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Abstract

Distributional Feature Mapping in Data Classification

Md. Hafizur Rahman

Performance of a machine learning algorithm depends on the representation of

the input data. In computer vision problems, histogram based feature representa-

tion has significantly improved the classification tasks. L1 normalized histograms

can be modelled by Dirichlet and related distributions to transform input space to

feature space. We propose a mapping technique that contains prior knowledge about

the distribution of the data and increases the discriminative power of the classifiers

in supervised learning such as Support Vector Machine (SVM). The mapping tech-

nique for proportional data which is based on Dirichlet, Generalized Dirichlet, Beta

Liouville, scaled Dirichlet and shifted scaled Dirichlet distributions can be incorpo-

rated with traditional kernels to improve the base kernels accuracy. Experimental

results show that the proposed technique for proportional data increases accuracy for

machine vision tasks such as natural scene recognition, satellite image classification,

gender classification, facial expression recognition and human action recognition in

videos. In addition, in object tracking, learning parametric features of the target

object using Dirichlet and related distributions may help to capture representations

invariant to noise. This further motivated our study of such distributions in object

tracking. We propose a framework for feature representation on probability simplex

for proportional data utilizing the histogram representation of the target object at

initial frame. A set of parameter vectors determine the appearance features of the

target object in the subsequent frames.

Motivated by the success of distribution based feature mapping for proportional

data, we extend this technique for semi-bounded data utilizing inverted Dirichlet,

generalized inverted Dirichlet and inverted Beta Liouville distributions. Similar ap-

proach is taken into account for count data where Dirichlet multinomial and general-

ized Dirichlet multinomial distributions are used to map density features with input

features.
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Chapter 1

Introduction

1.1 Background

Appropriate and accurate representation of the data for classification models is one of

the existing problems in machine learning. Several classification and hybrid models

have been developed, yet a little attention has been given to a get a proper repre-

sentation of the data through distribution based feature mapping in discriminative

approaches [103]. In this thesis, we address this issue in supervised learning problems

for proportional, semi-bounded and count data. A popular image representation is

the Bag of Visual Words (BoVW) approach which is essentially quantizing similar

patches of an image to the corresponding cluster center which is known as code-

book [8], [105]. Modelling such data after normalization in a probabilistic manner

needs to satisfy the constraints of non-negativity and unit sum. Examples of such

data includes L1 normalized histogram for images and normalized bag of words rep-

resentation of texts (or images) data. In particular, we are motivated by the problem

of modelling features in images and videos where each feature represents a portion of

the total features considered. For example, an image can be represented by a normal-

ized histogram of bag of vectors where each vector element represents a sub-region of

the image. Knowledge about statistical characteristics of such representations has to

be used effectively in order to get better classification accuracy. Dirichlet and related

distributions can model this type of data to get the prior information which can be

used as a feature. The advantages of such distributions are that they can capture the
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nature of the data and provide flexibility. For support vector machine (SVM), tradi-

tional kernels do not take into account the nature of the data. Utilizing our proposed

feature mapping technique increases the classification accuracy of these kernels.

Incorporating invariances in the representation using prior knowledge is a common

technique to make the learning task more efficient and in general form, prior informa-

tion makes it possible to generalize training examples to novel test examples [103]. In

supervised learning, hyperparameters of the classifiers work as prior information. An-

other approach is to select features that convey most relevant information regarding

the data or the task. Such features are automatically incorporated in some kernels

such polynomial kernel for SVM [35]. On a different note, distribution based flexible

feature mapping can be efficient in different classification tasks [82]. For SVM, input

data are represented as points in high dimensional space. This representation needs

to be linearly separable to make the model work properly. Therefore, for non-linear

data, performance of SVM model lacks accuracy. However, kernel trick or feature

mapping technique has made it possible to model non-linear data which is essentially

taking the data space to higher dimension where the data become linearly separable.

It is a common idea to extract new features from the input variables through a fea-

ture mapping function which increases the separability between the data classes. On

the contrary, feature mapping without statistical measure about the data does not

guarantee the improvement in model’s performance. Selecting the most informative

attributes from the set of redundant attributes is suboptimal for a classifier and on

the contrary, it may keep out some relevant features as well [56]. Hence, extracting or

creating new features from the data with prior information using a parameterized fea-

ture mapping function can be incorporated in classification model with certain degree

of confidence. Histogram representation of the extracted data can be modelled in a

probabilistic way by performing L1 -normalization and Dirichlet or Liouville type dis-

tributions is the choice to estimate the density of such data. Therefore, a parametric

distribution based mapping function can be developed to increase the quantization

capability of the classification model.
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1.2 Contributions

The main objective of this thesis is to study the effectiveness of combining differ-

ent distributions based features with the input features to improve performance of

discriminative classifiers accuracy such as SVM.

• Efficient feature mapping using Dirichlet, generalized Dirichlet and

Beta Liouville, scaled Dirichlet and shifted scaled Dirichlet distribu-

tions

We propose a new feature mapping technique for proportional data to im-

prove the classification accuracy. L1 normalized histograms can be modelled by

Dirichlet and related distributions to transform input space to feature space. A

paper based on Dirichlet, generalized Dirichlet and Beta Liouville based feature

mapping technique has been submitted to Neurocomputing [93] and is under

review. An extension of this paper based on scaled Dirichlet and shifted scaled

Dirichlet distributions has been submitted to IEEE International Symposium

on Networks, Computers and Communications 2020 [95].

• Feature mapping for semi-bounded data using inverted Dirichlet, gen-

eralized inverted Dirichlet and inverted Beta Liouville distributions

We extend our previous contribution for inverted Dirichlet, generalized inverted

Dirichlet and inverted Beta Liouville distributions. This contribution has been

submitted to IEEE International Conference on Systems, Man, and Cybernet-

ics, 2020 [94].

• Feature mapping for count data using Dirichlet multinomial and gen-

eralized Dirichlet multinomial distributions

A statistically flexible feature mapping technique for count data is proposed us-

ing Dirichlet multinomial and generalized Dirichlet multinomial distributions.

This contribution has been published at IEEE Symposium on Computational

Intelligence and Data Mining, 2019 [92].

• Parametric Features on Simplex Manifold for Online Object Tracking

We propose a framework to concatenate density based features in simplex man-

ifold with raw features to improve object tracking performance. We also dis-

cuss how to approximate non-linear kernel with the proposed approach. This

3



contribution has been submitted to IEEE International Conference on Image

Processing, 2020 [91].

1.3 Thesis Overview

� Chapter 1 introduces the concepts of feature mapping and various related works

on Support Vector Machine (SVM) and kernel functions. We also explain the

motivation behind this work.

� In chapter 2, we present efficient feature mapping approach for proportional

data using Dirichlet, generalized Dirichlet, Beta Liouville, scaled Dirichlet and

shifted scaled Dirichlet distributions. We demonstrate the effectiveness of the

proposed method in computer vision problems by solving several recognition

tasks such as natural scene recognition, satellite image classification, human

action recognition in videos, gender classification and facial expression recogni-

tion.

� In chapter 3, we extend the idea proposed in chapter 2 for inverted Dirichlet,

generalized inverted Dirichlet and inverted Beta Liouville distributions. Exper-

iments with various applications such as image classification, action recognition

and texture classification are described in details.

� In chapter 4, we present Dirichlet multinomial and generalized Dirichlet multi-

nomial distributions based feature mapping for count data.

� In chapter 5, we extend our ideas in online object tracking. Also, we present a

framework to approximate non-linear kernels with our proposed feature map-

ping approach.

� We summarize our overall contributions in chapter 6 with concluding remarks.
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Chapter 2

Feature Mapping for Classifying

Proportional Data

2.1 Distributions for Proportional Data

In this chapter, we detail our proposed feature mapping technique for classifying

proportional data. First, we present our selected distributions for proportional data

which are bounded to unit simplex. Next, we discuss SVM learning algorithm along

with feature mapping function. Finally, we show the experimental results of the

proposed technique in details.

2.1.1 Dirichlet Distribution

Dirichlet distribution is the generalization of Beta distribution and most appropriate

candidate in probability and statistics when modelling proportional data [31, 83]. It

is a distribution over the multinomials in a simplex with support [0, 1]. If a vector

p = (p1, p2, . . . , pD) of length D resides in a D dimensional closed simplex of RD,

then it can be defined as,

C(1) = {p ∈ RD : p1 + p2 + . . .+ pD = 1, pd ≥ 0, 1 ≤ d ≤ D for all d} (1)

If the proportional vector p ∈ C(1) 1, then the joint probability density function

1C(n) = C(1); n = sum of the multinomials

5



of p = (p1, p2, . . . , pD) is defined as,

P (p|α) =
Γ (
∑

d αd)∏D
d=1 Γ(αd)

D∏
d=1

pαd−1
d

D∑
d=1

pd = 1 , pd ≥ 0

(2)

Here, α = (α1, α2, . . . , αD) is a positive parameter vector which defines the shape of

the distribution in D dimensional space. Total mass, α0 =
∑

d αd is the concentration

or scale parameter and the base measure is (α′1, α
′
2, . . . , α

′
D) = αd

α0
. In case of symmet-

ric distribution, the mean of the distribution is determined by the base measure. In

addition, altering the measurements in α affects the variance of the distribution.

E(pd) =
αd
α0

= α′d

V ar(pd) =
αd(α0 − αd)
α2

0(α0 + 1)
=
α′d(1− α′d)
α0 + 1

Cov(pd, pf ) =
−αdαf

α2
0(α0 + 1)

(3)

It should be noted that, small values of the concentration parameter α0 favors

the extreme values of the density function and as a result, data are distributed all

over the simplex and it is more compact at the corner of the simplex. The shape

parameter α makes it possible to model data in linear, convex and concave hulls [82].

Figure 1 shows the flexibility of the distribution by changing the parameters. α0

controls the peak of the distribution and αd determines the location of the peak. If

the expected values of the parameters are equal then data are distributed uniformly

over the simplex. The higher the parameter value, more confident we are about that

parameter and hence density values are more peaked on that side.

6



Figure 1: Peak of the Dirichlet and generalized Dirichlet distributions generated using
four different sets of parameters.

2.1.2 Generalized Dirichlet Distribution

From Eq.(3), we see that any two random variables following Dirichlet distribution

are negatively correlated. If the variables are positively correlated, then Dirichlet

prior is not a proper choice. A modification in such cases is the generalized Dirichlet

(GD) distribution which entertains both negatively and positively correlated random

variables [32,115]. In dimension D, generalized Dirichlet distribution with parameter

vector θ = (α1, β1, α2, β2, . . . , αD, βD) is defined as,

P (p|θ) =
D∏
d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
pαd−1
d

(
1−

d∑
l=1

pl

)γd
(4)

Here,
∑D

d=1 pd < 1, and 0 < pd < 1 for d = 1, 2, . . . , D where αd > 0, βd > 0

and γd = βd − αd+1 − βd+1, γD = βD − 1 for d = 1, 2, . . . , D. GD becomes Dirichlet

distribution when βd = αd+1 + βd+1. If a vector p ∼ GD(α1, β1, . . . , αD, βD), then

it can be transformed to follow independent Beta distributions for each dimension

7



using the following transformation proposed by [44]-

z1 = p1

zd =
pd

1−
∑d−1

j=1 pj

pd = zd(1− p1 − p2−, . . . , pd−1) = zd

d−1∏
j=1

(1− zj)

(5)

It is evident that generalized Dirichlet distribution has 2D number of parameters.

Unlike Dirichlet distribution where the expectation is fixed, in GD distribution, the

expectation of each dimension d continues to evolve over the dimension d− 1.

E[pd] =
αd

αd + βd

d−1∏
j=1

βj
αj + βj

d = 1, 2, . . . , D (6)

Cov(pd, pf ) = E(pf )
( αd
αd + βd + 1

d−1∏
j=1

βj + 1

αj + βj + 1

)
d, f = 1, 2, . . . , D (7)

Flexible covariance structure of GD distribution enables it to have different degrees

of belief on random variables while keeping the same expectation [115]. From Fig. 1, it

is evident that for Dirichlet distribution, symmetrically distributed random variables

are less concentrated at the center (for example, α = [2, 2, 2]) than the random

variables following generalized Dirichlet distribution which are more concentrated at

the center asymmetrically (α = [2, 4]; β = [4, 4]). It can be shown that generalized

Dirichlet distribution reduces to Dirichlet distribution when βd = αd+1+βd+1 (see [26]

for details). If the expectation is varied and for example when α = [2, 6]; β = [6, 8]

in Fig. 1, generalized Dirichlet distribution captures the variation of the data more

flexibly.

2.1.3 Beta-Liouville distribution

While generalized Dirichlet distribution is more flexible than Dirichlet distribution, it

requires twice the number of parameters. An efficient replacement for Dirichlet and

generalized Dirichlet distributions is the Beta-Liouville distribution which overcomes

the limitations of Dirichlet distribution and requires less parameters to estimate than

8



generalized Dirichlet distribution [23]. Vector, p = (p1, p2, . . . , pD) will follow a Liou-

ville distribution if and only if p
d
= uq where q = (q1, q2, . . . , qD) = ( p1∑

p
, p2∑

p
, . . . , pD∑

p
)

∼ Dir(α1, α2, . . . , αD) and u =
∑D

d=1 pd is an independent random variable with

density function f(·). The joint distribution is the density function of the Liouville

distribution.

