 1 5 0.7071 0.20 4.9927 0.7233 0.2112
D4 150 2 8 2.1213 0.20 8.0509 2.1516 0.2159

(N = 750) 150 3 11 1.4142 0.20 11.004 1.3877 0.2043
150 4 15 1.7678 0.20 15.0124 1.7096 0.1679
150 5 19 1.0607 0.20 19.025 0.966 0.2007

Table 3.2: Real and estimated parameters of different datasets. N denotes the total number of data points, Nj
denotes the number of data points in the cluster j. Here μ j1,μ j2,b j1,b j2 and π j are the real parameters and
μ̂ j1, μ̂ j2, b̂ j1, b̂ j2 and π̂ j are the parameters estimated by our proposed model.

Data set Nj j μ j1 μ j2 b j1 b j2 π j μ̂ j1 μ̂ j2 b̂ j1 b̂ j2 π̂ j

D1 200 1 2 1 1.4142 1.1314 0.50 2.04 1.05 1.3570 1.1079 0.4992
(N = 400) 200 2 -2 -3 0.7071 0.7071 0.50 -1.98 -2.95 0.7277 0.7105 0.5008

D2 200 1 2 1 1.4142 1.1314 0.33 1.9995 1.0157 1.3543 1.0855 0.3304
(N = 600) 200 2 -2 -3 1.0607 0.7071 0.33 -1.917 -3.048 0.9629 0.7212 0.3230

200 3 -4 -4 1.0607 0.7071 0.33 -4.0454 -4.0595 0.9148 0.7109 0.3466

200 1 2 1 1.4142 1.1314 0.25 1.9756 1.0281 1.3216 1.0163 0.2431
D3 200 2 -2 -3 1.0607 0.7071 0.25 -2.0518 -3.0490 0.9151 0.7012 0.2406

(N = 800) 200 3 -4 -4 1.0607 0.7071 0.25 -4.0803 -3.9656 0.9213 0.7280 0.2592
200 4 4 -3 0.7071 0.7071 0.25 3.9339 -2.9354 0.7220 0.7197 0.2570

200 1 2 1 1.4142 1.1314 0.20 1.9790 1.0140 1.2655 1.1215 0.1942
D4 200 2 -2 -3 1.0607 0.7071 0.20 -1.9671 -2.9136 0.9411 0.7349 0.2190

(N = 1000) 200 3 -4 4 1.0607 0.7071 0.20 -3.9218 3.9118 0.9652 0.7299 0.1975
200 4 4 -3 0.7071 0.7071 0.20 3.9829 -3.0609 0.7185 0.6803 0.2025
200 5 3 -1.5 0.7071 0.7071 0.20 3.0590 -1.5165 0.7279 0.6719 0.1868
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Figure 3.4: Examples demonstrating real and estimated components of mixtures of Bounded Laplace distributions via
two dimensional artificial histograms
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Figure 3.5: Examples demonstrating real and estimated components of mixtures of Bounded Laplace distributions via
two dimensional artificial histograms (continued)
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3.4 Proof of concept through experiments on medical data clus-

tering

Clustering of medical data tends to be a promising application as it helps in medical diagnosis. We

use our model on some real medical datasets. First, we list out the different datasets we evaluate

our model upon and then we discuss the performance of our model.

The Cryotherapy dataset comprises data collected form a dermatology clinic in Mashhad

with data from patients reporting for warts. The dataset has 7 features and 90 instances. The

objective is to identify if the treatment was effective or not. Statlog (Heart) is a dataset which

contains sample data from 270 patients. The dataset has 13 attributes and the purpose here is to

predict if the patient has a heart disease or not. The Parkinsons dataset consists of data obtained

from the speech signals of 31 people among which 23 suffer from Parkinson’s disease. The dataset

has 195 instances with 23 features. The aim is to differentiate between the voices of patients

with Parkinson’s disease and the ones who are healthy. Haberman’s survival dataset contains data

recorded for 306 patients who have undergone surgery for breast cancer. It has 3 attributes and the

goal is to cluster between patients who survived for more than 5 years and less than 5 years. The

breast cancer Coimbra dataset includes 116 data samples comprising 64 samples from patients

with breast cancer and 52 samples from healthy people. Our objective is to distinguish Cancer

patients from the healthy people. This dataset has 10 attributes and is one of the latest datasets

in the field. The Immunotherapy dataset is part of the data collected from the dermatology clinic

in Mashhad as well, except that the treatment method followed here is immunotherapy and the

number of attributes here is 8. Like the Cryotherapy dataset the intent is to identify if the treatment

was effective or not. Mammographic mass dataset consists of 961 instances and 6 attributes and

is used to predict the severity of the breast cancer in the patient. The two classes are benign and

malignant. Hence our model must cluster the data points between these two classes. The Blood

transfusion service center dataset contains data collected from 748 people from the transfusion

center in Hsin-Chu city in Taiwan. The data has 5 attributes with the target being identification

of whether the person donated blood or not. The Fertility dataset comprises data samples taken

from 100 volunteers. The dataset has 10 attributes which are mostly external features like, fevers,

trauma, smoking, etc rather than medical analysis and the intention is to identify if the person

is fertile. SPECTF heart dataset contains data obtained from Single Proton Emission Computed

Tomography (SPECT) images from 267 samples. The data has 44 dimensions and our aim is to

cluster between the normal and abnormal classes [122–130].

We compare the results we obtained with our model, with Laplace Mixture Models (LMM)

and K-means which is a robust clustering model. Table 3 shows the comparison between the
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Table 3.3: Clustering Accuracy for different Medical Datasets

Data set Dimension Samples Classes Accuracy (%)
BLMM LMM K-Means

Cryotherapy 7 90 2 90:00 86.67 78.89
Statlog (Heart) 13 270 2 79.63 76.30 61.85

Parkinsons 23 195 2 74.36 73.33 69.23
Haberman 3 306 2 74.83 61.76 50:00

Breast Cancer 10 116 2 60.34 53.45 50.86
Immunotherapy 8 90 2 72.22 65.56 53.33
Mammographic 6 961 2 76.99 74.10 68.55

Transfusion 5 748 2 73.93 66.98 61.10
Fertility 10 100 2 62:00 60:00 57:00

SPECTF Heart 44 267 2 68.54 67.79 62.55

models. Our model outperformed the other models by a very good margin in most of the datasets.

For example, in Haberman dataset, the increase in accuracy when compared to LMM and K-means

is around 13 and 24 percent respectively; Similarly, in the breast cancer dataset, the increase is

around 7 and 10 percent respectively. The overall accuracy with our model is higher with all the

datasets when compared to LMM and K-means.

3.5 Application of BLMM in Image Clustering and CBIR

3.5.1 Proposed Framework for Image Clustering and CBIR

Image clustering is the process of categorizing images into one of the predefined groups which

is further applied in many important applications [169]. Texture features in images provide very

interesting information which plays an important role in image categorization in many computer

vision and image processing applications [170]. Several applications of texture categorization

include material classification, object recognition, scene classification analyzing biomedical im-

ages for computer aided diagnostics [170–172]. In order to validate the performance of proposed

BLMM, it is applied to feature extraction for texture images in wavelet domain, texture image clus-

tering and CBIR in texture images databases. The performance of BLMM is compared with LMM

in all the these scenarios of texture images. In the following subsections, the proposed feature

extraction for texture images in wavelet domain, image categorization and CBIR is explained. The

proposed model and application framework are validated through a set of experiments in each sce-

nario. For CBIR, City-block distance, posterior probability and Kullback-Leibler Divergence are

applied and closed form solution for Kullback-Leibler Divergence is proposed for CBIR. In order
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to demonstrate the contribution of BLMM for this application, complete framework is presented

in Fig. (3.6).

3.5.2 Discrete Wavelet Transform

We present the properties of the discrete wavelet transform which are appropriate to image pro-

cessing, so we will talk about two-dimensional (2-D) discrete wavelet transform. The 2-D wavelet

transform is an extension of 1-D wavelet transform using separable wavelet filters. In 1-D wavelet

transform, a signal is passed through a lowpass and highpass filters, respectively, and then down

sampled by a factor of two. The same process is repeated for each level of decomposition through

wavelet transform and multiple levels also called scales are achieved by duplicating the filtering

and decimation on the lowpass branch of the output only. This process is performed only for fi-

nite number of levels and the resulting coefficients are termed as wavelet coefficients. The 2-D

transform is computed by applying the above described 1-D transform on all rows of the input

and then redoing it on all the columns. After applying 2-D transform, an image is decomposed

into four sub-bands representing the scale-down low resolution approximation of the image and

horizontal, vertical and diagonal information. More details on discrete wavelet transform can be

found in [173]. The wavelet transform has an important property of energy compaction of input

into relatively small number of wavelet coefficients [173, 174]. After wavelet domain representa-

tion of images, much of the energy is concentrated into scale-down low resolution approximation

of the original image. In addition, the energy in high frequency bands is also concentrated into a

relatively small number of coefficients [173, 174] and it can be observed by the histogram repre-

sentation of high frequency sub-bands in Fig. (3.7). From the studies and Fig. (3.7), it has been

observed that distributions of wavelet coefficients in high frequency sub-bands have a Laplacian-

like density [159, 173, 174]. In Fig. (3.7), histogram is shown for diagonal, horizontal and vertical

subspaces of wavelet domain and HH means that highpass filter is applied horizontally and verti-

cally, whereas HL means that highpass filter is applied horizontally and lowpass filter is applied

vertically. Due to this peaky nature of distribution of wavelet coefficients, GMM and LMM have

been proposed for modeling the data in wavelet domain [159, 162, 163]. We propose the applica-

tion of BLMM in the same fashion for modeling the wavelet coefficients as described in literature

for GMM and LMM.

3.5.3 Feature Extraction via BLMM from Wavelet subspaces

In the proposed feature extraction, we focus on multi-resolution representation of image feature in

wavelet domain. Each image from a database is decomposed via 2-D discrete wavelet transform in
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Figure 3.6: Framework for Feature Extraction, Image Clustering & Content Based Image Retrieval via BLMM

four wavelet subspaces at each level of decomposition. The wavelet coefficients in these subspaces,

represent the image texture information and it is very important to apply an appropriate statistical

model to represent this information in the feature extraction step. We apply BLMM for modeling

the wavelet coefficients in high frequency sub-bands by using two components mixture model

centered at 0. The parameters of BLMM obtained after modeling the wavelet coefficient are used

as features for each image. The dimension of these feature vectors is very low, which make image

clustering and retrieval less time consuming and it further enhances the user experience in the

system where clustering and image retrieval is being used. If we assume that each wavelet subspace

has N coefficients, and each coefficient is represented by W , then model with two components can

represented as:

p(W |Θ) =
N

∏
i=1

[p(Wi|0,bs)ps + p(Wi|0,bl)pl] (3.21)

where ps & pl are mixing coefficients that sum to one and p(Wi|0,bs) & p(Wi|0,bl) is BLD

defined by Eq. (3.5) with zero mean and scale parameters (bs & bl). In the modeling of wavelet

coefficients, Θ is complete set of parameters to characterize each wavelet subspace defined as:

Θ = (bs,bl, ps, pl). Since distributions are centered at 0, the shape of bounded Laplace distribution

is determined by scale parameter b. The parameter estimation is performed in the same fashion as

described in Section (3.2) and EM algorithm is applied to estimate the parameters. In the E-Step,

posterior probability for each component is computed with respect to each wavelet coefficient in

each subspace. The posterior probability is computed as follows:

P(s|Wi) =
p(Wi|0,bs)ps

p(Wi|0,bs)ps + p(Wi|0,bl)pl
(3.22)

P(l|Wi) =
p(Wi|0,bl)pl

p(Wi|0,bs)ps + p(Wi|0,bl)pl
(3.23)
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The mixing parameters (ps & pl) and scale parameters (bs & bl) are computed in the M-Step along

with Newton-Raphson method as follows:

p̂s =
1
N

N

∑
i=1

P(s|Wi) & p̂l =
1
N

N

∑
i=1

P(l|Wi) (3.24)

b̂s 	 bs −
[(

∂ 2 log[p(W ,Z |Θ)]

∂b2s

)−1(∂ log[p(W ,Z |Θ)]

∂bs

)]
(3.25)

b̂l 	 bl −
[(

∂ 2 log[p(W ,Z |Θ)]

∂b2
l

)−1(∂ log[p(W ,Z |Θ)]

∂bl

)]
(3.26)

where derivative are computed following the Eqs. (3.18 & 3.19) with assumption that mean 0.

In the next stage, model parameters of all wavelet subspaces are integrated to construct feature

space for each image. All the images in the dataset are decomposed via 2-D discrete wavelet

transform. The parameters for each detailed sub-band (horizontal, vertical and diagonal) at each

wavelet scale are computed using BLMM via EM algorithm. Therefore, we will have four parame-

ters represented by [ps, pl,bs,bl], for every wavelet subspace. A scaling subspace is also generated

at coarsest scale using 2-D wavelet transform, besides wavelet subspaces. The scaling subspace

is a low-frequency approximation of the original image and mean value of its coefficients is also

taken as a feature. Thus, the integrated feature space via BLMM for each image is expressed as

follows:

F = [F1H ,F1V ,F1D,S1, ...,FjH ,FjV ,FjD,S j] (3.27)

where F is the feature set [ps, pl,bs,bl] of wavelet subspaces and S is the mean value of the coeffi-

cients in the scaling subspace. The subscripts H,V, & D express horizontal, vertical and diagonal

directions, respectively, at each scale and subscript j represents the number of decomposition

scales in the image. The features vectors are composed of different dynamic ranges because they

express different physical quantities. In the similarity calculation, the features with higher value

will overshadow the features with lower values and therefore, features are normalized according

to the procedure defined in [159, 175]. After the normalization each component of the feature vec-

tor will be emphasized equally. For the normalization, it is assumed that features are generated by

Gaussian distribution and we compute the mean μ and standard deviation σ for each feature vector

F . Each feature vector is normalized as follows:

Fi =
Fi −μ

σ
(3.28)
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Figure 3.7: Wavelet coefficient at 2nd level of decomposition

Most of the values in the feature vectors will be mapped in the range [−1,1]. Normalization is

important to avoid biasing due to a few abnormal values occurring in the feature vectors [159, 175].

3.5.4 Image Clustering

The objective of image clustering is to assign a particular class to the unlabeled images, which can

eventually categorize the images of a database into different classes and it can be extended to effi-

cient CBIR [160, 161]. Texture image clustering is chosen to examine the performance of BLMM

in data clustering. In the proposed framework for image clustering, texture images are transformed

into feature space through wavelet domain modeling of images via BLMM before going further to

actual image clustering task which is also achieved by BLMM. In this setting of image clustering

framework, it is possible to examine the performance of BLMM for feature extraction and image

clustering as described in Fig (3.6). The feature extraction process transforms each image into a

D-dimensional feature vector, which can be applied to the image clustering stage to be modeled

through BLMM described in Section (3.2). If we assume that a texture images dataset is composed

of N images, where each is represented by a D-dimensional vector in the feature space, then image

clustering task will require to estimate the parameters of multivariate BLMM with EM algorithm

using the Eqs. (2.12,3.12 & 3.20) and estimating the cluster assignment from posterior probability

via Eq. (3.8). The complete approach of image clustering via BLMM is described in Algorithm 3.

In our application to demonstrate the effectiveness of proposed algorithm, texture image clustering
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and CBIR are connected to each other, where CBIR adopts the trained model from clustering stage

to perform retrieval which is described in the following subsection.

3.5.5 Content Based Image Retrieval

During the image clustering stage, BLMM categorizes the images into different groups called

clusters and this trained model can be further used to perform image retrieval. This task relies

on the trained model that characterizes and learn the primitive features of images used in the

training process. These features are composed of information about shape, color and texture. In

a broad manner, these features can be composed of visual and textual descriptors. Texture is a

powerful and an important visual characteristic which is very difficult to define and even harder to

model [159]. In order to perform CBIR, texture images databases are selected for demonstration of

BLMM in data modeling. The images are categorized by applying clustering strategy as described

in Subsection (3.5.4). For CBIR, a mean of the feature vectors of each cluster is computed and a

similarity measure is computed with respect to feature vector of query image and mean of feature

vectors of each cluster. Different similarity measures are presented below which perform the image

retrieval via learned model based on BLMM.

3.5.5.1 Texture Image Retrieval via City-block distance

The City-block distance which is also termed as Manhattan distance can be used for computing the

similarity measure in CBIR and it is computed as follows:

d(�v1,�v2) =
D

∑
d=1

|v1d − v2d| (3.29)

where �v1 & �v2 are mean of the features in each cluster and feature vector for the query image,

respectively where D represents the dimension of each feature vector. The city block distance has

very low computational complexity and it is robust to outliers which make it very good choice to

be used in many applications [176].

3.5.5.2 Texture Image Retrieval via Posterior Probability

In Bayesian approach to categorize data into different groups and classes, the objective is to find

the most probable set of group or class descriptions using the data and prior information [177].

Another method for image retrieval is to apply Bayesian classification and clustering criteria. The

idea of Bayesian classification is to assign the most likely class to the given feature vector based

on posterior probability [178]. Bayesian classification plays an important role in many practical
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Figure 3.8: Different Texture Images from UIUC dataset

applications such as text classification, medical analysis, etc. With the parameters estimated in the

clustering process, given an input feature vector we should be able to find the posterior probability

with respect to each of the clusters. We can then retrieve the images from the cluster with the

closest posterior probability. If we have a test image, that has a feature vector I extracted via

BLMM in wavelet domain, then posterior probability can be computed for the feature vector of

this image using the parameters learned via BLMM as follows:

p( j|I ) ∝ p(I |ξ j)p j (3.30)

where ξ j and p j are the learned parameters of mixture model.

Table 3.4: Performance Metrics for UIUC dataset in feature extraction and clustering

Feature Extraction
BLMM LMM

Performance Clustering Models Clustering Models
Metrics (%) BLMM LMM BLMM LMM
Accuracy 74.25 71.25 72.50 67.50
Sensitivity 74.25 71.25 72.50 67.50
Specificity 97.14 96.81 96.94 96.39
Precision 75.30 72.28 73.76 68.67

FPR 02.86 03.19 03.06 03.61
F1-Score 74.33 71.32 72.60 67.64

MCC 71.75 68.41 69.88 64.31
G-Mean 1 74.77 71.76 73.13 68.08
G-Mean 2 84.93 83.05 83.84 80.66

3.5.5.3 Texture Image Retrieval via Kullback-Leibler Divergence

The City-block distance uses the Minkowski distance to compare two feature vectors. The distance

function using Minkowski distance is not very effective because some feature values can be very

large as compared to the rest of features in the vector and these features can jeopardize the entire

distance score. The Kullback-Leibler (KL) divergence provides an effective way to compute the

similarity between two distributions. If we assume that wavelet coefficients of two images in a
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Figure 3.9: Confusion matrix of UIUC dataset with BLMM for feature extraction and clustering

Figure 3.10: Different Texture Images from KTH-TIPS dataset

wavelet subspace are represented by two PDFs p(x) and q(x). The KL divergence for these two

PDFs can be computed as follows [163, 164]:

d(p(x),q(x)) =
∫

p(x) ln
p(x)
q(x)

dx (3.31)

For the similarity measurement between an image and query, KL divergence is required to be

computed between Laplace mixture distributions for each decomposed wavelet subspace and them
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Table 3.5: Performance Metrics for KTH-TIPS dataset in feature extraction and clustering

Feature Extraction
BLMM LMM

Performance Clustering Models Clustering Models
Metrics (%) BLMM LMM BLMM LMM
Accuracy 75.83 72.67 73.50 69.17
Sensitivity 75.83 72.67 73.50 69.17
Specificity 97.31 96.96 97.06 96.57
Precision 76.63 73.46 74.45 69.50

FPR 02.69 03.04 02.94 03.43
F1-Score 75.87 72.78 73.59 69.18

MCC 73.41 69.92 70.89 65.85
G-Mean 1 76.23 73.06 73.98 69.33
G-Mean 2 85.91 83.94 84.46 81.73

Confusion Matrix

78.3%

5.0%

8.3%

1.7%

3.3%

6.7%

5.0%

1.7%

5.0%

1.7%

1.7%

81.7%

1.7%

8.3%

5.0%

8.3%

5.0%

3.3%

1.7%

1.7%

5.0%

1.7%

71.7%

0.0%

3.3%

0.0%

3.3%

3.3%

1.7%

1.7%

8.3%

3.3%

0.0%

70.0%

5.0%

0.0%

0.0%

0.0%

5.0%

0.0%

0.0%

1.7%

0.0%

3.3%

78.3%

1.7%

6.7%

3.3%

0.0%

6.7%

0.0%

0.0%

0.0%

6.7%

0.0%

68.3%

0.0%

0.0%

5.0%

0.0%

3.3%

0.0%

0.0%

0.0%

0.0%

1.7%

70.0%

3.3%

0.0%

0.0%

0.0%

1.7%

3.3%

5.0%

5.0%

3.3%

1.7%

85.0%

0.0%

3.3%

1.7%

3.3%

6.7%

0.0%

0.0%

6.7%

5.0%

0.0%

76.7%

6.7%

1.7%

1.7%

8.3%

5.0%

0.0%

3.3%

3.3%

0.0%

5.0%

78.3%

Foil Bread CorduroyCotton Cracker Linen Orange Sand Sponge foam
Output Class

Foil

Bread

Corduroy

Cotton

Cracker

Linen

Orange

Sand

Sponge

foam

Ta
rg

et
 C

la
ss

Figure 3.11: Confusion matrix of KTH-TIPS dataset with BLMM for feature extraction and clustering
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Figure 3.12: Different Texture Images from DTD dataset

Table 3.6: Performance Metrics for DTD dataset in feature extraction and clustering

Feature Extraction
BLMM LMM

Performance Clustering Models Clustering Models
Metrics (%) BLMM LMM BLMM LMM
Accuracy 76.37 73.12 73.87 70.63
Sensitivity 76.38 73.12 73.87 70.63
Specificity 97.38 97.01 97.10 96.74
Precision 76.60 73.49 74.15 71.26

FPR 02.63 02.99 02.90 03.26
F1-Score 76.35 73.18 73.91 70.71

MCC 73.81 70.27 71.07 67.59
G-Mean 1 76.49 73.31 74.01 70.94
G-Mean 2 86.24 84.23 84.69 82.66

Table 3.7: Performance Metrics for Stex dataset in feature extraction and clustering

Feature Extraction
BLMM LMM

Performance Clustering Models Clustering Models
Metrics (%) BLMM LMM BLMM LMM
Accuracy 75.25 71.75 73.50 68.75
Sensitivity 75.25 71.75 73.50 68.75
Specificity 97.25 96.86 97.06 96.53
Precision 75.53 72.09 74.01 69.07

FPR 02.75 03.14 02.94 03.47
F1-Score 75.24 71.68 73.42 68.61

MCC 72.58 68.69 70.69 65.33
G-Mean 1 75.39 71.92 73.75 68.91
G-Mean 2 85.55 83.37 84.46 81.46

up to get overall distance for the image [163, 164]. From Eqs. (3.7 & 3.31), we can get KL

divergence for single wavelet subspace for Laplace mixture model as follows:

d(p1(W ), p2(W )) =
∫
(p(W |0,bs1)ps1 + p(W |0,bl1)pl1) ln

(p(W |0,bs1)ps1 + p(W |0,bl1)pl1)

(p(W |0,bs2)ps2 + p(W |0,bl2)pl2)
dW

(3.32)
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Figure 3.13: Confusion matrix of DTD dataset with BLMM for feature extraction and clustering

Figure 3.14: Different Texture Images from Stex dataset

where p1(W ) is the Laplace mixture distribution of reference image and p2(W ) is the Laplace

mixture distribution of query image. However there is no closed form solution for KL divergence

given in Eq. (3.32) and the only possibility is its numerical computation. The computational

complexity is so high that it is not considered to be feasible for CBIR. The alternative to avoid this

computational complexity is to divide the Laplace mixture distribution into two separate Laplace

distributions and it is observed that a closed form solution can be easily computed for each separate

Laplace distribution. Based on the above discussion, a new KL divergence based similarity for
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Figure 3.15: Confusion matrix of STex dataset with BLMM for feature extraction and clustering

Figure 3.16: Different Texture Images from Kylberg dataset

Laplace mixture model is presented as follows:

d(p1(W ), p2(W )) = Fs(W )+Fl(W ) (3.33)

Fs(W ) =
∫

p(W |0,bs1)ps1 ln
p(W |0,bs1)ps1

p(W |0,bs2)ps2
(3.34)

Fl(W ) =
∫

p(W |0,bl1)pl1 ln
p(W |0,bl1)pl1

p(W |0,bl2)pl2
(3.35)
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Table 3.8: Performance Metrics for Kylberg dataset in feature extraction and clustering

Feature Extraction
BLMM LMM

Performance Clustering Models Clustering Models
Metrics (%) BLMM LMM BLMM LMM
Accuracy 76.75 72.50 74.37 70.38
Sensitivity 76.75 72.50 74.37 70.37
Specificity 97.42 96.94 97.15 96.71
Precision 77.16 73.16 74.95 71.07

FPR 02.58 03.06 02.85 03.29
F1-Score 76.81 72.55 74.41 70.48

MCC 74.32 69.67 71.72 67.34
G-Mean 1 76.96 72.83 74.66 70.72
G-Mean 2 86.47 83.84 85.00 82.50

After the integral calculations, the two separate KL divergences Fs(W ) and Fl(W ) have simplified

closed form as follows:

Fs(W ) = ps1 ln
ps1bs2

ps2bs1
+ ps1(

bs1

bs2
−1) (3.36)

Fl(W ) = pl1 ln
pl1bl2

pl2bl1
+ pl1(

bl1

bl2
−1) (3.37)

It is observed from the closed form solutions that this new KL divergence based similarity measure

can be efficiently computed using LMM parameters [163, 164]. For computation of the closed

form, Laplace distributions are used in Eqs. (3.34 & 3.35), but once the closed form is achieved

which represents only parameters of mixture model as presented in Eqs. (3.36 & 3.37), we use

the parameters obtained by BLMM which has been proven very effective in parameter estimation

as described in Section 3.3 & 3.4. It is worth mentioning that since the solution requires only

estimated parameters of mixture model in wavelet domain to compute the KL divergence, we use

the mean of feature vector for each reference class instead of reference image and KL divergence

is computed between mean of feature vectors of each class and query image. The computation

complexity of our solution is retained at the same level as other conventional similarity measures

using Minkowski [163, 164].
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Figure 3.17: Confusion matrix of Kylberg dataset with BLMM for feature extraction and clustering

3.5.6 Experiments and Results

3.5.6.1 Design of Experiments

In this application, BLMM is applied to feature extraction, texture image categorization in unsu-

pervised manner and CBIR and demonstration of effectiveness of this model requires set of experi-

ments for each stage. We have conducted several set of experiments to validate the performance of

BLMM with UIUC, KTH-TIPS, DTD, STex and Kylberg databases [179–183]. Selected parts of

these datasets are used in this application and experimental framework is designed in a manner that

highlight the performance of proposed model at each stage of this application very effectively. The

first stage is feature extraction, where image in wavelet domain is modeled through BLMM to rep-

resent the images in feature space as described in Subsection (3.5.3). In the experiments presented

in this work, Haar wavelet filter is used for decomposition of images. In order to model the wavelet

coefficients with BLMM, 3-level decomposition is adopted for feature extraction. In the feature

representation phase, 2-components mixture model with zero mean is applied and complete model

96



description and learning is given in Section (3.2). During the modeling, wavelet coefficients are

represented as uni-variate data for model learning. Once the data are represented in feature space,

feature normalization is applied as Eq. (3.28), which helps to avoid biasing from abnormal values

in data. After feature space representation of texture images, data are modeled with BLMM for

image categorization in an unsupervised manner and learning is followed from Section (3.2) for

multivariate data. The data are used without labels and clustering provides label to each feature

vector by assigning it to a particular class and this clustering information achieved in this stage also

serves as index to CBIR. The mean of feature vectors in each cluster is computed and used to find

the similarity between query image and each cluster of the data, in the image retrieval phase. The

effectiveness of propose approach is validated through different performance measures which are

mentioned in [106–109] and whole experimental framework is also modeled with LMM to have

a comparison between BLMM and LMM. In the proposed framework, image clustering task also

validates the feature extraction and all the datasets are considered in these experiments. For image

retrieval, KTH-TIPS, DTD, STex and Kylberg databases are adopted for experimental framework.

UIUC dataset is only used in image clustering experiments and it is not adopted for image retrieval

due to limited number of images per class.

3.5.6.2 Experimental Framework for Image Clustering and Results: UIUC Dataset

UIUC dataset is adopted as a starting point in our experiments for BLMM. In UIUC dataset, there

are 25 categories of texture images and it has 40 images in each class. In this experiment for texture

image clustering, data from 10 different categories from this dataset are selected which make 400

images available for the task. The first step in this application is feature extraction, where 3-level

decomposition of texture images is used to transform the images into wavelet domain which is

further transformed into feature space by applying two-component BLMM. It is noteworthy that

training of wavelet coefficients with BLMM is performed by considering data as uni-variate. Once

the texture images are transformed into feature space, next step is to apply BLMM for categorizing

the data into different clusters. In order to perform clustering, feature vectors of texture images

are trained with 10-component BLMM. In order the validate the performance of this experiment

and effectiveness of BLMM, it is very important to have a comparison with an existing model in

a similar setting and same experiments are also performed with LMM. Since proposed model is

applied at feature extraction phase and image clustering phase in the same task and it is also com-

pared with LMM, it will create four scenarios for comparison at both stages. Sample images from

UIUC dataset are provided in Fig. (3.8) and results of this experiment are given in Table (3.4). For

the evaluation, different performance measures are adopted and results are presented to separately

compare the BLMM at feature extraction level and in image clustering with LMM. The first column
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in Table (3.4) provide the performance metrics considered in this experimental framework. Second

and third column provide the clustering results with features extracted via BLMM and fourth and

fifth columns provide the clustering results with features extracted via LMM. For a comparison of

proposed feature extraction via BLMM with LMM, column 5 provides the results with feature ex-

traction via LMM and column 3 provides the results for feature extraction via BLMM. Clustering

in both experiments is performed by LMM, which gives us a chance to examine the effectiveness

of feature extraction with BLMM and compare it with LMM. It is observed that image clustering

is significantly improved when features are extracted with BLMM as compared to LMM. A similar

comparison for feature extraction is also possible with the results of columns 2 and 4 where feature

extraction is performed with BLMM and LMM, respectively and image clustering is performed by

BLMM in both experiments. The results in column 2 and 4 also indicates the effectiveness of

BLMM in feature extraction to represent the texture images in wavelet domain and modeled with

BLMM. For the comparison of proposed model in texture images clustering, results provided in

column 4 and 5 are considered where features are extracted with LMM in both cases and clustering

is done by BLMM and LMM, respectively. The comparison of results indicates the effectiveness

of BLMM in modeling the texture images to perform clustering. A similar comparison is evident

from the results of columns 2 and 3 where clustering is performed by BLMM and LMM, respec-

tively and feature extraction is done by BLMM in both cases. This comparison also highlights

the effectiveness of BLMM in texture image clustering. The confusion matrix for the results of

column 2 is provided in Fig. (3.9), where both stages are (feature extraction and image clustering)

performed by BLMM which indicates the best performance of this experiment on UIUC dataset.

3.5.6.3 Experimental Framework for Image Clustering and Results: KTH-TIPS Dataset

Our next experiment on image clustering is performed on KTH-TIPS dataset which serves the

purpose to examine the performance at feature extraction level and in image clustering. KTH-

TIPS dataset consists of images of 10 different categories, where each category has 81 images.

This dataset is part of both image clustering and retrieval experiments, that’s why it is divided into

two parts for making it possible to be used in both experiments. In this experiment, 60 images

are selected from each category which make 600 images available for image clustering task. The

experimental framework is prepared in a similar manner for feature extraction and image clustering

as described in Section (3.5.6.2) for UIUC dataset. The features are extracted by modeling the

wavelet coefficients with two-component mixture model whereas image clustering is performed by

10-component mixture model. The sample images from KTH-TIPS dataset are given in Fig. (3.10)

and experimental results are provided in Table (3.5). The evaluation of experiments for KTH-TIPS

dataset is done by performance metrics provided in the first column of Table (3.5). The results of
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this experimental framework are provided in columns 2, 3, 4 and 5 which provide the comparison of

at both stages of images clustering framework in a similar manner as described in Section (3.5.6.2).

From the set of experiments with KTH-TIPS dataset and evaluation of results, it is observed that

BLMM has performed significantly well in feature extraction phase and image clustering. The

performance is achieved when both stages (feature extraction and image clustering) are modeled

through BLMM as compared to LMM and confusion matrix to demonstrate this performance is

given in Fig. (3.11).

