
Model Checking Trust-based Multi-Agent Systems

Nagat Drawel

A Thesis

In

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Information Systems Engineering) at

Concordia University

Montréal, Québec, Canada

December, 2019

c© Nagat Drawel, 2019

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Nagat Drawel

 Entitled: Model Checking Trust-based Multi-Agent Systems

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Information Systems Engineering)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

 Chair
 Dr. S. Samuel Li

 External Examiner
 Dr. Nadia Tawbi

 External to Program
 Dr. Emad Shihab

 Examiner
 Dr. Rachida Dssouli

 Examiner
 Dr. Roch Glitho

 Thesis Supervisor
 Dr. Jamal Bentahar

Approved by

 Dr. Mohammad Mannan, Graduate Program Director

February 10, 2020
 Dr. Amir Asif, Dean
 Gina Cody School of Engineering & Computer Science

ABSTRACT

Model Checking Trust-based Multi-Agent Systems

Nagat Drawel, Ph.D.

Concordia University, 2019

Trust has been the focus of many research projects, both theoretical and practical, in

the recent years, particularly in domains where open multi-agent technologies are applied

(e.g., Internet-based markets, Information retrieval, etc.). The importance of trust in such

domains arises mainly because it provides a social control that regulates the relationships

and interactions among agents. Despite the growing number of various multi-agent appli-

cations, they still encounter many challenges in their formal modeling and the verification

of agents’ behaviors. Many formalisms and approaches that facilitate the specifications of

trust in Multi-Agent Systems (MASs) can be found in the literature. However, most of these

approaches focus on the cognitive side of trust where the trusting entity is normally capable

of exhibiting properties about beliefs, desires, and intentions. Hence, the trust is considered

as a belief of an agent (the truster) involving ability and willingness of the trustee to per-

form some actions for the truster. Nevertheless, in open MASs, entities can join and leave

the interactions at any time. This means MASs will actually provide no guarantee about the

behavior of their agents, which makes the capability of reasoning about trust and checking

the existence of untrusted computations highly desired.

This thesis aims to address the problem of modeling and verifying at design time

trust in MASs by (1) considering a cognitive-independent view of trust where trust ingre-

dients are seen from a non-epistemic angle, (2) introducing a logical language named Trust

Computation Tree Logic (TCTL), which extends CTL with preconditional, conditional, and

iii

graded trust operators along with a set of reasoning postulates in order to explore its capa-

bilities, (3) proposing a new accessibility relation which is needed to define the semantics

of the trust modal operators. This accessibility relation is defined so that it captures the

intuition of trust while being easily computable, (4) investigating the most intuitive and

efficient algorithm for computing the trust set by developing, implementing, and experi-

menting different model checking techniques in order to compare between them in terms of

memory consumption, efficiency, and scalability with regard to the number of considered

agents, (5) evaluating the performance of the model checking techniques by analyzing the

time and space complexity.

The approach has been applied to different application domains to evaluate its com-

putational performance and scalability. The obtained results reveal the effectiveness of the

proposed approach, making it a promising methodology in practice.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to Allah Almighty for granting me the health,

ability, and patience to complete this thesis.

Dear professor Jamal Bentaher, I would like to thank you for encouraging me to

pursue a Ph.D. and for your trust on me, support, patience, motivation, and for catching

many of my flawed ideas with your valuable and insightful discussions that helped me

accomplish these five years adventure.

Moreover, I would like to express my deepest appreciation to my Ph.D. committee

members Dr. Rachida Dssouli, Dr. Emad Shihab, and Dr. Roch Glitho for giving me the

honor by being in my Ph.D. committee and for their time, guidance, valuable comments

and suggestions.

My gratitude also goes to all my colleagues in the research laboratory at Concor-

dia University especially Mona Taghavi, Dr. Omar Abdul Wahab, Gaith Rjoub, Ahmad

Bataineh, Amine Laarej, Faryed Eltayesh, and Narges Baharloo for unforgettable moments,

and for providing me a warm and friendly atmosphere to work in.

This research would not have been possible without the financial support of the Min-

istry of Higher Education - Libya. This support was very important for me to alleviate the

financial burdens and focus on my research duties. Furthermore, I would like to thank Con-

cordia University for all research facilities that have been provided to me to carry out this

work.

Finally, I would like to thank my parents, my brothers and sisters for supporting me

spiritually throughout writing this thesis and my life in general, and most importantly, I

wish to thank my loving and supportive husband, Miftah, and my five wonderful children,

Taha, Anas, Sanad, Shahd, and my little girl Ahad, who provide unending inspiration.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ACRONYMS . xi

1 Introduction 1

1.1 Context of Research . 1

1.1.1 Agents and Multi-Agent Systems 1

1.1.2 Trust in Multi-Agent Systems . 2

1.1.3 Verification of Trust in MASs . 4

1.2 Motivations . 6

1.3 Methodology and Research Questions . 8

1.4 Contributions . 11

1.5 Thesis Structure . 12

2 Background and Literature Review 15

2.1 Computation Tree Logic - CTL . 15

2.2 Interpreted Systems . 17

2.3 Symbolic Model Checking Technique . 18

2.4 Literature Review . 21

2.4.1 Qualitative Logical-based Approaches 21

2.4.2 Quantitative Logical-based Approaches 24

2.4.3 Model Checking-based Approaches 26

2.5 Summary . 30

vi

3 Logic-based Framework for Specifying and Model Checking Trust in MASs 31

3.1 An Overview of The Proposed Approach 32

3.2 Trust Computation Tree Logic TCTL . 32

3.3 Vector-based Interpreted Systems . 34

3.4 Reasoning Postulates and The Case Study 37

3.4.1 Breast Cancer Diagnosis and Treatment: A Case Study 37

3.4.2 Reasoning Postulates . 38

3.5 Automatic Verification of TCTL Properties of MASs 46

3.5.1 Explicit Algorithm of Trust . 46

3.5.2 BDD-based Algorithm of Trust 50

3.6 Implementation and Experiments . 54

3.6.1 Evaluation: The Breast Cancer Diagnosis and Treatment (BCDT). . 55

3.6.2 Specifications . 57

3.6.3 Verification Results . 58

3.7 Summary . 62

4 Transformation-based Model Checking Temporal Trust 63

4.1 An Overview of The Proposed Approach 64

4.2 Conditional Trust TCTLC . 65

4.3 Formal Transformation to Model Check TCTL and Conditional Trust . . . 68

4.3.1 Transformation of TCTL Model 68

4.3.2 Transformation of TCTL Formulae 71

4.3.3 Model Checking Conditional Trust 74

4.4 Complexity Analysis . 76

4.4.1 Space Complexity . 78

Concurrent Programs . 79

vii

4.5 Implementation and Experimental Results 81

4.5.1 Insurance Claim Processing: A Case Study 81

4.5.2 Implementation . 82

4.5.3 Properties . 84

4.5.4 Experimental Results . 86

4.6 Summary . 88

5 Degrees of Trust: Temporal Logic and Model Checking 91

5.1 An Overview of The Proposed Approach 92

5.2 Graded Trust Temporal Logic . 93

5.2.1 Syntax and Semantics . 93

5.2.2 Reasoning Postulates . 95

5.3 Model Checking TCTLG . 97

5.3.1 BDD-based Algorithm of Graded Trust 98

5.4 Complexity Analysis . 99

5.5 Implementation and Experiments . 108

5.5.1 Performance Evaluation . 108

5.5.2 Experimental Results . 110

5.6 Summary . 111

6 Conclusions and Future Directions 112

6.1 Summary . 112

6.2 Future Directions . 115

Bibliography 117

viii

LIST OF TABLES

2.1 Comparison between the list of publications reviewed for this thesis with

respect to the proposed criteria. 29

3.1 Verification results of the BCDT protocol using the direct algorithm 58

3.2 Verification results of the BCDT protocol using the revisited algorithm . . . 61

4.1 Verification results of the AGFIL protocol using our toolkit 87

4.2 Comparison of the verification results between Java tool and MCMAS-T . . 88

5.1 Verification results of the BCDT protocol against TCTLG formulae 110

ix

LIST OF FIGURES

1.1 Research methodology w.r.t the identified research questions 13

2.1 A model checker with counter and witness examples 20

3.1 The main parts of the proposed approach 33

3.2 An example of accessibility relation i→ j 37

3.3 Example to illustrate Algorithm 1 . 49

3.4 Illustrative example of model without-loop (flat) 53

3.5 Comparison results between models with and without-loops using the direct

algorithm . 60

3.6 Comparison results between the direct and revisited algorithms using a flat

model . 61

4.1 A schematic view of our TCTL model checking approach 64

4.2 An example of trust accessibility relation i→ j 67

4.3 Example of the transformation methods 72

4.4 Illustrative example of Algorithm 7 . 76

4.5 Screenshot of the generated NuSMV modules and the verification results . . 83

4.6 Screenshot of the information dialog box that shows the transformation

time of each formula . 84

4.7 Comparison results between our transformation-based tool and MCMAS-T 89

5.1 The main parts of the proposed approach 92

5.2 A model that satisfies the formula (5.2) 96

5.3 f1 model transformation from TCTLG to ARCCTL÷1 103

x

LIST OF ACRONYMS

ARCTL Action Restricted Computation Tree Logic

BDD Binary Decision Diagram

BDI Beliefs, Desires, and Intentions

CCTL Counting CTL logic

CTL Computation Tree Logic

CTLC Computation Tree Logic of Commitment

CTLK Computation Tree Logic of Knowledge

ISPL Interpreted Systems Programming Language

LTL Linear Temporal Logic

MAS Multi-Agent System

MCMAS Model Checker for Multi-Agent Systems

NuSMV New Symbolic Model Verifier

PCTL Probabilistic Computation Tree Logic

PRISM PRobabilistIc Symbolic Model checker

PSPASE Polynomial Space

SMV Symbolic Model Verifier

SPIN Simple Promela INterpreter

xi

Chapter 1

Introduction

In this chapter, we introduce the context of our research and motivations. Then, we identify

the methodology, research questions, and contributions of our work. Finally, we conclude

this chapter by providing the thesis organization.

1.1 Context of Research

1.1.1 Agents and Multi-Agent Systems

Agents are autonomous entities that have reactive, pro-active, social and rational properties.

Reactive property means that an agent is capable of responding to external changes in its en-

vironment. Pro-active property refers to its ability to behave with respect to its goals. Social

property is an agent’s capability to interact and communicate with other agents, and ratio-

nality property is an agent’s ability to act consistently with its goals [109]. A Multi-Agent

System (MAS) composed of multiple agents, which interact in dynamic and uncertain envi-

ronments in order to achieve their goals [110]. Agents may be heterogeneous, which means

that they may have different preferences and behaviours, and they may be independently

1

developed by different programmers. The ability of agents to communicate and interact

with one another is one of their essential properties. Interaction among autonomous and

heterogeneous agents is the key aspect for: 1) solving complex problems that an individual

agent cannot handle alone, and 2) building effective MASs. These appealing features made

MASs successfully adopted in a large number of critical applications such as commercial,

industrial, governmental and healthcare systems [12, 111, 107, 58]. Nonetheless, this adop-

tion raises a number of challenges related to their present and future behaviors. The fact that

agents are autonomous and have to interact with each other within unreliable environments

makes the concept of trust of particular importance for regulating their interactions.

1.1.2 Trust in Multi-Agent Systems

Trust is regarded as being one of the key aspects behind the success and growth of applica-

tions based on MASs. Trust has been an essential research topic in several disciplines for

many years. Each of these disciplines gives different definitions for trust [63, 65, 46, 105].

For instance, in the field of distributed computing, trust is used mainly to regulate the re-

lationship between service providers and customers [105, 1]. In social science disciplines,

trust is seen as a relationship among individuals in social settings [46] (e.g., trust is used to

control relationships between trusters and trustees to ensure that the trustees will perform a

certain action).

In the context of MASs, the most widely used definition is the one proposed by

Castelfranchi and Falcone (abbreviated as C&F) [16], where trust is basically defined as

a mental state of one agent (the truster) towards another agent (the trustee) in which the

truster’s goals and beliefs are reflected in some internal properties of the trustee. C&F stud-

ied the trust concept in a cognitive perspective that emphasizes the importance of the goal

2

component. Such a component allows us to distinguish trust from mere thinking and fore-

seeing [48]. Indeed, by emphasizing the agent’s goal, C&F rely on the internal structures

of agents for the fulfillment of their own goals. Since these systems involve autonomous

entities that keep their structure private, it is hard to verify if the agents’ goals are achieved.

To cope with this limitation, we take in this research a new approach towards social per-

spectives of trust where the trust parties do not have intuition for cognitive goals. Instead,

we define trust from a high-level abstraction without having to depend on individual agent’s

internal mental states.

Trust in multi agent systems has been analyzed from different aspects. The major

studies focused on two main approaches: the numerical approach and the logical approach.

The numerical direction treats trust as a function that is calculated based on multiple opin-

ions through feedback, user ratings, or agent monitoring [106, 17, 82, 94]. Such approaches

represent and quantify the strength level in which an agent trusts another party. Specifically,

the higher an agent trusts another agent, the more likely the latter would be chosen as an

interaction partner. Trust was first introduced as a measurable notation of an entity in [77].

Following this work, a number of computational models have been proposed in the MASs

literature (see for instance [90]). Nevertheless, in dynamic MASs where agents may join

for a short period of time before leaving the interaction, it might be impossible to collect

sufficient information to evaluate the trustworthiness of partners. As a consequence, the

well established trust relationships is not guaranteed due to misleading trust results. On the

other hand, the logical approach mainly focuses on defining semantic structures for trust.

Several logical frameworks have been proposed to describe the static and dynamic proper-

ties of trust. Such approaches provide a formal semantics to reason about trust properties in

various applications such as security protocols, information sources, and recommendation

3

systems. Moreover, in terms of expressiveness, some of these studies adopted combin-

ing logics [3, 68], while others extended standard logics of action and belief, or enriched

temporal logics with a new modality for trust [27, 48, 98].

1.1.3 Verification of Trust in MASs

Generally, verifying that a system complies with its design requirements is very challeng-

ing, especially in multi-agent systems. The existence of many autonomous entities in such

systems makes the verification highly difficult due to the increase in their complexity and

heterogeneity. The main challenge that faces MASs is how to ensure the reliability of the

trust relationships in the presence of misbehaving entities. Such entities not only create an

exception for other agents, but also may obstruct their proper work [55]. The fact that such

agents are autonomous and have to interact with each other within unreliable environments

makes reasoning about trust and checking the existence of untrusted computations highly

desired.

Technically, the verification mechanisms of trust in MASs fall into two categories de-

pending on when the verification activities are performed: runtime and design-time. For the

first approaches, monitoring is the most common used technique where the verification is

performed by monitoring the evolving executions of the target system during the operation

phase, and then checking whether the desired properties of the system hold or not [4, 6, 8].

Runtime verification can also extract relevant information from a running system and use

it to detect undesired behaviors with regard to particular properties. On the other hand,

the second approaches rely on the static formal verification, which is a class of logic-based

techniques. In such approaches, model checking has become one of the most successful

approaches widely used for verifying various aspects of MASs [9, 71, 108]. Indeed, each

4

technique has its own advantages and limitations. For instance, one of the appealing fea-

tures of the runtime verification is the use of real and concrete runs to check the correctness

of the target system. This allows us not only to observe the real system, but also react

whenever undesired behaviors are detected [66]. However, such techniques only consider

a particular execution of the system, which may lead to an incomplete verification process

due to the limited coverage. In contrast, the design phase techniques systematically check

all possible states of the system, provide full automation of the verification process, and

can produce counter examples when the system fails to satisfy a desired property. Yet, such

techniques suffer from the state explosion problem that limits the applicability of verifying

large systems. Technically, both techniques complement each other in detecting untrust-

worthy behaviors and improving MASs development.

In fact, although trust is dynamic because agents can change their behaviors dynami-

cally, still verifying trust properties at design time is very critical and useful. Model check-

ing trust is of prime importance to ensure that trust behavior can take place among agents

engaged in an interaction. For instance, if the outcome of the model checking reveals there

is no execution where a particular trust property is satisfied, then this could be considered

as a final verdict and the model should be changed because it is unsafe to deploy it in real

systems. On the other hand, if the model checking reveals the opposite, which means all

possible executions are trusted, then showing the equivalence between the implemented

model and the designed one would be enough, if such an equivalence is possible to be

proven. In the general case where the outcome reveals that some paths are trusted and

some others are not, then model checking will benefit the dynamic verification that could

be guided to monitor the untrusted paths, which means monitor if the agents are behaving

according to the identified untrusted paths. Though, in this thesis, we adopt a design time

approach as our main goal is to improve the utilization of MASs paradigm by reducing

5

the time and cost of the development process, and to increase the confidence on the safety,

efficiency and robustness of the system. Recently, formal evaluation using model checking

techniques has been proved to be a highly effective tool [20, 21].

1.2 Motivations

In this research, we are primarily concerned with the issues of reasoning about and verifying

trust in the context of MASs using the model checking approach, which has not been deeply

investigated yet for trust systems. In the literature, many logical formalism approaches of

trust in MASs can be found. However, very few approaches addressed trust from a high

level abstraction viewpoint [98]. Modal logic approaches provide powerful mechanisms

that can be effectively used for trust reasoning. Such approaches yield a formal semantics

to reason about trust properties in various applications such as security protocols, infor-

mation sources, and e-markets. For instance, in [24, 48, 75], the authors proposed several

logical frameworks for the concept of trust. Trust in such logics is mostly expressed as

a combination of different modalities based on the logic of action and time [47] and the

BDI logic [22]. In [69], a modal logic for reasoning about the interaction between belief,

evidence and trust is presented. Other approaches are interested in analyzing trust in in-

formation sources [5, 24, 27, 67]. Moreover, some proposals have addressed trust in the

context of computer security [45, 75].

Most of these approaches focus on the cognitive side of trust (i.e., trusted agents are

capable of exhibiting beliefs, desires, and intentions properties). Hence, the trust is consid-

ered as a belief of an agent (the truster) involving ability and willingness of the trustee to

perform some actions for the truster. Since these agents are autonomous and heterogeneous,

such a mental concept cannot make those agents abide by the language semantics whenever

they interact [9]. Thus, the need for a logical language that can provide a certain level of

6

abstraction with the ability to express the trust properties is of great significance. More-

over, agents are able to show flexible and unpredictable behaviour when they are working

together in an unreliable environment. Hence, deciding whether to trust other agents (for

instance to perform some actions) or not is a challenging task. For instance, agents may

not comply with their obligations (e.g., an agent may not send the payment for goods re-

ceived). Thus, this raises the need for developing efficient methodologies to handle their

present and future behaviors in order to ensure the fulfillment of the system requirements.

Currently, the technique of model checking [20, 21] has attracted several contributions with

a significant industrial implication. Although these contributions addressed a number of

multi-agent aspects such as social commitments [9, 33] and knowledge [73, 104], model

checking trust in multi-agent settings has not been sufficiently investigated yet. From this

view, we aim in this research to contribute in the modeling and verification of trust systems.

To motivate our study of analyzing the trust in MASs, we use an example in the con-

text of electronic commerce where trust is a highly desired property. Let us consider the

buyers-sellers relationships. The buyer requests to purchase one or more items from the

seller (i.e., the trust relationship is established between the two parties). Once the former

selects an item, and the requested items are paid. The seller confirms the order and starts the

delivery process. Finally, the requested items are shipped and the buyer is notified. How-

ever, online interactions are characterized by uncertainty and, moreover, the anonymity of

the interaction partners. Thus, there is no guarantee that this process will be surely satis-

fied in concrete applications. Therefore, the need for formally specifying and automatically

verifying trust-based interactions among autonomous agents are of great importance.

7

1.3 Methodology and Research Questions

Our review of the concept of trust in the context of MASs literature has revealed a gap in

modeling trust from social perspectives point of view. The existing approaches consider a

cognitive concept of trust where trust is defined as an attitude of the truster who believes

that the trustee has a given property. Although these approaches are highly appropriate

to reason about trust, their verification faces a fundamental limitation due to their reliance

on the internal structure of the interacting agents. In fact, the distributed and open na-

ture of MASs makes the capability of handling and verifying the trust interaction issues

of such approaches arduous. That is, the challenge of automatically detecting the undesir-

able behaviors of such agents’ and then fixing them according to preset specifications is

an important issue that arises in the cognitive semantic approaches. Another issue that has

attracted our attention while reviewing the literature is the limitation of the approaches that

addressed the model checking problem of trust logics. The current proposals have been

focusing mainly on evaluating the trust-based systems. Such approaches often evaluate the

effectiveness and robustness of these models against undesired attackers’ behaviors. While

these approaches have the advantage of detecting and isolating different kinds of attacks,

they lack the generality (i.e., the proposed assessment tools can only be applied to a single

particular model). Moreover, only known and predefined attacks have been considered in

the evaluation process. Besides, theses approaches are not designed to formalize and ver-

ify trust for autonomous MASs. Nonetheless, interacting agents are heterogeneous, which

means one cannot guarantee that they will behave as they are supposed to. Thus, the need

for efficient methodologies to automatically check whether or not MASs behavior conforms

with the system specifications is recognized. So far, there is almost no approach on verify-

ing statically MASs with respect to certain properties related to agents trust. Dealing with

such an issue as a model checking problem is one of our goals in this research. In order to

8

do so, different important research questions arise:

Question 1. How can we define a temporal logic that is capable of specifying the trust

properties from social perspectives viewpoint?

To address this question, we started by investigating the possibility of using the exist-

ing temporal logics such as LTL [91] and CTL [43]. However, we realized that the needed

modality for trust cannot be expressed using such logics. In fact, these logics lack the

capabilities to model trust interactions and the dynamic behaviors of autonomous agents.

Therefore, we propose to extend CTL logic with a trust operator to represent and reason

about the properties that an agent requires to be achieved by the trusted agent. The main

reasons that encouraged us to extend CTL logic are: (1) CTL logic has grounded semantics,

which means it can be associated to computational models, (2) there are several open model

checker tools that support this logic, and (3) such logic has a high efficient model checking

procedure.

Moreover, we associate with the logic a set of reasoning rules along with their formal

proofs to capture the common reasoning patterns that uniformly apply to trust relationships

and agents are expected to respect them when they engage in interactions.

From the semantics perspectives, we define a new trust accessibility relation to cap-

ture the trust relationship between the interacting agents by extending the original frame-

work of interpreted systems [44]. To the best of our knowledge, our work is the first ini-

tiative that gives formal and computational definitions of the trust accessibility relation as a

social concept between interacting agents in MASs. Given that, the direct question is:

Question 2. How can we formally verify the developed temporal logic?.

In order to reduce and eliminate post-development costs and increase confidence on

the safety, efficiency and robustness, two verification techniques at design time have been

9

put forward to verify trust logic: direct and indirect verification techniques. A direct method

can be performed by either developing a proper model checker from scratch or by extending

existing tools with new algorithms for the needed temporal modalities. In contrast, indirect

techniques, also called transformation-based methods, can be performed by applying cer-

tain reduction rules in order to transform the problem at hand to an existing model checking

problem. In this research, we aim to explore both techniques in order to compare between

them in terms of memory consumption, efficiency, and scalability with regard to the number

of considered agents. Knowing all these facts, our next research question:

Question 3. How can we evaluate the proposed solution for the model checking prob-

lem of the developed temporal logic?

Two evaluation methods have been put forward: Empirical and Theoretical. The first

method is evaluated by applying the proposed algorithms in real world case studies and

report the experimental results, and the second method is to explore the theoretical analysis

by analyzing the time and space complexity. By the end, a key question that need to be

asked is how much should we trust?

Question 4. How the degree of trust that an agent has toward anther agent can be

computed and verified?

Trust in the existing approaches has often been treated as either true or false, i.e., we

either trust the behavior of an agent or not. However, such systems have also quantitative

temporal properties (such as degrees of trust), which still need further attention from the

logical and model checking perspectives. In fact, in many contexts, it is quite difficult to

determine with absolute certainty whether a proposition about the behaviours of potential

agents is true or false. For instance, I might trust the agent to a certain degree in relation to

given propositions (i.e., I may have only 50% of trust). In our research, we aim to address

10

this issue by introducing a logical-based framework for quantifying the relationships among

the interacting agents.

Figure 1.1 summarizes the research methodology w.r.t the identified research ques-

tions and maps them to thesis chapters.

1.4 Contributions

The following contributions are offered by this thesis:

– We introduced the Trust Computation Tree Logic (TCTL) that extended the standard

CTL logic with a new temporal modality to represent and reason about preconditional

trust, and then defined its formal semantics. We also associated the logic with a set

of reasoning rules along with their formal proofs.

– We introduced a new vector-extended version of interpreted systems to capture the

trust relationship between the interacting agents.

– We designed a new symbolic model checking algorithm to formally and automatically

verify the system under consideration against some desirable properties expressed

using the proposed logic. We fully implemented our proposed algorithms by extended

the MCMAS model checker for MASs. Hence, a new model checker tool, called

MCMAS-T, dedicated to TCTL, along with its new input language VISPL (Vector-

extended ISPL) have been introduced.

– We expressed the concept of conditional trust by extending TCTL, the extended logic

is called TCTLC. Then, we developed a new model checking framework for the

TCTL logic of preconditional trust that is extended to design a new algorithm to

11

model check conditional trust TCTLC. In particular, we introduced transformation-

based algorithms and implemented them in a Java toolkit that automatically interacts

with the NuSMV model checker of the CTL logic.

– We introduced a logical language called TCTLG, an extension of TCTL that allows

us to formally represent and reason about the quantitative aspect of trust. Moreover,

a dedicated symbolic model checking algorithm for TCTLG implemented on top of

MCMAS is presented (MCMAS-G).

– We computed the time and space complexity of the model checking problem of the

developed temporal logics. We proved that the time complexity of TCTL, TCTLC,

and TCTLG model checking algorithms in explicit models is P-complete with regard

to the size of the model and length of the formula, and the complexity of the same

problems for concurrent programs is PSPACE-complete with respect to the size of

the program’s components.

– We successfully applied the proposed logic and tools to model check different appli-

cation domains.

1.5 Thesis Structure

We present in Chapter 2 the background needed to understand the different concepts of our

research work. In particular, we give an overview of the CTL logic, summarize the formal-

ism of interpreted systems, and review the model checking techniques. Then, we provide

literature reviews on the main approaches on trust modeling. We compare the existing ap-

proaches with regard to the proposed criteria and highlight some potential research gaps

that are addressed in the thesis.

