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Abstract 

 

Machine learning for homogeneous grouping of pavements. 

Kanan Mukhtarli 

 

Rapid pavement deterioration is a major problem in areas with harsh weather conditions or 

high traffic loading. Despite many studies focused on the pavement management systems, there is 

not, to the date, a robust method explaining how to process large amounts of pavement data to 

create homogeneous groups for rehabilitation-related decision making. This thesis employs 

machine learning to develop an approach capable of partitioning pavement data with a close 

response to casual factors like traffic and weather conditions and considering its performance 

through international roughness index and deflections. Two different methods: K-means and Self 

Organizing Maps (SOM) clustering techniques were tested to understand the correlation between 

daily factors and pavements deterioration. The goodness of clustering was tested using extrinsic 

and intrinsic evaluation methods. It was concluded from the results that SOM clustering provided 

better results as it relies on a soft clustering method where one point can represent two clusters at 

the same time. Moreover, it became obvious from the methodology that including the previous 

year’s data has very little to no effect on homogeneous groups. Techniques discussed and 

developed in this study can help road asset managers with decision making for the maintenance 

and rehabilitation of pavement. Moreover, future researchers can use the results of this study to 

further develop the idea of building decision support systems for pavement rehabilitation. 
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Chapter 1 
 

1. Introduction 

1.1 Background 

Canada’s roadway system provides mobility and accessibility to thousands of individuals. The 

roadway network is not only important to the nation’s overall economic vitality by providing for 

the movement of freight and commodities, but it also provides societal benefits as well (e.g., access 

to schools, services, and work; leisure travel; and general mobility) (Van Dam, et al., 2015). 

Pavements are an integral part of this roadway network. Pavements are expected to provide a 

smooth and durable all-weather traveling surface that benefits a range of vehicles and users (Van 

Dam, et al., 2015).  

A pavement management system PMS is a valuable tool for handling highway transportation 

infrastructure (Kulkarni, 2003). The benefits of having a pavement management are well 

documented and include: 

 • Enhanced planning ability at all levels, including strategic, network, and project.  

• Decision making based on observed and forecasted conditions rather than opinions.  

• The ability to generate alternate scenarios for future pavement conditions based on different 

budget scenarios or management approaches.  

Besides, improved PMS leads to better rehabilitation and reconstruction works which at 

the end provides a safer environment in terms of accidents and casualties. (King, 2014) 

investigated the effect of road roughness on traffic speed and road safety in Southern Queensland, 

Australia on his research. The study found a strong relationship between higher crash rates and 

increased pavement roughness. Crash rates involving light vehicles were 9 times more affected by 
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increasing roughness than crashes involving heavy freight vehicles. The study recommended that 

traffic authorities managing rural roads need to reduce roughness to an IRI (International 

Roughness Index) value of 120 inches per mile (in/mile) in order to provide a safer road 

environment. 

(Hu, 2013) developed mathematical relationships between IRI and driving comfort and 

safety (driving workload). The author developed threshold IRI values on-road segments at 

different risk levels for driving comfort and safety. They also concluded that standard trigger 

values of IRI for pavement maintenance are beyond the comfort and safety threshold for both car 

and truck drivers.  

Another research conducted in Qatar concludes about the correlation between road 

conditions and safety. It is obvious that major surface defects may adversely affect the vehicle path 

or unpredictable impact on vehicle control. Features of poor to high road conditions have been 

introduced based on the frequency of potholes of 10 to 100-meter length. Defects were considered 

as deformations, pot-holes, and edge defects. (ASHGHAL, 2016) 

1.2 Problem statement 

 

There are several studies that deal with pavement management systems, deterioration 

modeling and data mining applied in pavement management. However, there is a need for an 

approach to develop homogeneous groups of pavements. 

1.3 Research goal and tasks 

The overall goal of this research is to develop an approach that is capable of clustering 

pavements into homogenous groups based on their performance, considering casual factors like 

climate, traffic loading and pavement condition.   

The goal of the study is followed through five specific tasks: 
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Task 1 -To identify a method to collect, combine and analyze data gathered from the field. 

Task 2 -To examine the methods used to clean and pre-process pavement condition data. 

Task 3 -To cluster data into homogeneous groups.  

Task 4 -To investigate the performance of the pavement within each homogeneous group. 

Task 5 -To assess the results, visualize and provide suggestions accordingly. 

 As a result, homogeneous groups allow to build robust decision-making tools to help 

transportation agencies and manucipalities to take proactive measures on the deterioration of 

assets. These groups enhance the accuracy of prediction models and the asset management policy. 

With the help of clustering it is possible to better explain the pavement performance and ensure 

meaningful candidates for maintenance and rehabilitation. Moreover, it provides more insight in 

evaluation of the past M&R actions and if it was successful.  

1.4 Research significance 

Development of an approach to create homogeneous groups considering pavement 

deterioration with 2 main clustering techniques and determining which method provides better 

results. 

1.5 Organization of the thesis 

This thesis is presented in five (5) chapters as follows: 

Chapter 1 - Explains the problem statement and presents the objective and structure of the 

thesis. 

Chapter 2 - Consists of a review of concepts related to data collection used in this thesis 

prediction models and clustering techniques. 
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Chapter 3 - Contains the methods employed in collecting, analyzing and processing the 

data, building the prediction models for extrinsic evaluation of clustering techniques and 

two (2) different clustering methods. 

Chapter 4 - Explores and analyzes results of the two clustering methods that are being 

implemented for a case study of Costa Rica pavements from the national road network. 

Chapter 5 - Contains the conclusions and recommendations part that can be used for future 

research work. 
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Chapter 2 
 

2. Literature review 

2.1 Pavement management 

Pavement Management Systems (PMS) require inspecting and collecting pavement related 

data, predicting the deterioration of pavements through performance models, and optimizing the 

Maintenance, Rehabilitation and Reconstruction (M&R&R) activities over a given planning 

horizon. Performance models are a core component of a PMS. These models are also used as an 

input in project design procedures (Madanat, Nakat, & Sathaye, 2005). Pavement behavior and 

performance is highly variable due to many factors, such as pavement structural design, climate, 

traffic, materials, subgrade, and construction quality. These factors contribute to changes in 

pavement performance that are reflected in the results of a pavement condition survey. Minimizing 

the impact of data variability on pavement condition data helps ensure that survey results reflect 

real changes in pavement performance rather than variations in data due to poor data quality 

(Pierce, 2014). Pavement condition data quality supports a wide variety of decisions and has direct 

and indirect impacts on agency processes (Xu, Bai, & Sun, 2014). Some of the major uses of 

pavement condition data include: 

- Characterizing current condition. 

- Developing models of predicted pavement deterioration. 

- Projecting future conditions. 

- Developing treatment recommendations, timing, and cost. 

- Preparing and prioritizing annual and multi-year work programs. 

- Allocating resources between regions and/or assets. 
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- Analyzing the impacts of various budget and treatment scenarios. 

- Analyzing the performance of different pavement designs and/or materials. 

In practice, the level of accuracy of pavement condition data has often proved to be difficult 

to achieve in network-level data collection. Deterioration is a function of environmental exposure, 

structural traffic loading, structural capacity and frequency and type of preventive maintenance. 

External factors include the number of freeze/thaw cycles, traffic loading (for pavements) and type 

of waste transported (for sewers) which can break and indirectly damage the road structure. 

Intrinsic factors include materials’ type and construction methods. Maintenance factors include 

the type and frequency of maintenance treatments. 

In many infrastructure assets, the rate of deterioration is expected to gradually increase 

with time. A typical deterioration curve (with maintenance activities) is given in Figure 2-1. 

 
Figure 2-1. Typical pavement deterioration curve (Pavement Deterioration vs Time / Traffic) 

(James et all., 2014) 

However, deterioration does not always occur in this way. Concave up deterioration curves 

are found when pavements have been designed to a higher standard than required for traffic alone, 
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and primarily deteriorate due to weather/climate factors (Haas, 1997). Also, a single damage event 

may cause an asset to deteriorate very rapidly or almost instantaneously. To create a deterioration 

model, the factors that affect the infrastructure’s condition must be quantified. For example, the 

causes of pavement deterioration are well-known and include environmental, traffic and structural 

factors. Environmental factors can include measurements of the number of freeze-thaw cycles, 

temperature, humidity, precipitation, water table depth; traffic factors typically include 

measurements of Average Annual Daily Traffic (AADT) and re-expressing it into axle-load 

spectra or Equivalent Single Axle Loads (ESALs). Structural factors can include pavement type, 

strength, and thickness. Construction and maintenance techniques also influence pavement 

deterioration. However, these factors can be more difficult to quantify and are not included in 

many deterioration models.  

The remainder of this chapter explains the main concepts necessary for understanding the 

analysis undertaken in the upcoming chapters. 

- GIS (Geographic Information System) applied in pavement management 

- pavement condition measurement (Performance Indicators) 

- data mining applied in pavement management systems 

- prediction models 

- data collection 

2.2 GIS applied in pavement management 

GIS is defined as “a system of computer hardware, software and procedures designed to 

support the capture, management, manipulation, analysis, modeling, and display of spatially 

referenced data for solving complex planning and management problems.” (FEMA, 2003). 
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GIS deals with the two basic types of data, vector data types and raster data types, both of 

which refers the data to a geographical coordinate system (e.g., latitude/longitude or state plane 

coordinates) instead of the milepost or reference-point system traditionally used in transportation. 

We call this, geospatial data.  

- Vector data is composed of discrete coordinates that can be used as points or connected 

to create lines and polygons.  

- Raster data represent features as a matrix of cells within rows and columns in 

continuous space. 

With the rapid increase of advanced information technology, many investigators have 

successfully integrated the GIS (Geographic Information System) into PMS for storing, retrieving, 

analyzing, and reporting information needed to support pavement-related decision making (Zhou, 

2011). Such an integration system is thus called G-PMS (Lee, 1996). The main characteristic of a 

GIS system is that it links data/information to its geographical location, i.e., geographical 

coordinate system (e.g., latitude/longitude or state plane coordinates) instead of the milepost or 

reference-point system traditionally used in transportation, which is fundamental when integrating 

separate databases (Medina, 1999). GIS is also capable of rapidly retrieving data from the database 

and automatically generating customized maps to meet specific needs such as identifying 

maintenance locations. The attribute data in the pavement management system can be stored in the 

GIS database by location and attribute. So, a G-PMS can be enhanced with features and 

functionality by using a geographic information system (GIS) to perform pavement management 

operations, create maps of pavement condition, provide cost analysis for the recommended 

maintenance strategies, and long-term pavement budget programming (Zhou, 2011). Until today 

there is no research that adequately documents the use of GIS systems to build and map datasets 
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in pavement management systems. In this thesis, ArcGIS was one of the most important platforms 

to map and join the datasets based on longitude and latitude. 

2.3 Pavement condition measurement (performance indicators) 

Pavement condition and performance generally can be described by four primary data 

(namely deflection; surface distress; serviceability; and surface friction), and two of these categories are 

discussed in the following sub-sections (MDOT, 2016). 

2.3.1 Structural adequacy: deflections 

Structural adequacy describes the load-bearing capacity of the pavement. Measuring 

structural adequacy involves the evaluation of deflection data within a context of pavement 

properties and performance demand. Deflection data collection requires specialized measurement 

equipment called a deflectometer. Structural adequacy is valuable in forecasting the condition of 

pavement under predicted loading scenarios. Early static deflection devices could measure 

deflection at only one point.  Nowadays, Falling-weight deflectometer (FWDs) can measure 

deflection under the load and at a number of locations away from the load, resulting in a much 

larger basin. Datasets collected for this thesis included deflection values for 9 points, time, force 

acting on pavement, and etc., however, it is not enough to evaluate the pavement condition without 

calculating the deflection basin area because together they represent the condition of pavement 

and soil as well. Deflection basin parameters are widely used for three major applications:  

- to check the structural integrity of in-service pavements 

- to relate to critical pavement response 

- to calculate the in-situ layer moduli of the pavements.   

Figure 2-2 shows the cross-section of the deflection basin area and how the forces act during 

the test the formula to calculate the deflection basin area.  
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Figure 2-2. Representation of the cross-section illustrating the deflection basin area where D is the 

deflection measured by Geophones (Zaniewski, Hossain, & John, 1991) 

Table 2-1. Relationship of the surface deflection - deflection basin area and pavement condition 

(AASHTO, 1993) 

FWD Based Parameter 

Generalized Conclusions* 

Area Maximum Surface Deflection (D0) 

Low Low Weak structure, strong subgrade 

Low High Weak structure, weak subgrade 

High Low Strong structure, strong subgrade 

High High Strong structure, weak subgrade 

* Some exceptions can be observed. 