3.5.6.4 Experimental Framework for CBIR and Results: KTH-TIPS Dataset

In the experiments for image retrieval, clustering framework developed in the previous experi-

ments is adopted to perform image retrieval. In this experimental framework, image retrieval is

performed on KTH-TIPS dataset and it is an extension of image clustering framework presented

in Section (3.5.6.3). In the clustering framework, 60 images were selected for training the model

and 20 images were chosen for testing on image retrieval. The query images from testing data are

processed through feature extraction in wavelet domain via BLMM and normalized. During the

clustering phase, we get cluster assignment for all the images used in the training process and we

compute mean of feature vectors for each cluster to be used for image retrieval. In the next step,

a similarity measure is computed for each query image with respect to mean of feature vectors of

each cluster. In the image retrieval framework, we have proposed City-block distance, posterior

probability and KL-Divergence for computing the similarity index for query images with respect

to each cluster formed in the image clustering phase. Similarity measures are computed as de-

scribed in the Section (3.5.5) with Eqs. (3.29, 3.30, 3.33). For image retrieval using KTH-TIPS

dataset, 200 images are used as query images from the test data. In the image retrieval experi-

ments, feature extraction is performed by BLMM and models are trained with BLMM and LMM

for comparison which will lead to two comparison scenarios for each similarity measure. Image

retrieval results for KTH-TIPS dataset with respect to all similarity measures are given in Table

(3.9). The first column in the table, represents the performance metrics used for the evaluation of

this set of experiments. In the columns 2 and 3, image retrieval results for city block distance are

presented which is modeled with BLMM and LMM during the training phase. From the compar-

ison of these results, it is evident that model trained with BLMM has better retrieval capability as

compared with LMM. In column 4 and 5, retrieval results computed with posterior probability are

presented where training was done via BLMM and LMM and a comparisons shows that BLMM

has better modeling capabilities which improves the image retrieval results. A similar conclusion

is achieved by examining the results for KL-Divergence presented in column 6 and 7 which show

the effectiveness of BLMM in image retrieval. The best score is achieved when model is trained
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with BLMM and similarity measure is computed with KL-Divergence as presented in column 6 in

the Table (3.9) and confusion matrix for this result is presented in Fig. (3.18) which also explains

the classification performance for each class. A comparison for different similarity measures is

also possible from these set of experiments and it is also observed that posterior probability has

show better retrieval capability as compared to City-block distance and KL-divergence has shown

the best performance in all the three similarity measures.

3.5.6.5 Experimental Framework for Image Clustering and Results: DTD Dataset

Our third experiment on texture image clustering is performed on DTD datset, which comprises

of texture images from 47 different categories and 120 images in each category of dataset. The

experiments are conducted to examine the performance of BLMM for feature extraction and im-

age clustering similar to experiments conducted in Section (3.5.6.2). DTD dataset is used for both

image clustering and retrieval framework and it is divided into two parts to be used for both experi-

mental frameworks. For image clustering framework, 10 categories of texture images are selected,

where 80 images from each category are chosen which make it possible to have 800 images for

experiments on image clustering which in turn also validate the feature extraction phase. In the

feature extraction phase 2-component mixture model is employed whereas in the clustering phase

10-component mixture model is used. Sample images from DTD dataset are provided in Fig.

(3.12). Experimental results for the experiments conducted to demonstrate the feature extraction

and image clustering with BLMM are provided in Table (3.6). In the first column, performance

metrics used in this experimental framework are given and rest of the columns provide the exper-

imental results with DTD dataset to demonstrate the effectiveness of BLMM at feature extraction

and image clustering phase. From Table (3.6), a comparison for feature extraction and image clus-

tering is possible in a similar manner as provided in Section (3.5.6.2) and from evaluation of results

and by observing the whole experimental framework, it is evident that BLMM has performed bet-

ter than LMM at both stages of this application and best performance is observed in the results

given in column 2 of the Table (3.6), where both stages are modeled via BLMM. The results of

experiment with both stages performed via BLMM are provided in Fig. (3.13) which demonstrates

the effectiveness of BLMM in this task as compared to LMM.

3.5.6.6 Experimental Framework for CBIR and Results: DTD Dataset

The second experiment on CBIR is performed using DTD dataset and this experimental frame-

work is an extension of image clustering task presented in Section (3.5.6.5), where 80 images from

each class of texture images are used in the training process and 40 images are reserved for image

retrieval experiments. For experiments in this framework, 400 images from 10 categories are used.

100



Experimental framework for the retrieval task with DTD dataset is prepared in a similar manner as

discussed in Section (3.5.6.4), where feature extraction phase is modeled with BLMM and training

process is accomplished by BLMM and compared with LMM. Image retrieval is performed by

considering the test images as query images and computing the similarity measure between query

image and mean of each cluster. For the similarity measure, City block distance, posterior proba-

bility and KL-Divergence are considered as explained in Section (3.5.5). Experimental results for

image retrieval using all the similarity measures and models trained with BLMM and LMM are

presented in Table (3.10). In the first column, all the performance measures are presented and in

column 2 and 3, retrieval results for city block distance are presented where training process is per-

formed by BLMM and compared with LMM. In column 4 and 5, results for posterior probability

and in column 6 and 7, image retrieval results with KL-divergence are presented. From the set of

experiments, it is observed that BLMM has better modeling capabilities and better performance in

image retrieval as compared to LMM for all experiments with different similarity measures. It is

also concluded that KL-Divergence has show better performance in the image retrieval task. Best

performance in the image retrieval experiment with DTD dataset is achieved when model is trained

with BLMM and similarity measure is computed with KL-Divergence as presented in column 6 of

Table (3.10). The confusion matrix for the best performance is presented in Fig. (3.19), which also

present the classification accuracy for each class.

3.5.6.7 Experimental Framework for Image Clustering and Results: STex Dataset

STex texture image dataset is chosen to perform experiments for our fourth experimental frame-

work on image clustering. From STex dataset, images from 10 categories are selected where 14

images are chosen for our experiments. In this dataset, each image is composed of 1024 × 1024

pixels and we have divided these high quality images into sub-images to make it possible to be

used in our experiments. It is worthy to note that one image (1024 × 1024) can be divided into

four images having 512 × 512 dimensions. This modification of images results in 56 images in

each class. Since STex dataset is used in the experiments for both image clustering and retrieval,

it divided to into two subsets to be used in both frameworks. For the clustering, we have used

texture images from 10 different classes where each class is composed of 40 images, resulting in

400 images. Sample images from STex dataset are provided in Fig. (3.14). In the image clustering

framework, feature extraction and clustering model learning is performed in a similar manner as

described in Section (3.5.6.2). Experimental results are provided in Table (3.7), which demon-

strate the effectiveness of proposed model in feature extraction and image clustering. Column 1

in Table (3.7), provide the performance metrics used for experiments and column 2, 3, 4 and 5

101



provide the results for image clustering with different models at feature extraction and image cat-

egorization phase. These experimental results clearly demonstrate the role of this experiment to

see the effectiveness of BLMM. From the set of experiments modeled with BLMM and LMM and

comparing the results of image clustering, it is evident that BLMM has significantly improved the

clustering performance based on its application in feature extraction and modeling the texture data

represented in feature space for image categorization. The best is performance is achieved when

BLMM is applied in both stages of image clustering pipeline which is given in column 2 of Table

(3.7) and the confusion matrix for this result is given in Fig. (3.13) which also demonstrate the

classification performance for each class.

3.5.6.8 Experimental Framework for CBIR and Results: STex Dataset

STex dataset is employed to perform third experiment on image retrieval task and it is an extension

of image clustering framework presented in Section (3.5.6.7). In STex dataset, 40 images from

each class are used in the training process to perform clustering and 16 images per class are chosen

as test data for image retrieval experiments. In this task, 160 texture images from 10 categories of

STex dataset are selected to perform experiments. The experimental framework for retrieval using

STex dataset is designed in a similar manner as discussed in Section (3.5.6.4) and three similar-

ity measure are used to perform the image retrieval on a trained model. The retrieval results are

presented in Table (3.11), where first column represent the performance measures used to examine

the performance of this experiment and rest of the columns demonstrate the retrieval results for

different similarity measure computed on models trained with BLMM and LMM. By examining

the performance metrics for image retrieval task, it is observed that BLMM has performed sig-

nificantly better than LMM for all settings of different similarity measures. It is also noted that

posterior probability is an improvement on City-block distance in this task and KL-Divergence is

better than all of similarity measures and best performance is achieved when BLMM is applied

in the training process and KL-Divergence is used as similarity measure for image retrieval as de-

picted in column 6 of Table (3.11). The confusion matrix to represent this result is given in Fig.

(3.20), which also demonstrate the performance for each class.

3.5.6.9 Experimental Framework for Image Clustering and Results: Kylberg Dataset

In the fifth experiment on texture image clustering, we have employed Kylberg dataset which

possesses images from 28 different classes and each class consists of 160 images. Since Kyl-

berg dataset is employed for experiments in both frameworks (image clustering and retrieval), it

is divided into two parts. For our experiments on image clustering and retrieval, 120 images are

selected from each class, where 80 texture images per class are selected for clustering framework
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and 40 images per class are selected for experiments on image retrieval. In our experiments on

image clustering, 800 images from 10 different classes are used. The sample images from Kylberg

dataset are presented in Fig (3.16). Image clustering framework is designed to examine the perfor-

mance of BLMM in feature extraction and image categorization phase and both stages are modeled

as described in Section (3.5.6.2). The results of experimental framework on image clustering with

Kylberg dataset are presented in Table (3.8), where first column presents the performance metrics

considered in the experiments and rest of the columns provide the image clustering results with

selection of different model at feature extraction and image clustering stage. From the set of ex-

periments conducted on Kylberg dataset and comparing the results, it is evident that BLMM has

better performance in feature extraction and image categorization which demonstrate the modeling

capabilities of our proposed approach. In the experimental framework with Kylberg dataset, best

performance is achieved with both stages performed via BLMM and it is given in second column

of Table (3.8) and confusion matrix to demonstrate this performance is given in Fig. (3.17) which

also represent the classification performance at each class level.

3.5.6.10 Experimental Framework for CBIR and Results: Kylberg Dataset

Kylberg texture image dataset is used in fourth experiment to validate the proposed image retrieval

framework based on BLMM and different similarity measures. This experimental framework is an

extension of texture image clustering framework described in Section (3.5.6.9) and it is designed

in a similar manner as explained in Section (3.5.6.4) with image clustering phase modeled via

BLMM and retrieval phase performed by the three similarity measures separately. For a compar-

ison, image clustering phase is also modeled via LMM and rest of the experimental framework

remains the same as with BLMM. For the experiment, model is trained with data from 10 cate-

gories (80 images per class) as described in Section (3.5.6.9) and 40 images per class are dedicated

for retrieval task which make it possible to have 400 texture images in this experiment using Kyl-

berg dataset. The results of image retrieval task from this experimental framework are presented

in Table (3.12), which clearly demonstrate the effectiveness of BLMM and similarity measures for

image retrieval. From the set of experiments, it is observed that if model is trained via BLMM, the

retrieval framework will have better results with all similarity measures. It is also observed that

posterior probability and KL-Divergence has performed better than City-block distance and best

performance is achieved with KL-Divergence when clustering stage is modeled with BLMM. The

results of best performance are presented in Fig. (3.21), which also explain the results for each

class.

In this application BLMM is applied on different texture images databases and proposed in

the feature extraction phase and image clustering phase. From the set of experiments performed
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Table 3.9: Performance Metrics for KTH-TIPS dataset in CBIR

Performance City-block Posterior Probability KL-Divergence
Metrics (%) BLMM LMM BLMM LMM BLMM LMM
Accuracy 78.00 74.50 79.50 76.00 81.00 77.50
Sensitivity 78.00 74.50 79.50 76.00 81.00 77.50
Specificity 97.56 97.17 97.72 97.33 97.89 97.50
Precision 78.25 75.13 80.05 76.94 81.41 78.46

FPR 02.44 02.83 02.28 02.67 02.11 02.50
F1-Score 77.94 74.54 79.52 76.16 81.00 77.65

MCC 75.61 71.88 77.40 73.69 79.02 75.35
G-Mean 1 78.13 74.82 79.77 76.47 81.20 77.98
G-Mean 2 87.23 85.08 88.14 86.01 89.04 86.93
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Figure 3.18: Confusion matrix of KTH-TIPS dataset CBIR
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Table 3.10: Performance Metrics for DTD dataset in CBIR

Performance City-block Posterior Probability KL-Divergence
Metrics (%) BLMM LMM BLMM LMM BLMM LMM
Accuracy 78.75 73.25 79.75 74.50 81.25 75.75
Sensitivity 78.75 73.25 79.75 74.50 81.25 75.75
Specificity 97.64 97.03 97.75 97.17 97.92 97.31
Precision 79.37 73.94 80.07 75.23 81.64 76.30

FPR 02.36 02.97 02.25 02.83 02.08 02.69
F1-Score 78.77 73.28 79.71 74.53 81.23 75.76

MCC 76.59 70.51 77.59 71.91 79.28 73.23
G-Mean 1 79.06 73.60 79.91 74.86 81.44 76.02
G-Mean 2 87.69 84.30 88.29 85.08 89.19 85.85
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Figure 3.19: Confusion matrix of DTD dataset CBIR
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Table 3.11: Performance Metrics for STex dataset in CBIR

Performance City-block Posterior Probability KL-Divergence
Metrics (%) BLMM LMM BLMM LMM BLMM LMM
Accuracy 76.25 70.63 78.13 72.50 81.25 75.00
Sensitivity 76.25 70.63 78.13 72.50 81.25 75.00
Specificity 97.36 96.74 97.57 96.94 97.92 97.22
Precision 76.65 71.21 78.53 73.35 81.37 75.75

FPR 02.64 03.26 02.43 03.06 02.08 02.78
F1-Score 76.15 70.57 77.92 72.44 81.03 74.98

MCC 73.70 67.52 75.74 69.68 79.12 72.45
G-Mean 1 76.45 70.92 78.33 72.92 81.31 75.38
G-Mean 2 86.16 82.66 87.31 83.84 89.19 85.39
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Figure 3.20: Confusion matrix of STex dataset CBIR
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Table 3.12: Performance Metrics for Kylberg dataset in CBIR

Performance City-block Posterior Probability KL-Divergence
Metrics (%) BLMM LMM BLMM LMM BLMM LMM
Accuracy 79.25 74.00 80.50 75.25 82.00 76.75
Sensitivity 79.25 74.00 80.50 75.25 82.00 76.75
Specificity 97.69 97.11 97.83 97.25 98.00 97.42
Precision 79.31 74.46 80.39 75.68 82.15 76.97

FPR 02.31 02.89 02.17 02.75 02.00 02.58
F1-Score 79.17 74.00 80.33 75.23 81.86 76.69

MCC 76.93 71.26 78.24 72.63 08.00 74.21
G-Mean 1 79.28 74.23 80.45 75.46 82.08 76.86
G-Mean 2 87.99 84.77 88.74 85.55 89.64 86.47
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Figure 3.21: Confusion matrix of Kylberg dataset CBIR
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on different datsets, presented in Sections (3.5.6.2, 3.5.6.3, 3.5.6.5, 3.5.6.7 & 3.5.6.9) demon-

strate the effectiveness of BLMM in feature extraction and texture image clustering. To validate

our approach, different performance measure are adopted to demonstrate the success of proposed

approach as compared to LMM in a similar set of experiments.

The image clustering framework based on BLMM is further adopted for CBIR using dif-

ferent similarity measures and from the set of experiments presented in Sections (3.5.6.4, 3.5.6.6,

3.5.6.8 & 3.5.6.10), it is observed that trained model based on BLMM also improves the im-

age retrieval for all the similarity measures (City-block distance, posterior probability and KL-

Divergence) as compared to model trained with LMM. It is also observed that posterior probability

is an improvement on City-block distance in this task and KL-Divergence has better performance

in all experiments.

3.6 Discussion about BLMM

In this chapter, a mixture of bounded Laplace distribution is proposed which uses maximum like-

lihood approach for parameter estimation and optimization of parameters is performed by an EM

algorithm with Newtons-Raphson method in an iterative procedure. In order to validate the perfor-

mance of this model, it is applied to data clustering for synthetic data and several real datasets from

different medical experiments. For synthetic data, one dimensional and two dimensional artificial

histograms are generated and BLMM is applied to perform clustering on these synthetic datasets. It

is observed that BLMM has performed very effectively on these artificial datasets which is depicted

from real parameters used to generate these datasets and estimated parameters after the clustering

from BLMM. For experiments on medical datasets, BLMM is applied for categorization of data

into different classes through clustering and it has demonstrated its success in this task which is

depicted through clustering accuracy. These results are also compared with clustering performed

by K-Means and LMM and our proposed model also exhibit good clustering accuracy as compared

to these algorithms.

In order to extend the experiments, this algorithm is proposed in image processing applica-

tions and it is applied to perform feature extraction in wavelet domain, texture image clustering and

content based image retrieval. We have defined a strategy to perform feature extraction through

BLMM in wavelet domain. Our model is also applied to texture image categorization in the same

framework where feature extraction is also achieved by BLMM. Image clustering can be further

used for image retrieval and we have introduced three different methods to perform image retrieval.

We also have computed a novel closed form solution for KL divergence which is one of the three
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methods used to perform image retrieval. For the validation of BLMM and proposed experimen-

tal framework for feature extraction, texture image categorization and image retrieval, different

texture datasets (UIUC, KTH-TIPS, DTD, STex and Kylberg) are adopted. Different experiments

are conducted using these datasets and results of these experiments demonstrate that BLMM has

significantly improved the data modeling capabilities in the proposed experimental framework as

compared to LMM for the same experimental setup. The experiments on clustering exhibits the

success of our proposed approach in feature extraction and image clustering whereas rest of the

experiments demonstrate the effectiveness of BLMM and proposed KL divergence in image re-

trieval.

3.7 Texture Image Categorization in Wavelet Domain via Naive

Bayes Classifier Based on Laplace and Generalized Gaus-

sian Distribution

If we assume that data from each class follows a probability distribution and estimate the parame-

ters pertaining to that distribution, it is possible to develop a Naive Bayes classifier. In Naive Bayes

classifier, parameters are estimated with respect to distribution of data for each class and new data

is assigned to a class based on the learned parameters by maximum value of posterior probability.

Naive Bayes classifier has been widely used in the industry for several classification tasks [184–

186]. Particularly, Naive Bayes classifiers based on Gaussian distribution has profound influence

in a number of medical, industrial and multimedia applications [187–189]. Use of Laplace dis-

tribution and generalized Gaussian distribution in many machine learning algorithms has proved

to be a good solution which has demonstrated it success in different kind of data modeling ap-

plications. If we choose to model the features represented with BLMM in wavelet domain in a

supervised learning approach, it can be modeled with Laplace and generalized Gaussian distribu-

tions due to the nature of data in wavelet domain [159, 162]. Generalized Gaussian distribution also

has the ability to model Gaussian and Laplace distribution, which make the models more robust

in data modeling. Hence, we propose a Naive Bayes classifier with these distributions. To test the

performance of our proposed model we have chosen a challenging application namely texture clas-

sification. Texture classification plays an important role in industries which involves quality check

in product manufacturing factories and many other multimedia tasks. In this chapter, we proposed

Naive Bayes classifier based on Laplace and generalized Gaussian distributions which is further

applied to perform texture image categorization. The classification framework is validated through

set of experiments performed on UIUC, KTH-TIPS, and DTD datasets. For validation, different
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Figure 3.22: Framework for Texture Image Categorization via Naive Bayes Classifier

performance metrics are considered and effectiveness of our proposed approach is examined.

3.8 Proposed Algorithms

In this section proposed Naive Bayes classifier based on Laplace and generalized Gaussian distribu-

tions is presented. We have presented general formulation of Naive Bayes classifier and parameter

estimation technique and then models based on Laplace and generalized Gaussian distribution are

demonstrated with their parameter estimation.

3.8.1 Naive Bayes Classifier

If we consider that �X having D-dimensions, as feature vector, ck as the possible class with k ∈
{1, ...,K} and p(�X |ck) as the probability of �X belong to class ck, then general notation for posterior

probability using Bayes theorem can be written as follows:

p(ck|�X) =
p(ck)p(�X |ck)

p(�X)
(3.38)

where p(ck) is class probability and p(�X |ck) is class conditional probability. The objective is to

maximize the posterior probability using parameters obtained from training data as follows:

ĉ = argmax
k∈{1,...,K}

p(ck|�X) (3.39)

where ĉ is predicted class label for feature vector �X [190–192]. In a Naive Bayes classifier, to avoid

curse of dimensionality, it is assumed that the features are independent and identically distributed
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(i.i.d.), which define the p(�X |ck) as follows:

p(�X |ck) =
D

∏
d=1

p(Xd|ck) (3.40)

Since the denominator in posterior probability is a normalization constant and it can be ignored,

which makes the Eq. (3.38) as follows:

p(ck|�X) ∝ p(ck)p(�X |ck) (3.41)

∝ p(ck)
D

∏
d=1

p(Xd|ck)

Once the model is defined, next step is to find the parameters of the model from training data. For

parameter estimation, maximum likelihood approach is adopted in Naive Bayes classifier. If the

complete training dataset is represented as X = (�X1, ...,�XN) and C = c1, ...,cK unique classes in

the class label Y = (Y1, ...,YN) for each data sample, then likelihood of data can be expressed as

follows:

p(X ,Y |θk) =
N

∏
i=1

p(Yi = ck)
D

∏
d=1

p(Xid|Yi = ck) (3.42)

where θk is set of parameters for Naive Bayes classifier for each class of the data which include

class probability and parameters of distribution for each subset of the data belonging to class ck.

By taking the log of likelihood for mathematical convenience, Eq. (3.42) is expressed as follows:

L (X ,Y |θk) = log

{
N

∏
i=1

p(Yi = ck)
D

∏
d=1

p(Xid|Yi = ck)

}
(3.43)

In parameters estimation using maximum likelihood approach, parameters values are estimated by

maximizing log-likelihood as follows:

θk = argmax
k∈{1,...,K}

L (X ,Y |θk) (3.44)

The log-likelihood can be further expressed as follows:

L (X ,Y |θk) =
N

∑
i=1

log p(Yi = ck)+
N

∑
i=1

log
D

∏
d=1

p(Xid|Yi = ck) (3.45)

=
N

∑
i=1

log p(Yi = ck)+
N

∑
i=1

D

∑
d=1

log p(Xid|Yi = ck)
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In maximum likelihood estimate, for determining the class probability, it is ensured that p(ck)≥ 0

for all classes and ∑K
k=1 p(ck) = 1 [190–192]. In simple words, we need to find the parameters of

model for the data regarding to each class using maximum likelihood approach which is equivalent

to finding the parameters. By applying the above mentioned constraint on log-likelihood, the

expression for class probability is as follows:

p(ck) =
1
N

N

∑
i=1

(Yi = ck) (3.46)

The detailed computation of class probability by ensuring the above mentioned constraints is given

in [193, 194]. The parameters estimation relating to class conditional probability is discussed in

following subsections.

3.8.2 Laplace Naive Bayes Classifier

For a feature vector �Xi with independent and identically distributed features, Laplace distribution

is represented as follows:

p(�Xi|�μk,�bk) =
D

∏
d=1

1
2bkd

exp
[
−|Xid −μkd|

bkd

]
(3.47)

where �μk and �bk are mean and scale parameters of Laplace distribution for class ck of the data,

respectively. If we place Laplace distribution in Eq. (3.45), and maximize it with respect to mean

and scale parameters, we can estimate the value of these parameters as follows:

μ̂kd =
∑N

i=1:Yi=ck

Xid
|Xid−μkd |

∑N
i=1:Yi=ck

1
|Xid−μkd |

(3.48)

b̂kd =
∑N

i=1:Yi=ck
|Xid −μkd|

∑N
i=1 (Yi = ck)

(3.49)

3.8.3 Generalized Gaussian Naive Bayes Classifier

If we consider that �X having D-dimensions, as feature vector by having the assumption of indepen-

dent and identically distributed features, then generalized Gaussian distribution can be expressed
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as follows:

p(�Xi|�μk,�σk,�λk) (3.50)

=
D

∏
d=1

λkd

√
Γ(3/λkd)
Γ(1/λkd)

2σkdΓ(1/λkd)
exp

(
−A(λkd)

∣∣∣∣Xid −μkd

σkd

∣∣∣∣
λkd
)

with A(λkd) =

[
Γ(3/λkd)

Γ(1/λkd)

]λkd/2

(3.51)

where �μk,�σk and�λk are mean, standard deviation and shape parameters of generalized Gaussian

distribution for class ck of the data, respectively. By using this distribution in Eq. (3.45), we

can estimate the parameters of the Naive Bayes classifier for generalized Gaussian distribution by

maximum likelihood estimate as follows:

μ̂kd =
∑N

i=1:Yi=ck
|Xid −μkd|λkd−2 Xid

∑N
i=1:Yi=ck

|Xid −μkd|λkd−2 (3.52)

σ̂kd =

[
λkdA(λkd)∑N

i=1:Yi=ck
|Xid −μkd|λkd

∑N
i=1 (Yi = ck)

]1/λkd

(3.53)

For the shape parameter, a closed form solution does not exist and it will be estimated using

Newton’s-Raphson method for each class of the data as follows:

λ̂kd 	 λkd −
[(

∂ 2L (X ,Y |θk)

∂λ 2
kd

)−1(∂L (X ,Y |θk)

∂λkd

)]
Yi=ck

(3.54)

The computations for derivative of log-likelihood with respect to parameter of generalized Gaus-

sian distributions is given in [47]. In order to get optimized value of parameters, Expectation Max-

imization (EM) algorithm can be applied to Naive Bayes classifier in a similar way as described

in [191, 192]. In the initialization phase, parameter values are set according to the assumption of

Gaussian distribution for both algorithms. The scale parameter for Laplace Naive Bayes classifier

is computed from standard deviation in initialization phase as b = σ2/
√

2. The value of shape pa-

rameter is set to 2 during the initialization phase for generalized Gaussian Naive Bayes classifier.

The rest of the parameters are initialized with the Gaussian distribution assumption.
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Figure 3.23: Sample images of UIUC dataset
Table 3.13: Performance of UIUC texture data categorization based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

GenGNB 85.00 85.00 98.33 89.46 01.67 85.74 85.04 87.20 91.42
LapNB 83.00 83.00 98.11 88.43 01.89 83.60 83.08 85.67 90.24
GNB 82.00 82.00 98.00 87.55 02.00 82.53 81.97 84.73 89.64

3.9 Texture Image Categorization

In this section, texture image categorization is performed by Naive Bayes classifiers introduced

in Section 3.8. In the texture image categorization framework, features are extracted in wavelet

domain using bounded Laplace mixture model (BLMM) as introduced in [85]. Once the features

are extracted, Naive Bayes classifier can be applied for training and prediction of texture data

classes. The whole framework is given in Figure (3.22), which serves the purpose of validation of

proposed Naive Bayes classifiers. In [85], feature extraction using BLMM, was applied in image

clustering and content based image retrieval in a unsupervised manner, In this chapter, image

categorization framework also demonstrate the effectiveness of feature extraction in supervised

manner. In the following subsections, BLMM and feature extraction technique are presented.

3.9.1 Feature Extraction in Wavelet Domain via BLMM

The 2-D wavelet transform is derived from its 1-D counterpart via separable wavelet filters. By

applying 2-D transform, an image can be decomposed into four sub-bands which represent a scale-

down low resolution image and diagonal, vertical and horizontal information [173]. From the

studies, it is observed that wavelet coefficients in high frequency sub-bands are distributed in a

Laplacian like density [159, 173] and for modeling the wavelet coefficients for representation of

texture images, Gaussian mixture model (GMM), LMM and BLMM can be used [85, 159, 162].

In this work, BLMM is adopted for modeling the wavelet coefficients to represent the texture

images. In the feature extraction, first step is to apply 2-D discrete wavelet transform on each

Table 3.14: Performance of KTH-TIPS texture data categorization based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

GenGNB 86.19 86.19 98.47 87.52 01.53 86.21 85.08 86.85 92.12
LapNB 83.33 83.33 98.15 84.65 01.85 83.22 81.86 83.99 90.44
GNB 80.95 80.95 97.88 81.97 02.12 80.55 79.01 81.46 89.02
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Figure 3.24: UIUC dataset with generalized GNB classifier

Figure 3.25: Sample images of KTH-TIPS dataset

image from the database which will decompose each image into four wavelet subspaces at each

level of decomposition. For feature extraction from high frequency sub-bands, wavelet coefficients

are modeled via BLMM with two mixture components centered at 0. The parameters learned from

modeling wavelet coefficients are used as features for representing each image. If each wavelet

subspace is assumed to have N coefficients, then BLMM can be represented with Eq. (3.7) modeled

with two components centered at 0. The parameters learned for each sub-band (diagonal, vertical

and horizontal) at each decomposition level are Θ = (b1,b2, p1, p2). For scaling subspace, mean is

computed for its wavelet coefficients and used as feature along with parameters learned via BLMM.
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Figure 3.26: KTH-TIPS with generalized GNB classifier

For each image, the integrated feature space learned with BLMM is represented as follows:

F = [F1H ,F1V ,F1D,S1, ...,FjH ,FjV ,FjD,S j] (3.55)

where F represents the feature set [p1, p2,b1,b2] of wavelet subspaces and S represents the mean

value of coefficients in scaling subspace. The subscripts D,V, & H represent diagonal, vertical and

horizontal directions, respectively, at each scale and subscript j express the number of decompo-

sition scales in the image [85, 159, 162]. As a last step, each feature vector is normalized to avoid

biasing.
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Figure 3.27: Sample images of DTD dataset

Table 3.15: Performance of DTD texture data categorization based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

GenGNB 88.75 88.75 98.75 88.94 01.25 88.75 87.56 88.84 93.62
LapNB 84.50 84.50 98.28 84.82 01.72 84.55 82.89 84.66 91.13
GNB 80.25 80.25 97.81 80.64 02.19 80.26 78.18 80.44 88.59

3.10 Experiments and Results

3.10.1 Design of Experiments

In this section, experiments and results for texture image categorization via our introduced Naive

Bayes classifier are presented. The experiments are conducted on UIUC, KTH-TIPS and DTD

datasets. Parts of these datasets are selected to perform texture image categorization which will

validate the performance of proposed Naive Bayes classifiers and demonstrate the effectiveness of

feature representation via BLMM in wavelet domain for supervised learning. Haar wavelet filter is

used for decomposition of images. For modeling the wavelet coefficients, BLMM is adopted and

3-level decomposition is used in all experiments for feature extraction. Wavelet coefficients are

modeled with 2-component mixture of bounded Laplace distributions with zero mean during the

feature extraction. The data is divided into testing and training before feature extraction and once

the feature are obtained, the training part of the data is used to train the Naive Bayes classifier. The

trained model is further applied to predict the classes of test data which will eventually categorize

the texture data into desired classes. The complete experimental framework for each dataset, results

and discussions are given in the following subsections.

3.10.2 Experimental Framework and Results: UIUC Dataset

UIUC dataset is a collection of texture images of 25 categories with 40 images in each class. For

the experiments to categorize texture images via Naive Bayes classifier, we have chosen 10 classes.

The dataset is divided into training and testing and 30 images from each class (300 images for 10

classes) are considered for training and 10 images from each class (100 images for 10 classes)

are chosen for testing. A few sample images of UIUC dataset are given in Figure (3.23). Fea-

ture extraction is performed with BLMM in wavelet domain with 3-level decomposition. As first

step, model is trained with Laplace Naive Bayes classifier for validation of modeling capability of
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Figure 3.28: DTD dataset with generalized GNB classifier

feature representation in wavelet domain extracted with learning of BLMM. Once Laplace Naive

Bayes classifier is trained by using the training part of data, it further adopted to predict the cat-

egories of test data. In this experiment, we achieved 83% accuracy in correctly classifying the

texture data in particular categories. For a comparison, we also train the model with Gaussian

Naive bayes classifier and on testing, the accuracy obtained is 82% for correct classification of

texture images. We also have computed several other performance metrics for both models and

it is observed by comparison of results of both models that Laplace Naive Bayes classifier has

better modeling capability for feature representation via BLMM in wavelet domain. The results

of both experiments are presented in Table (3.13). Since generalized Gaussian distribution has

the capability to model the data with both Laplace and Gaussian distributions, it is more appro-

priate to adopt generalized Gaussian distribution for developing a Naive Bayes classifier in this

application for texture image categorization. The classification results (85% accuracy) obtained by

applying generalized Gaussian Naive Bayes classifier have outperformed both results previously
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discussed in this experiment which is a proof of concept that peaky nature of data in wavelet do-

main can be better modeled by choosing the model with appropriate distribution which is Laplace

and generalized Gaussian distribution. Complete comparison of results for all models is presented

in Table (3.13) and confusion matrix to present the classification performance in each class using

generalized Gaussian mixture Naive Bayes classifier is presented in Figure (3.24).