12

Research Questions
& Core Results

Fo
rm

al
iz

in
g

an
d

 V
er

fy
in

g
Tr

u
st

 in
 M

A
Ss

Qualitative Trust

Qualitative Logics

Chapter 3

Model Checking

Chapter 4

Evalution

Quantitative Trust

Quantitative Logic

Chapter 5

Model Checking

Evalution

Research Aspects

RQ3 RQ2 RQ1

RQ2 RQ3

RQ4 RQ3

RQ3

Research Objectives

Figure 1.1: Research methodology w.r.t the identified research questions

In Chapter 3, we present the syntax and semantics of the developed TCTL logic. A set of

reasoning rules are also presented. To verify the trust interactions, new model checking al-

gorithms dedicated to TCTL logic are introduced. We also present the full implementation

of our algorithms on top of the MCMAS symbolic model checker. Our implementation

extends the input language of MCMAS in order to parse the TCTL logic syntax and se-

mantics. Thereafter, we evaluate the tool and report experimental results using a real-life

scenario in the healthcare platform.

13

In Chapter 4, we investigate a different model checking technique for TCTL logic. More-

over, we extend TCTL logic by introducing a new modality for conditional trust to pro-

duce a new logic called TCTLC. In this chapter, the problem of model checking TCTL

is transformed to the problem of model checking CTL by means of transformation-based

algorithms that are extended to design a new algorithm to model check conditional trust

TCTLC. The algorithms are implemented in a Java toolkit that automatically interacts with

the NuSMV model checker of the CTL logic. Further, we analyze the time complexity of

TCTL model checking in explicit models and its space complexity in concurrent programs.

Moreover, we evaluate the effectiveness and efficiency of our approach by performing a set

of experiments on a widely-used case study in business domain and compare our results

with the results obtained in Chapter 3.

In Chapter 5, we address the quantitative aspect of trust from the modeling and verification

perspectives. We start by constructing TCTLG, a logical language to represent the degrees

of trust along with its reasoning postulates. Moreover, a new symbolic model checking

algorithm for quantifying the relationships among the interacting agents is presented. The

implementation of the model checker MCMAS-G, an extended version of the MCMAS

model checker is introduced. Moreover, we investigate the complexity and evaluate our

approach using a case study in the health care domain.

We summarize the obtained results and sketch possible extension of this work in Chapter 6

14

Chapter 2

Background and Literature Review

In this chapter, we briefly present some preliminaries needed for the rest of the thesis. In

Section 2.1, we explore Computation Tree Logic (CTL) as the main ingredient that we used

to define a formal semantics for trust in our proposed approach. Section 2.2 is devoted to

briefly review the formalism of interpreted systems, which provides a very popular frame-

work for modeling and reasoning about MASs. In Section 2.3, we provide the relevant

background of symbolic model checking techniques and tools. Thereafter, in Section 2.4,

we discuss relevant related work on current logical-based frameworks in trust-based MASs.

We explain each proposal and point out if it meets the introduced criteria. Finally, we high-

light the main features of our proposed framework and present some potential research

gaps.

2.1 Computation Tree Logic - CTL

CTL [43] logic is a branching time logic with modal operators to describe the temporal

order of events. The CTL represents a tree-like structure time where each moment in time

may split into many possible paths in future.

15

Definition 2.1. (Syntax of CTL)

The syntax of CTL formulae is defined as follows:

φ ::= ρ | ¬ϕ | ϕ ∨ϕ | EXϕ |EGϕ | E(ϕUϕ)

where ρ ∈ AP is an atomic proposition from the set of atomic propositions AP, E is the

existential quantifier over paths, the formula EXϕ stands for "ϕ holds in the next state in

at least one path", EGϕ stands for "there exists a path in which ϕ holds globally", and the

formula E(ϕUψ) holds at the current state if there is some future moment for which ψ

holds and ϕ holds at all moments until that future moment. EFϕ is the abbreviation of

E(trueUϕ). A, the universal quantifier over paths, can be defined in terms of the above

as usual: AXϕ = ¬EX¬ϕ; AGϕ = ¬EF¬ϕ; and A(ϕUψ) = ¬(E(¬ψU(¬ϕ ∧¬ψ))∨

EG¬ψ).

The semantics of CTL formulae is given in terms of a transition system M =(S,R,V, I)

where S is a nonempty set of states, R⊆ S×S is a transition relation, V : S→ 2AP is a valu-

ation function, and I ⊆ S is a set of initial states. The transition relation R models temporal

transitions among states: given two states s,s′ ∈ S, (s,s′) ∈ R means that s′ is an immedi-

ate successor of s. The behaviour of the system model M is a set of computation paths.

A path π in a model M from a state s0 is an infinite sequence of reachable global states

π = s0s1s2 · · · such that for all i≥ 0 ,(si,s(i+1)) ∈ R.

Definition 2.2. (Satisfaction)

Given the model M, the satisfaction for a CTL formula ϕ in a global state s, denoted

as (M,s) |= ϕ , is recursively defined as follows:

−(M,s) |= ρ iff ρ ∈V (s);

−(M,s) |= ¬ϕ iff (M,s) 2 ϕ;

−(M,s) |= ϕ1∨ϕ2 iff (M,s) |= ϕ1 or (M,s) |= ϕ2;

16

−(M,s) |= EXϕ iff there exists a path π starting at s such that (M,π(1)) |= ϕ;

−(M,s) |= EGϕ iff there exists a path π starting at s such that (M,π(k)) |= ϕ,∀k≥ 0;

−(M,s) |=E(ϕ1Uϕ2) iff there exists a path π starting at s for some k≥ 0,(M,π(k)) |=

ϕ2 and ∀ 0≤ i < k, (M,π(i)) |= ϕ1;

2.2 Interpreted Systems

An interpreted system [44] is a formal description that has been proven to be a suitable for-

malism for reasoning about knowledge and time in MASs, and which systematically models

different classes of MASs, such as synchronous and asynchronous. Such a formalism en-

joys a high level of abstraction that allows focusing only on the interactions among the

various agents, and it is a useful tool for modeling autonomous and heterogeneous agents

interacting within a global system. The original version of interpreted systems has been

extended in various ways. For instance, Bentahar et al. [10] and El-Menshawy et al. [39]

extended the formalism of interpreted systems with sets of shared and unshared variables

to account for agent communications that occur during the execution of MASs.

Here, we present the standard semantics of interpreted systems as in [44]. Consider

a set Agt = {1, · · ·,n} of n agents and at any given time, each agent in the system is in

a particular local state, which represents the complete information about the system that

the agent can access at that time. Each agent i ∈ Agt is associated with a non-empty set

of local states Li and a set of local actions Acti to model the temporal evolution of the

system together with a local protocol ρi : Li→ 2Acti assigning a list of enabled actions to a

given local state li ∈ Li. It is assumed that null ∈ Acti for each agent i, where null refers

to the silent action (the fact of doing nothing). A local evolution function τi is defined as:

τi : Li×Acti→ Li, which determines the transitions for an individual agent i between her

local states.

17

As in [44], a global state s ∈ S represents a snapshot of all agents in the system

at a given time. A global state s is a tuple s = (l1, . . . , ln). The set of all global states

S ⊆ L1× . . .× Ln is a non-empty subset of the Cartesian product of all local states of n

agents. The notation li(s) is used to represent the local state of agent i in the global state

s. I ⊆ S is a set of initial global states for the system. The global evolution function of the

system is defined as follows: τ : S×ACT −→ S, where ACT = Act1× . . .×Actn and each

component a∈ ACT is called a joint action, which is a tuple of actions. As in [44], a special

agent e is used to model the environment in which the agents operate. The environment e is

modeled using a set of local states Le, a set of actions Acte, a protocol Pe, and an evolution

function τe.

2.3 Symbolic Model Checking Technique

The technique of model checking [20, 21] is used in both software and hardware industries

since the 1980’s. The goal of model checking is to verify the system correctness against

desired properties at design time.The system is modeled as a finite-state transition system

and the properties (the specifications) of the system that need to be verified are formulated

in temporal logics, and then it is systematically checked whether the specifications are met

for a given system (the model). If they are not met, a counterexample is produced which

provides a helpful tool for debugging the system design. Many verification tools are devel-

oped for this purpose such as SPIN [50], NuSMV [19], MCMAS [73], and PRISM [62].

SPIN is an automaton-based model checker for Linear Temporal Logic (LTL) focusing on

proving the correctness of process interactions. NuSMV is an extended version of Symbolic

Model Verifier (SMV) [79] that allows checking finite state systems against specifications

in both Computation Tree Logic (CTL) and Linear Temporal Logic (LTL). MCMAS [72] is

a model checker for multi-agent systems which can verify a variety of properties specified

18

by different logics such as CTL, Computation Tree Logic of social Commitments (CTLC),

and Computation Tree Logic of Knowledge (CTLK). The dedicated programming language

used for describing a MAS in MCMAS is called ISPL (Interpreted Systems Programming

Language). The PRISM tool [62] is widely used for checking probabilistic specifications

over probabilistic model. The specifications can be expressed either in the Probabilistic

Computation Tree Logic (PCTL) or in the Continuous Stochastic Logic (CSL).

Formally, let M be a state-transition graph (the system model), and ϕ be the property

that the model has to satisfy. Then, the model checking technique is used to check whether

or not the model M representing the system satisfies the logical formula ϕ describing a

certain property.

Recently, model checking has been extended to MASs. Different approaches have

been proposed to extend model checking techniques with the aim of verifying extended

temporal logics with agent-related modalities. For instance, verifying epistemic proper-

ties expressed using logics of knowledge [70, 71, 89, 59], conditional and unconditional

commitments [10, 41, 40, 33] and services composition [7, 34].

The main challenge in the application of model checking is the state space explosion

problem. Early implementation of model checking algorithms suffered from this problem,

which occurs when the number of components in the system grows up to the degree that

makes the number of global states enormous. However, researchers have made consider-

able progress in dealing with this problem over the last three decades. The introduction

of Symbolic Model Checking with Binary Decision Diagrams (BDDs) data structure [14],

Bounded Model Checking (BMC), Partial Order Reduction, and Symmetry Reduction tech-

niques succeeded in partially combating this problem. Yet, these methods still suffer from

the potential memory explosion problem on modern test cases. In this thesis, we adapt

a symbolic model checking (SMC) as our underlying technique due to its effectiveness in

19

Model
Checker

Specifications
(System Requirements)
E.g. Temporal Logics

𝝋 𝑴╞ 𝝋 ?

System Model
E.g. Interpreted Systems

𝑀

True
The Model satisfies
the Specifications

False
Counterexample

Figure 2.1: A model checker with counter and witness examples

mitigating the state explosion problem. Symbolic model checking considers the set of states

(denoted as [[φ]]) satisfying the given formula φ in the model M, which is represented and

manipulated using Ordered Binary Decision Diagram (OBDD)[13] data structure. Such a

set is then compared against the set of initial states I in the model M (also represented as an

OBDD). Thus, we say that a model M satisfies the formula φ if and only if I ⊆ [[φ]]. In a

formal way, this fact can be represented as (M, I) |= φ iff (M,s) |= φ ∀ s ∈ I.

Figure 2.1 describes a typically model checking process that involves three integrated

phases. First, the system design formulated in some precise mathematical language. Then,

specifications about the system are expressed as temporal logic formulas. Finally, the ver-

ification part where automatically verify whether a given model of a system meets a given

specification.

20

2.4 Literature Review

In this section, we present our methodological review where we classify the current state-of-

the-art in the domain of trust in MASs in three parts: qualitative logical-based approaches,

quantitative logical-based approaches, and model checking trust-based techniques. In the

following, we present a brief overview of each of these constituents and highlight the advan-

tages and limitations of existing approaches and the main features of our proposed frame-

work.

2.4.1 Qualitative Logical-based Approaches

Modal logics have been used to formalize trust in MASs by many researchers. Most of

the existing formal approaches consider trust based on key aspects of cognitive view where

trust involves four components: truster, trustee, action of the trustee, and goal of the truster.

In particular, [24] has proposed several approaches for trust reasoning. He developed a

logic by combining a dynamic logic [47] with the BDI logic [22]. Trust in this work is

considered as an attitude of the truster who believes that the trustee has a given property.

In other proposals, Demolombe, Lorini and Amgoud have focused on analyzing trust in

various features of information sources [27, 75]. For instance, in [75], the authors formalize

some security properties and their relationships with trust such as integrity, availability and

privacy by introducing a modal operator of obligation. Thus, one agent is trusting another

agent if the former believes that the information transmitted to it is reliable.

Similarly, trust in the domain of information sources is proposed in early work [67]

where the BIT, a modal logic that extends the traditional doxastic logic with modalities for

representing belief, information acquisition, and trust is presented. In the BIT formalism,

the trust operator is interpreted using neighborhood semantics [80]. The logic is provided

with a rigorous semantics to precisely characterize 1) the relationships among beliefs and

21

information acquisition, and 2) how different trust properties are represented by consider-

ing various axioms of the logic. Indeed, this well-known, early formal treatment of trust,

has been followed by many researchers. For instance, [87] has simplified the semantical

treatment of the trust operator given in [67] by retaining only two types of modalities, a

belief operator and trust, and they do not make use of the additional information operator.

The idea of this work is to concentrate only on the interrelation between trust and belief.

Their alternative logic of trust can also explicate a type of trust that is linked to honesty

or sincerity. It allows to consider different forms of honesty separately and to incorpo-

rate these already into the base logic. Trust in the sincerity is also presented recently in

[18]. The authors proposed a modal logic to reason about an agent’s trust in the sincerity

towards a statement formulated by another agent. In this work, trust is represented as a nor-

mal modality that allows to reason about trust when an agent attempt to manipulate other

agents. Moreover, the authors exhibited some notable properties such as non-transitivity of

trust, and they proved the soundness and completeness of the proposed logic.

Following the path of cognitive trust, [48] proposed a formal logical framework to

evaluate agents’ behavior in a multi-agent environment. To do so, they presented a lan-

guage that combines the expressiveness of the logic of time, the logic of action, and the

logic of beliefs. Moreover, the proposed logic is extended in order to enable reasoning

about reputation. Trust in their work is based on the basic concept of belief while the repu-

tation is considered in the scope of collective beliefs. They distinguish between two general

categories of trust: occurrent trust and dispositional trust, and they provided precise defi-

nitions and formal representations for the two concepts. In another work [49], Herzig and

his colleagues simplified the previous logic presented in [48] by considering a very simple

kind of actions based on the concepts of propositional assignment. That is, the truth values

of a propositional variable is assigned to either true or false by the corresponding agents’

22

actions. The new logic provides a simple framework, and it is expressive enough to account

for the cognitive theory of trust. In [69], Liu and Lorini presented a new dynamic logic

called DL-BET for reasoning about the interaction between belief, evidence and trust. The

authors introduced three modal operators where each of these concepts are respectively

represented. In this logic, the trust operator semantics is interpreted using neighborhood

semantics [80], which maps each world into a set of subsets of worlds. The authors pro-

vided a complete axiomatization for both the static component of the proposed logic and

its dynamic extension. Another logic-based proposal for trust has been initiated by [15]

who introduced a logic of trust called BAN-logic used for reasoning about the correctness

of security protocols. The authors translated the protocol steps as logical formulas in order

to manipulate them using first-order logic. Fuchs and colleagues [45] also addressed trust

in the context of computer security. Moreover, more recent proposals have made the link

between trust and argument-based frameworks [85, 101].

The closest approach to our work is the one presented by Singh in [98] where the

social perspective of trust has been put forward. Specifically, the author provided a for-

mal semantics for trust with various logical postulates used to reason about trust from an

architectural perspective. His model is based on the idea of trust as a dependence. This

model combines temporal modalities of linear temporal logic (LTL) [91] and modality (C)

for commitments [97] and (T) modality for trust. The semantics is interpreted using neigh-

borhood semantics [80], which maps each world into a set of subsets of worlds. A function

k that produces a set of propositions for each moment, an ordered pair of two agents, and

a proposition is defined. This function yields a set of consequent propositions, which in

turn captures what the truster would be trusted to if the antecedent holds. Thus, the trust

semantics is defined by computing the set of moments where the consequence holds and

testing if those moments are among the moments computed by k on the trust antecedent.

23

Yet, it is not clear how the function k is computed, which makes the approach quite difficult

to be applied in practice.

While the aforementioned approaches have taken a good step towards developing a

modal logic for trust, they fail to present the notion of trust explicitly. Moreover, such

studies are mostly focused on agents with mental states where the trusting entity is normally

capable of exhibiting beliefs, desires, and intentions. Nevertheless, agents are operating in

open environments. Thus, they are likely using different types of platforms and are possibly

using different technologies, so it is very difficult for one agent to completely trust others

or to make assumptions about their internal states. Besides, such logics are abstract and

not computationally-grounded (i.e., we cannot interpret them using concrete computational

models), which makes them hard to be applicable for verification purposes. Moreover,

model checking neighborhood semantics-based modal logics is yet to be solved [38, 84].

2.4.2 Quantitative Logical-based Approaches

Indeed, there are relatively small amounts of directly related work. For instance, the work

in [26, 5] proposed several approaches that address the graded trust. They developed a

logic by combining a dynamic logic [47] with a BDI-like logic [22]. The author in [25]

defined a logical framework to represent graded trust in terms of two independent com-

ponents: graded beliefs and graded regularities. In this work, trust is reduced to graded

beliefs, so the graded trust is defined as the strength level of the truster agent belief about

the trustee agent sincerity. In another proposal, Demolombe and Lorini [74] have focused

on analyzing the trust that can be associated with information sources. The authors have

integrated graded beliefs into a logical framework that defines different kinds of trust. In

another work [76], Lorini et al. considered the quantitative aspects of trust in a dynamic

epistemic logic setting, where the relationship between trust and belief change is presented.

24

The authors proposed Dynamic Logic of graded Belief and Trust (DL-BT), a modal logic

that supports reasoning about agents changing their beliefs based on the degree of trust the

receiver agent has in the information source. The proposed logic combines modal operators

of knowledge, graded belief and trust with dynamic operators of trust-based belief change.

The graded trust operator is interpreted using a neighborhood semantics [80], whose model

checking is still an open problem [38]. In this work, two kinds of trust-based belief change

policies have been considered: additive and compensatory policies, along with the detailed

analysis of their logical properties. Moreover, the authors provided a sound and complete

axiomatization. In [81], the authors introduced a logical framework that combines a formal

logic based on a logic of belief, a logic of time, and a dynamic logic to cognitively rep-

resent the concept of trust (qualitative aspects), and a fuzzy logic to represent the degree

(quantitative aspect) of trust. However, the proposed logics mostly focused on agents with

mental states where the trusting entity is normally capable of exhibiting beliefs, desires,

and intentions, which makes them difficult to be model checked. Moreover, the trust from

the quantitative approach is not considered because the grades are embedded in the modal

operators. [93] present a logic called Certain Logic to evaluate trust under uncertainty by

evaluating a number of Boolean expressions in terms of real values.

The author in [100] proposed a logical language that can be employed to reason about

trust, knowledge, and their interaction. The proposed logic is a modal language augmented

with a trust operator, which is interpreted using a combination of a neighborhood structure

[80] with an added component to assign weights to formulas. Moreover, they provided a

mechanism that can produce values to be fed into Subjective Logic’s trust manipulation

component [53]. The idea of this work is to use the expressive power of the proposed for-

mal language to describe the information possessed by an agent and then transform this

25

knowledge into an opinion value about a given proposition with all the three major compo-

nents of subjective logic made explicit. Such components are, respectively, belief, disbelief,

and uncertainty. Then, an evidence based logic is built, such that evidences are assigned

weights that determine whether an agent trusts a given proposition or not.

Huang et al. [51] considered the setting of stochastic multi-agent systems, where

an automated verification framework for quantifying and reasoning about cognitive trust

is proposed. The authors focused on a quantitative notion of trust defined as a subjec-

tive evaluation in order to capture the social notation of trust. This allows one to quantify

the amount of trust as a belief-weighted expectation. In this work, a probabilistic rational

temporal logic PRTL*, which extends the logic PCTL* with reasoning about agents’ men-

tal states is introduced. However, the model checking of the proposed logic was proven

undecidable. Yet, no implementation has been considered and no attempt to evaluate the

approach on any case studies. Considering our approach, trust is defined from a high-level

abstraction without having to depend on agent’s internal mental states, and moreover, quan-

tifies trust by relying only on the accessibility relations. Furthermore, our model checking

algorithm is proved space-efficient.

2.4.3 Model Checking-based Approaches

Some relevant approaches with the aim of verifying trust-based models using formal meth-

ods have appeared recently. For instance, Aldini in [3] has been introduced a formal frame-

work to evaluate the effectiveness and robustness of trust-based models in order to detect

and then isolate different kinds of attacks . Indeed, the author integrates trust modeling with

distributed systems. In this work, the system properties are expressed using a trust tempo-

ral logic (TTL) which combines CTL [43] and its action-based extension (ACTL) [23].

Moreover, the trust system model is based on an instance of both labeled transition systems

26

and Kripke structures. The verification of temporal logic properties expressed in TTL has

been performed through a mapping to an existing model checking technique. However, the

model mapping between the two logics has not been specified and TTL can only specify a

single agent model, and it is not adapted to autonomous MASs. In [83], the authors pre-

sented a mechanism for specifying and model checking trust specifications against models

(such as Deontic models) of multi-agent interactions. The authors in [108] considered the

formal verification of auction mechanisms. They implemented simple and intuitive auction

models in a BDI-based programming language, to which they applied agent verification

techniques. In this work some sophisticated agent aspects such as goals, intentions, beliefs

and deliberation within an auction context has been verified. Moreover, they verified some

of the scenarios that is involving a dynamic and static notions of trust. The verification

carried out using an agent model-checking system and the properties verified are given in

a logic of belief, goals and time. However, the approach has been tested on some small

multi-agent programs: variations of the contract net protocol and auction systems, and with

very fewer agents. Overall, their verification system is relatively slow where the speed and

space required were the main problem.

The authors in [11] proposed an approach to model and verify trust models specified

in a Colored Petri Net (CPN). They presented a model (named TCPN) that can be used

to check the performance and behavior of such systems from both simulation and model

checking points of view. In their approach, state-space is used to formalize the conceptual

model of trust, which is then represented by Colored Petri nets to entitle for simulation

and verification using existing modeling tools. Yet, this work fail to provide a verification

of a trust model using model checking, and moreover, no attackers are considered in their

modeling.

Model checking service trust behaviors has been recently investigated in [42], where

27

the authors present a model checking framework to verify the trust behaviors model against

regular and non-regular properties. To model their target system, the authors introduced an

algorithm to generate a configuration graph of a deterministic pushdown automata (PDA),

where the trust behaviors are captured through the observations’ sequences related to certain

interactions between the services and users. By doing so, they overcome the problem of

non-regular model checking algorithms based on PDA. From the semantics point of view,

they specified the trust behavior properties using Fixed point Logic with Chop (FLC). By

using the chop operator, they were able to represent the non-regular properties. Moreover,

they applied a symbolic FLC model checking algorithm to verify service trust behaviors

with respect to trust properties. Indeed, FCL behavior formulae and the generated models

are used as the inputs to the mcflc model checker tool which is the only tool for FLC model

checking. However, this approach lacks formal semantics for trust because trust formulae

are inferred from the context free grammar of trust pattern languages. Besides, non-regular

behaviors verification is limited by its EXPTIME complexity, where no attempt to reduce it

to polynomial time has been made in this approach. Moreover, the approach is not designed

to formalize and verify trust for autonomous MASs. Further, none of these approaches tend

to focus on model checking quantitative trust.

On the other hand, model checking trust can also be achieved by indirect techniques,

also called transformation-based methods. The idea is to apply certain reduction rules in

order to transform the problem at hand to an existing model checking problem. In fact,

transformation has been acknowledged as an alternative mechanism for verifying various

MASs aspects. The main advantage of this technique is that it enables the designers of

MASs applications to get benefit from powerful and already tested model checkers. This

technique has been applied for model checking commitments [36], knowledge [71], and the

interaction between knowledge and commitments [2, 99]. To the best of our knowledge,

28

Table 2.1: Comparison between the list of publications reviewed for this thesis with respect
to the proposed criteria.

Approach C1 C2 C3 C4 C5 C6 C7

[24] [27] [75] [49]
√

– – – – – –
[48]

√
– – – – –

√

[67] [87] [18] –
√ √

– – –
√

[98] –
√ √

– – – –
[5] [74][25] [81]

√
– – –

√
– –

[3] [42] –
√

– – –
√

–
[76]

√
–

√
–

√
– –

[26]
√

–
√

–
√

–
√

[69]
√

– – – –
√

[51]
√

– –
√ √ √

–
Our approach –

√ √ √ √ √
–

our work is the first attempt that introduces and implements a full transformation technique

for verifying trust specifications in MASs.

In summary, we compare only the existing approaches that are mainly related to our

research by taking into consideration the following criteria: being cognitive, being social,

considering explicit notion of trust, analyzing complexity, dealing with graded modality,

supporting model checking, and proving the soundness and completeness. We refer to these

criteria as C1, C2, C3, C4, C5, C6, and C7 respectively. Cognitive and social properties

indicate whether the logic is based on BDI logics (i.e., logics that describe the mental atti-

tudes of agents in terms of beliefs, desires and intentions) or other temporal logics. Explicit

notion of trust shows if it is possible to express trust by an explicit modality (i.e., logics

that rely on a trust modality) or by means of one or more predicates. Moreover, complexity

analysis states whether it is considered or not in the proposed approach. Graded modality

indicates whether the work addresses the quantitative aspects of trust. Applicability for

model checking confirms the presentation of a formal verification technique to verify the

proposed approach, or specifying if the approach is applicable for model checking. Finally,

29

check whether they address the soundness and completeness of the proposed logic. A sum-

mary about the comparison between the existing approaches and our approach with respect

to the proposed criteria is presented in Table 2.1.

2.5 Summary

In this chapter, we introduced the background and concepts needed for the rest of the thesis.

Moreover, we also presented a revision of the most relevant related work. In the next

chapter, we propose a new approach for modeling and verifying trust in MASs.

30

Chapter 3

Logic-based Framework for Specifying

and Model Checking Trust in MASs

In this chapter, we present a new logic-based framework for specifying and model checking

preconditional trust in MASs. We start by introducing TCTL, a new temporal logic of trust

that extends the Computation Tree Logic (CTL) to enable reasoning about trust with pre-

conditions (Section 3.2). A new vector-extended version of interpreted systems is defined to

capture the trust relationship between the interacting parties in Section 3.3. In Section 3.4,

we introduce a set of reasoning postulates along with formal proofs to support our logic.