Table 2-1 illustrates the relationship between maximum deflection value and the deflection 

basin are to interpret the condition of the pavement. Pavement Condition was considered one of 

the most important influencing attributes to create homogeneous groups.  
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2.3.2 Surface distress and serviceability: international roughness index 

One of the main internationally used pavement condition indicators in PMS is the 

International Roughness Index (IRI). The IRI was developed in 1986 by the World Bank and was 

based on the extension of the National Cooperative Highway Research Program (NCHRP) 

concept. The IRI was first introduced in the International Road Roughness Experiment held in 

Brazil (Sayers, 1995). Traffic conditions, especially ESAL, have the highest significance in 

contributing to the IRI value because of ESAL numbers greatly affect the changes in the surface 

conditions of pavements. Thus, the prediction of IRI value demanding an appropriate design of 

traffic. 

Surface distress was traditionally assessed via visual sampling of the pavement surface. 

According to the final report of Federal Highway Administration (FHWA, 2018), a few metrics 

necessary for reporting are as follows: percentage cracking, rutting, and faulting. Considering the 

thresholds of the recent studies, IRI data was categorized as good, fair and poor to create 

homogeneous groups and to build prediction models as described in Table 2-2.  

Table 2-2. International Roughness Index thresholds. (Abudinen, Carvajal-Muñoz, & Fuentes, 

2016) 

Road Condition IRI value 
Pavement 

Maintenance 

Good IRI ≤ 3 Routine 

Fair 5 < IRI ≤ 13 Periodic 

Poor 13 > IRI Reconstruction 

2.3.3 Traffic loading 

Equivalent single axle load (ESAL) is a quantity that is related to pavement damage caused 

by a standard axle load of 80 kilonewtons (kN) (18,000 pound force (lbf) carried by a single axle 

with dual tires (Hajek, Selezneva, Mladenovic, & Jiang, 2005). Equivalent Single Axle Loads 
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(ESALs) are generally accepted as a way to represent the damage to pavement from its traffic 

loading. ESALs are typically calculated as a percentage of average annual daily traffic (AADT) 

using Equation 2-1. 

𝐸𝑆𝐴𝐿𝑠 = 182.5 × 𝐴𝐴𝐷𝑇 × 𝑇𝑃 × 𝑇𝐹  Equation 2-1 

Where AADT is the average annual daily traffic, TP is the percentage of heavy vehicles 

and combinations, and TF is the truck factor. 

According to (Rifai, Sigit, Correia, & Pereira, 2015), the ESAL possesses the highest 

importance value in the contribution towards the IRI value because the number of ESAL greatly 

affects the changes in the surface condition of the pavement. In his research results of 

homogeneous grouping stated that ESAL contribution to modeling was 26.33%, Age 13.40 %, IRI 

11.54%. Thus, group contribution of traffic on the pavement deterioration model was 39.73% in 

total.  

MOPT (Ministry of Public Works and Transport of Costa Rica) reported that over the time the 

traffic problem of the country has compounded as demand for cars doubled from about 700,000 to 

nearly 1.5 million between 2000 and 2014. This growth doesn’t only affect the city planning and 

pollution but affects the condition of pavement as well. Traffic (ESAL) is one of the most 

important factors influencing the IRI of the pavement (MOPT, 2019). 

2.3.4 Environmental exposure: rain 

Asphalt damaged by moisture will endure distress that can lead to raveling, cracking, 

stripping and rutting. Water that seeps down into the structure of the pavement as a result of rain, 

water flow or groundwater will be absorbed by the pavement and wear away at the bond between 

the pavement’s aggregate and the asphalt binder. This is precisely why the structure of the 

pavement is so important. The proper structural design allows for the pavement to eliminate as 
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much moisture as possible in a timely manner. Thus, rain has a negative impact on pavement 

structure (IRI), therefore, it is necessary to include rain in the dataset before building homogeneous 

groups. The temperatures are mostly determined by the elevation and other geographical factors.  

2.4 Data mining  

Several data mining techniques have been developed over the last decade in the artificial 

intelligence community. Generally, the data mining techniques can be categorized into two 

categories: Supervised learning (which includes classification and regression – prediction); 

Unsupervised learning (which includes clustering and association); and reinforcement learning. 

(Tan, Bao, & Dong, 2007). Data mining is the non-trivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in a dataset. This process helps in 

extracting and refining useful knowledge from large datasets. The extracted information can be 

used to form a prediction or classification model, identify trends and associations, refine an 

existing model, or provide a summary of the datasets being mined. A review by (Kohavi, 2000) 

states that data mining serves two goals namely insight and prediction. Insight leads to identifying 

patterns and trends that are useful. Prediction leads to identifying a model that gives reliable 

predictions based on input data.  

2.4.1 Data mining background and knowledge discovery 

Data mining algorithms can follow three different learning approaches: supervised, 

unsupervised and semi-supervised  (Neelamegam & Dr.Ramaraj, 2013). There is a broad spectrum 

of engineering problems where computational intelligence is becoming an essential part of many 

advanced systems. Such problems arise in data processing, which is faced with huge data 

explosion, due to automatic data collection systems and the possibility for combining data from 

many sources over data networks (Barai, 2003). Basic steps involved in data mining and 
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knowledge discovery are as follows and detailed explanations can be referred elsewhere (Fayyad, 

1996). 

1. Understanding of the application domain  

2. Collection of the target dataset  

3. Data cleaning and preprocessing  

4. Data Warehousing  

5. Selection of task-relevant data selection  

6. Selection of data mining task  

7. Selection of data mining tool - Artificial neural networks, Genetic Algorithms, Decision 

trees, Nearest neighbor method, Rule induction, Data visualization  

8. Data mining - relationship identification - Classes, Clusters, Associations, Sequential 

patterns  

9. Interpretation of results  

10. Consolidation of discovered knowledge  

2.4.2 Data mining techniques 

Within the context of the reviewed literature, applications of data mining have been widely 

used in various enterprises ranging from public health-care, construction industry, food industry, 

finance, etc. Each field can be supported by different data mining techniques and tools which 

generally include Clustering, Classification, Regression, and Neural Networks. 

2.4.3 Main clustering methods 

Clustering is the task of identifying a finite set of data points (called clusters) to describe a 

dataset. This involves seeking to identify a finite set of categories and grouping together objects 

that are similar to each other and dissimilar to the objects belonging to other clusters (Neelamegam 
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& Dr.Ramaraj, 2013). Clustering can be further divided into hierarchical clustering and centroid-

based clustering. K-means is the most often utilized centroid-based clustering algorithm. K-means 

calculates the k subsets in the data by iteratively calculating the arithmetic mean (centroid) for the 

k estimated clusters. With each calculation, it adjusts the clusters until they no longer change. 

Hierarchical and K-means clustering methods work well when clusters are well separated, but 

when clusters overlap, assigning each point to one cluster is problematic. In the overlap areas, 

there are data points from several clusters sharing the same space. In such cases, it is essentially 

important to use Self Organizing Maps (SOM) rather than K-means clustering if an accurate 

estimate of the total population in each group is desired. It is because the SOM algorithm is 

working based on cluster membership probabilities which can assign one overlapping data point 

into several clusters. 

2.4.3.1 K-means clustering  

K-means clustering is one of the least difficult and best-known unsupervised machine 

learning algorithms. The target of K-means is basic: grouping similar information and finding 

basic relationships. To achieve this goal, K-means looks for a fixed number (k) of clusters in a 

dataset. The basic algorithm is very simple (Amandeep & Navneet, 2013): 

1. Select K random points as centroids.  

2. Form K clusters by assigning each point to its closest centroid.  

3. Recompute the centroid of each cluster until centroid does not change.  

Properties of the K-means algorithm include (Amandeep & Navneet, 2013):  

1. Large datasets can be efficiently processed.  

2. It often terminates at local optima. 

3. It works only on numeric values.  
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4. The shape of the identified cluster is convex. 

A centroid is the imaginary or real location representing the center of the cluster (Arat, 

2019). Every data point is allocated to each of the clusters through reducing the in-cluster sum of 

squares. In other words, the K-means algorithm identifies K number of centroids, and then 

allocates every data point to the nearest cluster, while keeping the centroid displacement as small 

as possible. The ‘means’ in the “K-means” refers to averaging of the data; that is, finding the 

centroid (Arat, 2019).  

In previous studies, Sunitha (2012) used the K-means clustering technique to create 

homogeneous groups for the rural road network in India that behave similarly when meeting 

certain criteria. The attributes considered in that study are the condition of shoulders, drains, cross 

drainage structures, and camber, and pavement distresses, namely, potholes, crack area, and edge 

break, collected at every 200 m section. 

Qing Li (2016) investigated the relationship between vehicle emission and IRI using the 

K-means clustering method. In his study, four categories A, B, C, and D, with the combination of 

two-step clustering modeling were clustered based on the on-road collected vehicle emissions and 

the pavement roughness. Results show that the relationship between the pavement roughness and 

vehicle emissions (traffic) is nonlinear with an R2 value of 0.69 (Li, Qiao, & Yu, 2016). 

In another study, Ting-Wu Ho (2010) was able to develop a technique to identify the 

location and type of cracks using image recognition. This software used K-means clustering and 

classification algorithms from data mining. Using this data mining methods, he was able to cluster 

the pixels as distress regions by scanning the images (Ting-Wu Ho, 2010).  
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2.4.3.2 Self Organizing Maps 

The Self Organizing Maps (SOMs) technique was developed by Teuvo Kohonen (1989). 

The original SOM was cast as a learning process, as the original neural network algorithms. The 

version of SOM implemented in this thesis is a variation on K-means clustering to understand 

which clustering method is rather providing better results. The goal of a SOM is not only to form 

clusters but also to shape them in a particular layout on a cluster grid, such that points in clusters 

that are near each other in the SOM grid are also near each other in multivariate space (Kohonen, 

1990). In classical K-means clustering, the structure of the clusters is arbitrary, but in SOMs the 

clusters have a grid structure. This grid structure helps to interpret the clusters in two dimensions: 

clusters that are close are more similar than distant clusters. 

In previous studies, Senthan Mathavan (2014) used self-organizing maps for the same 

purpose of crack detection by reading images (like the prior studies). The main focus was on highly 

textured road images that makes crack detection very difficult. Road images are split into smaller 

rectangular cells, and a representative dataset is generated for each cell by analyzing image texture 

and color properties. Texture and color properties are combined with a Kohonen map to distinguish 

crack areas from the background. Using this technique, cracks were detected to a precision of 77% 

(R2 of 0.77) (Mathavan, 2014). 

The present thesis considers more detailed datasets (with features including Traffic, 

Temperature, Precipitation, and Deflection related attributes) to create homogenous groups using 

K-means, and SOM clustering methods to observe which method builds better groups that act 

similarly.  

Also, in this thesis, for the first time, SOM will be used to create homogeneous groups as 

an alternative to the K-means clustering method. SOM comprises neurons in the grid, which 

gradually adapt to the intrinsic shape of our data. The final results allowed us to visualize 
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datapoints and identify hidden patterns among clusters. To simply explain how SOM works, the 

below steps will help (Choudhury, 2019). 

Step 1. Randomly position the grid’s neurons in the data space. 

Step 2. Select one data point, either randomly or systematically cycling through the dataset 

in order 

Step 3. Find the neuron that is closest to the chosen data point. This neuron is called the 

Best Matching Unit (BMU). 

Step 4. Move the BMU closer to that data point. The distance moved by the BMU is 

determined by a learning rate, which decreases after each iteration. 

Step 5. Move the BMU’s neighbors closer to that data point as well, with farther away 

neighbors moving less. Neighbors are identified using a radius around the BMU, and the 

value for this radius decreases after each iteration. 

Step 6. update the learning rate and BMU radius, before repeating Steps 1 to 4. Iterate these 

steps until positions of neurons have been stabilized. 

2.5 Pavement deterioration prediction 

2.5.1 Logistic regression prediction model 

The logistic regression model also referred to as a logit model, is commonly used to predict 

the presence or absence of an outcome with predictor variables (Powers & Xie, 2008). For 

example, one can use it to project a certain price, based on other factors such as availability, 

consumer demand, and competition. The logit transformation (Wang & Rennolls, 2005) converts 

a probability measurement between 0 and 1 into values in the interval (−∞, ∞). The logit 

transformation is defined as (Powers & Xie, 2008): 

𝐿𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛[
𝑝

1−𝑝
]     Equation 2-2 
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where Logit (p) = the natural log of the odds, ln = the natural logarithm, and p = the probability of 

success. 

More specifically, logistic regressions’ main focus is to help uncover the exact relationship 

between two (or more) variables in a given dataset. Like all regression analyses, the logistic 

regression is a predictive analysis (SS, 2019). Logistic regression is used to describe data and to 

explain the relationship between one dependent binary variable and one or more nominal, ordinal, 

interval or ratio-level independent variables (SS, 2019). Recent studies implemented regression 

models to predict the pavement deterioration has a range of R2 of 0.68 and 0.76. 

In this thesis logistic models are used to be able to predict the IRI to understand the 

pavement deterioration trend and verify the goodness of the clustering.  

(Dae, Chi, & Kim, 2018) conducted a study using a logistic regression model to predict 

network-level sections that would be selected for pavement-preservation projects. A large number 

of samples were used to develop a logistic regression model. The model results indicated that all 

predictors, except the truck AADT, were significant at the 95% confidence level. These predictors 

included the total AADT, speed limit, condition score, and changes in condition score since last 

year. 