3.10.3 Experimental Framework and Results: KTH-TIPS Dataset

KTH-TIPS dataset is a collection of texture images of 10 classes with 81 images in each class. For

our experiments, whole dataset is chosen and it is divided into training and testing. For training,

60 images from each classes (600 images for 10 classes) are chosen and 21 images from each class

(210 images for 10 classes) are selected for testing. A few sample images of KTH-TIPS dataset

are provided in Figure (3.25). The features are extracted in a similar manner as described in the ex-

periment for UIUC dataset. Once features are extracted, Laplace Naive Bayes classifier is applied

to train the model with training part of dataset and predict the test data into different texture image

classes. The classification accuracy in this case 83.33% which is higher than Gaussian Naive Bayes

classifier in a similar setting (80.95%). The results are presented in Table (3.14), and it is observed

that Laplace Naive Bayes classifier has outperformed Gaussian Naive Bayes classifier in modeling

the features represented by BLMM extracted from images in wavelet domain. We further applied

generalized Gaussian Naive Bayes classifier for categorization of texture images and 86.19% accu-

racy is observed. The detailed performance metrics are provided in Table (3.14), it is observed that

generalized Gaussian Naive Bayes classifier has performed better than both algorithms previously

observed in this experiment. A confusion matrix to present detailed classification performance

using generalized Gaussian Naive Bayes classifier is given in Figure (3.26).

3.10.4 Experimental Framework and Results: DTD Dataset

DTD dataset is a collection of texture images with 47 classes and having 120 images in each class.

For our experiment, 10 classes are selected with 80 images per class (800 images for 10 classes)

for training and 40 images per class (400 images for 10 classes) for training. A few sample im-

ages of DTD dataset are presented in Figure (3.27). The feature are extracted in a similar manner

described for previous two experiments. Once the features are obtained, training data are used

to train the Laplace Naive Bayes classifier and testing data are adopted for examining the per-

formance of trained model in texture image categorization. In this experiment, 84.50% accuracy

is achieved and for a comparison to observe the effectiveness of this approach, Gaussian Naive

Bayes classifier is also trained and tested in a similar setting for texture image categorization and
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80.25% accuracy is observed. The detailed results with other performance metrics are given in

Table (3.15), which indicates the effectiveness of Laplace Naive Bayes classifier in texture im-

age categorization. The experiment is further extended to observe the performance of generalized

Gaussian Naive Bayes classifier in a similar setting and 88.75% accuracy is observed. From Table

(3.15), by observing all the performance metrics, it is evident that our generalized Gaussian Naive

Bayes classifier has outperformed other two algorithms in modeling the texture images data repre-

sented by BLMM extracted from wavelet domain representation. A confusion matrix obtained by

generalized Gaussian Naive Bayes classifier is given in Figure (3.28), which exhibit the detailed

classification performance of DTD dataset in this experiment.

From the set of experiments on UIUC, KTH-TIPS and DTD texture datasets, it is observed

that our proposed models have preformed better than Gaussian Naive Bayes classifier which is

a proof of the concept that modeling the data by choosing the model and probability based on

the nature of the data can give better performance. It is also observed that by increasing the

size of training data, the performance of our proposed models is increased which is evident from

experiments on KTH-TIPS and DTD dataset.

3.11 Discussion about Naive Bayes Classifiers

In this section, Naive Bayes classifiers based on Laplace and generalized Gaussian distribution are

introduced. These algorithms are applied in texture image categorization and the deriving force to

introduce these algorithms is the nature of data in wavelet domain representation of texture images.

In this approach, wavelet domain images are modeled through BLMM for feature extraction and

Naive Bayes classifier is applied for image categorization after the feature extraction. In order to

validate the proposed approaches, different experiments are conducted on texture datasets. From

the set of experiments, it is observed that Naive Bayes classifier with Laplace distribution is def-

initely a better choice for this application as compared to Naive Bayes classifier with Gaussian

distribution. It is also observed that Naive Bayes classifier with generalized Gaussian distribution

has the best performance are compared to other two approaches. For the validation of framework,

different performance metrics are considered and proposed approaches have shown their effective-

ness for texture image categorization with feature extracted in wavelet domain.
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Chapter 4
Multivariate Bounded Generalized Gaussian

Mixture Model with ICA

In this chapter, we propose bounded generalized Gaussian mixture model (BGGMM) with inde-

pendent component analysis (ICA). One limitation in ICA is that it assumes the sources to be

independent from each other. This assumption can be relaxed by employing a mixture model. In

our proposed model, bounded generalized Gaussian distribution (BGGD) is adopted for modeling

the data and we have further extended its mixture as an ICA mixture model by employing gradi-

ent ascent along with expectation maximization for parameter estimation. By inferring the shape

parameter in BGGD, Gaussian and Laplace distributions can be characterized as special cases. In

order to validate the effectiveness of this algorithm, experiments are performed on unsupervised

keyword spotting, speaker classification, blind source separation (BSS) and BSS as pre-processing

to unsupervised keyword spotting. For speaker classification, TSP and TIMIT speech datasets

are adopted and keyword spotting framework is developed with TIMIT speech corpus. For BSS,

TIMIT, TSP and Noizeus speech corpora are selected and results are compared with ICA. For

keyword spotting, recognition results are further compared before and after BSS being applied as

pre-processing when speech utterances are affected by mixing of noise or other speech utterances.

The mixing of noise or speech utterances with a particular or target speech utterance can greatly

affect the intelligibility of a speech signal. The results achieved from the presented experiments

on different applications have demonstrated the effectiveness of ICA mixture model in statistical

learning.
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4.1 Introduction

In machine learning and pattern recognition, effectiveness of an approach or an algorithm is de-

termined by the ability of modeling underlying distribution of observed data [195]. Finite mix-

ture models have been extensively used for statistical modeling in machine learning and pattern

recognition and have demonstrated their importance in many speech and image processing ap-

plications [19, 20]. Gaussian mixture model (GMM) is well renowned for data clustering. The

parameters of GMM can be estimated effectively using expectation maximization (EM) algorithm

by maximizing the log-likelihood function [18, 193]. The main problem associated with GMM

is sensitivity to outliers [18]. Student’s-t mixture model (SMM) has been proposed in order to

improve the robustness of Gaussian mixture model for statistical modeling [16, 45, 46]. In SMM,

each component has one more parameter, called degree of freedom, as compared to GMM. Cauchy

and Gaussian distributions are special cases of student’s-t distribution with degree of freedom 1

and ∞, respectively [18]. There have been substantial growth in research for developing mixture

models using generalized Gaussian distribution (GGD) [47–51]. This distribution has one extra

parameter (shape parameter λ ) than Gaussian distribution, which controls the tails of distribu-

tion. One problem associated with above mentioned mixture models is unbounded support range

(−∞,+∞) of their distributions [18]. It is observed that many real application have their data within

bounded support regions [60–62]. For speech processing application, bounded Gaussian mixture

model (BGMM) has been proposed in [61, 62]. The idea of bounded support mixture is adopted

for GGMM and BGGMM has been proposed in [18], which provides a generalization for GMM,

Laplace mixture model (LMM), GGMM and BGMM as special cases.

ICA mixture model has been proposed as an extension of Gaussian mixture model in [195–

197]. ICA has been successfully applied to problems such as blind source separation and signal

analysis describing its ability to model non-Gaussian statistical structures. If the source distribu-

tions are assumed to be Gaussian, it is equivalent to principle component analysis (PCA), which

assumes that observed data is distributed as a multivariate Gaussian [195]. ICA generalize PCA

by modeling the observed data with non-Gaussian distributions and goal is to linearly transform

the data structures in such a way that variables after transformation are independent from each

other [196]. One limitation in ICA is that it assumes the sources to be independent from each

other. This assumption can be relaxed by employing a mixture model. The observed data can be

categorized into several mutually exclusive classes by employing a mixture model [198], simply

called an ICA mixture model. It can be generalized with the assumption that observed data in

each class is produced by a linear combination of independent, non-Gaussian sources as in case of

ICA [196]. Hence, in an ICA mixture model, it is assumed that observed data can be categorized

into mutually exclusive classes and components of the model are generated by linear combination
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of independent sources [199]. Many variations of ICA mixture model have been proposed in the

last few years [200–203]. It has been extensively used for statistical modeling in a variety of ap-

plications that include segmentation, image enhancement and BSS [196, 197, 204]. In [205], ICA

mixture model was proposed with adaptive source densities including generalized Gaussian and

Student’s t distributions as special cases along with other forms of densities. In this chapter, we

are interested in extending the model presented in [195] with BGGD. In [18], BGGMM is formu-

lated for univariate data which is extended here for multivariate data. The parameter estimation for

proposed ICA mixture is adopted from [195, 196] using ICA and gradient ascent. The preliminary

results obtained by applying the proposed ICA mixture are published in [2, 87]. In this chapter

we have extended the applications of ICA mixture in BSS and unsupervised keyword spotting

frameworks for more insightful analysis.

Automatic speech recognition (ASR) is considered as a nonlinear transformation from spo-

ken words to text [3, 206], which requires large quantities of annotated data along with the language

specific speech and text data, used for training complex statistical acoustic and language mod-

els [1, 207, 208]. The problem associated with these techniques is the lack of valuable linguistic

information related to majority of the languages (termed as under-resourced), especially if they are

not frequently used [1, 209–211]. Many languages of the world are categorized as under-resourced

which refers to lack of unique writing system, limited linguistic expertise, unavailability of the

electronic resources for language processing and lack of on-line resources [209–211]. There are

about 6900 spoken languages in the world [209, 212] and despite a lot of development in the ASR,

the availability of only few (50-100) commercial ASR engines leads to the need to develop unsu-

pervised methods that do not require any annotated or labeled data [213]. Keyword spotting task

has also been explored for many years and ASR is used to detect the occurrence of a specific key-

word in speech data [214]. Keyword spotting is defined as an approach for speech understanding

to detect specific keyword(s) that most likely express the intent of a speaker rather than recogni-

tion of a whole speech utterance [215]. Hidden Markov models based keyword spotting methods

have been proposed widely for supervised and unsupervised settings [216–220]. Dynamic time

warping has been used extensively for speech recognition and keyword spotting [26, 221–227].

The use of mixture model in automatic speech recognition and keyword spotting has demonstrated

its effectiveness in unsupervised platforms and settings [228, 229]. The proposed model is used

for statistical learning from the training data given in TIMIT speech corpus [143]. The trained

model is used to decode the keyword example(s) and test utterances in posteriorgrams. The pos-

teriorgrams generated from keywords examples and unseen test utterances are compared using

segmental DTW. The distortion scores are further processed to select the best matching candidate

for the keyword hits. The TIMIT speech dataset is used to tune the parameters of the described
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unsupervised keyword spotting system. The results achieved from the experiment demonstrates

the effectiveness and viability of the proposed algorithm in keyword spotting.

Speaker classification is a fundamental component of speaker recognition systems which

performs two alternative tasks: speaker identification and verification. The goal of speaker identi-

fication is to label an unknown speech file with a speaker identity. The task of speaker verification

is to validate and confirm the claim of a speaker about its identity [131, 132]. Speaker classification

has been used in human-machine dialog systems, forensics, medical and many other applications.

One interesting application of speaker classification is in the speech recognition and keyword spot-

ting as preprocessing to reach the speaker of interest which is further useful in many security appli-

cations. Mixture models have been widely adopted to address the speaker classification task [29].

Recently Mixture model have been employed to address the object recognition and classification

tasks through clustering in [230, 231]. A two level hierarchical clustering framework based on

inverted Dirichlet mixture model is presented in [232] which is selected for object clustering and

recognition. In this work, the same hierarchical clustering framework is adapted using bounded

generalized Gaussian mixture model (BGGMM) with ICA and employed for speaker classifica-

tion. In this chapter, gender and 10 speakers classification is performed through the hierarchical

clustering framework using ICA mixture model. Bounded generalized Gaussian mixture model

with ICA is applied for the statistical learning of the clustering framework. Speaker classification

based on supervised hierarchical clustering also serves the purpose to validate the effectiveness of

ICA mixture model in speaker recognition and statistical learning. The gender speaker classifica-

tion is performed on TIMIT and TSP speech databases and 10 speakers classification is conducted

on TSP speech database. Both classification frameworks are also implemented using Gaussian

mixture model in order to compare the performance of ICA mixture model in statistical learning.

It is observed that classification framework based on hierarchical clustering performs well for both

classification scenarios and ICA mixture model outperforms the GMM in model learning based on

the classification rate. It is also observed that conventional problem of female speaker recognition

is improved by employing multi-cluster model instead of classical model during the learning.

Blind source separation has been applied to many signal processing and machine learn-

ing problems including speech enhancement, speech recognition, medical signal processing and

telecommunications [196]. BSS is defined as a method which reconstruct the unknown sources

of observed signals from an unknown mixture [233–236]. BSS was formulated around 1982 and

first related contributions appeared around 1985 in [237–241]. The ICA was proposed as gen-

eral framework for solving blind source separation problems based on statistical independence of

the unknown sources in [242] and formalized for linear mixtures in [243, 244]. The limitations

associated with ICA were controlled by ICA mixture as proposed in [195, 245] and successfully
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applied to BSS [196, 198, 246]. Research for the development of many new approaches for BSS

is continued and many interesting algorithms and techniques have been developed [247, 248]. The

Expectation-Maximization (EM) algorithm has also been applied to ICA in [249, 250]. In this

chapter, we have proposed BGGMM using ICA for the task of BSS. For the evaluation of pro-

posed BSS framework, we have used signal-to-distortion ratio (SDR), signal-to-interference ratio

(SIR), signal-to-artifact ratio (SAR) and perceptual evaluation of speech quality (PESQ). The de-

tailed explanation of evaluation metrics is presented in [251–254].

In many real time scenarios, speech signals are mixed with noise or other speech signal

which reduces the intelligibility of signals in keyword spotting and speech recognition. In order

to improve the detection rate in keyword spotting, speech signal can be pre-processed using BSS

before being applied to the trained model for keyword detection or speech recognition. The pro-

posed ICA mixture have demonstrated its effectiveness in BSS as described in Subsection 4.5 and

we have proposed the same BSS framework as prepossessing to unsupervised keyword spotting

presented in [2]. Due to mixing of speech utterances, two types of problems occur in keyword

spotting. In the first case, target keyword will more likely not detected during the keyword spot-

ting, whereas in second case target keyword will be detected in correct speech utterance but it will

also get detected in other speech utterances as false alarm. These two problems are explained in

detail in Subsection 4.6. In this chapter, we have also proposed BSS as pre-processing to unsu-

pervised keyword spotting as an extension to the keyword spotting framework with ICA mixture

described previously.

4.2 Bounded Generalized Gaussian Mixture Model with ICA

In this section, bounded generalized Gaussian mixture model with ICA is presented. In an ICA
mixture model, it is assumed that observed data come from a mixture model and it can be cate-
gorized into mutually exclusive classes which means that each class of the data is modeled via an
ICA [195, 199]. Consider the case where the input is a set of features of the data represented as
X = (�X1, ...,�XN) and �Xi is a D-dimensional random variable �Xi = [Xi1, ...,XiD]

T . The �Xi follows a
K components mixture distribution if its probability function can be written as Eq. (1.1) provided
that p j ≥ 0 and ∑K

j=1 p j = 1. In Eq. (1.1), p(�Xi|ξ j) is probability density function, ξ j represents the
set of parameters defining jth component, p j is mixing proportion, Θ = (ξ1, ...,ξK, p1, ..., pK) is
complete set of parameters to characterize the mixture model and K ≥ 1 is number of components
in the mixture model [30–32]. For an ICA mixture model, each data vector �Xi can be represented
as:

�Xi = A j�s j,i +�b j (4.1)
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where A j is L×D scalar matrix termed as basis functions,�s j,i is D-dimensional source vector and
�b j is an L-dimensional bias vector for a particular mixture component j [195–197, 199, 202, 203].
In order to define the BGGD for a variable �X ∈ R, it is required to provide an indicator function
which introduces the boundary conditions. For each component (denoted by j), indicator function
H(�Xi| j) is defined with bounded support region (∂ j) for each component:

H(�Xi| j) =
⎧⎨
⎩1 if �Xi ∈ ∂ j

0 otherwise
(4.2)

For BGGMM, �Xi follows a K components mixture represented in Eq. (1.1), where p(�Xi|ξ j) is
multivariate BGGD as:

p(�Xi|ξ j) =
fggd(�Xi|ξ j)H(�Xi| j)∫

∂ j
fggd(�u|ξ j)du

(4.3)

where term fggd(�Xi|ξ j) represents the multivariate generalized Gaussian distribution (GGD):

fggd(�Xi|ξ j) =
D

∏
d=1

λ jd

√
Γ(3/λ jd)
Γ(1/λ jd)

2σ jdΓ(1/λ jd)
exp

(
−A(λ jd)

∣∣∣∣Xid −μ jd

σ jd

∣∣∣∣
λ jd
)

(4.4)

with

A(λ jd) =

[
Γ(3/λ jd)

Γ(1/λ jd)

]λ jd/2

(4.5)

The term
∫

∂ j
fggd(�u|ξ j)du is normalization constant that indicates the share of fggd(�Xi|ξ j) which

belongs to the support region. Note that ξ j =
{
�μ j,�σ j,�λ j,A j,�b j

}
is the set of parameters defining

jth component, where �μ j = (μ j1, ...,μ jD), �σ j = (σ j1, ...,σ jD),�λ j = (λ j1, ...,λ jD), A j = (a1, ...,aL)

and �b j = (b j1, ...,b jD) are the mean, standard deviation, shape parameters, basis functions and
bias vector, respectively. The vectors representing mean, standard deviation, shape parameters
and bias are D-dimensional for each component of the mixture model, whereas the basis func-
tions for each component has L number of linear combination with each linear combinations
being D-dimensional. For simplicity, number linear combinations (L) is considered to be equal
to the number of sources (D) in each observation which makes basis functions a D×D scalar
matrix. With a mixture of K BGGDs, the likelihood of data X can be defined as Eq. (1.2),
where the complete set of parameters of the ICA mixture model having K classes is defined by
Θ = (�μ1, ...,�μK,�σ1, ...,�σK,�λ1, ...,�λK,A1, ...,AK,�b1, ...,�bK, p1, ..., pK). We introduce the stochas-
tic indicator Z = {�Z1, ...,�ZN}, where �Zi = (Zi1, ...,ZiK) is the label of each observation, such that
Zi j ∈ {0,1}, ∑K

j=1 Zi j = 1. The role of these variables is to encode the membership of each observa-
tion for a relative component of the mixture model. In other words, Zi j, the unobserved variable in
each indicator vector equals 1 if �Xi belongs to class j and 0, otherwise [32, 56, 193]. The complete
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data likelihood is:

p(X ,Z|Θ) =
N

∏
i=1

K

∏
j=1

(
p(�Xi|ξ j)p j

)Zi j
(4.6)

For instance, if we consider that number of mixture components is known, the parameter estima-
tion requires the maximization of log-likelihood function:

L (Θ,Z,X ) =
N

∑
i=1

K

∑
j=1

Zi j log
(

p(�Xi|ξ j)p j

)
(4.7)

By replacing each Zi j by its expectation, defined as posterior probability that the ith observation
belongs to jth component of the mixture model we obtain:

Ẑi j = p( j|�Xi) =
p(�Xi|ξ j)p j

∑K
j=1 p(�Xi|ξ j)p j

(4.8)

4.2.1 Parameters Estimation

In a mixture model, the parameters include mixing proportions and parameters of the distribution
whereas in case of ICA mixture model each vector of the data is represented as in Eq. (4.1),
which also necessitates the estimation of basis functions and bias vectors. The basis functions
and bias vectors are further adopted to compute the sources in ICA model. For the parameters
mean, standard deviation and mixing proportions, maximization of log-likelihood is obtained by
setting the gradient of log-likelihood (with respect to each parameter) to zero. The maximization of
log-likelihood for the shape parameters, basis functions and bias vector is performed by using the
standard ICA model and gradient ascent. Using Eq. (4.8), each observation can be labeled to one or
zero for a particular component of the mixture model which can be further applied to maximize the
complete data log-likelihood with respect to the parameters of ICA mixture model. The gradient
of log-likelihood with respect to parameters of each component is computed as following:

∇Θ jL (Θ,Z,X ) = ∇Θ j

N

∑
i=1

K

∑
j=1

Zi j log
(

p(�Xi|ξ j)p j

)
(4.9)

The ∇Θ j represents here the gradient with respect to p j, �μ j, �σ j,�λ j, A j and�b j. Eq. (4.9) can be
written as:

(4.10)∇Θ jL (Θ,Z,X ) = ∇Θ j

N

∑
i=1

K

∑
j=1

Zi j

{
log p j + log fggd(�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

fggd(�u|ξ j)du
}
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4.2.1.1 Estimation of Mixing Parameter, Mean and Standard Deviation

The estimation of mixing parameter is provided in Section 2.2.3.1. The mean μ j can be estimated
by maximizing the log-likelihood with respect to μ j. The gradient of the log-likelihood and estima-
tion of μ j are given in Appendix C.1 & C.2, respectively. The estimated mean μ̂ jd for d = 1, ...,D
is given by:

μ̂ jd =
1

∑N
i=1 Ẑi j

∣∣Xid −μ jd
∣∣(λ jd−2)

N

∑
i=1

Ẑi j (4.11)

×
⎧⎨
⎩
[∣∣Xid −μ jd

∣∣(λ jd−2) Xid

]
−
⎡
⎣∫∂ j

fggd(u|ξ j)sign
(
u−μ jd

)∣∣u−μ jd
∣∣λ jd−1du∫

∂ j
fggd(u|ξ j)du

⎤
⎦
⎫⎬
⎭

Note that, in Eq. (4.11), the term
∫

∂ j
fggd(u|ξ j)sign

(
u−μ jd

)∣∣u−μ jd
∣∣λ jd−1du is the expectation

of function sign
(
u−μ jd

)∣∣u−μ jd
∣∣λ jd−1 under the probability distribution fggd(u|ξ j) [18, 60, 193],

which can be approximated as:
∫

∂ j

fggd(u|ξ j)sign
(
u−μ jd

)∣∣u−μ jd
∣∣λ jd−1du (4.12)

≈ 1
M

M

∑
m=1

sign(μ jd − s jmd)
∣∣μ jd − s jmd

∣∣λ jd−1 H(s jmd | j)

where sm jd ∼ fggd(u|ξ j) is a set of random variables drawn from the bounded generalized Gaussian
distribution for the particular component of the mixture model j. The set of data with random
variables have M vectors with D dimensions. M is a large integer chosen to generate the set of
random variables. Similarly, the term

∫
∂ j

fggd(u|ξ j)du in Eq. (4.11) can be approximated as:

(4.13)
∫

∂ j

fggd(u|ξ j)du ≈ 1
M

M

∑
m=1

H(sm jd | j)

From Eqs. (4.12) and (4.13), μ̂ j can be written as:

μ̂ jd =
1

∑N
i=1 Ẑi j

∣∣Xid −μ jd
∣∣(λ jd−2)

N

∑
i=1

Ẑi j (4.14)

×
{[∣∣Xid −μ jd

∣∣(λ jd−2) Xid

]
−
[

∑M
m=1 sign(μ jd − s jmd)

∣∣μ jd − s jmd

∣∣λ jd−1 H(s jmd | j)
∑M

m=1 H(s jmd | j)

]}

with i = 1, ...,N, j = 1, ...,K, d = 1, ...,D and m = 1, ...,M. The standard deviation σ j can be
estimated by maximizing the log-likelihood with respect to σ j and gradient of log-likelihood and
estimation of σ j are given in Appendix C.3 & C.4, respectively. The estimated standard deviation

128



σ̂ jd for d = 1, ...,D is given as:

(4.15)σ̂ jd =

⎛
⎜⎜⎜⎜⎜⎝

∑N
i=1 Zi j

[
A(λ jd)

∣∣Xid − μ jd
∣∣λ jd λ jd

]

∑N
i=1 Zi j

{
1 +

[∫
∂Ω j

fggd(u|ξ j)
{
−1+A(λ jd)|Xid−μ jd|λ jd λ jd(σ jd)

−λ jd
}

du∫
∂ j

fggd(u|ξ j)du

]}
⎞
⎟⎟⎟⎟⎟⎠

1/λ jd

Similar to Eq. (4.12), in Eq. (4.15) the term
∫

∂ j
fggd(u|ξ j)(−1+A(λ jd)

∣∣Xid −μ jd
∣∣λ jd

λ jd(σ jd)
−λ jd)du can be approximated as:

(4.16)

∫
∂ j

fggd(u|ξ j)(−1 + A(λ jd)
∣∣Xid − μ jd

∣∣λ jd λ jd(σ jd)
−λ jd )du

≈ 1
M

M

∑
m=1

(−1 + λ jdA(λ jd)
∣∣sm jd − μ jd

∣∣λ jd (σ jd)
−λ jd )H(sm jd | j)

From Eqs. (4.16) and (4.13), σ̂ j can be written as:

(4.17)σ̂ jd =

⎛
⎜⎜⎝ ∑N

i=1 Zi j

[
A(λ jd)

∣∣Xid − μ jd
∣∣λ jd λ jd

]
∑N

i=1 Zi j

{
1 +

[
∑M

m=1(−1+λ jdA(λ jd)|sm jd−μ jd|λ jd (σ jd)
−λ jd )H(sm jd | j)

∑M
m=1 H(sm jd | j)

]}
⎞
⎟⎟⎠

1/λ jd

with i = 1, ...,N, j = 1, ...,K, d = 1, ...,D and m = 1, ...,M.

4.2.1.2 Parameter Estimation using ICA and Gradient Ascent

For parameter estimation using ICA and gradient ascent, zero mean and unit variance is assumed
which is fundamental assumption of the source in ICA. The parameters estimated using ICA with
gradient ascent include basis functions, bias vector and shape parameters. The gradient of complete
data log-likelihood for the parameters of each class is given below:

∇Θ jL (Θ,Z,X ) =
N

∑
i=1

K

∑
j=1

p( j|�Xi)∇Θ j log
(

p(�Xi|ξ j)p j

)
(4.18)

The ∇Θ j represents here the gradient with respect to basis function, bias vector and shape param-
eter.

(4.19)∇Θ jL (Θ,Z,X ) =
N

∑
i=1

K

∑
j=1

p( j|�Xi)
(

∇Θ j log p(�Xi|ξ j) + ∇Θ j log p j

)

The term ∇Θ j log p j will become zero while taking gradient with respect to basis functions,
bias vector and shape parameter which will lead us to :

(4.20)∇Θ jL (Θ,Z,X ) =
N

∑
i=1

K

∑
j=1

p( j|�Xi)
(

∇Θ j log p(�Xi|ξ j)
)
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The class log-likelihood log p(�Xi|ξ j) in Eq. (4.20) can be estimated using standard ICA
model as follows:

(4.21)log p(�Xi|ξ j) = log
p(�s j,i)∣∣detA j

∣∣
The source can be computed by applying estimated basis function and bias vector in the

above equation and log-likelihood of the standard ICA model will become:

(4.22)log p(�Xi|ξ j) = log p(A j
−1(�Xi −�b j))− log

∣∣detA j
∣∣

Basis Functions Estimation: The adaptation of basis functions for each component of ICA mix-
ture is performed by maximizing the log-likelihood with respect to basis functions A j for each
component of mixture model:

∇A jL (Θ,Z,X ) =
N

∑
i=1

p( j|�Xi)∇A j log p(�Xi|ξ j) (4.23)

The adaptation performed by the gradient ascent with respect to the basis functions is given as:

ΔA j ∝ p( j|�Xi)
∂

∂A j
log p(�Xi|ξ j) (4.24)

The derivative in Eq. (4.24) can be computed using standard ICA learning algorithm given in [196]
and it also described in Appendix C.6.

∂
∂A j

log p(�Xi|ξ j) = A j

[
I−2tanh(�s j,i)�sT

j,i

]
(4.25)

By using the standard ICA model for log-likelihood, we get:

ΔA j ∝ p( j|�Xi)A j

[
I−2tanh(�s j,i)�sT

j,i

]
(4.26)

In the adaptation of basis functions, the gradient of component of the mixture model with respect
to basis functions is weighted by p( j|�Xi). An estimate of the basis functions using gradient ascent
is as follows:

Â j = A j +α
(

p( j|�Xi)A j

[
I−2tanh(�s j,i)�sT

j,i

])
(4.27)

where α is step size and source is represented as:

�s j,i = A j
−1(�Xi −�b j) (4.28)
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Bias Vectors Estimation: The adaptation of the bias vector can be performed for each compo-
nent of the mixture model by using the Eq. (4.20).

∇b jd L (Θ,Z,X ) =
N

∑
i=1

p( j|�Xi)∇b jd log p(�Xi|ξ j) (4.29)

The gradient ascent is used for the adaptation, with the gradient of the component density with
respect to bias term b jd for each component of the mixture model:

Δb jd ∝ p( j|�Xi)
∂

∂b jd
log p(�Xi|ξ j) (4.30)

Eq. (4.22) can be applied in Eq. (4.30) to adapt the bias term:

Δb jd ∝ p( j|�Xi)
∂

∂b jd

[
log p(A j

−1(�Xi −�b j))− log
∣∣detA j

∣∣] (4.31)

An approximate method can also be applied for the adaptation of bias vectors instead of apply-
ing gradient. For approximate method, maximum likelihood estimate must satisfy the following
condition:

N

∑
i=1

p( j|�Xi)∇Θ j log p(�Xi|ξ̂ j) = 0 (4.32)

The bias term b jd can be adapted as follows:

∇b jd L (Θ,Z,X ) = 0, ⇒
N

∑
i=1

p( j|�Xi)∇b jd log p(�Xi|ξ j) = 0 (4.33)

By substituting Eq. (4.22) into Eq. (4.33), it is clear that gradient of the log p(A j
−1(�Xi−�b j)) must

be zero as given in Eq. (4.34).
∇b jd log p(A j

−1(�Xi −�b j)) = 0 (4.34)

In the adaptation of bias vector, if we assume that we have a large amount of data and that
the prior probability distribution function of the source is differentiable and symmetric, then the
log p(A j

−1(�Xi −�b j)) will be symmetric as well and the bias vector�b j will be approximated by the
weighted average of data samples as:

�b j =
∑N

i=1
�Xi p( j|�Xi)

∑N
i=1 p( j|�Xi)

(4.35)

Shape Parameter Estimation: For the estimation of parameters in ICA mixture model, unit
variance and zero mean is assumed. For the purpose of estimation of shape parameter, same
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assumption is adopted and the problem will become the estimation of shape parameter from the
data. The gradient ascent is used to estimate the shape parameter by maximizing the log-likelihood:

∇λ jd L (Θ,Z,X ) =
N

∑
i=1

p( j|�Xi)∇λ jd log p(�Xi|ξ j) (4.36)

The gradient ascent is used for the adaptation, with the gradient of the component density with
respect to shape parameter vector λ jd for each component of the mixture model.

Δλ jd ∝ p( j|�Xi)
∂

∂λ jd
log p(�Xi|ξ j) (4.37)

In the adaptation of shape parameter λ jd , the gradient of component of the mixture model with
respect to shape parameter is weighted by p( j|�Xi). An estimate of the shape parameter using
gradient ascent is as follows:

λ̂ jd = λ jd +α
(

p( j|�Xi)
∂

∂λ jd
log p(�Xi|ξ j)

)
(4.38)

The estimation of shape parameter in an ICA mixture model is discussed in [195] and the term
∂

∂λ jd
log p(�Xi|ξ j) is computed with the assumption of unit variance and zero mean as follows:

∂
∂λ jd

log p(Xid |ξ j) =
∂

∂λ jd
log

[
fggd(Xid |ξ j)H(Xid | j)∫

∂ j
fggd(u|ξ j)du

]
(4.39)

= h(Xid |ξ j)−
∫

∂ j
fggd(u|ξ j)h(u|ξ j)du∫

∂ j
fggd(u|ξ j)du

where the term h(Xid|ξ j) is represented as:

h(Xid |ξ j) =
∂

∂λ jd
log fggd(Xid |ξ j) (4.40)

=

[
1

λ jd
+

3
2λ jd

[
Ψ(1/λ jd)−Ψ(3/λ jd)

]]−A(λ jd) |Xid |λ jd log |Xid |

−A(λ jd)

(
1
2

log
Γ(3/λ jd)

Γ(1/λ jd)
+

1
2λ jd

[
Ψ(1/λ jd)−3Ψ(3/λ jd)

]) |Xid |λ jd

The term h(u|ξ j) also follows the computation presented in Eq. (4.40). The term
∫

∂ j
fggd(u|ξ j)

h(u|ξ j)du can be approximated similar to Eq. (4.12).