Moreover, Section 3.5 presents new model checking algorithms to formally and automat-

ically verify the system under consideration against some desirable properties expressed

using the proposed logic. We fully implemented our proposed algorithms by extended the

MCMAS model checker for MASs. Hence, a new model checker tool called MCMAS-

T, dedicated to TCTL, along with its new input language VISPL (Vector-extended ISPL)

have been created. We evaluated the tool and reported experimental results using a real-life

scenario in the health-care domain1.
1The results of this chapter are collected from our publications in [31, 32]

31

3.1 An Overview of The Proposed Approach

The study of trust in MASs has been an area of interest for many researchers over the

last years. This is due to the fact that trust is the basis for agent communication wherein

entities have to operate in a dynamic and uncertain environment. Several approaches have

been proposed to define logical semantics for trust in MASs. However, these approaches

are limited to reason about trust based on the sole agents’ mental states. Therefore, in

this research, we consider trust from a high-level abstraction based on the social behaviors

of agents. Specifically, we propose a logical framework that allows us to reason about

preconditional trust and time. Figure 3.1 illustrates the main parts of the proposed approach.

It specifically consists of three different, but fully integrated parts. In the logical language

part, we develop a new branching-time trust temporal logic called TCTL. This logic is

an extension of the CTL logic [43] with a new operator for trust along with its intuitive

semantics to effectively modeling trust interactions as temporal modality. In this part, we

also express reasoning rules with proofs that they are supported in the proposed logic. In

the algorithmic part, we develop new algorithms to tackle the problem of model checking

TCTL by examining both explicit and symbolic state model checking. In the third part,

we completely implement our algorithm on top of the model checker MCMAS [73] that

results in a new open source tool called MCMAS-T. We also extend the input modeling

and encoding language of MCMAS with the vector-based semantics to produce a new one

called VISPL.

3.2 Trust Computation Tree Logic TCTL

TCTL is a combination of branching time temporal logic (CTL) [43] with trust modality

for reasoning about trust and time.

32

CTL Logic

+

Trust Syntax and
Semantics

+

Reasoning Rules

Introducing Explicit
and Symbolic State
Model Checking for

Trust

Extending The
MCMAS Model

Checker

by

Explicit and Symbolic
Algorithms

Embedded by Vector
Variables

Logical Part Algorithmic Part Implementation Part

Figure 3.1: The main parts of the proposed approach

Definition 3.1. (Syntax of TCTL)

The syntax of TCTL is defined as follows:

φ := ρ | ¬φ | φ ∨φ | EXφ | EGφ | E(φUφ) | Tp(i, j,φ ,φ)

where ρ,E,A,X ,G,∨, and U are defined in Definition 2.1 (Chapter 2). The modality

Tp(i, j,ψ,ϕ) stands for “Preconditional Trust” and is read as “the truster i trusts the trustee

j to bring about ϕ given that the precondition ψ holds”. That is, we have the trust over

the content given that the precondition is satisfied. A path π in a model M from a state

s0 is an infinite sequence of reachable global states π = s0s1s2 · · · such that for all i ≥ 0

,(si,s(i+1)) ∈ R.

Example 3.1. The following formula represents a simple interaction between a buyer and a

seller in an e-commerce setting. It states the buyer trusts the seller will deliver the requested

items under the precondition that the latter has received the payment.

Tp(buyer,seller, Items_Paid, Items_Delivered)

33

3.3 Vector-based Interpreted Systems

In order to account for the trust relationship between the truster and trustee, we extend

the original formalism of interpreted systems [44] introduced in Section 2.2 to explicitly

capture the trust relationship that is established between agents engaged in an interaction.

We introduce the notion of agents’ vector ν . That is, for each agent i ∈ Agt, a vector ν i of

size |Agt| is associated with each local state li ∈ Li of this agent. ν i(i),ν i(j), . . . ,ν i(k) are

the components of the vector ν i where (i, j, . . . ,k) ∈ Agt |Agt|. This vector will be used to

define the trust accessibility relation. Indeed, the set of local vectors νi represents the vision

of agent i with regard to the trust of other agents. This extension allows us to provide an

intuitive semantics for direct trust that takes place between interacting parties. The vector-

extended formalism is composed of:

• A set Agt = {1, . . . ,n} of n agents in which each agent i ∈ Agt is described by:

– A non-empty set of local states Li, which represents the complete information

that the agent can access at a particular time;

– A set of local actions Acti to model the temporal evolution of the system;

– A set of local vectors νi.

– A local protocol ρi : Li→ 2Acti assigning a list of enabled actions that may be

performed by agent i in a given local state Li;

– A local evolution function τi is defined as: τi = Li×Acti→ Li, which determines

the transitions for an individual agent i between local states;

• A set of global states s ∈ S that represent a snapshot of all agents in the system at

a given time. A global state s is a tuple s = (l1 . . . ln). The notation li(s) is used to

represent the local state of agent i in the global state s. Similarly, the notation νi(j)(s)

34

is used to represent the jth component of the local vector of agent i in the global state

s;

• I ⊆ S is a set of initial global states for the system;

• The global evolution function of the system is defined as follows: τ : S×ACT −→ S,

where ACT = Act1× . . .×Actn and each component a ∈ ACT is called a joint action,

which is a tuple of actions.

Definition 3.2. (Model of TCTL)

A model of trust generated from the vector-based interpreted systems is a tuple M =

(S,R, I,{ i→ j |(i, j) ∈ Agt2},V), where:

• S is a non-empty set of reachable global states for the system;

• R⊆ S×S is the transition relation;

• I ⊆ S is a set of initial global states for the system;

• i→ j ⊆ S× S is the direct trust accessibility relation for each truster-trustee pair of

agents (i, j) ∈ Agt2 defined by i→ j iff:

– li(s)(ν i(j)) = li(s′)(ν i(j));

– s′ is reachable from s using transitions from the transition relation R;

• V : S→ 2AP is a labeling function, where AP is a set of atomic propositions.

The intuition of the relation i→ j is, for agent i to gain trust in agent j, the former

identifies the states that are compatible with their trust vision with regard to the latter, i.e.,

where agent i is expecting that agent j is trustful. Specifically, for two global states s,s′ ∈ S,

s i→ j s′ obtained by comparing the element ν i(j) in the local state li at the global state

35

s (denoted by li(s)(ν i(j))) with ν i(j) in the local state li at the global state s′ (denoted by

li(s′)(ν i(j))). Thus, the trust accessibility of agent i towards agent j (i.e., i→ j) does exist

only if the element value that we have for agent j in the vector of the local states of agent i

for both global states is the same, i.e., li(s)(ν i(j))= li(s′)(ν i(j)). Finally, infinite sequences

of states linked by transitions define paths. If π is a path, then π(i) is the (i+1)th state in

π . This idea is illustrated in Figure 3.2. In the figure, the solid line represents the transition

relation from R, and the dashed line represents the direct trust accessibility relation i→ j.

In this example, s′ is compatible with s with regard to the trust of agent i towards the agent

j. We assign a vector to each agent’s local states. ν i
3 is the vector of agent i where 3 is the

number of interacting agents at that time. The agent i compares the element of her vector at

global states s and s′. The particular value of the ν i(j) of agent i is the same in both states.

Definition 3.3. (Semantics of TCTL)

Given the model M, the satisfaction for a TCTL formula φ in a global state s, denoted

as (M,s) |= φ , is recursively defined as follows:

−(M,s) |= Tp(i, j,ψ,φ) iff (M,s) |= ψ ∧¬φ and ∃ s′ 6= s such that s i→ j s′ , and ∀

s′ 6= s such that s i→ j s′, we have (M,s′) |= φ .

The formal semantics of the CTL formulae, a temporal fragment of TCTL, is intro-

duced in Definition 2.2. For the state formula Tp(i, j,ψ,φ), it is satisfied in the model M at

s iff (1) there exists a state s′ such that s′ 6= s and s i→ j s′, and (2) all the trust accessible

states s′ that are different from the current state s satisfy the content of trust φ . Moreover, for

the trust to take place between the interacting agents i and j, we add the condition ψ ∧¬φ ,

which must be satisfied in the current state s to ensure that the precondition ψ holds before

the trust content φ is brought about.

The following proposition is direct from the definition of the accessibility relation.

36

Figure 3.2: An example of accessibility relation i→ j

Proposition 3.1. The accessibility relation i→ j is reflexive and transitive. Thus, the re-

sulting logic of trust is an S4 system of modal logic.

3.4 Reasoning Postulates and The Case Study

In this section, we consider the Breast Cancer Diagnosis and Treatment (BCDT) 2 pro-

tocol as an illustrative application example to clarify the proposed reasoning postulates.

Thereafter, we introduce the reasoning rules along with the required proofs to capture the

properties of our logic.

3.4.1 Breast Cancer Diagnosis and Treatment: A Case Study

The BCDT protocol is introduced by the Assistant Secretary for Planning and Evaluation

(ASPE) project to be used for regulating the interaction between five participating parties

involved in the cancer diagnosis process. These parties are: patient denoted by p, physi-

cian (ph), pathologist (pg), radiologist (rg), and registrar (r). In [102, 33], the authors

2Available at: http://aspe.hhs.gov/sp/reports/2010/PathRad/index.html

37

formalized this scenario in terms of commitments, identifying the contractual business re-

lationships among the parties involved. Indeed, such relationships can be founded as a basic

of defining trust specifications as requirements for engineering contracts among parties.

The process of BCDT protocol starts when the physician notices a suspicious mass

in the patient’s breast. Thereafter, the patient is immediately directed to the radiology de-

partment to do a mammography (a technique using X-rays to diagnose and detect breasts

tumors). If the radiologist observes suspicious calcification, he will send a report to the

physician to recommend a biopsy. The physician requests a radiologist to carry out a biopsy.

The radiologist obtains diagnostic tissue from the patient and then sends it to the laboratory

along with pertinent clinical information for further analysis by a pathologist. This latter

plays a vital role in the diagnosis process. He analyzes the tissue specimen through imaging

studies and determines whether a malignant disease is present or not. Both the radiologist

and pathologist create and release a report of their collective findings. Finally, the physician

reviews the complete report with the patient to decide about a treatment plan. At the same

time, the pathologist forwards the report to the registrar whose role is to insert the patient

information into the cancer registry.

3.4.2 Reasoning Postulates

We present here relevant reasoning postulates of our logic that reflect its properties. These

postulates capture common reasoning patterns about trust. Some of those postulates are

similar to the ones discussed in [98].

P1: Fulfillment. φ →¬Tp(i, j,ψ,φ)

• Meaning: The trust has been achieved, so if the content already holds, then the trust

is no longer active.

38

• Proof: The rule is derived directly from the semantics of Tp(i, j,ψ,φ) which indi-

cates that the current state does not satisfy φ .

• Example: According to the BCDT protocol, once the physician requests a mammog-

raphy to be done (Mammo_Req), there will be no need to establish the trust between

the patient and physician with regard to this request under the precondition that a sus-

picious mass is noticed (Mass_Not) because this mammography is already requested

(the trust content already holds).

Formally: Mammo_Req→¬Tp(p, ph,Mass_Not,Mammo_Req).

P2: Content Partial Partition. Tp(i, j,ψ,φ1∧φ2)∧¬φ1→ Tp(i, j,ψ,φ1)

• Meaning: The trust to bring about a conjunction is the trust for each part separately

unless it does already hold.

• Proof: Assume that (M,s) |= Tp(i, j,ψ,φ1 ∧ φ2)∧¬φ1 . From the semantics, we

obtain (M,s) |= ψ ∧¬φ1 , and there exists a state s′ such that s′ 6= s and s i→ j s′

, and all the trust accessible states s′ such that s 6= s′ and s i→ j s′ satisfy φ1 ∧ φ2 .

Thus, these states also satisfy φ1 . Consequently, (M,s) |= Tp(ψ,φ1).

• Example: Suppose, for instance, that the physician trusts the radiologist to collect

diagnostic tissue from the patient (Tiss_Coll) and send the specimen to the labora-

tory (Tiss_Send) with the precondition that the a mammography is requested, then

the physician trusts the radiologist for the collection of the diagnostic tissue, unless

this tissue has been already obtained. Formally, Tp(ph,rg,Mammo_Req,Tiss_Coll∧

Tiss_Send)∧¬Tiss_Coll→ Tp(i, j, ph,rg,Mammo_Req,Tiss_Coll).

P3: Content Full Partition. Tp(i, j,ψ,φ1∧φ2)→ Tp(i, j,ψ,φ1)∨Tp(i, j,ψ,φ2)

• Meaning: If the trust to bring about a conjunction holds, then at least the trust to

bring about one part holds.

39

• Proof: Assume that (M,s) |= Tp(i, j,ψ,φ1 ∧ φ2). From the semantics, we obtain

(M,s) |= ψ ∧ (¬φ1∨¬φ2) , and there exists a state s′ such that s′ 6= s and s i→ j s′,

and all the trust accessible states s′ such that s 6= s′ and s i→ j s′ satisfy φ1∧φ2 . Thus,

for all those states s′, (M,s′) |= φ1 or (M,s′) |= φ2. Consequently, Tp(i, j,ψ,φ1)∨

Tp(i, j,ψ,φ2) holds.

• Example: As previous example, suppose that the physician trusts the radiologist

to collect diagnostic tissue from the patient and send the specimen to the labora-

tory, then the physician trusts that radiologist for at least one of the two actions. In

fact, if the two actions do not hold currently, then the physician trusts the radiologist

to perform them both. Formally, Tp(ph,rg,Mammo_Req,Tiss_Coll∧Tiss_Send)→

Tp(ph,rg,Mammo_Req,Tiss_Coll)∨Tp(ph,rg,Mammo_Req,Tiss_Send).

P4: Non-Conflict. Tp(i, j,ψ,φ)→¬Tp(i, j,ψ,¬φ)∧¬Tp(i, j,¬ψ,φ)

• Meaning: Trust must be consistent, content and precondition wise. A truster cannot

trust a trustee 1) to bring about a content and its negation simultaneously; and 2) to

bring about a content with a precondition and its negation simultaneously.

• Proof: From the left side, s satisfies ψ , there exists a state s′ ∈ S such that s 6= s′ and

s i→ j s′, and all the accessible states s′ such that s 6= s′ satisfy φ . Since a state that

satisfies φ (resp. ψ) cannot satisfy ¬φ (resp. ¬ψ), we are done.

• Example: When the patient trusts the physician to request the mammography with

the precondition that a mass is noticed, then the trust not to request the mammography

with the same precondition and the trust to request the mammography knowing that

the mass is not noticed cannot hold. Formally: Tp(p, ph,Mass_Not,Mammo_Req)→

¬Tp(p, ph,Mass_Not,¬Mammo_Req)∧¬Tp(p, ph,¬Mass_Not,Mammo_Req).

40

P5: Non-Vacuity. From ψ ` φ infer ¬Tp(i, j,ψ,φ)3

• Meaning: Trust must be for something tangible.

• Proof: Assume that Tp(i, j,ψ,φ). Thus, from the semantics, the current state s satis-

fies ψ ∧¬φ , which is contradiction with ψ ` φ , which means we can get φ from ψ ,

so the rule.

• Example: It does not make sense that the physician trusts the radiologist to collect

the tissue if it is already sent to the laboratory. Formally: Tiss_Send ` Tiss_Coll infer

¬Tp(ph,rg,Tiss_Send,Tiss_Coll).

P6: Precondition Slackening: From Tp(i, j,ψ1,φ),ψ1 ` ψ2 infer Tp(i, j,ψ2,φ)

• Meaning: If trust holds for a stronger precondition, then it holds for a weaker one.

• Proof: Assume that (M,s) |= Tp(i, j,ψ1,φ). From the semantics, (M,s) |= ψ1∧¬φ ,

and there exists a state s′ ∈ S such that s 6= s′ and s i→ j s′, and for all the trust

accessible states s′ such that s 6= s′, we have (M,s′) |= φ . Since ψ1 ` ψ2, meaning

that ψ2 is provable from ψ1, we conclude (M,s) |= ψ2, so we are done.

• Example: When the physician trusts that the radiologist will send a report of her

findings with the precondition that a biopsy is requested, then the physician safely

trusts the latter about sending the report with the precondition that a mammogra-

phy is requested because requesting a biopsy entails that a mammography has been

requested.

• Instances: The following rules are instances or consequences of the precondition

slackening postulate:

3The symbol ` is an element of the object language, while the word infer is from the metalanguage.

41

1- Tp(i, j,ψ,φ)→ Tp(i, j,>,φ). This means if trust holds for a precondition, then it

holds with no precondition. In other words, when the precondition is confirmed, then

only the trust content matters.

2- Tp(i, j,ψ1 ∧ψ2,φ)→ Tp(i, j,ψ1,φ). This means when the trust holds for a con-

junctive precondition, then it comes into effect for each part of this conjunction.

3- Tp(i, j,ψ1,φ)→ Tp(i, j,ψ1∨ψ2,φ). This means the trust to bring about the content

φ with a disjunctive precondition holds if the trust about the same content holds for a

part of the disjunction.

P7: Precondition Extension. Tp(i, j,ψ1,φ)∧ψ2→ Tp(i, j,ψ1∧ψ2,φ)

• Meaning: If trust holds for a precondition ψ1, then it still holds for an extended

precondition with ψ2 subject to the satisfaction of the extending part (i.e., ψ2).

• Proof: The satisfaction of ψ1, ¬φ , the existence of a trust accessible state differ-

ent from the current state, and the satisfaction of φ in all these accessible states are

derived from the satisfaction of Tp(i, j,ψ1,φ), and the satisfaction of ψ2 is already

given, so the postulate.

• Example: Suppose that the radiologist trusts that the registrar will insert the patient’s

name into a cancer registry with the precondition that the patient sends the consensus

report. Then, the trust holds with the additional precondition that the patient accepts

to forward her information to healthcare providers.

P8: Precondition Transfer. Tp(i, j,ψ1,φ)∧ψ2→ Tp(i, j,ψ2,φ)

• Meaning: If trust holds for a precondition, then it comes into effect for any true

precondition.

• Proof: This postulate is a direct consequence of P7 and Instance 2 of P6.

42

• Example: From the previous example, the trust holds if the precondition is trans-

ferred to the fact that the patient accepts to forward her information to healthcare

providers.

P9: Exchange. Tp(i, j,ψ1,φ1)∧Tp(i, j,ψ2,φ2)→ Tp(i, j,ψ1,φ2)

• Meaning: Once a trust holds, its precondition can be exchanged with the precondi-

tion of another holding trust.

• Proof: From Tp(i, j,ψ1,φ1), we have (M,s) |= ψ1, and from Tp(i, j,ψ2,φ2), (M,s) |=

¬φ2 and there exists a state s′ ∈ S such that s 6= s′ and s i→ j s′, and all the trust

accessible states s′ different from s satisfy φ2, so the postulate.

• Example: Suppose again that the radiologist trusts that the registrar will insert the

patient’s name into a cancer registry if the patient sends the consensus report, and also

trusts the same registrar to forward the patient’s information to healthcare providers

under the acceptance of the patient as precondition, then both trusts hold regardless

with which precondition since both preconditions hold already.

P10: Combination. Tp(i, j,ψ1,φ1)∧Tp(i, j,ψ2,φ2)→ Tp(i, j,ψ1∧ψ2,φ1∧φ2)

• Meaning: The conjunction of two trusts between the same truster and trustee yields

a combined trust, precondition and content wise.

• Proof: From the left side, we have (M,s) |= ψ1 ∧ψ2 ∧ (¬φ1 ∧¬φ2), which implies

(M,s) |= ψ1∧ψ2∧¬(φ1∧φ2). Moreover, there exists a state s′ ∈ S such that s 6= s′

and s i→ j s′, and all the trust accessible states different from s, (M,s′) |= φ1 and

(M,s′) |= φ2, so the postulate.

• Example: As previous example, the radiologist’s trust that the registrar will insert the

43

patient’s name into a cancer registry and forward the patient’s information to health-

care providers under the acceptance of the patient of the two actions as precondition

hold if each trust holds individually.

• Instances: The following rules are instances of the combination postulate:

1- Tp(i, j,ψ1,φ)∧Tp(i, j,ψ2,φ)→ Tp(i, j,ψ1∧ψ2,φ). This means the truster trusts

the trustee to bring about a content under a combined precondition if the trust about

the same content holds for each precondition separately.

2- Tp(i, j,ψ,φ1)∧Tp(i, j,ψ,φ2)→ Tp(i, j,ψ,φ1 ∧ φ2). This means the truster trusts

the trustee to bring about a combined content under a precondition if the trust about

each content separately holds for the same precondition.

P11: Content Inference. From Tp(i, j,ψ,φ1),φ1 ` φ2,¬φ2 infer Tp(i, j,ψ,φ2)

• Meaning: The trust to bring about φ2 yields if the truster trusts the trustee to bring

about a content from which φ2 derives, knowing that φ2 does not hold currently.

• Proof: From the semantics of Tp(i, j,ψ,φ1), (M,s) |= ψ , there exists a state s′ ∈ S

such that s 6= s′ and s i→ j s′, and all the trust accessible states s′ satisfy φ1. These

states satisfy φ2 since φ1 ` φ2. Thus the rule follows from the fact that (M,s) |= ¬φ2.

• Example: Suppose that the radiologist trusts that the registrar will insert the patient’s

name into a provincial cancer registry with the precondition that the patient sends

the consensus report, then the radiologist trusts that the patient’s name will be added

to the national registry as well, if not done already, because being in the provincial

registry automatically triggers the process of being added to the national registry.

P12: Trust Achievement and Non-Contradiction. Tp(i, j,ψ,φ)→EF(φ∧¬Tp(i, j,>,¬φ))

44

• Meaning: There is always a way to honor trust about a content φ and when it is

honored, the trust stays consistent, so no trust about the negation of φ can hold.

• Proof: Assume that (M,s) |= Tp(i, j,ψ,φ), so from the semantics, φ holds in all the

trust accessible states s′ from s. Since trust accessibility implies reachability, then φ

holds in a possible future of s, i.e., EF(φ). Moreover, in each trust accessible state

s′, two cases could take place.

– Case 1: @s′′ 6= s′ s.t. s′ i→ j
s′′. In this case s′ |= ¬Tp(i, j,>,¬φ)

– Case 2: ∃s′′ 6= s′ s.t. s′ i→ j
s′′. Assume that one of the trust accessible states s′′

from s′ satisfies ¬φ . Since trust accessibility is transitive, s′′ is also accessible

from s, so it cannot satisfy ¬φ , which contradicts the above. Consequently, also

in this case s′ |= ¬Tp(i, j,>,¬φ).

As s′ |= φ , we are done.

• Example: Suppose that the radiologist trusts that the registrar will insert the patient’s

name into a cancer registry with the precondition that the patient sends the consensus

report, then we know this will eventually happen where the radiologist cannot trust

the opposite to happen.

P13: Content Nonexistence. AG¬φ →¬Tp(i, j,ψ,φ)

• Meaning: If the content of trust does not hold in all reachable states, then the trust

never holds.

• Proof: The proof is straightforward from the semantics and from the fact that all

states s′ such that s i→ j s′ are reachable.

• Instance: The following rule is a consequence of the content nonexistence postulate:

45

1- ¬Tp(i, j,ψ,⊥). This represents the content consistency and means trust to false

cannot hold.

P14: Precondition Nonexistence. AG¬ψ →¬Tp(i, j,ψ,φ)

• Meaning: There is no trust if the precondition never holds.

• Proof: The proof is straightforward since the first condition for Tp(i, j,ψ,φ) to hold

is the satisfaction of ψ in the current state.

• Instance: The following rule is a consequence of the precondition nonexistence pos-

tulate:

1- ¬Tp(i, j,⊥,φ). This represents the precondition consistency and means trust with

a false precondition cannot come to effect.

3.5 Automatic Verification of TCTL Properties of MASs

In this section, we present two separate algorithms to address the problem of model check-

ing TCTL. We aim to investigate the most intuitive and efficient algorithm for computing

the trust set. In particular, we explore two model checking paradigms: explicit state model

checking and symbolic algorithm. We start by introducing explicit state model checking

algorithm for TCTL. Then, we extend the standard CTL symbolic algorithm introduced in

[21] by adding the procedure that deals with the trust modality in our logic.

3.5.1 Explicit Algorithm of Trust

Here, we introduce our approach to tackle the problem of model checking TCTL. The main

idea is based on our proposed semantics of trust where the set of global states satisfying the

46

trust formula Tp(i, j,ψ,φ) in a given model M is computed by calculating the set of states

satisfying ψ ∧¬φ that can reach and see the states that satisfy φ through the accessibility

relation i→ j. Our proposed semantics requires the additional constraint that the current

state s is different from the accessible state s′ in order for the trust to be established between

interacting agents. Thus, our algorithm is implemented by directly going through all the

states that satisfy ψ ∧¬φ (the set of these states is denoted by X), eliminating the state

itself, and checking if any state in X satisfies the trust formula. Algorithm 1 describes

the approach where the procedure MCT (i, j,ψ,φ ,M) returns the set of states in which the

trust formula holds. First, the algorithm starts by computing the set Y of states in which

the negation of the formula φ holds. Afterwards, the procedure calculates the set X. The

algorithm then iterates using for each . . . do to go through all the states of X (satisfying

ψ∧¬φ) to construct the set V of those states that are reachable from the states in X without

considering the state itself to avoid any non-trivial loop to the same state. Thereafter, the

algorithm proceeds to build the set V′ of all the states that are reachable and accessible

through the accessibility relation i→ j (i.e., where their global states have identical local

states for agent i with regard to the element ν i(j) of the vector ν i). Precisely, in each

iteration, the algorithm checks if from a given state in X there exists an accessible state

different from that state (V′ 6= /0) and if all the accessible states from that state satisfy φ

(V′∩Y = /0). In this case, that particular state will be added to the resulting set Z. Finally,

the procedure returns the set Z of the states that satisfy the formula Tp(i, j,ψ,φ). The

algorithm is a direct implementation of the semantics, so it soundness is straightforward.

In fact, to deal with non-self-loops, each individual state that satisfies ψ ∧¬φ is visited and

only returned if all its accessible states different from it satisfy φ . Since states satisfying

ψ∧¬φ are the only potential states to satisfy the commitment formula Tp(i, j,ψ,φ), visiting

each of these states and checking them one by one guarantees that all states that satisfy the

47

formula will be returned, and since only the potential states are visited, no state satisfying

¬Tp(i, j,ψ,φ) will be returned. By so doing, any state satisfying ψ∧¬φ that can be reached

through a non-self-loop will be returned as well if all accessible states different from it

satisfy φ . Thus, even if the state is accessible from itself, because the accessibility relation

is reflexive, it will be returned, although it satisfies ¬φ because the state itself is already

eliminated when accessible states are checked.