In another recent study, (Heidari, Najafi, & Alavi, 2018) conducted similar research where 

they considered Traffic (AADT), Pavement Condition, Precipitation, and Road qualify as four (4) 

main categories. The study concluded that ESAL and Pavement thickness has a strong effect on 

the pavement deterioration model. As a result, Linear Regression (LR) and Artificial Neural 

Networks (ANNs) were able to classify the 82% to 89% of the pavement condition precisely based 

on the 185 road segments covering the length of 50 km. 
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2.5.2 Neural networks 

The use of artificial neural networks (ANNs) has tremendously increased in several areas 

of engineering over the last three decades. In the literature of pavement management, neural 

networks have been used under seven different categories: (1) prediction of pavement condition 

and performance; (2) pavement management and maintenance strategies; (3) pavement distress 

forecasting; (4) structural evaluation of pavement systems; (5) pavement image analysis and 

classification; (6) pavement materials modeling; and (7) other miscellaneous transportation 

infrastructure applications (Ceylan, Bayrak, & Gopalakrishnan, 2014).  

Neural networks are data processing computational tools that are capable of solving 

complex nonlinear relations. Like humans, they have the flexibility to learn from examples by 

means of interconnected elements, namely neurons. Neural networks have been found to be very 

powerful and versatile computational tools for determining and predicting the future condition and 

performance of the existing pavement systems (Panerati, Schnellmann, Patience, Beltrame, & 

Patience, 2019). 

In one of the studies, Attoh-Okine (1994) applied a back-propagation type ANN to develop 

a pavement roughness progression model. A neural network model was trained using synthetically 

generated roughness data. The ANN prediction results were found to be more satisfactory when 

the pavement condition database considered was large enough. However, it was reported that the 

ANN model may not produce as good results with real datasets as it gave for the simulated dataset 

(Attoh-Okine, 1994).  

Van der Gryp et al. (1998) introduced a one-hidden layer feed-forward ANN model to 

estimate the overall pavement condition based on the visual condition index (VCI) that ranges 

from 0 to 10, where 0 indicates worst and 10 indicates excellent pavement surface condition. The 
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reported simulations made it difficult to conclude on the effectiveness of the ANN (Gryp, 

Bredenhann, Henderson, & Rohde, 1998). 

Lin (2003) developed a multilayer perceptron ANN trained by the back-propagation 

algorithm MLP-BP ANN (14 input nodes, 2 hidden layers with 6 nodes each, and one output node) 

to predict IRI based on pavement distresses (Lin, 2003).  

In ANN, the activation function defines the output of the node based on the input or set of 

inputs. In modern computer circuits, this function is either one (1) or zero (0). The activation 

function (also called a transfer function), can be linear or nonlinear function. There are different 

types of activation functions (Sibi, 2005). The activation function f(.) is also known as a squashing 

function. There are various types of activation functions such as; Piecewise Linear Function 

(Linear Function), Hyperbolic Tangent Function, Gaussian, etc. Sigmoid and hyperbolic tangent 

is the most widely used because their differentiable nature makes them compatible with 

backpropagation algorithm (BP) (Hussein, 2015). 

Equation of Piecewise Linear Function is shown below in Equation 2-3. (Hussein, 2015) 

𝑔(𝑛𝑒𝑡) =  

{
 
 

 
 1:                      𝑖𝑓 𝑛𝑒𝑡 ≥  

1

2

𝑛𝑒𝑡:             𝑖𝑓 
1

2
 > 𝑛𝑒𝑡 >  −

1

2

0:                  𝑖𝑓 𝑛𝑒𝑡 ≤  −
1

2

   Equation 2-3 

 

By varying the domain of the net input values over which the above function exhibits linear 

characteristics, the two extremes of this activation function can be derived (Witten & Frank, 2000). 

The one extreme happens when the domain of the net input values for which this function is linear 

is infinite; then an activation function that is linear everywhere is being dealt with. The other 

extreme occurs when the domain of the net values for which activation function is linear shrinks 

to zero; in that case, threshold activation function comes into play (Sibi, 2005). 
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In many applications, hyperbolic tangent function (tanH) is used as the activation function, 

so that the output y will be in the range from -1 to +1 rather than 0 to +1 (Özkan, 2003). The 

hyperbolic tangent function is defined as the ratio between the hyperbolic sine and the cosine 

functions or expanded as the ratio of the half difference and the half sum of two exponential 

functions in the points x and –x as follows: 

𝑡𝑎𝑛ℎ(𝑥) =  
𝑠𝑖𝑛ℎ (𝑥)

𝑐𝑜𝑠ℎ (𝑥)
=

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
   Equation 2-4 

 

 

Figure 2-3. Graphical Representation of a neural network with two inputs (i1 and i2), one hidden 

layer (w11 through w23), three hidden nodes (L1 through L3), and one output (P) 

The results of the neural network models are interpreted and compared to the other models 

using R2, RASE (Root Average Square Error) and AAE (Average Absolute Error) values. The 

RASE is a quadratic scoring rule which measures the average magnitude of the error. Since the 

errors are squared before they are averaged, the RASE gives a relatively high weight to large errors. 

This means the RASE is most useful when large errors are particularly undesirable. RASE is 

calculated with the below formula: 
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𝑅𝐴𝑆𝐸 =  √
𝑆𝑆𝐸

𝑛
      Equation 2-5 

Where:  

SSE – Sum of Squared Errors. 

N – The number of observations. 

Inevitably, The RASE will always be larger or equal to the AAE and the greater difference 

between them, the greater the variance in the individual errors in the sample. Both the AAE and 

RASE can range from 0 to ∞. The model is assumed better with lower values of both RASE and 

AAE. 

2.5.3 Partitioning – decision tree model 

A decision tree consists of two types of nodes: (1) decision nodes and (2) chance nodes, 

and several alternatives, shown as branches at each of these nodes. The analysis of a decision tree 

requires the estimation of probabilities and costs of different outcomes at each chance node. The 

costs would include construction cost, maintenance cost, and user cost associated with a given PSI 

(Present Serviceability Index) level. 

There are many variations of partitioning like decision trees, CARTTM, CHAIDTM, C4.5, 

C5, etc (Holdaway, 2014). Decision trees are commonly used due to advantages such as the 

following. 

• it is good for exploring relationships without having a good prior model,  

• it handles large problems easily, and  

• the results are interpretable. 

The analysis of a decision tree requires the estimation of probabilities and costs of different 

outcomes at each chance node. The costs would include construction cost, maintenance cost. The 

goodness of partitioning is measured with R2 value where higher value leads to a better result. 
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On the other hand, the purpose of using partitioning models in this thesis is mainly for 

confirming the goodness of clustering methods, rather than building a prediction model. In 

previous studies, partitioning has not been used for extrinsic evaluation of K-means and SOM 

clustering 

2.6 Literature gaps 

Previously several studies were conducted, applying data mining for PMS of different 

regions. However, each study had different limitations such as the inadequacy of data, merging the 

datasets, clustering techniques, etc. In his data-mining study, Lea (2004) emphasized merging 

datasets as the main challenge. Handling such large datasets still remains as the main issue to 

merge and process (Lea, 2004).  

More recently, in a study which is more similar to the present thesis, Sunitha (2012) 

conducted research on low-volume rural roads with different attributes to construct pavement 

deterioration models. The main drawback of this study was the availability and processing of the 

datasets. While processing the data, large portions of the dataset were filtered due to 

inconsistencies, as the location of data collection didn’t match and makes it impossible to build 

the homogeneous groups.  (V. Sunitha, 2012). In the present thesis, a method of merging such 

datasets is introduced and applied, which creates further research opportunities.  

In previous research works, the size of datasets used was not too large. Thus, as a major 

drawback rules or identified patterns generated based on a small dataset was not reliable. In this 

thesis, relatively larger datasets of country-wide road networks are analyzed by investigating the 

relationships of IRI, deflection and environmental factors with pavement deterioration which has 

not yet been done.  
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Additionally, all of the closely related studies mentioned above only used K-means 

clustering as a base technique to form homogeneous groups, however, in this thesis a new method 

of SOM clustering is introduced to evaluate such data. Moreover, two methods of evaluation of 

homogeneous groups were introduced in the study. 

Another major gap in all of the previous studies related to pavement management systems 

was that the conclusions were drawn without checking the quality of clustering techniques. This 

was the case for both of the very similar studies conducted by (V. Sunitha, 2012) and (Wang K. 

&., 2010)  where they analyzed the hierarchical and gray clustering methods to learn the pavement 

deterioration process.
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Chapter 3 

3. Methodology 

3.1 Introduction 

This chapter explains the method proposed to merge and create datasets in order to define 

the homogeneous groups, and evaluate them. The flow of this chapter is given in the form of a 

process tree in Figure 3-1. Collection of data is explained in Section 3.2 following with the methods 

of cleaning and merging of the separate datasets in Section 3.3 and the methods in which the data 

is analyzed are explained in Sections 3.4-3.5. 

 

Figure 3-1. Graphical representation of the flow chart of methodology. 
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3.2 Data collection 

The data collected from the field should properly be used to determine the impact of the 

influencing daily factor on the future condition of the pavement.  

3.2.1 Traffic 

For the pavement management purposes, the preferred practice to collect the traffic data is 

to use weigh-in-motion (WIM) scales at non-enforcement locations to measure actual pavement 

loads as opposed to legally enforced loads. In order to accurately predict future pavement 

performance, engineers need to know how heavy are loads being applied to a pavement. The 

equivalent load most commonly used in pavement design in the U.S. is the 18,000 lb. (80 kN) 

equivalent single axle load (ESAL). In order to convert the AADT data to ESAL’s necessary 

assumptions needs to be taken into consideration. Equation 3-1 is used to convert the AADT data 

to ESAL with the assumptions given in Table 3-1. 

𝐸𝑆𝐴𝐿𝑖 =  (𝐴𝐴𝐷𝑇𝑖)  ∗  (𝐹𝑑)  ∗  (𝐺𝑗𝑡)  ∗  (𝑓𝑖)  ∗  365        Equation 3-1 

Table 3-1. Important assumptions for the ESAL calculation 

Assumptions for ESAL calculation 

No. of Years to Project Traffic (yrs) 1 

Directional Distribution Factor (%) 50 

Design Lane Distribution Factor (%) 100 

Growth Rate (%) 2 

Truck Factor (ESALs/Truck) 1.7 

 

3.2.2 International roughness index  

The use of high-speed longitudinal pavement profile equipment has become the generally 

accepted industry standard for measuring pavement roughness. The measurement technique is 

based on using an inertial profiler, which measures the change in longitudinal profile in the wheel 
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paths at or near the speed limit. Inertial profiler’s work principle has been shown in Figure 3-2 and 

usually, the IRI data is collected for every 100 meters. 

 

Figure 3-2. Inertial Profiler’s working principle (Perera, 1999) 

Since the process is automatic operator only needs to calibrate the location and time/date 

at the beginning of the test. As a result, the example dataset used in this thesis includes the 

attributes necessary for the IRI interpretation as Longitude, Latitude, Altitude, Station ID, 

beginning (Starting location) of the section, End location of the section, Left wheel IRI, Center 

IRI, and Right Wheel IRI. Since the data is exported in an organized form the only necessary step 

to perform is merging the dataset, cleaning the outliers and empty values where the measurements 

failed.  

3.2.3 Deflection – structural integrity  

Deflection measurements are used to measure the response of a pavement structure to a 

known applied load. Technological advancements made it possible to collect even more data 

separately in one run including tables like Comments, Drops, Histories, Remarks, Sessions, 

Stations, Timing, Transducers, Version. Additionally, Modern FWD data recorders include GPS 
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Status, UTC (Coordinated Universal Time), Longitude, Latitude, Height, Satellite ID, Slab ID, 

Surface, and Air temperatures and FWD data is usually collected every 200 meters. As a result of 

inconsistent or faulty measurements at some points data comes noisy so that during the cleaning 

of the data a number of rows either need to be patched or cleaned for further processing. FWD 

data originally comes as .mdb Access files and later needs to be converted into acceptable .csv 

format.  

Taking into consideration all of the recently published sources AASHTO 93 is used widely 

since it contains the latest reliable correction factor graphs which are shown in Figure 3-3 and 

Figure 3-4. "The Handbook of Highway Engineering" (Edited by T.F. Fwa, Graphs at Page 11.8 - 

September 2005). Mentioned graphs were converted to formulas in order to be able to proceed 

further on the excel dataset for the correction of the deflection value.  

 

Figure 3-3. Adjustment to the deflection value - for the pavement with granular or asphalt-treated 

base. (AASHTO, 1993) 
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Figure 3-4. Adjustment to the deflection value - for the pavement with cement or pozzolanic-

treated base. (AASHTO, 1993) 

Equations have been developed for the soil type that uses granular or asphalt treated base 

shown in Table 3-2 using Figure 3-3 and Figure 3-4.  