∫
∂ j

fggd(u|ξ j)h(u|ξ j)du ≈ 1
M

M

∑
m=1

h(s jmd |ξ j)H(s jmd | j) (4.41)
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The estimation of shape parameter can be expressed as follows:

λ̂ jd = λ jd +α

[
p( j|�Xi)

{
h(Xid |ξ j)−−∑M

m=1 h(s jmd |ξ j)H(s jmd | j)
∑M

m=1 H(s jmd | j)

}]
(4.42)

The complete procedure for estimation of shape parameter is discussed in Appendix C.5. The

complete learning procedure for BGGMM with ICA is given in Algorithm 4, where tmin is mini-

mum threshold used to examine convergence criteria in each iteration.

Algorithm 4 Model Learning with BGGMM with ICA

1: Input:Dataset X = {�X1, . . . ,�XN}, tmin.
2: Output: Θ.
3: {Initialization}:
4: K-Means Algorithm (Computation of �μ1, . . . ,�μK & cluster assignment)
5: for all 1 ≤ j ≤ K do
6: Computation of p j

7: Computation of {�σ j}
8: Set the {(�λ j = 2}
9: end for

10: {Expectation Maximization}:
11: while relative change in log-likelihood ≥ tmin do
12: {[E Step]}:
13: for all 1 ≤ j ≤ K do
14: Compute p( j|�Xi) for i = 1, . . . ,N. using Eq. (4.8).
15: end for

16: {[M step]}:
17: for all 1 ≤ j ≤ K do
18: start ICA Algorithm
19: Update the basis functions A j using Eq. (4.27).
20: Update the bias vector�b j using Eq. (4.35).
21: Update shape parameter�λ j using Eq. (4.42).
22: end ICA
23: Update the mixing parameter p j using Eq. (2.12).
24: Update the mean �μ j using Eq. (4.14).
25: Update standard deviation �σ j using Eq. (4.17).
26: end for

27: end while
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4.3 Unsupervised Keyword Spotting using ICA Mixture Model

In this section, bounded generalized Gaussian mixture model (BGGMM) using independent com-

ponent analysis (ICA) is applied to an existing unsupervised keyword spotting setting for the gen-

eration of posteriorgrams. The ICA mixture model is trained without any transcription information

to generate the posteriorgrams which further labels the speech frames of the keyword example(s)

and test data. For the detection of occurrence of a specific keyword in the test data, the posterior-

grams of one or more keyword examples are compared with the posteriorgrams of test utterances

using the segmental dynamic time warping (DTW). A score fusion method is used to obtain the

result of the keyword detection by ranking the distortion scores of all the test utterances. TIMIT

speech corpus is used for the evaluation of this unsupervised keyword spotting setting. The key-

word detection results demonstrate the viability and effectiveness of the proposed algorithm in

unsupervised keyword spotting framework.

4.3.1 Experiments and Results

4.3.1.1 Design of Experiments

In this section, experimental framework and the detection results based on unsupervised keyword

spotting framework reported in [1] are presented. However, instead of using independently trained

phonetic recognizer or GMM, bounded generalized Gaussian mixture model using ICA is em-

ployed for training the model and generation of posteriorgrams. The training process involves

directly modeling the speech without any transcription information using the proposed ICA mix-

ture model. The trained model is used to decode the keyword examples and test utterances in

posteriorgrams. The segmental DTW is used to compare the posteriorgrams between keyword

examples and the test utterances. The distortion scores are ranked for the most reliable warping

path to achieve keyword detection [1, 255]. The detailed description on the keyword spotting is

provided in [1]. In the experimental setup, the parameters of the keyword spotting framework are

chosen exactly the same as given in [1], in order to have fair comparison of the keyword detection

results. The unsupervised keyword spotting framework with ICA mixture model is shown in Fig.

(4.1).

4.3.1.2 Experimental Framework and Results

The unsupervised keyword spotting framework is evaluated on TIMIT speech corpus. The TIMIT

speech corpus consists of 6300 speech utterances which contains 4620 speech utterances for train-

ing and 1680 speech utterances for testing. Each speech utterance is segmented into frames of 25
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Figure 4.1: Unsupervised Keyword Spotting with ICA Mixture Model [3]

ms with a window shifting of 10 ms, where each frame is represented by 13 MFCCs. The K-Means

is used to initialize the parameters of ICA mixture model, with shape parameter set to 2 for each

component of the mixture model. The number of components for the mixture model is chosen to

be 50 as in [1]. The other parameters for this framework are smoothing factor λ , segmental DTW

adjustment window size and score weighing factor α . The smoothing factor is part of discounting

based smoothing strategy applied to move small portion of probability mass from non-zero to zero

dimensions. The segmental DTW adjustment window size is used to prevent the warping process

from going too far or behind in warping path. The score weighing factor α is used to vary the

averaging function in the voting based score merging and ranking [1]. The smoothing factor λ ,

segmental DTW adjustment window size and score weighing factor α are chosen to be 0.00001, 6

and 0.5 respectively, in order to have the same keyword spotting scenario as in [1]. For testing, 10-

keywords set presented in [1] is used and given in Table 4.9. Table 4.10 summarizes the keyword

detection performance for different number of keyword examples. For the evaluation of keyword

detection, three different evaluation matrices reported in [1, 255] are examined, which are defined

as: (1) the average precision for the top 10 utterance hits termed as P@10, (2) the average precision

for the top N utterance hits termed as P@N, where N is equal to the number of occurrences of the

each keyword in the test data, (3) the average equal error rate (EER), where false acceptance rate

is equal to false rejection rate. For the P@10 evaluation, 4 keywords from Table 4.9 are considered

because only they have occurred more than 10 times both in the training and the test dataset. For

P@N and EER evaluations, with one keyword example experiment, all the keywords from Table

4.9 are used. For P@N and EER evaluations, with 5 keyword examples experiment, two keywords

are not used because they have occurred less than 5 times in the training set. For P@N and EER

evaluations, with 10 keyword examples experiment, 5 keywords are not used because they have

occurred less than 10 times in the training set. The average precision for each keyword is calcu-

lated first and then mean of average precisions of all keywords for P@10 or P@N is computed.
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Table 4.1: TIMIT 10 Keyword List used in [1]

age(3:10) warm(10:8) year(11:177) money(19:17)
artists(7:7) problem(22:9) children(18:15)
surface(3:7) development(9:8) organizations(7:7)

The EER for each keyword is computed based on false acceptance rate (FAR) and false rejection

rate (FRR). The EER mentioned in Table 4.10 is the average of EER for all keywords used for that

particular case. Table 4.10 indicates considerable improvement in the evaluation matrices from

one keyword example to 5 keyword examples. The trend of improvement is slow from 5 to 10

keyword examples. Table 4.3 presents the results ranked on the basis of EER in the 5-example

experiment. For the 5-example experiment, 8 keywords are used and the ranking indicates that

words with more syllables tended to have better performance. The word "organizations" have 5

syllables and the word "development" have 4 syllables and they present better performance in the

recognition. The keyword spotting framework is adapted from [1], but the experimental results do

not provide direct comparison since framework presented in [1] has used two databases named as

TIMIT and MIT lecture corpus (TIMIT database is employed in this work) and the performance is

mainly evaluated with MIT lecture corpus which is not publicly available. Nevertheless, a superfi-

cial comparison with the results presented in [1] is possible since the same evaluation matrices are

computed. In [1], the P@10 evaluation does not use TIMIT database at all and P@N evaluation

is mostly based on MIT lecture corpus. In this work, P@10 matrix is computed with 4 keywords,

since only 4 keywords from the list of keywords presented in [1] have occurred more than 10 times

in the training and test data. The P@10 performance (64.87%) presented in this work is compara-

ble with their result (68.3%) while they have used 30 keywords from the MIT lecture corpus. For

the P@N and EER evaluations, they have used 10 keywords from the TIMIT speech corpus and

30 keywords from the MIT lecture corpus which have occurred more than 100 times for most of

the keywords in both training and test data. Although apparently, the results for P@N and EER

evaluations are higher from their results (P@N : 58.27% vs. 39.3%, EER : 12.35% vs. 15.8%),

but the small database used in this work for P@N and EER evaluations limit the comparison and

it is further required to perform this experiment with a larger vocabulary database in order to have

fair comparison. However, the keyword detection results based on average precision (P@10 and

P@N), EER and the ranking of several keywords based on EER, validate the productiveness and

viability of the proposed algorithm for statistical modeling.
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Table 4.2: Evaluation matrix for different number of keyword examples

# of Examples P@10 P@N EER
1 28.37% 26.43% 29.20%
5 57.75% 51.39% 13.79%

10 64.87% 58.27% 12.35%

Table 4.3: Ranking of Keywords by EER for 5 No. of examples

organizations(6.1%) development(6.7%) childern(11.3%) problem(12.6%)
artists(13.5%) money(15.8%) warm(21.4%) year(22.9%)

4.3.2 Discussion about Keyword Spotting

In this section, BGGMM with ICA is presented as a model for statistical learning and used for un-

supervised keyword spotting. In the proposed keyword spotting framework, speech data are mod-

eled using BGGMM and ICA. The proposed model is used for the generation of posteriorgrams for

the keyword examples and test data. The segmental DTW is used to compare the posteriorgrams

and voting based score merging strategy presented in [1] is employed for determining the detection

results. TIMIT speech corpus is used for the evaluation of this keyword spotting framework. The

keyword detection results based on average precision (P@10 and P@N), EER and ranking of sev-

eral keywords based on EER validate the effectiveness of proposed algorithm. Although keyword

detection results are encouraging and competitive as compared to the results reported in [1], more

simulations are needed with a larger vocabulary database to demonstrate further the effectiveness

of proposed algorithm.

4.4 Speaker Classification via Supervised Hierarchical Clus-

tering using ICA Mixture Model

In this section, speaker classification using supervised hierarchical clustering is provided. Bounded

generalized Gaussian mixture model with ICA is adapted for statistical learning in the clustering

framework. In the presented framework ICA mixture model is learned through training data and

the posterior probability is used to split the training data into clusters. The class label of the train-

ing data is further selected to mark each cluster into a specific class. The cluster-class informa-

tion from the training process is taken as reference for the classification of test data into different

speaker classes. This framework is employed for the gender and 10 speakers classification and

TIMIT and TSP speech corpora are selected to validate and test the classification framework. This
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classification framework also validates the statistical learning of our recently proposed ICA mix-

ture model. In order to examine the performance of the ICA mixture model, the classification

results are compared with same framework using Gaussian mixture model. It is observed that:

(i) presented clustering framework performs well for the speaker classification, (ii) ICA mixture

model outperforms Gaussian mixture model in the statistical learning based on the classification

accuracy for gender and multi-class scenarios.

4.4.1 Supervised Hierarchical Clustering via ICA Mixture Model

In this section, supervised hierarchical clustering framework based on ICA mixture model is pre-
sented, which is applied to the speaker classification. ICA mixture model is trained using training
data and the posterior probability is employed to compute the specific cluster membership for each
observation of the training data. The class label of training data is selected to decode the clusters
into particular class. The posterior probability is computed for the testing data and cluster-class
information from the training is employed to find the particular class for each observation of the
testing data. Since the class label of the training data is used to decode the clusters into particu-
lar class and ICA mixture model is adapted for the statistical learning, therefore this framework
is called the supervised hierarchical clustering framework based on ICA mixture model. Let us
consider the training data represented as X = (�X1, ...,�XN), then complete data log-likelihood can
be written as Eq. (4.7). By replacing each Zi j by its expectation, that ith observation belongs to
jth component of mixture model, posterior probability is defined as Eq. (5.43). The membership
of �Xi computed from the posterior probability can be selected to mark the clusters into a particular
class. This information will further help for decoding the clusters into particular class for testing
data using the membership function of the posterior probability for the observations of test data.
If testing data is represented as Y = (�Y1, ...,�YL), the posterior probability for �Yl can be computed
using the trained mixture model and is represented as follows:

p( j|�Yl) =
p(�Yl|ξ j)p j

∑K
j=1 p(�Yl|ξ j)p j

(4.43)

The supervised hierarchical framework for gender speaker classification is shown in Fig. (4.2a).

The speech data contains the MFCC features for male and female speakers and the class label

is also provided. The ICA mixture model is trained in unsupervised fashion and the posterior

probability for each observation of the training data is computed. The posterior probability marks

each observation to a specific cluster and the class information of the training data can be selected

to mark each cluster to a specific class to which it belongs. For instance, if �Xi belongs to the male

class and it lies in the cluster 2, then cluster 2 is marked as male cluster. All the clusters can

be marked as male or female from the training information and class label. In Fig. (4.2a), it is
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Figure 4.2: Speaker Classification using Clustering

assumed that the ICA mixture model is learned with 10 mixture densities and we have the class

label for each observation. From posterior probability it is inferred that female observations from

the speech data belongs to cluster J1, J7 and J9, so these clusters can be further labeled as female

class and rest of the clusters were inferred as male class in the same way. It is worth mentioning

that training of the ICA mixture model is unsupervised because the speech data is adopted without

any class label during the training. However, the clustering framework is supervised because class

label is employed after the training to mark the clusters into specific class. In the 10 speakers

classification, the same binary classification framework is extended for 10 classes (see Fig. (4.2))

and clusters obtained from the posterior probability are decoded into particular classes based on

class label of the training data. In the classification using clustering, one important aspect is to

accurately mark the number of classes representing data. In the classical approach, data is modeled

by a fixed number of components of the mixture model which is equal to the number of classes.

There are two problems associated with classical approach: (i) one single density component for

each class does not necessarily fit the class data (ii) there is an overlap between the classes when

using a single distribution to model each class [232]. In speaker recognition, while modeling

several speakers in one class or even a single speaker in one class may have the above problems.

This is because several speakers in a single class always have some distinct features and even

same speaker will have dissimilar behavior while pronouncing the same words or utterances on

different times. Due to the problems associated with classical model, we have adopted multi-

cluster model which improve the learning of classification framework. There is another problem

with the learning of female speakers and it is reported that speaker recognition performance of

female speakers is almost worse as compare to the male speakers [256, 257]. It is observed that in

multi-cluster modeling, the performance of female speakers is improved during learning for their

particular class.
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4.4.2 Experiments and Results

4.4.2.1 Design of Experiments

In this section, experimental framework for male/female and 10 speakers classification based on

supervised hierarchical clustering is presented, which uses ICA mixture model for the statistical

learning as described in section II. In the pre-processing stage, voice activity detection (VAD) is

employed to distinguish between speech and non-speech parts of the speech sequences. By intro-

ducing the VAD in the pre-processing it is assured that the training of ICA mixture model is not

inferred with the non-speech segments of the data set. The next stage is feature extraction and Mel

frequency cepstral coefficients (MFCCs) are selected as features. MFCCs have demonstrated their

effectiveness in speech recognition and speaker classification and we have computed 13 dimen-

sional features same as standard hidden Markov model toolkit (HTK). The ICA mixture model

is trained using training part of the speech databases and the posterior probability is employed to

determine the membership of an observation to a particular cluster. The class label for the training

data is adopted to decode the clusters into particular class. The posterior probability is computed

for the testing data and clustering information from the training is selected to find the particular

class for each observation of the testing data. This classification framework is called the supervised

hierarchical clustering based on ICA mixture model and presented in a detail in section II. This

framework is also implemented using Gaussian mixture model for comparison.

4.4.2.2 Experimental Framework and Results

Speaker classification based on supervised hierarchical clustering is evaluated on TIMIT and TSP

speech databases [91, 143]. The TIMIT speech corpus consists of 6300 speech utterances which

contains 4620 speech utterances for training and 1680 speech utterances for testing. The TSP

speech database consists of 1378 speech utterances spoken by 23 speakers (11 male, 12 female).

For gender speaker classification, 6 speakers are selected for testing from the TSP and rest of the

data is dedicated for training. For 10 speakers classification, 10 speakers (5 male, 5 female) having

60 speech utterances for each speaker are selected from the TSP with 40 speech utterances for

training and 20 utterances for testing. The TIMIT speech corpus is employed for gender speaker

classification whereas TSP database is selected for both classification scenarios. In the clustering

framework for both scenarios, each speech utterance is segmented into frames of 25 ms with a

window shifting of 10 ms, where each frame is represented by 13 MFCCs. The VAD is applied

before feature extraction in order to have only speech frames in the training and testing data. The

k-means is employed to initialize the parameters of ICA mixture model, with shape parameter set

to 2 for each component of the mixture model. For the gender speaker classification, ICA mixture
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Figure 4.3: Classification Accuracy for Gender and 10 Speakers using ICA Mixture and GMM

model is trained using the training sets of both speech databases separately. From the posterior

probability, speech utterances are divided into clusters by the membership of particular component

of the mixture model. The class label for each utterance is provided for the training data which fur-

ther leads to label the clusters into particular class. Once the clusters are labeled into the particular

classes, the cluster-class information can be selected to decode the testing data into male/female

speakers. The classification framework is evaluated using classification accuracy computed from

the confusion matrices. For the TIMIT speech corpus, the classification accuracy is computed for

different number of component of mixture model between 2-100 and plotted in Fig. (4.3a). In the

classification accuracy curve for both classes, it is observed that by increasing the number of com-

ponents of the mixture model, the classification rate is increased. However, after 30 components

of the mixture model, the increase in classification accuracy is slow. The classification framework

having ICA mixture model is compared with the same framework having GMM on the basis of
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Table 4.4: 10 Speakers classification confusion matrix using TSP database.

(a) ICA Mixture, M=10

MH MI MJ MK ML FH FI FJ FK FL
MH 12 1 2 1 3 0 1 0 0 0
MI 2 9 1 4 1 1 0 1 0 1
MJ 1 3 11 1 2 0 1 0 0 1
MK 2 1 5 9 1 1 0 1 0 0
ML 1 1 2 1 10 1 1 1 2 0
FH 1 0 1 1 0 8 1 2 4 2
FI 0 1 0 2 1 5 7 1 1 2
FJ 0 0 1 1 0 0 1 12 2 3
FK 1 1 0 1 0 2 1 3 9 2
FL 1 1 0 1 0 1 2 5 2 7

(b) ICA Mixture, M=40

MH MI MJ MK ML FH FI FJ FK FL
MH 15 1 1 1 1 0 0 1 0 0
MI 0 13 2 2 1 1 0 0 0 1
MJ 1 1 17 1 0 0 0 0 0 0
MK 1 1 1 16 1 0 0 0 0 0
ML 0 1 0 1 18 0 0 0 0 0
FH 1 0 0 1 0 13 1 2 1 1
FI 0 1 0 0 0 1 15 1 1 1
FJ 0 0 1 0 0 1 1 14 1 2
FK 1 0 0 0 0 1 1 2 14 1
FL 0 0 0 0 1 1 0 1 1 16

(c) ICA Mixture, M=60

MH MI MJ MK ML FH FI FJ FK FL
MH 17 1 0 1 1 0 0 0 0 0
MI 1 16 1 0 1 1 0 0 0 0
MJ 0 1 18 0 0 1 0 0 0 0
MK 2 0 1 14 1 1 0 1 0 0
ML 0 1 2 1 13 1 1 0 0 1
FH 0 0 0 0 0 15 1 1 2 1
FI 0 0 0 0 0 1 17 1 0 1
FJ 0 1 0 0 0 1 0 16 1 1
FK 1 0 1 0 0 1 3 1 13 0
FL 0 0 0 0 0 1 1 0 0 18

classification rate. The overall classification rate for ICA mixture model in the setting of 100 mix-

ture components is 88.92% whereas in same setting for GMM, the classification rate is 81.87%. It

is also noted that for smaller number of mixture components, the recognition of female speakers

is very poor which is improved for higher number of mixture components. It is also observed that

multi-cluster model has improved the model learning for both classes as compared to the classic

model. In the classic model, the female speakers have poor performance while fitting the data in

one class. In comparison with GMM, ICA mixture model has performed well which validates the

effectiveness of ICA mixture model for speaker classification and statistical learning. For the TSP

speech database, the speech utterances from 17 speakers (8 male, 9 female) are adopted to train

the ICA mixture model whereas 6 speakers (half male, half female) are employed for the testing

with each speaker having 60 speech utterances. The classification accuracy for different number of

components of ICA mixture model and GMM in gender speaker classification framework is com-

puted and plotted in Fig. (4.3b). The highest value for overall classification accuracy is observed at

40 mixture components (86.94%) for ICA mixture model and at 50 mixture components (81.11%)

for GMM. For the 10 class speaker classification TSP speech database is employed for tuning the

speaker classification framework. In this scenario, 10 speakers are chosen and 40 speech utterances

for each speaker are selected for training and 20 speech utterances for each speaker are adopted

for testing. The classification results are computed for different number of mixture components

and the resulting confusion matrices for classic and multi-cluster models are shown in Tables 4.4a,

4.4b and 4.4c. In order to have a comparison of ICA mixture model with GMM for 10 speakers

classification, the same framework is implemented with GMM and overall classification rate is

plotted for both models in Fig. (4.3c). The highest classification rate is observed at 60 mixture

components for both scenarios of 10 speakers classification (78.50% for ICA mixture & 69% for

GMM) which demonstrates the effectiveness of ICA mixture model in this setting.

4.4.3 Discussion about Speaker Classification

In this section, supervised hierarchical clustering framework is presented which is adopted for

speaker classification. The first stage of the clustering is performed by the ICA mixture model
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and in the second stage, clusters received from the posterior probability are further classified using

the class label of the training data. The cluster-class label information from training process is

used for the classification of testing data. The classification framework is validated on TIMIT and

TSP speech corpora. This framework also validates the statistical learning of ICA mixture model

proposed in [2]. In order to examine the performance of the ICA mixture model, the classification

framework is also implemented with GMM and the classification accuracy in different modes

is compared. The proposed framework having ICA mixture model is employed for gender and

10 speakers classification. It is concluded that supervised hierarchical clustering framework has

performed considerably well for the speaker classification and ICA mixture model surpasses the

GMM in the classification rate and model learning. It is also concluded that multi-cluster model

has improved the problem of female speakers to fit the class data as compared to classic model.

4.5 Blind Source Separation

In this section, blind source separation (BSS) using ICA mixture model is provided. In BSS,

mixing information of instantaneous linear mixtures is estimated which is further employed for

recovering the source signals. The mixing information can be estimated using an ICA mixture

model. In the proposed ICA mixture model setting we denote mixing matrix as basis function to

avoid confusion from the mixture used in mixture model. For the viability and effectiveness of

proposed framework, we have computed several objective measure which demonstrates the quality

of speech signal after source separation. The details of the experiments and results are given in the

following subsections.

4.5.1 Experiments and Results

4.5.1.1 Design of Experiments

In this subsection, experimental framework for BSS is described. It uses ICA mixture model for

statistical learning as described in Section 4.2. In BSS, basis functions are estimated using ICA

mixture model which is further applied to separate mixed signals. We have estimated basis func-

tions 2×2, 3×3, 4×4 and 5×5 to compute 2, 3, 4 and 5 sources in separate experiments. In order

to validate this BSS framework, TIMIT, TSP and NOIZEUS speech corpora are adopted during

the experiments [91, 143, 258]. For BSS, only speech signal after linear mixing are observed. No

prior information about basis functions is utilized during the source separation. BSS framework is

evaluated using subjective and objective measures. Subjective analysis consists of speech signals

before and after the source separation. Objective analysis consists of SDR, SIR, SAR and PESQ.
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Objective measures SDR, SIR and SAR are measured in dB and PESQ score lies in the range −0.5

to 4.5. Further details on objective measures can be found in [251–253]. This framework is also

implemented using ICA in order to compare and examine the validity of statistical learning of ICA

mixture model in BSS. ICA used in this work is implemented using Infomax [259].

4.5.1.2 Experimental Results

Blind source separation based on ICA mixture model is validated using TIMIT, TSP and NOIZEUS

speech corpora. We have conducted 4 experiments to compute 2, 3, 4 and 5 speech sources from

this BSS framework. For the recovery of 2, 3, 4 and 5 speech sources, we have taken linear

Table 4.5: Objective measure for separation of 2 speech signals

Measure
TIMIT TSP NOIZEUS

ICA Mix ICA ICA Mix ICA ICA Mix ICA
SDR (dB) 61.57 57.42 60.28 55.47 51.86 45.38
SIR (dB) 62.29 55.89 61.15 57.91 47.95 43.53
SAR (dB) 292.75 276.75 295.81 279.19 289.48 280.69

PESQ 2.40 1.80 2.30 1.90 2.35 2.15

Table 4.6: Objective measure for separation of 3 speech signals

Measure
TIMIT TSP NOIZEUS

ICA Mix ICA ICA Mix ICA ICA Mix ICA
SDR (dB) 59.42 54.87 55.31 45.67 41.25 36.75
SIR (dB) 61.13 55.93 53.48 48.28 42.13 35.77
SAR (dB) 293.41 276.36 291.48 279.29 261.19 258.15

PESQ 2.35 1.65 2.40 1.80 2.20 1.90

Table 4.7: Objective measure for separation of 4 speech signals

Measure
TIMIT TSP NOIZEUS

ICA Mix ICA ICA Mix ICA ICA Mix ICA
SDR (dB) 52.91 41.24 40.56 52.36 38.63 35.48
SIR (dB) 50.24 43.17 43.16 48.15 37.14 34.00
SAR (dB) 292.58 278.00 274.42 276.24 263.35 249.85

PESQ 2.10 2.00 1.90 2.15 2.20 1.85

mixture of 2, 3, 4 and 5 sources, respectively, from each database and performed blind source

separation by employing BGGMM using ICA. Once the sources are recovered, objective analysis is

performed on sources to examine quality of recovered speech signals and viability of ICA mixture
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Table 4.8: Objective measure for separation of 5 speech signals

Measure
TIMIT TSP NOIZEUS

ICA Mix ICA ICA Mix ICA ICA Mix ICA
SDR (dB) 51.87 46.44 52.92 40.55 49.75 38.04
SIR (dB) 52.65 47.16 49.21 39.49 50.71 40.63
SAR (dB) 291.29 277.32 285.03 276.55 271.19 260.12

PESQ 2.15 1.65 1.90 1.60 2.00 1.70

model in BSS. Objective measures include SDR, SIR, SAR and PESQ analysis. SDR is a measure

of distortion in output signal and it is defined as ratio between energy of clean signal and distortion

and it is measured in dB. SIR is the ratio of target signal prower to the interference signal. It

measures the amount of undesired interference still present after BSS and it is measured in dB. SAR

measures the quality after the source separation in terms of absence of artificial noise and measured

in dB. PESQ is an objective assessment tool which correlates well with subjective listening scores

[251–253]. The experiments are repeated 10 times with different linear speech mixtures of 2

and 3 sources from each database and average of objective measures is computed. In BSS for

reconstruction of 4 and 5 sources, the experiments are repeated 10 times for TIMIT and TSP

databases and 7 and 6 times (due to the limitation of database) for NOIZEUS speech corpus,

respectively and average of the objective measures is computed. We have performed same analysis

using ICA in order to have a comparison of proposed BSS framework. The objective measures

after the recovery speech source signals are given in Table 4.5, 4.6, 4.7 & 4.8. From the objective

measures, it is observed that ICA mixture model outperforms the ICA in a relative setting of BSS

for 2, 3 and 5 sources for all databases and TIMIT and NOIZEUS speech corpora for recovery of

4 sources. However, in TSP database, ICA performs better for BSS in recovery of 4 sources. The

speech signals before mixing, after mixing and after BSS are shown in Figs. (4.4 & 4.5).

4.5.2 Discussion About BSS

In this section, ICA mixture model is proposed as solution to BSS. For the validation of proposed

framework, TIMIT, TSP and NOIZEUS speech corpora are selected. The BSS framework is eval-

uated using signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR), signal-to-artifact

ratio (SAR) and perceptual evaluation of speech quality (PESQ). From the above experiments on

BSS using BGGMM using ICA, it is observed that ICA mixture model performs better as com-

pared to ICA except for the recovery of 4 sources in TSP speech database. It is also observed that

rate of this improvement becomes slower when we increase the number linear mixtures in source

separation. From the objective measures and speech signals given in Figs. (4.4 & 4.5), BGGMM
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Figure 4.4: Blind Source Separation with 2 Signals

with ICA has demonstrated its success in BSS.

4.6 Blind Source Separation as preprocessing to Keyword Spot-

ting

In this subsection, proposed framework for BSS as pre-processing to unsupervised keyword spot-

ting using an ICA mixture is presented. In real time applications, detection rate of speech recogni-

tion and keyword spotting is badly affected by mixing of speech signals with noise or other speech

signals. It is also possible to intentionally mix the speech signal with noise or some other speech

utterances to reduce or some times completely eliminate the chances of getting spotted by keyword
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Figure 4.5: Blind Source Separation with 3 Signals

spotting systems. In many security application of keyword spotting, it becomes critically important

to use BSS as pre-processing when we are interested to spot particular keywords and we do not

want to lose any piece of information.

An unsupervised keyword spotting framework via segmental DTW on Gaussian posterior-

grams was presented in [1]. However, instead of using independently trained phonetic recognizer

or GMM, an ICA mixture was proposed for training the model and generation of posteriorgram

in [2]. The training process involves directly modeling the speech without any transcription infor-

mation using the proposed ICA mixture model. The trained model was further used to decode the

keyword examples and test utterances in posteriorgrams. Segmental DTW was used to compare

the posteriorgrams between keyword examples and the test utterances. The distortion scores were
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Figure 4.6: Blind Source Separation as Pre-processing to Unsupervised Keyword Spotting via an ICA Mixture Model

ranked for the most reliable warping path to achieve keyword detection [1, 255]. The detailed de-

scription on the keyword spotting is provided in [1, 2]. In the experimental setup presented in [2],

parameters of the keyword spotting framework were chosen exactly the same as given in [1], in

order to have fair comparison of the keyword detection results. ICA mixture model has demon-

strated its viability and effectiveness in Keyword spotting framework based on detection rate pre-

sented in [2]. Experiments were performed on TIMIT speech corpus and a list of 10 keywords was

selected to test the trained model for keyword spotting. In this framework same keyword spotting

based on ICA mixture is adopted.

We have extended BSS framework presented in Subsection 4.5 and proposed as pre-processing

for keyword spotting when the speech utterances with target keywords are mixed with noise or

other speech utterances. The training phase of this proposed framework will remain same as pre-

sented in [2]. In order to examine the performance of keyword spotting framework, BSS is applied

on test data to recover the speech signals. Once source separation is achieved through BSS via

ICA mixture, the recovered signals can be applied to trained model for keyword detection. The

proposed framework is shown in Fig. (4.6), which is inspired by [3]. Two types of problems occur

in keyword spotting, when source mixing between speech utterances exist at initial stage during

the testing. In the first case, if a speech utterance with a particular keyword is mixed with another

speech utterance(s) and an overlap of a word exist in the second utterance(s) on the same place as

the particular keyword in the first utterance. In this case, the keyword will be mixed with the word

of second utterance and it will more likely not detected during the keyword spotting. In the second

case, if a silent patch of speech exist in the second utterance at the same place as keyword in the

first speech utterance, it will be detected in the first speech utterance during the keyword spotting.

But it will also get detected in the second utterance which is a false alarm because keyword actu-

ally don’t exist in the second speech utterance. These issues are addressed by proposing BSS as

pre-processing to keyword spotting.
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4.6.1 Experiments and Results

4.6.1.1 Design of Experiment

In this subsection, experimental framework and detection results for BSS based keyword spotting

are presented. For keyword spotting, we have adopted the framework proposed in [2], and for the

pre-processing stage, blind source separation framework presented in Subsection 4.5 is adopted.

In both frameworks, ICA mixture is employed for statistical modeling and estimation of basis

functions. In the training phase, speech data dedicated for training are used directly for statistical

modeling without any transcription information. Once the model is trained, it can be used further

to decode the keyword examples and test utterances into posteriorgrams. In this framework, it is

assumed that test data are mixed with noise or other speech signals which requires the application

of BSS before generation of posteriorgrams by employing the trained model. In order to perform

pre-processing through BSS, we have created mixtures of 2, 3, 4 and 5 speech signals on test

data. TIMIT speech corpus is employed during the modeling of keyword spotting framework and

validation of the said framework is performed through the selected part of test data after being

processed through BSS [143]. The speech signals processed through BSS are further applied to

the trained model for generation of posteriorgrams. Segmental DTW is employed to compare

the posteriorgrams for test utterances and keyword examples. Mel frequency cepstral coefficients

(MFCCs) are used as features for in this framework.

4.6.1.2 Experimental Framework and Results

The BSS based keyword spotting framework is evaluated on TIMIT speech corpus. The TIMIT

speech corpus is composed of 6300 speech utterances which contains 4620 speech utterances for

training and 1680 speech utterances for testing. In this work, keyword spotting framework is

modeled by all of the training data. For testing, speech utterances with target keywords and without

target keywords were selected. The speech utterances with target keywords were mixed with the

speech utterances without target keywords, for creating a mixture of 2, 3, 4, and 5 speech files.