P (p1, p2, . . . , pD|α1, α2, . . . , αD) = f(u)Dir(q|α)

= f(u)
Γ(
∑
αd)∏D

d=1 Γ(αd)

D∏
d=1

qαd−1
d

(8)

The mean, variance and covariance are given by [25],

E[pd] = E[u]
αd
α0

(9)

V ar(pd) = E[u2]
αd(αd + 1)

α0(α0 + 1)
− E[u]2

α2
d

(α0)2
(10)

Cov(pl, pk) =
αlαk
α0

[E(u2)

α0 + 1
− E(u)2

α0

]
; l 6= k (11)

Development of Beta-Liouville density function

In the joint density function if the generating variate u = 1, then it becomes Dirichlet

distribution. If it follows B(α, β) that is u is defined over [0, 1] then distribution with

generating density,

f(u|α, β) =
Γ(α + β)

Γ(α)Γ(β)
uα−1(1− u)β−1 (12)

E[u] =
α

α + β
(13)

E[u2] =
α(α + 1)

(α + β)(α + β + 1)
(14)

V ar(u) =
αβ

(α + β)2(α + β + 1)
(15)

9



The density generator g(·) becomes,

g(u) =
α0

B(α, β)uα0−1
uα−1(1− u)β−1

=
α0

B(α, β)
uα−α0(1− u)β−1

(16)

Finally, the joint probability density function of p becomes,

P (p|α1, . . . , αD;α, β) =
Γ(α0)

B(α, β)

D∏
d=1

pαd−1
d

Γ(αd)
(
D∑
d=1

pd)
αd−α0(1−

D∑
d=1

pd)
β−1 (17)

This is called the Beta-Liouville distribution having D+2 parameters. Using Eq. (9),

Eq.(10) and Eq.(11), we get the mean, variance and covariance of the Beta-Liouville

distribution.

E[Xd] =
α

α + β

αd
α0

(18)

V ar(Xd) =
α(α + 1)

(α + β)(α + β + 1)

αd(αd + 1)

α0(α0 + 1)
− α2

(α + β)2

α2
d

α2
0

(19)

Cov(Xl, Xk) =
αlαk
α0

[ α(α + 1)

(α + β)(α + β + 1)(α0 + 1)
− α2

(α + β)2α0

]
; l 6= k (20)

2.1.4 Scaled Dirichlet Distribution

Scaled Dirichlet distribution is a generalization of Dirichlet distribution after applying

perturbation operation. Similar to Dirichlet, it is a distribution over multinomials in

a simplex with support [0, 1]. Given a D dimensional vector of scaled gamma random

variables of p such that pd ∼ Ga(αd, βd), scaled Dirichlet distribution can be obtained

by performing normalization operation which transforms p into a proportional vector.

If the proportional vector is p ∈ C(1) where C(n) = C(1) and n = sum of the

multinomials, then the joint probability density function of p = (p1, p2, . . . , pD) is

defined by, [2, 3, 81, 86].

p(P |θ) =
Γ(α+)∏D
d=1 Γ(αd)

∏D
d=1 β

αd
d pαd−1

d(∑D
d=1 βdpd

)α+
(21)

Here, α = (α1, α2, . . . , αD) and β = (β1, β2, . . . , βD) are shape and scale parame-

ter vectors, respectively. Since, elements of β vector sum to unity, the number of
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free parameters is 2D − 1. It can be easily shown that Eq.(21) turns into Dirichlet

distribution by setting a constant value for the relaxed β variables.

2.1.5 Shifted Scaled Dirichlet Distribution

Shifted Scaled Dirichlet (SSD) distribution is obtained after applying the powering

operation to the proportion vector p ∼ SD(p|α,β). A new scale parameter τ is

introduced that scales the translated density values of Scaled Dirichlet distribution.

This distribution has 2D free parameters. Given, α,β ∈ RD
+ as shape and location

parameters and τ ∈ R+ as scale parameter, Shifted Scaled Dirichlet density function

can be computed as follows,

p(P |θ) =
Γ(α+)∏D
d=1 Γ(αd)

1

τD−1

∏D
d=1 β

−αd
τ

d p
αd
τ
−1

d(∑D
d=1

(
pd
βd

) 1
τ
)α+

(22)

2.1.6 Parameter Estimation

The concentration parameter α can be determined from the observed proportional

data Dobs = {p1, p2, . . . , pD}. If the dataset contains N observation with D dimen-

sions, then the joint probability function of the whole dataset will be-

p(Dobs|α) =
N∏
i=1

p(Pi|α)

=
N∏
i=1

Γ(
∑

d αd)∏
d Γαd

∏
d

pαd−1
i,d

(23)

In order to maximize Eq.(23), we need to take the gradient and set it to zero.

It is cumbersome to apply chain rule with the product terms in Eq.(23). Therefore,

we take maximum likelihood estimation (MLE) approach. Since the distributions

discussed above are from exponential family, taking the logarithm will turn it into a

convex optimization problem [62] and thus a line search algorithm such as Newton-

Raphson method or fixed point iteration method can be applied [79], [114], [106].
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log(p(Dobs|α)) = N log Γ
∑
d

αd −N
∑
d

log Γαd +N
∑
d

(αd − 1)log p̄d (24)

The derivative for one αd is,

gd = N ψ(
∑
d

αd)−N ψ(αd) +N log p̄d (25)

Here, ψ(x) = d log Γ(x)
dx

is the digamma function. The gradient for the dataset is D× 1

and can be written as follows,

g = ∇log(p(Dobs|α)) = N


ψ(
∑

d αd)− ψ(α1) + log p̄1

ψ(
∑

d αd)− ψ(α2) + log p̄2

...

ψ(
∑

d αd)− ψ(αD) + log p̄D

 (26)

In exponential family of distribution, when the gradient is set to zero, the observed

and sufficient statistics becomes equal and as since Dirichlet distribution is from the

exponential family, it is possible to formulate an iterative equation and solve it as a

fixed point iteration problem to determine the concentration parameters α (see [79]

for details). For a vector, this can be expressed as follows-

E[log pd] = ψ(αd)− ψ(
∑
d

αk)

ψ(αnew
d ) = ψ(

∑
d

αold
d ) + log p̄k

(27)

Fixed point iteration method converges only when |g| < 1 and is linearly conver-

gent meaning that decreasing error in each step is roughly proportional to previous

step. In contrast, Newton-Raphson method has quadratic convergence rate and guar-

antees to converge given that the initial guess is close to final estimate. The Hessian
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of the log-likelihood function is,

H = ∇2log(p(Dobs|α)) =


∂l2

∂α1
2

∂l2

∂α1α2
. . . ∂l2

∂α1αd
∂l2

∂α2α1

∂l2

∂α2
2 . . .

∂l2

∂α2αd
...
. . .

∂l2

∂αdα1

∂l2

∂αdα2
. . . ∂l2

∂αd2

 = B + 1d1T
d b (28)

where, B=̂ diag: RD → RDxD : −N diag(ψ
′
(α1), . . . , ψ

′
(αD)) and b = Nψ

′
(
∑

d αd)

; ψ
′
(x) = dψ(x)

dx
is the trigamma function. For Newton-Raphson algorithm, the Hes-

sian needs to be inverted and [78] provided the following inversion technique using

Sherman-Liberman formula-

H−1 = B−1 − B−11D1T
DB−1

b−1 + 1T
DB−11D

(29)

Therefore, update for the Newton’s algorithm becomes,

αnew = αold −H−1g (30)

As discussed, it is important to estimate the initial values of the parameters more

accurately rather than taking random initial guess so that Eq.(30) converges to global

optima. There are some propositions for the initial estimation of these parameters.

Method of moments technique provides good estimate of the initial guess of the

parameters. The first and second moments of the data can be calculated from the

moment generating function. The moment generating function of a vector X of

random variable x is given by E(etX) and is defined by MX(t).

MX(t) = E(etX)

=

∫ ∞
−∞

etxf(x)dx

With the utilization of Taylor series expansion solving the above equation for

Dirichlet distribution results in the first and second moments can be presented as

follows-
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E(X) =
αd∑
d αd

E(X2) =
αd(αd + 1)∑

d αd(
∑

d αd + 1)

Solving the above equations, we get the values of the parameters α which can be

used as an initial guess for the Newton’s algorithm.

αd = E[pd]
E[pd]− E[p2

d]

E[p2
d]− E[pd]2

2.2 Support Vector Machine

SVM is a well known and common choice for supervised machine learning. Empiri-

cally it has shown good generalization performance in different fields of research and

applications [108], [70], [18]. The aim of using this classifier is to find the support vec-

tors that maximize the margin between class labels where number of support vectors

is proportional to generalization error [109]. Considering the primal representation of

the optimization problem, we have

min
w,b,ξ

1

2
||w||2 + C

N∑
i

ξi (31)

subject to, y(i)(wTφ(pi) + b) ≥ 1− ξi, i = 1, . . . , N (32)

ξi ≥ 0, i = 1, . . . , N (33)

Assume the dataset D = {(pi, yi)}Ni where N is the number of images and each

image is represented by a L1 -normalized histogram, pi and the corresponding label yi.

The objective is to determine the infinite number of linear classifiers that maximizes

the geometric margin between the classes with the lowest generalization error. In case

of non-seperable data, we look into higher dimensional space to find the appropriate

hyperplane that maximizes the geometric margin and minimizes the misclassification

error through some feature mapping technique. To control the trade off between the

large margin and error rate, the hyperparameter C is incorporated.

The above is a convex quadratic optimization problem with linear constraints.

Solving this problem will result in the maximum geometric margin between classes.
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Here, φ(pi) is the embedding or feature mapping function from the input space, χ

to the feature space, H. If no extra features are extracted from the data then this

function represents the original input data known as the attributes and the kernel,

K which is the inner product between two datapoints become 〈pi, pj〉 instead of

〈φ(pi), φ(pj)〉. For non-linearly separated data, slack variables ξi are introduced in

the objective function and the constraints are modified accordingly. C is a hyper-

parameter that regularizes our objective function for misclassification.
∑N

i ξi is the

upper bound of the generalization error. In hard margin classifier, higher values of

hyperparameter C allows lower the misclassification error and in soft margin classifier,

C is set to low values to provide flexibility at boundary region for some datapoints

to be miss-classified.

Solving the dual problem is computationally convenient for large datasets. Relax-

ing the constraints with the help of Lagrange multipliers, dual solution becomes,

maximize
γ

N∑
i

γi −
1

2

N∑
i

N∑
j

γiγjy
(i)y(j)〈φ(pi), φ(pj)〉

subject to: 0 ≤ γi ≤ C,
∑
i

γiy
(i) = 0 where i = 1, . . . N ∀ αi, y(i)

(34)

Only the support vectors have γ values elsewhere it is zero. Getting the support

vectors, the decision function classifies the data by comparing the kernel with the

support vectors. The decision function of the support vector machine becomes,

f(p) =
n∑
i

γiy
(i)〈φ(pi), φ(p)〉 (35)

2.3 Feature Mapping: Dirichlet SVM, General-

ized Dirichlet SVM, Beta-Liouville SVM

In this section, we focus on the primal and dual forms of the optimization problem

in Eq(33) and Eq.(82) to modify the feature mapping function φ(p). As discussed,

optimum performance of SVM depends on the choice of the kernel function and

there is no structured procedure to select the kernel function or feature mapping

function [14]. One of the advantages of embedding input vectors into the feature
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space is providing flexibility in choosing the mapping function φ(p) depending on the

structure of the data. Taking the advantage of Dirichlet, generalized Dirichlet, Beta-

Liouville, scaled Dirichlet and shifted scaled Dirichlet distributions for proportional

data modelling, a new feature map can be constructed as follows,

φj(pi) =



pij j = 1, . . . , D

Γ(
∑
d αd)∏D

d=1 Γ(αd)

∏D
d=1 p

αd−1
id j = D + 1

∏D
d=1

Γ(αd+βd)
Γ(αd)Γ(βd)

pαd−1
id

(
1−

∑d
l=1 pil

)γd
j = D + 1

Γ(α0)
B(α,β)

∏D
d=1

p
αd−1

id

Γ(αd)
(
∑D

d=1 pid)
αd−α0(1−

∑D
d=1 pid)

β−1 j = D + 1

Γ(α+)∏D
d=1 Γ(αd)

∏D
d=1 β

αd
d p

αd−1

d(∑D
d=1 βdpd

)α+ j = D + 1

Γ(α+)∏D
d=1 Γ(αd)

1
τD−1

∏D
d=1 β

−αdτ
d p

αd
τ −1

d(∑D
d=1

(
pd
βd

) 1
τ
)α+ j = D + 1

(36)

To estimate the parameters in Eq.(36), a similar technique is followed as described

by [82]. Using the kernel trick, the proposed feature mapping technique can be

used with the traditional non-linear kernels to map input space into feature space

implicitly without knowing about the feature space. The dimension of the input

space is increased by 1 by doing the feature mapping mentioned in Eq.(36). We can

formulate the Dirichlet SVM (DSVM) as follows,
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min
w,b,ξ

1

2

D+1∑
d=1

w2
d + C

D+1∑
d=1

ξi (37)

subject to, y(i)
( D∑
d=1

wdpid + wD+1
Γ (
∑

d αd)∏D
d=1 Γ(αd)

D∏
d=1

pid
αd−1 + b

)
≥ 1− ξi, i = 1, . . . , n

(38)

piD = 1−
D−1∑
d=1

pd (39)

ξi ≥ 0, i = 1, . . . , n (40)

In a similar fashion, generalized Dirichlet SVM (GDSVM) and Beta-Liouville SVM

(BLSVM) can be formulated. For a new data p′, the trained Dirichlet parameter α is

used to determine the feature mapping according to Eq.(36). The decision function

for this new data becomes,

f(p′) =
N∑
i

(
γi

D+1∑
d=1

pidp
′

d

)
(41)

Applying the flexible mapping function φ(p) in Eq.(36) changes the similarity

measure and thus enables us to modify the base kernel. Apart from the regular kernels

such as RBF, polynomial, sigmoid, χ2 which are discussed vastly in the literature, we

combine our proposed feature mapping technique with other kernels as well.

• Linear

Linear kernel is the simplest kernel which takes the dot products of the features

to capture the similarity amongst them.

K(x,y) = 〈x, y〉 (42)

• RBF-unnormalized Gaussian

Radial basis function characterizes the features by considering the distance from

the center irrespective of the direction. Taking the Euclidean distance and take

scaling that by the hyperparameter γ results in unnormlized Gaussian kernel.

γ controls the width of the distance. [39] presented the following generalized
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representation of the RBF kernels

K(x,y) = e−γd(x,y) (43)

Considering the Euclidean distance results in the Gaussian kernel.

Ki,j = e−γ||xi−xj ||
2

(44)

• Exponential

γ = 1
2σ2 results in exponential kernel. Nomalizing the RBF-unnormalized kernel

with the feature variance σ gives the the Gaussian kernel also known as the

exponential kernel. The similarity decreases if the the parameter value is too

large.

Ki,j = e

−||xi − xj||√
2σ (45)

Doing the Taylor series expansion, this kernel presents an infinite dimensional

feature space.