Algorithm 1 MCT (i, j,ψ,φ ,M): the set [[Tp(i, j,ψ,φ)]]

1: Y← SMC(¬φ);
2: X← SMC(ψ)∩Y;
3: for each x ∈ X do
4: V←{s ∈ S | s is reachable from x}\{x};
5: V′←{s ∈ V | li(s)(ν i(j)) = li(x)(ν i(j))};
6: if V′ 6= /0 and V′∩Y = /0 then
7: Z← Z∪{x};
8: end for;
9: return Z;

Figure 3.3 depicts an example illustrating the algorithm. The example shows a partic-

ular case where the state s4 that satisfies the trust formula Tp(i, j,ψ,φ) is reachable through

a non-self-loop: s4,s5,s0,s1,s2,s4. Although the state s4 has an accessible and reachable

state that satisfies ¬φ , which is the sate itself, the algorithm should return that state because

the semantics requires the accessible states that should be considered to be different from

the state itself. Thus, our proposed algorithm examines this particular case by explicitly

eliminating the state itself to avoid the non-self-loop. However, to consider this particular

case, the algorithm needs to go through each state in the set X using the loop for each . . . do,

so that the state itself can be marked and so eliminated. From the figure, the computation

of Algorithm 1 regarding the trust formula Tp(i, j,ψ,φ) is as follows: Y = {s0,s1,s2,s3,s4}

and X = {s1,s3,s4}. The algorithm iterates over all the states in X. In the first iteration

(x = s1),V and V′ are computed as follows: V = {s0,s2,s3,s4,s5} and V′ = {s2} because

48

s2 is the only state that is accessible from s1, however, s1 will not be added to the set Z

because s2 is not satisfying φ . For the next state in X (x = s3), the computation of the sets V

and V′ are as follows: V = /0 and V′ = /0. In the last iteration (x = s4), the sets V and V′ are

computed as follows: V = {s0,s1,s2,s3,s5} and V′ = {s5}. As the two conditions of Line

6 are met, the state s4 will be added to the set Z, making Z = {s4}. Thus, the returned set

after iterating over X is {s4}.

 𝑖 𝑗
 𝑖
 𝑗 3

 𝑖 𝑗
 𝑖
 𝑗 3

 𝑖 𝑗
 𝑖
 𝑗 4 𝑖 𝑗

 𝑖
 𝑗 1

 𝑖 𝑗
 𝑖
 𝑗 4

S1 S2

S3

¬𝝋

𝝋

¬𝝋

S5

S0

𝝍 ∧ ¬𝝋

𝝍 ∧ ¬𝝋
S4

𝝍 ∧ ¬𝝋

 𝑖 𝑗
 𝑖
 𝑗 7

 ⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗
⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

Figure 3.3: Example to illustrate Algorithm 1

However, such an algorithm can be inefficient when the system has a large state space

since we have to go explicitly through all the states in X. In fact, the issue arises in this

algorithm when the model under consideration has a non-self-loop because we have to

check whether the current state s is different from each accessible state s′ or not, which

requires the “marking” of each state when we check the reachability. This is mandatory

49

because models could have loops in their state space. To overcome this drawback, we

introduce symbolic algorithm in order to avoid explicit enumeration of all the states and

consider only a subset of models with no non-self-loop (also called flat models). We refer

to explicit algorithm (Algorithm 1) as direct approach and symbolic algorithm (Algorithm

3) as revisited approach.

3.5.2 BDD-based Algorithm of Trust

We start by presenting the main algorithm (Algorithm 2) that extends the standard symbolic

model checking algorithm for CTL. This algorithm takes as input the model M and the

TCTL formula φ and returns the set [[φ]] of states that satisfy φ in M. By giving the model

M, the algorithm recursively go through the structure of φ and constructs the set [[φ]] with

respect to a set of Boolean operations applied to sets. In (Algorithm 2), the lines 1 to 6

invoke the standard algorithms used in CTL to compute the set of states that satisfy regular

CTL formulas. Line 7 calls our procedure which computes the set of states that satisfy the

trust formula.

Algorithm 2 SMC(φ ,M): the set [[φ]] of states satisfying the TCTL formula φ

1: φ is an atomic formula: return V (φ);
2: φ is ¬φ1: return S−SMC(φ1,M);
3: φ is φ1∨φ2: return SMC(φ1,M)∪SMC(φ2,M);
4: φ is EXφ1 : return SMCEX(φ1,M) ;
5: φ is E(φ1∪φ2) : return SMCE∪(φ1,φ2,M);
6: φ is EGφ1: return SMCEG(φ1,M);
7: φ is Tp(i, j,φ1,φ2): return SMCT (i, j,φ1,φ2,M);

Algorithm 3 reports the symbolic approach. In this algorithm, the computation of

the set of states that satisfy the trust formula Tp(i, j,ψ,φ) is performed as follows. First, the

algorithm considers the transition relation without self-loop denoted as T F to cope with the

fact that each accessible state should be different from itself. It then proceeds to compute

50

the sets Y and X. It then builds the set X of states in S that are reachable from a state (or

from more states) in X. Thereafter, it assigns those states in X that satisfy ¬φ to the set

W. The algorithm invokes the procedure TrustRelation(W,X,X) twice. In the first call, it

constructs the set L by calculating the set of states in X (the states that have ψ∧¬φ) that can

access a different state in W through the accessibility relation i→ j (i.e., indistinguishable

states for agent i from the states in W that satisfy ¬φ if their global states have identical

local states for agent i with regard to the element ν i(j) of the vector ν i). Formally:

L = {s ∈ X | ∃s′ ∈ Y∩X such that s′ 6= s∧ li(s)(ν i(j)) = li(s′)(ν i(j))}

Thus, L is the set of states that satisfy ψ∧¬φ but do not satisfy the trust formula Tp(i, j,ψ,φ)

because each of these states has an accessible state, different from the state itself, that sat-

isfies ¬φ . Consequently, the algorithm eliminates from X the states in L (Line 7). It then

assigns to the new set W the states that are reachable (X) and satisfy φ (S−Y). Finally, the

algorithm calls the procedure TrustRelation(W,X,X) to build the set Z of those states in

X that have an accessible state satisfying φ . Formally:

Z = {s ∈ X | ∃s′ ∈ (S−Y)∩X such that s′ 6= s∧ li(s)(ν i(j)) = li(s′)(ν i(j))}

Thus, Z is the set of the states satisfying the trust formula Tp(i, j,ψ,φ) since all the potential

states that do not satisfy the formula are already eliminated. Consequently, having only one

accessible state that satisfies φ guarantees that all the accessible states satisfy φ , which

entails the soundness of the algorithm.

Algorithm 4 illustrates the procedure TrustRelation(W,X,X). This procedure is

given as inputs three sets of states W, X, and X where only the set W is getting updated

after each iteration. The procedure iterates using do . . . while until the iteration is terminated

when (W∩X = /0), which means, when there is no pre-images of the set W′, or when the

pre-images of this set are not reachable from X. In each iteration, going through all the

51

Algorithm 3 SMCT (i, j,ψ,φ ,M): the set [[Tp(i, j,ψ,φ)]]

1: T F be the transition relation without self-loop;
2: Y← SMC(¬φ);
3: X← SMC(ψ)∩Y;
4: X ← {s ∈ S | ∃s′ ∈ X such that s is reachable from s′}; // assume s is reachable from

itself
5: W← Y∩X;
6: L← TrustRelation(W,X,X);
7: X← X−L;
8: W← (S−Y)∩X;
9: Z← TrustRelation(W,X,X);

10: return Z

values in the domain of ν i(j), the set W′ contains the states s in W that have the same value

li(s)(ν i(j)). Then, the algorithm builds the set V′ as the pre-images of W′ that are in the

reachable set X with respect to the transition relation. Finally, the procedure calculates the

set Z of the states in V′ that can access the states in W′.

Algorithm 4 TrustRelation(W,X,X)

1: do
2: V← /0;
3: for each v in the domain of ν i(j)
4: W′←{s ∈W | li(s)(ν i(j)) = v};
5: V′← Preimage(W′,T F)∩X;
6: Z← Z∪{s ∈ V′∩X | li(s)(ν i(j)) = v};
7: V← V∪V′;
8: end for
9: W← V;

10: while W∩X 6= /0
11: return Z

Figure 3.4 illustrates an example of a flat model. The computation of Algorithm 3

regarding the trust formula Tp(i, j,ψ,φ) is as follows: Y = {s1,s2,s6,s7} (Line 2), X =

{s1,s2,s7} (Line 3), X = {s1,s2,s3,s4,s5,s6,s7} (Line 4), and W = {s1,s2,s6,s7} (Line 5).

When the algorithm calls the procedure TrustRelation(W,X,X) for the first time, it returns

L = {s1} (Line 6). Then, the algorithm eliminates the returned states, thus X = {s2,s7}

52

(Line 7) and W = {s3,s4,s5} (Line 8). In the second call, the set Z = {s2} (Line 9), which

is the only state that satisfies the formula.

 𝑖 𝑗
 𝑖
 𝑗 4

 𝑖 𝑗
 𝑖
 𝑗 4

 𝑖 𝑗
 𝑖
 𝑗 4

 𝑖 𝑗
 𝑖
 𝑗 4

 𝑖 𝑗
 𝑖
 𝑗 7

S2
S3

S5

𝝍 ∧ ¬𝝋 𝝍 ∧ ¬𝝋

𝝍 ∧ ¬𝝋 ¬𝝋

𝝋

𝝋

𝝋

S4

S7 S6

S1

 𝑖 𝑗
 𝑖
 𝑗 4

 𝑖 𝑗
 𝑖
 𝑗 1

⇝𝑖→𝑗
⇝𝑖→𝑗

⇝𝑖→𝑗
⇝𝑖→𝑗

⇝𝑖→𝑗
⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

Figure 3.4: Illustrative example of model without-loop (flat)

To show that Algorithm 3 works only for flat models which do not include non-self-

loops, let us consider the case depicted in Figure 3.4. The computation of the different

sets is as follows: Y = {s0,s1,s2,s3,s4}, X = {s1,s3,s4}, X = {s0,s1,s2,s3,s4,s5}, and

W= {s0,s1,s2,s3,s4}. However, the first call to TrustRelation(W,X,X) will not terminate.

The reason is that for this procedure to terminate, the condition on Line 10 (Algorithm 4)

should satisfy W∩X = /0. Since X includes all the states of the model, the only possibility

for the procedure to terminate is to have W = /0, which implies V = /0. For V to be empty,

V′ should be empty as well. This entails two possibilities: 1) either states in W′ have

no pre-image; or 2) W′ is empty. The first option cannot happen since the model is not

flat, and the second option cannot take place since the first instance of W is not empty.

In general, the procedure TrustRelation(W,X,X) will not terminate on non-flat models

53

since the reachable states involved in the non-self loops will always have pre-images, so the

condition in Line 10 will never be satisfied.

3.6 Implementation and Experiments

One of our goals in this work is to implement a model checker for trust. We also aim to

verify various properties of MASs when the trust relationship takes place between the inter-

acting agents. To do so, we have incorporated our proposed algorithms presented in Section

3.5 into the symbolic model checker MCMAS [73]. MCMAS is a model checker tool for

MASs which can verify a variety of properties specified in different temporal logics. It

has been successfully used to check various applications such as services composition [7].

Moreover, the tool has been extended to MCMAS+ to deal with social commitments [33]

and has been used as the core for SMC4AC, a model checker recently launched for intel-

ligent agent communication [35]. ISPL (Interpreted Systems Programming Language) is

the input language used to model MAS within MCMAS. We extended the MCMAS toolkit

to handle our proposed grammar of the trust modality specified in Definition 3.2. More-

over, we enriched ISPL to support the vector-based semantics of the extended interpreted

systems which is needed for the trust accessibility relation. The newly implemented in-

put language and model checker are called VISPL (Vector-extended ISPL) and MCMAS-T

(Trust-extended MCMAS) respectively 4.

4The tool is available online at: https://www.dropbox.com/s/xy0wjrvvk36d00z/
mcmas-t-1.0.1-sc.tar.gz?dl=0

54

3.6.1 Evaluation: The Breast Cancer Diagnosis and Treatment (BCDT).

In this section, we conduct a detailed evaluation of the developed technique using the case

study presented in Section 3.4. [33] formalized the same case study in terms of social com-

mitments where they demonstrated how commitments can be specified and model checked.

In this work, we use our formal model M = (S,R, I, i→ j,V) associated to the vector-

based interpreted systems introduced earlier in Section 3 to formally model the protocol.

According to this protocol, five parties are involved in the cancer diagnosis process, which

are: Patient, Physician, Radiologist, Pathologist and Registrar. Moreover, an environ-

ment agent e is added to represent the protocol. In this scenario, the trust relationships

between the participating parties express the system requirements that regulate the interact-

ing agents. Such requirements are specified using our logic of trust TCTL. We capture the

trust in this protocol by defining the following atomic propositions: Mass_Not for mass

noticed, Mammo_Req for mammography requested, Cal_Det for calcification detected,

Biop_Rec for biopsy recommended, Treat_Plan_Agr for treatment plan agreed, and

Rep_Rec for report received. The involved parties must have the possibility of reaching

states in which some of these propositions hold. Specifically, we consider the following

trust relationships in which one agent i is considered trustworthy from the viewpoint of

another agent j.

1. T 1 = Tp(p, ph,Mass_Not,Mammo_Req); which means the patient trusts the physi-

cian to request a mammography under the precondition that a suspicious mass is

noticed.

2. T 2 = Tp(ph,rg,Cal_Det,Bio_Rec); which means that the physician trusts that the ra-

diologist will recommend a biopsy knowing that the latter has noticed a calcification.

3. T 3 = Tp(p, ph,Rep_Rec,Treat_Plan_Agr); which means that the patient trusts the

55

physician to assign a treatment plan under the precondition that the latter has received

the final report.

Below, we present an VISPL fragment for the patient agent declared by means of the

set of her local states and actions, the local protocol, and the local evolution function which

describes how the agent local states evolve. Notice that the vector variables give a particular

agent the possibility to establish the trust towards other agents. For example, we define the

vector V P[3] = {vp0,vp1,vp2} in the local state for the patient agent to allow for the trust

to take place between this agent and the physician agent. We can observe that the value of

V P[0] = vp0 at the local state pat1 is changed to vp1 at the local state pat5 where the

proposition Mass_Not is satisfied in order to make the trust state pat5 accessible from

the trust state pat4.

Agent P a t i e n t

−− Beg inn ing of P a t i e n t a g e n t

Vars :

P a t : { pa t0 , pa t1 , } ;

VP[3] = { vp0 , vp1 , vp3 } ; −− To e s t a b l i s h t h e t r u s t t o w a r d s o t h e r a g e n t s

end Vars

A c t i o n s = { Pa t i en t_Ask_fo r_Exam , . . , P a t i e n t _ n u l l } ;

P r o t o c o l :

P a t = p a t 0 : { Pa t i e n t _Ask_ fo r_Exam } ;

. . . .

O the r : { P a t i e n t _ n u l l } ;

end P r o t o c o l

E v o l u t i o n :

P a t = p a t 1 and VP[0] = vp0 i f P a t = p a t 0 and A c t i on = Pa t i en t_Ask_ fo r_Exam

56

and Envi ronment . A c t i o n = e_Ask_for_Exam ;

. . . .

.

P a t = p a t 5 and VP[1] = vp1 i f P a t = p a t 4 and P h y s i c i a n . A c t i on =Mass_Not

and Envi ronment . A c t i o n =e_Mass_Not ;

.

end E v o l u t i o n

end Agent

Moreover, in our encoding of the BCDT protocol, we define the atomic propositions

introduced earlier in the Evaluation . . . end Evaluation section. The initial states are inserted

in the InitStates . . . end InitStates section. The formulae presented above are also encoded

and inserted into the Formulae . . . end Formulae section.

3.6.2 Specifications

To verify the correctness of the BCDT scenario at design time, we check the following three

properties: Reachability, Safety, and Liveness. These properties reflect some requirements

of the BCDT protocol that have to be met.

Reachability Property: “Some particular situation can be reached from the initial

states through some computation paths”. For example, whenever the physician detects a

suspicious mass in the patient’s breast, then there exists a possibility for the latter to trust

that the physician will eventually refer her to a radiologist for a mammography. Formally:

φ = AG(Mass_Not→ EF Tp(p, ph,Mass_Not,AF Mammo_Req)).

Safety Property: “Something bad will never happen”. An example of such a bad

situation is when the physician detects a suspicious mass in the patient’s breast, but the

latter never trusts the former to start the process of requesting a mammography. This bad

57

situation can be avoided using TCTL as follows:

φ = AG¬(Mass_Not ∧¬Tp(p, ph,Mass_Det,AF Mammo_Req)).

Liveness Property: “Something good will eventually occur”. For example, in all

computation paths, it is always the case that if the radiologist observes a calcification in the

patient’s breast, then eventually in all possible computations, the physician will trust the

radiologist to recommend an appropriate biopsy. This property is expressed as follows:

φ = AG(Clac_Det→ AF Tp(ph,rg,>,Biop_Rec)).

3.6.3 Verification Results

We check the effectiveness and scalability of the developed algorithms with respect to the

model checking processing time, and to the BDD memory in use. We start by modeling

the BCDT protocol and the formulae to be checked using the introduced VISPL. Then,

we verify such a protocol using our MCMAS-T tool. The experiments are done on a dual

Intel Xeon E5-2643 v2 processor with 32 GB memory. We consider the number of agents

(Agents), the reachable states (States), the execution time in seconds (Time), and the BDD

memory in use (Memory). Specifically, we formalize the protocol in two different ways

(by considering the state space with-loops and without-loops). We evaluate and compare

the explicit state enumeration approach (Algorithm 1), which we call hereafter the direct

technique with the revisited one (Algorithm 3).

Table 3.1: Verification results of the BCDT protocol using the direct algorithm

Agents States Time (sec) Mem.(MB)
6 17 0.111 9

12 289 18.881 30
18 4913 201.313 46
24 83521 6883.12 48

(a) Model with-loop (non-flat)

Agents States Time (sec) Mem.(MB)
6 17 0.093 9
12 289 0.953 15
18 4913 43.191 54
24 83521 1806.45 48

(b) Model without-loop (flat)

58

First, we start by presenting the experimental results obtained from the direct ap-

proach (Algorithm 1) using the two different models, with and without-loops. We run our

experiments with a number of agents ranging from 6 to 24. The experiments revealed that

all the tested formulae are satisfied in both models. The verification results for the two mod-

els, with-loop and flat are reported in Table 3.1 - (a) and (b) respectively. We can observe

that the number of reachable states reflects the fact that the state space increases exponen-

tially with the number of agents according to the equation y = e0.4722x. However, the ex-

periments reported that the time increases polynomially with regard to the number of states

in both models. The polynomial equations representing this increase are as follows: y =

5E−07x2+0.0377x+3.5821 for models with loop, and y = 2E−07x2+0.0081x−0.7074

for flat models, which shows that the model checking process is much faster in the flat mod-

els than in the models with-loop. It is also worth noticing that the memory consumption

in both verification results are close to each other, yet some differences can be observed,

caused namely by the internal optimization choices of the BDD-based encoding. There-

fore, although the time increases only polynomially, these results confirmed that the direct

approach is not efficient in practice and not scalable in terms of the number of reachable

states. Even when the model is without-loops, the number of reachable states is still very

limited. As argued earlier, this approach has the disadvantages of enumerating explicitly

all the states in the set X, and has an overhead when we check whether s is different from

s′ or not. These restrictions are the main cause of having the ability to only support a small

number of reachable states with a long verification time and a high memory usage. Yet, this

algorithm is still acceptable for detecting design errors.

Differently from the results presented above, the verification results for model check-

ing using the revisited algorithm (Algorithm 3) are very encouraging in practice. The

experiments revealed that checking flat models is more efficient using this algorithm. Table

59

10 15 20 25 30

Number of Agents

0

1000

2000

3000

4000

5000

6000

7000

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
.)

Direct Technique With Loop

Direct Technique Without Loop

Figure 3.5: Comparison results between models with and without-loops using the direct
algorithm

3.2 shows that the number of reachable states increases exponentially with the number of

agents according to the same exponential equation as for the previous experiment, but the

execution time increases only logarithmically with respect to the number of states following

the equation y = 0.988ln(x)− 4.8405, and remains below 13 seconds even for 36 agents.

Moreover, the memory usage is very comparable with the results in Table 3.1. It is clear

that this alternative approach provides better results than the former one. While the first

approach allowed us to verify models up to only 24 agents, this approach is able to check

the same scenario with up to 36 agents. In fact, the performance is more efficient as we

can go further and reach more agents. However, our results are limited to these models

that are without-loops. Finally, it is worth mentioning that the exponential blow-up of the

state space with the number of agents is a classic state explosion problem in MASs and is

independent of our model checking algorithms.

To better highlight the performance variation of the proposed approaches, we present

60

Table 3.2: Verification results of the BCDT protocol using the revisited algorithm

Agents States Time (sec) Memory (MB)
6 17 0.09 9
12 289 0.424 15
18 4913 0.991 28
24 83521 4.137 42
30 1.41986E+06 11.971 45
36 2.41376E+07 12.127 39

numerical results in the form of graphs as shown in Figures 3.5 and 3.6. Figure 3.5 shows

the execution time as function of the number of agents for the direct approach in models

with and without-loops. Figure 3.6 compares the direct and revisited approaches using the

same metric (execution time as function of the number of agents) for the models without-

loops.

0 5 10 15 20 25 30 35 40

Number of Agents

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ex
ec

ut
io

n
Ti

m
e

(m
s.

)

Revisited Technique Without Loop

Direct Technique Without Loop

Figure 3.6: Comparison results between the direct and revisited algorithms using a flat
model

61

3.7 Summary

In this chapter, we introduced a new logic for trust with preconditions called Trust Com-

putation Tree Logic TCTL, an extension of CTL that allows us to formally represent and

reason about trust in a system of agents. This chapter has two major contributions. The

first one is the new semantics of trust based on a new trust accessibility relation and a new

vector-based definition of the formalism of interpreted systems. The second contribution

is the algorithms of model checking TCTL and their implementations that result in a new

tool called MCMAS-T along with its vector-based input language VISPL. We introduced

and compared two different model checking algorithms by analyzing two types of models

(models with and without loops). Moreover, we showed by formal proofs that our proposed

logic supports common reasoning rules about trust. We evaluated our approach by means of

a real-life case study in the health-care domain in order to explain our proposed framework

in a practical setting. Our experimental results demonstrated that both developed algorithms

are able to verify TCTL formulae correctly and efficiently.

In the next chapter, we will introduce the notion of conditional trust by extending

the logic of trust TCTL, and we will also examine a different and new model checking

technique for TCTL logic.

62

Chapter 4

Transformation-based Model Checking

Temporal Trust

This chapter starts by extending TCTL logic with a new modality for conditional trust to

produce a new logic called TCTLC (Section 4.2). Then, a new model checking framework

for the TCTL logic of preconditional trust that is extended to design a new algorithm to

model check conditional trust TCTLC in MASs is presented. In particular, we introduce

transformation-based algorithms and implemented them in a Java toolkit that automatically

interacts with the NuSMV model checker of the CTL logic in Section 4.3. Our verification

approach automatically transforms the problem of model checking TCTL into the problem

of model checking CTL. Further, we prove that although TCTL and TCTLC extend CTL,

their model checking algorithms still have the same time complexity for explicit models

and the same space complexity for concurrent programs (Section 4.4). In Section 4.5, we

evaluate the effectiveness and efficiency of our approach by performing a set of experiments

on a widely-used case study in business domain and compare our results with the results

that have been obtained in chapter 3 1.

1The results of this chapter are collected from our publication in [29]

63

4.1 An Overview of The Proposed Approach

Th
TCTL model

TCTL formula

 𝝋

NuSMV Model

Checker

Verification Results

Transforming Mt to
CTL model Mc

𝒇(𝝋)

Transforming TCTL
formula to CTL formula

𝑴𝒕

𝜑 → 𝐴𝐺(¬∅⋀𝜓)

Th
is

pa
rt

 in
tr

od
uc

ed
 in

Ch
ap

te
r 3

Im
pl

em
en

ta
tio

n
Ph

as
e

 𝒇(𝑴𝒕)

Tr
an

sf
or

m
at

io
n

Al
go

rit
hm

s

Figure 4.1: A schematic view of our TCTL model checking approach

Figure 4.1 illustrates the overall approach of model checking TCTL, which consists

of three integrated phases. In the first phase, we recall the logic TCTL and its formal

model defined using our formalism of vector-extended interpreted systems introduced in

Chapter 3. In the second phase, we introduce our formal verification technique based on

transforming the problem of model checking TCTL into the problem of model checking

CTL along with the complexity analysis of the proposed technique. In the third phase, we

implement our transformation technique in a Java toolkit that automatically interacts with

the NuSMV model checker and report the verification results using a case study.

64

4.2 Conditional Trust TCTLC

In [98], Singh propounds that trust must be conditional, meaning that trust should be ex-

pressed using antecedents and consequents. For example, a customer may trust a merchant

as follows: “if I pay, then I trust the merchant will deliver the goods” [98]. Such a statement

expresses the customer’s expectation and the effect of this expectation on their future plans.

Our preconditional trust modality that assumes the prior satisfaction of the precondition

is different from conditional trust. Expressing conditional trust requires an extension of

TCTL, and to distinguish the two languages, the extended one is called TCTLC. However,

there is a logical relationship between preconditional and conditional trust. In fact, as our

main objective in this chapter is the verification of temporal trust, we will show how this

logical relationship will be exploited to inaugurate a model checking procedure for condi-

tional trust (see Section 4.3.3). The idea we aim to convey is that it is possible to decide

if a given state, and thus a given model, satisfies a conditional trust formula by calling the

model checking of TCTL. To show this, let us first introduce the syntax and semantics of

conditional trust. From the syntax perspective, Tc(i, j,ψ,ϕ) is read as “agent i trusts agent

j about the consequent ϕ when the antecedent ψ holds”. It is worth noticing that in the

case of precondition trust, for the trust to take place between the interacting agents i and j,

the condition ψ ∧¬ϕ must be satisfied in the current state st to ensure that the precondition

ψ holds before the trust content ϕ is brought about, while conditional trust requires the ex-

istence of at least one accessible state satisfying the antecedent ψ . This condition captures

the intuition that the satisfaction of the antecedent is possible in some future. The semantics

of Tc(i, j,ψ,ϕ) is as follows:

(Mt ,st) |= Tc(i, j,ψ,ϕ) iff (Mt ,st) |=¬ϕ and ∃s′t 6= st such that st i→ j s′t and s′t |= ψ ,

and ∀s′t 6= st such that st i→ j s′t and (Mt ,s′t) |= ψ , we have (Mt ,s′t) |= ϕ .

65

The non satisfaction of the consequent ϕ complies with the first postulate in [98] stating

that when the consequent holds, the trust in this consequent is “completed and is, therefore,

no longer active”. The following proposition shows the logical link between conditional

and preconditional trust:

Proposition 4.1 (Conditional and Preconditional Trust). Tc(i, j,ψ,ϕ)∧ψ ≡Tp(i, j,>,ψ → ϕ)∧

¬Tp(i, j,>,¬ψ).

The proof of this proposition is direct from the semantics.