In these mixtures only one speech utterance has the target keyword while the rest of the speech

utterances have no target keyword. Voice activity detection and feature extraction are applied

directly before the modeling during the training. For testing, feature extraction is applied after

the test data are being processed through blind source separation. For feature extraction, each

speech utterance is segmented into frames of 25 ms with a window shifting of 10 ms, where each

frame is represented by 13 MFCCs. In order to initialize the parameters of ICA mixture during the

training, K-Means is applied for mean, standard deviation and mixing weights estimation whereas

shape parameter is set to 2 for each component of mixture model. During the training for Keyword
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Table 4.9: TIMIT 10 Keyword List used in [1, 2]

age(3:10) warm(10:8) year(11:20) money(19:17) artists(7:7)

problem(22:9) children(18:15) surface(3:7) development(9:8) organizations(7:7)

spotting, number of components of ICA mixture is set to be 50 as in [1, 2]. The smoothing factor,

segmental DTW adjustment window size and score weighing factor are chosen to be 0.00001, 6

and 0.5, respectively as in [1, 2]. The keyword "Year" is uttered 177 times in the test part of dataset

but in these experiments only 20 speech utterances with this keyword were selected, because rest

of the keywords are uttered less than 20 times in the test data. For the testing, 10-keyword set

presented in [1, 2] is adopted and given in Table 4.9.

For the evaluation of keyword detection, three different evaluation matrices reported in [1,

2, 255] are examined, which are defined as: (1) the average precision for the top 10 utterance hits

termed as P@10, (2) the average precision for the top N utterance hits termed as P@N, where N

is equal to the number of occurrences of the each keyword in the test data, (3) the average equal

error rate (EER), where false acceptance rate is equal to false rejection rate. It is assumed that test

data are affected by source mixing and it needs to be processed through BSS before applying to

the trained model for generation of posteriorgrams. In order to validated the effectiveness of BSS

as pre-processing, a new test data from the selected part of test data from TIMIT speech corpus is

created. The purpose of this new dataset is to create the mixtures of 2× 2, 3× 3, 4× 4 and 5× 5

with speech utterances having target keywords and having no target keywords. In each mixture,

one speech utterance has the target keyword while rest of them do not have target keyword. For

example, in the case of keyword "age", all the 10 speech utterances with this keyword are taken

and each utterance is mixed with another speech utterance with no target keyword for creating a

mixture of 2× 2. For mixture of 3× 3, each speech utterance of target keyword is mixed with

2 more utterances having no target keyword. For the keyword "age", with mixtures of 2 × 2,

we have 20 speech utterances in total (10 of them have target keyword and 10 have no target

keyword), whereas with mixtures of 3×3, we have 30 speech utterances in total (10 of them have

target keyword and 20 have no target keyword). All mixtures for the keywords given in Table 4.9

were created in the same fashion as discussed before. During the whole experiment, 100 speech

utterances with no target keywords from the Table 4.9 and all the speech utterances with target

keywords were selected and used according to the requirement for creating the mixture of speech

data for each keyword. The next stage is to apply BSS and then adopt trained ICA mixture to

generate posteriorgrams. BSS is performed by ICA mixture and same framework is adopted for
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BSS as discussed in Subsection 4.5. Table 4.10 indicates the performance of keyword detection

before and after BSS, for different number of keyword examples based on P@N, P@N and EER.

For P@10 evaluation, 4 keywords from Table 4.9 are considered because only they have

occurred more than 10 times both in the training and test part of dataset. For P@N and EER

evaluations, with one keyword example experiment, all the keywords from the Table 4.9 were

used. For P@N and EER evaluations, with 5 keyword examples experiment, 8 keywords were used

because they have occurred more than 5 times in the training set. For P@N and EER evaluations,

with 10 keyword examples experiment, only 5 keywords were used because they have occurred

more than 10 times in the training set. The average precision for each keyword is calculated first

and then mean of average precisions of all keywords for P@10 or P@N were computed. The

EER for each keyword was computed based on false acceptance rate (FAR) and false rejection rate

(FRR). The EER mentioned in Table 4.10 is the average of EER for all keywords used for that

particular case [1, 2]. Table 4.10 indicates considerable improvement in the evaluation matrices

after being processed through BSS for 2× 2 and 3× 3 mixtures in comparison to the case when

no BSS was applied. There is also improvement for 4× 4 and 5× 5 mixtures as compared to the

case when no BSS was applied, but the trend of improvement is slow as compared to the 2×2 and

3×3 mixtures.

Table 4.10: Evaluation matrix with BSS and without BSS

Mixture
Without BSS After BSS

Examples P@10 P@N EER P@10 P@N EER

2×2
1 11.43% 9.58% 81.19% 23.15% 22.45% 37.43%
5 13.76% 12.25% 77.55% 46.86% 43.89% 25.38%

10 15.27% 13.81% 76.19% 53.44% 52.11% 24.81%

3×3
1 8.97% 7.13% 85.47% 22.67% 22.15% 39.19%
5 10.14% 9.58% 81.44% 44.63% 41.74% 26.88%

10 10.76% 9.85% 80.11% 51.46% 49.15% 25.43%

4×4
1 7.54% 6.45% 89.13% 20.13% 21.37% 40.87%
5 8.10% 6.93% 87.46% 40.92% 38.49% 29.15%

10 8.37% 7.21% 86.79% 46.12% 44.32% 28.87%

5×5
1 6.13% 5.89% 91.37% 18.67% 18.15% 42.37%
5 6.48% 6.27% 88.49% 38.19% 36.56% 31.13%

10 7.22% 6.91% 88.07% 43.68% 42.06% 30.45%

The results for average precisions (P@10 and P@N) are very close to each other, because

utterance of available keywords in the test data is very close to 10 in most of the cases. It is also

important to note that only 4 keywords are present more than 10 times in both training and testing

and hence P@10 was computed only for 4 keywords from the list given in Table 4.9. However for

P@N, most of the keywords were used for computations, so it more effective for examining the
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viability of this framework. It is also observed that trend of improvement is higher when going from

one keyword example to 5 keyword examples, whereas it is slow from 5 to 10 keyword examples. If

we compare the results presented in this chapter with the results presented in the frameworks when

no source mixing is considered, there is a lot of room for improvement. However, comparison of

keyword spotting with BSS and keyword spotting without BSS indicates the effectiveness of this

framework in keyword spotting when speech signals are affected by mixing. It is also observed

that the problem of false alarm due to the mixing of sources is more severe in computing the

detection rate for keyword spotting, which actually reduces the overall performance of keyword

spotting. In many security applications, it is necessarily important to find the particular keywords

because they are further used to detect the particular speakers. If false alarm occur and even

correct speaker is also detected, it will increase the number of possibilities to find the particular

speaker. In the other case, when keyword is mixed with the words of other speech utterances

and it is more likely not detected during the keyword spotting, it can increase the chances of

completely losing a particular information. It is important when it is mixed intentionally to hide

the particular information (keyword) which is critical to security. The experiments performed in

this work only include the mixing of speech utterances. This framework needs to be extended for

keyword spotting when speech utterances are mixed with noise. This experiment can be further

extended with a larger vocabulary database by having more number of keyword examples.

4.6.2 Discussion About Unsupervised Keyword Spotting with BSS as Pre-

processing

We proposed BSS as pre-processing to unsupervised keyword spotting by employing an ICA mix-

ture model when speech utterances having target keywords are affected by mixing of noise or other

keywords.We have used the same ICA mixture model for statistical modeling in the keyword spot-

ting framework as recently proposed in our work. The experiments are performed by employing

TIMIT speech corpus to train the ICA mixture for keyword spotting and then selecting the part of

test data for creating a mixture of 2, 3, 4 and 5 speech signals to perform the blind source sepa-

ration before the keyword spotting. The purpose of creating these mixtures of speech utterances

with target keyword and with no target keyword is to validate the effectiveness of proposed frame-

work. The keyword detection results are presented before and after the test data being processed

through blind source separation. The keyword detection results based on average precision (P@10

& P@N), and EER validate the effectiveness of proposed framework when speech utterances with

target keywords are affected by mixing. Our experiments have shown significant improvement in

detection of keywords when mixed speech signals are processed through BSS via an ICA mixture.
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Chapter 5
Multivariate Bounded Support Asymmetric

Mixture Models and MML

In this chapter, we have proposed two algorithms using asymmetric distributions. First, bounded

asymmetric Gaussian mixture model (BAGMM) is proposed. In the described model, parameter

estimation is performed by maximization of log-likelihood via expectation maximization (EM)

and Newton Raphson algorithm. This model is applied to several applications for data cluster-

ing. As a first step, to validate our model, we have chosen spambase dataset for clustering spam

and non-spam emails. Another application selected for validation of our algorithm is object data

clustering and we have used two popular datasets (Caltech 101 & Corel) in this task. Finally we

have performed clustering on texture data and VisTex dataset is employed for this task. In order to

evaluate the clustering, in all above mentioned applications, several performance metrics are em-

ployed and experimental results are further compared in similar settings with asymmetric Gaussian

mixture model (AGMM). From the experiments and results in all applications, it is examined that

BAGMM has outperformed AGMM in the clustering task.

Second, bounded support asymmetric generalized Gaussian mixture model (BAGGMM) is

proposed for data modeling as an alternative to unbounded mixture models for the cases when

the data lies in bounded support region. The parameters of the model are learned through maxi-

mum likelihood estimation and Expectation Maximization (EM) with Newtons Raphson method

is adopted for optimization of parameters. Model selection in mixtures is also considered to be

an integral part of clustering, thus we also have proposed model selection criterion for BAGGMM

through minimum message length. In order to validate the performance of mixture model, it is

applied to image spam detection, object clustering and visual scene categorization. For the experi-

ments, Spam Hunter, ETHZ, GHIM and 15-Scene image datasets are adopted and several cluster-

ing scenarios are developed to see the effectiveness of proposed model. The clustering framework
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is also compared with AGGMM in a similar setting with all the experiments. In the next phase,

whole clustering framework is extended to examine the performance of proposed model selection

criterion and compared with different techniques to find the optimal mixture component, which

further improve the clustering process. From the experiments, it is observed that proposed BAG-

GMM and model selection criterion have demonstrated its success in several learning applications.

5.1 Multivariate Bounded Asymmetric Gaussian Mixture Model

In the case of GMMs, the components distribution is symmetric in nature. However, generally

while using real data this is not the case. The data might not be symmetrical, which means GMM

could not provide a good fit to the data. So, using an asymmetric distribution will be a better

choice for our model. Hence in our model, we use an asymmetric Gaussian distribution which will

provide a better fit to the data [32, 55–57]. Asymmetric Gaussian distribution has two standard

deviation parameters on the left and right side of distribution, which make it possible to model

asymmetric data [32]. Motivated by observations in [62], we propose the idea of bounded asym-

metric Gaussian mixture model (BAGMM) for data modeling which also has the ability to model

asymmetric nature of data. In the proposed model, parameter estimation is performed by max-

imum likelihood with Newton Raphson via expectation maximization algorithm (EM). In order

to evaluate the effectiveness of our model, BAGMM is applied to several data clustering applica-

tions. As a first step, it is applied to categorize spam and non-spam emails and spambase dataset

is employed for this task. The performance of clustering task is examined by 9 different metrics

which provide insightful knowledge about the effectiveness of BAGMM in clustering the spam-

base dataset. The results of this task are further compared with AGMM in a similar framework. In

second application, BAGMM is applied to object categorization and two popular image datasets

renowned for object categorization (Caltech 101 & Corel) are employed for this task. The cluster-

ing performance is observed by difference metrics and with a comparison with AGMM in a similar

framework. In the third application for data clustering, BAGMM is applied to texture image dataset

(VisTex) and performance of our proposed algorithm is examined via performance measures and

a comparison with AGMM. In Fig. (5.1), graphical abstract is presented which also provide more

clear understanding of the contributions of this research work.
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Figure 5.1: Graphical abstract

5.2 Proposed Model

We propose BAGMM as an extension to AGMM for an improved data modeling. In this section,

proposed bounded asymmetric Gaussian mixture model is presented which uses maximum log-

likelihood for the estimation of its parameters. Before presenting the proposed model, asymmetric

Gaussian mixture model.

5.2.1 Mixture of Asymmetric Gaussian Distributions

Asymmetric Gaussian mixture model was proposed to handle the asymmetric properties present in

different kind of data [32, 56, 260]. For a univariate data, if one data sample is represented by X ,

then asymmetric Gaussian distribution is represented as follows:

f (X |μ,σl,σr) =
2√

2π(σl +σr)
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
[
− (X−μ)2

2σ2
l

]
if X < μ

exp
[
− (X−μ)2

2σ2
r

]
if X ≥ μ

(5.1)
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where parameters of distribution μ, σl & σr are mean, left standard deviation and right standard

deviation, respectively. The parameters of AGMM are estimated using ML estimate and com-

plete parameter estimation is explained in [32, 56, 260]. In Fig. (5.2), graphical representation of

AGMM is displayed, where Xi is a data point with i = 1, ...,N, μ , σl & σr, parameters of distri-

bution and p and Zi are mixing weight and posterior probability in a mixture model and they are

explained in detail in Section 5.2.2.

p

μ

Zi

Xi

N
σr

σl

Figure 5.2: Graphical representation of an asymmetric Gaussian mixture model

5.2.2 Mixture of Bounded Asymmetric Gaussian Distribution for Multidi-

mensional Data

Consider that a D-dimensional random variable �X = (X1, ...,XD), follows a K components mixture

distribution if its probability function can be written in the following form:

p(�X |Θ) =
K

∑
j=1

p(�X |ξ j)p j (5.2)

provided p j ≥ 0, ∑K
j=1 p j = 1, Θ = (ξ1,ξ2,ξ3,ξ4) with ξ1 = (�μ1, ...,�μK), ξ2 = (�σl1 , ...,�σlK), ξ3 =

(�σr1 , ...,�σrK) and ξ4 = (p1, ..., pK). The term p(�X |ξ j) is BAGD for the vector �X and defined as:

p(�X |ξ j) =
f (�X |ξ j)H(�X |Ω j)∫

∂ j
f (�u|ξ j)du

(5.3)
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where H(�X |Ω j) =

⎧⎨
⎩1 if �X ∈ ∂ j

0 otherwise
(5.4)

f (�X |ξ j) =
D

∏
d=1

2√
2π(σl jd +σr jd)

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
[
− (Xd−μ jd)

2

2σ2
l jd

]
if Xd < μ jd

exp
[
− (Xd−μ jd)

2

2σ2
r jd

]
if Xd ≥ μ jd

(5.5)

where �μ j = (μ j1, ...,μ jD), �σl j = (σl j1 , ...,σl jD), and �σr j = (σr j1 , ...,σr jD) are the mean, left stan-

dard deviation and right standard deviation of the D-dimensional BAGD, respectively. The term∫
∂ j

f (�u|ξ j)du in Eq. (5.3) is the normalization constant that indicates the share of f (�X |ξ j) which

belongs to the support region ∂ . The AGD f (�X |ξ j) can also be defined as:

f (�X |ξ j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(�X |ξ j) if Xd < μ jd

g2(�X |ξ j) if Xd ≥ μ jd

(5.6)

where

g1(�X |ξ j) =
D

∏
d=1

2√
2π(σl jd +σr jd)

exp

[
−(Xd −μ jd)

2

2σ2
l jd

]
(5.7)

g2(�X |ξ j) =
D

∏
d=1

2√
2π(σl jd +σr jd)

exp

[
−(Xd −μ jd)

2

2σ2
r jd

]
(5.8)

Consider the case where the input is set of vectors represented as X = (�X1, ...,�XN). With a mixture

of K BAGDs, the distribution of X can be modeled by a mixture of K BAGDs:

p(X |Θ) =
N

∏
i=1

K

∑
j=1

p(�Xi|ξ j)p j (5.9)

provided p j ≥ 0 and ∑K
j=1 p j = 1. In Eq. (5.9), Θ represents the parameters of mixture model hav-

ing K classes as Θ = (ξ1,ξ2,ξ3,ξ4), where ξ1 = (�μ1, ...,�μK), ξ2 = (�σl1 , ...,�σlK), ξ3 = (�σr1 , ...,�σrK)

and ξ4 = (p1, ..., pK). Stochastic indicator vectors �Zi = (Zi1, ...,ZiK), one for each observation are

introduced. The role is to encode the membership of each observation for a relative component of

the mixture model. In other words, Zi j, the unobserved variable in each indicator vector, equals 1
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if �Xi belongs to class j and 0, otherwise. The complete data likelihood is given below.

p(X ,Z |Θ) =
N

∏
i=1

K

∏
j=1

(
p(�Xi|ξ j)p j

)Zi j
(5.10)

where Zi j is the posterior probability and can be written as:

Zi j = p( j|�Xi) =
p(�Xi|ξ j)p j

∑K
j=1 p(�Xi|ξ j)p j

(5.11)

and Z = {�Z1, ...,�ZN}.

5.2.3 Parameters Learning

The parameters are estimated from the maximization of positive log-likelihood function. The log-

likelihood function can be written as:

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Zi j log
(

p(�Xi|ξ j)p j

)
(5.12)

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Zi j

{
log p j + log f (�Xi|ξ j)+ logH(�Xi|Ω j)− log

∫
∂ j

f (�u|ξ j)du
}

(5.13)

The complete-data log-likelihood can be maximized with respect to the model parameters. This

can be done by taking the gradient of the log-likelihood with respect to p j, μ j, σl j and σr j . The

estimation of mixing parameter is followed from Section 2.2.3.1. The estimation for μ j, σl j and

σr j in a bounded support asymmetric Gaussian mixture model is explained below.

5.2.3.1 Mean Parameter Estimation

The new value of Mean μ jd , can be estimated by maximizing the log-likelihood function given

in Eq. (5.13) with respect to �μ j. The derivative of log-likelihood and estimation of maximum

likelihood are given in Appendix D.1 & D.2. The estimated value of mean is given as follows:

∂L (X ,Z |Θ)

∂ μ jd
= 0 (5.14)
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μ̂ jd =

∑N
i=1 Zi j

{
Xid −

∫
∂ j

f (u|ξ j)(u−μ jd)dx∫
∂ j

f (u|ξ j)du

}
∑N

i=1 Zi j
(5.15)

Note that, in Eq. (5.15), the term
∫

∂ j
f (u|ξ j)(u− μ jd)dx is the expectation of function (u− μ jd)

under the probability distribution f (Xd|ξ j). Then, this expectation can be approximated as:

∫
∂ j

f (u|ξ j)(u−μ jd)dx ≈ 1
M

M

∑
m=1

(sm jd −μ jd)H(sm jd |Ω j) (5.16)

where sm jd ∼ f (u|ξ j) is a set of random variables drawn from the asymmetric Gaussian distribution

for the particular component j of the mixture model. The set of data with random variables have

M vectors with D dimensions. M is a large integer chosen to generate the set of random variables.

Similarly, the term
∫

∂ j
f (u|ξ j)dx in Eq. (5.15) can be approximated as:

∫
∂ j

f (u|ξ j)dx ≈ 1
M

M

∑
m=1

H(sm jd |Ω j) (5.17)

μ̂ jd =

∑N
i=1 Zi j

{
Xid − ∑M

m=1(sm jd−μ jd)H(sm jd |Ω j)

∑M
m=1 H(sm jd |Ω j)

}
∑N

i=1 Zi j
(5.18)

5.2.3.2 Left Standard Deviation Estimation

The new value of left standard deviation σl jd , can be estimated by maximizing the log-likelihood

function given in Eq. (5.13) with respect to �σl j .

∂L (X ,Z |Θ)

∂σl jd

= 0 (5.19)

∂L (X ,Z |Θ)

∂σl jd

=
N

∑
i=1,Xid<μ jd

Zi j

(
(Xid −μ jd)

2

σ3
l jd

)
− (5.20)

N

∑
i=1,u<μ jd

Zi j

σ3
l jd

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫

∂ j
2√

2π(σl jd+σr jd )

(
exp

[
− (u−μ jd)

2

2σ2
l jd

])
(u−μ jd)

2dx
∫

∂ j
g1(u|ξ j)dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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N

∑
i=1,Xid<μ jd

Zi j

(
(Xid −μ jd)

2

σ3
l jd

)
−

N

∑
i=1,u<μ jd

Zi j

σ3
l jd

{∫
∂ j

g1(u|ξ j)dx(u−μ jd)
2dx∫

∂ j
g1(u|ξ j)dx

}
= 0 (5.21)

The term
∫

∂ j
g1(u|ξ j)(u−μ jd)

2dx can be approximated as below:

∫
∂ j

g1(u|ξ j)(u−μ jd)
2dx ≈ 1

M

M

∑
m=1

(lm jd −μ jd)
2H(lm jd |Ω j) (5.22)

where lm jd ∼ g1(Xd|ξ j) is a set of random variables drawn from the asymmetric Gaussian dis-

tribution with u < μ jd for the particular component j of the mixture model. Similarly, the term∫
∂ j

f (u|ξ j)dx in Eq. (5.15) can be approximated as:

∫
∂ j

g1(u|ξ j)dx ≈ 1
M

M

∑
m=1

H(lm jd |Ω j) (5.23)

N

∑
i=1,Xid<μ jd

Zi j

(
(Xid −μ jd)

2

σ3
l jd

)
−

N

∑
i=1

Zi j

σ3
l jd

{
1
M ∑M

m=1(lm jd −μ jd)
2H(lm jd |Ω j)

1
M ∑M

m=1 H(lm jd |Ω j)

}
= 0 (5.24)

It is noticed that Eq. (5.24) is non-linear and Newton-Raphson method is used for the estimation of

σ̂l jd , which requires the computation of second derivative in a similar manner as we have computed

in Eqs. (5.20 & 5.24). The complete procedure for first and second order derivatives is provided in

Appendix D.3 & D.4, respectively along with approximation procedure for second order derivative,

similar to Eq. (5.24).

σ̂l jd 	 σl jd −
⎡
⎣(∂ 2L (X ,Z |Θ)

∂σ2
l jd

)−1(
∂L (X ,Z |Θ)

∂σl jd

)⎤⎦ (5.25)

5.2.3.3 Right Standard Deviation Estimation

Right standard deviation σr jd , can be estimated by maximizing the log-likelihood function given

in Eq. (5.13) with respect to �σr j .

∂L (X ,Z |Θ)

∂σl jd

= 0 (5.26)
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∂L (X ,Z |Θ)

∂σr jd

=
N

∑
i=1,Xid≥μ jd

Zi j

(
(Xid −μ jd)

2

σ3
r jd

)
− (5.27)

N

∑
i=1,u≥μ jd

Zi j

σ3
r jd

⎧⎪⎪⎨
⎪⎪⎩
∫

∂ j
2√

2π(σl jd+σr jd )

(
exp

[
− (u−μ jd)

2

2σ2
r jd

])
(u−μ jd)

2dx∫
∂ j

g2(u|ξ j)dx

⎫⎪⎪⎬
⎪⎪⎭

N

∑
i=1,Xid≥μ jd

Zi j

(
(Xid −μ jd)

2

σ3
r jd

)
−

N

∑
i=1,u≥μ jd

Zi j

σ3
r jd

{∫
∂ j

g2(u|ξ j)dx(u−μ jd)
2dx∫

∂ j
g2(u|ξ j)dx

}
= 0 (5.28)

The term
∫

∂ j
g2(u|ξ j)(u−μ jd)

2dx can be approximated as below:

∫
∂ j

g2(u|ξ j)(u−μ jd)
2dx ≈ 1

M

M

∑
m=1

(rm jd −μ jd)
2H(rm jd |Ω j) (5.29)

where rm jd ∼ g2(Xd|ξ j) is a set of random variables drawn from the asymmetric Gaussian dis-

tribution with u ≥ μ jd for the particular component j of the mixture model. Similarly, the term∫
∂ j

g2(u|ξ j)dx in Eq. (5.15) can be approximated as:

∫
∂ j

g2(u|ξ j)dx ≈ 1
M

M

∑
m=1

H(rm jd |Ω j) (5.30)

N

∑
i=1,Xid≥μ jd

Zi j

(
(Xid −μ jd)

2

σ3
r jd

)
−

N

∑
i=1

Zi j

σ3
r jd

{
1
M ∑M

m=1(rm jd −μ jd)
2H(rm jd |Ω j)

1
M ∑M

m=1 H(rm jd |Ω j)

}
= 0 (5.31)

It is noticed that Eq. (5.31) is non-linear, therefore Newton-Raphson method is used for the estima-

tion of σ̂r jd , which requires the computation of second derivative in a similar manner as computed

in Eqs. (5.27 & 5.31). The complete procedure for first and second order derivatives is provided in

Appendix D.5 & D.6, respectively along with approximation procedure for second order derivative,

similar to Eq. (5.31).

σ̂r jd 	 σr jd −
⎡
⎣(∂ 2L (X ,Z |Θ)

∂σ2r jd

)−1(
∂L (X ,Z |Θ)

∂σr jd

)⎤⎦ (5.32)

The complete learning of BAGMM is given in Algorithm 5, where tmin is minimum threshold used

to monitor the convergence criteria in each iteration. In the initialization phase, K-Means is applied
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Algorithm 5 Model Learning for BAGMM

1: Input:Dataset X = {�X1, . . . ,�XN}, tmin.
2: Output: Θ, Z .
3: {Initialization}:
4: K-Means Algorithm (Computation of �μ1, . . . ,�μK & cluster assignment)
5: for all 1 ≤ j ≤ K do
6: Computation of p j
7: Computation of {(�σl j & �σr j)=�σ j}
8: end for

9: {Expectation Maximization}:
10: while relative change in log-likelihood ≥ tmin do
11: {[E Step]}:
12: for all 1 ≤ j ≤ K do
13: Compute p( j|�Xi) for i = 1, . . . ,N. using Eq. (5.11).
14: end for

15: {[M step]}:
16: for all 1 ≤ j ≤ K do
17: Estimation of mixing parameter p j using Eq. (2.12).
18: Estimation of mean �μ j using Eq. (5.18).
19: Estimation of left standard deviation �σl j using Eq. (5.25).
20: Estimation of right standard deviation �σr j using Eq. (5.32).
21: end for

22: end while

for computation of mean and data assignment in each cluster. This information is further used for

computation of standard deviation and mixing weight during initialization phase.

5.3 Textual Spam Detection

Email has become the prominent choice of communication, particularly for professional pur-

poses [261]. Among the legitimate emails conveying meaningful and important information, there

is an immense amount of spam ones which not only contain disturbing commercial contents but

also deliver scamming schemes such as phishing [262]. Indeed, the ubiquitous usage of emails

has made it the fitting platform for cyberattacks, which bring about annoyance and unnecessary

time or possibly money loss. Furthermore, unsolicited spams have also been the leading cause

for the productivity and financial cost of various companies due to hiring cybersecurity special-

ists and expanding email servers [263]. Therefore, it is crucial that spam instances be efficiently

and accurately detected and removed to avoid wasting additional efforts. Recent works applying
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Table 5.1: Performance of spambase data clustering based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGMM 85.69 84.23 87.15 86.76 12.85 85.47 71.40 85.48 85.67
AGMM 77.05 73.75 80.36 78.97 19.64 76.27 54.23 76.31 76.98

Gaussian mixture models on spam detection have shown their efficiency and modeling capabili-

ties [264, 265]. Thus, we propose continuation of this research via asymmetric Gaussian mixture

model. We have applied our proposed BAGMM for clustering the spam and non-spam emails and

it is further extended with AGMM to have a comparison in order to evaluate the effectiveness of

BAGMM in clustering.

The spambase dataset [266] is chosen for our experiment, in which each feature vector rep-

resents the occurrences ‘histograms of words’ in emails. There are 3626 emails evenly divided as

spams and non-spams. The confusions matrix given in Fig. (5.3) and results in Table (5.1) show

that proposed algorithm outperforms the AGMM in clustering the spam and non-spam emails. The

evaluation of this data clustering framework is done by choosing all above performance metrics

and results of all metrics are better for BAGMM as compared to AGMM. For spam detection, low

value of FPR is very important and in the results for BAGMM, FPR is improved as compared to

AGMM.
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Figure 5.3: Confusion matrix of spambase dataset with BAGMM and AGMM, respectively
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Figure 5.4: Sample images of each class of Caltech 101 dataset

Table 5.2: Performance of object data clustering (Caltech 101) based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGMM 81.41 77.04 95.67 72.08 4.33 72.67 69.43 74.52 85.85
AGMM 73.35 64.11 93.91 61.65 6.09 60.49 56.98 62.87 77.59

5.4 Object Categorization via Bounded Asymmetric Gaussian

Mixture Model

Object clustering, one of the most fundamental topic in computer vision, has received increas-

ing attention as the rapid development of machine learning techniques and latest machines having

good computational capabilities [267]. The challenging aspects of the aforementioned task are

due to the status variation of the objects in natural environments such as different postures, angles,

distances, etc. Furthermore, objects captured in real world conditions usually contain other items

in the background which may cause the mis-classification with the noises. Recent clustering anal-

yses using mixture models have shown good results on numerous categorization problems namely

scenes [268], sport activities [269], medial related images [270], and 3D objects [232]. Thus, the

prospective progress has motivated the authors to apply the proposed model on this challenging

task with two widely used datasets: Caltech 101 [271] and Corel [272, 273].

An accurate representation of the images is essential for performing efficient inference pro-

cess. Excellent outcomes have been achieved by utilizing frameworks based on Bag of Visual

Words (BOVW). The main idea is extracting local features for each image using SIFT(Scale In-

variant Feature transform) [274]. Then, the collection of all the 128-D descriptors are clustered

with K-means in order to build the visual words vocabulary, in which the dimension of the feature

vectors is the number of centroids.

5.4.1 Experiments and Results

5.4.1.1 Experimental Framework and Results: Caltech 101 Dataset

In this subsection, we used the Caltech 101 dataset for object clustering. This dataset is popular

[271, 275–277] which has demonstrated its effectiveness for object categorization using different
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Figure 5.5: Confusion matrix of Caltech 101 dataset with BAGMM and AGMM, respectively

algorithms [278, 279], techniques [280] and feature extraction methods [281–284] and hence, it

is well suited for object clustering in our current research. It contains 101 categories of different

objects. It consists of 3D pose variations along with multiple objects in a single image. The images

inside this dataset are of moderately of good quality, the categories are well annotated, selected and

has pose variation controlled. For the experimentation, we have used 5 classes namely "Brain",

"Bonsai", "Airplane", "Faces" and "Motorbikes" where these classes contains 98, 128, 800, 435

and 798 images, respectively. Some examples of images from these classes are given in Fig. (5.4).

After several experiments, we examined that optimal vocabulary size is 50 and hence, BOVW gives

a matrix having a size of 2259× 50, where columns represent the frequency of visual words and

row is equal to the number of images. Afterward, this matrix is given as an input to the proposed

mixture model. In order to ensure the performance of our proposed algorithm, we have used

several performance metrics as described in Section 5.3. For comparison, we have implemented

the same framework with AGMM. In this data clustering task, the distribution of classes is not

balanced which make it difficult to differentiate between different classes and it is depicted from

the confusion matrix provided for AGMM as shown in Fig (5.5). By applying BAGMM, same

clustering task is improved a lot and it is worth to note that our proposed algorithm outperformed

the AGMM as presented in Table (5.2).

5.4.1.2 Experimental Framework and Results: Corel Dataset

In this subsection, we discuss the experiment design. We employed the Corel dataset, which con-

sists of 10,000 images from 100 categories. We have used SIFT and BOVW methods in order to

achieve a good representation of the images in feature space. In order to conduct the experiments,
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Figure 5.6: Sample images of each class of Corel dataset

Table 5.3: Performance of object data clustering (Corel dataset) based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGMM 93.40 93.40 98.35 94.32 1.65 93.45 92.12 93.86 95.84
AGMM 83.80 83.80 95.95 85.37 4.05 84.14 80.41 84.58 89.67

we have used 5 classes where each class contains 100 images. The classes chosen in this exper-

iment are "Playing Cards", "Paintings", "Easter Eggs", "Beads" and "Cups". Some examples of

images from these classes are given in Fig. (5.6). After feature extraction, BOVW is a matrix of

dimension 500×50, where columns represents the frequency of visual words and row is equal to

the number of images. The introduced model is applied to perform the clustering task. In order

to validate the performance of our model, we have used several metrics as described in Section

5.3. In order to have a comparison of our model with AGMM, we also have performed clustering

using AGMM. Based on the results given in Table (5.3) and confusion matrix in Fig. (5.7), it is

observed that our proposed algorithm performed better than AGMM. By applying BAGMM, we

have received very high clustering accuracy in this object categorization task and FPR is reduced

from 4.05% to 1.65%.
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Figure 5.7: Confusion matrix of Corel dataset with BAGMM and AGMM, respectively
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5.5 Texture Image Clustering

Texture is a fundamental element of human visual impression towards the world [285]. Indeed,

understanding different textures is very beneficial for further complicated object classification,

segmentation analyses, which includes various objects and surface types [286]. In order to counter

issues namely noise, complexity, slow convergence, and over-fitting, feature extraction is required.