• Polynomial

This is a popular kernel for non-linear data modelling. The basic idea is to take

the dot product of two vectors to higher dimension d. It is preferable to add an

additional shifting parameter c so that the Hessian does not become zero [55].

Ki,j = (〈xi, xj〉+ c)d (46)

• Bhattacharya Measure

Bhattacharya coefficient is a divergence type measure between distributions and

defined as [43],

B =
N∑
i=1

√
piqi (47)

Considering a D + 1 dimensional vector, it can be geometrically interpreted

that the Bhattacharya coefficient measures the cosine of the angle between

the vector elements. Since, pi and qi represent probability distributions and if

they have the similar density function then the coefficient is 1. However, this
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coefficient can not be used as a metric distance since it violates the axioms of

being a distance metric [52]. To make a proper representation of the distance

metric, [43] modified the coefficient as Dpi,qi =
√

1−B. The kernel for this

distance with hyperparameter γ,

K(p,q) = e−γ
√

1−B (48)

• Generalized Histogram Intersection

Histogram intersection kernel is a positive definite kernel and satisfies Mercer’s

condition to be used in SVM [8], [19]. Global or low-level features are commonly

used for this, however, use of local features works well with this kernel as well.

Given two vectors namely pi and pj containing the elements of two normalized

histograms, histogram intersection measures the similarity between the them

by using Eq.(49) [76].

K(p,q) =
N∑
i=1

min[(pi)
α, (qi)

α] (49)

Setting α = 1 results in histogram intersection kernel.

• Jeffrey Divergence

KL-divergence is non-symmetric and sensitive to histogram binning [101]. In

addition, it is not robust and does not qualify to be used as a metric of the spread

since it violates the triangle inequality. In response to this, Jeffrey divergence

is empirically derived and it is mostly invariant to noise and histogram binning

[61].

K(p,q) =
N∑
i=1

(pi log
pi
µi

+ qi log
qi
µi

); µi =
pi + qi

2
(50)

• Rational Quadratic

From the probabilistic graphical point of view, several squared error kernels are

derived and rational quadratic is one of them. This kernel is a scale mixture

of different characteristic length scales [97]. This kernel is useful for modelling
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data which varies in multiple scales.

K(p,q) =
(

1 +

∑N
i ||pi − qi||2

2αl2

)−α
(51)

Here, α is scale mixture parameter and l is the scale length.

• Inverse Multiquadratic

Inverse multiquadratic function is a member of generalized multiquadratic (GMQ)

family of radial basis functions defined by K(p,q) = (c2 + (εr)2)β [80] where

ε is the shape parameter and parameter β determines the positive definiteness

of the function [41]. Unlike multiquadratic kernel, inverse multiquadratic is a

positive definite [64]. Setting β = 1
2
, we get the following expression for this

kernel-

K(p,q) =
1√∑N

i |pi − qi|2 + c2
(52)

• ANOVA

ANOVA kernel is one of the examples of convolution kernels [111]. This ker-

nel uses factor d to get higher order interactions of the features that we are

interested in and then sum over the terms to get the similarity score.

K(p,q) =
N∑
i

e−(σ(pi−qi)2)d (53)

• Generalized T-student Kernel

This is a positive semi definite kernel and satisfies the condition of Mercer’s

theorem [20]. It has similar form to Inverse Multiquadratic kernel.

K(p,q) =
N∑
i

1

1 + (pi − qi)d
(54)

• MinMax

MinMax is a graph kernel proposed by [96] which is similar to Tanimoto kernel

when applied to binary dataset. MinMax kernel models count data and thus

takes into account the values between 0 and 1. Therefore, this kernel is suitable

20



for proportional data modelling.

K(p,q) =

N∑
i

min(pi, qi)

N∑
i

max(pi, qi)

(55)

• Cauchy

Derived from the long tail Cauchy distribution, Cauchy kernel puts more weight

on interaction of distant non-zero values [9]. [87] applied the Cauchy kernel for

sparse coding of natural scenes data.

K(p,q) =
N∑
i

1

1 + (pi−qi)2
s2

(56)

Unlike Gaussian kernel, in this kernel moving from the center gives more weight

to the features. A combination of these two kernels showed good classification

performance on some datasets [9].

• Cosine Similarity

In an inner product space, cosine similarity measures the similarity between two

vectors by calculating the direction of each vector [57]. This is a non-metric

measure since it does not satisfy all the conditions to be a metric.

K(p,q) =
〈pi, qi〉
||pi||||qi||

(57)

• Tanimoto or Extended Jaccard Similarity

A modification in the cosine similarity function results in Tanimoto similarity

index [96]. It represents the number of attributes shared by the vectors.

K(p,q) =
〈pi, qi〉

〈pi, pi〉+ 〈qi, qi〉 − 〈pi, qi〉
(58)

Here, 〈pi, qi〉 =
∑D

d=1 pid × qid and the term 〈pi, pi〉 = ||pi||2 and 〈qi, qi〉 = ||qi||2

is the Euclidean norm or the length of the vector. [4] derived the modified
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Tanimoto coefficient in relation with Cosine similarity as,

K(p,q) =
cossim(pi, qj)

||pi||2+||qi||2
||pi||||qi|| − cossim(pi, qi)

(59)

Here, cossim(xi, yj) is calculated from Eq.(57).

• Sorensen Similarity

Similar to cosine similarity Sorensen similarity index is a non-metric measure

as it does not satisfy all the axioms of being a metric. This measure is more

appropriate in retaining the sensitivity of the heterogenous data than Euclidean

distance and in image segmentation and lexical association [50], [102] .

K(p,q) =
N∑
i

2piqi
p2
i + q2

i

(60)

Algorithm 1 shows the steps for the Dirichlet SVM, generalized Dirichlet SVM
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and Beta Liouville SVM using Eq.(36).

Algorithm 1: Algorithm for DSVM, GDSVM and BLSVM

1. Input: Training data, D = {(p1, y1), (p2, y2), . . . , (pN , yN)}.
2. Estimate: Initial parameters using Method of Moments (MoM) [82].

3. Update: Apply Newton Raphson’s method until convergence [82].

4. Compute kernel:

• Base kernel: Compute K(p, q) froms Eq.(48) to Eq.(60) for φj(pi) in Eq.(36)

only when j = 1, 2, . . . , D.

• DSVM: Use first and second forms of Eq.(36) for φj(pi) and apply Eq.(48) to

Eq.(60) to compute DSVM kernel, K(p, q).

• GDSVM: Use first and third forms of Eq.(36) for φj(pi) and apply Eq.(48) to

Eq.(60) to compute GDSVM kernel, K(p, q).

• BLSVM: Use first and fourth forms of Eq.(36) for φj(pi) and apply Eq.(48) to

Eq.(60) to compute BLSVM kernel, K(p, q).

• SDSVM: Use first and fifth forms of Eq.(36) for φj(pi) and apply Eq.(48) to

Eq.(60) to compute SDSVM kernel, K(p, q).

• SSDSVM: Use first and sixth forms of Eq.(36) for φj(pi) and apply Eq.(48) to

Eq.(60) to compute SSDSVM kernel, K(p, q).

5. Optimization: Solve the primal problem in Eq.(33) or dual problem in

Eq.(82) to get the support vectors.

2.3.1 Feature Encoding

In several computer vision applications, Bag of Visual Words (BoVW) approach is

considered to represent image features. In this framework, features such as SIFT [73]

or HOG [47] of each images are extracted in the prepossessing stage. The collection

of local features known as the descriptors are clustered into a specified bin size using

K-means clustering algorithm so that similar patches are grouped together. This is

known as quantization and after this each cluster center represents codeword [40].
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The feature distribution of each image over the vocabulary, V is computed by,

fhist =
1

N

N∑
j=1


1 if s= argmin

w∈V
(||w − rj||22)

0 Otherwise

(61)

Here, w is the codebook or cluster center and rj is interest region extracted by SIFT

descriptors. Therefore, each image is represented by visual word frequencies of code-

words in the vocabulary. Satisfying the non-negative constraint and unit sum, this

representation can be modelled with our proposed method as described in Eq.(84).

2.4 Experimental Results: DSVM, GDSVM and

BLSVM

In this section, we evaluate the proposed feature mapping technique for natural scene

classification, satellite image classification and human action recognition in videos for

DSVM, GDSVM and BLSVM. The dual form of the SVM optimization problem is

solved using sklearn API [88]. For multiclass classification, one-vs-all technique is

applied and the tolerance value 10−3 is used as stopping criterion and a hard limit

on the solver is imposed by setting maximum iterations to 5000. All the models are

evaluated using 10 fold cross validation. 9 folds are used for training and the remaining

fold for testing the model. Similar to [82], for image classification best score is reported

for each kernel and for action recognition, average scores with standard deviations are

reported for all kernels. For misclassification, the hyperparameter C in the objective

function is varied from 1 to 15 in 10 base logarithm scale and best models are found

by doing a simple grid search and are reported thereby. For polynomial kernel, degree

3 is considered and for RBF kernel, the similarity measurements are scaled down by

dividing the length of vocabulary size.

2.4.1 15 scenes dataset classification

Scene recognition is very essential for reasoning in navigation and recognition tasks.

Specially in terms of robotics and automation it is significant to enhance machine’s

visual understandings [117]. 15 scene dataset consists of 15 different scene categories.
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First 13 categories were collected combinedly by [49] and [68]. For our experiment,

from each category 100 images were selected totalling to 1500 images. Local features

are extracted using Scale Invariant Feature Transform (SIFT) [73] algorithm as it

is invariant to scale and rotation. In our experiment, we calculate dense SIFT [49]

for speed using [110] . Descriptors are computed for densely sampled keypoints with

similar size and orientation. Each image is converted to grayscale and for each pixel

descriptors are computed over a patch of 16 × 16 pixels. The extracted features are

quantized into a vocabulary size of 200. Table 7 shows the best results for the baseline

SVM, DSVM, GDSVM and BLSVM.

Figure 2: Sample image from 15 different categories: 1. bedroom, 2. sea coast, 3.
field, 4. forest, 5. highways, 6. house, 7. industrial, 8. kitchen, 9. living room, 10.
mountain, 11. stadium, 12. store, 13. street, 14. sky scrappers, 15. ocean underwater
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Kernel Baseline SVM DSVM GDSVM BLSVM
Linear 0.72000 0.72000 0.70667 0.74000

Polynomial 0.76000 0.77333 0.76000 0.74677
Sigmoid 0.70677 0.72000 0.72000 0.73333

RBF 0.70677 0.72000 0.71333 0.74677
Exponential 0.74667 0.74667 0.74667 0.79333
Tanimoto 0.74000 0.74000 0.74000 0.76000
MinMax 0.76667 0.76000 0.76000 0.76667

Bhattacharya 0.74000 0.74667 0.73333 0.76000
Cosine Similarity 0.72667 0.71333 0.71333 0.73333

Rational Quadratic 0.75333 0.76000 0.76000 0.72667
Inverse Multiquadratic 0.77333 0.77333 0.78000 0.74000

Cauchy 0.71333 0.72000 0.72000 0.75333
Tstudent 0.75333 0.76000 0.76000 0.72667
ANOVA 0.72667 0.71333 0.72000 0.74667

Sorensen Similarity 0.72667 0.72667 0.72667 0.71333
Additive χ2 0.76667 0.77333 0.76667 0.76000

Histogram Intersection 0.76000 0.76000 0.76000 0.74667

Table 1: Accuracy score of natural scene recognition for baseline kernels and our
proposed kernels

In core form, BLSVM shows the best accuracy of 74.00% compared to the baseline

SVM which is 72.00%. Combining with other kernels, either of the three proposed

SVM shows better accuracy than corresponding baseline kernel accuracy. The en-

hanced performance is made possible due to the flexible feature mapping technique

discussed in section 2.3. Combining exponential kernel with Beta-Liouville SVM gives

the highest accuracy of 79.33% whereas its baseline, DSVM and GDSVM accuracy is

74.67%.

2.4.2 Satellite Image Classification

This dataset has 19 categories of google satellie images collected from http://www.

escience.cn/people/yangwen/WHU-RS19.html. Each category has 50 images and

the resolution of each image is 600×600. The challenges in classifying high resolution

satellite image data is that the dominance of structures and objects in the image

leads to misclassification [46]. For feature extraction, we use the same configuration

as described in previous section.
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Figure 3: Sample satellite image from 19 different categories: 1. airport, 2. sea
beach, 3. bridge, 4. commercial area, 5. desert, 6. farmland, 7. stadium, 8. forest,
9. industrial area, 10. meadow, 11. mountain, 12. park, 13. parking, 14. pond, 15.
port, 16. railway station, 17. residential area, 18. river, 19. viaduct
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Kernel Baseline SVM DSVM GDSVM BLSVM
Linear 0.86364 0.85577 0.87000 0.90196

Polynomial 0.85454 0.86486 0.85454 0.89189
Sigmoid 0.86274 0.86274 0.86364 0.89215

RBF 0.87272 0.87272 0.87272 0.89215
Exponential 0.88073 0.88073 0.88991 0.88182
Tanimoto 0.90566 0.90566 0.90566 0.90999
MinMax 0.88462 0.89423 0.88462 0.90197

Sorensen Similarity 0.87273 0.86363 0.88182 0.89216
Bhattacharya 0.90196 0.89215 0.90196 0.88991

Cosine Similarity 0.86363 0.87000 0.87273 0.90196
Rational Quadratic 0.88181 0.87272 0.86363 0.88235

Inverse Multiquadratic 0.88000 0.88000 0.88000 0.88235
Cauchy 0.88000 0.89000 0.89000 0.89215

Tstudent 0.86000 0.87000 0.86000 0.88235
ANOVA 0.85294 0.85000 0.86000 0.87129

Additive χ2 0.89215 0.89215 0.89215 0.89215
Histogram Intersection 0.90384 0.90384 0.89423 0.91176

Jfd 0.89215 0.89215 0.88679 0.90196

Table 2: Accuracy score of satellite image classification for baseline kernels and our
proposed kernels

For all the kernel, BLSVM outperforms baseline SVM, DSVM and GDSVM except

for the exponential kernel where generalized Dirichlet SVM achieves higher accuracy

of 88.991%(Table 2). Considering the core form SVM, BLSVM gives highest accuracy

of 90.196% whereas linear SVM achieves 86.364% accuracy.