Furthermore, it is worth mentioning that conditional trust Tc(i, j,ψ,ϕ) is conceptu-

ally and semantically different from trust about conditions, which can be represented by

Tc(i, j,>,ψ → ϕ). An example of the former is "if the buyer i pays the seller j, then i trusts

j will deliver the goods", while for the latter the example is: "the buyer i trusts the seller j

about the fact that, if i pays, then j will deliver the goods" .

Proposition 4.2 (Complexity of the Accessibility Relation). The accessibility relations of

the model Mt can be computed in space O(log2 |Agt|+ log2|Mt |)

Proof. Computing the accessibility relation st i→ j s′t given two agents i and j requires

computing the reachability from the state st . The reachability from st is a graph acces-

sibility problem, and it is known by Jones [52] that the problem is in NLOGSPACE, so

it can be done nondeterministically in space O(log|Mt |), or, by Savitch’s theorem [95],

deterministically in space O(log2|Mt |). Since computing the reachability is independent

from the agents, computing the accessibility for all the agents will require computing the

reachability once, and compare the values of the local vectors for each pair of agents. The

problem of comparing the values of all the pairs is in NLOGSPACE and can be solved non-

deterministicaly in O(log |Agt|) by guessing a pair each time until all the pairs are covered

66

by transitivity. Thus, the problem can be solved deterministically in O(log2 |Agt|), so the

proposition.

-

3
-

-

𝑣𝑏𝑢𝑦𝑒𝑟
buyer

seller

𝑣𝑏𝑢𝑦𝑒𝑟(𝑠𝑒𝑙𝑙𝑒𝑟)(𝑠𝑡)

𝑠𝑡

buyer

seller

𝒍𝒃𝒖𝒚𝒆𝒓(𝒔′𝒕)

-

3

-

-

𝑠′𝑡

𝑣𝑏𝑢𝑦𝑒𝑟 (𝑠𝑒𝑙𝑙𝑒𝑟)(𝑠′𝑡)

⇝𝑏𝑢±𝑦𝑒𝑟→𝑠𝑒𝑙𝑙𝑒𝑟

𝑣𝑠𝑒𝑙𝑙𝑒𝑟 𝑣𝑠𝑒𝑙𝑙𝑒𝑟 𝑣𝑏𝑢𝑦𝑒𝑟

𝒍𝒔𝒆𝒍𝒍𝒆𝒓(𝒔′𝒕) 𝒍𝒃𝒖𝒚𝒆𝒓(𝒔𝒕) 𝒍𝒔𝒆𝒍𝒍𝒆𝒓(𝒔𝒕)

Figure 4.2: An example of trust accessibility relation i→ j

Figure 4.2 depicts an example of a trust accessibility relation between two states (st

and s′t). In this example, the solid line represents the transition relation from Rt , and the

dashed line represents the direct trust accessibility relation i→ j between such states. The

state s′t is compatible with st with regard to the trust the buyer agent has towards the seller

agent. In the figure, we assign a vector to each agent’s local states as follows: νbuyer and

νseller are the vectors of buyer and seller agents respectively. The buyer agent compares the

element of her vector with regard to the seller agent at global states st and s′t . The particular

element value of the buyer agent is the same in both global states (i.e., νbuyer(seller)(st) =

νbuyer(seller)(s′t) = 3).

67

4.3 Formal Transformation to Model Check TCTL and

Conditional Trust

In this section, we first introduce a transformation-based approach to address the problem

of model checking TCTL. In a nutshell, given a model Mt representing a trust based MAS

and a TCTL formula ϕ that describes the property that the model Mt has to satisfy, the

problem of model checking TCTL can be defined as verifying whether or not ϕ holds in

Mt , which is formally denoted by Mt |= ϕ . In particular, we apply specific reduction rules to

formally transform the problem of model checking TCTL into the problem of model check-

ing CTL [43]. This provides a way to perform our implementation on NuSMV. Technically,

our transformation method encompasses two stages. First, we apply a set of formal rules

to transform vector-extended transition systems into Kripke structures. Then, we transform

TCTL formulae to CTL ones based on certain rules developed specifically for this purpose.

Such a transformation is performed by developing two formal methods that provide accu-

rate alignments between source and target models, and at the same time preserve TCTL

semantics without losing the validity of the original model properties. This transformation

is then extended to check conditional trust.

4.3.1 Transformation of TCTL Model

In this section, we start by recalling the definition of the CTL model needed for the trans-

formation algorithm.

Definition 4.1. Model of CTL

A CTL formula is interpreted over a Kripke Structure Mc = (Sc,Rc, Ic,Vc), where:

• Sc is a non-empty set of states for the system;

68

• Rc ⊆ Sc×Sc is the transition relation;

• Ic ⊆ Sc is a set of possible initial global states for the system;

• Vc : Sc→ 2APc is a labeling function that maps each state to the set of propositional

variables APc that hold in it.

Having presented the CTL model, the next step is to establish our transformation

technique. Given a TCTL model Mt = (St ,Rt , It ,{ i→ j |(i, j) ∈ Agt2},Vt), Algorithm 5

shows how this model is transformed into a CTL model Mc = (Sc,Rc, Ic,Vc). The algorithm

takes as input a model Mt (line 1) and outputs the transformed model Mc (line 2). First, the

corresponding model Mc has the same set of system states and initial states (i.e., Sc = St ;

Ic = It). Thereafter, the algorithm initializes the set Rc, and then the set Vc(s) to be equal to

the set Vt(s) (i.e., at the beginning, states are labeled with the same atomic propositions). We

define a new set of atomic propositions needed to represent the trust accessibility relation

to capture the semantics of trust as follows X = {α i j|(i, j) ∈ Agt2}. Moreover, we define a

new fresh atomic proposition χ that will be used to preserve the actual temporal transition

relation. Thus, the set APc is as follows: APc = X ∪APt ∪{χ}. The algorithm proceeds

to transform transition and trust accessibility relations to constitute the transition relations

in Rc based on two conditions. The first condition checks if the states st and s′t have a

transition relation in Rt , then this relation becomes a transition relation in Rc (lines 8 &

9). For the second condition, it checks if the current state st has an accessible state s′t

using the accessibility relation i→ j for any truster-trustee pair of agents and this state is

different from the state itself, moreover, if the two states are not in Rc, then a new state s′′t

is added to the set of system states Sc along with a new transition from the corresponding

st to the corresponding s′′t and from s′′t to s′t in Rc. Further, the new state s′′t is labeled

with the atomic propositions α i j and χ in order to distinguish the states that are accessible

from any other next state that satisfies the trust formulae without having accessibility to the

69

current state (line 14 & 15). However, if s′′t is already added for some other accessibility

relations, we only add the atomic proposition α i j to mark the accessible state for any other

interacting agents (lines 11 & 12). Finally, the algorithm returns the transformed model Mc

after iterating over all the transitions.

Algorithm 5 Transform Mt = (St ,Rt , It ,{ i→ j |(i, j) ∈ Agt2},Vt) into Mc = (Sc, Ic,Rc,Vc)

1: Input: the model Mt
2: Output: the model Mc
3: Sc := St ;
4: Ic := It ;
5: Initialize Rc := /0;
6: Initialize Vc(sc) :=Vt(st) for each sc ∈ Sc and st ∈ St such that sc = st ;
7: for each (st ,s′t) ∈ S2

t do
8: if (st ,s′t) ∈ Rt then
9: Rc := Rc∪{(st ,s′t)};

10: if st i→ j s′t for all (i, j) ∈ Agt2 and s′t 6= st then
11: if ∃s′′t such that ((st ,s′′t),(s

′′
t ,s
′
t)) ∈ Rc and χ ∈Vc(s′′t) then

12: Vc(s′′t) :=Vc(s′′t)∪{α i j};
13: else
14: Sc := Sc∪{s′′t };
15: Rc := Rc∪{(st ,s′′t),(s

′′
t ,s
′
t)} and Vc(s′′t) := {χ,α i j};

16: end if
17: end for
18: return Mc;

Proposition 4.3 (Boundedness of Model Transformation). |Mc| ≤ 3|Mt |2 where |Mt |

(resp. |Mc|) is the size of the input model Mt (resp. the output model Mc).

Proof. We have: |Mc| = |Sc|+ |Rc|. In the worst case, each pair of distinct states in Mt is

connected by one or many accessibility relations. In this case, the graph of accessibility

relations is complete, so |St |(|St |−1) new states and 2|St |(|St |−1) new transitions will be

added in Mc. So we obtain, |Mc| ≤ |St |+ |St |(|St |−1)+ |Rt |+2|St |(|St |−1). Consequently,

|Mc| ≤ 3|St |2−2|St |+ |Rt |, and thus, |Mc| ≤ 3|St |2+ |Rt |. The result follows from: 3|St |2+

|Rt | ≤ 3(|St |+ |Rt |)2.

70

4.3.2 Transformation of TCTL Formulae

This section presents our method to formally transform any TCTL formula ϕ to a CTL

formula f (ϕ) using a recursive transformation function f . The details of this method are

illustrated in Algorithm 6. The transformation of the CTL fragment of TCTL is straightfor-

ward (lines 1-3). Yet, for the temporal operators (lines 4-6), we need to make sure that the

transformation does not affect the CTL semantics. That is, since a new state and new transi-

tions are added to the corresponding model Mc, we have to make sure that the path through

which a formula is satisfied in the original model Mt is still satisfied in the corresponding

path of the translated model Mc. Indeed, this is the main reason behind the conjunction of

¬χ for the temporal operators. This allows us to exclude the additional state and transi-

tions when we consider the satisfaction of the formulae. For instance, the formula EXϕ is

transformed into a CTL formula stating that there exist a path in the next state where the

transformation of ϕ and the negation of the atomic proposition χ (added to represent the

temporal transition) is true in this state. For the trust modality (line 7), the trust formula

is transformed inductively into CTL according to the defined semantics as follows: the

transformation of the formula ψ ∧¬ϕ should hold in the current state, there exists a path

where next state satisfies the added atomic proposition α i j, which captures the existence of

an accessible state, and along each path, if the next state on that path satisfies the atomic

proposition α i j, then the next state of the added state also satisfies the transformation of the

trust content ϕ .

Figure 4.3 depicts an example illustrating the transformation of a TCTL model and

some formulae. On the left side of the figure (part a), the model Mt consists of four global

states s0, s1, s2, and s3. The states s2 and s3 are accessible from s0. Furthermore, the trust

formula (Tp(i, j,ψ,ϕ)) holds in s0 (i.e., (Mt ,s0) |= Tp(i, j,ψ,ϕ)). According to the seman-

tics, we obtain (Mt ,s0) |= ψ ∧¬ϕ , and there exists a state s′ such that s′ 6= s and s i→ j s′

71

Algorithm 6 Transform TCTL formula ϕ into CTL formula f (ϕ)

1: f (p) = p if p is an atomic proposition;
2: f (¬ϕ) = ¬ f (ϕ);
3: f (ϕ ∨ψ) = f (ϕ)∨ f (ψ);
4: f (EXϕ) = EX(f (ϕ)∧¬χ);
5: f (E(ϕ ∪ ψ)) = E((f (ϕ)∧¬χ) ∪ (f (ψ)∧¬χ)) ;
6: f (EGϕ) = EG(f (ϕ)∧¬χ);
7: f (Tp(i, j,ψ,ϕ)) = f (ψ)∧ f (¬ϕ)∧EX(α i j)∧AX(α i j→ AX f (ϕ));

 𝑖 𝑗
𝑖
𝑗 3

⇝𝑖→𝑗

𝑇𝑝(𝑖, 𝑗, 𝜓, 𝜑)

𝜓 ∧ ¬𝜑

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

𝑠0

𝑠1

𝑠3

 𝑖 𝑗
𝑖
𝑗 3

𝑓(𝑇𝑝(𝑖, 𝑗, 𝜓, 𝜑),

𝑓(𝜓) ∧ 𝑓(¬𝜑)

𝑠0

𝑠02

𝑠3

𝜑

𝜑

 𝑖 𝑗
𝑖
𝑗 3

 ⇝𝑖→𝑗

𝜑

𝑠2

𝑓(𝜑)

𝑓(𝜑)

𝑎𝑖𝑗 , 𝜒

𝑠2

𝑓(𝜑)

𝑠03

(a) (b)

𝑎𝑖𝑗, 𝜒

𝑠1

Figure 4.3: Example of the transformation methods

, and all the trust accessible states s′ such that s 6= s′ satisfy ϕ (i.e., (Mt ,s2) |= ϕ) and

(Mt ,s3) |= ϕ . Using the proposed transformation technique, the model Mt is transformed

into the CTL model Mc of the right side (part b) as follows: the temporal transitions in Mt

are transformed into transition relations in Mc. Further, the accessibility relations in Mt are

transformed into transition relations in Mc as follows: new states are added to the set of

states in Mc (i.e., s02 and s03 ∈ Sc) along with new transitions between each two accessi-

ble states and the new states (i.e., (s0,s02), (s02,s2) and (s0,s03), (s03,s3)), and the atomic

propositions α i j and χ are added to represent the accessibility relations. Moreover, each

state formula in TCTL is transformed into a CTL formula using the transformation function

f . Thus, the formulae Tp(i, j,ψ,ϕ) and ψ ∧¬ϕ are transformed into f (Tp(i, j,ψ,ϕ) and

f (ψ)∧ f (¬ϕ) in state s0, and for every path, if the next state that satisfies the added atomic

proposition (i.e., the states s02 and s03) is true in this state, then the transformation of the

72

trust content ϕ hold as well for all next states.

Proposition 4.4 (Boundedness of Formula Transformation). Let ϕ be a TCTL formula

and f the transformation function defined in Algorithm 6. There exists a constant k such

that | f (ϕ)|< k|ϕ|.

Proof. The proof is by induction on the structure of the formula.

• The result holds for the atomic proposition (the base case).

• For the formula φ = EXϕ , we have | f (φ)| = | f (ϕ)|+ 4. Therefore, by assumption

that the proposition holds for the formula ϕ , ∃k1 such that | f (φ)|< k1|ϕ|+4. Since

|ϕ| <|φ |, and |φ | > 1, we get | f (φ)| < (k1 + 4)|φ |, so the proposition. The result is

also simlar for the EGϕ formula.

• For the formula φ = E(ϕ ∪ ψ), we have | f (φ)| = | f (ϕ)|+| f (ψ)|+ 7. Thus. by

assumption that the proposition holds for the formulae ϕ and ψ , ∃k1,k2 such that

| f (φ)| < k1|ϕ|+ k2|ψ|+ 7. Because |ϕ| <|φ |, |ψ| <|φ |, and |φ | > 1, we obtain

| f (φ)|< (k1 + k2 +7)|φ |.

• For the formula φ =Tp(i, j,ψ,ϕ), we have f (Tp(i, j,ψ,ϕ))= f (ψ)∧ f (¬ϕ)∧EX(α i j)∧

AX(α i j→ AX f (ϕ)). Thus, | f (φ)|= | f (ψ)|+2| f (ϕ)|+10, and by assumption that

the proposition holds for the formulae ψ and ϕ , ∃k1,k2 such that | f (φ)| < k1|ψ|+

2k2|ϕ|+10. Since |ψ|<|φ |, |ϕ|<|φ |, and |φ |> 1, we get | f (φ)|< (k1+2k2+10)|φ |

(i.e., k = k1 +2k2 +10), so the proposition.

Theorem 4.1 (Soundness and Completeness of the Transformation). Let Mt and ϕ be

respectively a TCTL model and formula and let MC and f (ϕ) be the corresponding model

73

and formula in CTL. We have (Mt ,st) |=ϕ iff (Mc,sc) |= f (ϕ), where sc is the corresponding

state of st in Mc.

Proof. We prove this theorem by induction on the structure of the formula ϕ .

• For the formula φ = EXϕ , we have (Mt ,st) |= EXϕ iff there exists an immediate

successor to a state where ϕ holds. Consequently, from the definition of f (Mt) and

f (ϕ), we obtain (Mt ,st) |= EXϕ iff (Mc,sc) |= EX(f (ϕ)∧¬χ). That is, we are

excluding the new added path as this path will never be considered because next state

(the added state) has χ and we are forcing ¬χ .

• For the formula φ = E(ϕ ∪ ψ), and from the definition of f , (f (ϕ)∧¬χ) ∪(f (ψ)∧

¬χ) captures the semantics of Until in CTL which states the existence of a path

starting in the current state that satisfies (ϕ ∧¬χ) until reaching a state in which

(ψ ∧¬χ) holds.

• The trust formula: Tp(i, j,ψ,ϕ). The first and second parts: (f (ψ)∧ f (¬ϕ)) capture

the first condition of the semantics where the current state should satisfy ψ ∧¬ϕ .

The third part (EX(α i j)) captures the second condition, i.e., the existence of an ac-

cessible state different from the current state since α i j holds only in such accessible

states. Finally, the fourth part (AX(α i j→ AX f (ϕ))) captures the last condition in the

semantics of the trust formula where all accessible states (those satisfying α i j in Mc)

should satisfy ϕ .

4.3.3 Model Checking Conditional Trust

A similar approach to model checking TCTL can be used to model check conditional trust

by transforming the conditional trust formula of TCTLC to a CTL formula as follows:

74

f (Tc(i, j,ψ,ϕ)) = f (¬ϕ)∧EX(α i j)∧AX(α i j→ AX(f (ψ)→ f (ϕ)));

In this section, we introduce an alternative solution that uses the developed model check-

ing algorithm of TCTL. The algorithm of model checking conditional trust (Algorithm 7)

capitalizes on the equivalence shown in Proposition 4.1 (line 3). If Tp(i, j,>,ψ → ϕ)∧

¬Tp(i, j,>,¬ψ) does not hold, then updating the evaluation function will be needed. Such

an update works in all cases, but to be more efficient, the algorithm uses it only if the direct

condition (line 3) fails. The update, which also exploits Proposition 4.1, introduces two

fresh atomic propositions: µ and κ . µ holds in the current state (line 4) and in every state

where ψ holds (line 7). Thus, if Tp(i, j,>,¬µ) does not hold, which means ¬Tp(i, j,>,¬µ)

holds (condition 1), then the only reason is because there is an accessible state different

from the current state where ψ holds. This is because the first condition in the semantics

of Tp(i, j,>,¬µ) already holds since µ holds in st (line 4). κ does not hold in the current

state, but holds in every state where ψ → ϕ holds. Consequently, if Tp(i, j,¬ϕ,κ) holds

(condition 2), then ¬ϕ holds and all accessible states different from the current state satisfy

ψ → ϕ . The algorithm returns true if the two conditions 1 and 2, which correspond to the

semantics of Tc(i, j,ψ,ϕ), hold (line 9), false otherwise (line 10). Figure 4.4 depicts an

example illustrating Algorithm 7. In this example, the condition of line 3 does not hold

since ψ does not hold in st . Thus, the model update is required as illustrated in the part (b).

The condition of line 9 holds in the updated model, making the conditional trust formula

Tc(i, j,ψ,ϕ) true. The following theorem is direct from the semantics of conditional trust

and Proposition 4.1.

Theorem 4.2 (Soundness and Completeness of Algorithm 7). Algorithm 7 returns true

iff (Mt ,st) |= Tc(i, j,ψ,ϕ).

75

Algorithm 7 Model Check Tc(i, j,ψ,ϕ)

1: Input: Mt , st , i, j, ψ , ϕ

2: Output: true if (Mt ,st) |= Tc(i, j,ψ,ϕ); false otherwise
3: if (Mt ,st) |= Tp(i, j,>,ψ → ϕ)∧¬Tp(i, j,>,¬ψ) then return true;
4: Vt(st) :=Vt(st)∪{µ};
5: for all s′t 6= st
6: if (Mt ,s′t) |= ψ → ϕ then Vt(s′t) :=Vt(s′t)∪{κ};
7: if (Mt ,s′t) |= ψ then Vt(s′t) :=Vt(s′t)∪{µ};
8: end for
9: if (Mt ,st) |= Tp(i, j,¬ϕ,κ)∧¬Tp(i, j,>,¬µ) then return true;

10: return false;

 𝑖 𝑗
𝑖
𝑗 3

𝑇𝑐(𝑖, 𝑗, 𝜓, 𝜑)
¬𝜑, ¬𝜓

𝜓, 𝜑

𝜓, 𝜑

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

𝑠𝑡

𝑠′
𝑡

𝑠′′
𝑡

 𝑖 𝑗
𝑖
𝑗 3

 𝑖 𝑗
𝑖
𝑗 3

𝑇𝑐(𝑖, 𝑗, 𝜓, 𝜑)
¬𝜑, ¬𝜓, 𝜇

𝜑, 𝜓, 𝜇, 𝛫

𝜑, 𝜓, 𝜇, 𝛫

𝑠𝑡

𝑠′
𝑡

𝑠′′
𝑡

 𝑖 𝑗
𝑖
𝑗 3

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

⇝𝑖→𝑗

 𝑖 𝑗
𝑖
𝑗 3

 𝑖 𝑗
𝑖
𝑗 3

(𝑎) 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 𝑀𝑡 (𝑏) 𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑀𝑜𝑑𝑒𝑙𝑀𝑡

Figure 4.4: Illustrative example of Algorithm 7

4.4 Complexity Analysis

In this section, we will first analyze the time complexity of model checking TCTL and

conditional trust (TCTLC) with regard to the size of the explicit model Mt and length of the

formula to be checked. Thereafter, we will analyze the space complexity of model checking

TCTL and TCTLC for concurrent programs with respect to the size of the components of

these programs and length of the formula.

As our approach is transformation-based, we start by analyzing the time complexity

of transforming the TCTL model and formula with respect to explicit models, where all

76

states and transitions are enumerated. Specifically, we prove that these two transforma-

tions are polynomial with respect to the input TCTL model and linear with respect to the

formula. The polynomial and linear complexity of these two transformations entails the

P-completeness of the TCTL model checking problem in explicit models. Thereafter, we

derive the complexity of TCTLC directly from the one of TCTL. Given that, we proceed

to analyze the space complexity of the TCTL and TCTLC model checking problems and

prove their PSPACE-completeness with respect to concurrent programs where the model

has the form of a synchronized product of agent programs. Indeed, our motivation behind

considering the complexity of our model checking algorithms for concurrent programs that

provide compact representations of the systems to be checked is that in practice, existing

model checking tools (e.g., MCMAS and NuSMV) do not support explicit representations

where states and transitions are listed explicitly (as Kripke-like structures). In fact, only

local states and transitions of each component are represented. Therefore, the actual system

can still be represented by combining local states and transitions to build reachable states.

Theorem 4.3 (Explicit Model Checking TCTL: Upper Bound). The TCTL model check-

ing problem can be solved in time O(|Mt |2× |ϕ|) where |Mt | and |ϕ| are the size of the

vector-extended model and length of the TCTL formula, respectively.

Proof. TCTL extends CTL, and it is known from [21] that CTL model checking can be done

in a linear time with respect to the size of the CTL model and formula, i.e., O(| f (Mt)| ×

| f (ϕ)|). From Proposition 4.3, | f (Mt)| ≤ 3|Mt |2, i.e., the size of f (Mt) is polynomial

with the size of Mt . Moreover, from Proposition 4.4, the length of f (ϕ) is linear with

the length of ϕ . Indeed, Algorithm 6 takes the TCTL formula ϕ as input and writes in a

recursion manner the corresponding CTL formula according to the structure of ϕ . The time

complexity of transforming the TCTL formula is linear with respect to the length of the

input formula ϕ . This follows from the fact that (1) the length of the recursion is bounded

77

by the size of the input formula ϕ , and (2) the size of f (ϕ) is bounded by the size of ϕ , so

the theorem.

Corollary 4.1 (Explicit Model Checking Conditional Trust: Upper Bound). Model

checking conditional trust can be solved in time O(|Mt |2× |ϕ|). where |Mt | and |ϕ| are

the size of the vector-extended model and length of the conditional trust formula, respec-

tively.

Proof. The result is straightforward for the first method (transformation method) as it is

similar to the model checking of TCTL. For the second solution, Algorithm 7 is simply

calling the model checking of TCTL with an additional update of the model. The result

follows from the fact that the update does not affect the asymptotic size of the model or the

formula, but only adds atomic propositions to some states.

Theorem 4.4 (Explicit Model Checking TCTL: Completeness). The problem of TCTL

model checking is P-complete.

Proof. Membership (i.e., upper bound) in P follows from Theorem 4.3. Hardness (i.e.,

lower bound) in P is a result of the polynomial reduction from model checking CTL proved

to be P-complete in [96].

The following corollary is direct from Theorem 4.4 and Corollary 4.1:

Corollary 4.2 (Explicit Model Checking Conditional Trust: Completeness). The prob-

lem of model checking conditional trust is P-complete.

4.4.1 Space Complexity

In this subsection, we will prove that the complexity of TCTL model checking for concur-

rent programs is PSPACE-complete and so is TCTLC model checking. This result means

78

that there is an algorithm solving the problem in polynomial space in the size of the compo-

nents constituting concurrent programs and the length of the formula being model checked.

Concurrent Programs

A concurrent program P as introduced in [61], is composed of n concurrent processes Pi

(modules, protocols, or agents). Each process is described by a transition system Di defined

as follows: Di = (APi,ACi,Si,∆i,s0
i ,Li), where APi is a set of local atomic propositions, ACi

is a local action alphabet, Si is a finite set of local states, ∆i⊆ SiXACiXSi is a local transition

relation, s0
i ∈ Si is an initial state, and Li : Si→ 2APi is a local state labeling function.

A concurrent behavior of these processes is obtained by the product of the processes

and transition actions that appear in several processes are synchronized by common actions.

The joint behavior of the processes can be described using a global transition system D,

which is computed by constructing the reachable states of the product of the processes and

synchronization is obtained using common action names. This product is the transition

system D = (AP,AC,S,∆,s0,L) where:

−AP =
⋃n

i=1 APi

−AC =
⋃n

i=1 ACi

−S = ∏
n
i=1 Si. The ith component of a state s ∈ S is denoted by s[i]

−(s,a,s′) ∈ ∆ iff:

1. for all 1≤ i≤ n such that a ∈ ACi we have(s[i],a,s′[i]) ∈ ∆i, and

2. for all 1≤ i≤ n such that a /∈ ACi we have s[i] = s′[i]

−s0 = (s0
1,s

0
2,s

0
3,,s

0
n)

−L(s) = ∏
n
i=1 Li(s[i]) for every s ∈ S, where s[i] is the ith component of s

79

Theorem 4.5 (Polynomial Reduction of Model Checking TCTL: Upper Bound). Let

vpsrdenote the polynomial-space reduction. The problem of model checking TCTL can be

reduced into the problem of model checking CTL in a polynomial space, i.e., MC(TCTL)

vpsr MC(CTL).