Table 3-2. Equations of a deflection correction factor based on pavement thickness 

Total pavement thickness Correction factor equation 

12inch thickness 

8inch thickness 

4inch thickness 

2inch thickness 

d0 = -0.0105x +1.679 

d0 = -0.009x + 1.599 

d0 = -0.0066x + 1.473 

d0 = -0.004x + 1.29 

Where:  

d0 - correction factor 

x – the temperature in Fahrenheit measured from the site. 

A correction factor must be calculated for every possible pavement thickness. After 

having the correction factor calculated, maximum deflection is multiplied by the correction 
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factor and the product is used for clustering. Corrections are usually made for the measurements 

having a pavement temperature of up to 40C. After the correction around 3000-6000 rows of 

data that goes beyond the temperature, threshold is selected and cleaned because such data 

creates instability while clustering and alters the results by decreasing the value of R2 (accuracy). 

Then, the deflection basin area is calculated using the formula given in Equation 3-2. 

𝐴𝑅𝐸𝐴 =
6∗(𝐷0+2𝐷1+2𝐷2+𝐷3)

𝐷0
  (Equation 3-2) 

Where:  

AREA - equals the FWD AREA Parameter. Expressed in units of length (usually inches or 

mm).    

D0 - equals surface deflection at the test load center 

D1 - equals surface deflection at 12 inches from the test load center 

D2 - equals surface deflection at 24 inches from the test load center 

D3 - equals surface deflection at 36 inches from the test load center 

The deflection basin area is also considered the main factor affecting to clustering of the 

homogeneous groups.  

3.2.4 Precipitation 

Rainfall data is generally collected using electronic data loggers that measure the rainfall 

in 0.01- inch increments every 15 minutes using either a tipping-bucket rain gage or a collection 

well gage. Twenty-four-hour rainfall totals are tabulated and presented. A 24-hour period extends 

from just past midnight of the previous day to midnight of the current day. Resulting attributes of 

the dataset includes the regions of the country and yearly rainfall amount in “mm”. In order to 

merge the rainfall data, ArcMap is used to assign it to the regions and then to the roads having 

both the deflection and IRI data to avoid the inconsistencies based on their longitude and latitude 

coordinates.  
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3.3 Data pre-processing 

In the beginning, datasets of all four daily factors discussed in Section 3.2 are received as 

distinct datasets which makes it impossible to start evaluating the data and hidden patterns among 

attributes. For this reason, this thesis includes several different dataset merging techniques to create 

a single table for further analyses. In this study, along with the command terminal and JMP 

(software), ArcMap (software) is one of the most essential tools used to merge and create datasets. 

3.3.1 Using command terminal to merge datasets 

It is often common to have hundreds of separate .csv files containing pavement data 

collected from the field. It is, therefore, necessary to merge all such datasets into one table using 

the most straightforward method. Windows’ command terminal was used to merge all .csv files 

into one table in order to make the location-based joining easier. In order to perform the operation, 

it is important to navigate to the command terminal and then to the folder where the separate .csv 

formatted datasets exist. Following the command “/copy *.csv combined.csv” is the only line of 

code needed to create a new file named “combined.csv” in the specified folder.  

3.3.2 Using ArcMap to merge datasets 

Prior to importing the dataset, it is necessary to make sure that the Geographic coordinate 

systems are configured. In this thesis, data frame properties are configured with the Geographic 

Coordinate System of WGS 1984. 

Mapping – After creating tables user must fit the longitude and latitudes of the table on 

the X and Y-axis. This can be done by displaying XY Data (X - Field is longitude, Y- Field is 

latitude). Repeating the same steps for the second dataset will result in two different maps. In order 

to be able to join them these tables must be saved as shapefiles. After the geodatabase (.gdb) files 

have been created user can match and join the attributes easily. 
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Spatial Join – Spatial join involves matching rows from the “Join Features” to the “Target 

Features” based on their relative spatial locations. Joining large datasets based on their locations 

is a very complicated task on other platforms, however, in ArcMap it is straightforward. “Match 

Options” is available depending on the data structure so that the user can select and input the 

necessary search radius (meters, kilometers, etc.) to start the spatial join.  

3.3.3 Using JMP to merge datasets 

JMP was created by Statistical Analysis Systems (SAS) in 1989 and today it is one of the 

most powerful statistical analysis & data mining software. It is built on JSL Scripting language 

which is easy to understand and implement any analysis. The latest version of JMP is capable of 

translating the resultant scripts into any other platform (Java, Python, R, etc.) to make it easily 

accessible through the formula depot. There are 3 methods to merge and split datasets:  

1. By matching Columns 

2. By Row number 

3. Cartesian Join (1 row from the 1st data table to every other row of the 2nd data table) 

In this thesis, latitude and longitude columns were matched to merge different datasets into 

one table in order to proceed to analysis. As a first step of the joining process, both datasets are 

merged and then multiple values are dropped from the final data table.  

 

3.3.4 Dataset cleaning 

The method of outlier cleaning used in this thesis is the “Multivariate Robust Fit Outliers” 

that is utilized to examine the relationships between multiple variables. This outlier analysis 

provides three different methods to calculate the distances to identify outliers.  
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As the first method, it calculates the Mahalanobis distances from each point to the center 

of the multivariate normal distribution. Mahalanobis distances method has a simple basis, the 

greater the distance from the center, the higher the probability that it is an outlier. This method is 

used to clean the data because the outliers are visually represented. The formula used to calculate 

Mahalanobis distance is as shown in Equation 3-3 (SAS, Distance Measures, 2019). 

𝑀𝑖 = √(𝑌𝑖 − �̅�)′𝑆−1 × (𝑌𝑖 − �̅�)     (Equation 3-3) 

In which Mi is the Mahalanobis distance for the ith observation, Yi is is the data for 

the ith row, Ȳ is the row of means, S is the estimated covariance matrix for the data. 

T2 method is another method of describing the Mahalanobis method by simply squaring it 

and the formula to calculate T2 distances is as shown in Equation 3-4 (SAS, Distance Measures, 

2019).  

𝑈𝐶𝐿𝑇2 = 
(𝑛−1)2

𝑛
× 𝛽

[1−𝛼;
𝑝

2
;
𝑛−𝑝−1

2
]
= (𝑈𝐶𝐿𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠)

2  (Equation 3-4) 

In this formula:  

n = number of observations  

p = number of variables (columns) 

β
[1−α;

p

2
;
n−p−1

2
]
  = (1–α)th quantile of a Beta (

p

2
;
n−p−1

2
) distribution and the α (alpha) value is the 

correlation confidence intervals and it can be edited as required.  

“Jackknife distance” was the main method considered in this thesis under Multivariate 

Robust Fit Outliers technique. It is a better form of the Mahalanobis distances. The distance for 

each observation is calculated with estimates of the mean, standard deviation, and correlation 
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matrix that do not include the observation itself. Equation 3-5 illustrates the formula to calculate 

the Jackknife distances (SAS, Distance Measures, 2019).  

𝐽𝑖 = √
(𝑛−2)𝑛2

(𝑛−1)3
×

𝑀𝑖
2

1−
𝑛𝑀𝑖

2

(𝑛−1)2

     (Equation 3-5) 

Where:  

Ji = Jackknife distance for the ith observation 

n = number of observations 

Mi = Mahalanobis distance for the ith observation 

 As it is obvious from Figure 3-5 that two points shown as an outlier in Mahalanobis 

distances are actually not considered an outlier according to Jackknife distances. In this case, it is 

necessary to check the data with Jackknife distances before removing any rows from the data table. 

This limits the list of columns to only those that contain outliers. The jackknife method works by 

repeatedly re-computing the summary statistic leaving out one data item at a time from the dataset.  
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Figure 3-5. Comparison of the results of Mahalanobis, T2 and Jackknife distances gathered from 

an example dataset available at (Mukhtarli, 2019). 

3.4 Clustering methods 

3.4.1 K-means clustering 

The K-means approach is a special case of a general approach called the EM (Expectation-

Maximization) algorithm. The K-means method is intended to be used with larger data tables, from 

approximately 200 to 100,000 observations (SAS, 2020). When variables of datasets do not share 

a common measurement scale, to prevent one variable dominating the clustering process columns 

must be scaled individually. Johnson transformation is used to bring the far values closer to the 
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clusters while scaling and spreading them around the cluster centroid. More information about the 

Johnson transformation can be accessed from the following source (Unistat, 2019). This is 

especially useful when the data is widely spread over the X and Y axes and when some data points 

stay outside the clusters and act as outliers. This behavior impacts the CCC (Cubic Clustering 

Criterion) value which is crucial in defining the optimal number of clusters.  

The CCC is one of the methods to estimate the optimal number of clusters using Ward's 

minimum variance method. The idea of CCC is to compare the R2 obtained from a given set of 

clusters with the R2 one would get by clustering a uniformly distributed set of points in multi-

dimensional space (Dickey, 2015). The performance of the CCC is evaluated by Monte Carlo 

methods. Empirical formula to calculate the CCC is given below in Equation 3-6 (SAS, 2019). 

𝐶𝐶𝐶 = ln (
1−𝐸(𝑅2)

1−𝑅2
)

√
𝑛𝑝

2

(0.001+𝐸(𝑅2))1.2 
  (Equation 3-6) 

Where: E(R2) is the expected R2, p is the dimensionality of the between-cluster variation 

and n is the number of samples. More detailed information about the Cubic Clustering Criterion 

and its calculation can be obtained from the references of SAS (SAS, 2019). 

The optimal number of clusters can be either set to a certain number or can be defined as a 

range to be examined. In this thesis, a range is given and CCC value is calculated for each of the 

options in the defined range and the optimal number of clusters is set based on CCC calculations. 

The higher the CCC value, the better the clustering is. Hence the problem of finding the best 

number of clusters can be formulated as an optimization problem for CCC. Negative values of the 

CCC with comparatively large absolute values, e.g. -30, may be the result of having outliers in the 

dataset. Outliers generally should be removed before clustering. If all values of the CCC are 

negative, the distribution is probably unimodal or long-tailed. If the CCC increases continually as 
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the number of clusters increases, the distribution may be grainy, or the data may have been 

excessively rounded or recorded with just a few digits.  

3.4.2 SOM clustering 

Another clustering method used in this study to generate homogeneous groups is the SOM. 

Just like K-means clustering SOM also takes CCC as the criterion to choose the optimal number 

of clusters and higher the CCC better the result. 

Starting the SOM analysis is following similar procedure as K-means where the traffic, 

precipitation, deflection, deflection basin area, and the IRI values are the features.  

After selecting the features that generate the homogeneous groups of pavements, the SOM 

grid is specified. A grid is a two-dimensional plane that includes centroids called nodes and the 

dataset is clustered around these centroids. Moreover, Self-Organizing Map uses competitive 

learning as opposed to error-correction learning to adjust it weights. It means during each iteration 

only one node (centroid) is activated to respond to input features and calculate a new position for itself. 

Therefore, the system is called self-organized maps where the data points are appointed to 

centroids in each iteration until the best result is achieved. Since in the literature there is no 

particular method for identifying the grid configuration, map size is selected as 3x3 (9 nodes in 

total) after several trial-and-error. This configuration was identified as the best option for the 

currently examined datasets. 

3.5 Cluster evaluation. 

 The prediction of the pavement condition is important in any pavement management 

system. Several pavement prediction models are generally available, including regression, Markov 

prediction models, stochastic models, etc. However, in this thesis, regression models are used as 

an extrinsic evaluation method to test the goodness of the clustering of homogeneous groups. 
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Regression analysis is a statistical method used to describe the relationship between two variables 

and to predict one variable from another. 

3.5.1 Logistic regression model 

The general goal of the logistic regression is to find the best fitting model to describe the 

relationship between the characteristics of interest (dependent variable) and a set of independent 

(predictor or explanatory) variables.  

Rather than choosing parameters that minimize the sum of squared errors (like in ordinary 

regression), estimation in logistic regression chooses parameters that maximize the likelihood of 

observing the sample values. In order to run the logistic regression value that is going to be 

predicted must be nominal (Class). The nominal value often referred to as the categorical variables 

contains a finite number of categories or groups. Such data may not have a logical order. Values 

to be predicted are also called response variables. In order to interpret the model results, user must 

achieve as much higher R2 values as possible and compare with other prediction models. An 

interpretation of a typical logistic regression model is explained below with the given sample 

graph. To interpret the results, it is possible to plot the results of logistic regression in binary fitted 

line plots.  
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Figure 3-6. An example of binary fitted line plot gathered from a sample dataset available at 

(Mukhtarli, 2019) 

In Figure 3-6, the response value of 1 on the y-axis represents successful modeling 

(Example dataset is available at (Mukhtarli, 2019). The plot shows that the probability of success 

decreases as the temperature increases. When the temperature in the data is near 50, the slope of 

the line is not very steep, which indicates that the probability decreases slowly as temperature 

increases. The line is steeper in the middle portion of the temperature data, which indicates that a 

change in temperature of one degree has a larger effect in this range. When the probability of 

success approaches zero at the highest end of the temperature range, the line flattens again. 

In every model presented in this thesis the higher the R2, the better the model fits the data. 