2.4.3 Human action recognition

Recognizing human action in videos is an interesting learning task for surveillance and

navigation tasks. For the purpose of evaluation of our model for videos, we choose

KTH-human action recognition data introduced by [67]. This dataset contains 6 cat-

egories each having 100 videos with 4 different scenarios and each action is performed

by 25 different persons with different variations like different color of clothing, dif-

ferent motion of the person, camera angle, zooming, zittering, etc. In total, there

are 2391 sequences in this dataset. We are interested in dense features as it is more

accurate than sparse features, we use dense optical flow algorithm proposed by [48].

Open source computer vision library such as [34] is used with default values to extract
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features with the codebook size of 500. Each frame is resized to 160×120 and further

downsampled to 16×12 by taking the pixel values of the positions which are divisible

by 10. L2 normalization is used for feature invariance. To create Dirichlet, general-

ized Dirichlet and Beta-Liouville SVM, the whole dataset is normalized as proposed

in [82]. For 10 fold cross validation, mean accuracies with standard deviation are

reported in Table 3. In total 384 videos are used for training and 216 videos are used

for testing. In the test data, each class has 36 videos.

Figure 4: Sample frame from each categories performed by one person. Each frame
is resized to 160 × 120.

Kernel Baseline SVM DSVM GDSVM BLSVM
Linear 0.90401± 0.047 0.89886± 0.048 0.90401± 0.047 0.91167± 0.056

Polynomial 0.82869± 0.045 0.92323± 0.042 0.84132± 0.045 0.93185± 0.043
Sigmoid 0.89171± 0.050 0.92046± 0.047 0.90045± 0.059 0.93185± 0.049

RBF 0.90197± 0.050 0.92319± 0.042 0.89449± 0.056 0.93185± 0.043
Exponential 0.91161± 0.054 0.91399± 0.051 0.90962± 0.050 0.91677± 0.047
Tanimoto 0.90923± 0.048 0.92040± 0.042 0.90923± 0.048 0.92868± 0.046
MinMax 0.92034± 0.051 0.94104± 0.045 0.93933± 0.059 0.93661± 0.031

Sorensen Similarity 0.89934± 0.064 0.92041± 0.042 0.90214± 0.064 0.92590± 0.045
Bhattacharya 0.90634± 0.040 0.90634± 0.040 0.90395± 0.044 0.92403± 0.044

Cosine Similarity 0.88701± 0.064 0.89528± 0.053 0.88939± 0.063 0.89296± 0.049
Rational Quadratic 0.89897± 0.066 0.92046± 0.047 0.89858± 0.061 0.92629± 0.040

Inverse Multiquadratic 0.90969± 0.044 0.92046± 0.047 0.90969± 0.044 0.92392± 0.047
Cauchy 0.89212± 0.053 0.91008± 0.048 0.89212± 0.053 0.91473± 0.056
ANOVA 0.89767± 0.064 0.89767± 0.064 0.90481± 0.062 0.90124± 0.056

Additive χ2 0.91989± 0.052 0.92312± 0.051 0.92267± 0.049 0.92205± 0.048
Histogram Intersection 0.92001± 0.065 0.93826± 0.045 0.92278± 0.061 0.93383± 0.031

Jfd 0.90963± 0.061 0.92312± 0.051 0.90481± 0.057 0.91689± 0.051

Table 3: 10 fold cross validation results (mean score with standard deviation) of
action recognition from videos

From Table 3, highest average accuracy of baseline SVM is 92.034% for MinMax

kernel which is increased to 94.104% when we combine MinMax kernel with Dirichlet

feature mapping function.
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Figure 5: Confusion matrix for human action recognition in videos

Fig. 5 shows the confusion matrix for MinMax kernel with Dirichlet feature map-

ping SVM (DSVM) which achieves 87.50% accuracy for the test data compared to

base MinMax kernel which achieves 86.11% accuracy for the test data.

2.5 Experimental Results: SDSVM and SSDSVM

2.5.1 Dataset

In order to verify the effectiveness of proposed methods, we conduct a set of ex-

periments regarding gender classification and emotion recognition from images of

faces. For gender classification we choose, two different public datasets which are

computationally challenging with different variations in the images. We have used

Caltech face dataset [54], IMDB-Wiki [99] for gender classification and Jaffe emotion
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dataset [74] for emotion recognition. A fixed cluster size 256 is used for gender clas-

sification task. For fair evaluation, a fixed set of parameter values are used in all

experiments. Degree and width of polynomial and RBF kernel are set to 3 and 1,

respectively. Miss-classification penalty term C is set to [0.0001, 0.01, 0.1, 1.0, 10, 100].

All datasets are split into 80:20 ratio where 80% of a dataset are used for training

and 20% for validation. For robustness, we perform 10-fold cross validation in all

experiments and average accuracy score (except IMDB-Wiki dataset) same as [82]

are reported in Table 4 and Table 5.

Dataset Caltech Dataset IMDB-Wiki Dataset
Kernel Baseline SDSVM SSDSVM Baseline SDSVM SSDSVM
Linear 0.75542 0.76644 0.77997 0.83132 0.84189 0.85098
Polynomial 0.71975 0.74401 0.74841 0.80889 0.82403 0.82833
RBF 0.75759 0.76199 0.75750 0.85825 0.86653 0.87356
Sorensen Similarity 0.76901 0.76678 0.77113 0.83499 0.84189 0.85207
Log 0.74001 0.75987 0.76462 0.83132 0.84313 0.84812
Cauchy 0.75567 0.75779) 0.76215 0.84251 0.84086 0.85098

Table 4: Average accuracy score of gender classification for Caltech and IMDB-Wiki
dataset
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(a) Jaffe Dataset

(b) Caltech Dataset (c) IMDB-Wiki Dataset

Figure 6: Confidence interval with mode of proposed methods

2.5.2 Gender Classification

Caltech Dataset:

This dataset includes 450 face images of males and females. There are 27 different

subjects. There are 277 male and 173 female images in this dataset [100]. Each image

has 896 × 592 pixels resolution. Classifying this dataset is challenging since there is

variation in lighting, face expressions and change in background. SIFT [73] descriptors

are extracted from each images and quantized into 256 bins. Next, we take the

proportion of each features by normalizing the data using the same technique as [82].

Kernels mentioned in Table 4 improves the baseline kernels accuracy by 1% ∼ 2%.

Linear kernel for SSDSVM achieves the highest accuracy of 77.99% whereas baseline

linear kernel accuracy is about 75.54%.
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IMDB-Wiki Dataset:

We choose a total of 912 images for training and validation of which 457 are females

and 455 are males. This dataset is challenging since it contains images of different

persons with different age labels with random poses. Similar to [16], we applied

Linear Discriminant Analysis (LDA) technique to reduce feature dimension to 128

from 256. After cross-validation, the best models are tested on a test dataset. For

testing 500 images are chosen of which 250 are males and 250 are females. Parameters

learned from the training data are used to extract features for test data. SSDSVM

outperforms all baseline and SDSVM kernels as reported in Table 4. Best result is

achieved as 87.36% for RBF kernel with shifted scaled Dirichlet feature mapping.

2.5.3 Facial Expression Recognition

Figure 7: Sample images for gender classification. Top row shows images from Caltech
dataset and bottom row shows images from IMDB-Wiki dataset.

Figure 8: Sample images Jaffe emotion recognition dataset with 7 different classes.

For facial expression recognition, we choose Jaffe emotion recognition dataset. This

is a laboratory controlled dataset and it contains 213 images of 10 Japanese females

with 7 different facial expressions such as angry, disgust, fear, happy, neutral, sad

and surprise. For emotion recognition, curated features such as Discrete Wavelength
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Transform [120], [104], wavelet based features [90], Gaussian features [65] are com-

monly used. To show the effectiveness of our propose method in general, we consider

pixel values after resizing each images to 60x60 which contains noise and feature

overlapping. 8 different kernel functions are tested on this dataset.

Kernel Baseline SDSVM SSDSVM
Linear 0.87713 0.82681 0.88110
Polynomial 0.85901 0.87260 0.88331
Cosine 0.86427 0.86784 0.88728
MinMax 0.87713 0.87974 0.86886
Tanimoto 0.87189 0.86196 0.89331
Sorensen Similarity 0.86059 0.86784 0.88110
Cauchy 0.86773 0.86784 0.88776
Additive χ2 0.87252 0.86159 0.89332

Table 5: Accuracy score of Jaffe emotion recognition dataset.

As the results shown in Table 2, SSDSVM outperforms baseline and SDSVM

except for min-max kernel in which SDSVM achieves better accuracy. SSDSVM

with additive χ2 kernel achieves highest accuracy of 89.332%. Both SDSVM and

SSDSVM with polynomial kernels outperform baseline score. For kernels such as,

linear tanimoto and additive χ2, baseline score is better than scaled Dirichlet feature

mapping. Hence, average accuracy for SDSVM is lower than the baseline as shown in

Fig.6(a). However, for both datasets in gender classification, SDSVM and SSDSVM

overall average accuracy is higher than baseline score in Fig.6(b) and Fig.6(c).
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Chapter 3

Inverted Dirichlet and related

distributions based feature for data

classification

In this chapter, we extend the idea of feature mapping function in SVM classifier for

inverted Dirichlet, generalized inverted Dirichlet and inverted Beta Liouville distribu-

tions. These distributions are relaxed from unit sum constraint and can model semi

bounded positive vectors [12], [11], [15].

3.1 Distributions for Positive Vectors

3.1.1 Inverted Dirichlet distribution

Inverted Dirichlet distribution is a generalization of multivariate Beta-Prime distribu-

tion. Let X = (X1, X2 . . . XN), a collection of images with labels Y = (Y1, Y2 . . . YN).

Each image is represented by a D dimensional positive vector, p = (p1, p2, . . . pD)

where p ≥ 0. The inferred parameters from the data can be represented by Θ = {α}
where α = (α1, α2, . . . αD+1) is a parameter vector of inverted Dirichlet distribution.

Then, probability density function is defined as [13],

p(Xi|α) =
|α+|∏D+1
d=1 Γαd

D∏
d=1

pαd−1
id (1 +

D∑
d=1

pid)
−|α+| (62)
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where, pid ≥ 0, d = 1, 2, . . . D and α+ =
∑D+1

d=1 αd with d = 1, 2, . . . , D + 1. The

mean, variance and covariance of inverted Dirichlet distribution are as follows,

E(pd) =
αd

αD+1 − 1
(63)

V ar(pd) =
αd(αd +D+1 −1)

(αD+1 − 1)2(αD+2 − 1)
(64)

Cov(pl, pd) =
αdαl

(αD+1 − 1)2(αD+2 − 1)
(65)

To generate random positive vector p = (p1, p2, . . . ,D ), a method has been pro-

posed by [118] that considers independent variables q = (q1, q2, . . . , qD+1) that follows

Gamma distribution with constant scale parameter and varying shape parameter

α = (α1, α2, . . . , αD+1). Let, pd = qd
qD+1

, d = 1, 2, . . . , D, then vector p follows in-

verted Dirichlet distribution, p ∼ ID(α). Initial parameters for ID distribution can

be estimated as,

αD+1 =
E(pd)

2 + E(pd)

V ar(pd)
+ 2 (66)

αd = E(pd)(αD+1 − 1); d = 1, 2, . . . , D + 1 (67)

3.1.2 Generalized Inverted Dirichlet Distribution

In inverted Dirichlet, any two random variables are positively correlated when αD+1 ≥
2. This is a limitation for inverted Dirichlet distribution. In practice, variables can

be positively and negatively correlated and inverted Dirichlet distribution is not an

appropriate choice to model such data. A solution to this problem is generalized

inverted Dirichlet (GID) distribution that can model both positively and negatively

correlated data [1].

p(X|Θ) =
Γ(αd + βd)

ΓαdΓβd

D∏
d=1

pαd−1
d

(1 +
∑d

l=1 pl)
γd

(68)

where, Θ = {α1, α2, . . . , αD; β1, β2, . . . , βD} and γd = βd + αd − βd+1 and βD+1 = 0.

Generalized inverted Dirichlet distribution has twice the number of parameters than

the inverted Dirichlet distribution which makes it computationally more expensive.