Proof. The transformation of the TCTL model and TCTL formula into the corresponding

CTL model and formula could be computed by a deterministic Turing Machine (T M) in

space O(logn) where n is the size of the input TCTL model, and polynomial space w.r.t. the

size of the TCTL formula. For the model, T M reads in the input tape a model of TCTL and

produces in the output tape, one-by-one, the same states including the initial ones and the

same valuations. Then, for the transitions (st ,s′t) in the input model, it writes one-by-one,

the transitions in the set Rc. Moreover, it reads the accessibility relations i→ j between

two given states in the input model one-by-one and for each one, it adds an intermediate

state to the set Sc labeled with two fresh atomic propositions: 1) α i j that depends on the

accessibility relation, and 2) χ , along with two transitions if such a state does not already

exist; otherwise, only the atomic proposition α i j is added. All these writing operations are

clearly logarithmic in space because this transformation is done on-the-fly, step-by-step.

Moreover, we showed in Proposition 4.4 that any TCTL formula is transformable into a

CTL formula whose size is linearly bounded by the size of the input formula. All these

recursive transformations are clearly polynomial space in the length of the input formula,

so the theorem.

Theorem 4.6 (Model Checking TCTL for Concurrent Programs: Completeness). The

space complexity of the TCTL model checking for concurrent programs is PSPACE-complete

with respect to the size of the components of these programs and the length of the formula.

Proof. Since model checking CTL is PSPACE-complete for concurrent programs [96], the

lower bound of model checking TCTL is PSAPCE as well. In fact, TCTL subsumes CTL

80

as it integrates the CTL modalities and the trust modality. The upper bound in PSPACE

follows from Theorem 4.5, so the result.

Corollary 4.3 (Model Checking Conditional Trust for Concurrent Programs: Com-

pleteness). The space complexity of model checking conditional trust for concurrent pro-

grams is PSPACE-complete with respect to the size of the components of these programs

and the length of the formula.

Proof. The corollary is direct from Algorithm 7 and Theorem 4.6 since adding atomic

propositions to particular states and calling TCTL model checking with formulae having

linear size with the size of the input formula are not source of additional space complexity.

4.5 Implementation and Experimental Results

4.5.1 Insurance Claim Processing: A Case Study

To illustrate and implement our approach, we use a standard industrial case study [103]. The

case study outlines the process by which auto insurance claims are handled by an insurance

company, AGFIL. There are multiple parties involved in the AGFIL cooperation process:

AGFIL, Policyholder, Europ Assist, Lee Consulting Services, Garage, and Assessor. The

participating parties work together to provide a trusted service which facilitates efficient

claim settlement. The process starts when the policyholder phones the call center Europ

Assist to notify a new claim. Thereafter, Europ Assist registers the information and assigns

an appropriate garage to provide the repair service to the policyholder. It then notifies the

insurance company AGFIL which checks whether the policy is valid or not, and it confirms

the claim coverage. AGFIL then sends the claim details to Lee Consulting Services (Lee

CS) which is responsible for managing the operation of this service. Lee CS normally

81

appoints an assessor to conduct a physical inspection of damaged vehicle and checks vehicle

repair estimates with the garage. When repairs are completed, the garage will issue an

invoice to Lee CS which will check the invoice against the original estimate. Lee CS sends

all invoices to AGFIL, which in turn finalizes the payment processes.

This scenario has been formalized, modeled, and verified in terms of commitments for

instance by [28, 9, 56] where the contractual business relationships among the interacting

parties are clearly identified, and also in terms of trust in [98]. Our modeling of trust is

based on the assumption that the trust relationship among the parties involved influences

their decisions without any contractual relationships (commitments) among them.

4.5.2 Implementation

To carry out the experimental process as efficiently as possible, we have developed an

open source java toolkit 2 with a high-degree of automation that interacts automatically

with the NuSMV model checker. Our toolkit essentially consists of two main modules

implementing the proposed transformation algorithms (Algorithms 5,6, and 7). The main

feature of our tool is its ability to automatically transform TCTL models and formulae into

the corresponding CTL models and formulae. Technically, the NuSMV model checker is

used as a core component by the toolkit engine in order to perform the verification aspects.

Our tool takes as input the encoding of the MAS model, analyzes the code with respect

to a set of formulae, and generates the required SMV modules according to the number of

interacting agents. Besides, we implemented lexer and parser that check the syntax of both

TCTL and TCTLC logics.

In our encoding, we formalized the above MAS business scenario using our trust

model Mt associated with the formalism of vector-extended interpreted systems introduced

2The toolkit jar file is available at: https://users.encs.concordia.ca/~bentahar/
TrustJavaToolkit.jar

82

Figure 4.5: Screenshot of the generated NuSMV modules and the verification results

earlier in Section 4.3 to formally model the protocol. Thus, we have six interacting agents:

Ins playing the role of AGFIL, PolicyHolder, CallCenter, Repairer playing the role of

Garage, Assessor playing the role of Lee CS, and Adjustor plus the environment agent

that facilitates the communication among these agents. More precisely, we encoded each

agent in our VISPL input language of the MCMAS-T model checker introduced in [32] as

a set of local states and actions, the local protocol, the local evolution function, and the ini-

tial states for each agent. We also considered the accessibility relations between agents by

encoding the vector variables, which give a particular agent the possibility to establish the

trust towards other agents. We validate our modeling using the capability in the MCMAS-

T called Explicit interactive mode which is running the system interactively to

check that it functions as intended. Thereafter, we used our transformation tool to transform

the VISPL encoding model and trust formulae into the SMV model and CTL formulae in

order to be able to start the verification process using the NuSMV model checker. Fig-

ure 4.5 shows the transformation process of the model and formula using our toolkit. Our

toolkit has the capability to scale MASs (scalability button) with respect to a certain

83

modeling interleaved technique. In this technique, each agent is paired with another agent

and all the resulting pairs move in a parallel way. Notice from the figure that the left panel

displays the generated NuSMV modules of the MAS business scenario, which indeed is a

CTL model. The Launch NuSMV button runs the NuSMV tool in order to display the

verification results in the right panel of the figure. Furthermore, Time/Formula button

pops up an information dialog box to show the transformation time of each formula (Figure

4.6).

Figure 4.6: Screenshot of the information dialog box that shows the transformation time of
each formula

4.5.3 Properties

In the above scenario, the participating parties have to ensure that the trust relationships

are correctly established on one another to perform their tasks accordingly. To verify the

correctness of the AGFIL scenario at design time, we have to express a set of properties.

We used the safety (something bad will never happen) and liveness (something good will

eventually occur) properties expressed using our logic. Such important properties have been

84

widely investigated in different contexts, see for instance [32, 37, 54]. Formally, the safety

property ϕ1 expresses the negation of the bad situation where the insurance company vali-

dates the policyholder claim, but the latter never establishes their trust towards the repairer

with regard to the vehicle repair.

ϕ1 = AG¬(validClaim∧¬Tp(policyholder,Repairer,validClaim,carRepair)).

The liveness property ϕ2 states that in all paths globally, it is always the case that if the

policy holder reports an accident and their claim is valid, then eventually in all future com-

putation paths, their trust towards the insurance company with regard to the claim payment

will take place.

ϕ2 = AG(ReportAccident ∧ValidClaim→

AF(Tp(policyholder, Ins,validClaim, insuranceClaimPayment)).

We also checked a liveness property, given by ϕ3, expressed as a conditional trust. The

formula expresses the existence of a computation path where the garage trusts the insurance

company to pay for the repairs once the insurance company accepts the proposed estimate

from the garage.

ϕ3 = EG(Tc(Repairer, Ins,agreeEstimate,RepairPaymentCharge)).

Moreover, we checked in our experiments the existence of some trust relationships in

which one agent i is considered trustworthy from the viewpoint of another agent j. These

relationships are expressed as TCTL properties as follows:

• ϕ4 = EF(Tp(PolicyHolder,CallCenter,reportAccident,gatherIn f o))

• ϕ5 = EF(Tp(Repairer, Ins,repairCar, payRepairCharge))

85

The formula ϕ4 expresses the trust relationship between the policy holder and the call-

center, so whenever the former reports an accident, the latter will eventually gather infor-

mation, and the formula ϕ5 states that whenever the garage repairs car, then there exist a

path in its future the trust towards the insurance will take place with regards to the payment.

Indeed, we have verified the above properties in a parametric way in different models hav-

ing different numbers of agents ranging from 7 to 63. For example, the parametric form of

Experiment 9 is generated with the conjunction operator as follows:

ϕ1 =
n∧

i=1
AG[¬(validClaim∧¬Tp(policyholder,Garage,validClaim,carRepair))].

Where the number of agents is 63 agents. The results will be presented and discussed

in the next section.

4.5.4 Experimental Results

The experiments are conducted on AMD FX-8350 - 8 Cores - 4GHZ per core with 32 GB

memory. To test the scalability of our algorithms, we report nine experiments in Table 4.1

for both preconditional and conditional algorithms. We developed a code generation script

that helps us automatically encode different number of agents. We consider the number of

agents (Agents#), the number of reachable states (States#), the transformation times of both

models and formulae in milliseconds, and the average total time calculated based on the

transformation and verification times. The experiments revealed that all the tested formulae

are satisfied in our models. As shown in the table, the number of reachable states reflects

the fact that the state space increases exponentially when the number of agent increases.

Yet, it is clear that the transformation times of both the models and formulae increase only

logarithmically with regard to the number of states. We can also notice that the average total

time increases polynomially with respect to the number of states. Finally, it is worth men-

tioning that the exponential blow-up of the state space with the number of agents is a classic

86

state explosion problem in MASs and is independent of our model checking algorithms.

Table 4.1: Verification results of the AGFIL protocol using our toolkit

Exp.# Agents# States# Time of model
transformation

(ms)

Time of formulae
transformation

(ms)

Total time
(ms)

1 7 42 15 0.8 20
2 14 468 17 0.9 119
3 21 5586 22 1 1330
4 28 67236 36 1.1 8049
5 35 809682 38 1.2 45051
6 42 9.74111e+06 42 1.3 210000
7 49 1.29742e+08 48 1.4 390000
8 56 4.49064e+12 53 1.5 540000
9 63 2.52442e+15 57 1.7 792000

To compare our approach with the model checking approach introduced in [32], we

run the same experiments of the AGFIL scenario using the MCMAS-T model checker with

a different number of agents against the same properties. The experiments revealed that

all the tested formulae are satisfied in the models. Table 4.2 reports the comparison of

the results using the same machine. We can observe that the number of reachable states

increases exponentially with the number of agents as we expected. It is clear that our

transformation-based approach provides better results. An important problem encountered

when running the models with MCMAS-T was that the experiments go down to almost

a halt when we increase the number of agents. That is, while MCMAS-T allowed us to

verify models up to only 42 agents, this approach is able to check the same scenario with

up to 63 agents. In fact, the performance is higher as we go further and reach more agents.

Moreover, the execution time in our approach is also better than the direct approach. We

can observe that in our approach, this metric increases only logarithmically with respect to

the number of states, and remains below 790 seconds even for 63 agents. As compared with

our previous verification technique [32], it is wroth mentioning that the verification results

87

for model checking using the transformation tool are more efficient, making it a promising

methodology in practice.

Table 4.2: Comparison of the verification results between Java tool and MCMAS-T

Exp.# Agents# States# Total time
(ms)

1 7 42 20
2 14 468 119
3 21 5586 1330
4 28 67236 8049
5 35 809682 45051
6 42 9.74111e+06 210000
7 49 1.29742e+08 390000
8 56 4.49064e+12 540000
9 63 2.52442e+15 792000
(a) Using our transformation toolkit

Exp.# Agents# States# Time
(ms)

1 7 42 50
2 14 468 1020
3 21 5586 16340
4 28 67236 99723
5 35 809682 694035
6 42 9.74111e+06 3333680

(b) Using the MCMAS-T model checker

Figure. 4.7 compares the verification results of the tool implementing our transformation-

based approach and the MCMAS-T model checker in the form of graph. We use the exe-

cution time as function of the number of agents. By observing the figure, we can readily

conclude that our developed tool is faster than the tool introduced in Chapter 3.

4.6 Summary

In this chapter, we proposed a new model checking framework for the TCTL logic of pre-

conditional trust that is extended to design a new algorithm to model check conditional

trust in MASs. We designed transformation-based algorithms and implemented them in a

Java toolkit that automatically interacts with the NuSMV model checker of the CTL logic.

Our proposed technique is able to automatically transform the problem of model checking

TCTL into the problem of model checking CTL. We also discussed the logical relationship

between preconditional and conditional trust, which led to the model checking procedure of

88

7 14 21 28 35 42 49 65 63

Number of Agents

0

500000

1000000.0

1500000.0

2000000.0

2500000.0

3000000.0

3500000.0

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
.)

Our Transformation-based Approach.

MCMAS-T Model Checker

Figure 4.7: Comparison results between our transformation-based tool and MCMAS-T

conditional trust. The proof of the soundness and completeness of our transformation algo-

rithms is provided. Moreover, we proved that (1) the time complexity of TCTL and TCTLC

model checking in explicit models is P-complete with regard to the size of the model and

length of the formula; and (2) the complexity of the same problems for concurrent programs

is PSPACE-complete with respect to the size of the program’s components. Therefore, our

model checking algorithms have the same complexity as model checking CTL with regard

to both explicit models and concurrent programs. Experiments conducted on a standard

industrial case study demonstrated the efficiency and scalability of the technique. When

we compared our approach with the one proposed in Chapter 3, we reported that the devel-

oped verifier tool was able to verify a variety of formulae correctly and efficiently within

a large case study having approximately 2.52442e+15 reachable states. Thanks to the high

efficiency of CTL model checking to which the model checking of TCTL and conditional

trust is transformed.

89

In the next chapter, we will address the quantitative aspects of trust from the logical

and model checking perspectives.

90

Chapter 5

Degrees of Trust: Temporal Logic and

Model Checking

Although plenty of qualitative logical frameworks have been proposed to evaluate and

model trust in multi-agent sittings, these approaches generally ignore reasoning about quan-

titative aspects such as degrees of trust. In this chapter, we address this limitation from the

modelling and verification perspectives. In Section 5.2, we start by constructing the Graded

Trust Temporal Logic TCTLG to reason about the qualitative aspect of trust and present a

set of its reasoning postulates. Specifically, we extend TCTL by assigning a weight to the

sets of states that satisfy the trust formula. This allows for computing along a run the ratio

of states where the formula is satisfied. By doing so, degrees of trust would be obtained

from the possible executions of the giving system. Moreover, in Section 5.3, we develop

and implement a new symbolic model checking algorithm and open source tool for quanti-

fying the relationships among the interacting agents. Finally, we investigate the complexity

and evaluate our approach using a case study in the health care domain in Sections 5.4 and

5.5 1.
1The results of this chapter are collected from our publication in [30]

91

5.1 An Overview of The Proposed Approach

Qualitative logical frameworks that handle trust in MASs have been widely analyzed in the

literature [32, 87, 49, 83, 18]. Trust in these approaches has often been treated as either true

or false, i.e., we either trust the behavior of an agent or not. However, such systems have

also quantitative temporal properties (such as degrees of trust), which still need further

attention from the logical and model checking perspectives. In fact, in many contexts,

it is quite difficult to determine with absolute certainty whether a proposition about the

behavior of an agent is true or false. For instance, I might trust the agent to a certain degree

in relation to such a proposition (i.e., I may have only 50% of trust). That is, although

qualitative logical formalisms allow us to reason about various classical properties, their

expressiveness is limited in representing some important aspects that deal with the way of

capturing our perception of reality [53].

Graded Trust
Modalities

+
Reasoning

Rules

BDD-based

Algorithms

Model checker

MCMAS-G

𝐓𝐂𝐓𝐋𝑮 Logic

& its Model

checking

TCTL Logic

TCTL Model

Figure 5.1: The main parts of the proposed approach

In fact, a standard approach of trust quantification involves the use of probability

mechanisms accompanied with a representation of agent’s beliefs [51, 78, 86]. However,

it is worth noting that in this thesis we present a different approach that abstracts from the

internal mental states and quantifies trust by relying only on accessibility relations inspired

by the work proposed in [92]. However, unlike [92] that focuses on the degrees of beliefs by

92

extending the temporal-epistemic logic CTLK, our work mainly focuses on modeling and

verifying trust by considering a different logic, along with the complexity of its symbolic

model checking. Indeed, to the best of our knowledge and from the formal verification

point of view, there is no model checking tool for verifying systems against graded trust

specifications. Figure 5.1 illustrates our approach.

5.2 Graded Trust Temporal Logic

5.2.1 Syntax and Semantics

In this section, we present the syntax and semantics of TCTLG.

Definition 5.1 (Syntax of TCTLG). The syntax of TCTLG is defined recursively as follows:

ϕ ::= ρ | ¬ϕ | ϕ ∨ϕ | EXϕ | E(ϕ U ϕ) | A(ϕ U ϕ) | T

T ::= T ∆k
p (i, j,ϕ,ϕ) | T ∆k

c (i, j,ϕ,ϕ)

where ρ,E,A,X ,∨, and U are defined in Definition 2.1 (Chapter 2). The trust operator T

represents the trust relationship between two agents. There are two trust modalities: T ∆k
p

and T ∆k
c , that represent respectively preconditional and conditional graded trust. From the

syntax perspective, T ∆k
p (i, j,ψ,ϕ) expresses that “the truster i trusts the trustee j to bring

about ϕ given that the precondition ψ holds with a degree of trust ∆k", where k is a rational

number in [0, 1], and ∆ is a relation symbol in the set {≤,≥,<,>,=}. While the formula

T ∆k
c (i, j,ψ,ϕ) reads as “agent i trusts agent j about the consequent ϕ when the antecedent

ψ holds with a degree of trust ∆k". It is worth pointing that the advantage of representing

the trustworthiness of an agent by a single real number format is that it is obvious for an

agent to estimate her degrees of trust and to distinguish between certain agents in order to

93

choose the one satisfying their personal expectations. In fact, we can say that when k = 0,

it means the trust has not been achieved, however, when k = 1, the trust has been perfectly

fulfilled. Moreover, when the degree of trust k = 1, the standard trust operators Tp(i, j,ψ,ϕ)

and Tc(i, j,ψ,ϕ) can be obtained as abbreviations:

Tp(i, j,ψ,ϕ) , T≥1
p (i, j,ψ,ϕ) and Tc(i, j,ψ,ϕ) , T≥1

c (i, j,ψ,ϕ).

Definition 5.2 (Semantics of TCTLG). The semantics of TCTLG formulae is interpreted

using a model (MG) generated from Vector-based interpreted systems introduced in Section

3.3 above. Given the model MG, the satisfaction of a TCTLG formula ϕ in a global state s,

denoted as (MG,s) |= ϕ , is recursively defined as follows:

• (MG,s) |= ρ iff ρ ∈VG(s);

• (MG,s) |= ¬ϕ iff s 2 ϕ;

• (MG,s) |= ϕ1∨ϕ2 iff s |= ϕ1 or s |= ϕ2;

• (MG,s) |= EXϕ iff there exists a path π starting at s such that π(1)) |= ϕ;

• (MG,s) |= E(ϕ1 U ϕ2) iff there exists a path π starting at s such that for some k ≥

0, π(k)) |= ϕ2 and ∀0≤ i < k, π(i)) |= ϕ1;

• (MG,s) |= A(ϕ1 U ϕ2) iff for all paths π starting at s, there exists some k ≥ 0 such

that π(k)) |= ϕ2 and ∀0≤ i < k, π(i)) |= ϕ1;

• (MG,s) |= T ∆k
p (i, j,ψ,ϕ) iff s |= ψ ∧¬ϕ and ∃s′ 6= s such that s i→ j s′, and

|s i→ j s′ : s′ 6= s & s′ |= ϕ|
|s i→ j s′ : s′ 6= s|

∆k;

• (MG,s) |= T ∆k
c (i, j,ψ,ϕ) iff s |= ¬ϕ and ∃s′ 6= s such that s i→ j s′ and s′ |= ψ , and

|s i→ j s′ : s′ 6= s & s′ |= ψ ⇒ ϕ|
|s i→ j s′ : s′ 6= s|

∆k.

94

For atomic propositions, Boolean connectives, and temporal modalities, the relation

|= is defined in the standard manner (see for example [21]). The intuition behind the se-

mantics of T ∆k
p (i, j,ψ,ϕ) and T ∆k

c (i, j,ψ,ϕ) is: the degrees of trust that an agent associates

to a formula ϕ in a global state s is the ratio between the number of states s′ distinguishable

and accessible from s and satisfying ϕ (i.e., |s i→ j s′ : s′ 6= s & s′ |= ϕ|), and the total

number of distinguishable and accessible states from s (i.e., |s i→ j s′ : s′ 6= s|).

Example 5.1. We now give examples of natural preconditional and conditional quantita-

tive properties that can be expressed with TCT LG. Let us consider a model for On-line

Shopping System where atomic propositions include Deliver and Pay. Formula (5.1)

specifies that it is not possible, with degree at least 0.95, for the buyer to trust the seller to

deliver the requested items if the payment has not been made.

¬ EF T≥0.95
c (buyer,seller,¬payment,deliver) (5.1)

Formula (5.2) states that the buyer trusts that the seller will deliver the requested items in

75% of the cases under the condition that the latter has already received the payment.

EF T≥0.75
p (buyer,seller, payment,deliver) (5.2)

Figure 5.2 illustrates the model of Formula (5.2).

5.2.2 Reasoning Postulates

We consider in this section several postulates that reflect common reasoning patterns that

are valid in all TCT LG models. These postulates hold for both preconditional and condi-

tional trust. Thus, we will use T ∆k as a common operator instead of T ∆k
p and T ∆k

p . Moreover,

95

~𝑖→𝑗

~𝑖→𝑗

 𝑣𝑖 𝑣𝑗

𝑖
𝑗 1

𝑝𝑎𝑦𝑚𝑒𝑛𝑡
∧ ¬𝑑𝑒𝑙𝑖𝑣𝑒𝑟

~𝑖→𝑗

~𝑖→𝑗

~𝑖→𝑗

~𝑖→𝑗

𝑠0

𝑠1

𝑠4

 𝑣𝑖 𝑣𝑗

𝑖
𝑗 1

 𝑣𝑖 𝑣𝑗

𝑖
𝑗 1

 𝑣𝑖 𝑣𝑗

𝑖
𝑗 1

~𝑖→𝑗

¬𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑠3

 𝑣𝑖 𝑣𝑗

𝑖
𝑗 1

 ~𝑖→𝑗

~𝑖→𝑗

𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑠2

~𝑖→𝑗

Figure 5.2: A model that satisfies the formula (5.2)

we omit i and j in the postulates as far as the truster and trustee are understood, so we simply

write T ∆k(ψ,ϕ).

1. T ∆k1(ψ,ϕ)⇒ @k2 : T ∆k2(ψ,¬ϕ)

2. T≥1(ψ1,ϕ1)∧T ∆k(ψ2,ϕ2)⇒ T ∆k(ψ1∧ψ2,ϕ1∧ϕ2)

The following rules are instances of this postulate:

– T≥1(ψ1,ϕ1)∧T≤0(ψ2,ϕ2)⇒ T≤0(ψ1∧ψ2,ϕ1∧ϕ2)

– T≥1(ψ1,ϕ1)∧T≥1(ψ2,ϕ2)⇒ T≥1(ψ1∧ψ2,ϕ1∧ϕ2)

3. T≤k(ψ,ϕ1)⇒ T≤k(ψ,ϕ1∧ϕ2)

The following postulate (4) derives from postulate 3:

4. T≤k1(ψ1,ϕ1)∧T≤k2(ψ2,ϕ2)⇒ T≤min(k1,k2)(ψ1∧ψ2,ϕ1∧ϕ2)

5. T≤k1(ψ1,ϕ1)∧T ∆k2(ψ2,ϕ2)⇒ T≤max(k1,k2)(ψ1∧ψ2,ϕ1∧ϕ2)

6. T≤k1(ψ,ϕ1∧ϕ2)∧¬ϕ1⇒∃k2 ≥ k1 s.t. T≤k2(ψ,ϕ1)

7. T≥k(ψ,ϕ1∧ϕ2)∧¬ϕ1⇒ T≥k(ψ,ϕ1)

8. T≥k1(ψ1,ϕ1)∧T≥k2(ψ2,ϕ2)⇒ T≥max(k1+k2−1,0)(ψ1∧ψ2,ϕ1∧ϕ2)

96

9. T≤k(ψ,ϕ1∨ϕ2)⇒ T≤k(ψ,ϕ1)

10. T≥k(ψ,ϕ1)∧¬ϕ2⇒ T≥k(ψ,ϕ1∨ϕ2)

11. T≥k1(ψ,ϕ1)∨T≥k2(ψ,ϕ2)∧¬ (ϕ1∨ϕ2)⇒ T≥min(k1,k2)(ψ,ϕ1∨ϕ2)

12. T≥k(ψ,ϕ1∨ϕ2)⇒∃k1,k2 s.t. T≥k1(ψ,ϕ1)∧T≥k2(ψ,ϕ2)∧ k1 + k2 ≥ k

13. From T≥k(ψ,ϕ1) and ϕ1 ` ϕ2 and ¬ϕ2 infer T≥k(ψ,ϕ2)

14. From T≤k1(ψ,ϕ1) and ϕ1 ` ϕ2 and ¬ϕ2

infer ∃k2 ≥ k1 s.t. T≤k2(ψ,ϕ2)

5.3 Model Checking TCTLG

Model checking is the problem of automatically establishing whether or not a formula is

satisfied on a given model. In this section, we present an efficient algorithm for the TCTLG

model-checking problem. We start by presenting the main algorithm (Algorithm 8) that

extends the standard symbolic model checking algorithm for CTL [21]. In this algorithm,

we simply call the known procedures for the CTL modalities (i.e., SMCEX , SMCEU , and

SMCAU) for computing the set of states satisfying the corresponding modalities.

Algorithm 8 works as follows. First, it takes as input the model MG and the TCTLG

formula Φ and returns the set [[Φ]] of states that satisfy Φ in MG. By giving the model MG,

the algorithm recursively goes through the structure of Φ and constructs the set [[Φ]] with

respect to a set of Boolean operations applied to sets. The lines 1 to 6 invoke the standard

procedures used in CTL to compute the set of states that satisfy regular CTL formulae. The

lines 7 and 8 call our procedures which compute the set of states that satisfy the graded trust

formulae.