The R2 value is always varying between 0% and 100%. In the present thesis, the goal of creating 

a logistic regression model is to identify the goodness of SOM and K-means clustering. It also 

provides an insight into whether including the previous years’ data in the analysis improves the 

accuracy of the models or having no impact on the results. 

3.5.2 Neural networks 

In the current study, various combinations of neural network models are designed to 

accomplish the evaluation of the quality of the homogeneous groups. Various models can be 

specified by the network topology, node characteristics, and training or learning rules.  

At the beginning of the analysis, the default number of hidden nodes is taken as three to 

generate a hidden layer structure. Then during the evaluation process activation functions such as 

hyperbolic tangent (tanH), Gaussian and Linear functions or Boosting method are selected along 

with several hidden layer options. In literature, there is no closed solution offered for making the 

selection on the structure or activation function. Thus, it is done based on a trial-and-error method. 
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Boosting is a method for improving the performance of the learning algorithms. The default 

boosting step is usually one (1) where it means the network will only be filtered once to improve 

the learning algorithm. Hence, better results will be achieved by higher numbers of boosting until 

the accuracy of the model reaches a constant value. 

The tanH (hyperbolic tangent function) is a sigmoid function and the graphical 

representation is given in Figure 3-7. It transforms the values to stay between -1 and 1 and is the 

centered and scaled version of the logistic function. TanH function is calculated using the Equation 

3-7 (SAS, 2019). 

𝑇𝑎𝑛𝐻 = 
(𝑒2𝑥 – 1)

(𝑒2𝑥 + 1)
   (Equation 3-7) 

Where, x is a linear combination of the X variables. 

 

Figure 3-7. Graphical representation of the Hyperbolic Tangent Function (SAS, 2019). 

Besides hyperbolic tangent function, the Gaussian activation function is also used in 

evaluations to understand if the results improve and the equation of the function is given in 

Equation 3-8 (SAS, 2019). 
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𝑒−𝑥
2
        (Equation 3-8) 

where x is a linear combination of the X variables. 

 

Figure 3-8. Graphical representation of the equation of the Gaussian function. 

Moreover, changing the number of hidden nodes will obviously yield different results. The 

optimal number of hidden nodes must be calculated accordingly. Specifically, the number of 

neurons comprising the layer is equal to the number of features (columns) in the dataset. The 

optimal number of the hidden layer is usually between the size of the input and output layers 

(Heaton, 2019). The upper bound on the number of hidden neurons that won't result in over-fitting 

is calculated with the below formula (Hagan, 1999). 

𝑁ℎ =
𝑁𝑠

(𝛼∗(𝑁𝑖+𝑁𝑜))
 (Equation 3-9) 

Where: 

Ns – is the number of samples in the training set 

α – is an arbitrary scaling factor between 2-10, usually, 2 is the best for not overfitting the 

model. 
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Ni – is the number of input neurons 

No – is the number of output neurons. 

3.5.3 Partition modeling – decision trees 

Validation to assess the credibility of a given model has become a necessary activity when 

one is faced with the need for making critical decisions based on the results of computer modeling 

and simulations. Methods like Naïve Bayes, Bootstrap Forest, Boosted Tree, K-Nearest Neighbors 

are only available in JMP Pro. Therefore, because of this limitation, the decision tree method is 

used in this thesis to test its goodness and future works must consider these methods as well. Users 

can split the data to achieve the best possible R2 value as shown in Figure 3-9. One advantage of 

using decision trees is the ability to see how each attribute affects the outcome of the response 

value. As in all models, the goal of building a partition model is summarized as follows:  

1. Calibrate model with a dataset 

2. Compare model outcomes  

3. Validate clustering goodness 

For detailed information about the partition modeling algorithms, one can refer to the 

following source (Morrison, Bryant, Terejanu, Prudhomme, & Miki, 2013).  
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Figure 3-9. An example of a decision tree for a sample dataset available at (Mukhtarli, 2019) 

3.6 Conclusion 

In the end, the current study covers the identification of methods for creating homogeneous 

groups of pavements considering factors affecting their deterioration. Although, several previous 

research papers mentioned similar clustering operations, only the K-means approach was involved 

in the calculations. Because of this reason, it is necessary to carry out a research to introduce an 

additional clustering technique for grouping pavements. Moreover, several extrinsic and intrinsic 

evaluation methods are introduced to assess the goodness of the similarly acting groups.  
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Chapter 4 

4. Case study of Costa-Rica 

4.1 Introduction 

According to the reports of the University of Costa Rica ‘s National Laboratory of 

Materials and Structural Models (LANAMME, 2019), as of 2016, the percentage of Costa Rican 

roads in good condition has increased over the past two years. However, the laboratory’s “Seventh 

Report on the Status of the National Roadway Network” also characterized the country’s roadway 

maintenance strategy as “reactive” and “poorly planned” (LANAMME, 2019). The National 

Roadway Council (CONAVI, 2019) repaired and maintained nearly half of the national roadway 

network during the last period spending with private participation of 663 million USD 

(TradingEconomics, 2019). However, CONAVI also found that the number of roads in ‘very bad’ 

condition has also increased. Costa Rica has 5,053 Kilometers (3,140 miles) of paved roads. Of 

these, 1,913 Km (1,189 miles) were in good condition in 2015 (TradingEconomics, 2019). Of the 

48 percent of roads that are in good condition, 36 percent are in regular condition, while 5 percent 

require minor repairs. Having these results over the years requires extensive research to eradicate 

all these problems by the time.   

The average temperature in Costa Rica is 76°F (ClimateData, 2019). Located in the tropics, 

Costa Rica has twelve climatic zones varying from hot and humid to cold and frosty. The east 

coast and the plain overlooking the Caribbean Sea are rain-soaked and receive more than 3,000 

millimeters (120 inches) per year; here the climate can be defined as equatorial, that is, with no 

dry season. Precipitation data for Costa Rica’s different regions are given below in Table 4-1. 
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Table 4-1. Costa-Rica’s Average precipitation data by regions (TradingEconomics, 2019) 

Limón - Average precipitation 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Prec.(mm) 305 230 195 270 325 300 440 315 145 215 380 450 3565 

Prec.(in) 12 9.1 7.7 10.6 12.8 11.8 17.3 12.4 5.7 8.5 15 17.7 140.4 

Days 18 16 17 16 18 19 23 19 14 17 17 21 215 

Puntarenas - Average precipitation 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Prec.(mm) 6 4 5 30 205 215 175 225 295 280 130 30 1600 

Prec.(in) 0.2 0.2 0.2 1.2 8.1 8.5 6.9 8.9 11.6 11 5.1 1.2 63 

Days 2 2 3 8 19 21 18 22 24 25 15 6 164 

Quepos - Average precipitation 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Prec.(mm) 45 25 40 155 390 415 445 470 545 535 350 160 3570 

Prec.(in) 1.8 1 1.6 6.1 15.4 16.3 17.5 18.5 21.5 21.1 13.8 6.3 140.6 

Days 7 4 5 12 23 24 26 26 26 27 23 15 219 

San José - Average precipitation 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Prec.(mm) 15 5 20 45 230 240 210 240 310 305 145 40 1805 

Prec.(in) 0.6 0.2 0.8 1.8 9.1 9.4 8.3 9.4 12.2 12 5.7 1.6 71.1 

Days 2 0 2 5 17 20 20 21 22 22 13 4 148 

 

4.2 Objective of the case study 

The objective of this chapter is to identify homogeneous groups of roads from Costa Rican 

roads network based on the daily factors such as IRI; deflection; precipitation; and traffic (ESALs) 

that affect the pavement deterioration process. Several studies have been conducted considering 

the physical characteristics of the pavement however none of them carried extensive network-wide 

research to classify the road network of a whole country based on the pavement deterioration 

taking into account the factors that affect the deterioration.  
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4.3 Methodology of the case study 

A case study of the Costa-Rica is presented in this chapter to discuss the results of the two 

main clustering techniques used to create homogeneous groups which included daily factors that 

affect the pavement deterioration and prediction models to evaluate generated clusters. To do this, 

statistical analysis and data mining were applied (using JMP software) with traffic loading, IRI, 

deflections and precipitation data collected by the University of Costa Rica (UCR). Additionally, 

IRI from the previous years were also available and this dataset has also been tested to investigate 

whether the inclusion of previous year pavement conditions will have any effect on the current and 

future years. To start with, only the main attributes were used in the clustering, through both 

methods; and then the IRI of 2015 were added. As mentioned before several data mining 

techniques were examined to create groups that act similarly. The techniques used include Logistic 

Regression, Neural Networks, Decision Tree, K-means Clustering and SOM clustering. Data were 

collected for the period of 2015 and 2017 separately and were merged using various methods to 

create the final dataset. Modeling and Clustering results were compared at the end to identify the 

best results. As has been mentioned in the literature review, all the prediction models were 

compared using R2 value, and according to recent studies, a range of values between 0.68 and 0.80 

was considered as an acceptable accuracy (Abudinen, Carvajal-Muñoz, & Fuentes, 2016).  

Creating homogeneous groups to assess the pavement deterioration requires a reliable 

clustering method which must be tested considering all of the possible options. Despite there are 

many clustering techniques existing nowadays the most well-known and developed methods used 

in pavement management systems were tested in this thesis. Thus, two main clustering methods -

K-means and Self Organizing Maps- were given the priority for the case study of Costa-Rica. 

Previously SOM clustering was mainly used in pavement design for crack identification. IRI data 
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for Costa Rica was provided by Lanamme UCR. Dataset included centerline, right and left IRI 

measurements and Longitude and Latitude. In the beginning, only the main attributes (traffic, 

precipitation, deflection value and deflection basin area) were used in the clustering through both 

methods; and then the 2015 IRI data were added.  

4.4 Clustering methods 

4.4.1 K-means clustering  

Case I – Generating clusters neglecting the IRI of the previous year. 

In the first case, the predictors of K-means analysis included – IRI 2017, precipitation 

(mm/year), corrected center deflection value, deflection basin area, traffic (ESALs). A range of 

the number of clusters between 3 and 50 was examined and the optimal clusters have resulted with 

7 clusters based on Cubic Clustering Criterion (CCC).  

 

Figure 4-1. CCC plot of the first case of the K-means clustering (IRI of the previous year is 

neglected) 

As Figure 4-1 describes the corresponding CCC value for a different number of clusters, 

and as discussed in the literature review the highest point before the first dramatic fall to a negative 

value in the trend is selected as the optimal number of clusters. However, if the CCC calculation 

is not interrupted with the negative numbers then the highest value of the coefficient is selected to 
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be the optimal number of clusters. Values after the drop are not being considered because the 

clustering adds up noise and will create the risk of ‘overfitting’. Centroids for the optimal 

clustering are shown in Figure 4-3. 

 

Figure 4-2. Parallel coordinate plots of the first case of the K-means clustering (IRI of the previous 

year is neglected) 

It can be concluded from the parallel coordinate plots shown in Figure 4-2 that exposure to 

high traffic load inevitably led to the highest IRI values. Additionally, the same cluster parallels 

crossed the precipitation and deflection basin area lines in higher percentages which indicates that 

those 3 factors mainly affected the clustering. 
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Figure 4-3. Bi-plot of the first case of the K-means clustering (IRI of the previous year is neglected) 

In Figure 4-3 K-means bi-plot illustrates the visual distribution of the 7 optimal clusters 

and clustering seems successful on the XY plane. Figure includes only two principal X and Y 

components that can be displayed in a plot. However, when five components or features are 

suggested like in this thesis, to obtain a better view user must show 5 dimensional biplot which is 

not possible. Therefore, it is obvious that the clusters are separated into two generalized groups. 

One containing five clusters and the second group having two clusters. This separation can also be 

observed in Figure 4-2 where two clusters cross the traffic and the precipitation lines at the highest 

points. This phenomenon has already been explained above in the interpretation of Figure 4-2. The 

same limitation is the case for all the biplots illustrated in further subsections. 
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Case II – Generating clusters considering the IRI of the previous year. 

In the second case of the K-means analysis predictor parameters included – IRI of 2015, 

IRI of 2017, Precipitation (mm/year), Corrected Center Deflection value, Deflection Basin Area, 

Traffic (ESALs). The number of clusters was set to range from 3 to 50 clusters. As has been 

explained in the previous analysis CCC plot failed to reach the negative breaking point before 

identifying the optimal number of clusters. This means, increasing the range of clusters from 50 to 

any further number will result in generating even more inefficient clusters. Therefore, the number 

of groups, in this case, was found to be 44 as it is the highest value, and the trend is shown in 

Figure 4-4. 

 

Figure 4-4. CCC plot of the second case of the K-means clustering (IRI of the previous year is 

included)  

This significant change creates the first impression that the K-means clustering is not 

suitable for this analysis because of the overlapping values. Since K-means analysis is using a 

“hard-clustering” method it becomes less reliable when additional data is included in the analysis. 