Also, it can be easily shown that this distribution has a more generalized covariance
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structure and overcomes the limitations of inverted Dirichlet distribution. Generalized

inverted Dirichlet distribution can be transformed to inverted Dirichlet distribution

by setting γ1 = γ2 = . . . = γD−1 = 0 [71]. [71] modified generalized inverted Dirich-

let distribution by breaking it into a factor representation of multiple Beta-Prime

distributions.

p(Xi|Θ) =
D∏
d=1

pIBeta(p̂id|αd, βd) (69)

where, p̂i1 = pi1 and p̂id = pid
1+

∑d−1
k=1 pil

for l > 1. Probability distribution of inverted

Beta distribution with parameter vectors α and β is defined as,

pIBeta(p̂id|αd, βd) =
Γαd + βd
ΓαdΓβd

p̂αd−1
id (1 + p̂id)

−(αd+βd) (70)

3.1.3 Inverted Beta Liouville Distribution

Another variation of inverted Dirichlet distribution is inverted Beta-Liouville (IBL)

distribution that has less number of parameters than generalized inverted Dirichlet

distribution. Given the mentioned D dimensional vector, p, then density function for

this distribution can be defined as,

p(Xi|Θ) =
Γ(
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D∏
d=1

pαd−1
id

Γαd

λβ(
∑D

d=1 pid)
αd−

∑D
d=1

(λ+
∑D

d=1 pid)
(α+β)

(71)

Where, Θ = (α, β, λ) and α = (α1, α2, . . . , αD), β1, β2, . . . , βD and α > 0, β > 0 and

λ > 0. Inverted Beta-Liouville distribution can be seen as generalization of inverted

Dirichlet distribution that supports multiple symmetric and asymmetric modes. The

mean, variance and covariance of IBL can be formulated as follows,

E(pid) =
λα

β − 1

αd∑D
d=1 αd

(72)

V ar(pid) =
λ2α(α + 1)

(β − 1)(β − 2)

αd(α + 1)∑D
d=1 αd(

∑D
d=1 αd + 1)

− λ2α2

(β − 1)2

α4
d

(
∑D

d=1 αd)
4

(73)

Cov(pil, pid) =
αlαd∑D
d=1 αd

[ λ2α(α + 1)

(β − 1)(β − 2)(
∑D

d=1 αd + 1)
− λ2α2

(β − 1)2(
∑D

d=1 αd)

]
(74)
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3.2 Parameter Estimation

An important step in our proposed feature mapping approach is to learn the param-

eters of the distributions. To learn the optimal values of the parameters, we take

maximum likelihood approach. More specifically, we take the log-likelihood of the

density function as loss function. For example, the log-likelihood of the inverted Beta

Liouville distribution can be written as,

L(X|Θ) = log(Γ
D∑
d=1

αd) + logΓ(α + β)− logΓ(α)− logΓ(β)

+
D∑
d=1

(
(αd − 1)logpid − logΓαd

)
+ βlogλ (75)

+ (α−
D∑
d=1

αd)log(
D∑
d=1

pid)− (α + β)log(λ+
D∑
d=1

pid)

(76)

The expectation of the complete log-likelihood in Eq.(75) is utilized to compute the

partial derivatives with respect to all the parameters,

∂L(X|Θ)

∂α
=

N∑
i=1

[
log

D∑
d=1

pid−log(λ+
D∑
d=1

pid)
]

+ ψ(α + β)− ψ(α) (77)

∂(L(X|Θ))

∂β
=

N∑
i=1

[
logλ− log(λ+

D∑
d=1

pid)
]

+ ψ(α + β)− ψ(β) (78)

∂L(X|Θ)

∂αd
=

N∑
i=1

[
logpid − log

D∑
d=1

pid

]
(79)

∂(L(X|Θ))

∂λ
=

N∑
i=1

[β
λ
− α + β

λ+
∑D

d=1 pid

]
(80)

ψ(·) denotes digamma function. From Eq.(77) to Eq.(80) it is evident that a close-

form solution to update each parameter vector does not exist. Therefore, we take

Newton-Raphson method to update the parameters iteratively.

θ(t+1) = θt − H(θ(t))−1∂L(X|Θ)

∂θt
(81)
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where H(θ(t)) is the Hessian of the log-likelihood function. In order to be invertible, the

Hessian matrix needs to be positive definite or positive semi-definite. However, due

to different combinations of some datasets, it can be negative definite which results

in singularity and the Hessian becomes non-invertible [53]. To avoid noninvertible

Hessians, we the similar approach as described in [79]. The complete Hessian can

be expressed as invertible block-diagonal matrix, H(Θ)−1 = BlockDiag{H(α, β, λ)−1,

H(α1, α2, . . . , αD)−1}. A detailed derivation of this can be found in [60]. To estimate

the initial parameters, method of moments technique is applied which is derived from

low order statistics of each distribution namely first and second moments equations

from where we get mean and variance of that distribution as in Eq.(63) and Eq.(64)

for inverted Dirichlet and Eq.(72) and Eq.(73) for inverted Beta Liouville distribution.

3.3 Support Vector Machines with Proposed Fea-

ture Mapping

Solving the dual problem is computationally convenient for large datasets. Relaxing

the constraints with the help of Lagrange multipliers, dual solution becomes,

maximize
γ

N∑
i

γi −
1

2

N∑
i

N∑
j

γiγjy
(i)y(j)〈φ(pi), φ(pj)〉

subject to: 0 ≤ γi ≤ C,
∑
i

γiy
(i) = 0 ; where i = 1, . . . N ∀ αi, y(i)

(82)

Only the support vectors have γ values elsewhere it is zero. Getting the support

vectors, the decision function classifies the data by comparing the kernel with the

support vectors. The decision function of the support vector machine becomes,

f(p) =
n∑
i

γiy
(i)〈φ(pi), φ(p)〉 (83)

Optimum performance of SVM depends on the choice of kernel or feature mapping

function φ(pi) and since embedding input vector to feature space gives flexibility

to modify the kernel function based on the distribution of the data, we take the

advantage of the proposed distributions to modify the kernel function as follows,
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φj(pi) =



pij

|α+|∏D+1
d=1 Γαd

∏D
d=1 p

αd−1
id (1 +

∑D
d=1 pid)

−|α+|

Γ(αd+βd)
ΓαdΓβd

∏D
d=1 p

αd−1
d (1 +

∑d
l=1 pl)

−γd

Γ(
∑D
d=1 αd)Γα+β

ΓαΓβ

∏D
d=1

p
αd−1

id

Γαd

λβ(
∑D
d=1 pid)αd−

∑D
d=1

(λ+
∑D
d=1 pid)(α+β)

(84)

where, j = 1 to D for pij and j = (D + 1) elsewhere. It is evident from Eq.(84)

that our proposed feature mapping increases the data dimensionality by one. Such

technique changes the similarity measurements of the datapoints and we get a new

kernel matrix representation for the base kernels such linear, RBF, polynomial, χ2

etc. [92]. Algorithm 2 shows a high level interpretation of our proposed feature map-

ping technique.
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Algorithm 2: : IDSVM, GIDSVM and IBLSVM

1. Input: Training data, D = {(X1, X2, . . . , XN)}.
2. Parameter Estimation

• Initialization: Use Eq.(67) to estimate initial parameter value

• Optimize: Apply Eq.(81) to optimize the initial parameters.

repeat

θ(t+1) = θt − H(θ(t))−1 ∂L(X|Θ)
∂θt

until convergence

3. Compute kernel:

• Baseline SVM: Compute φj = pij for j = 1, . . . , D

• IDSVM: Concatenate pij and inverted Dirichlet feature from Eq.(84).

– Raw features: φj = pij j = 1, . . . , D

– Inverted Dirichlet feature: φD+1 =ID(pi, α)

– Concatenate, φj ⊕ φD+1 j = 1, . . . , D

• GIDSVM: Repeat IDSVM process with generalized inverted Dirichlet

distribution.

• IBLSVM: Repeat IDSVM process with inverted Beta Liouville distribution.

4. Learning SVM: Apply algorithm 3 to find the support vectors and

decision function.

Given a set of functions for the given data, the learning algorithm finds the func-

tion that minimizes the empirical loss function. By this, the algorithm finds the

support vectors that maximizes the margin between the class labels in feature space

where number of support vectors is proportional to empirical risk [109].
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Algorithm 3: : Find Support Vectors

1. Input: D = {(X1, Y1), (X2, Y2), . . . , (XN , YN)}.
2. Compute kernel matrix, S

Si,j = y(i)y(j)〈φ(pi), φ(pj)〉

3. Choose miss-classification parameter, C

4. Solve quadratic optimization in Eq.(82). to find γ

5. Get decision for query vector, p in Eq.(83).

3.4 Experimental Results

In this section, we evaluate our proposed method on texture recognition, natural scene

recognition and human action recognition in videos. We extract SIFT descriptors

from each image and compute a histogram of quantized local descriptors which is

described in next section. For all experiments, we use 80% as training and the rest

as test set with fixed random seeds. The tolerance limit is set to 10−3 and miss-

classification penalty parameter, C is varied from 0.003 to 30. The dual SVM form

is solved using [37]. We find that allowing a soft margin with lower values of C gives

better results. We report f1 score with three different averaging methods such as

micro, macro and weighted average. Micro average computes the average f1 score by

cumulative contributions of all classes whereas in macro average f1 score is computed

independently for each class and then we take the average. We attain weighted

average by normalizing macro average with the number of supports for each class.

Micro average is preferable in multi-class classification since it takes class imbalance

into account.

3.4.1 Texture recognition-KTH TIPS dataset

A classic problem in pattern recognition is texture classification which plays an impor-

tant role in generalizing image segmentation task, medical image analysis and under-

standing, image retrieval, industrial inspection, etc. [72]. To evaluate our proposed

method in texture classification, we choose KTH-TIPS dataset [77]. This dataset
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consists of 10 different textures with varying poses and scales under different illu-

mination conditions [51]. Local SIFT descriptors are extracted and quantized as

discussed above. Table 6 shows three different scoring value for different models.

It is evident that for linear kernel with proposed feature mapping for ID, GID and

IBL distributions achieve accuracy of 95.062%, 95.679% and 95.062%, respectively,

whereas the baseline result is close to 91.975%. We observe that for this dataset,

combining other kernels with our proposed method improves the baseline accuracy

with a good margin. RBF, Tanimoto and Bhattacharyya kernel with inverted Beta

Liouville distribution achieves better results than inverted Dirichlet and generalized

inverted Dirichlet based feature mapping. For cosine and additive χ2 kernel, highest

accuracy is achieved for generalized inverted Dirichlet based feature mapping.

Figure 9: Sample image from KTH-TIPS dataset: 0. aluminium foil, 1. brown bread,
2. corduroy, 3. cotton, 4. cracker, 5. linen, 6. orange peel, 7. sand paper, 8. sponge
, 9. styrofoam

43



Kernel Map. Func. f1-score(micro) f1-score(weighted) f1 socre(macro)
Linear

Baseline

0.91975 0.92038 0.91828
RBF 0.81481 0.81829 0.81738

Additive χ2 0.95062 0.94947 0.94443
Bhattacharya 0.96296 0.96279 0.95972

Cosine 0.87654 0.87830 0.87618
Tanimoto 0.91358 0.91385 0.91257

Linear

ID

0.95062 0.95116 0.94544
RBF 0.85802 0.85779 0.85049

Additive χ2 0.98148 0.98147 0.98257
Bhattacharyya 0.97531 0.97585 0.97141

Cosine 0.91975 0.91975 0.91549
Tanimoto 0.93827 0.93910 0.93622

Linear

GID

0.95679 0.95728 0.95479
RBF 0.86419 0.86632 0.85049

Additive χ2 0.98765 0.98781 0.98659
Bhattacharyya 0.97531 0.97585 0.97141

Cosine 0.95679 0.95695 0.95356
Tanimoto 0.93209 0.939208 0.93261

Linear

IBL

0.950617 0.950836 0.94333
RBF 0.87037 0.87036 0.86486

Additive χ2 0.97531 0.97573 0.97138
Bhattacharyya 0.98765 0.98761 0.98397

Cosine 0.89506 0.89661 0.89292
Tanimoto 0.95062 0.95059 0.94608

Table 6: KTH-TIPS texture classification performance results with baseline and pro-
posed feature mapping functions.
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(a) Baseline SVM

(b) IBL-SVM

Figure 10: Confusion matrix for Linear kernel with baseline SVM and IBL feature
mapped SVM
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Fig 10 shows the confusion matrix for linear kernel SVM classifier with its core

form and our proposed IBL feature mapped SVM. IBL-SVM improves the recognition

rate for sandpaper, sponge and brown bread. However, it miss classifies 2 instances

of sandpaper and cotton as styrofoam and corduroy, respectively.

3.4.2 Natural Scene Recognition

15 scene dataset consists of 15 different scene categories. First 13 categories were

collected combinedly by [49] and [68]. For our experiment, from each category 100

images were selected totalling to 1500 images. We observe the highest improvement

in accuracy using inverted Beta Liouville distribution based feature mapping. In core

form of SVM, linear kernel with 128 dimensional feature vectors has an accuracy of

almost 60.000% while ID-SVM, GID-SVM and IBL-SVM with linear kernel achieve

close to 63.000% of accuracy. Highest accuracy of 74.000% is achieved for IBL-

SVM with MinMax kernel. For Bhattacharyya kernel, GID-SVM performs better

achieving 65.000% accuracy than ID-SVM and IBL-SVM. However, for additive χ2

kernel, neither of the proposed feature mapping functions based SVM models perform

better than core form baseline SVM.
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Kernel Mapping Func. f1-score(micro) f1-score(weighted) f1-score(macro)
Linear

Baseline

0.59667 0.59827 0.60714
Additive χ2 0.70667 0.70078 0.70097

Bhattacharya 0.64333 0.64066 0.63939
Cosine 0.63000 0.62363 0.62512

Sorensen 0.64000 0.63292 0.63807
Tanimoto-128 0.62333 0.61847 0.62234

MinMax 0.71000 0.70614 0.70352
Linear

ID

0.62667 0.62894 0.62299
Additive χ2 0.66333 0.66127 0.66204

Bhattacharyya 0.64667 0.64125 0.64473
Cosine 0.63000 0.62363 0.62512

Tanimoto 0.66667 0.66459 0.66145
Sorenson 0.64000 0.63292 0.63807
MinMax 0.71667 0.71469 0.71445
Linear

GID

0.63000 0.62375 0.62680
Additive χ2 0.66000 0.65712 0.65798

Bhattacharyya 0.65000 0.64426 0.64774
Cosine 0.64667 0.64989 0.65001

Tanimoto 0.66333 0.66146 0.65896
MinMax 0.71333 0.71157 0.71204
Linear

IBL

0.63000 0.62547 0.63271
Additive χ2 0.69667 0.69315 0.70148

Bhattacharyya 0.64667 0.64371 0.65027
Cosine 0.65333 0.64789 0.65404

Tanimoto 0.69667 0.69481 0.69844
Sorensen 0.68000 0.67619 0.67960
MinMax 0.74000 0.73641 0.74249

Table 7: Natural scene recognition performance results with baseline and proposed
feature mapping functions.
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(a) Baseline SVM

(b) IBL-SVM

Figure 11: 15 SCENE: Confusion matrix for Linear kernel with baseline SVM and
IBL feature mapped SVM
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Fig 11 shows unnormalized confusion matrix for linear kernel. Combining in-

verted Beta Liouville distribution based feature mapping with linear kernel improves

the classification accuracy of building, forest, highway, house, living room and tall

building.

3.4.3 Human Action Recognition in Videos

An important application in surveillance is activity recognition. To evaluate our

proposed method on videos, we use KTH-human action recognition [67] dataset. This

dataset has 100 different videos with 6 different categories. To construct the BOVW,

we choose to extract optical flow from each video frame using Farneback optical flow

algorithm [48]. First, RGB images are converted to HSV colorspace. Next, each

frame is resized to 160× 120 and further downsampled to 16× 12 by taking the pixel

position that are divisible by 10. We use open source computer vision library [34]

to extract optical flow. Then extracted features are clustered and quantized into a

128 codebooks. Top row in Fig. 12 shows examples of video frames for each video

category in the database and the bottom row presents extracted optical flows. Each

video frame is subsampled 3 times repeatedly to generate pyramid with averaging

window size of 15.