Various types of feature extraction methods exist [287]. But, the co-occurrence matrix is a popular

feature extraction technique when it comes to texture data [288–290]. Thus, co-occurrence matrix

is used to extract the texture characteristics [291]. The co-occurrences are calculated with respect

to their neighbors: (1;0), (1;π
4 ), (1;π

2 ), and (3;π
4 ). Then, the co-occurrence matrix of each neighbor-

hood is constructed by considering four features: Homogeneity, Contrast, Correlation, and Energy.

Thus, each image is represented as a 16-D feature vector.

Figure 5.8: Sample images of each class of VisTex dataset

5.5.1 Experiments and Results

5.5.1.1 Experimental Framework and Results for VisTex Texture Dataset

This section is dedicated for experiments and results on texture data clustering. We employed

the MIT Vision Texture (VisTex) dataset [292]. It is a collection of texture images that are rep-

resentative of real-world conditions. We treated the original images as parent images and further

created offspring images from it. In our experiment, we are using co-occurrence matrix for fea-

ture extraction. For the experimentation, we divided each 512× 512 parent image into 64× 64

off-springs images, where each parent image is converted to 64 off-springs images from VisTex

dataset. By using co-occurrence matrix for feature extraction, we converted each offspring image

into feature vector of 1× 16. We have used images from 4 different categories namely “fabric”,

“food”, “paintings” and “tiles”, where these classes contains 192, 320, 448 and 128 sub-images.

Some examples of images from VisTex dataset is given in Fig. (5.8). The data matrix after feature

extraction is provided to BAGMM for data clustering. In order to validate our proposed algorithm,
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Table 5.4: Performance of texture data clustering based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGMM 81.34 84.93 92.80 85.42 07.20 85.17 77.97 85.17 88.78
AGMM 73.90 79.62 89.90 79.59 10.10 79.60 69.51 79.60 84.60

we have used several performance metrics as described in Section 5.3. In order to have a compari-

son, we have implemented the same clustering framework with AGMM. From the results provided

in Table (5.4), it is observed that our proposed algorithm outperformed the AGMM. It is neces-

sary to mention that the classes in this application are not balanced which make the clustering task

very difficult and it is obvious from the confusion matrix for AGMM in Fig. (5.9). By applying,

BAGMM, the clustering accuracy is improved tremendously and FPR is reduced from 10.10% to

7.20%.
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Figure 5.9: Confusion matrix of Vistex dataset with BAGMM and AGMM, respectively

5.6 Discussion about BAGMM

We have proposed BAGMM which uses maximum likelihood for parameter estimation and New-

ton Raphson via expectation maximization approach. The basic reason to propose bounded support

mixture models is that most of the data lies in a bounded range. Due to the bounded nature of most

of the data in different real applications, it makes more sense to propose bounded distributions for

modeling the data. To validate the effectiveness of proposed algorithm in data modeling, we have

chosen spam and non-spam email clustering, object categorization and texture image clustering

applications. For spam and non-spam email clustering, spambase dataset is employed. For object

categorization, Caltech 101 and Corel datasets are chosen with 5 classes from each dataset. For
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texture data clustering, VisTex image texture dataset is used and 4 classes are chosen in our exper-

iments. We have used several performance metrics to examine the effectiveness of our algorithm

in data clustering. We also have used AGMM for data clustering in all proposed experiments in

order to have a comparison with our approach. From the set of experiments on all datasets and in

the light of results achieved based on performance metrics, it is concluded that BAGMM has per-

formed better in data modeling and data clustering as compared to AGMM. Due to great success

of BAGMM in image and spambase datasets, for our future work, we propose the application of

BAGMM in speech and video datasets to explore its modeling capabilities on different kinds of

data.

5.7 Bounded Asymmetric Generalized Gaussian Mixture Model

with MML for Model Selection

To solve problem of symmetry, the asymmetric Gaussian distribution (AGD) is considered with

two parameters dictating the left and right region of the distribution [264, 293]. All the approaches

mentioned above are based on unbounded support distributions, hence called unbounded support

mixtures. However, in many real applications, data are compactly supported [61–64] and bounded

support mixture models have been applied to many applications in speech and image processing

[18, 60, 294].

Due to the success of asymmetric distributions in many learning applications [32, 56, 58, 59],

it is proposed to extend the idea of bounded support mixtures with asymmetric distributions and

in this chapter, bounded support asymmetric generalized Gaussian mixture model (BAGGMM) is

presented and its parameters are estimated with EM and Newton Raphson method. The proposed

algorithm is applied to various clustering applications to examine viability and effectiveness in data

modeling. In this chapter, different image clustering tasks are selected for conducting the experi-

ments using BAGGMM. The first experiment is performed for spam detection using Spam Hunter

dataset. In the second experiment, object recognition is performed by using two datasets (ETHZ

and GHIM) and multiple clustering scenarios are performed. With ETHZ dataset, experiment is

performed with 5 clusters for object recognition on a very small dataset which makes it unique

to validate the performance of the model due to it size and categories of data. With GHIM, two

clustering experiments are conducted for object recognition by choosing 5 clusters in each exper-

iment. In the third experiment, visual scene categorization is chosen and clustering framework is

implemented and tested using 15-Scene and GHIM datasets and multiple clustering scenarios are

created. For the validation of clustering performance in visual scene categorization, 4 experiments

are created with 15-Scene (2 with 4 clusters and 2 with 5 clusters) and 2 experiments with GHIM
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dataset (5 clusters in each). The performance of proposed model in all applications is compared

with AGGMM.

Model selection is another crucial part, in which the optimal number of components that best

fits the dataset is estimated through the inference process. We propose Minimum message length

(MML) based on information theory for our model as it has shown great performances in previous

research works [113, 114, 116]. The proposed model selection criterion for BAGGMM using MML

is validate through several experiments and all the datasets used in clustering experiments are

selected to test the model selection criterion. The experiments for model selection are conducted

for multiple clustering scenarios and 10 different experimental scenarios created with 2, 3, 4 and 5

clusters. The results of each experiment are also compared with 7 different model selection criteria

to examine its performance in finding the optimal number of clusters.

5.8 Proposed Model

In order to overcome the problems associated with unbounded support range, a new distribution

(bounded Gaussian distribution) was presented in [62]. In this section, same idea is extended and

bounded support Asymmetric Generalized Gaussian mixture model is presented.

5.8.1 Mixture of Asymmetric Generalized Gaussian Distributions

Asymmetric Gaussian mixture model was proposed to handle the asymmetric properties present in
different kinds of data [56, 58, 295]. For a univariate data, if one data sample is represented by X ,
then asymmetric Gaussian distribution is represented as follows:

f (X |μ,σl,σr,λ ) =
λ
[

Γ(3/λ )
Γ(1/λ )

]1/2

(σl +σr)Γ(1/λ )
×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
[
−A(λ )

(
μ−X

σl

)λ
]

if X < μ

exp
[
−A(λ )

(
X−μ

σr

)λ
]

if X ≥ μ

(5.33)

where parameters of distribution μ, σl , σr & λ are mean, left standard deviation, right standard

deviation and shape parameters, respectively. The parameters of AGMM are estimated using ML

estimate and complete parameter estimation is explained in [56, 58, 295]. In Fig. (5.10), graphical

representation of AGMM is shown, where Xi is a data point with i = 1, ...,N, μ , σl , σr and λ ,

parameters of distribution and p and Zi are mixing weight and posterior probability in a mixture

model and they are explained in details in Section 5.8.2.
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Figure 5.10: Graphical representation of Asymmetric Generalized Gaussian mixture model

5.8.2 Mixture of Bounded Asymmetric Gaussian Distribution for Multidi-

mensional Data

Consider that a D-dimensional random variable �X = (X1, ...,XD), follows a K components mixture

distribution if its probability function can be written in the following form:

p(�X |Θ) =
K

∑
j=1

p(�X |ξ j)p j (5.34)

provided p j ≥ 0, ∑K
j=1 p j = 1, Θ = (ξ1,ξ2,ξ3,ξ4,ξ5) with ξ1 = (�μ1, ...,�μK), ξ2 = (�σl1 , ...,�σlK),

ξ3 = (�σr1 , ...,�σrK), ξ4 = (�λ1, ...,�λK) and ξ5 = (p1, ..., pK). The term p(�X |ξ j) is BAGGD for the

vector �X and defined as:

p(�X |ξ j) =
f (�X |ξ j)H(�X | j)∫

∂ j
f (�u|ξ j)du

(5.35)

where H(�X | j) =
⎧⎨
⎩1 if �X ∈ ∂ j

0 otherwise
(5.36)
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f (�X |ξ j) =
d

∏
k=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ jd

[
Γ(3/λ jd)
Γ(1/λ jd)

]1/2

(
σl jd+σr jd

)
Γ(1/λ jd)

exp

[
−A

(
λ jd
)( μ jd−Xd

σl jd

)λ jd
]

if Xk < μ jd

λ jd

[
Γ(3/λ jd)
Γ(1/λ jd)

]1/2

(
σl jd+σr jd

)
Γ(1/λ jd)

exp

[
−A

(
λ jd
)(Xd−μ jd

σr jd

)λ jd
]

if Xk ≥ μ jd

(5.37)

where �μ j = (μ j1, ...,μ jD), �σl j = (σl j1 , ...,σl jD), �σr j = (σr j1 , ...,σr jD), �λ j = (λ j1, ...,λ jD) are the

mean, left standard deviation, right standard deviation and shape parameters of the D-dimensional

BAGGD, respectively. The term
∫

∂ j
f (�u|ξ j)du in Eq. (5.35) is the normalization constant that

indicates the share of f (�X |ξ j) which belongs to the support region ∂ . The AGGD f (�X |ξ j) can also

be defined as:

f (�X |ξ j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(�X |ξ j) if Xd < μ jd

g2(�X |ξ j) if Xd ≥ μ jd

(5.38)

where

g1(�X |ξ j) =
D

∏
d=1

λ jd

[
Γ(3/λ jd)
Γ(1/λ jd)

]1/2

(
σl jd +σr jd

)
Γ
(
1/λ jd

) exp

⎡
⎣−A

(
λ jd

)(μ jd −Xk

σl jd

)λ jd
⎤
⎦ (5.39)

g2(�X |ξ j) =
D

∏
d=1

λ jd

[
Γ(3/λ jd)
Γ(1/λ jd)

]1/2

(
σl jd +σr jd

)
Γ
(
1/λ jd

) exp

⎡
⎣−A

(
λ jd

)(Xk −μ jd

σl jd

)λ jd
⎤
⎦ (5.40)

Consider the case where the input is set of vectors represented as X = (�X1, ...,�XN). With a mixture

of K BAGDs, the distribution of X is given by:

p(X |Θ) =
N

∏
i=1

K

∑
j=1

p(�Xi|ξ j)p j (5.41)

Stochastic indicator vectors �Zi = (Zi1, ...,ZiK), one for each observation are introduced. The role is

to encode the membership of each observation for a relative component of the mixture model. In

other words, Zi j, the unobserved variable in each indicator vector, equals 1 if �Xi belongs to class j

and 0, otherwise. The complete data likelihood is given by

p(X ,Z |Θ) =
N

∏
i=1

K

∏
j=1

(
p(�Xi|ξ j)p j

)Zi j
(5.42)
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where Ẑi j is the posterior probability and its expectation can be written as:

Ẑi j = p( j|�Xi) =
p(�Xi|ξ j)p j

∑K
j=1 p(�Xi|ξ j)p j

(5.43)

and Z = {�Z1, ...,�ZN}.

5.8.3 Parameters Learning

The parameters are estimated from the maximization of log-likelihood function which can be writ-

ten as:

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Ẑi j log
(

p(�Xi|ξ j)p j

)
(5.44)

L (X ,Z |Θ) =
N

∑
i=1

K

∑
j=1

Zi j

{
log p j + log f (�Xi|ξ j)+ logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

(5.45)

The complete-data log-likelihood can be maximized with respect to the model parameters. This

can be done by taking the gradient of the log-likelihood with respect to p j, μ j, σl j , σr j and λ j. The

estimation of mixing parameter is discussed in Section 2.2.3.1. Estimation of rest of the parameters

for bounded support asymmetric generalized Gaussian mixture model is explained below.

5.8.3.1 Mean Parameter Estimation

Updated value of Mean μ jd , can be estimated by maximizing the log-likelihood function given

in Eq. (5.45) with respect to �μ j. Taking the first derivative of log-likelihood with respect to μ j

does not give a closed form solution which can be observed from Appendix E.1. The parameters

are estimated using Newton Raphson method which requires the computation of first and second

order derivatives of log-likelihood with respect to μ j which are given in Appendix E.1 & E.2.

Note that, in Appendix E.1, the term
∫

∂ j
g1(u|ξ j)(μ jd −u)λ jd−1du is the expectation of function

(μ jd −u)λ jd−1 under the probability distribution g1(u|ξ j). Then, this expectation can be approxi-

mated as:

∫
∂ j

g1(u|ξ j)(μ jd −u)λ jd−1du ≈ 1
M

M

∑
m=1

(μ jd − lm jd)
λ jd−1H(lm jd | j) (5.46)

where lm jd ∼ g1(u|ξ j) is a set of random variables drawn from the asymmetric generalized Gaussian

distribution with u < μ jd for the particular component j of the mixture model. The set of data with

random variables have M vectors with D dimensions. M is a large integer chosen to generate the
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set of random variables. Similarly, the term
∫

∂ j
g1(u|ξ j)du in Appendix E.1 can be approximated

as:

∫
∂ j

g1(u|ξ j)du ≈ 1
M

M

∑
m=1

H(Im jd | j) (5.47)

In a similar manner, the terms
∫

∂ j
g2(u|ξ j)(u−μ jd)

λ jd−1du and
∫

∂ j
g2(u|ξ j)du are approximated

as follows:

∫
∂ j

g2(u|ξ j)(u−μ jd)
λ jd−1du ≈ 1

M

M

∑
m=1

(rm jd −μ jd)
λ jd−1H(rm jd | j) (5.48)

∫
∂ j

g2(u|ξ j)du ≈ 1
M

M

∑
m=1

H(rm jd | j) (5.49)

where rm jd ∼ g2(Xd|ξ j) is a set of random variables drawn from the asymmetric generalized Gaus-
sian distribution with u ≥ μ jd for the particular component j of the mixture model. Further ap-
proximation in a similar manner can applied on Appendix E.1 & E.2 and it is presented in Eqs.
(5.50 & 5.51) and it is further used in the Newton Raphson method for parameter estimation (Eq.
(5.52)), which is applied within EM algorithm for parameter estimation.

∂L (X ,Z |Θ)

∂ μ jd
= A(λ jd)λ jd

[
N

∑
i=1,Xid≥μ jd

Zi j

(
Xid −μ jd

)λ jd−1

σλ jd
r jd

(5.50)

−
N

∑
i=1,Xid<μ jd

Zi j

(
μ jd −Xid

)λ jd−1

σλ jd
l jd

−
N

∑
i=1,Xid≥μ jd

Zi j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑M
m=1 H(rm jd | j)

(rm jd−μ jd)
λ jd−1

σ
λ jd
r jd

∑M
m=1 H(rm jd | j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
N

∑
i=1,Xid<μ jd

Zi j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑M
m=1 H(lm jd | j)

(μ jd−lm jd )
λ jd−1

σ
λ jd
l jd

∑M
m=1 H(lm jd | j)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

∂ 2L (X ,Z |Θ)

∂ μ2
jd

= A(λ jd)λ jd(λ jd −1)

⎡
⎣− N

∑
i=1,Xik<μ jd

Ẑi j

(
μ jd −Xik

)λ jd−2

σλ jd
l jd

(5.51)
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−
N

∑
i=1,Xik≥μ jd

Ẑi j

(
Xik −μ jd

)λ jd−2

σλ jd
r jd

]

−A(λ jd)
λ jd

σλ jd
jd

⎡
⎢⎢⎢⎢⎣

N

∑
i=1,Xid<μ jd

Zi j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−A(λ jd)∑M

m=1 H(Im jd | j)
(μ jd−Im jd )

2(λ jd−1)

σ
λ jd
l jd

∑M
m=1 H(Im jd | j)

+
∑M

m=1 H(Im jd | j)(λ jd −1)(μ jd − Im jd )
λ jd−2

∑M
m=1 H(Im jd | j)

}

+A(λ jd)
λ jd

σλ jd
jd

(
∑M

m=1 H(Im jd | j)(μ jd − Im jd )
λ jd−1

∑M
m=1 H(Im jd | j)

)2
⎤
⎦

+A(λ jd)
λ jd

σλ jd
jd

⎡
⎢⎢⎢⎣

N

∑
i=1,Xid ≥μ jd

Ẑi j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑M
m=1 H(rm jd | j)A(λ jd)

(rm jd−μ jd)
2(λ jd−1)

σ
λ jd
r jd

∑M
m=1 H(rm jd | j)

+
∑M

m=1 H(rm jd | j)(λ jd −1)(rm jd −μ jd)
λ jd−2du

∑M
m=1 H(rm jd | j)

}

+A(λ jd)
λ jd

σλ jd
jd

(
∑M

m=1 H(rm jd | j)(rm jd −μ jd)
λ jd−1du

∑M
m=1 H(rm jd | j)

)2
⎤
⎦

μ̂ jd 	 μ jd −
⎡
⎣(∂ 2L (X ,Z |Θ)

∂ μ2
jd

)−1(
∂L (X ,Z |Θ)

∂ μ jd

)⎤⎦ (5.52)

5.8.3.2 Left Standard Deviation Estimation

The new value of left standard deviation σl jd , can be estimated by maximizing the log-likelihood

function given in Eq. (5.45) with respect to �σl j and it is observed that from the derivative given in

Appendix E.3, that a closed form solution for this parameter does not exist and Newtons Raphson

method is used. We have computed the first order and second order derivatives with respect to left

standard deviation, which is presented in Appendix E.3 & E.4. The integral terms in the derivatives

(Appendix E.3 & E.4) are approximated in similar fashion as described in Section 5.8.3.1 and

updated equation for derivatives with respect to left standard deviation are presented in Eq. (5.53

& 5.54) which are further used in Netwon Rphson method as in Eq. (5.55).

∂L (X ,Z |Θ)

∂σl jd

=
N

∑
i=1,Xid<μ jd

Ẑi j
A(λ jd)λ jd

σl jd

(
μ jd −Xid

σl jd

)λ jd

(5.53)
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N

∑
i=1,Xid<μ jd

Ẑi j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑M
m=1 H(Im jd | j)

A(λ jd)λ jd(μ jd−lm jd )
λ jd

σ
λ jd+1
l jd

∑M
m=1 H(Im jd | j)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∂ 2L (X ,Z |Θ)

∂σ2
l jd

=−
N

∑
i=1,Xid<μ jd

Ẑi j
A(λ jd)λ jd(λ jd +1)

σ2
l jd

(
μ jd −Xid

σl jd

)λ jd

(5.54)

−
N

∑
i=1,Xid<μ jd

Ẑi jA(λ jd)
λ jd

σλ jd+1
l jd

(
1+

1
(σl jd +σr jd )

)
∑M

m=1(μ jd −Xjd)
λ jd H(Im jd | j)

∑M
m=1 H(Im jd | j)

−
N

∑
i=1,Xid<μ jd

Ẑi j

⎛
⎝A(λ jd)

λ jd

σλ jd+1
l jd

⎞
⎠

2
∑M

m=1(μ jd −Xjd)
2λ jd H(Im jd | j)

∑M
m=1 H(Im jd | j)

+
N

∑
i=1,Xid<μ jd

Ẑi jA(λ jd)
λ jd(λ jd +1)

σλ jd+2
l jd

∑M
m=1(μ jd −Xjd)

λ jd H(Im jd | j)
∑M

m=1 H(Im jd | j)

+
N

∑
i=1,Xid<μ jd

Ẑi j

⎛
⎝A(λ jd)

λ jd(λ jd +1)

σλ jd+2
l jd

⎞
⎠

2 (
∑M

m=1(μ jd −Xjd)
λ jd H(Im jd | j)

)2

(
∑M

m=1 H(Im jd | j)
)2

σ̂l jd 	 σl jd −
⎡
⎣(∂ 2L (X ,Z |Θ)

∂σ2
l jd

)−1(
∂L (X ,Z |Θ)

∂σl jd

)⎤⎦ (5.55)

5.8.3.3 Right Standard Deviation Estimation

Right standard deviation σr jd , can be estimated by maximizing the log-likelihood function given

in Eq. (5.45) with respect to �σr j . The first order derivative presented in Appendix E.5 could not

provide a closed form solution and second order derivative with regard to right standard deviation

(Appendix E.6) is computed. Both derivatives are adopted in Newton Raphson method to estimate

the parameters which is applied within EM algorithm. The integral terms in the derivatives (Ap-

pendix E.5 & E.6) are approximated in a similar fashion as described in the estimation of mean

and left standard deviation and complete derivatives are represented as Eqs. (5.56 & 5.58).

∂L (X ,Z |Θ)

∂σr jd

=
N

∑
i=1,Xid≥μ jd

Ẑi j
A(λ jd)λ jd

σr jd

(
Xid −μ jd

σr jd

)λ jd

(5.56)
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N

∑
i=1,Xid≥μ jd

Ẑi j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑M
m=1 H(rm jd | j)

A(λ jd)λ jd(rm jd−μ jd)
λ jd

σ
λ jd+1
r jd

∑M
m=1 H(rm jd | j)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.57)

∂ 2L (X ,Z |Θ)

∂σ2
r jd

=−
N

∑
i=1,Xid≥μ jd

Ẑi j
A(λ jd)λ jd(λ jd +1)

σ2
r jd

(
Xid −μ jd

σr jd

)λ jd

(5.58)

−
N

∑
i=1,Xid≥μ jd

Ẑi jA(λ jd)
λ jd

σλ jd+1
r jd

(
1+

1
(σl jd +σr jd )

)
∑M

m=1 H(rm jd | j)(μ jd − rm jd )
λ jd

∑M
m=1 H(rm jd | j)

−
N

∑
i=1,Xid≥μ jd

Ẑi j

(
A(λ jd)

λ jd

σλ jd+1
r jd

)2
∑M

m=1 H(rm jd | j)(μ jd − rm jd )
2λ jd

∑M
m=1 H(rm jd | j)

+
N

∑
i=1,Xid≥μ jd

Ẑi jA(λ jd)
λ jd(λ jd +1)

σλ jd+2
r jd

∑M
m=1 H(rm jd | j)(μ jd − rm jd )

λ jd

∑M
m=1 H(rm jd | j)

+
N

∑
i=1,Xid≥μ jd

Ẑi j

(
A(λ jd)

λ jd(λ jd +1)

σλ jd+2
r jd

)2 (
∑M

m=1 H(rm jd | j)(μ jd − rm jd )
λ jd
)2

(
∑M

m=1 H(rm jd | j)
)2

N

∑
i=1,Xid≥μ jd

Zi j

(
(Xid −μ jd)

2

σ3
r jd

)
−

N

∑
i=1,u≥μ jd

Zi j

σ3
r jd

{∫
∂ j

g2(u|ξ j)du(u−μ jd)
2du∫

∂ j
g2(u|ξ j)du

}
= 0 (5.59)

σ̂r jd 	 σr jd −
⎡
⎣(∂ 2L (X ,Z |Θ)

∂σ2r jd

)−1(
∂L (X ,Z |Θ)

∂σr jd

)⎤⎦ (5.60)

5.8.3.4 Shape Parameter Estimation

The shape parameter is also estimated by taking the first and second order derivatives of log-

likelihood and Newton Raphson method is applied in the EM algorithm and it was needed because

first order derivative in the maximum likelihood estimate does not provide a closed form solution

as it can be observed from the first order derivative presented in Appendix E.7.

∂L (X ,Z |Θ)

∂λ jd
= 0 (5.61)
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For parameter estimation, first order derivative of the log-likelihood ∂L(Θ,Z,X )
∂λ jd

is computed as
follows:

∂L (Θ,Z,X )

∂λ jd
=

N

∑
i=1

K

∑
j=1

Zi j

{
∂

∂λ jd
log f (�Xi|ξ j)− ∂

∂λ jd
log

∫
∂ j

f (�u|ξ j)du
}

(5.62)

The computation of first term in the log-likelihood is ∂
∂λ jd

log f (Xid|ξ j) is adopted from [58] and
we denote it here as h(Xid|ξ j). The computation of second term in Eq. (5.62) is as:

∂
∂λ jd

log
∫

∂ j

f (�u|ξ j)du =

∂
∂λ jd

∫
∂ j

f (�u|ξ j)du∫
∂ j

f (�u|ξ j)du
=

∫
∂ j

f (�u|ξ j)h(�u|ξ j)du∫
∂ j

f (�u|ξ j)du
(5.63)

The complete procedure for taking the first order derivative with regard to shape parameter is given
in Appendix E.7. The term

∫
∂ j

f (�u|ξ j)h(�u|ξ j)du can be approximated similar to Section 5.8.3.1.

∫
∂ j

f (�u|ξ j)h(�u|ξ j)du ≈ 1
M

M

∑
m=1

h(s jmd |ξ j)H(s jmd | j) (5.64)

The complete expression for first order derivative for the shape parameter is expressed as follows:

∂L (Θ,Z,X )

∂λ jd
=

N

∑
i=1

K

∑
j=1

Zi j

{
h(Xid|ξ j)− ∑M

m=1 h(s jmd|ξ j)H(s jmd| j)
∑M

m=1 H(s jmd| j)

}
(5.65)

The computation of second order derivative for shape parameter ∂ 2L (Θ,Z,X )
∂λ 2

jd
is presented as:

∂ 2L (Θ,Z,X )

∂λ 2
jd

=
N

∑
i=1

K

∑
j=1

Zi j

{
∂

∂λ jd

(
∂

∂λ jd
log f (�Xi|ξ j)

)
− ∂

∂λ jd

(
∂

∂λ j
log

∫
∂ j

f (�u|ξ j)du
)}

(5.66)

The computation of ∂
∂λ jd

(
∂

∂λ jd
log f (�Xi|ξ j)

)
is influenced by [18, 47, 58] and denoted as h

′
(�Xi|ξ j)

and it is provided in Appendix E.8. The computation of second term in Eq. (5.66) is as:

∂
∂λ jd

(
∂

∂λ j
log

∫
∂ j

f (�u|ξ j)du
)
=

⎧⎪⎨
⎪⎩
∫

∂ j
f (�u|ξ j){h2(�u|ξ j)+h

′
(�u|ξ j)}du∫

∂ j
f (�u|ξ j)du

−
(∫

∂ j
f (�u|ξ j)h(�u|ξ j)du

)2

(∫
∂ j

f (�u|ξ j)du
)2

⎫⎪⎬
⎪⎭ (5.67)

The complete procedure for taking the second order derivative with regard to shape parameter is
provided in Appendix E.8. The term

∫
∂ j

f (�u|ξ j){h2(�u|ξ j)+h
′
(�u|ξ j)}du can be approximated as:

∫
∂ j

f (�u|ξ j){h2(�u|ξ j)+h
′
(�u|ξ j)}du ≈ 1

M

M

∑
m=1

{
h2(s jmd |ξ j)+h

′
(s jmd |ξ j)

}
H(s jmd | j) (5.68)
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The complete expression for second order derivative after the approximations is as follows:

∂ 2L (Θ,Z,X )

∂λ 2
jd

=
N

∑
i=1

K

∑
j=1

Zi j

{
h
′
(�Xi|ξ j) (5.69)

−
∑M

m=1

{
h2(s jmd |ξ j)+h

′
(s jmd |ξ j)

}
H(s jmd | j)

∑M
m=1 H(s jmd | j)

+

(
∑M

m=1 h(s jmd |ξ j)H(s jmd | j)
)2(

∑M
m=1 H(s jmd | j)

)2

⎫⎬
⎭

λ̂ jd 	 λ jd −
[(

∂ 2L (X ,Z |Θ)

∂λ 2
jd

)−1(∂L (X ,Z |Θ)

∂λ jd

)]
(5.70)

The complete learning of BAGMM is given in Algorithm 6, where tmin is minimum threshold used

to monitor the convergence criteria in each iteration. In the initialization phase, K-Means is applied

for computation of mean and data assignment in each cluster. This information is further used for

computation of standard deviation and mixing weight during initialization phase. The initial value

of shape parameter is set to 2.

5.9 Experiments and Results for Data Clustering

In order to test the performance of our model we apply it on distinct image clustering tasks with

varying properties. Different clustering scenarios are created to examine the effectiveness of pro-

posed model. We compare our model with Asymmetric Generalized Gaussian Mixture Model

(AGGMM) model in our experiments. This helps to know how our model improves over AG-

GMM. In the first experiment we demonstrate our model for spam image clustering followed by

other applications related to object and scene categorization.

5.9.1 Spam Detection in Image Datasets

Differentiating spam images from important ones is an essential task as it is capable of inducing

harmful security attacks. However, we have to take care that none of the important messages are

being falsely identified as spam because it might cause loss of necessary information. This means

that we have to achieve a very low False Positive Rate (FPR) to prove the effectiveness of our

model. For this experiment we use the image spam hunter dataset 1. The dataset consists of 928

spam images obtained from real spam images collected over 6 months. The normal images in

the dataset were randomly picked online. A few scanned documents were also added to make the

application more challenging. The total of the normal images amounted to 810. Samples of this

1https://users.cs.northwestern.edu/ yga751/ML/ISH.htm
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Algorithm 6 Model Learning for BAGMM

1: Input:Dataset X = {�X1, . . . ,�XN}, tmin.
2: Output: Θ, Z .
3: {Initialization}:
4: K-Means Algorithm (Computation of �μ1, . . . ,�μK & cluster assignment)
5: for all 1 ≤ j ≤ K do
6: Computation of p j
7: Computation of {(�σl j & �σr j)=�σ j}
8: Set the {(�λ j = 2}
9: end for

10: {Expectation Maximization}:
11: while relative change in log-likelihood ≥ tmin do
12: {[E Step]}:
13: for all 1 ≤ j ≤ K do
14: Compute p( j|�Xi) for i = 1, . . . ,N. using Eq. (5.43).
15: end for

16: {[M step]}:
17: for all 1 ≤ j ≤ K do
18: Estimation of mixing parameter p j using Eq. (2.12).
19: Estimation of mean �μ j using Eq. (5.52).
20: Estimation of left standard deviation �σl j using Eq. (5.55).
21: Estimation of right standard deviation �σr j using Eq. (5.60).
22: Estimation of shape parameter�λ j using Eq. (5.70).
23: end for

24: end while

dataset from both classes are presented in Fig. (5.11). For feature extraction from images, we used

Scale Invariant Feature Transform (SIFT) [296]. The SIFT approach gives feature vectors of 128

dimensions corresponding to the keypoints identified in each image. We then use bag of visual

words algorithm to form a histogram of the features, which are used as input to our model. The

results obtained by our model are shown in Table 5.5 and confusion matrix of this experiment is

presented in Fig. (5.12). It clearly shows that our model has a higher accuracy and precision when

compared to the AGGMM. Also, the most important criteria for our evaluation in this test which

is FPR is also pretty much lower than AGGMM.

Table 5.5: Performance of Spam Detection from Spam Hunter dataset based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 96.37 92.96 99.35 99.20 00.64 95.98 92.85 96.03 96.10
AGGMM 94.88 94.69 95.04 94.34 04.95 94.51 89.71 94.51 94.87

180



Figure 5.11: Samples of Spam Hunter Dataset (First two images from left are Spam and last two Ham)
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Figure 5.12: Confusion Matrix for Spam Detection with Spam Hunter dataset using BAGGMM

5.9.2 Object Clustering using ETHZ Dataset

Object clustering is one of the prime tasks in computer vision as it helps in applications such as

image retrieval. In our experiment we use two challenging datasets. The first one is from the

ETHZ dataset 2 which has 40 images of apple logos, 28 images of bottles, 87 images of giraffes,

48 images of mugs and 32 images of swans. This experiment helps us to evaluate our model when

minimal data. It is to be noted that the number of images of giraffes in the dataset is twice as much

as each of the other image categories. The sample images are presented in Fig. (5.13). The results

are given in Table 5.6 which shows that our model was able to provide better performance than

2http://www.vision.ee.ethz.ch/en/datasets/
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the AGGMM model. A high clustering accuracy, and very low FPR demonstrate the effectiveness

of our model for object clustering. The confusion matrix to show the clustering results is given in

Fig. (5.14).