It is because “hard clustering” struggles when deciding whether to include the overlapping values 

in the same cluster or separate them into two distinct groups. This results in the shifting of the 

optimal number of clusters beyond the meaningful number. 
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Figure 4-5. Bi-plot of the second case of the K-means clustering (IRI of the previous year is 

included) 

Obviously, from Figure 4-5 and Table 4-2 it can be concluded that the clustering failed 

since some clusters had less than 100 elements. 
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Table 4-2. Summary of the second case of the K-means clustering (IRI of the previous year is 

included) 

Cluster 

No 

Elements 

count 

Cluster 

No 

Elements 

count 

1 112 22 220 

2 280 23 21 

3 215 24 76 

4 290 25 475 

5 405 26 153 

6 329 27 41 

7 5 28 213 

8 210 29 278 

9 373 30 60 

10 302 31 226 

11 594 32 459 

12 397 33 141 

13 278 34 562 

14 402 35 66 

15 54 36 67 

16 29 37 164 

17 19 38 128 

18 65 39 462 

19 3 40 275 

20 24 41 28 

21 213 42 248 

  43 75 

  44 233 

 

 

Figure 4-6. Parallel coordinate plots of the second case of the K-means clustering (IRI of the 

previous year is included) 
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It can be observed from Figure 4-6 that the clusters variation over the lines of the predictors 

is very high which means that clustering is not stable and reliable. 

Thus, following the above results it is possible to conclude that there are several numbers of 

reasons why K-means clustering is not an ideal option for this dataset:  

1. Adding new attributes (features) to the data frame will result in an unbounded increase in 

the optimal number of clusters. I.e. when additional features are introduced to the analysis, 

the value of K representing optimal number of homogeneous groups skyrockets. Thus, K-

means clustering is vulnerable to overfitting and makes the automated clustering 

impossible.  

2. The K-means clustering method cannot decide on overlapping data points. 

3. Some of the clusters do not include any data points or only include less than 100 members 

(<1% of the data). 

4.4.2 SOM clustering 

Case I – Generating SOM clusters neglecting the IRI of the previous year. 

The same as before, the clustering analysis using the SOM technique was performed with 

and without the previous year’s IRI results. For the case without the previous year results, the 

range for the number of clusters examined was between 3 and 50 and the attributes selected for 

clustering were IRI (2017), traffic, precipitation, deflection, deflection basin area. According to 

the same principle explained in K-means clustering, the optimal number of clusters was obtained 

as 8 based on CCC measure and the graph illustrating the CCC versus the number of clusters is 

given below in Figure 4-7.  

 



 

55 
 

 

Figure 4-7. CCC plot of the first case of the SOM Clustering (IRI of the previous year is 

neglected) 

The summary of the results of SOM clustering is given in Table 4-3. The numbers given 

in the table explain the average values and standard deviations of each predictor in each cluster. It 

can be observed that the average of the IRI value is ranging from 5.24 to 13.39 and these numbers 

fall into the “fair” and “poor” category according to Section 2.3.3. Furthermore, the numbers given 

in Table 4-3 clearly indicates that the average precipitation and traffic load has the most impact on 

the deterioration of the pavement since this combination led to the highest average IRI among 

other clusters. 
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Table 4-3. SOM clustering results (IRI of the previous year is neglected) 

Cluster Means 

Cluster 
IRI of 

2017 
(mm)rain/year Deflection B. A. ESAL 

Corrected 

Deflection Value 

1 13.3990 3412.37305 22.8068395 2452668.83 874.608145 

2 10.1526 2517.48927 27.6730749 2744797.34 494.78778 

3 7.7874 3464.55215 26.8846906 1429306.23 381.751792 

4 6.5875 3538.77018 22.8584873 384614711 531.426401 

5 6.8889 2765.3743 25.7714747 377787.984 1062.02768 

5 5.7136 3284.12416 28.4385489 263578.365 381.306466 

7 5.1718 2315.59893 25.8948152 457420.196 485.446582 

8 5.2413 2268.41203 30.7461475 760555.478 314.489189 

Cluster Standard Deviations 

Cluster 
IRI of 

2017 
(mm)rain/year Deflection B. A. ESAL 

Corrected 

Deflection Value 

1 1.7591 482.823344 3.6067309 867399.711 383.565138 

2 1.0662 440.755642 2.95733963 765799.693 307.374212 

3 0.5868 429.907024 2.45631157 467498.284 212.00332 

4 1.3226 373.936467 2.12877183 272093.516 198.274428 

5 1.4018 448.55 2.55816678 360472.957 391.694528 

6 1.0301 386.086451 2.41021845 168614.447 183.063429 

7 0.8968 265.363256 2.29446753 452109.767 205.79006 

8 0.9315 223.694718 2.05790135 537517.351 187.491375 

Table 4-4. SOM cluster summary (IRI of the previous year is neglected) 

Cluster Summary 

Cluster 
Number of 

Elements 

1 388 

2 494 

3 625 

4 1675 

5 1448 

6 1524 

7 1747 

8 1369 

Moreover, when comparing the first case of the K-means (Figure 4-1) and SOM (Figure 4-

7) analysis it becomes obvious that the results are very similar to each other where both techniques 

derive the optimal number of clusters around 7 or 8.  
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Figure 4-8. Bi-plot of the first case of the SOM Clustering (IRI of the previous year is neglected) 

Case II – Generating SOM clusters considering the IRI of the previous year. 

In the second case of the SOM analysis predictors included – IRI of 2015, IRI of 2017, 

Precipitation (mm/year), Corrected Center Deflection value, Deflection Basin Area, Traffic 

(ESALs), and the range of the number of the clusters to be tested based on their CCC value was 

between 3 and 50. As a result, from Figure 4-9 it is obvious that the number of the optimal clusters 

still remained as eight (8) despite the addition of new data points. This clearly indicates that SOM 

analysis is advantageous when handling overlapping values. Since SOM is using a soft-clustering 

method it becomes more reliable as overlapping values can be included in more than one cluster. 
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Figure 4-9. CCC plot of the second case of the SOM clustering (IRI of the previous year is 

included)  

Once again cluster summary given in Table 4-5 is describing how well the data is 

distributed in each cluster for both cases of SOM grouping. Means and standard deviations of the 

data of 8 clusters are given in Table 4-5 and the average IRI value is ranging from 5 to 13. The 

mean IRI value of the data collected in previous years is shown to be scaled between 3 and 7 when 

the numbers are rounded up. This indicates that the pavement has been subject to deterioration in 

the past 4 years, mainly affected by the traffic load and precipitation as it was concluded in the 

first case of the SOM analysis.  
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Table 4-5. SOM clustering results (IRI of the previous year is included) 

Cluster Means 

Cluster IRI of 2017 (mm)rain/year 
Deflection 

B. A 
ESAL IRI of 2015 

Corrected 

Deflection Value 

1 13.2904979 2880.5974 25.2883125 3232489.68 6.75187447 951.321709 

2 10.2152481 2903.92921 25.8686959 2279669.64 3.29075069 562.3357 

3 7.36816934 2816.16433 25.3147521 510992.758 5.18521744 1177.84138 

4 6.5436017 3512.95312 23.2885009 387024.52 3.63897771 534.090024 

5 5.77480474 2761.48583 26.2805692 337224.802 6.45521095 539.118268 

5 5.42765579 2267.94055 25.7472936 477721.522 3.44828755 579.713559 

7 5.26442258 2336.34726 29.8590004 753269233 3.1014458 312.872333 

8 6.09647863 3525.07176 29.2988813 501523.532 2.90649185 263.572251 

Cluster Standard Deviations 

Cluster IRI of 2017 (mm)rain/year 
Deflection 

B. A 
ESAL IRI of 2015 

Corrected 

Deflection Value 

1 2.19270592 551.802309 3.350565 917683.223 1.50047204 426.750274 

2 1.84449953 706.395168 4.084587 628299.902 1.37637832 274.932459 

3 1.40038954 467.656247 2.727507 391966.249 1.80450426 399.807037 

4 1.33764907 370.798907 2.293022 339526.692 1.44468097 206.123715 

5 1.23264677 493.085999 3.033251 338980.514 1.35937414 218.977024 

6 1.1157487 276.125739 2.322553 424641.376 1.05018202 243.902217 

7 0.92729304 232.753835 2.328297 555917.307 1.1776459 171.916791 

8 1.21267621 366.934554 2.309911 510058.194 1.17231347 153.313842 

Table 4-6. SOM Cluster Summary (IRI of the previous year is included) 

Cluster Summary 

Cluster Number of Elements 

1 280 

2 740 

3 1.023 

4 1795 

5 1267 

6 1304 

7 1442 

8 1359 

When comparing the group summaries of the first and the second case of the SOM analysis 

obvious similarities appear in the numbers. It means that the addition of the data did not complicate 

the assignment of the data points to the clusters. Considering summaries of the second case of both 

K-means and SOM clustering given in Table 4-2 and Table 4-6, groups generated by SOM had an 

apparent advantage of handling the additional data. 



 

60 
 

 

Figure 4-10. Bi-plot of the second case of the SOM clustering (IRI of the previous year is included) 

In conclusion, as a result of 4 distinct cases of two different clustering methods the 

following statement can be hypothesized: Considering the similarities in bi-plots of the first case 

of K-means and both cases of SOM clustering, it is safe to mention that the clustering is successful 

and addition of a new dataset can be handled by Self Organizing Maps.  
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4.5 Cluster evaluation 

Clusters that were created are homogeneous groups which are the main purpose of this 

thesis since it’ll help us to understand the relationship between the daily factors and the pavement 

deterioration process.  

A perfect cluster exists in a dataset only if the data can be divided into groups where all of the 

data elements within a group show identical characteristics over the range of attributes. It implies 

the necessity of finding the correct optimal number of clusters. Therefore, it is important to verify 

the quality of the generated homogeneous groups. There are two widely used methods to check 

the goodness of clusters. 

1. Extrinsic Evaluation 

2. Intrinsic Evaluation 

Extrinsic (External) evaluation of a cluster is important to check the goodness of the 

homogeneous groups. An external evaluation is a measure of agreement between two partitions 

where the first partition is the a priori known clustering structure, and the second results from the 

clustering procedure (Dudoit, 2002). In order to run the extrinsic evaluation for the generated 

clusters, three different prediction models will be built. These prediction models are Logistic 

Regression, Neural Networks, and Partitioning. In total, thirty-four (34) Neural Network, six (6) 

Decision Tree and six (6) Logistic regression models were trained and discussed in the next 

subsections with all the possible combinations and the best one was selected with the help of the 

model comparison tool discussed at the end of this section.  
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4.5.1 Extrinsic cluster evaluation 

4.5.1.1 Logistic regression model 

To start with, six different combinations (Table 4-7) were created within the Logistic 

Regression model where clustering results and the data from the previous years were also 

considered.  

Table 4-7. Combinations of the logistic regression models. 

Logistic Regression Models 

Analysis  1 2 3 4 5 6 

C
o
m

b
in

at
io

n
s 

Evaluation 

(w/o 

previous 

year data) 

 

Evaluation 

(w/ 

previous 

year data) 

 

Evaluation 

including 

SOM 

Clustering 

(w/o 

previous 

year data) 

Evaluation 

including 

K-means 

Clustering 

(w/o 

previous 

year data) 

Evaluation 

including 

SOM 

Clustering 

(w/ 

previous 

year data) 

Evaluation 

including 

K-means 

Clustering 

(w/ 

previous 

year data) 

There are three types of modeling variables: continuous, ordinal and nominal and Logistic 

regression is a model where the response variable is selected to be a class (nominal variable). For 

the first analysis given in Table 4-7, only 4 main predictors (casual factors) were selected as 

independent variables. Then the same evaluation procedure was repeated until all of the six 

possible analysis options shown in Table 4-7 are tested.  

The accuracy of logistic regression models was considerably lower than the results of the 

neural network and partitioning models. As for the first analysis, R2 value of the IRI prediction 

was 0.68 (68% accuracy) where the lowest results from the Neural Network and Partitioning 

models derived the R2 of 0.70 and 0.85 given in Section 4.5.1.2 and 4.5.1.3. Despite the lower 

values, the analysis run until the end and below results were obtained as shown in Table 4-8. 
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Table 4-8. Logistic Regression results. 

Analysis 

No 
Generalized R2

 
Mean -

Log p 
RASE 

Mean 

Abs 

Dev 

Misclassification 

Rate 

1 0.6908 0.1933 0.2307 0.1018 0.064 

2 0.6864 0.1956 0.2327 0.1029 0.0649 

3 0.7956 0.137 0.1896 0.0708 0.0409 

4 0.7723 0.1505 0.201 0.0808 0.0511 

5 0.7933 0.1383 0.1906 0.0717 0.0423 

6 0.7754 0.1487 0.1989 0.0793 0.0479 

Considering the results given in Table 4-8, it can be assumed that logistic regression is not 

the most suitable prediction model for this case study. However, when comparing and evaluating 

the clustering methods (through extrinsic performance measure), the outcome of the analysis 

involving SOM clustering is still better than the results of the options that include K-means 

clusters. Moreover, it is obvious from Table 4-8 that the result derived the accuracy of 79% (SOM) 

and 77%(K-means). Additionally, it is concluded from the results that the least effective model 

deriving the lowest R2 and the highest RASE value was the one where the analysis considered the 

previous year’s data without involving the homogeneous groups. On the contrary, the model 

involving SOM groups with no previous year’s data performed as the best model with the highest 

accuracy of 79% and the lowest value of RASE.  