Figure 12: Top row: sample frames from KTH-human action recognition dataset for
each categories. Bottom row: optical flow extracted from the corresponding frame.
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Kernel Map. Func. f1-score(micro) f1-score(weighted) f1-score(macro)
Linear

Baseline

0.88333 0.84165 0.87741
Additive χ2 0.91667 0.91561 0.91662

Bhattacharya 0.90833 0.90637 0.90574
Cosine 0.81667 0.80389 0.79857

Sorensen 0.88333 0.88190 0.88004
Tanimoto 0.91667 0.91556 0.91322
MinMax 0.94167 0.94091 0.94017
Linear

ID

0.90000 0.90180 0.89914
Additive χ2 0.93333 0.93232 0.93325

Bhattacharyya 0.93333 0.93197 0.93185
Cosine 0.85833 0.85767 0.85577

Tanimoto 0.92500 0.92471 0.92224
Sorenson 0.90833 0.90775 0.90769
MinMax 0.93333 0.93232 0.93099
Linear

GID

0.90833 0.91006 0.90672
Additive χ2 0.92500 0.92406 0.92566

Bhattacharyya 0.93333 0.93197 0.93185
Cosine 0.85833 0.85767 0.85577

Tanimoto 0.92500 0.92471 0.92224
Sorensen 0.91667 0.91700 0.91237
MinMax 0.93333 0.93232 0.93099
Linear

IBL

0.90833 0.90819 0.90517
Additive χ2 0.91667 0.91562 0.91661

Bhattacharyya 0.90833 0.90687 0.90573
Cosine 0.84167 0.82726 0.82363

Tanimoto 0.91667 0.91607 0.91361
Sorensen 0.90000 0.89837 0.89689
MinMax 0.93333 0.93219 0.93126

Table 8: KTH-human action recognition performance results with baseline and pro-
posed feature mapping functions.
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(a) Baseline SVM

(b) IBL-SVM

Figure 13: KTH-ACTION: Confusion matrix for Linear kernel with baseline SVM
and IBL feature mapped SVM
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From Table 8, accuracy for all kernels has improved except MinMax kernel. Action

recognition rate for boxing, handclapping and handwaving has improved by 4%, 6%

and 7% respectively for IBL-SVM than baseline SVM as shown in Fig 13. For action

recognition, inverted Dirichlet based feature mapping performs better than other

proposed distributions. Additive χ2, Sorensen, Tanimoto, Cosine and Bhattacharyya

kernel with ID feature mapping increases the baseline f1-score. Both linear GID-SVM

and IBL-SVM achieve accuracy of 90.833% while the baseline is 88.333%. This 2.5%

improvement in performance is due to the fact that the proposed feature mapping

technique allows us to model the data more flexibly [82].
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Chapter 4

Distribution Based Feature

Mapping for Classifying Count

Data

4.0.1 Multinomial Distribution

Multinomial distribution is the generalized form of Binomial distribution. In Binomial

distribution, the probability of two mutually exclusive features is computed for N

independent trials. However, if the features are more than two such that, there

can be D possible features for each observation, {x1, x2, . . . , xD} with probabilities

{p1, . . . pD}, then multinomial distribution can be employed to model the dataset.

Multinomial models the distribution of the count data (histogram) [21, 24, 27, 28]

vector indicating how many times any specific outcome was observed with m trials

of experiments.

P (x1, . . . , xD|p1, . . . , pD) =
m!∏D
d=1 xd!

D∏
d=1

pxdd

=

(
m

x

) D∏
d=1

pxdd

(85)

Here, m =
∑D

d=1 xd is the number of trials for each observation. Each count for an

observation holds the non-negativity constraint and the probability must satisfy the

unit sum constraint such that xd ≥ 0 and pD = 1−
∑D−1

d=1 pd.
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4.0.2 Dirichlet Distribution

Feature mapping only with multinomial distribution gives us a naive estimation about

the likelihood of each observation. In such cases, the unobserved or relatively very

small counts gets zero probability which makes the mapping function inefficient. To

smooth the estimation of pd, prior belief for each feature added to each count. The

prior follows Dirichlet distribution with parameter α = (α1, . . . , αD).

p(p1, . . . , pD|α1, . . . , αd) =
Γ (
∑

d αd)∏
d Γ(αD)

D∏
d

pαd−1
d∑

d

pd = 1 and pd ≥ 0

(86)

Positive parameter vector α determines the shape of the distribution. From the

moment generating function of the distribution, we get the following properties,

E(pd) =
αd∑
d αd

V ar(pi) =
αi(
∑
αd − α)∑

α2
d(
∑
αd + 1)

Cov(pi, pj) =
−αiαj∑

α2
d(
∑
αd + 1)

(87)

Using Dirichlet prior with multinomial distribution, it is easy to show that the

mean probability estimate i.e E(pd) of each features can be updated as follows-

Ê[pd] =
αd + xd∑

d αd +
∑

d xd
(88)

Eq.(88) shows that unobserved values also gets initial probabilities and gets updated

whenever new data arrives.

4.0.3 Combining Dirichlet and Multinomial Distribution

The joint distribution of the Dirichlet and Multinomial distributions results in a

compound distribution called Dirichlet Multinomial distribution which is preferred

over Multinomial distribution to counter over-dispersion in count data. Consider

that we have a count vector x = (x1, x2, . . . , xD) with the probability of each element
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to be drawn with the probability vector p = (p1, p2, . . . , pD). Variable xd represents

the number of times the features is observed i.e xd =
∑

d̂ δ(xd̂−d) and the number of

trial m =
∑

d xd.The resulting distribution can be expressed as follows for a vector,

P (x|α) =

∫
p

P (x|p)P (p|α)

=
(
∑

d xd)!∏
d xd!

∏
d

Γ(
∑

d αd)

Γ(αd)

Γ(αd + xd)

Γ(
∑

d αd +
∑

d xd)

=
m!∏
d xd!

∏
d

Γ(
∑

d αd)

Γ(αd)

Γ(α
′

d)

Γ(
∑

d αd +m)

=

(
m

x

)
B(α

′

d)

B(αd)

(89)

Eq.(89) can be simplified further using the properties of gamma (Γ) function [121],

P (x|α) =

(
m

x

)
B(α

′

d)

B(αd)

=

(
m

x

)∏
d

Γ(
∑

d αd)

Γ(αd)

Γ(αd + xd)

Γ(
∑

d αd +m)

=

(
m

x

)∏
d

αd(αd + 1) . . . (αd + xd − 1)∑
d αd(

∑
d αd + 1) . . . (

∑
d αd +m− 1)

(90)

Collecting similar terms in the overall samples, the log-likelihood of the entire

sample can be simplified further and leads to the foundation of another optimization

algorithm namely minorization- maximization (MM) [121]. We use the same repre-

sentation to compute the first and second derivatives to update the parameters using

Newton’s method. Eq.(89) can be expressed in factorial form since Γ(n) = (n − 1)!.

Using this property, similar terms can be collected efficiently and the log-likelihood
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can be expressed as follows,

L(α) =
N∑
i

ln

(
mi

x

)
+
∑
i

∑
d

xid−1∑
k=0

ln(αd + k)−

∑
i

mi−1∑
k=0

ln(
∑
d

αd + k)

=
N∑
i

ln

(
mi

x

)
+
∑
d

max,xid−1∑
k=0

sdkln(αd + k)−

max,mi−1∑
k=0

rkln(
∑
d

αd + k)

where

rk =
∑
i

1{mi>k+1} and sdk =
∑
i

1{xij>k+1}

(91)

From Eq.(87), it is visible that if we model our data using Dirichlet distribution,

the features are negatively correlated which is indicated by the negative covariance of

the distribution. In real cases, any two features can be positively correlated too. In

those cases, Dirichlet distribution fails to capture the relation between the features.

However, there’s a remedy for this which is discussed in the next section.

4.0.4 Generalized Dirichlet Distribution

Dirichlet distribution is a special case of Generalized Dirichlet distribution. In dimen-

sion D, the probability density function of Dirichlet distribution in more generalized

form with the parameter vectors α = (α1, β1, α2, β2, . . . , . . . , αD, βD) is defined by,

p(P ) =
D∏
d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
pαd−1
d

(
1−

d∑
j=1

pj

)γd
(92)

For
∑D−1

d=1 pd < 1 and 0 < pd < 1 for d = 1 . . . , D and αd > 0, βd > 0, γd =

βd − αd+1 − βd+1 for d = 1 . . . D − 1 and γD = βD − 1 when d = D. Generalized

Dirichlet distribution reduces to Dirichlet distribution when βd = αd+1 + βd+1. GD

gives more flexibility compared to Dirichlet distribution by incorporating d degrees

of freedom to the mean probability distribution where in Dirichlet distribution the

degrees of freedom is fixed. The mean, variance and covariance of the GD are as
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follows:-

E(pd) =
αd

αd + βd

d−1∏
k=1

βk
αk + βk

V ar(pd) = E(pd)

(
αd + 1

αd + βd + 1

d−1∏
k=1

βk + 1

αk + βk + 1
− E(pl)

)

Cov(pd, pk) = E(pj)

(
αd

αd + βd + 1

d−1∏
k=1

βk + 1

αk + βk + 1
− E(pd)

) (93)

In Dirichlet distribution, the variables are negatively correlated whereas GD distri-

bution has more general covariance structure allowing the variables to have different

variance with the same mean. In addition, similar to Dirichlet distribution, General-

ized Dirichlet distribution is also a conjugate prior to Multinomial distribution.

4.0.5 Combining Multinomial and Generalized Dirichlet Dis-

tribution

Multinomial distribution in combination with generalized Dirichlet distribution gives

a flexible covariance structure which gives flexibility for both negatively and positively

correlated data.
= P (x|α)

=

∫
p

P (x|p)P (p|α)

=
(
∑D

d=1 xd)!∏D
d=1 xd!

D∏
d=1

Γ(αd + βd)

ΓαdΓβd

Γ(α
′

d)Γ(β
′

d)

Γ(α
′
d + β

′
d)

=

(
m

x

) D∏
d=1

B(α
′

d, β
′

d)

B(αd, βd)

(94)
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4.1 Dirichlet Multinomial and Generalized Dirich-

let Multinomial Feature mapping and Param-

eters Learning

4.1.1 Proposed Feature Mapping

A D dimensional count vector x = (x1, x2, . . . , xD) ∈ RD can be mapped into the

feature space φi(xd) using the following transformation-

φi(xd) =



xid d = 1, 2, . . . , D

(
m
x

)B(α
′
d)

B(αd)
d = D + 1

or(
m
x

)∏D
d=1

B(α
′
d,β
′
d)

B(αd,βd)
d = D + 1

(95)

By doing this, dimension of each vector is increased by one and the new dimension

is φi(xD+1) for Dirichlet Multinomial SVM and Generalized Dirichlet Multinomial

SVM.

min
w,b,ξ

1

2
||w||2 + C

D+1∑
i=1

ξi

s.t., y(i)(wTxd) + wD+1
(
∑D

d=1 xd)!∏D
d=1 xd!

D∏
d=1

Γ(αd + βd)

ΓαdΓβd

Γ(α
′

d)Γ(β
′

d)

Γ(α
′
d + β

′
d)

+ b) ≥ 1− ξi, (96)

ξi ≥ 0, i = 1, . . . , n

As stated earlier, it is possible to derive the dual form of the above primal prob-

lem which results in the same optimum value except that the Lagrange multipliers

γ determines the optimum value of the dual form. Replacing Eq.( 95) in the primal

form, we get the dual formulation of the optimization problem which we call Dirich-

let Multinomial SVM or Generalized Dirichlet Multinomial SVM depending on the
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selection of the feature mapping function in Eq.(95).

Q(γ) =
N∑
i=1

γi −
N∑
i=1

N∑
j=1

γiγjyiyj〈φi(xd)φj(xd)〉

s.t.
N∑
i=1

γiyi = 0

0 ≤ γi ≤ C

(97)

In the above equation, K(x,y) = 〈φi(xd)φj(xd)〉 represents linear kernel function.

Apart from the common kernels such as polynomial, RBF, χ2 [39] histogram intersec-

tion (HI) and min max [8], other measurements such as Cosine similarity, Tanimoto

coefficient and Sorensen similarity are proved to be efficient for histogram based rep-

resentation of the data. Since, the data dimension is increased by one, the training

time complexity of solving the dual svm optimization problem with the proposed

feature mapping technique becomes O(max(N,D + 1)min(N,D + 1)2) [38].