97

Algorithm 8 SMC(Φ,MG): the set [[Φ]] of states satisfying the TCTLG formula Φ

1: Φ is ρ: return {s ∈ SG | ρ ∈VG(s)};
2: Φ is ¬ϕ: return S−SMC(ϕ,MG);
3: Φ is ϕ1∨ϕ2: return SMC(ϕ1,MG)∪SMC(ϕ2,MG);
4: Φ is EXϕ: return SMCEX(ϕ,MG);
5: Φ is E(ϕ1 U ϕ2): return SMCEU(ϕ1,ϕ2,MG);
6: Φ is A(ϕ1 U ϕ2): return SMCAU(ϕ1,ϕ2,MG);
7: Φ is T ∆k

p (i, j,ψ,ϕ): return SMCTp(i, j,ψ,ϕ,∆k,MG);
8: Φ is T ∆k

c (i, j,ψ,ϕ): return SMCTc(i, j,ψ,ϕ,∆k,MG);

Algorithm 9 SMCTp(i, j,ψ,ϕ,∆k,MG)

1: Y← SMC(¬ϕ,MG);
2: X1← SMC(ψ,MG)∩Y;
3: X2← SMC(ϕ,MG);
4: Z← Compute the set of states in X1 s.t. their number of accessible states that are in

X2 over the total number of their accessible states - 1 is ∆k
5: return Z

5.3.1 BDD-based Algorithm of Graded Trust

This section introduces the model checking algorithms for both the T ∆k
p and T ∆k

c operators.

Given a TCTLG formula Φ and a TCTLG model MG over the vector-based interpreted sys-

tem, the two algorithms compute the set of states of MG in which Φ holds. Algorithm 9

describes the procedure SMCTp(i, j,ψ,φ ,∆k,MG). This procedure returns the set of states

in which the preconditional graded trust formula holds. First, the algorithm starts by com-

puting the set Y of states in which the negation of the formula ϕ holds. Afterwards, the

procedure calculates the set X1 (the set of states satisfying ψ ∧¬ϕ). Thereafter, it assigns

to the set X2 the set of states where the formula ϕ holds. Thereafter, the algorithm proceeds

to build the set Z by computing the set of states in X1 such that their number of accessi-

ble states that are in X2 over the total number of their accessible states mines 1 satisfy the

appropriate relation ∆k. Finally the procedure returns the set Z of the states that satisfy the

formula T ∆k
p (i, j,ψ,ϕ).

To compute the formula T ∆k
c (i, j,ψ,ϕ), we follow the same steps in Algorithm 9,

98

except lines 2 and 3 which assign to the set X1 the set of states satisfying ¬ϕ , and to the set

X2 the set of states satisfying ψ ⇒ ϕ . Indeed, this is based on our proposed semantics of

conditional graded trust where the set of global states satisfying the formula T ∆k
c (i, j,ψ,ϕ)

in a given model MG is computed by calculating and checking if the ratio between the

number of states satisfying ψ⇒ ϕ over the total number of all states that can reach and see

such states through the accessibility relation i→ j satisfies the appropriate relation ∆k.

5.4 Complexity Analysis

In this section, we will show that the complexity of model checking TCTLG is PSPACE-

complete for concurrent programs. Concurrent programs are composed of n concurrent

agents, where each agent is described by a transition system. In these structures, states

and transitions are not listed explicitly, but having instead compact representations that still

correspond to the actual system. In fact, in symbolic model checking, “the Kripke structures

to which model checking is applied are often obtained by constructing the reachability

graph of concurrent programs” [60]. It is worth mentioning that the complexity analysis

only considers the case of flat trust formulae where the content could be any formula but

not a trust one.

To prove the PSPACE-completeness result, we introduce a 2-stage transformation

procedure. In the first stage, we transform the problem of model checking TCTLG into the

problem of model checking ARCCTL÷1, a new logic that we define in this research. In the

second stage, the problem of model checking this new logic is transformed into the one of

model checking Action-Restricted CTL (ARCTL) proposed in [88]. We will introduce two

transformation functions: f1 for the first stage and f2 for the second stage. Both functions

include rules for transforming the model and formulae from a source language to a target

one. Although a direct transformation from model checking TCTLG into model checking

99

ARCTL is theoretically possible in one stage, the 2-stage procedure that uses an interme-

diate language, namely ARCCTL÷1, makes the transformation more natural and easy to

follow from the methodological perspective.

ARCTL is an extension of CTL with action formulae. We use these actions to capture

the accessibility relations in the original TCTLG model. ARCCTL÷1 merges a fragment of

the Counting CTL logic (CCTL) [64] with ARCTL. The reason of using ARCCTL÷1 as

intermediate language for our transformation procedure is that CCTL counts the number of

states satisfying certain sub-formulae along paths and uses this number as a constraint of

the until temporal operator. This allows us to capture the number of accessible states used

to define the semantics of TCTLG. Finally, by merging a fragment of CCTL with ARCTL,

we capture the accessibility relations in the first stage through action-labeled transitions and

use these transitions in the second stage toward the target language ARCTL.

Before introducing ARCCTL÷1, we briefly review ARCTL [88].

Definition 5.3 (Syntax of ARCTL).

ϕ ::= ρ | ¬ϕ | ϕ ∨ϕ | EαXϕ | Eα(ϕ U ϕ) | Aα(ϕ U ϕ)

ϕ is a state formula and α is an atomic action formula (α ∈ ACA the set of atomic actions).

Instead of considering composed action formulae as in the original ARCTL logic, we only

consider here atomic actions, which are enough to capture the labeled transitions. ARCTL

restricts path quantifiers with an action formulae that must be satisfied along the path (i.e.,

labeling each transition of the path) in order to determine the precise paths over which path

formulae are evaluated.

Definition 5.4 (Model of ARCTL). The model of ARCTL is a tuple MA =(SA,ACA, IA,RA,VA)

where SA is a nonempty set of states; ACA is a set of actions; IA ⊆ SA is a set of initial states;

100

RA ⊆ SA×ACA× SA is a labeled transition relation; VA : SA → 2AP is a function labeling

states with subsets of atomic propositions AP.

A path of MA is an infinite sequence of states and actions. Πα(s) is the set of paths

(called α-paths) starting at s and where all transitions are labeled with the atomic action α .

The satisfaction relation (MA,s) |= ϕ is given as follows (we omit the semantics of

Boolean connectives and propositional atoms):

• (MA,s) |= EαXϕ iff there exists a path π ∈Πα(s) and (MA,π(1)) |= ϕ;

• (MA,s) |= Eα(ϕ1 U ϕ2) iff there exists a path π ∈ Πα(s) such that for some k ≥

0,(MA,π(k)) |= ϕ2 and (MA,π(j)) |= ϕ1 for all 0≤ j < k−1;

• (MA,s) |= Aα(ϕ1 U ϕ2) iff for all paths π ∈Πα(s) there exists some k ≥ 0, such that

(MA,π(k)) |= ϕ2 and (MA,π(j)) |= ϕ1 for all 0≤ j < k−1.

Definition 5.5 (Syntax of ARCCTL÷1).

ϕ ::= ρ | ¬ϕ | ϕ ∨ϕ |EαXϕ | Eα(ϕ U[c] ϕ) | Aα(ϕ U[c] ϕ)

c ::=
#ϕ

τ
∆k;

α is an atomic action formula as in Definition 5.3, ∆K is as in Definition 5.1, and c is

a constraint based on counting the number of states satisfying ϕ (#ϕ) and τ is a strictly

positive natural number.

We only use a fragment of CCTL where only one formula (ϕ) is counted in the

constraint through the division operator instead of counting different formulae (ϕi) and

going through the sum of their corresponding states as in the full CCTL logic. #ϕ captures

the number of states satisfying ϕ along a given prefix and τ represents the total number of

states of that prefix (the formal definition will follow).

101

ARCCTL÷1 uses the standard abbreviations. For instance: EαF[c]ϕ = Eα(>U[c] ϕ),

AαF[c]ϕ = Aα(> U[c] ϕ), AαG[c]ϕ = ¬EαF[c]¬ϕ . The size of a formula takes into account

the size of the constraint formula. For instance |Eα(ϕ1 U
[
#ϕ

τ
]

ϕ2)|= |Eα(ϕ1 U ϕ2)|+ |ϕ|.

Definition 5.6 (Model of ARCCTL÷1). ARCCTL÷1 is interpreted over a labeled Kripke

strcture M÷ = (S÷,AC÷, I÷,R÷,V÷) where S÷ is a nonempty set of states; AC÷ is a set of

actions; I÷ is a set of initial states; R÷ ⊆ S÷×AC÷× S÷ is a labeled transition relation;

V÷ : S÷→ 2AP is a valuation function.

The satisfaction relation (M÷,s) |= ϕ is given as follows (we omit the semantics of

propositional atoms, Boolean connectives and the next operator):

• (M÷,s) |= Eα(ϕ1 U[c] ϕ2) iff there exists a path π ∈ Πα(s) such that for some i ≥

0,(M÷,π(i)) |= ϕ2 and (M÷,π(i−1)) |= c and for all 0≤ j < i, (M÷,π(j)) |= ϕ1;

• (M÷,s) |=Aα(ϕ1 U[c] ϕ2) iff for all paths π ∈Πα(s), there is some i≥ 0,(M÷,π(i)) |=

ϕ2 and (M÷,π(i−1)) |= c and for all 0≤ j < i, (M÷,π(j)) |= ϕ1.

where Πα(s) is the set of α paths starting at s, π(i) is the state si of the path π and π(i) is

the prefix s0 . . .si of π . Notice that π(−1) = ε is the empty prefix.

For every finite run prefix π(i) = s0 . . .si, the meaning of (M÷,π(i)) |= c is based on

the interpretation of
#ϕ

τ
over π(i), which is the number of states among s0 . . .si satisfying

ϕ over the size τ of the prefix (τ = i+1), or formally,
|{ j|0≤ j ≤ i∧π(j) |= ϕ}|

i+1
. Notice

that τ = 1 when the prefix is empty, which is also the case when the prefix has only one

element. Under this semantics, Eα(ϕ1 U ϕ2) is equivalent to Eα(> U
[
#¬ϕ1

τ
=0]

ϕ2) and

Aα(ϕ1 U ϕ2) is equivalent to Aα(>U
[
#¬ϕ1

τ
=0]

ϕ2).

We proceed now with the first transformation function f1 (i.e., from TCTLG to ARCCTL÷1).

We assume that the states of the input TCTLG model are ordered. We can use any arbitrary

102

𝜓, ¬𝜑

 ¬𝜑

∼𝑖→𝑗

∼𝑖→𝑗

𝑠0

𝑠1

𝑠2

𝑓(𝜓),
𝑓(¬𝜑)

𝑓(¬𝜑)

𝑠0

𝑠3

𝑠2

𝛼0

(𝑎) 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 𝑜𝑓 𝑇𝐶𝑇𝐿𝐺
(𝑏) 𝐴𝑅𝐶𝐶𝑇𝐿÷1 𝑀𝑜𝑑𝑒𝑙

 𝜑

 ∼𝑖→𝑗

𝑠3

∼𝑖→𝑗

𝑓(𝜑)

𝑓(𝜑)

𝜆

𝛼0

𝛼𝑠0

𝑖𝑗

𝛼𝑠1

𝑖𝑗

𝑠1

𝑠4

𝛼0

𝛼𝑠0

𝑖𝑗

𝛼𝑠0

𝑖𝑗

𝛼𝑠0

𝑖𝑗

𝛼𝑠1

𝑖𝑗

 𝜑

Figure 5.3: f1 model transformation from TCTLG to ARCCTL÷1

order, so we simply need to assume a particular one, for instance: s0,s1, . . . ,sm. Assum-

ing this order, we use the notation: s i→ j (s1,s2 . . . ,sm) to denote s i→ j s1,s i→ j

s2, . . . ,s i→ j sm.

The model transformation f1 is as follows: S÷ = SG ∪ {snew}; I÷ = IG; Initialize

AC÷ with {α0} and ∀s s.t. ∃s′ where s i→ j s′ add α
i j
s to AC÷; ∀s ∈ SG,V÷(s) = VG(s);

V÷(snew) = {λ}; ∀(s,s′) ∈ RG add (s,α0,s′) to R÷; and if s i→ j (s1,s2, . . . ,sm) then add

{(s,α i j
s ,s1),(s1,α

i j
s ,s2), . . . ,(sm−1,α

i j
s ,sm),(sm,α

i j
s ,snew)} to R÷. Figure 5.3 illustrates a

transformation example of this stage.

The formula transformation f1 is defined recursively as follows:

• f1(MG,s) |= f1(ρ) iff (M÷,s) |= ρ;

• f1(MG,s) |= f1(¬ϕ) iff (M÷,s) |= ¬ f1(ϕ);

• f1(MG,s) |= f1(ϕ1∨ϕ2) iff (M÷,s) |= f1(ϕ1)∨ f1(ϕ2);

• f1(MG,s) |= f1(EXϕ) iff (M÷,s) |= Eα0X f1(ϕ);

• f1(MG,s) |= f1(E(ϕ1 U ϕ2)) iff (M÷,s) |= Eα0(f1(ϕ1) U f1(ϕ2));

• f1(MG,s) |= f1(A(ϕ1 U ϕ2)) iff (M÷,s) |= Aα0(f1(ϕ1) U f1(ϕ2));

• f1(MG,s) |= f1(Tp
∆k(i, j,ψ,ϕ)) iff (M÷,s) |= f1(ψ)∧ f1(¬ϕ)∧E

α
i j
s

XE
α

i j
s

F
[
f1(ϕ)

τ
∆k]

λ ;

103

• f1(MG,s) |= f1(Tc
∆k(i, j,ψ,ϕ)) iff (M÷,s) |= f1(¬ϕ)∧E

α
i j
s

F(f1(ψ))

∧ E
α

i j
s

XE
α

i j
s

F
[
f1(ψ ⇒ ϕ)

τ
∆k]

λ .

All the cases are straightforward, except the trust operators Tp
∆k and Tc

∆k that make use of

the semantics and exploit the constrained until operator of ARCCTL÷1 from the next state.

This operator counts the number of states satisfying the content f1(ϕ) or the condition

f1(ψ ⇒ ϕ) over the total number of states in the prefix starting from the next state to

the last state preceding the state satisfying λ , which means the newly added state. This

prefix corresponds to the accessible states from s, which are captured through the transitions

labeled by α
i j
s . For the Tc

∆k operator, ψ should be satisfied in one of the accessible states,

which means in one of the future states through an α
i j
s path, i.e., E

α
i j
s

F(f1(ψ)).

For the second stage transformation f2 (i.e., from ARCCTL÷1 to ARCTL), the model

transformation is straightforward; it is a simple mapping of each element of M÷ to the

corresponding element of MA. The formula transformation is given in Function f2(Φ:

ARCCTL÷1). To transform the constrained until operator over a certain path (Function

TransEU), the function computes ∏E(ϕ1Uϕ2), the set of prefixes of paths satisfying the for-

mula E(f2(ϕ1) U f2(ϕ2)). If one of these prefixes satisfies the constraint in terms of the

number of states |SU
ϕ | over the size of the prefix, the unconstrained until formula is returned.

Otherwise, the formula cannot be satisfied, so false is returned instead. The case of the uni-

versal constrained until is similar (Function TransAU). The following theorem holds. It can

be proved by induction over the structure of the formula ϕ .

Theorem 5.1 (Soundness and Completeness of the Transformation).

1. (MG,s) |= ϕ iff (M÷,s) |= f1(ϕ);

2. (M÷,s) |= ϕ iff (MA,s) |= f2(ϕ);

104

Function f2(Φ: ARCCTL÷1): ARCTL formula
1: switch (Φ):
2: case ρ : return ρ;
3: case ¬ϕ : return ¬ f2(ϕ);
4: case ϕ1∨ϕ2 : return f2(ϕ1)∨ f2(ϕ2);
5: case EαXϕ : return EαX f2(ϕ);
6: case Eα(ϕ1U

[
#ϕ

τ
∆k]

ϕ2) : return TransEU (ϕ1,ϕ2,ϕ,∆k);

7: case Aα(ϕ1U
[
#ϕ

τ
∆k]

ϕ2) : return TransAU (ϕ1,ϕ2,ϕ,∆k);

8: end switch

Function TransEU (ϕ1,ϕ2,ϕ,∆k): ARCLT formula

1: if Eα(f2(ϕ1) U f2(ϕ2)) =⊥ then return false
2: else
3: Compute ∏E(ϕ1Uϕ2)

4: Sϕ := {ϕ ∈ S÷|ϕ |= f2(ϕ)}
5: for each PE(ϕ1Uϕ2) ∈∏E(ϕ1Uϕ2)

6: SU
ϕ = Sϕ ∩PE(ϕ1∨ϕ2)

7: if
|SU

ϕ |
|PE(ϕ1 U ϕ2)|

∆k then return Eα(f2(ϕ1) U f2(ϕ2))

8: end for
9: return false

Proposition 5.1. Let MC(L) be the problem of model checking the language L for con-

current programs and�p be the polynomial-space reduction. We have MC(ARCCTL÷1)�p

MC(ARCTL).

Proof. Regarding the model, it is easy to see that any model of ARCCTL÷1 is also a model

of ARCTL. So, we can easily imagine a deterministic Turing machine TM that can compute

the model reduction in space O(logn) where n is the size of the input ARCCTL÷1 model.

In fact, TM simply looks at the input and writes in its output tape, one by one, the states

(including the initial ones), the actions, labeling functions, and transitions. With regard to

the formula, for the 4 first cases of the function f2, it is easy to see that the transformation

is polynomial in the size of the input formula. For the 5th and 6th cases, we need to store

105

Function TransAU (ϕ1,ϕ2,ϕ,∆k): ARCLT formula

1: if Aα(f2(φ1) U f2(φ2)) =⊥ then return false
2: else
3: Compute ∏A(ϕ1Uϕ2)

4: Sϕ := {ϕ ∈ S÷|ϕ |= f2(ϕ)}
5: for all PA(ϕ1Uϕ2) ∈∏A(ϕ1Uϕ2)

6: SU
ϕ = Sϕ ∩PA(ϕ1Uϕ2)

7: if
|SU

ϕ |
|PA(ϕ1 U ϕ2)|

6∆ k then return false

8: end for
9: return Aα(f2(ϕ1) U f2(ϕ2))

the sets ∏E(ϕ1Uϕ2), ∏A(ϕ1Uϕ2) and Sϕ , which are all logarithmic in the size of the input

model and formula. In fact, the transformation function f2 is recursive and the depth of the

recursion is bounded by the length of the input formula.

Theorem 5.2. MC(ARCCTL÷1) is PSPACE-complete.

Proof. The lower bound (i.e., PSPACE hardness) follows from the fact that MC(CTL) �p

MC(ARCCTL÷1) and MC(CTL) is PSPACE-complete [60]. Since MC(ARCTL) is also

PSPACE-complete [57], the upper bound follows from Proposition 5.1.

Proposition 5.2. Let Mod(L) be the model of the language L and �log denote the log-

space reduction. We have Mod(TCTLG)�log Mod(ARCCTL÷1).

Proof. We show that the model reduction from TCTLG to ARCCTL÷1 presented above can

be computed by a deterministic Turing machine TM in space O(log(|Mod(TCTLG)|)). TM

reads in the input tape a model of TCTLG and generates in the output tape, one by one,

the same states with the same state ordering, the same state labeling function, the same

transitions as the input after labeling them with α0 and writing α0 in the set of atomic

actions ACA, and an additional state snew to which it associates the last ordering rank with

a unique label λ . For each state s and each pair of agents (i, j), TM reads the accessibility

106

relations i→ j from this state one by one in a sequential way in the same order of the

accessible states, adds α
i j
s to the set ACA and adds transitions labeled by α

i j
s , first from s

to the first accessible state, then between each two adjacent accessible states according to

their order, and finally from the last accessible state to the newly added state snew. Thus,

to transform the accessibility relations, we only need to record 3 states at each moment of

time: the original state s, the current accessible state, and the last accessible state to which

a transition labeled by α
i j
s has been added. Since all these operations can be be done in a

logarithmic space in the size of the input model, we are done.

Proposition 5.3. MC(TCTLG)�p MC(ARCCTL÷1)

Proof. The model part is proven in Proposition 5.2. For the formula, we need to show

that | f1(Φ)| is polynomial in the length of the ARCCTL÷1 formula Φ. We prove this by

induction over the structure of Φ. The proposition holds for the atomic case, and we have:

| f1(¬ϕ)| = 1+ | f1(ϕ)|; | f1(ϕ1 ∨ϕ2)| = 1+ | f1(ϕ1)|+ | f1(ϕ2)|; | f1(EXϕ)| = 2+ | f1(ϕ)|

(note that |α0| = 1); | f1(E(ϕ1Uϕ2))| = 2 + | f1(ϕ1)|+ | f1(ϕ2)|; | f1(A(ϕ1Uϕ2))| = 2 +

| f1(ϕ1)|+ | f1(ϕ2)|; | f1(T ∆k
p (i, j,ϕ1,ϕ2))|= 7+ | f1(ϕ1)|+2| f1(ϕ2)|; | f1(T ∆k

c (i, j,ϕ1,ϕ2))|=

10+ 2| f1(ϕ1)|+ 2| f1(ϕ2)|. Thus, if the proposition holds for ϕ , ϕ1, and ϕ2, then it holds

for f1(¬ϕ), f1(ϕ1∨ϕ2), f1(EXϕ), f1(E(ϕ1Uϕ2)), f1(A(ϕ1Uϕ2)), f1(T ∆k
p (i, j,ϕ1,ϕ2)) and

f1(T ∆k
c (i, j,ϕ1,ϕ2)).

Theorem 5.3. MC(TCTLG) is PSPACE-complete.

Proof. The lower bound follows from the polynomial-space reduction from MC(CTL)

proven to be complete for PSPACE [60]. The PSPACE upper bound follows from Proposi-

tion 5.3 and Theorem 5.2.

107

5.5 Implementation and Experiments

We implemented our algorithms on top of MCMAS [73]. One of the appealing features of

MCMAS-G, our new open source model checker, is the ability to provide the validation by

means of a graphical user interface that is based on Eclipse to generate counterexamples and

witnesses for several classes of TCTLG formulae. The toolkit modeling language is VISPL

[32], which is a simple description of the states and transitions in a model embedded with

the vector-based semantics. The source and executable files of the resulting toolkit are

available online at

In the following section, we consider the Breast Cancer Diagnosis and Treatment

(BCDT) protocol as an illustrative application example introduced in Section 3.4.1 to show

how our model checking technique can efficiently be applied on a medical health care plat-

form to check the trust transactions against some quantified temporal trust conditions.

5.5.1 Performance Evaluation

We use our formal model MG associated to the vector-based interpreted systems introduced

earlier in Section 3.3 to formally model the BCDT protocol. According to this protocol,

five parties are involved in the cancer diagnosis process, which are: patient denoted by

Pa, physician (Ph), pathologist (Pt), radiologist (Rd), and registrar (Rg). Moreover, an

environment agent e is added to model the BCDT process. In this scenario, the graded

trust relationships between the participating parties express the system requirements that

regulate the interacting agents. Such requirements are specified using our graded logic of

trust TCTLG. Indeed, trust relationships among parties evolve with interactions, and the

following atomic propositions represent potential states in the evolution of these relation-

ships: MassDetected for mass noticed, MammoRefered for mammography referral,

Cal_Det for calcification detected, Biop_Rec for biopsy recommended. Moreover, the

108

atomic propositions, TreatmentPlanAgreed, ReportReceived, TissueReceived,

TissueAnalyzed, and ResultsAccommodated. The involved parties must have the

possibility of reaching states in which some of these propositions hold. Thus, the trust re-

lationships are instantiated and help prospective agents decide how much should they trust

other agents.

The following protocol properties are expressed in the TCTLG logic to check the

correctness of the process model.

φ1 = EF T p≥0.75(Pa,Ph,MassDetected,MammoRe f ered)

φ2 = EF T≥0.95
c (Pa,Ph,MassDetected,AF MammoRe f ered)

φ3 = EF ¬T≤0.5
c (Rd,Pt,TissueReceived,TissueAnalyzed)

φ4 = AG (ResultsAccommodated⇒

EF T≥0.75
c (Pa,Ph,ReportReceived,AF TreatmentPlanAgreed))

φ5 = AG(Clac_Det⇒ AF T≥0.75
p (Ph,Rd,>,Biop_Rec))

These formulae express reachability and liveness properties for both preconditional

and conditional trust. For example, the formula φ1 encodes the fact that there exists a state

reachable from the initial state, such that the Patient trusts the Physician to refer her to a

radiologist for a mammography upon he detects a suspicious mass with a degree ≥ 0.75.

The formula φ2 states that whenever the physician detects a suspicious mass in the patient’s

breast, then in all future computations, the latter trusts that physician to eventually refer

her to a radiologist for a mammography with a degree at least 0.95. Moreover, in terms

of liveness property, φ5 states that in all computation paths, it is always the case that if the

radiologist observes a calcification in the patient’s breast, then eventually in all possible

computations, the physician will trust the radiologist to recommend an appropriate biopsy

109

with a trust degree more than 0.75.

5.5.2 Experimental Results

In order to assess the scalability of our technique and implementation, we measured the

model checking processing time to construct the model and the BDD memory usage to

successfully perform the verification task when running on a machine Intel(R) Core(TM)

i7-6700 CPU - 3.40GHZ with 16 GB memory. We run our experiments with a number of

agents ranging from 6 to 30. Our motivation of considering different number of agents is

to achieve different levels of scalability that makes the problem complex enough to observe

significant results. The experiments revealed that all the tested formulae are satisfied. Table

5.1 recorded the verification results along with the number of agents and the reachable

states in the model constructed. We can observe that the number of reachable states reflects

the fact that the state space increases exponentially with the number of agents. It is also

worth noticing that the memory consumption increases polynomially, which confirms the

PSPACE-completeness result. However, the program timed out when the number of agents

exceeds 30. Yet, it is still acceptable for detecting design errors in scalable models. In

fact, we are unable to provide a full comparison of these results to other implementations

as, to the best of our knowledge, there is no model checker tool that can be used to verify

properties of quantified trust as we do in this work.

Table 5.1: Verification results of the BCDT protocol against TCTLG formulae

Exp# Agents# States# Time (sec) Mem.(MB)

1 6 19 0.098 10
2 12 361 1.114 16
3 18 6859 26.13 45
4 24 117325 1614.5 48
5 30 2.00752e+06 57646 65

110

5.6 Summary

In this chapter, we introduced TCTLG, a logical language that extends the Trust Computa-

tion Tree Logic TCTL to formally represent and reason about the quantitative aspect of trust

in MASs. We assigned a weight to the sets of states that satisfy the trust formula. Thus, the

degrees of trust can be obtained from the possible executions of the giving system. More-

over, we presented a model checking algorithm for TCTLG that extends the CTL symbolic

algorithm and its implementation that results in a new open source tool called MCMAS-G.

Moreover, we proved through a 2-stage transformation procedure that the complexity of

TCTLG symbolic model checking for concurrent programs is PSPACE-complete with re-

spect to the size of the program’s components. We evaluated our approach by means of a

real-life case study in the healthcare domain in order to explain our proposed framework in

a practical setting. The experimental results confirmed the theoretical space complexity.