In short, although the logistic regression demonstrated lower results among the rest of the 

models, the best prediction was noted in the 3rd analysis where the SOM clustering played a major 

role.  

4.5.1.2 Neural networks 

In this section as an extrinsic evaluation method neural network is used to determine the 

goodness of SOM and K-means clusters by predicting IRI value. Different ANN combinations 

shown in Table 4-9 were trained and tested to achieve the best results to evaluate the generated 

clusters. In the beginning, these models were tested with a hyperbolic tangent activation function 
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(Section 3.5.2) and the main predictors remained the same which included traffic, precipitation, 

deflection, and deflection basin area. Then Gaussian and Linear activation functions, and 10 step 

boosting was applied to the combination which derived the highest R2 value from the tanH model. 

Boosting is an additional function where the neural network model trains the same dataset several 

numbers of times identified by the user. Above mentioned boosting number is called a ‘step’ and 

it has been set to 10 in this case study because boosting more than 10 steps didn’t increase the 

accuracy of the prediction. Besides various functions, several different combinations of hidden 

layers and hidden nodes were also tested.  

Table 4-9. Combinations of neural network models built for the extrinsic evaluation of clusters. 

C
o
m

b
in

at
io

n
s 

o
f 

h
id

d
en

 l
ay

er
s 

Neural Network Models 

Evaluation 

(w/o 

previous 

year data) 

Evaluation 

(w/ 

previous 

year data) 

Evaluation 

including 

SOM 

Clustering 

(w/o 

previous 

year data) 

Evaluation 

including 

K-means 

Clustering 

(w/o 

previous 

year data) 

Evaluation 

including 

SOM 

Clustering 

(w/ 

previous 

year data) 

Evaluation 

including 

K-means 

Clustering 

(w/ 

previous 

year data) 

Activation 

Function 

3 [1] 3 3 3 3 3 

tanH 

20 20 20 20 20 20 

25 25 25 25 25 25 

23-3 [2] 23-3 23-3 23-3 23-3 23-3 

25-3 25-3 25-3 25-3 25-3 25-3 

N/A N/A 

25-3  

(Best 

Model [3]) 

N/A N/A N/A 

Gaussian 

Linear 

Boosting 

[1] Number of hidden nodes in the first layer of Neural Networks. 
[2] Number of hidden nodes in the first and second layers of Neural Networks. 
[3] The model that provided the best R2 value from tanH activation functions. 

Firstly, a single hidden layer was tested with three (3) hidden nodes using tanH function 

without considering clustering and the previous year’s data in the analysis. In the beginning, IRI 

data from 2017 was identified as a response value and 4 main factors (precipitation, traffic, 

deflection, and deflection basin area) affecting the deterioration of the pavement were selected as 
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features. Then using the following window shown in Figure 4-11 the number of hidden layers, 

hidden nodes, activation function, and Holdback value was configured. Holdback value was set to 

0.333 which means 33.3 % of the data will be automatically considered as a validation dataset.  

 

Figure 4-11. Neural networks model launch – defining the number of hidden nodes, layers and 

activation function. 

The purpose of the validation set is to separate the certain percentage of the data from the 

main dataset and run the analysis separately. At the end of the analysis, the results of both 

validation and the training sets are shown in Table 4-10. It is important to note that when 

comparing these results closer R2 values of training and validation sets indicate better results. 
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Table 4-10. Final neural networks result with just 3 hidden nodes (results of the first model). 

Neural Network Model tanH 1-1(3) 

Training Set Validation Set 

Measures Value Measures Value 

R2 0.7096304 R2 0.7188083 

RASE 1.1790047 RASE 1154.9021 

Mean Abs Dev 0.93914182 Mean Abs Dev 0.92041339 

– LogLikelihood 9785.7045 – LogLikelihood 4856.1686 

SSE 8590.5218 SSE 4193.1206 

Sum Freq 6180 Sum Freq 3090 

It is described in Table 4-10 that the R2 value of the validation set is obtained as 0.718. 

Thus, the accuracy of the prediction of two sets illustrates significant similarities. This, in fact, 

means that the model is still successful, however, it is important to run the analysis with other 

options for better results. Therefore, the procedure explained above will be repeated for all the 

combinations shown in Table 4-9. 

It is obvious from the results shown in Table 4-11, that the best model configuration 

neglected the IRI of the previous years and included ten (10) step Boosting with two hidden layers 

-involving twenty-three (23) and three (3) hidden nodes respectively in each layer- and SOM 

clustering. The R2 value of the given model was noted as 0.8866 which means the results were 

88.6 % accurate when predicting the IRI value. It also proves that without considering the data 

from the previous years SOM Clustering brings up better results than K-means clustering because 

all the models that included K-means analysis were having a lower accuracy. The goodness of 

SOM clustering is not only interpreted with the R2 value. It is also necessary to consider RASE 

and AAE (Section 2.5.2) values when comparing the results of the combinations of two different 

clustering methods. The combination which included SOM clustering had the lowest Average 

Absolute Error and Root Average Squared Error values of 0.5936 and 0.7411 respectively, where 

models including K-means clustering results were having a minimum of 0.6183 and 0.7698 AAE 

and RASE values accordingly. 
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Additionally, it can be derived from Table 4-11 that the worst combination neglected the 

clustering. The results were obtained from an ANN model which included a single layer having 

three hidden nodes with the lowest R2 and the highest RASE and AAE values. Thus, it implies that 

the clustering is successful and it increases the accuracy of the prediction.  

Table 4-11. Final results of all neural network models. 

Measures of Fit for IRI of 2017 (Neural Networks) 

Predictor RSquare RASE AAE 

2017 -2015EXCLUDED - KMEANS - 25 - 3 0.8665 0.8005 0.6354 

2017 -2015INCLUDED - 3 0.7059 1.1881 0.9351 

2017 -2015INCLUDED - 20 0.8457 0.8606 0.6744 

2017 -2015INCLUDED - 25 0.8479 0.8544 0.6748 

2017 -2015INCLUDED - 23 - 3 0.8629 0.8113 0.638 

2017 -2015INCLUDED - 25 - 3 0.8623 0.813 0.6383 

2017 -2015EXCLUDED - 3 0.7318 1.1348 0.9137 

2017 -2015EXCLUDED - 20 0.8403 0.8757 0.6855 

2017 -2015EXCLUDED - 25 0.8433 0.8673 0.6808 

2017 -2015EXCLUDED - 23 - 3 0.8617 0.8147 0.644 

2017 -2015EXCLUDED - 25 - 3 0.8695 0.7914 0.6255 

2017 -2015INCLUDED - SOM - 3 0.8176 0.9399 0.7445 

2017 -2015INCLUDED - SOM - 20 0.8761 0.7747 0.6209 

2017 -2015INCLUDED - SOM - 25 0.8739 0.7814 0.6226 

2017 -2015INCLUDED - SOM - 25 - 3 0.8773 0.7707 0.6141 

2017 -2015INCLUDED - KMEANS - 3 0.8065 0.9681 0.7703 

2017 -2015INCLUDED - KMEANS - 20 0.8735 0.7828 0.626 

2017 -2015INCLUDED - KMEANS - 25 0.8734 0.7831 0.6286 

2017 -2015INCLUDED - KMEANS - 23 - 3 0.8606 0.8217 0.6543 

2017 -2015EXCLUDED - SOM - 3 0.8243 0.9224 0.7284 

2017 -2015EXCLUDED - SOM - 20 0.873 0.7841 0.629 

2017 -2015EXCLUDED - SOM - 25 0.879 0.7654 0.6113 

2017 -2015EXCLUDED - SOM - 23 - 3 0.8842 0.7487 0.5987 

2017 -2015EXCLUDED - SOM - 23 - 3 Boost10 0.8866 0.7411 0.5936 

2017 -2015EXCLUDED - SOM - 23 - 3 Gaussian 0.8752 0.7775 0.6198 

2017 -2015EXCLUDED - SOM - 23 - 3 Linear 0.7634 1.0703 0.8431 

2017 -2015EXCLUDED - SOM - 25 - 3 0.8823 0.755 0.5999 

2017 -2015EXCLUDED - KMEANS - 3 0.7983 0.984 0.78 

2017 -2015EXCLUDED - KMEANS - 20 0.8596 0.821 0.6485 

2017 -2015EXCLUDED - KMEANS - 25 0.8702 0.7894 0.6302 

2017 -2015EXCLUDED - KMEANS - 23 - 3 0.8711 0.7856 0.622 

2017 -2015 INCLUDED - KMEANS - 25 - 3 0.8776 0.7698 0.6183 
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4.5.1.3 Partition modeling  

As in all above-mentioned prediction models, six different options were tested in partition 

modeling (Decision tree) where clustering results and the data from the previous years were 

considered in some of the analyses.  

Table 4-12. Combinations of partitioning models built for the extrinsic evaluation of clusters. 

Partitioning Models (Decision Tree) 

Analysis 1 2 3 4 5 6 

C
o
m

b
in

at
io

n
s 

Evaluation 

(w/o 

previous 

year data) 

 

Evaluation 

(w/ 

previous 

year data) 

Evaluation 

including 

SOM 

Clustering 

(w/o 

previous 

year data) 

Evaluation 

including 

K-means 

Clustering 

(w/o 

previous 

year data) 

Evaluation 

including 

SOM 

Clustering 

(w/ 

previous 

year data) 

Evaluation 

including 

K-means 

Clustering 

(w/ 

previous 

year data) 

In the first analysis, the model only included the predictors that contribute to the 

deterioration of the pavement. At the beginning of the analysis, the decision tree was split (Figure 

4-12) until the best result achieved. Splitting must stop when the R2 value is constant. R2 value 

remains constant when splitting the data into partitions doesn’t contribute to the results. As 

described in Figure 4-12 the data has been split 17 times to achieve the highest possible R2 value 

(0.869) before the value kept constant. However, if we look at the accuracy of both validation and 

training sets it can be concluded that there is a huge difference in numbers. Thus, it is assumed that 

the first analysis given in Table 4-12 is not successful and the rest of the options must be calculated 

to achieve higher accuracy. Therefore, the same procedure later applied to all of the possible 

partitioning cases shown in Table 4-12. The results of the partitioning shown below in Table 4-13 

includes all of the six possible options.  



 

69 
 

 

Figure 4-12. Partitioning process - splitting the decision tree until the best result is achieved. 

Table 4-13. Final results of all partitioning models. 

Partitioning Model Type R2
 RASE AAE 

IRI of 2017 Predictor - 2015 Inc 0.869 0.7926 0.613 

IRI of 2017 Predictor - 2015 Exc 0.8711 0.7867 0.619 

IRI of 2017 Predictor - 2015 Inc - SOM 0.8726 0.7822 0.6161 

IRI of 2017 Predictor - 2015 Exc - SOM 0.8776 0.7665 0.6098 

IRI of 2017 Predictor - 2015 Inc - KMEANS 0.852 0.8429 0.6501 

IRI of 2017 Predictor - 2015 Exc - KMEANS 0.8673 0.7981 0.6251 

The final outcome of the analysis indicates that the best results having an accuracy of 87% 

were achieved where the data from the previous years was neglected and SOM clustering was 

included. The results shown in Table 4-13 indicates that the lowest AAE value is observed in the 
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analysis that included SOM clustering. Tn the contrary, the lowest accuracy, and the highest AAE 

value were achieved in models involving K-means. 

In conclusion, the results of all three extrinsic cluster evaluation methods indicate that the 

modeling options involving SOM clusters and neglecting the IRI of the previous years were the 

best responding models.  

4.5.2 Intrinsic cluster evaluation 

Intrinsic evaluation is another method of determining the goodness of clustering. Unlike 

extrinsic evaluation, the intrinsic assessment of clusters is easier and helps understand the structure 

of the data. Intrinsic clustering evaluation is carried out for the SOM since it yielded the best 

results. WEKA’s intrinsic “cluster-to-cluster” evaluation method is used in this analysis. The 

formula shown in Equation 4-1 was to evaluate the goodness of the clustering based on Table 4-

14. 

Table 4-14. WEKA's intrinsic “cluster-to-cluster” evaluation method. 

Practice 
Reference 

R1 R2 R3 R4 R5 R6 R7 R8 

C1 0 0 0 0 0 0 0 0 

C2 0 0 0 0 0 0 0 0 

C3 0 0 0 0 0 170 0 0 

C4 0 0 9 0 0 6 0 1 

C5 0 0 5 0 0 0 0 0 

C6 0 0 9 0 119 11 0 0 

C7 0 0 10 0 3 0 0 0 

C8 0 1 43 0 0 0 0 171 

C9 0 0 0 0 0 0 1 0 

Cumulative 0 1 76 0 122 187 1 172 

Columns given in Table 4-14 (values indicated with “R”) represent the original reference 

clusters (generated in SOM with the original performance indicator -IRI- measured in field) and 

the rows (values indicated with “C”) illustrate the each cluster derived from the SOM clustering 
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where the performance indicator -IRI- is predicted by the best responding ANN model (discussed 

in Section 4.5.1.2). Thus, the numbers filled in the table represent the difference in number of data 

points between “R – C”. Determining the difference of these values is very straightforward when 

both clusters are graphed on the same X and Y plane as described in Figure 4-13. 