4.1.2 Parameter Estimation

The probability of observing each outcome can be determined from the frequencies

i.e the observed proportions of each dimension represents its probability. For a single

count vector, the proportion vector can be calculated as follows,

pd =
xd∑D
d=1 xd

(98)

In order to get the optimized parameters of the DM and GDM based feature map-

ping function, we take maximum likelihood estimation approach since there exists no

close form solution of the log-likelihood function described in Eq.(91) and use Newton

Raphson method as the optimization algorithm. For any optimization algorithm, it is

required to estimate the initial values of the parameters and calculate the gradient or

an auxiliary function of the objective function. Choosing random initial values of the

parameters is troublesome since it increases the possibility to converge at the local

maxima. Therefore, the initial values of the parameters for this algorithm are esti-

mated by a low order method of statistics such as method of moments (MoM) [29,79].
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Using gradient and Hessian of the log-likelihood of Eq.(91), we can update the pa-

rameters until convergence using the equation (see [22] for details). Here, g is a D×1

matrix that represents the gradient of the log-likelihood function with respect to each

parameter αd

g(αd) =
∂L(α)

∂αd

=

max,xid−1∑
k=0

sdk
(αd + k)

−
max,mi−1∑

k=0

rk

(
∑D

d=1 αd + k)

(99)

Taking the second derivative of the log-likelihood function results in the Hessian,

H(αd) =
∂L2(α)

∂α2
d

=

max,mi−1∑
k=0

rk

(
∑D

d=1 +k)2
−

max,xid−1∑
k=0

sdk
(αd + k)2

1(d=d′)

(100)

The negative of the Hessian matrix is to be taken to calculate the Newton update

which is essentially the observed information matrix:

−H(α) =

max,xid−1∑
k=0

sdk
(αd + k)2

1(d=d′) −
max,mi−1∑

k=0

rk

(
∑D

d=1 +k)2

= b− a1d1
T
d

(101)

[78] provided the inversion of Hessian using Sherman-Liberman formula,

(b− a1D1TD)−1 = b−1 +
a

1− a1TDb
−11D

b−11D1TDb
−1

(102)

The Newton update becomes,

αnew = αold + (−H−1)g (103)

When, matrix -H is positive definite, inverting the Hessian i.e. -H−1 works fine

except the time complexity. For each iteration it requires to be calculated in a linear

system and inverting the Hessian matrix has complexity of O(t3). However, if the

Hessian matrix is singular or negative definite, the inversion becomes impossible or

violates the constraint of the parameters. For negative definite Hessian i.e. the neg-

ative eigenvalues of the matrix (−H) leads to the parameters α being negative which
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is against the constraint αd > 0. In addition, since the function ψ(x) is convex, the

gradient function, g is concave and Newton’s method may fail to converge to the max-

ima. To overcome this situation, a more generic algorithm called MM (minimization-

maximization) is preferred [121]. Replacing the Gamma functions in the original

log-likelihood function with the rising polynomials makes it possible to derive the al-

gorithm. A derived surrogate or auxiliary function carries out the parameters of the

objective function to an optimum value. At each iteration, the update of the param-

eters satisfies the condition L(αnew) ≥ g(αnew|αold) ≥ g(αold|αold) = L(αold). Thus,

since the value of log-likelihood function increases at each iteration, therefore, MM

algorithm guarantees an ascent algorithm. In Eq.(91), applying Jensen’s inequality

to the convex term ln(
∑

d αd + k) and concave term ln(αd + k) we get the following

surrogate function at current iteration,

g(α|αold) =
D∑
d=1

max,xid−1∑
k=0

sdkα
old
d

(αold
d + k)

lnαd−

max,mi−1∑
k=0

rk

(
∑D

d=1 α
old
d + k)

D∑
d=1

αd

(104)

In MM algorithm, a surrogate function of the original function is defined and

iteratively update the parameters until it reaches the maximum value of the surrogate

function,

αnewd = αoldd

∑
k

sdk
αoldd +k∑

k
rk∑

d α
old
d +k

(105)

Updating the parameter vector using Eq.(105) is simpler than Newton-Raphson

method and non-negativity constraint of updated parameters which is αnew > 0 is

always satisfied given that αold > 0. In our experiment, we use both optimization

technique and the parameters with the maximum log-likelihood values are chosen.

To update the parameters of Generalized Dirichlet Multinomial, we use the concept

of complete neutrality [45] and transform each variable to a Beta Binomial distri-

bution which is parameterized by (αd, βd). Thus, use can update the parameters for

Generalized Dirichlet Multinomial using the same technique as Dirichlet Multinomial.
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4.2 Experimental Results

In this section, we investigate the effectiveness our proposed feature mapping tech-

nique by applying it to two different classification tasks namely natural scene recog-

nition from images and human action recognition in videos. For each task, the dual

problem of the SVM model is solved using [88]. All the parameters are kept as de-

fault except the misclassification parameter C. For each model, 15 different values

of C are taken in log scale varying from 0.0001 to 15. To measure the performance

of the model, 10-fold cross validation technique is considered where 9 folds are used

to train and the remaining fold is used to test the model. Mean classification accu-

racy and standard deviation are reported for each kernel and are compared with the

baseline SVM. In baseline SVM, only the original count data are taken according to

the mapping function in Eq.12. For polynomial kernel degree 3 is considered and for

Rational Quadratic and Inverse Multiquadratic kernel the hyperparamter c is set to

1. Obtained results using the proposed feature mapping technique has proved to be

statistically significant [82].

4.2.1 Natural Scene Classification

Kernels Baseline SVM DM SVM GDM SVM
Linear 0.67933 ± 0.020 0.69000 ± 0.019 0.67933 ± 0.019

Polynomial 0.69000 ±0.029 0.69333 ± 0.026 0.69533 ± 0.027
RBF 0.7113 ± 0.036 0.71466 ± 0.035 0.70933 ± 0.032

Cosine Similarity 0.680666± 0.023 0.69466 ± 0.026 0.69400 ± 0.023
Exponential 0.70866 ± 0.030 0.70800 ± 0.029 0.71000 ± 0.033

Rational Quadratic 0.70000 ± 0.033 0.70066 ± 0.037 0.70533 ± 0.038
Inverse Multiquadratic 0.71066 ± 0.031 0.71466 ± 0.035 0.71733 ± 0.031

Sorensen 0.69200 ± 0.019 0.69466 ± 0.030 0.69466 ± 0.030
Tanimoto 0.71400 ± 0.031 0.72400 ± 0.029 0.71800 ± 0.030

GHIK 0.71933 ± 0.034 0.72333 ± 0.039 0.72000 ± 0.038
Min Max 0.72666 ± 0.036 0.73333 ± 0.026 0.72733 ± 0.038

Table 9: Scene classification results

Scene recognition is crucial for reasoning in navigation and recognition tasks. Spe-

cially in terms of robotics and automation it is significant to enhance machine’s visual

understandings [117], [30]. 15 scene dataset consists of 15 different scene categories.
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First 13 categories were collected jointly by [49] and [68]. For our experiment, 1200

images are randomly selected ranging from 90-100 images from each category. Scale

invariant feature transform (SIFT) [73] descriptors are extracted from each image.

For our experiment, dense SIFT descriptors are drawn out from each images with 16

pixels interval. Extracted keypoints are quantized into a 200 vocabulary size. Finally

each image is represented by a 200 dimensional count vector. To prevent over-fitting

and reducing the variance, the dataset is randomly shuffled and normalized. Mean

accuracy and the standard deviation for the kernels that give comparable results are

reported in Table 12. It is obvious that, the DM SVM improves the performance of

linear kernel.

4.2.2 Human Action Recognition

The dataset contains 6 categories. Each category has 100 videos with 4 different

scenarios and each action is performed by 25 different peoples with different variations.

Each video is on an average of 4s and 2391 frames. Each frame is down sampled to

160 × 120 as indicated by the original paper [67]. In video analysis, optical flow is

used as measurement of the apparent motion of the brightness patterns between the

consecutive frames. To show the novelty of our proposed method, we adopt a simple

feature extraction pipeline. In our experiment, dense optical flow is calculated for

each frame using Farneback’s algorithm [48]. For faster calculation, we down sample

each frame to 16×12 [width×height] and calculate the optical flow using [34]. Thus,

we get 384 descriptors for each frame and all the frames are quantized into 500 cluster

centers. We follow the data split mentioned in [67] and then we do the concatenation

of training and validation set. 384 videos are used for this experiment. Incorporating

our proposed feature mapping technique with other kernels improves the performance

of the action classification as indicated in Table 10.
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Kernels Baseline SVM DM SVM GDM SVM
Linear 0.89256 ± 0.044 0.89256 ± 0.044 0.89778 ± 0.040

Polynomial 0.89262 ± 0.028 0.89466 ± 0.038 0.89942 ± 0.032
RBF 0.90532 ± 0.026 0.90764 ± 0.043 0.90572 ± 0.032

Cosine Similarity 0.91093 ± 0.025 0.91093 ± 0.025 0.91609 ± 0.030
Exponential 0.91813 ± 0.040 0.92289 ± 0.041 0.91813 ±0.040

Rational Quadratic 0.89568 ± 0.049 0.89290 ± 0.047 0.89846 ± 0.053
Inverse Multiquadratic 0.91093 ± 0.044 0.91371 ± 0.038 0.91609 ± 0.048

Sorensen 0.91325 ± 0.027 0.92085 ± 0.033 0.91603 ± 0.032
Tanimoto 0.91564 ± 0.028 0.92119 ± 0.034 0.91881 ± 0.033

GHIK 0.91569 ± 0.029 0.91365 ± 0.029 0.91853 ± 0.031
MinMax 0.92567± 0.034 0.92845 ± 0.034 0.92607 ± 0.033

Table 10: Human Action Recognition results

It is to be noted here that we run the experiments with and without normalization

and the best results are reported here. GDM SVM improves the accuracy of base

linear SVM by 0.52% and gives less standard deviation. Incorporating DM SVM and

GDM SVM with other kernels improves the baseline accuracy for respective kernels

as well.
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Chapter 5

Parametric features for online

object tracking

Online object tracking is of great importance given its many applications in sev-

eral areas of computer vision such as surveillance, human-robot interaction, motion

analysis, traffic safety, and robotics. Traditional tracking algorithms are classified

into two categories: generative and discriminative, where the main learning task in

the latter is to learn a mapping from target’s visual features to a structured output

form, i.e., bounding box. In generative classifiers, the appearance of the object is

learned to search for it in subsequent frames with the tracker following the patches

where the reconstruction error is the lowest. However, in discriminative classifiers

( [5], [6], [113], [7], [85]), the problem is solved as a classification problem by finding

the boundary between the target and background instead of minimizing the differ-

ences of feature values between successive frames. In general, the performance of the

generative process is less than that of the discriminative classifiers [25].

Either approaches requires four modules of tracking: object initialization, ap-

pearance modelling, motion estimation, and object localization [69]. In appearance

modelling, either global features (raw pixels, optical flow etc.) or local features

(SIFT [73], [10] etc.) are used to compute statistical descriptors. Detection-based

tracking uses such features to localize the target. In image classification, hybrid

methods are developed to take advantage of both generative and discriminative ap-

proaches while learning from the features. For example, [25], [23] develop a technique

to learn proportional data on a simplex manifold exploiting Dirichlet, Generalized
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Dirichlet (GD) and Beta-Liouville (BL) distributions which improves the classifica-

tion accuracy. In a similar manner, [33], [63] uses Scaled Dirichlet (SD) distribution to

improve the classification accuracy of retinal images. Such distributions embed data

on simplex manifold with different degrees of freedom and allow more efficient data

modeling. In tracking, object appearance varies due to noise disturbance, occlusion,

pose variation, etc. [69]. A key factor in object tracking is to carefully design and

merge different features to get a robust representation to increase the discriminative

power of the tracking model [63, 107]. A parametric feature learning of the target

object using Dirichlet and related distributions may help to capture representations

invariant to noise [81]. This further motivated our study of such distributions in

object tracking.

5.1 Proposed Framework

Figure 16: Architecture of our proposed generative feature mapping for online object
tracking.

A given set of video frames, F = {Fn}Nn=1, and the initial state, S1, of the target at

the initial frame, F1 ∈ F , represents the standard setup for detection-based object

tracking [85], [58]. Our goal is to predict the state of the target object S2, S3, . . . , SN

in frames F2, F3, . . . , FN . Let, fn be the central location of the object at frame n, and d

is the relative displacement of the location of the object in the next frame according

to fn. Hence, a new position is attained on the next frame denoted by fn ◦ d. A

search space, Ω, is defined within radius r of this new position. We then extract

the image patches, {I}Ki=1, from this search space and each patch is a defined as a
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target candidate. For a Bag of Visual Words (BOVW) or a color space histogram

representation, each image is considered Ii : R2 → {1, 2, . . . , D} as a collection of

codebooks (visual words) in some feature space, χ ∈ Ii = {pj}Dj=1 where
∑D

j=1 pj = 1.

The codebooks are generated from each localized image patches with a fixed number

of bins. The histogram representation of the image is a probability distribution and

is proportional. Following the notations of [42], we can write the distributions of the

target (ht) and each of the potential candidates (hc) as:target distribution: ht = {p̂jt}Dj=1;
∑D

j=1 pjt = 1

candidate distribution: hc = {p̂jc}Dj=1;
∑D

j=1 pjc = 1
(106)

Adhering to Eq.((106)), we can exploit proportional data distributions to compute

meaningful features of the candidates in the probability simplex. The parameters of

the distributions are learned from the BOVW representation or color histogram repre-

sentation of the localized target in the initial frame. The learned parameters are then

used to embed features for the target candidates of later frames in the probability

simplex. In contrast to fully Bayesian approaches where posterior probability density

is computed from likelihood and prior density up-to the current frame to update the

tracker [112], our method uses the prior density which is then utilized as a feature in a

discriminative classifier. The architecture of our proposed method is presented in Fig.

16. It is to be noted that, in our experiments, we use the RGB color space histogram

representation to learn the parameters of the target distribution and combine CIE

lab color space with the features in the probability simplex. For discriminative classi-

fier, we choose online dual linear structured support vector machine (DLSSVM) [85].

DLSSVM has superior tracking performance on benchmark dataset [116] than tradi-

tional models for structured prediction such as kernelized object tracking [42,58] and

sub-gradient based tracking [98].

5.2 Distributions for proportional data

Dirichlet and related distributions are most natural to model compositional data or

measure data proportionately [84]. It is a distribution over multinomials in a simplex.