Figure 5.13: Samples of ETHZ Dataset
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Figure 5.14: Confusion Matrix for ETHZ dataset with BAGGMM

Table 5.6: Performance of Object Categorization from ETHZ dataset based on different metrics

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 90.19 89.43 97.52 89.56 02.48 89.14 86.91 89.49 93.38
AGGMM 88.23 87.41 96.99 87.56 03.00 87.27 84.42 87.49 92.07
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5.9.3 Object Clustering with GHIM Dataset

In the second experiment for object clustering, GHIM dataset [273] is chosen. It is composed of

images with objects and natural scenes and for the experiment setup, it is divided into these two

parts to investigate the performance of proposed model in object and scenes separately. The dataset

is composed of 20 categories of images with 10 categories for natural scenes and 10 categories for

objects. In the experiments for object clustering with GHM dataset, two clustering scenarios are

created with 5 clusters in each experiment. The GHIM (objects) dataset is divided in to two parts to

make complete use of all available data for the validation of proposed algorithm in object recogni-

tion. In both experiments, 400 images form each class are taken and first subset consisted of images

of car, flower, plane, butterfly and bike and the second subset consisted of boat, ship, chicken, in-

sects and horses and sample images are presented in Figs. (5.15 & 5.17). In all the experiments

we used the same feature extraction as in the first application. Several performance measures are

adopted for the validation of proposed application and results of both experiments are presented in

Tables 5.7 and 5.8 which demonstrate the performance of BAGGMM. From both experiments, it

is observed that proposed model has effectively improved the clustering performance as compared

to AGGMM. Our experiments have shown increase in clustering accuracy and very low FPR. The

best performances of both experiments are also presented as confusion matrix in Figs. (5.16 &

5.18) which present the clustering performance for each category.

Figure 5.15: Samples of GHIM (Objects) Dataset (Subset-1)

Table 5.7: Performance of Object Categorization for Ghim dataset (Objects) with 5 categories (subset-1)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 86.32 86.32 96.58 86.37 03.42 86.31 82.92 86.35 91.30
AGGMM 85.15 85.15 96.28 85.29 03.71 85.16 81.50 85.22 90.55

5.9.4 Visual Scene Categorization with GHIM Dataset

Identifying the scene in a given image is an important information required in many automated

decision making tasks involving computer vision. Hence, testing our model against datasets related
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Figure 5.16: Confusion Matrix for Ghim dataset (Objects) using BAGGMM for 5 categories (subset-1)

Figure 5.17: Samples of GHIM (Objects) Dataset (Subset-2)

Table 5.8: Performance of Object Categorization for Ghim dataset (Objects) with 5 categories (subset-2)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 86.16 86.16 96.54 86.47 03.46 86.21 82.83 86.31 91.20
AGGMM 84.64 84.64 96.16 84.88 03.84 84.67 80.90 84.76 90.21

to natural scenes is an interesting experiment. In our first experiments for scene categorization,

GHIM (Scene) dataset is selected which has 10 scene categories. For experiments with GHIM

dataset for scene categorization, similar to the previous experiment, two clustering scenarios with

5 clusters in each experiment are selected. Two subsets from GHIM dataset are used where one

subset contains images of fireworks, buildings, great wall of china, grass and mountains and the

other contains images of trees, grass, Chinese buildings and sunset. In each experiment, 2000
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Figure 5.18: Confusion Matrix for Ghim dataset (Objects) using BAGGMM for 5 categories (subset-2)

images from 5 different categories with 400 images in each group are selected. Sample images

for both experiments are shown in Figs. (5.20 & 5.22). The proposed algorithm is applied in

scene categorization and results are compared with AGGMM. The results of these experiments are

presented in Tables 5.9 & 5.10. Clustering performance is observed through several performance

measures and it is concluded that proposed model has shown its success in clustering the visual

scenes in both experiments. The confusion matrices for both experiments are shown in Figs. (5.20

& 5.22) which demonstrate the clustering performance for each cluster.

Figure 5.19: Samples of GHIM (Scenes) Dataset (Subset-1)
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Figure 5.20: Confusion Matrix for Ghim dataset (Scene) using BAGGMM for 5 categories (subset-1)

Table 5.9: Performance of Scene Categorization for Ghim dataset (Scene) with 5 categories (subset-1)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 88.08 88.08 97.02 88.23 02.98 88.06 85.15 88.15 92.44
AGGMM 85.76 85.76 96.44 86.07 03.56 85.81 82.33 85.91 90.94

Figure 5.21: Samples of GHIM (Scenes) Dataset (Subset-2)

Table 5.10: Performance of Scene Categorization for Ghim dataset (Scene) with 5 categories (subset-2)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 87.24 87.24 96.81 87.28 03.19 87.24 84.06 87.26 91.90
AGGMM 85.08 85.08 96.27 85.23 03.73 85.11 81.41 85.15 90.50
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Figure 5.22: Confusion Matrix for Ghim dataset (Scene) using BAGGMM for 5 categories (subset-2)

5.9.5 Visual Scene Categorization with 15-Scene Dataset

In our next experiments for visual scene categorization using the proposed model, 15-Scenes

dataset is chosen which contributed by [282, 297, 298]. Similar feature extraction pipeline as in

the previous experiments was used. The model is evaluated on 4 different subsets of the 15-scenes

dataset. The first two subsets consisted of visual scene images from 4 categories and the next two

comprises of 5 different categories. The subset-1 consisted of images corresponding to bedroom,

suburb, kitchen and office. The second subset consisted of living room, highway, inside city and

street. The third subset has images corresponding to industry, coast, forest, building and store.

Finally, the fourth subset has images from mountain, open country, coast, building and inside city.

The samples images for each experiment are shown in Figs. (5.23,5.25,5.27 & 5.29). The experi-

mental results for all the experiments with 15-Scene dataset are shown in Tables 5.11,5.12,5.13 &

5.14 which clearly indicates the superiority of our model when compared to AGGMM. The confu-

sion matrices for these experiments are shown in Figs. (5.24,5.26,5.28 & 5.30) which demonstrate

the performance of each cluster in the experiment.
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Figure 5.23: Samples of 15-Scene Dataset (Subset-1)
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Figure 5.24: Confusion Matrix for 15-Scene dataset using BAGGMM for 4 categories (subset-1)

Table 5.11: Performance of Scene Categorization for 15 Scene dataset with 4 categories (subset-1)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 86.39 86.38 95.47 86.32 04.52 86.33 81.82 86.35 90.81
AGGMM 83.78 83.72 94.60 83.75 05.40 83.73 78.33 83.74 88.99

Table 5.12: Performance of Scene Categorization for 15 Scene dataset with 4 categories (subset-2)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 87.03 87.01 95.64 87.46 04.35 87.18 82.88 87.23 91.22
AGGMM 83.89 83.76 94.58 85.20 05.41 84.13 79.01 84.48 89.01
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Figure 5.25: Samples of 15-Scene Dataset (Subset-2)

Confusion Matrix

88.2%

2.3%

3.2%

5.1%

2.1%

86.9%

2.6%

0.7%

5.9%

5.0%

88.3%

9.6%

3.8%

5.8%

5.8%

84.6%

Living Room Highway Inside City Street

Output Class

Living Room

Highway

Inside City

Street

T
ar

ge
t C

la
ss

Figure 5.26: Confusion Matrix for 15-Scene dataset using BAGGMM for 4 categories (subset-2)

Figure 5.27: Samples of 15-Scene Dataset (Subset-3)
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Figure 5.28: Confusion Matrix for 15-Scene dataset using BAGGMM for 5 categories (subset-3)

Table 5.13: Performance of Scene Categorization for 15 Scene dataset with 5 categories (subset-3)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 86.28 86.30 96.57 86.34 3.42 86.22 82.87 86.32 91.29
AGGMM 84.61 84.36 96.16 84.54 03.83 84.41 80.60 84.45 90.06

Figure 5.29: Samples of 15-Scene Dataset (Subset-4)

5.10 Model Selection with Minimum Message Length (MML)

Criterion

For estimation of number of mixture components, different model selection criteria have been pro-

posed [30]. In this chapter, a model selection criterion based on MML is proposed for BAGGMM
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Figure 5.30: Confusion Matrix for 15-Scene dataset using BAGGMM for 5 categories (subset-4)

Table 5.14: Performance of Scene Categorization for 15 Scene dataset with 5 categories (subset-4)

Performance Metrics (%)
Models Accuracy Sensitivity Specificity Precision FPR F1-Score MCC G-Mean 1 G-Mean 2

BAGGMM 85.896 85.842 96.464 85.901 3.536 85.868 82.336 85.871 90.998
AGGMM 83.407 83.413 95.848 83.341 4.1516 83.355 79.218 83.377 89.415

and optimal number of mixture components can be obtained by following equation [113, 114]:

MessLen(K)	− log(p(ΘK))−L (ΘK,Z,X )+
1
2

log |F(ΘK)|+ Np

2
(1+ log(kNp)) (5.71)

where Np is number of free parameters, ΘK is set of parameters when mixture contains K com-

ponents, p(ΘK) is prior probability and |F(ΘK)| is determinant of the Fisher information matrix

minus the log-likelihood of mixture model. kNp is optimal quantization lattice constant RNp [115]

and its written as k1 = 1/12 	 0.83 for Np = 1. As Np grows, kNp will become an asymptotic value

as 1/2πe 	 0.05855 and it is noted that kNp does not vary a lot and it can be approximated by

1/12 [116]. The estimation of the number of classes is carried out by finding the minimum with

respect to Θ of the message length [32, 47, 58, 116]. The derivation of p(ΘK) and |F(ΘK)| is given

as follows:
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5.10.1 Derivation of the prior p(Θ)

In the model selection, a prior p(Θ) is defined to expresses the lack of knowledge about the pa-

rameters of mixture model. It is assumed that different mixture components have independent

parameters, since having information about the parameters in one class does not provide any in-

formation about the parameters of another class. Thus, it is assumed that parameters of a mixture

model are mutually independent, which cede the following prior distribution over the parameters

π , μ , σl , σr and λ :

p(Θ) = p(π)p(μ)p(σ l jd)p(σ r jd)p(λ jd) (5.72)

where π = (p1, ..., pK). Each of these densities in the prior distribution are defined separately.

Beginning with p(π), we know that vector π is defined on the simplex as {(p1, ..., pK) : ∑K
j=1 p j =

1}. In this case, a natural choice as a prior for vector π is Dirichlet distribution, which is defined

as:

p(π) =
Γ(∑K

j=1 η j)

∑K
j=1 Γ(η j)

K

∑
j=1

p j
η j

−1
(5.73)

where (η1, ...,ηK) is the parameters vector of Dirichlet distribution. By choosing, η1 = 1, ...,ηK =

1, we get a uniform prior over the space p1 + ...+ pK = 1, which is represented as:

p(π) = (K −1)! (5.74)

For the parameter σl and σr, we have:

p(σ l) =
K

∏
j=1

p(�σl j) (5.75)

p(σ r) =
K

∏
j=1

p(�σr j) (5.76)

where different components of vector �σl j and �σr j are assumed to be independent. The principle of

ignorance is adopted due to the absence of other knowledge about σl jd and σr jd with d = 1, ...,D,

by taking a uniform prior. If �μ = (μ1, ...,μD), �σl = (σl1 , ...,σlD) and �σr = (σr1 , ...,σrD) are mean,

left standard deviation and right standard deviation vectors of whole dataset, then for each σ j jd

and σr jd , following uniform prior will be used:

p(σl jd) =
1

σl j

(5.77)
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p(σr jd) =
1

σr j

(5.78)

where 0 ≤ σl jd ≤ σld , and 0 ≤ σr jd ≤ σrd , d = 1, ...,D. It follows that

p(�σl j) =
D

∏
d=1

1
σld

(5.79)

p(�σr j) =
D

∏
d=1

1
σrd

(5.80)

From Eqs. (5.79 & 5.80), we obtain:

p(σ l) =
K

∏
j

D

∏
d=1

1
σld

=
D

∏
d=1

1
σld

K (5.81)

p(σ r) =
K

∏
j

D

∏
d=1

1
σrd

=
D

∏
d=1

1
σrd

K (5.82)

For each μ jd, uniform prior is chosen, similarly as standard deviation. Each μ jd is chosen to be

uniform in the region (μd −σld ≤ μ jd ≤ μd +σrd), then prior for μ j is given by the following

equations:

p(μ jd) =
1

σld +σrd

(5.83)

p(�μ j) =
D

∏
d=1

1
σld +σrd

(5.84)

p(μ) =
K

∏
j=1

D

∏
d=1

1
σld +σrd

=
D

∏
d=1

1

(σld +σrd)
K (5.85)

For the prior of shape parameter, a uniform distribution U [0,h], where h is chosen to be sufficiently

large and prior is as follows:

p(λ jd) =
1
h

(5.86)

p(�λ j) =
D

∏
d=1

1
h
=

1
hD (5.87)

p(λ ) =
K

∏
j

D

∏
d=1

1
h
=

1
hD.K (5.88)
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Finally, by replacing the priors of parameters in Eq. (5.72) by Eqs. (5.74, 5.79 & 5.85), we get:

p(Θ) =
(K −1)!

hKD

D

∏
d=1

1
σK

ld
σK

rd
(σld +σrd)

K (5.89)

5.10.2 Derivation of the Fisher information matrix |F(Θ)|
Fisher information matrix is expected value of the Hessian matrix. It is difficult to reproduce the

expected Fisher Information matrix because it leads to a complicated analytical form of MML.

Therefore, Hessian matrix can be approximated by complete Fisher information matrix as follows:

|F(Θ)|= |F(π)|
K

∏
j=1

|F(�μ j)||F(�λ j)||F(�σl j)||F(�σr j)| (5.90)

|F(π)|= NK−1

∑K
j=1 p j

(5.91)

F(�μ j)k1,k2 =
∂ 2L (Θ,Z,X j)

∂ μ jd1∂ μ jd2

(5.92)

F(�σl j)k1,k2 =
∂ 2L (Θ,Z,X j)

∂σl jd1
∂σl jd2

(5.93)

F(�σr j)k1,k2 =
∂ 2L (Θ,Z,X j)

∂σr jd1
∂σr jd2

(5.94)

F(�λ j)k1,k2 =
∂ 2L (Θ,Z,X j)

∂λ jd1∂λ jd2

(5.95)

where (d1,d2) ∈ (1, ...,D). By the using the second order derivatives computed in Section 5.8 for

all the parameter of distribution and using the following equation, determinant of Fisher Informa-

tion for each component can be computed.

∂ 2L (Θ,Z,X j)

∂ξ jd1∂ξ jd2

= 0 (5.96)

Model selection algorithm also serves as a complete clustering solution because it provides the

optimal number of mixture components which helps to estimate the optimal parameters learned

through EM. The complete learning algorithm is given in Algorithm 7.
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Algorithm 7 Complete Model Learning with BAGGMM and Model Selection using MML

1: Input:Dataset X = {�X1, . . . ,�XN}, tmin and Kmax.
2: Output: K∗ and ΘK∗ .
3: Step 1: for M = 1 : Kmax do{
4: {Initialization}:
5: K-Means Algorithm (Computation of �μ1, . . . ,�μK & cluster assignment)
6: for all 1 ≤ j ≤ K do
7: Computation of p j

8: Computation of {(�σl j & �σr j )=�σ j}
9: Set the {(�λ j = 2}

10: end for

11: {Expectation Maximization}:
12: while relative change in log-likelihood ≥ tmin do
13: {[E Step]}:
14: for all 1 ≤ j ≤ K do
15: Compute p( j|�Xi) for i = 1, . . . ,N. using Eq. (5.43).
16: end for

17: {[M step]}:
18: for all 1 ≤ j ≤ K do
19: Estimation of mixing parameter p j using Eq. (2.12).
20: Estimation of mean �μ j using Eq. (5.52).
21: Estimation of left standard deviation �σl j using Eq. (5.55).
22: Estimation of right standard deviation �σr j using Eq. (5.60).
23: Estimation of shape parameter�λ j using Eq. (5.70).
24: end for

25: end while

26: Calculate the associated message length using Eq. (5.71).
27: }end for

28: Step 2: Select the Model K∗ with smallest message length

5.11 Experiments on model selection and results

In order the evaluate the performance of proposed model selection criterion using MML we con-

sider different clustering applications. In the experiments mentioned in Section 5.9, several appli-

cations and datasets are mentioned and model selection is applied in all scenarios. Model selection

improves the performance of clustering by proving the information about optimal number of clus-

ters in the data. In the experiments for model selection, several clustering scenarios using MML

are created to see the effectiveness of proposed approach. Details about model selection criteria

used in our experiments is given in Section 5.11.1. The experiments on model selection with spam

detection, object recognition and visual scene categorization is provided in Section 5.11.2-5.11.5.
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5.11.1 Comparison with other model selection criteria

In clustering with BAGGMM, proposed model selection with MML approach is compared with

different deterministic model selection criteria given in literature. The comparison models for

finding the optimal number of clusters include MDL [74], AIC [119], Bayesian inference criterion

(BIC) [73], Consistent AIC (CAIC) [120], Mixture MDL (MMDL) [121], MMLlike [30], LEC [16,

39]. Any deterministic model selection criteria can be expressed to form a general notation as

follows:

C(Θ̂(K),K) =−L (ΘK,Z,X )+ f (K) (5.97)

where L (ΘK,Z,X ) is complete log-likelihood of data and f (K) is called an increasing function

which penalize higher values of K and number of optimal mixture components can be computed

as follows:

K̂ = arg min{C(Θ̂(K),K),K = Kmin, ...,Kmax} (5.98)

Although model selection criteria has this common point, but conceptually they are different and

they described by the following equations:

MDL(K) =−L (ΘK,Z,X )+
Np

2
log(N) (5.99)

where Np is number of free parameters estimated for mixture and computed as K(2D+ 1) in our

case.

AIC(K) =−L (ΘK,Z,X )+
Np

2
(5.100)

BIC(K) =−2L (ΘK,Z,X )+Np log(N) (5.101)

CAIC(K) =−2L (ΘK,Z,X )+Np(1+ log(N)) (5.102)

MMDL(K) =−L (ΘK,Z,X )+
1
2

Np log(N)+
c
2

K

∑
j=1

log(p j) (5.103)

where c is the number of free parameters for each mixture component and computed as (2D+1)

in our case.

MMLLike(K) =−L (ΘK,Z,X )+
K
2

log
(

N
12

)
+

c
2

K

∑
j=1

log
(

N
p j

12

)
+

Np

2
(5.104)
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For computation of number of mixture components through LEC, prior probability and determinant

of Fisher information matrix computed for MML is used in the following equation.

LEC(K) = L (ΘK,Z,X )− log(P(ΘK))− 1
2

Np log(2π)+
1
2

log(|F(ΘK)|) (5.105)

5.11.2 Model Selection on Spam Hunter Dataset

In the Spam Hunter dataset, there are two categories of images and it is selected as first step

to examine the performance of MML criterion for model selection. MML is applied to find the

optimal number of clusters in the dataset and it is compared with different model slection criteria

mentioned in Section 5.11.1. From the results of experiment, it is observed that MML, MDL,

MMDL, MMLLike and LEC have successfully determined the number of clusters in the dataset

and AIC, BIC and CAIC were unable in the test for model selection. The results on Spam Hunter

dataset are provided in Table 5.15 and plotted in Fig. (5.31) which demonstrate the performance

of MML with regard to other criteria.
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Figure 5.31: Model Selection Criteria for Spam Hunter Dataset with 2 clusters

5.11.3 Model Selection on Object Recognition with ETHZ Dataset

The experiments of model selection are further extended with ETHZ dataset where 5 different

categories of object images are present and it is selected to test our algorithm for model selec-

tion. From the results of experiment for finding the optimal number of mixture components, it is
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observed that MML and LEC have successfully computed the number of mixture components in

ETHZ dataset and rest of model selection criteria have failed in this test. The results for this test

are provided in Table 5.15 and plotted in Fig. (5.11.3).
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Figure 5.32: Model Selection Criteria for ETHZ Dataset with 5 clusters

5.11.4 Model Selection on Object Recognition with GHIM Dataset

In order to examine the effectiveness of model selection criteria, it is applied to GHIM dataset

with object classes and several clustering scenarios are created with 2, 3, 4 and 5 clusters with

800, 1200, 1600 and 2000 images. MML is applied to the clustering framework for model selec-

tion and it is observed that for two cluster experiment, MML, MDL, MMDL, MMLLike and LEC

have successfully determined the number of clusters in the dataset. For the experiments with data

from 3, 4 and 5 clusters, MML and LEC have shown their success in finding the optimal number

of components and rest of the model selection algorithm were unable to correctly determine the

number of clusters from data. The experimental results are provided in Table 5.15 and plotted in

Fig. (5.33-5.36), which provide a complete analysis of model selection on objection recognition

with GHIM dataset.

5.11.5 Model Selection on Visual Scenes Categorization with 15-Scenes Dataset

The proposed model selection criterion (MML) is also validated through visual scene categoriza-

tion. The experiments for fining the optimal number of mixture components are conducted on
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Figure 5.33: Model Selection Criteria for GHIM (Objects) Dataset with 2 clusters
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Figure 5.34: Model Selection Criteria for GHIM (Objects) Dataset with 3 clusters

15-Scene dataset by selecting 2, 3, 4 and 5 clusters with 784, 1144, 1500 and 1808 images of

visual scenes, respectively. For the experiments with 2 and 3 clusters, it is observed that MML,

MDL, MMDL, MMLLike and LEC have demonstrated their success in model selection. In the ex-

periment with 4 clusters, MML and LEC were successful in finding the correct number of mixture

components. With data from 5 clusters, MML, MDL, MMDL, MMLLike and LEC have shown
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Figure 5.35: Model Selection Criteria for GHIM (Objects) Dataset with 4 clusters
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Figure 5.36: Model Selection Criteria for GHIM (Objects) Dataset with 5 clusters

their success in model selection and rest of the criteria were unable in the test. The results of the

experiments of model selection with visual scenes are provided in Table 5.15 and plotted in Figs.

(5.37-5.40) which clearly demonstrate the effectiveness of proposed model selection criteria for

visual scene categorization.
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Figure 5.37: Model Selection Criteria for 15 Scene Dataset with 2 clusters
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Figure 5.38: Model Selection Criteria for 15 Scene Dataset with 3 clusters

5.12 Discussion about BAGGMM and MML

In this chapter, a mixture of bounded support asymmetric generalized Gaussian distribution is

proposed. Bounded support mixture is introduced by considering the fact that data in many real

applications exist in a bounded support range whereas distributions to model the data are defined
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Figure 5.39: Model Selection Criteria for 15 Scene Dataset with 4 clusters
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Figure 5.40: Model Selection Criteria for 15 Scene Dataset with 5 clusters

for unbounded support. By modeling the data with bounded support distribution can improve the

learning process effectively. In the proposed model, parameter estimation is performed by maxi-

mum likelihood approach with EM algorithm. Some of mixture parameters does not get a closed

form solution in the maximum likelihood and Newtons Raphson method is applied with EM algo-

rithm for parameter estimation. To validate the performance of BAGGMM in clustering, several
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Table 5.15: Number of Clusters Determined by Different Criteria using BAGGMM for Image Datasets used in clus-
tering applications

Data set D N K*̂ Model Selection Criteria
MML MDL AIC BIC CAIC MMDL MML_Like LEC

Spam Hunter 50 1738 2 2 2 3 3 3 2 2 2

ETHZ 50 255 5 5 6 7 7 7 6 6 5

GHIM (Objects) 2 50 800 2 2 2 3 3 3 2 2 2

GHIM (Objects) 3 50 1200 3 3 4 4 4 4 4 4 3

GHIM (Objects) 4 50 1600 4 4 5 7 6 6 5 5 4

GHIM (Objects) 5 50 2000 5 5 4 6 6 6 4 4 5

15 Scene 2 50 784 2 2 2 4 4 4 2 2 2

15 Scene 3 50 1144 3 3 3 5 4 4 3 3 3

15 Scene 4 50 1500 4 4 6 6 6 6 6 6 4

15 Scene 5 50 1808 5 5 5 4 4 4 5 5 5

applications with images data are proposed. Initially, Spam Hunter dataset is used for spam detec-

tion and the proposed model effectively categorize the images into Spam and Ham. In this appli-

cation, we have received a very high accuracy (96.37%) and very low false positive rate (00.64%).

The results are compared with AGGMM in a similar experimental settings and proposed model

has demonstrated its effectiveness in spam detection. BAGGMM is applied in object recognition

and ETHZ and GHIM datasets are selected for in this application. GHIM dataset is composed

of objects and visual scenes and we have used objects parts of dataset in this application. In ob-

ject clustering one experiment on ETHZ with 5 clusters and two separate experiments with GHIM

dataset with 5 clusters each, are performed. In all three experiments for object recognition, BAG-

GMM has performed extremely well as compared to AGGMM in a similar experimental setting

and it is demonstrated through different performance measures. Our next experiments for image

clustering are performed on visual scene categorization and we have selected GHIM dataset (part

of visual scenes) and 15-Scene dataset. With GHIM dataset, two separate clustering scenarios are

created with 5 clusters in each test and it is observed that BAGGMM has shown better performance

in this task as compared to AGGMM. In our experiments with 15-Scene dataset, we have created 4

clustering scenarios (two with 4 clusters and two with 5 clusters) and it is observed that proposed

algorithm has significantly improvement in clustering. Our next contribution in this chapter is

model selection criteria for BAGGMM and MML is proposed for determining the optimal number

of clusters using BAGGMM. The proposed model is applied to all the dataset in different clustering

applications chosen to demonstrate the effectiveness of BAGGMM. From the set of experiments,

it is observed that our models have shown extremely better performance in spam detection, object

recognition, visual scene categorization and finding the optimal number of clusters.
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Chapter 6
Conclusions

Clustering is the task of unsupervised categorization of observations or patterns into groups or clus-

ters. Clustering algorithms aim to categorize elements of data into clusters or groups based on their

similarity. Generally, the task of clustering faces several challenges and complexities in multidi-

mensional feature space, which include unknown and unidentified shape of data, unknown number

of clusters in data and existence of noise and redundant information in features of data which affect

the modeling capabilities and performance of clustering task. Therefore, data clustering with high

dimensional feature space has been considered an active area of research different fields which

include information retrieval, data mining, pattern recognition, speech and image processing and

many areas in last few decades. Many techniques in data clustering involves probability density

function as a way to model the data and it has shown great success in clustering for many applica-

tions and different types of data including speech, images, videos and text. However, choosing an

appropriate distribution to model the data in a particular application is a challenging task because

most of the times, shape of data is unknown which also compromise the modeling capability in

clustering. It is also observed that many real life applications have their data in a bounded sup-

port range, however, existing distributions to model this data are available for unbounded support

range. In this thesis, special attention has been given to increase the modeling capabilities of finite

mixture model by adopting bounded support distributions and applying them in different kinds

of applications to model the data and improve the clustering performance, improve the feature

extraction techniques which uses clustering and finding the optimal number of clusters.

In this thesis, first we proposed to adopt bounded Gaussian mixture model for data clus-

tering to examine and analyze its effectiveness in different kinds of applications. Parameters of

mixture model were estimated by maximum likelihood and learned by adopting EM algorithm.

Initial experiments involve clustering speech and images datasets, which include categorizing be-

tween female and male speaker, recognizing spoken and handwritten digits in separate applications
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and clustering different categories of fashion data in MNIST fashion dataset. The clustering was

performed with data from different clusters in each application to examine the performance by

varying the categories of data. These experiments were extended further by applying the bounded

Gaussian mixture in feature representation for speech and images datasets. In these applications,

speech and images features (MFCCs and SIFT, respectively) were used to create a BoW and mix-

ture model is proposed to improve the process of code-book generation, to better represent the data

and further improve the learning of clustering task. In the speech datasets, bag of audio words

(BoAW) approach is used which is inspired by BoW and BoVW approaches from NLP and com-

puter vision, respectively. In a clustering task, finding the optimal number of clusters is very crucial

and minimum message length (MML) is proposed for bounded Gaussian mixture. The proposed

model selection criterion is validated through 10 medical datasets and all above mentioned datasets

from speech and images with different number of cluster and compared with 7 different criteria

to examine it effectiveness. From the experiments on clustering, code-book generation and model

selection, it is observed that proposed model has demonstrated its effectiveness as compared to

models with unbounded support.

Second, we have extended the idea of bounded support to Laplace distribution and proposed

a mixture of bounded Laplace distributions and parameters are estimated with maximum likeli-

hood and EM algorithm along with Newton-Raphson method. The proposed model is validated

for clustering initially through synthetic data (one dimensional and multidimensional datasets) with

different numbers of clusters and 10 medical datasets. It is further applied in more advanced appli-

cations to categorize texture images and content based image retrieval (CBIR). Bounded support

mixture is proposed for feature extraction from texture images in wavelet domain due to energy

compacting property of wavelet transform, which makes the distribution of data very similar to

a Laplace density. In this application, BLMM is also used in modeling the data after feature ex-

traction which perform the task of image categorization in an unsupervised manner. The trained

model from the clustering stage is further adopted for CBIR, where a similarity measure can be

applied to compare the query image and clusters of trained model. For similarity measure, City-

block distance, posterior probability and Kullback-Leibler (KL) divergence are introduced and a

closed form solution for KL divergence is also proposed for Laplace distributions in the context

of our clustering model. The experiments are conducted on 5 different datasets to demonstrate the

effectiveness of proposed model in feature extraction, image categorization and CBIR. From the

experiments on synthetic data, medical datasets, feature extraction, texture image categorization

and CBIR, it is evident that proposed bounded support mixture has demonstrated its effectiveness

in learning as compared to unbounded support models. With feature extraction using BLMM in

wavelet domain, image categorization is also proposed using supervised learning approach and a
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Naive Bayes classifier is introduced with Laplace distribution. The proposed model is validated

through experiments on 3 texture images datasets and compared with Gaussian Naive Bayes clas-

sifier. These experiments also demonstrate the effectiveness of feature extraction using BLMM.

The generalized Gaussian distribution provides a generalization of Gaussian and Laplace distribu-

tions, thus we have also introduced a Naive Bayes classifier with generalized Gaussian distribution

which is validated through experiments conducted on 3 datasets from texture images. Classifica-

tion performance demonstrate the effectiveness of proposed approach and feature extraction using

BLMM in wavelet domain.

Third, the idea of bounded support mixtures is extended to ICA and a multivariate bounded

generalized Gaussian mixture model with ICA was proposed. In an ICA mixture, it is assumed

that observed data come from a mixture model and it can be categorized into mutually exclusive

classes which mean that each class of data will be modeled through an ICA. The proposed ICA

mixture model was applied to unsupervised keyword spotting and TIMIT speech corpus was used

to create the experimental framework and compared with GMM. In the keyword spotting, ICA

mixture model is first trained on a large amount of speech data and trained model is further used to

generate posteriorgrams for reference keyword examples and test speech file. The posteriorgrams

are compared with segmental dynamic time warping to find a match between test speech files

and reference keywords. Proposed ICA mixture model is further explored with application to

speaker classification in a semi-supervised hierarchical clustering framework. The experiments

are conducted using TIMIT and TSP speech databases for male and female speaker categorization

(TSP and TIMIT) and 10 speaker categorization (TSP). ICA mixture model is further explored

with blind source separation on speech data and it is validated by conducting experiments on 3

speech datasets. In the last application with ICA mixture, BSS is applied as pre-processing stage

for test data in unsupervised keyword spotting, where experimental framework of first application

is extended to see the effectiveness of BSS in keyword spotting when test data has been mixed

with noise and speech files. The experiments are conducted on data with source mixing where

keyword spotting is performed with and without BSS as pre-processing. From all experiments in 4

different applications and many datasets, it is observed that ICA mixture model has demonstrated

its success in modeling and learning in speech data applications.

Last but not least, two bounded support mixture models were proposed which are based on

asymmetric distributions. The first proposed model is bounded asymmetric Gaussian mixture and

second is bounded support asymmetric generalized Guassian mixture. In both models, maximum

likelihood and EM along with Newton Raphson method are used for parameter estimation. The

first model is applied to textual spam detection (spambase dataset), object categorization (Coral and

Cal 101 datasets) and texture image clustering (VisTex dataset). From the experiments and results,
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it is observed that BAGMM has improved data modeling capability as compared to AGMM. For

the experiments on BAGGMM, image spam detection (Spam Hunter dataset), object clustering

(ETHZ and GHIM datasets) and visual scene categorization (GHIM and 15-Scene datasets) are

chosen to validate its effectiveness. The experiments are conducted on multi-cluster scenarios to

examine the performance of proposed approach. For BAGGMM, a model selection criterion is

also proposed with MML and experiments for its validity are conducted by choosing data from all

applications mentioned in the clustering experiments for BAGGMM and compared with 7 different

criteria to see its effectiveness. From the experiments on BAGGMM and MML, it is examined that

proposed model has demonstrated its effectiveness.