To identify the goodness of clustering, the sum of the highest value from each reference 

cluster given in Table 4-14 must be divided by the sum of the cumulative of reference clusters. 

G =
(R1+R2+R3+R4+R5+R6+R7+R8)

∑C
× 100  Equation 4-1 

Where:  

G – the goodness of clustering in percentage 

R – the number of data points in each original reference cluster 

C – the cumulative sum of each reference cluster 

As a result of the calculation of intrinsic analysis, the goodness of SOM clustering is 

obtained as 90%. 
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Figure 4-13. Difference in the number of data points in each group of both original and predicted clusters. 
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4.6 Results and discussions 

The Summary of the results of both clustering techniques is given in Table 4-15. 

Table 4-15. Summary of all analyzed cluster cases. 

Clustering Technique 
Clustering 

Case 

Number of 

Optimal 

Clusters 

Extrinsic Evaluation Results 

Highest 

R2 Value 

RASE 

Value 

AAE 

Value 

K-means 
Case I* 7 0.8735 0.7828 0.626 

Case II* 44 0.8776 0.7698 0.6183 

Self Organizing Maps 
Case I 8 0.8773 0.7707 0.6141 

Case II 8 0.8866 0.7411 0.5936 

*Case I: IRI of the previous year is included. 
*Case II: IRI of the previous year is neglected. 

After comparing all the models considered in this study, it can be concluded from Table 4-

15 that for the current case study, SOM clustering provides the best clustering method to create 

homogeneous groups. This thesis also considered the IRI data from previous years to reveal the 

relationships or changes in results.  

The results of K-means clustering were controversial when considering the IRI of the 

previous year. In the first cases of clustering hiding the 2015 IRI as an additional feature allowed 

to identify the resilience of clustering techniques. Moreover, it became clear that additional feature 

did not alter the results of prediction models, however, in previous Markovian PMS prediction 

models previous years features had strong weight. The summary and comparison of the results of 

clustering methods are briefly discussed below. Thus, in the first case, the configuration of K-

means clustering was as follows: 

• Clustering range to identify the optima: 3-50 

• Attributes were scaled individually. 
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• Attributes Selected: 2017 IRI Data; Traffic (ESALS); Precipitation (mm/year); 

Deflection Basin Area; Center Deflection value 

As a result, the optimal number of clusters was seven (7) with the CCC (Cubic Clustering 

Criterion) of 12.7. The Parallel coordinates plot of this clustering is shown in Figure 4-14. 

 

Figure 4-14. The parallel coordinate plot of the first case of K-means Clustering. 

When the IRI data from previous years is included as a predictor, the number of optimal 

clusters increases to 44 groups with the CCC (Cubic Clustering Criterion) of 33.67 (results are 

shown in Figure 4-15). This clearly indicates that K-means clustering is unable to group the 

elements having the same properties as it is using the hard clustering method.  

 

Figure 4-15. The parallel coordinate plot of the second case of K-means clustering with 2015 IRI 

data. 



 

75 
 

Figure 4-16 depicts the comparison of biplots for both clustering cases and clearly indicates 

the inadequacy of K-means clustering in this case study. Biplots of clustering were varying 

significantly because K-means is a hard-clustering method. Therefore, K-means clustering fails to 

decide which cluster the elements of groups must be included when the values share the exact 

same properties. However, the soft clustering method calculates the distance of the data point to 

the cluster centroids based on the percentage and can even include the exact same values in both 

clusters. Thus, when considering the jump in the optimal number of clusters from 7 to 44 in K-

means analysis, the resilience of soft clustering against the addition of a feature marginally 

outperforms the K-means clustering. 

 

Figure 4-16. Bi-plot comparison of the first (left) and the second (right) cases of K-means 

clustering. 

On the other hand, SOM clustering is using soft clustering as mentioned in the previous 

sections and it can better cluster the data on an imaginary plane than other clustering methods. 

Clustering configurations for the first case of the SOM used in this study is given below: 

• Clustering range: 3-50 
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• Attributes were scaled individually.  

• 3x3 SOM grid is utilized in both cases. 

• Attributes involved: 

o 2017 IRI Data 

o Traffic (ESALS) 

o Precipitation (mm/year) 

o Deflection Basin Area 

o Center Deflection value 

As a result, in the first case, the optimum number of clusters was eight (8) with the CCC 

value of 6.47.  

In the second case, IRI IRI of the previous year was included as an additional attribute and 

the optimal number of clusters was still calculated as eight (8) with the CCC value of 3.97. The 

results of the parallel coordinate plots of both cases were similar to each other and graphs are 

shown in Figure 4-17.  

Thus, it indicates that the SOM clustering is yielding more stable and reliable homogeneous 

groups for this specific case study. 
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Figure 4-17. Comparison of parallel coordinate plots of the first (left) and the second (right) 

cases of SOM clustering. 

In the end, from Figure 4-17 and Figure 4-18 it is obvious that SOM clustering is yielding 

more stable and reliable homogeneous groups. The number of clusters, distribution of points, 

behavior of centroids and the range of the clusters were very similar. Thus, it can be concluded 

from this comparison that SOM performs clustering more properly in this particular study. 

 

Figure 4-18. Comparison of bi-plots of the first (left) and the second (right) cases of the SOM 

clustering. 

Moreover, the outcomes of the extrinsic analysis measuring the goodness of the clustering 

using three different prediction models (Neural Networks, Decision tree, and Logistic Regression) 

were indeed able to highlight in Figure 4-19 that neglecting the previous year’s IRI data in SOM 

Clustering affected the results in a positive way while generating homogeneous groups. As a result 

of the clustering, this study was able to emphasize the impact of each attribute (traffic, rain, 
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deflection and deflection basin area) on homogeneous grouping. Each prediction model had its 

strengths and depending on the purpose of the analysis each model had unique outcomes. 

However, the most reliable model for this particular case study was the neural networks model 

where 10 step boosting was used with two hidden layers shown in Figure 4-19. The comparison 

of the R2 values of all models used in the extrinsic evaluation is illustrated in Figure 4-19 as well. 

It is possible to conclude from this table that the best option to create the homogeneous groups is 

excluding the previous year’s data from the analysis and using the SOM Clustering technique, 

whose soft-clustering approach helps to distribute the points better on the map. 

Following the above results, SOM clustering is considered as a base clustering method to 

create homogeneous groups and the whole Costa-Rican roads network (the current case study) was 

mapped illustrating road sections and corresponding groups in Figure 4-20. 

 

Figure 4-19. Comparison of all extrinsic evaluation models. 
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Table 4-16. Confidence interval of the best prediction models. 

Confidence Interval Logistic Regression Partitioning Neural Networks 

99% confidence interval: 0.78587 ≤ R2 ≤ 0.80533 0.87022 ≤ R2 ≤ 0.88258 0.87839 ≤ R2 ≤ 0.89001 

95% confidence interval: 0.78819 ≤ R2 ≤ 0.80301 0.87170 ≤ R2 ≤ 0.88110 0.87978 ≤ R2 ≤ 0.88862 

90% confidence interval: 0.78939 ≤ R2 ≤ 0.80181 0.87246 ≤ R2 ≤ 0.88034 0.88049 ≤ R2 ≤ 0.88791 

 

 In addition to the comparison of the extrinsic evaluation models confidence intervals for 

three prediction models are given in Table 4-16. It is obvious from the table that the prediction 

model built using the artificial neural networks is the best responding model within 99% 

confidence interval with the R2 range of 0.87-0.89.  
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Figure 4-20. Map of the Costa-Rica illustrating similarly acting homogeneous groups of pavements. 
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In conclusion, it is possible to emphasize that in order to create homogeneous groups based 

on pavement deterioration considering the daily factors affecting its conditions, the outcome of 

SOM clustering is satisfactory and this method can be taken as a basis for further future researches 

to polish and build a new decision making-system for the pavement management systems.  
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Figure 4-21. Correlation of attributes with clustering. 

 Additionally, it can be concluded from the visual correlation of an each attribute 

with the clustering shown in Figure 4-21 that the precipitation has the most impact on 

homogeneous groups.  
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Chapter 5  

5. Conclusion and future research 

The overall goal of this research was to develop an approach that is capable of clustering 

given datasets of deteriorating daily factors such as climate, traffic loading and the current 

condition of pavement based on its performance into various homogenous groups. This in return 

allows understanding the correlation between daily factors and their effects on the pavement 

performance. 

As a result of the case study, it is possible to conclude that daily factors like precipitation, 

deflection and traffic load have a significant impact on pavement deterioration and creating 

homogeneous groups provides reasonable results. Thus, the latest rendered map given in Figure 4-

18 (created based on the SOM clusters) illustrates the successful clustering of the road condition 

based on traffic and weather conditions.  

The case study reported in this thesis proposes two different methods to analyze the impact 

of daily factors on pavement deterioration. One of the main methods implemented here was SOM 

clustering which provided better results than the K-means clustering method. One of the most 

influential factors affecting the deterioration was traffic loading. Overall, the deflection was the 

second most influential factor whereas the precipitation was third on the list. Here, it is proved that 

weather is one of the factors affecting the deterioration of the pavement where road maintenance 

has not been done for more than 20 years. In fact, around the capital higher values of AADT and 

precipitation have put the whole area into one cluster which required even further research in the 

future. The second method (K-means) which uses hard clustering was rather weaker than SOM 
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clustering because the amount of the data collected couldn’t be processed as some points were 

overlapping.  

5.1 List of findings 

The major findings of this thesis can be summarized as follows.  

- K-means clustering failed to identify optimal clusters when an additional feature is 

introduced into the data frame. 

- Self-organizing maps were instrumental to cluster pavements into homogeneous groups.  

- Addition of previous year’s pavement condition as an attribute didn’t alter the results of 

prediction models despite previous Markovian models  claiming the opposite. 

- Spatial visualization suggested that precipitation plays an important role in this case study. 

5.2 Major contribution of this thesis 

The main contributions of this thesis include: 

- “Hard clustering” method such as k-means algorithm is vulnerable to feature addition. 

- IRI predictors were trained through three techniques. 

- Performance (goodness) of two clustering methods was tested through intrinsic and 

extrinsic evaluations. 

- Final interactive database was generated. Thus, model will automatically generate 

homogeneous groups when new data is inputted. 

5.3 Significance and impact  

Previous studies did not develop a method to detect homogeneous groups considering 

pavement deterioration. The method suggested by this thesis will help to easily decide on what 

group or category the road section falls into by inputting the measured data. Homogeneous groups 
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can help to decide on what type of rehabilitation method must be selected for a section of the road 

at first glance.  

The LANAMME study concluded that the government lacks a coherent policy for the 

maintenance or improvement of the country’s roadway network. According to the government 

reports during the past two years, CONAVI allocated $24.6 million for repairs along 907 Km (564 

miles) of roads “without achieving the expected results” (CONAVI, 2019). That figure represents 

11.5 percent of the $213.7 million invested in maintaining all the country’s paved roads for a year. 

Considering these issues creating a method to evaluate the pavement systems becomes important.  

5.4 Limitations of this thesis work 

As in any data-driven research, the dataset is one of the most important aspects to consider. 

In this thesis integrity of datasets was one of the main challenges. All datasets were collected from 

different sources closed to the public in different file formats. In order to be able to cluster dataset 

into homogeneous groups, every affecting factor must be collected from the same location. 

Converting separate data files and merging them all in one file was challenging, however, cleaning 

the dataset was even more problematic because different indicators like IRI or FWD had different 

measuring distances as one of them collected the data on the roads every 100 meters and the other 

every 200 meters which led to cleaning of almost half of the final database. Thus, the lack of 

pavement condition indicator and affecting factor’s measurements in some parts of the country 

and/or roads was one of the main limitations of the thesis work. 

Moreover, besides the size of the datasets and difficulties in merging them, necessary 

attributes affecting the deterioration of the pavement such as the age of the pavement, rutting data, 

drainage data were missing. 
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5.5 Future research 

Further research can take this topic one step further by creating a decision-making software 

based on homogeneous groups. This can assist engineers and consulting companies in choosing 

the most reasonable reconstruction and rehabilitation methods on certain sections of the roads that 

correspond to a certain homogeneous group. However, it is also necessary to include other factors 

like the age of the pavement, condition indicator, drainage, etc. in future research papers because 

these features will alter the results of the clustering. Additionally, some anomalies in homogeneous 

groups can be observed in Figure 4-20. These inconsistencies occur because different pavement 

structures exist in the same zones. Thus the material, structure and thickness of the pavement must 

be included in future researches to eradicate these anomalies.  
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