111

Chapter 6

Conclusions and Future Directions

This chapter gives a summary of the main contributions of the thesis. First, it presents

the answer to our research questions, the concepts that we introduced, and the results that

we obtained. Then, a sketch of possible extension of this work and the open questions

remaining are stated .

6.1 Summary

Agents in an open environment are interacting with each other for different reasons in or-

der to meet their goals. Model checking trust in MASs at design stage, to have confidence

that the system will work as desired, is a challenging issue. While the number of propos-

als on trust modeling is significant, they differ, however, in the topics they addressed and

the systems they implemented. In this thesis, we were primarily concerned with the issues

of reasoning about and verifying trust in the context of MASs using the model checking

approach, which has not been deeply investigated yet for trust systems. Differently from

existing definitions in the literature, in this thesis, we considered a cognitive-independent

view of trust where trust ingredients are seen from a non-epistemic angle. Trust in our work

112

is defined from a high-level abstraction perspective without having to depend on individual

agents’ internal states. We presented trust as a direct relation from one agent, the truster,

toward another agent, the trustee, where such a relation presupposes specific conditions

with respect to a particular content. Indeed, we have put forward a new logical frame-

work for trust-based MASs to enable trusted agent interactions in open, heterogeneous and

autonomous systems. In particular, we addressed the semantics, model checking, and com-

plexity challenges. We conducted an in-depth literature review to guarantee the originality

of our work and its effectiveness in filling the state-of-the-art research gaps. The framework

consists of different components that are mainly introduced in three chapters. Chapters 3

and 4 revolved around our first three research questions and chapter 5 answered our last

research question. In chapter 3 and from the modeling and specification perspectives, we

achieved our goal of presenting the Trust Computation Tree Logic (TCTL), an extension

of the CTL logic [43] to formally represent and reason about trust in a system of agents.

Equipped with the presented reasoning postulates, TCTL does not only provide a formal

basis for reasoning about trust states with preconditions, but it can also be seen as a for-

mal modeling of the social trust interactions among agents. A major contribution of our

approach is the new provided semantics of trust based on a new trust accessibility relation,

which has not been addressed in the existing approaches. In particular, we provided an

intuitive and grounded computational semantics based on a new vector-based definition of

the formalism of interpreted systems. We were able to formally specify and automatically

verify trust-based interactions among autonomous agents. A further novelty is the develop-

ment of new model checking algorithms dedicated to the proposed logic (TCTL) and their

implementations that result in a new tool called MCMAS-T along with its vector-based

input language VISPL. We investigated the most intuitive and efficient algorithm for com-

puting the trust set by introducing and comparing two different model checking algorithms

113

and analyzing two types of models (models with and without-loops).

In Chapter 4, we first extended the TCTL language with a modality to describe con-

ditional trust. The specificity of this modality is its compatibility with the literature where

trust is dealt with as conditional, meaning that trust should be expressed using antecedents

and consequents. By doing so, a new language called TCTLC is presented. Then, we in-

vestigated a different model checking technique to verify preconditional and conditional

trust. In particular, we developed a new model checking framework for the TCTL logic of

preconditional trust that is extended to design a new algorithm to model check conditional

trust in MASs. We applied a set of formal rules to transform vector-extended transition

systems into Kripke structures. Then, we transformed TCTL formulae to CTL ones based

on certain rules developed specifically for this purpose. Such a transformation is performed

by developing two formal methods that provide accurate alignments between source and

target models, and at the same time preserve TCTL semantics without losing the validity

of the original model properties. Our main challenge here was to make sure that the path

through which a formula is satisfied in the original model TCTL is still satisfied in the cor-

responding path of the translated CTL model. Moreover, to perform this transformation, we

developed a Java toolkit that automatically interacts with the NuSMV model checker of the

CTL logic. The proof of the soundness and completeness of our transformation algorithms

is provided. Furthermore, we proved that (1) the time complexity of TCTL and TCTLC

model checking in explicit models is P-complete with regard to the size of the model and

length of the formula; and (2) the complexity of the same problems for concurrent programs

is PSPACE-complete with respect to the size of the program’s components. Therefore, our

model checking algorithms have the same complexity as model checking CTL with regard

to both explicit models and concurrent programs. Experiments conducted on a standard

industrial case study demonstrated the efficiency and scalability of the technique. When we

114

compared this approach with the results proposed in Chapter 3, we reported that the devel-

oped verifier tool was able to verify a variety of formulae correctly and efficiently within

a large case study having approximately 2.52442e+15 reachable states. Thanks to the high

efficiency of CTL model checking to which the model checking of TCTL and conditional

trust is transformed.

In Chapter 5, we introduced TCTLG, a logical language that extends the Trust Com-

putation Tree Logic TCTL to formally represent and reason about the quantitative aspect

of trust in MASs. One of our main challenges here was the weight that we assigned to the

sets of states that satisfy the trust formula. Thus, the degrees of trust can be obtained from

the possible executions of the giving system. Moreover, we presented a model checking

algorithm for TCTLG that extends the CTL symbolic algorithm and its implementation that

results in a new open source tool called MCMAS-G. We proved through a 2-stage transfor-

mation procedure that the complexity of TCTLG symbolic model checking for concurrent

programs is PSPACE-complete with respect to the size of the program’s components. We

evaluated our approach by means of a real-life case study in the healthcare domain in order

to explain our proposed framework in a practical setting. The experimental results con-

firmed the theoretical space complexity.

6.2 Future Directions

Despite the fact that we successfully applied our specification languages and their model

checker tools to different application domains, we believe, based on our literature reviews,

that the following few points are worth investigating in the future:

• There is a need to tackle the runtime verification problem to investigate the dynamic

changes of agents’ behavior and their impact on trust. Perhaps this is an issue that we

115

see emerging in our approach. We believe that model checking and runtime verifica-

tion can be integrated in a unified framework to verify trust-based MASs.

• Trust and commitments are two independent concepts. However, in concrete applica-

tions such as business interactions, there exist situations where performing trust and

commitment scenarios contribute towards improving the efficiency of MASs. Indeed,

trust provides a complementary aspect to commitments (i.e., trust and commitment

are correlated to each other). In this thesis, we made a first step toward modeling the

trust from a high level abstraction perspective. Further efforts are needed to induce

commitments that would support trust by exploring the interaction between trust and

social commitments from the specification and model checking standpoints.

• We noticed a strong connection between trust and reputation in social settings. Con-

sequently, we would like to combine our formalism by defining a suitable semantics

for the notion of reputation along with the associated model checking algorithm. This

is extremely important to show how reputation can be exploited by an agent to build

its trust degree in other agents.

• Considering the degree of confidence that an agent has in its trust value and incorpo-

rating this degree in our logic are interesting issues for future investigation.

116

Bibliography

[1] Sibel Adalı. Modeling trust context in networks. Springer, 2013.

[2] Faisal Al-Saqqar, Jamal Bentahar, Khalid Sultan, Wei Wan, and Ehsan Khosrow-

shahi Asl. Model checking temporal knowledge and commitments in multi-agent

systems using reduction. Simulation Modelling Practice and Theory, 51:45–68,

2015.

[3] Alessandro Aldini. A formal framework for modeling trust and reputation in col-

lective adaptive systems. In Proceedings of the Workshop on FORmal methods for

the quantitative Evaluation of Collective Adaptive SysTems, FORECAST@STAF, Vi-

enna, Austria, pages 19–30, 2016.

[4] Hind Alotaibi and Hussein Zedan. Runtime verification of safety properties in multi-

agents systems. In 10th International Conference on Intelligent Systems Design and

Applications (ISDA), pages 356–362, 2010.

[5] Leila Amgoud and Robert Demolombe. An argumentation-based approach for rea-

soning about trust in information sources. Argument & Computation, 5(2-3):191–

215, 2014.

117

[6] Najwa Abu Bakar and Ali Selamat. Runtime verification of multi-agent systems

interaction quality. In Asian Conference on Intelligent Information and Database

Systems, pages 435–444. Springer, 2013.

[7] Ahmed Saleh Bataineh, Jamal Bentahar, Mohamed El Menshawy, and Rachida

Dssouli. Specifying and verifying contract-driven service compositions using com-

mitments and model checking. Expert Systems with Applications, 74:151–184, 2017.

[8] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for

ltl and tltl. ACM Transactions on Software Engineering and Methodology (TOSEM),

20(4):14, 2011.

[9] Jamal Bentahar, Mohamed El-Menshawy, Hongyang Qu, and Rachida Dssouli.

Communicative commitments: Model checking and complexity analysis.

Knowledge-Based Systems, 35:21–34, 2012.

[10] Jamal Bentahar, Mohamed El-Menshawy, Hongyang Qu, and Rachida Dssouli.

Communicative commitments: Model checking and complexity analysis.

Knowledge-Based Systems, 35:21–34, 2012.

[11] Amir Jalaly Bidgoly and Behrouz Tork Ladani. Trust modeling and verification

using colored petri nets. In Information Security and Cryptology (ISCISC), 2011 8th

International ISC Conference on, pages 1–8. IEEE, 2011.

[12] Pratik K Biswas. Towards an agent-oriented approach to conceptualization. Applied

Soft Computing, 8(1):127–139, 2008.

[13] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Com-

puters, IEEE Transactions on, 100(8):677–691, 1986.

118

[14] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):142

– 170, 1992.

[15] Michael Burrows, Martin Abadi, and Roger M Needham. A logic of authentica-

tion. In Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, volume 426, pages 233–271. The Royal Society, 1989.

[16] Cristiano Castelfranchi and Rino Falcone. Principles of trust for MAS: cognitive

anatomy, social importance, and quantification. In Proceedings of the Third Interna-

tional Conference on Multiagent Systems, ICMAS, pages 72–79, 1998.

[17] Zhimin Chen, Yi Jiang, Yao Zhao, et al. A collaborative filtering recommendation

algorithm based on user interest change and trust evaluation. JDCTA, 4(9):106–113,

2010.

[18] Leturc Christopher and Grégory Bonnet. A normal modal logic for trust in the sincer-

ity. In 17th International Conference on Autonomous Agents and Multiagent Systems,

Stockholm, Sweden, 2018.

[19] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. Nusmv:

a new symbolic model checker. International Journal on Software Tools for Tech-

nology Transfer, 2(4):410–425, 2000.

[20] Edmund M Clarke, E Allen Emerson, and Joseph Sifakis. Model checking: algorith-

mic verification and debugging. Communications of the ACM, 52(11):74–84, 2009.

[21] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,

1999.

119

[22] Philip R Cohen and Hector J Levesque. Intention is choice with commitment. Arti-

ficial Intelligence, 42(2-3):213–261, 1990.

[23] Rocco De Nicola and Frits Vaandrager. Action versus state based logics for transition

systems. In Semantics of Systems of Concurrent Processes, pages 407–419. Springer,

1990.

[24] Robert Demolombe. To trust information sources: A proposal for a modal logical

framework. In Trust and deception in virtual societies, pages 111–124. Springer,

2001.

[25] Robert Demolombe. Graded trust. AAMAS Trust, pages 1–12, 2009.

[26] Robert Demolombe and Churn-Jung Liau. A logic of graded trust and belief fusion.

In Proc. of the 4th Workshop on Deception, Fraud and Trust in Agent Societies, pages

13–25, 2001.

[27] Robert Demolombe and Emiliano Lorini. A logical account of trust in information

sources. In Proceedings of the 11th International Workshop on Trust in Agent Soci-

eties, 2008.

[28] Nirmit Desai, Amit K Chopra, and Munindar P Singh. Amoeba: A methodology for

modeling and evolving cross-organizational business processes. ACM Transactions

on Software Engineering and Methodology (TOSEM), 19(2):6, 2009.

[29] Nagat Drawel, Jamal Bentahar, Mohamed El-Menshawy, and Amine Laarej. Ver-

ifying temporal trust logic using ctl model checking. In TRUST@ AAMAS, pages

62–74, 2018.

[30] Nagat Drawel, Jamal Bentahar, and Hongyang Qu. Degrees of trust: Temporal logic

and model checking. In TRUST@ AAMAS, pages 62–74, 2019.

120

[31] Nagat Drawel, Jamal Bentahar, and Elhadi Shakshuki. Reasoning about trust and

time in a system of agents. Procedia Computer Science, 109:632–639, 2017.

[32] Nagat Drawel, Hongyang Qu, Jamal Bentahar, and Elhadi Shakshuki. Specification

and automatic verification of trust-based multi-agent systems. Future Generation

Computer Systems, 2018.

[33] Warda El Kholy, Jamal Bentahar, Mohamed El-Menshawy, Hongyang Qu, and

Rachida Dssouli. Conditional commitments: Reasoning and model checking. ACM

Transactions on Software Engineering and Methodology (TOSEM), 24(2):Article 9,

2014.

[34] Warda EL Kholy, Jamal Bentahar, Mohamed El-Menshawy, Hongyang Qu, and

Rachida Dssouli. Modeling and verifying choreographed multi-agent-based web

service compositions regulated by commitment protocols. Expert Systems with Ap-

plications, 41(16):7478 – 7494, 2014.

[35] Warda El Kholy, Jamal Bentahar, Mohamed El Menshawy, Hongyang Qu, and

Rachida Dssouli. Smc4ac: A new symbolic model checker for intelligent agent

communication. Fundamenta Informaticae, 152(3):223–271, 2017.

[36] Mohamed El-Menshawy, Jamal Bentahar, and Rachida Dssouli. Symbolic model

checking commitment protocols using reduction. In International Workshop on

Declarative Agent Languages and Technologies, pages 185–203. Springer, 2010.

[37] Mohamed El Menshawy, Jamal Bentahar, Warda El Kholy, and Amine Laarej. Model

checking real-time conditional commitment logic using transformation. Journal of

Systems and Software, 2018.

121

[38] Mohamed El-Menshawy, Jamal Bentahar, Warda El Kholy, Pınar Yolum, and

Rachida Dssouli. Computational logics and verification techniques of multi-agent

commitments: survey. The Knowledge Engineering Review, 30(5):564–606, 2015.

[39] Mohamed El-Menshawy, Jamal Bentahar, Warda El Kholy, and Rachida Dssouli.

Reducing model checking commitments for agent communication to model checking

ARCTL and GCTL*. Autonomous Agents and Multi-Agent Systems, 27(3):375–418,

2013.

[40] Mohamed El-Menshawy, Jamal Bentahar, Hongyang Qu, and Rachida Dssouli. On

the verification of social commitments and time. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 483–

490, 2011.

[41] Mohamed El-Menshawy, Wei Wan, Jamal Bentahar, and Rachida Dssouli. Symbolic

model checking for agent interactions. In Proceedings of the International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS), pages 1555–1556,

2010.

[42] Jumana El-Qurna, Hamdi Yahyaoui, and Mohamed Almulla. A new framework for

the verification of service trust behaviors. Knowledge-Based Systems, 2017.

[43] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics, pages 995–1072. MIT Press, 1990.

[44] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning

about Knowledge. MIT Press, 1995.

122

[45] Andreas Fuchs, Sigrid Gürgens, and Carsten Rudolph. A formal notion of trust–

enabling reasoning about security properties. In IFIP International Conference on

Trust Management, pages 200–215. Springer, 2010.

[46] Diego Gambetta et al. Can we trust trust. Trust: Making and breaking cooperative

relations, 13:213–237, 2000.

[47] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT press, 2000.

[48] Andreas Herzig, Emiliano Lorini, Jomi F Hübner, and Laurent Vercouter. A logic of

trust and reputation. Logic Journal of IGPL, 18(1):214–244, 2010.

[49] Andreas Herzig, Emiliano Lorini, and Frédéric Moisan. A simple logic of trust based

on propositional assignments. In Fabio Paglieri, Luca Tummolini, and Rino Falcone,

editors, The Goals of Cognition. Essays in Honour of Cristiano Castelfranchi, Trib-

utes, pages 407–419. College Publications, 2012.

[50] Gerard J. Holzmann. The model checker spin. IEEE Transactions on software engi-

neering, 23(5):279–295, 1997.

[51] Xiaowei Huang and Marta Zofia Kwiatkowska. Reasoning about cognitive trust in

stochastic multiagent systems. In Thirty-First AAAI Conference on Artificial Intelli-

gence, 2017.

[52] Neil D. Jones. Space-bounded reducibility among combinatorial problems. Com-

puter and System Sciences, 11(1):68–85, 1975.

[53] Audun Jøsang. Subjective logic. Springer, 2016.

123

[54] Özgür Kafalı, Nirav Ajmeri, and Munindar P Singh. Kont: Computing tradeoffs in

normative multiagent systems. In Proceedings of the 31st Conference on Artificial

Intelligence (AAAI), pages 3006–3012, 2017.

[55] Özgür Kafalı and Pınar Yolum. Detecting exceptions in commitment protocols: Dis-

covering hidden states. In International Workshop on Languages, Methodologies and

Development Tools for Multi-Agent Systems, volume 6039 of LNCS, pages 112–127,

2009.

[56] Anup K Kalia and Munindar P Singh. Muon: designing multiagent communication

protocols from interaction scenarios. Autonomous Agents and Multi-Agent Systems,

29(4):621–657, 2015.

[57] Warda El Kholy, Jamal Bentahar, Mohamed El-Menshawy, Hongyang Qu, and

Rachida Dssouli. SMC4AC: A new symbolic model checker for intelligent agent

communication. Fundam. Inform., 152(3):223–271, 2017.

[58] Haeng-Kon Kim. Convergence agent model for developing u-healthcare systems.

Future Generation Computer Systems, 35:39–48, 2014.

[59] Panagiotis Kouvaros, Alessio Lomuscio, Edoardo Pirovano, and Hashan Punchi-

hewa. Formal verification of open multi-agent systems. In Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems, pages

179–187. International Foundation for Autonomous Agents and Multiagent Systems,

2019.

[60] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

124

[61] Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An automata-theoretic ap-

proach to branching-time model checking. Journal of the ACM (JACM), 47(2):312–

360, 2000.

[62] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic sym-

bolic model checker. In Computer Performance Evaluation / TOOLS, pages 200–

204, 2002.

[63] Bernd Lahno. Olli lagerspetz: Trust. the tacit demand. Ethical Theory and Moral

Practice, 2(4):433–435, 1999.

[64] François Laroussinie, Antoine Meyer, and Eudes Petonnet. Counting ctl. In Inter-

national Conference on Foundations of Software Science and Computational Struc-

tures, pages 206–220. Springer, 2010.

[65] John D Lee and Katrina A See. Trust in automation: Designing for appropriate re-

liance. Human Factors: The Journal of the Human Factors and Ergonomics Society,

46(1):50–80, 2004.

[66] Martin Leucker and Christian Schallhart. A brief account of runtime verification.

The Journal of Logic and Algebraic Programming, 78(5):293–303, 2009.

[67] Churn-Jung Liau. Belief, information acquisition, and trust in multi-agent systems–a

modal logic formulation. Artif. Intell., 149(1):31–60, 2003.

[68] Chuchang Liu, Maris A Ozols, and Mehmet Orgun. A temporalised belief logic for

specifying the dynamics of trust for multi-agent systems. In Advances in Computer

Science-ASIAN 2004. Higher-Level Decision Making, pages 142–156. Springer,

2004.

125

[69] Fenrong Liu and Emiliano Lorini. Reasoning about belief, evidence and trust in a

multi-agent setting. In International Conference on Principles and Practice of Multi-

Agent Systems, pages 71–89. Springer, 2017.

[70] Alessio Lomuscio and Jakub Michaliszyn. Model checking multi-agent systems

against epistemic hs specifications with regular expressions. In Proceedings of the

Fifteenth International Conference on Principles of Knowledge Representation and

Reasoning, pages 298–307. AAAI Press, 2016.

[71] Alessio Lomuscio, Charles Pecheur, and Franco Raimondi. Automatic verification

of knowledge and time with NuSMV. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence, pages 1384–1389, 2007.

[72] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. Mcmas: A model checker

for the verification of multi-agent systems. In Proceedings of the 21st International

Conference on Computer Aided Verification, CAV ’09, pages 682–688, Berlin, Hei-

delberg, 2009. Springer-Verlag.

[73] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: an open-source

model checker for the verification of multi-agent systems. STTT, 19(1):9–30, 2017.

[74] Emiliano Lorini and Robert Demolombe. From binary trust to graded trust in infor-

mation sources: a logical perspective. In International Workshop on Trust in Agent

Societies, pages 205–225. Springer, 2008.

[75] Emiliano Lorini and Robert Demolombe. Trust and norms in the context of computer

security: A logical formalization. In International Conference on Deontic Logic in

Computer Science, pages 50–64. Springer, 2008.

126

[76] Emiliano Lorini, Guifei Jiang, and Laurent Perrussel. Trust-based belief change. In

European Conference on Artificial Intelligence-ECAI 2014, pages pp–549, 2014.

[77] Stephen Paul Marsh. Formalising trust as a computational concept. 1994.

[78] Karsten Martiny and Ralf Moeller. Pdt logic: a probabilistic doxastic temporal logic

for reasoning about beliefs in multi-agent systems. Journal of Artificial Intelligence

Research, 57:39–112, 2016.

[79] Kenneth McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. PhD thesis, 1992. Carnegie Mellon University.

[80] Richard Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

[81] Manh Hung Nguyen. Combination of formal logic and hedge algebra to estimate the

degree of trust. Journal of Computer Science and Cybernetics, 31(3):203, 2015.

[82] Eugénio Oliveira, Henrique Lopes Cardoso, Maria Joana Urbano, and Ana Paula

Rocha. Normative monitoring of agents to build trust in an environment for b2b.

In IFIP International Conference on Artificial Intelligence Applications and Innova-

tions, pages 172–181. Springer, 2014.

[83] Nardine Osman and David Robertson. Dynamic verification of trust in distributed

open systems. In IJCAI 2007, Proceedings of the 20th International Joint Conference

on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 1440–1445,

2007.

[84] Eric Pacuit. Neighborhood Semantics for Modal Logic. Springer, 2017.

127

[85] Simon Parsons, Katie Atkinson, Zimi Li, Peter McBurney, Elizabeth Sklar, Munin-

dar Singh, Karen Haigh, Karl Levitt, and Jeff Rowe. Argument schemes for reason-

ing about trust. Argument & Computation, 5(2-3):160–190, 2014.

[86] Simon Parsons, Yuqing Tang, Elizabeth Sklar, Peter McBurney, and Kai Cai.

Argumentation-based reasoning in agents with varying degrees of trust. 2011.

[87] David Pearce and Levan Uridia. Trust, belief and honesty. In GCAI 2015. Global

Conference on Artificial Intelligence, pages 215–228. EasyChair, 2015.

[88] Charles Pecheur and Franco Raimondi. Symbolic model checking of logics with

actions. In International Workshop on Model Checking and Artificial Intelligence,

pages 113–128. Springer, 2006.

[89] Wojciech Penczek and Alessio Lomuscio. Verifying epistemic properties of multi-

agent systems via bounded model checking. Fundamenta Informaticae, 55(2):167–

185, 2003.

[90] Isaac Pinyol and Jordi Sabater-Mir. Computational trust and reputation models for

open multi-agent systems: a review. Artificial Intelligence Review, 40(1):1–25, 2013.

[91] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-

dations of Computer Science, pages 46–57, 1977.

[92] Giuseppe Primiero, Franco Raimondi, and Neha Rungta. Model checking degrees

of belief in a system of agents. In Proceedings of the 2014 international confer-

ence on Autonomous agents and multi-agent systems, pages 133–140. International

Foundation for Autonomous Agents and Multiagent Systems, 2014.

128

[93] Sebastian Ries, Sheikh Mahbub Habib, Max Mühlhäuser, and Vijay Varadharajan.

Certainlogic: A logic for modeling trust and uncertainty. In International Conference

on Trust and Trustworthy Computing, pages 254–261. Springer, 2011.

[94] Noel Sardana, Robin Cohen, Jie Zhang, and Shuo Chen. A bayesian multiagent trust

model for social networks. IEEE Transactions on Computational Social Systems,

5(4):995–1008, 2018.

[95] Walter J. Savitch. Relationships between nondeterministic and deterministic tape

complexities. Computer and System Sciences, 4(2):177–192, 1970.

[96] Philippe Schnoebelen. The complexity of temporal logic model checking. In

Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev,

editors, Advances in Modal Logic 4, papers from the fourth conference on "Advances

in Modal logic," held in Toulouse, France, 30 September - 2 October 2002, pages

393–436. King’s College Publications, 2002.

[97] Munindar P. Singh. Semantical considerations on dialectical and practical commit-

ments. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelli-

gence, AAAI, Chicago, Illinois, USA, pages 176–181, 2008.

[98] Munindar P Singh. Trust as dependence: a logical approach. In The 10th Interna-

tional Conference on Autonomous Agents and Multiagent Systems, pages 863–870,

2011.

[99] Khalid Sultan, Jamal Bentahar, Wei Wan, and Faisal Al-Saqqar. Modeling and ver-

ifying probabilistic multi-agent systems using knowledge and social commitments.

Expert Systems with Applications, 41(14):6291–6304, 2014.

129

[100] Mirko Tagliaferri and Alessandro Aldini. A trust logic for pre-trust computations. In

2018 21st International Conference on Information Fusion (FUSION), pages 2006–

2012. IEEE, 2018.

[101] Yuqing Tang, Kai Cai, Peter McBurney, Elizabeth Sklar, and Simon Parsons. Using

argumentation to reason about trust and belief. Journal of Logic and Computation,

22(5):979–1018, 2012.

[102] Pankaj R Telang, Anup K Kalia, and Munindar P Singh. Modeling healthcare pro-

cesses using commitments: An empirical evaluation. PloS one, 10(11):e0141202,

2015.

[103] Pankaj R Telang and Munindar P Singh. Enhancing tropos with commitments.

In Conceptual Modeling: Foundations and Applications, pages 417–435. Springer,

2009.

[104] Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge of

the dining cryptographers. In 17th IEEE Computer Security Foundations Workshop,

pages 280–291, 2004.

[105] R Vijayan and N Jeyanthi. A survey of trust management in mobile ad hoc networks.

International Journal of Applied Engineering Research, 11(4):2833–2838, 2016.

[106] Omar Abdul Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. Towards

trustworthy multi-cloud services communities: A trust-based hedonic coalitional

game. IEEE Transactions on Services Computing, In press, 2016.

[107] Fenghui Wang, Ming Yang, and Ruqing Yang. Simulation of multi-agent based

cybernetic transportation system. Simulation Modelling Practice and Theory,

16(10):1606–1614, 2008.

130

[108] Matt Webster, Louise Dennis, and Michael Fisher. Model-checking auctions, coali-

tions and trust. Technical report, University of Liverpoo, 2009.

[109] Michael Wooldridge. Introduction to multiagent systems. Wiley, 2002.

[110] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and prac-

tice. The knowledge engineering review, 10(02):115–152, 1995.

[111] Michael J Wooldridge. Agent technology: foundations, applications, and markets.

Springer Science & Business Media, 1998.

131