In conclusion, proposed bounded support mixture can effectively be used as an alternative

for data clustering with existing approaches having unbounded support. The proposed models

have been validated through applications with speech, images and text datasets. The model are

also used for feature extraction and selection of number of clusters and they have demonstrated

their effectiveness in both task. As future work, attention could be devoted to the development

of variational Bayesian inference and sampling-based approaches for model learning. The idea

of bounded support mixture can also be extended to more distributions to improve the learning of

clustering models.
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Appendix A
BGMM

A.1 Estimation of p̂ j

(A.1)
∂ log[Φ(X ,Z,Θ,Λ)]

∂ p j
=

∂
∂ p j

N

∑
i=1

Zi j

{
log p j + log p(�Xi|ξ j)

}
+

∂
∂ p j

Λ

(
1 −

K

∑
j=1

p j

)

∂ log[Φ(X ,Z,Θ,Λ)]
∂ p j

=
∂

∂ p j

N

∑
i=1

Zi j log p j +
∂

∂ p j
Λ

(
1−

K

∑
j=1

p j

)
=

∑N
i=1 Zi j

p j
−Λ (A.2)

∂ log[Φ(X ,Z,Θ,Λ)]
∂ p j

= 0 ⇒ p j =
∑N

i=1 Zi j

Λ
(A.3)

Taking the derivative of the log-likelihood with respect to Λ, we obtain

1−
K

∑
j=1

p j = 0 ⇒
K

∑
j=1

p j = 1 ⇒
K

∑
j=1

p j =
K

∑
j=1

∑N
i=1 Zi j

Λ
=

∑N
i=1 ∑K

j=1 Zi j

Λ
= 1 (A.4)

Since ∑K
j=1 Zi j = 1, we obtain Λ = N, then p j will become:

p̂ j =
∑N

i=1 Zi j

Λ
=

∑N
i=1 Zi j

N
(A.5)

A.2 Derivation of
∂L (X ,Z |Θ)

∂�μ j

(A.6)
∂L (X ,Z |Θ)

∂�μ j
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}
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(A.7)
∂

∂ μ jd

N

∑
i =1

Zi j log p j = 0

(A.8)
∂

∂ μ jd

N

∑
i =1

Zi j logH(Xid| j) = 0

(A.9)
∂L (X ,Z |Θ)

∂�μ j
=

N

∑
i=1

Ẑi j

{
Σ−1

j (�Xi −�μ j)−
∫

∂ j
Σ−1

j f (�u|ξ j)(�u −�μ j)du∫
∂ j

f (�u|ξ j)du

}

A.3 Estimation of μ̂ jd

(A.10)
∂L (X ,Z |Θ)

∂�μ j
= 0

(A.11)
N

∑
i =1

Ẑi j

{
Σ−1

j (�Xi −�μ j)−
∫

∂ j
Σ−1

j f (�u|ξ j)(�u −�μ j)du∫
∂ j

f (�u|ξ j)du

}
= 0

�̂μ j =

∑N
i=1 Ẑi j

{
�Xi −

∫
∂ j

f (�u|ξ j)(�u−�μ j)du∫
∂ j

f (�u|ξ j)du

}
∑N

i=1 Ẑi j
(A.12)

A.4 Derivation of
∂L (X ,Z |Θ)

∂Σ j

(A.13)
∂L (X ,Z |Θ)

∂Σ j
=

∂
∂Σ j

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

∂L (X ,Z |Θ)

∂Σ j
=

N

∑
i=1

Ẑi j

{
−1

2
Σ−1

j +
1
2
(�Xi −�μ j)Σ−2

j (�Xi −�μ j)
T (A.14)

−
∫

∂ j
(− 1

2 Σ−1
j + 1

2(�u−�μ j)Σ−2
j (�u−�μ j)

T ) f (�u|ξ j)du∫
∂ j

f (�u|ξ j)du

}
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A.5 Estimation of Σ̂ j

∂L (X ,Z |Θ)

∂Σ j
= 0 (A.15)

N

∑
i=1

Ẑi j

{
−1

2
Σ−1

j +
1
2
(�Xi −�μ j)Σ−2

j (�Xi −�μ j)
T −

∫
∂ j
(− 1

2 Σ−1
j + 1

2 (�u−�μ j)Σ−2
j (�u−�μ j)

T ) f (�u|ξ j)du∫
∂ j

f (�u|ξ j)du

}
= 0 (A.16)

Σ̂ j =

∑N
i=1 Ẑi j

{
(�Xi −�μ j)(�Xi −�μ j)

T −
∫

∂ j
(−Σ j+(�u−�μ j)(�u−�μ j)

T ) f (�u|ξ j)du∫
∂ j

f (�u|ξ j)du

}
∑N

i=1 Ẑi j
(A.17)

A.6 Derivatives for MML

In this appendix, we compute the solutions for Eqs. (2.30 & 2.31) used for MML algorithm.

∂ 2L (Θ,Z,X j)

∂ μ2
j

=
l+n j−1

∑
i=l

Σ−1
j

⎧⎪⎨
⎪⎩−1+

Σ−1
j

(∫
∂ j

f (�u|ξ j)(�u−�μ j)du
)2

(∫
∂ j

f (�u|ξ j)du
)2 −

∫
∂ j

f (�u|ξ j)
(
(�u−�μ j)Σ−1

j (�u−�μ j)
T −1

)
du∫

∂ j
f (�u|ξ j)du

⎫⎪⎬
⎪⎭

(A.18)

∂ 2L (Θ,Z,X j)

∂Σ2
j

=
l+n j−1

∑
i=l

{
1
2

Σ−2
j − (�X −�μ j)Σ j

−3(�X −�μ j)
T (A.19)

+

(∫
∂ j

f (�u|ξ j){− 1
2 Σ−1

j + 1
2 (�u−�μ j)Σ−2

j (�u−�μ j)}du
)2

(∫
∂ j

f (�u|ξ j)du
)2

−
∫

∂ j
f (�u|ξ j)

[(
− 1

2 Σ−1
j + 1

2 (�u−�μ j)Σ−2
j (�u−�μ j)

T
)2

+
(

1
2 Σ−2

j +(�u−�μ j)Σ−3
j (�u−�μ j)

T
)]

du∫
∂ j

f (�u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭
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Appendix B
BLMM

B.1 Derivation of
∂L (X ,Z |Θ)

∂ μ jd

For a particular mixture j and dimension d, the data log-likelihood is differentiated with respect to
μ jd as below.

(B.1)
∂L (X ,Z |Θ)

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

∂L (X ,Z |Θ)

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(B.2)

=
N

∑
i=1

Zi j

⎧⎪⎪⎨
⎪⎪⎩
[

(Xid −μ jd)

b jd
∣∣Xid −μ jd

∣∣
]
−
∫

∂ j

(
f (u|ξ j)

[
(u−μ jd)

b jd|u−μ jd|
])

du∫
∂ j

f (u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭

B.2 Estimation of μ̂ jd

(B.3)
∂L (X ,Z |Θ)

∂ μ jd
= 0

N

∑
i=1

Zi j

⎧⎪⎪⎨
⎪⎪⎩
[

(Xid −μ jd)

b jd
∣∣Xid −μ jd

∣∣
]
−
∫

∂ j

(
f (u|ξ j)

[
(u−μ jd)

b jd|u−μ jd|
])

du∫
∂ j

f (u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭= 0 (B.4)
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μ̂ jd =

∑N
i=1 Zi j

⎧⎪⎨
⎪⎩
[

Xid
b jd|Xid−μ jd|

]
−

∫
∂ j

(
f (u|ξ j)

[
(u−μ jd )

b jd|u−μ jd|
])

du
∫

∂ j
f (u|ξ j)du

⎫⎪⎬
⎪⎭

∑N
i=1

{[
Zi j

b jd|Xid−μ jd|
]} (B.5)

B.3 Derivation of
∂L (X ,Z |Θ)

∂b jd

For a particular mixture j and dimension d, the data log-likelihood is differentiated with respect to
b jd as below.

(B.6)
∂L (X ,Z |Θ)

∂b jd
=

∂
∂b jd

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

∂L (X ,Z |Θ)

∂b jd
=

∂
∂b jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(B.7)

=
N

∑
i=1

Zi j

⎧⎪⎪⎨
⎪⎪⎩
[
−1
b jd

+

∣∣Xid −μ jd
∣∣

b2
jd

]
−
∫

∂ j

(
−1
b jd

f (u|ξ j)+
|u−μ jd|

b2
jd

f (u|ξ j)

)
du∫

∂ j
f (u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭

B.4 Derivation of
∂ 2L (X ,Z |Θ)

∂b2
jd

The second order derivative can be computed from first order derivative as follows:

∂ 2L (X ,Z |Θ)

∂b2
jd

=
∂ 2

∂b2
jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(B.8)

=
∂

∂b jd

N

∑
i=1

Zi j

⎧⎪⎪⎨
⎪⎪⎩
[
−1
b jd

+

∣∣Xid −μ jd
∣∣

b2
jd

]
−
∫

∂ j

(
−1
b jd

f (u|ξ j)+
|u−μ jd|

b2
jd

f (u|ξ j)

)
du∫

∂ j
f (u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭

=
N

∑
i=1

Zi j

⎧⎪⎪⎨
⎪⎪⎩
[

1
b2

jd
− 2

∣∣Xid −μ jd
∣∣

b3
jd

]
− ∂

∂b jd

[∫
∂ j

−1
b jd

f (u|ξ j)du∫
∂ j

f (u|ξ j)du

]
− ∂

∂b jd

⎡
⎢⎢⎣
∫

∂ j

( |u−μ jd|
b2

jd
f (u|ξ j)

)
du∫

∂ j
f (u|ξ j)du

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭
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∂
∂b jd

[∫
∂ j

−1
b jd

f (u|ξ j)du∫
∂ j

f (u|ξ j)du

]
=

∫
∂ j

(
1

b2
jd

f (u|ξ j)− 1
b jd

f (u|ξ j)
(u−μ jd)

b jd|u−μ jd|
)

du(∫
∂ j

f (u|ξ j)du
) (B.9)

−

(∫
∂ j

−1
b jd

f (u|ξ j)du
)∫

∂ j
f (u|ξ j)

(u−μ jd)

b jd|u−μ jd|du(∫
∂ j

f (u|ξ j)du
)2

∂
∂b jd

⎡
⎢⎢⎣
∫

∂ j

( |u−μ jd|
b2

jd
f (u|ξ j)

)
du∫

∂ j
f (u|ξ j)du

⎤
⎥⎥⎦=

(∫
∂ j

−2|u−μ jd|
b3

jd
f (u|ξ j)du+

∫
∂ j

(
−|u−μ jd|

b3
jd

f (u|ξ j)+
|u−μ jd|2

b4
jd

f (�u|ξ j)

)
du
)

(∫
∂ j

f (u|ξ j)du
)

(B.10)

−

(∫
∂ j

|u−μ jd|
b2

jd
f (u|ξ j)du

)∫
∂ j

(
−1
b jd

f (u|ξ j)+
|u−μ jd|

b2
jd

f (u|ξ j)

)
du(∫

∂ j
f (u|ξ j)du

)2
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Appendix C
ICA Mixture Model

C.1 Derivation of
∂ [L (Θ,Z ,X )]

∂ μ jd

∂ [L (Θ,Z ,X )]

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log p j + log fggd(Xid |ξ j)+ logH(Xid | j)− log

∫
∂ j

fggd(u|ξ j)du
}

(C.1)

(C.2)
∂ [L (Θ,Z ,X )]

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log fggd(Xid |ξ j)− log

∫
∂ j

fggd(u|ξ j)du
}

(C.3)
∂

∂ μ jd

N

∑
i =1

Zi j log fggd(Xid |ξ j) = A(λ jd)
λ jd

σλ jd
jd

N

∑
i=1

Zi j

[∣∣Xid − μ jd
∣∣(λ jd−2) (Xid − μ jd

)]

∂
∂ μ jd

N

∑
i=1

Zi j log
∫

∂ j

fggd(u|ξ j)du = A(λ jd)
λ jd

σλ jd
jd

N

∑
i=1

Zi j

⎡
⎣∫∂ j

fggd(u|ξ j)sign
(
u−μ jd

)∣∣u−μ jd
∣∣λ jd−1du∫

∂ j
fggd(u|ξ j)du

⎤
⎦
(C.4)

∂ [L (Θ,Z ,X )]

∂ μ jd
= A(λ jd)

λ jd

σλ jd
jd

N

∑
i=1

Zi j

{[∣∣Xid −μ jd
∣∣(λ jd−2) (Xid −μ jd

)]
(C.5)

−
⎡
⎣∫∂ j

fggd(u|ξ j)sign
(
u−μ jd

)∣∣u−μ jd
∣∣λ jd−1du∫

∂ j
fggd(u|ξ j)du

⎤
⎦
⎫⎬
⎭
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C.2 Estimation of μ̂ jd

A(λ jd)
λ jd

σλ jd
jd

N

∑
i=1

Zi j

⎧⎨
⎩
[∣∣Xid −μ jd

∣∣(λ jd−2) (Xid −μ jd
)]−

⎡
⎣∫∂ j

fggd(u|ξ j)sign
(
u−μ jd

)∣∣u−μ jd
∣∣λ jd−1du∫

∂ j
fggd(u|ξ j)du

⎤
⎦
⎫⎬
⎭= 0

(C.6)

(C.7)

μ̂ jd =
1

∑N
i=1 Zi j

∣∣Xid − μ jd
∣∣(λ jd−2)

N

∑
i=1

Zi j

⎧⎨
⎩
[∣∣Xid − μ jd

∣∣(λ jd−2) Xid

]

−
⎡
⎣∫∂ j

fggd(u|ξ j)sign
(
u − μ jd

)∣∣u − μ jd
∣∣λ jd−1du∫

∂ j
fggd(u|ξ j)du

⎤
⎦
⎫⎬
⎭

C.3 Derivation of
∂ [L (Θ,Z ,X )]

∂σ jd

(C.8)
∂ [L (Θ,Z ,X )]

∂σ jd
=

∂
∂σ jd

N

∑
i=1

Zi j

{
log p j + log fggd(Xid |ξ j) + logH(Xid | j)− log

∫
∂ j

fggd(u|ξ j)du
}

(C.9)
∂ [L (Θ,Z ,X )]

∂σ jd
=

∂
∂σ jd

N

∑
i=1

Zi j

{
log fggd(Xid |ξ j)− log

∫
∂ j

fggd(u|ξ j)du
}

∂
∂σ jd

N

∑
i=1

Zi j log fggd(Xid |ξ j) =
1

σ jd

N

∑
i=1

Zi j

[
−1+A(λ jd)

∣∣Xid −μ jd
∣∣λ jd λ jd(σ jd)

−λ jd

]
(C.10)

∂
∂σ jd

N

∑
i=1

Zi j log
∫

∂ j

fggd(u|ξ j)du =
1

σ jd

N

∑
i=1

Zi j

⎡
⎣
∫

∂ j
fggd(u|ξ j)

{
−1+A(λ jd)

∣∣Xid −μ jd
∣∣λ jd λ jd(σ jd)

−λ jd

}
du∫

∂ j
fggd(u|ξ j)du

⎤
⎦

(C.11)

(C.12)

∂ [L (Θ,Z ,X )]

∂σ jd
=

1
σ jd

N

∑
i=1

Zi j

⎧⎨
⎩
[
−1 + A(λ jd)

∣∣Xid − μ jd
∣∣λ jd λ jd(σ jd)

−λ jd

]

−
⎡
⎣
∫

∂ j
fggd(u|ξ j)

{
−1 + A(λ jd)

∣∣Xid − μ jd
∣∣λ jd λ jd(σ jd)

−λ jd

}
du∫

∂ j
fggd(u|ξ j)du

⎤
⎦
⎫⎬
⎭
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C.4 Estimation of σ̂ jd

(C.13)

1
σ jd

N

∑
i =1

Zi j

⎧⎨
⎩
[
−1 + A(λ jd)

∣∣Xid − μ jd
∣∣λ jd λ jd(σ jd)

−λ jd

]

−
⎡
⎣
∫

∂ j
fggd(u|ξ j)

{
−1 + A(λ jd)

∣∣Xid − μ jd
∣∣λ jd λ jd(σ jd)

−λ jd

}
du∫

∂ j
fggd(u|ξ j)du

⎤
⎦
⎫⎬
⎭ = 0

(C.14)σ̂ jd =

⎛
⎜⎜⎜⎜⎝

∑N
i=1 Zi j

[
A(λ jd)

∣∣Xid − μ jd
∣∣λ jd λ jd

]

∑N
i=1 Zi j

{
1 +

[∫
∂ j

fggd(u|ξ j)
{
−1+A(λ jd)|Xid−μ jd|λ jd λ jd(σ jd)

−λ jd
}

du∫
∂ j

fggd(u|ξ j)du

]}
⎞
⎟⎟⎟⎟⎠

1/λ jd

C.5 Estimation of Shape Parameter λ̂ jd with Gradient Ascent

For the estimation of parameters in ICA mixture model, unit variance and zero mean is assumed.
For the purpose of estimation of shape parameter, same assumption is adopted and the problem
will become the estimation of shape parameter from the data. The Eq. (4.4) with the assumption
of zero mean and unit variance will become:

fggd(�Xi|ξ j) =
D

∏
d=1

λ jd
√

Γ(3/λ jd)

2Γ(1/λ jd)
√

Γ(1/λ jd)
exp

(
−A(λ jd) |Xid |λ jd

)
, with A(λ jd) =

[
Γ(3/λ jd)

Γ(1/λ jd)

]λ jd/2

(C.15)

The term ∂
∂λ jd

log p(Xid|ξ j) in the estimation of shape parameter using gradient ascent in an ICA
mixture model can be computed as below.

(C.16)
∂

∂λ jd
log p(Xid |ξ j) =

∂
∂λ jd

log

[
fggd(Xid |ξ j)H(Xid | j)∫

∂ j
fggd(u|ξ j)dX

]

∂
∂λ jd

log p(Xid |ξ j) =
∂

∂λ jd
log fggd(Xid |ξ j)− ∂

∂λ j
log

∫
∂ j

fggd(u|ξ j)dX (C.17)

h(Xid |ξ j) =
∂

∂λ jd
log fggd(Xid |ξ j) (C.18)

=

[
1

λ jd
+

3
2λ jd

[
Ψ(1/λ jd)−Ψ(3/λ jd)

]]−A(λ jd) |Xid |λ jd log |Xid |

−A(λ jd)

(
1
2

log
Γ(3/λ jd)

Γ(1/λ jd)
+

1
2λ jd

[
Ψ(1/λ jd)−3Ψ(3/λ jd)

]) |Xid |λ jd
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∂
∂λ jd

log
∫

∂ j

fggd(Xd |ξ j)dX =

∂
∂λ jd

∫
∂ j

fggd(Xd |ξ j)dX∫
∂ j

fggd(Xd |ξ j)dX
=

∫
∂ j

fggd(Xd |ξ j)h(Xd |ξ j)dX∫
∂ j

fggd(Xd |ξ j)dX
(C.19)

The term
∫

∂ j
fggd(Xd|ξ j)h(Xd|ξ j)dX can be approximated similar to Eq. (4.12).

∫
∂ j

fggd(Xd |ξ j)h(Xd |ξ j)dX ≈ 1
M

M

∑
m=1

h(s jmd |ξ j)H(s jmd | j) (C.20)

∂
∂λ jd

log p(Xid |ξ j) =

[
1

λ jd
+

3
2λ jd

[
Ψ(1/λ jd)−Ψ(3/λ jd)

]]−A(λ jd) |Xid |λ jd log |Xid | (C.21)

−A(λ jd)

(
1
2

log
Γ(3/λ jd)

Γ(1/λ jd)
+

1
2λ jd

[
Ψ(1/λ jd)−3Ψ(3/λ jd)

]) |Xid |λ jd

− ∑M
m=1 h(s jmd |ξ j)H(s jmd | j)

∑M
m=1 H(s jmd | j)

λ̂ jd = λ jd +α
(

p( j|�Xi)
∂

∂λ jd
log p(Xid |ξ j)

)
(C.22)

C.6 Independent Component Analysis Learning Algorithm

The derivative of log p(�Xi|ξ j) in Section 4.2.1.2 can be computed using ICA [196, 245, 299]. As-
sume that s is an M-dimensional zero mean vector that has mutually independent components and�s
corresponds to M independent scaler-valued sources which is expressed as�s = [s1, ...,sM]T . A data
vector �Xi = [Xi1, ...,XiD]

T is observed at each time point i, such that �Xi = A�si, where A is D×M
scalar matrix. In the proposed algorithm we shall consider the case where, the number of sources
is equal to the number of sensors D = M. The goal of ICA is to estimate the a linear transformation
W of the dependent sensor signal X that makes the output u as independent as possible such that
u is an estimate of the sources as: ui = W�Xi = WA�si. The sources can be recovered exactly when
the W is the inverse of A up to a scale and permutation level. The probability density function of
the observations X can be represented as: p(X) = |det(W)|p(u), where p(u) is the hypothesized
distribution of p(�s) The log-likelihood of the above probability density function is given by:

L(u,W) = log(det(W))+ log(p(u)) (C.23)
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By maximizing the log-likelihood with respect to W , learning algorithm for W can be determined
as:

ΔW ∝
[
(WT )−1 −φ(u)XT ] (C.24)

where

ϕ(u) =

⎡
⎣− ∂ p(u)

∂ (u)
p(u)

⎤
⎦=

⎡
⎣− ∂ p(u1)

∂ (u1)

p(u1)
, ...,−

∂ p(uN)
∂ (uN)

p(uN)

⎤
⎦

T

(C.25)

An efficient way to maximize the log-likelihood is to follow the gradient ascent.

ΔW ∝
∂L(u,W)

∂W
WT W =

[
I−φ(u)uT ]W (C.26)

If we choose g(u) to be a logistic function (g(u) = tanh(u))

ϕ(u) =

⎡
⎣− ∂ p(u)

∂ (u)
p(u)

⎤
⎦ , p(u) =

∂g
∂u

=
∂

∂u
tanh(u) = 1− tanh(u)2 (C.27)

∂
∂u

p(u) =
∂ 2

∂u2 tanh(u) =−2tanh(u)(1− tanh(u)2) (C.28)

ϕ(u) =
2tanh(u)(1− tanh(u)2)

(1− tanh(u)2)
= 2tanh(u) (C.29)

The learning rule for ICA will become:

(C.30)ΔW ∝ W[I − 2tanh(u)uT ]
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Appendix D
BAGMM

D.1 Derivation of
∂L (X ,Z |Θ)

∂ μ jd

For a particular mixture j and dimension d, the data log-likelihood is differentiated with respect to

μ jd as below.

(D.1)
∂L (X ,Z |Θ)

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

∂L (X ,Z |Θ)

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(D.2)

=
N

∑
i=1,Xid<μ jd

Zi j

[
(Xid −μ jd)

σ2
l jd

]
+

N

∑
i=1,Xid≥μ jd

Zi j

[
(Xid −μ jd)

σ2
r jd

]

−
N

∑
i=1,xd<μ jd

Zi j

σ2
l jd

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫

∂ j
2√

2π(σl jd+σr jd )

(
exp

[
− (u−μ jd)

2

2σ2
l jd

])
(u−μ jd)du

∫
∂ j

f (u|ξ j)du

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−
N

∑
i=1,Xid≥μ jd

Zi j

σ2
r jd

×

⎧⎪⎪⎨
⎪⎪⎩
∫

∂ j
2√

2π(σl jd+σr jd )

(
exp

[
− (u−μ jd)

2

2σ2
r jd

])
(u−μ jd)du∫

∂ j
f (u|ξ j)du

⎫⎪⎪⎬
⎪⎪⎭

∂L (X ,Z |Θ)

∂ μ jd
=

N

∑
i=1,Xid<μ jd

Zi j

[
(Xid −μ jd)

σ2
l jd

]
+

N

∑
i=1,Xid≥μ jd

Zi j

[
(Xid −μ jd)

σ2
r jd

]
(D.3)
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−
N

∑
i=1,xd<μ jd

Zi j

σ2
l jd

×
{∫

∂ j
g1(u|ξ j)(u−μ jd)du∫

∂ j
g1(u|ξ j)du

}

−
N

∑
i=1,Xid≥μ jd

Zi j

σ2
r jd

×
{∫

∂ j
g2(u|ξ j)(u−μ jd)du∫

∂ j
g2(u|ξ j)du

}

D.2 Estimation of μ̂ jd

D.2.1 For the case Xid < μ jd, Estimation of μ̂ jd

N

∑
i=1,Xid<μ jd

Zi j

[
(Xid −μ jd)

σ2
l jd

]
−

N

∑
i=1,xd<μ jd

Zi j

σ2
l jd

×
{∫

∂ j
g1(u|ξ j)(u−μ jd)du∫

∂ j
g1(u|ξ j)du

}
= 0 (D.4)

{
μ̂ jd

}
Xid<μ jd

=

∑N
i=1,Xid<μ jd

Zi j

{
Xid −

∫
∂ j

g1(u|ξ j)(u−μ jd)dx∫
∂ j

g1(u|ξ j)du

}
∑N

i=1,Xid<μ jd
Zi j

(D.5)

D.2.2 For the case Xid ≥ μ jd, Estimation of μ̂ jd

N

∑
i=1,Xid≥μ jd

Zi j

[
(Xid −μ jd)

σ2
r jd

]
−

N

∑
i=1,Xid≥μ jd

Zi j

σ2
r jd

×
{∫

∂ j
g2(u|ξ j)(u−μ jd)du∫

∂ j
g2(u|ξ j)du

}
= 0 (D.6)

{
μ̂ jd

}
Xid≥μ jd

=

∑N
i=1,Xid≥μ jd

Zi j

{
Xid −

∫
∂ j

g2(u|ξ j)(u−μ jd)dx∫
∂ j

g2(u|ξ j)du

}
∑N

i=1,Xid≥μ jd
Zi j

(D.7)

For Xid < μ jd and Xid ≥ μ jd , the derivation of μ̂ jd can be generalized as:

μ̂ jd =

∑N
i=1 Zi j

{
Xid −

∫
∂ j

f (u|ξ j)(u−μ jd)dx∫
∂ j

f (u|ξ j)du

}
∑N

i=1 Zi j
(D.8)
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D.3 Derivation of
∂L (X ,Z |Θ)

∂σl jd

(D.9)
∂L (X ,Z |Θ)

∂σl jd

=
∂

∂σl jd

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

∂L (X ,Z |Θ)

∂σl jd

=
∂

∂σl jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(D.10)

=
N

∑
i=1,Xid<μ jd

Zi j

(
(Xid −μ jd)

2

σ3
l jd

)
−

N

∑
i=1,xd<μ jd

Zi j

σ3
l jd

{∫
∂ j

g1(u|ξ j)(u−μ jd)
2du∫

∂ j
g1(u|ξ j)du

}

D.4 Derivation of
∂ 2L (X ,Z |Θ)

∂σ2
l jd

∂ 2L (X ,Z |Θ)

∂σ2
l jd

=
∂ 2

∂σ2
l jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(D.11)

∂ 2L (X ,Z |Θ)

∂σ2
l jd

=−3
N

∑
i=1,Xid<μ jd

Zi j

(
(Xid −μ jd)

2

σ4
l jd

)
(D.12)

−
N

∑
i=1,xd<μ jd

Zi j

(
−2

σ3
l jd
(σl jd +σr jd )

)⎧⎨
⎩
(∫

∂ j
g1(u|ξ j)(u−μ jd)

2du
)

(
∫

∂ j
g1(u|ξ j)du)

⎫⎬
⎭

−
N

∑
i=1,xd<μ jd

Zi j

σ6
l jd

⎧⎨
⎩
(∫

∂ j
g1(u|ξ j)(u−μ jd)

4du
)

(
∫

∂ j
g1(u|ξ j)du)

⎫⎬
⎭−

N

∑
i=1,xd<μ jd

−3 Zi j

σ4
l jd

⎧⎨
⎩
(∫

∂ j
g1(u|ξ j)(u−μ jd)

2du
)

(
∫

∂ j
g1(u|ξ j)du)

⎫⎬
⎭

−
N

∑
i=1,xd<μ jd

Zi j

σ6
l jd

⎧⎪⎨
⎪⎩
(∫

∂ j
g1(u|ξ j)(u−μ jd)

2du
)2

(
∫

∂ j
g1(u|ξ j)du)2

⎫⎪⎬
⎪⎭

Similar to the approximations for first order derivative in Section 5.2.3.2, second order derivative
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can be approximated as follows:

(D.13)

∂ 2L (X ,Z |Θ)

∂σ2
l jd

= −3
N

∑
i=1,Xid<μ jd

Zi j

(
(Xid − μ jd)

2

σ4
l jd

)

−
N

∑
i=1,Xid<μ jd

Zi j

(
−2

σ3
l jd
(σl jd + σr jd)

){
1
M ∑M

m=1(lm jd − μ jd)
2H(lm jd |Ω j)

1
M ∑M

m=1 H(lm jd |Ω j)

}

−
N

∑
i=1,Xid<μ jd

Zi j

σ6
l jd

{
1
M ∑M

m=1(lm jd − μ jd)
4H(lm jd |Ω j)

1
M ∑M

m=1 H(lm jd |Ω j)

}

−
N

∑
i=1,Xid<μ jd

−3 Zi j

σ4
l jd

{
1
M ∑M

m=1(lm jd − μ jd)
2H(lm jd |Ω j)

1
M ∑M

m=1 H(lm jd |Ω j)

}

−
N

∑
i=1,Xid<μ jd

Zi j

σ6
l jd

{( 1
M ∑M

m=1(lm jd − μ jd)
2H(lm jd |Ω j)

)2

( 1
M ∑M

m=1 H(lm jd |Ω j))2

}

D.5 Derivation of
∂L (X ,Z |Θ)

∂σr jd

(D.14)
∂L (X ,Z |Θ)

∂σr jd

=
∂

∂σr jd

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j)+ logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

∂L (X ,Z |Θ)

∂σr jd

=
∂

∂σr jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(D.15)

=
N

∑
i=1,Xid≥μ jd

Zi j

(
(Xid −μ jd)

2

σ3
r jd

)
−

N

∑
i=1,xd≥μ jd

Zi j

σ3
r jd

{∫
∂ j

g2(u|ξ j)(u−μ jd)
2du∫

∂ j
g2(u|ξ j)du

}

D.6 Derivation of
∂ 2L (X ,Z |Θ)

∂σ2r jd

∂ 2L (X ,Z |Θ)

∂σ2r jd

=
∂ 2

∂σ2r jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(D.16)
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∂ 2L (X ,Z |Θ)

∂σ2
r jd

=−3
N

∑
i=1,Xid≥μ jd

Zi j

(
(Xid −μ jd)

2

σ4
r jd

)
(D.17)

−
N
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i=1,xd≥μ jd

Zi j

(
−2

σ3
r jd
(σl jd +σr jd )

)⎧⎨
⎩
(∫

∂ j
g2(u|ξ j)(u−μ jd)

2du
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(
∫
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⎫⎬
⎭

−
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⎧⎨
⎩
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∂ j
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4du
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⎫⎬
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r jd

⎧⎨
⎩
(∫
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2du
)
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∫

∂ j
g2(u|ξ j)du)

⎫⎬
⎭

−
N

∑
i=1,xd≥μ jd

Zi j

σ6
r jd

⎧⎪⎨
⎪⎩
(∫

∂ j
g2(u|ξ j)(u−μ jd)

2du
)2

(
∫

∂ j
g2(u|ξ j)du)2

⎫⎪⎬
⎪⎭

Similar to the approximations for first order derivative in Section 5.2.3.3, second order derivative

can be approximated as follows:

(D.18)
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∂σ2r jd

= −3
N

∑
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Zi j

(
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2

σ4
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−
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(
−2

σ3
r jd
(σl jd + σr jd)
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−
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−
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−
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Appendix E
BAGGMM

E.1 Derivation of
∂L (X ,Z |Θ)

∂ μ jd

For a particular mixture j and dimension d, the data log-likelihood is differentiated with respect to

μ jd as below.

(E.1)
∂L (X ,Z |Θ)

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log p j + log f (�Xi|ξ j) + logH(�Xi| j)− log

∫
∂ j

f (�u|ξ j)du
}

∂L (X ,Z |Θ)

∂ μ jd
=

∂
∂ μ jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(E.2)

= A(λ jd)λ jd

⎡
⎣ N

∑
i=1,Xid≥μ jd

Zi j
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Xid −μ jd

)λ jd−1

σλ jd
r jd

−
N

∑
i=1,Xid<μ jd

Zi j

(
μ jd −Xid

)λ jd−1

σλ jd
l jd

−
N

∑
i=1,Xid≥μ jd

Zi j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
∂ j

g2(u|ξ j)
(u−μ jd)

λ jd−1

σ
λ jd
r jd

du
∫

∂ j
g2(u|ξ j)du

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
N

∑
i=1,Xid<μ jd

Zi j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
∂ j

g1(u|ξ j)
(μ jd−u)λ jd−1

σ
λ jd
l jd

du

∫
∂ j

g1(u|ξ j)dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

E.2 Derivation of
∂ 2L (X ,Z |Θ)

∂ μ2
jd

∂ 2L (X ,Z |Θ)

∂ μ2
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=
∂ 2

∂ μ2
jd

N

∑
i=1

Zi j

{
log f (�Xi|ξ j)− log

∫
∂ j

f (�u|ξ j)du
}

(E.3)
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= A(λ jd)λ jd(λ jd −1)

⎡
⎣− N
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i=1,Xik<μ jd
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σλ jd
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⎤
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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⎪⎪⎪⎭
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⎪⎪⎪⎭
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E.3 Derivation of
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