If a vector p = (p1, p2, . . . , pD) of length D resides in a D dimensional closed simplex

of RD then the data composition is defined as C(1) = {p ∈ RD : p1 + . . .+ pD = 1,

67



pd ≥ 0, 1 ≤ i ≤ D}. Here, C(n) = C(1) and n is sum of the multinomials, which

is 1 in this case. If the proportional vector p is parameterized by a positive shape

parameter vector Θ = (α1, α2, . . . , αD), then Dirichlet probability density function is

defined as,

p(p|Θ) =
Γ (
∑

d αd)∏
d Γ(αd)

D∏
d=1

pαd−1
d (107)

One of the shortcomings of Eq.(107) is that any two random variables are nega-

tively correlated. To model p with a flexible covariance structure, the GD distribution

with parameter vector Θ = (α1, β1, α2, β2, . . . , αD, βD, ) can be employed,

p(p|Θ) =
D∏
d=1

Γ(αd + βd)

ΓαdΓβd
pαd−1
d

(
1−

d∑
l=1

pl

)γd
(108)

From Eq.(108), we note that the GD has twice the number parameters than

Dirichlet distribution. It has no closed form solution to optimize the parameters

which renders it computationally expensive [25]. Nonetheless, a closed form solution

for the parameter β can be attained by satisfying unit sum constraint to make a

computationally cheaper SD distribution [33],

p(p|Θ) =
Γ
∑D

d=1 αd∏D
d=1 Γαd

∏D
d=1 β

αd
d pαd−1

d(∑D
d=1 βdpd

)∑D
d=1 αd (109)

The BL distribution is another extension of the Dirichlet distribution with an

additional two parameters that characterize the sum of the vector elements [23]. The

BL probability density function with Θ = (α1, . . . , αD;α, β) and α+ =
∑D

d=1 αd is

defined as,

p(p|Θ) =
Γα+

B(α, β)

D∏
d=1

pαd−1
d

Γαd
(
D∑
d=1

pd)
αd−α+(1−

D∑
d=1

pd)
β−1 (110)

Another variation in the Dirichlet family of distributions is Inverted Dirichlet

distribution which is a generalization of Beta Prime distribution and is relaxed from

unit sum constraint. The joint probability function for this distribution with Θ =
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(α1, . . . , αD;
∑D+1

d=1 αd) is defined as [14],

p(p|Θ) =

∑D+1
d=1 αd)∑D+1
d=1 Γαd

D∏
d

pαd−1
d (1 +

D∑
d=1

pd)
−

∑D+1
d=1 αd (111)

5.3 Parameter Learning and kernel approximation

5.3.1 General framework to update the parameters

For efficient learning, it is important to estimate the parameters of the distributions

optimally. In this paper, we adopt the maximum likelihood estimation (MLE) with

Newton-Raphson algorithm to maximize the probability of the sampled vectors of the

target frame. The maximum likelihood (ML) estimate results in the optimum values

of the latent parameters to compute density features on the simplex and is given as

Θ = argmaxθlog p(p|Θ), where Θ denotes the set of parameters and p(p|Θ) is the

likelihood function. Given the initial or current estimates of the parameter vector

Θ, the log likelihood is computed as L =
∑N

i

∑D
d=1 log p(pid|θd). The gradient, g is

computed with respect to the parameter being updated [25], [23]. To describe the local

curvature, the Hessian (a second-order partial derivative of a block-diagonal matrix)

is computed as, H = ∇2log(p(p|Θ) = B + 1D1T
Db. Where, B=̂ diag: RD → RDxD

is the diagonal elements of Hessian matrix and b is a constant value of that matrix

elsewhere [25], [23]. In the Newton’s method defined as Θnew = Θold − H−1g, the

Hessian needs to be inverted numerically to avoid singularity [79] and it can be easily

shown that:

H−1 = B−1 − B−11D1T
DB−1

b−1 + 1T
DB−11D

(112)

The method of moments technique is a common choice for initial guess of the

parameters [79].

5.3.2 Approximate non-linear kernels

Linear classifiers are faster to train while non-linear classifiers are computationally

expensive although provide better classification results [89]. Linear classifiers based on

additive models can be trained on max margin frameworks to approximate non-linear
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kernels with faster training time [59,76]. Grayscale pixels are transformed to a unary

representation based on feature transformation technique described in [75, 85, 119].

In a similar manner, we concatenate density based features. Pixel based features

embedded in the probability simplex can be approximated by an additive kernel such

as histogram intersection kernel or min kernel. Assume that ρi and ρj are density

representation of two image patches in the probability simplex and pi and pj are

feature vectors as described in Eq.(106) of the corresponding image patches, then the

min kernel can be represented as follows:

Kint = CONCAT
( D∑
d=1

min(pdi , p
d
j ),min(ρi, ρj)

)
(113)

where d is the d-th element of the feature vector. Using explicit feature mapping

technique [119], we can approximate Eq. (113). Let N be the number of discrete

levels and U(n) the encoded representation where n ∈ D, then the feature mapping

is defined as follows:

φ(pd, ρ) = CONCAT(U(R(Npd)), U(R(Nρ))) (114)

where R(.) is a rounding function and U(.) is a unary transformation function. For ex-

ample, ifN = 6, then φ(0.6, 0.3) = CONCAT(U(3), U(3)) = [1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0].

Therefore, the intersection kernel can be approximated as,

∑
d

min(pdi , p
d
j ) ≈

∑
d

< φ(pdi , ρi), φ(pdj , ρj) > (115)

Similar to [85], we set quantization number, N = 4 for both color channel and density

based features. This allows us to get a feature vector proportional to 8 for each image

patches.

5.4 Experimental Results

5.4.1 Experimental Setup, Dataset and Evaluation Metric

For fair evaluation of different models, we set the same classifier configuration as [85].

Each of the image patches are reduced to 50% of the original size for faster evaluation
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and the number of support vectors are fixed to 100. The experiment is conducted

on a PC configured with Intel i5-2400 CPU (2.3GHz) and 8.0 GB of RAM. Our

proposed method is tested on 8 challenging video sequences [116] of mixed attributes

of illumination variation (IV), occlusion (OCC), deformation (DEF), out of plane

rotation (OPR), scale variation (SV), fast motion (FM), in-plane-rotation (IPR),

and background clutter (BC). We choose region overlap based on Jaccard Index as

evaluation metric over center error or precision metric since it is sensitive to subjective

annotation as it ignores the target size and misleads to incorrect tracking result [36].

Given the area of ground truth bounding box as ΛG and area of predicted bounding

box as ΛT , overlap becomes,

∆(ΛG,ΛT ) =
ΛG ∩ ΛT

ΛG ∪ ΛT

(116)

Figure 17: Example result frames with background clutters. Ground truth is pre-
sented in a red box, DLSSVM in a green box and SD-DLSSVM in a blue box.
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Models
Implicit Map Explicit Map

succ. prec. succ. prec.
(AUC) (20 px) (AUC) (20 px)

DLSSVM 0.56623 0.84339 0.58851 0.80889
D-DLSSVM 0.64652 0.87154 0.64516 0.88334

GD-DLSSVM 0.61264 0.86109 0.65845 0.89332
SD-DLSSVM 0.65360 0.89787 0.67261 0.89877
BL-DLSSVM 0.53262 0.76305 0.64107 0.89332
ID-DLSSVM 0.59787 0.85974 0.67283 0.89787

Table 11: Overall success rate for different models.

Video Sequence DLSSVM D-DLSSVM GD-DLSSVM SD-DLSSVM BL-DLSSVM ID-DLSSVM
Boy 0.79485 0.80310 0.80310 0.80188 0.79308 0.80169
Coke 0.17414 0.49583 0.42922 0.59307 0.14004 0.36894

MountainBike 0.71090 0.72449 0.73177 0.72548 0.70412 0.70288
Basketball 0.54973 0.77277 0.64843 0.74607 0.61806 0.59926
Crossing 0.63019 0.64392 0.62155 0.62512 0.62550 0.62322
Couple 0.61497 0.48930 0.48635 0.50662 0.50667 0.62224

Football1 0.80952 0.77635 0.69756 0.69756 0.78999 0.77714
Walking2 0.44763 0.43537 0.45698 0.44716 0.42436 0.42916
Mean FPS 26.82 21.43 10.35 23.96 23.97 21.68

Boy-U 0.80983 0.80293 0.80088 0.80421 0.79573 0.80279
Coke-U 0.60939 0.53439 0.52456 0.61775 0.53914 0.65905

MountainBike-U 0.72169 0.73133 0.72690 0.73288 0.73005 0.72549
Basketball-U 0.39316 0.72946 0.74408 0.78793 0.70853 0.76099
Crossing-U 0.67833 0.68711 0.67771 0.69345 0.61829 0.67257
Couple-U 0.63369 0.50555 0.51079 0.62394 0.50256 0.59659

Football1-U 0.59162 0.74941 0.82721 0.63219 0.80647 0.78024
Walking2-U 0.42850 0.43165 0.48082 0.43234 0.44724 0.42857
Mean FPS 29.08 18.35 8.67 13.64 19.33 18.19

Table 12: Individual success rate of eight video sequences for different models.
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(a) Implicit feature map.

(b) Explicit feature map.

Figure 18: Average success plot for five different video sequences.

5.4.2 Analysis of the proposed feature mapping

Visually, the performance of one of our proposed method SD-DLSSVM compared

to DLSSVM is presented in Fig. 18. The top row shows example frames in which

DLSSVM is affected by background noise, while SD-DLSSVM is invariant to it. In

the bottom row, our proposed method is still invariant in the presence of similar

objects in the background. The different characteristics of each of the distributions

discussed in Section 5.2 improves the tracking performance in different situations

where the traditional method fails to track target object. Since there is peculiarity

in each video, the tracker performance will vary. Hence, the overall success rate is
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measured to get the best model instead of comparing performance for each video

sequences [113, 119]. Table 1 presents the overall success score at threshold of 50%

overlap rate and precision score at threshold of 20 pixels of our proposed method

in comparison to DLSSVM in our selected video sequences. For density based or

implicit feature mapping, SD distribution based mapping achieves highest (in blue)

overall success rate is 65.36% with a precision rate of 89.78%. Second best model (in

red) is Dirichlet DLSSVM (D-DLSSVM) having a success rate of 64.65. As shown in

Table 1, using explicit feature mapping, overall performances of all the models have

increased. Inverted Dirichlet (ID) has the highest score of 67.28% by a close margin

to SD based model. For better comparison of different models, success rate for each

video sequences with corresponding models are presented in Table 2.

Significant gain is observed in the Basketball and Coke video sequences with den-

sity based feature mapping. With our experimental setup, tracking performance of

DLSSVM for Coke video sequences is very low due to fast motion and illumination

variation. SD distribution based feature mapping enables us to improve the perfor-

mance by almost 42% with the same setup. For explicit feature mapping with unary

representation, Baketball-U, Coke-U and Football-U sequences show major improve-

ment in success rate score. Fig.18 shows the Area Under Curve (AUC) ranking scores

of baseline DLSSVM and our proposed generative feature mapping with different

distributions. It is evident that for explicit feature representations, our proposed

method with all distributions outperforms baseline tracker. Average frame rate per

second (FPS) is higher than the baseline DLSSVM for all models. This is because

new features are inferred from probability density equations using the learned pa-

rameters from initial frame for each frame and for each of the images patches. For

explicit feature mapping, the mean FPS of our proposed models are significantly

lower than the baseline since we have twice the number of features for each patch

according to Eq.(114). Compared to state of the art deep learning based trackers

such as [17,66] where convolutional features are learned by training the model offline

on a large dataset, our approach is computationally cheaper and the features are gen-

erated online in later sequences. Such flexible representation is desirable compared to

deep learning approaches where the model tries to find static features that has been

learned in the training phase.
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Chapter 6

Conclusion

In this thesis, we have developed several feature mapping functions in order to improve

the accuracy of SVM learning algorithm.

Chapter 2 shows a novel feature mapping technique for proportional data based on

Dirichlet, generalized Dirichlet and Beta-Liouville distributions which shows good ac-

curacy in classifying images and videos. Such data types are prevalent in data mining,

image processing and pattern recognition problems which motivated us to exploit the

statistical representation of the data in order to enhance the discriminative power of

the traditional SVM kernels. In particular, we have introduced five feature mapping

functions for proportional data to be used in SVM learning algorithm. Our exper-

iments on DSVM, GDSVM and BLSVM show good performance of the proposed

technique in classifying natural and satellite images and also in classifying human

action recognition in videos. The results also show that either of the proposed distri-

bution based feature mapping function increases the accuracy of the corresponding

SVM kernel. By using scaled Dirichlet and shifted scaled Distributions with SVM

classifiers which we name as SDSVM and SSDSVM, we can improve the accuracy of

gender classification and facial expression recognition. These distributions have the

same computational complexity to update the free parameters as Dirichlet distribu-

tion since a closed form solution to new parameters exist. Experimental results show

that the proposed method performs favorably for gender classification and emotion

recognition against the baseline SVM kernels.

Inc chapter 3, we have introduced a distribution based feature mapping for semi

bounded positive vectors. By taking the advantage of inverted Dirichlet, generalized
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inverted Dirichlet and inverted Beta Liouville distributions, we arrived at three differ-

ent feature mapping functions that can be combined with other traditional kernels.

In addition, we have presented a framework to update parameters using Newton-

Raphson method with an initialization of the parameters utilizing method of mo-

ments. We have shown empirically that the combination of our proposed approach

with traditional kernel functions favors the improvement of baseline kernel accuracy.

According to our results, inverted Beta Liouville distribution has better feature mod-

elling capabilities for classification in general. Howerver, these experiments are highly

dependent on similarity matrix and inverted Dirichlet and generalized inverted Dirich-

let distributions have proved to be efficient for some kernels. Indeed, the performance

of the models can be improved by considering feature weights such TF-IDF. Since

the accuracy of the proposed technique is dependent on the learned parameters, con-

vergence to local maxima in Newton-Raphson method may result in less accurate

model.

In chapter 4, we presented a new feature mapping technique for count data exploit-

ing the characteristics of Dirichlet Multinomial and Generalized Dirichlet Multinomial

distributions. In addition, mentioned parameter estimation technique guarantees op-

timal value of the parameters and hence can confidently be used in the mapping

function. Our experimental results show that the proposed method is capable to in-

crease the accuracy of the classifier. It is noteworthy that, this mapping technique can

be used with any count data modelling approach for classification task and depending

on the kernel function and nature of the data, either DM SVM or GDM SVM beats

the baseline SVM classifier.

In chapter 5, we have proposed an efficient feature mapping technique for object

tracking. By utilizing five different distributions for proportional data, we show that

features based on probability simplex is an effective feature for efficient object tracking

in severe noise conditions. We further improve the baseline tracker performance by

approximating the non-linear intersection kernel. Experimental results show that the

combination of color pixels and their corresponding simplex based features favors

efficient object tracking.

Since histogram based encoding approach quantizes all feature information into a

fixed number of bins, some discriminative information might be lost. An important
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future research direction can be to consider soft encoding method such mixture mod-

els. Also, instead of using a fixed number of bins, variational approaches can be taken

to determine the number of clusters that describes the data most. Also, as indicated

by [82] piecewise non-linear mapping function based on all the distributions discussed

in this thesis can be developed. From application point of view, our proposed method

can be applied for node classification in graph for histogram based representation of

adjacency matrix.
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