
i

Machine Learning Methods for the Detection of Fraudulent Insurance
Claims

Sisheng Zhao

A Thesis

in

The Department

of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Arts (Mathematics) at

Concordia University

Montreal, Quebec, Canada

March 2020

© Sisheng Zhao, 2020

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Sisheng Zhao

Entitled: Machine Learning Methods for the Detection of Fraudulent Insurance Claims

and submitted in partial fulfillment of the requirements for the degree of

Master of Arts (Mathematics)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final Examining Committee:

_______________________ Chair

 Dr. Cody Hyndman

____________________ Examiner

 Dr. Arusharka Sen

____________________ Examiner

 Dr. Yogendra P. Chaubey

____________________Supervisor

 Dr. Jose Garrido

Approved by ___

 Galia Dafni, Graduate Program Director

____ March 24 _ 2020 __

 Dr. André Roy, Dean, Faculty of Arts and Science

iii

ABSTRACT
Machine Learning Methods for the Detection of Fraudulent Insurance Claims

Sisheng Zhao, M.A.

This thesis focuses on automotive fraudulent claims detection, a particular Property and Casualty

(P&C) insurance product. By analyzing the customer's information, we try to define a model to

determine if one customer has filed a fraudulent claim.

Two datasets used in this thesis. One of them is very imbalanced, as 6.1% of policyholders file

fraudulent claims (coded as 1) and 93.9% of policyholders file normal claims (coded as 0). So, we

need to deal with the imbalanced classes, by using rebalanced methods such as SMOTE and under-

sampling. Then we use classical methods (naïve Bayes and logistic regression) and new data

science methods (random forest and gradient boosting) to detect the fraudulent claims. During the

process, we compare these methods to find which one performs better for this application.

In addition, the combination of SMOTE and clustering is also used to these two datasets, which is

unusual in fraud detection. But the results have been improved a lot for all these four classification

models. What is more, link analysis method has also been mentioned in the conclusion.

These methods have also been used to another dataset, which is not that imbalanced, with 24.7%

of fraudulent claims and 75.3% of normal claims. The reason for using two datasets is to see if the

degree of imbalance affects the performance of the oversampling, undersampling and different

models. If so, then these methodologies will be more convincing. If not, we can dig deeper to find

the reason.

iv

Acknowledgments

First of all, I want to thank my supervisor, Prof. Jose Garrido. I thank him for being my

professor, giving me the chance to study Actuarial Science at Concordia University. I really

appreciate this chance because that is a big turning point in my life, which allowed me to learn

more about mathematics and actuarial science, changing my career path and future life. I also

want to thank him for his patience, support, guidance on my study and this thesis, which is very

valuable and important.

I would also thank Dr. Arusharka Sen and Ms. Debbie Arless for helping me registering for

courses and answering my questions. My gratitude also to Prof. Yogendra P. Chaubey and Dr.

Arusharka Sen for their questions and comments at the thesis defence, which helped improved this

final version of the thesis.

Also, I thank Dong Qiu, Shuangning Cao and other friends for the help in my daily life and in

finding me internships. Thanks to IACO and my manager Jesper at IATA, they gave me the chance

to improve my abilities in an all-round way.

What is more, I want to thank Dr. Jose Garrido and the Department of Mathematics and

Statistics in Concordia University for the financial support they provided, which is very important

for me.

I thank my parents for supporting all the decisions I made and letting me to try everything I

want to do.

Finally, thanks for everything I have been through.

v

To my parents: Zuxiang and Hualing.

vi

Contents

Abstract ………………………………………………………………………..………………………... iii

LIST OF FIGURES ……..……………………...……...…………………………………………………viii

LIST OF TABLES ……………………………………………………..…………...………………………x

CHAPTER 1 ... 3

LITERATURE REVIEW ... 3

1.1 OVERVIEW .. 3
1.2 EXISTING METHODS .. 3
1.3 DISCUSSION ABOUT EXISTING METHODS .. 4

CHAPTER 2 ... 6

THEORIES OF CLUSTERING AND DIFFERENT CLASSIFICATION METHODS....................................... 6

2.1 THE NAÏVE BAYES CLASSIFIER ... 6
2.2 THE LOGISTIC REGRESSION CLASSIFIER ... 8

2.2.1 Introduction.. 8
2.2.2 Concepts About Logistic Regression ... 9

2.3 THE RANDOM FOREST CLASSIFIER .. 13
2.3.1 Introduction to Decision Trees... 13
2.3.2 Introduction to Random Forest .. 14

2.4 THE GRADIENT BOOSTING CLASSIFIER ... 14
2.4.1 Predictive Model Framework .. 15
2.4.2 Gradient-descent optimization ... 20
2.4.3 Boosting ... 21
2.4.4 Gradient Boosting algorithm.. 22

2.5 THE K-MEANS CLUSTERING ... 29

CHAPTER 3 ... 31

PERFORMANCE MEASURES ... 31

3.1 ROC CURVE.. 31
3.2 CONFUSION MATRIX ... 31
3.3 RECALL AND PRECISION .. 32

CHAPTER 4 ... 35

DATASET 1 DESCRIPTION AND MANIPULATION .. 35

4.1 DESCRIPTION ... 35
4.1.1 Dependent Variable ... 35
4.1.2 Correlation Matrices .. 36

4.2 DATA MANIPULATIONS ... 37
4.2.1 Features Selection .. 38

vii

4.2.2 Standardization and Scaling ... 38
4.2.3 Missing Data .. 38

4.3 UNBALANCED DEPENDENT VARIABLE .. 39
4.3.1 SMOTE .. 39
4.3.2 Under-Sampling ... 40
4.3.3 Combine SMOTE and Under-Sampling .. 41
4.3.4 A Common Mistake ... 41

4.4 RESULTS .. 42
4.4.1 Naïve Bayes Classifier ... 42
4.4.2 Logistic Regression.. 43
4.4.3 Random Forest ... 49
4.4.4 Gradient Boosting .. 51

4.5 CONCLUSION ... 53
4.6 ORIGINAL IDEA ... 54

4.6.1 Performances of Different Models in Three Clusters .. 55
4.6.2 The Effect of Using Clustering .. 55

CHAPTER 5 ... 57

DATASET 2 DESCRIPTION AND MANIPULATION .. 57

5.1 DESCRIPTION ... 57
5.1.1 Dependent Variable ... 57
5.1.2 Correlation Matrices .. 58

5.2 DATA MANIPULATIONS ... 58
5.2.1 Features Selection .. 59
5.2.2 Standardization and Scaling ... 59
5.2.3 Missing Data .. 60
5.2.4 Target Encoding ... 60
5.2.5 Combine SMOTE and Under-Sampling .. 60

5.3 RESULTS .. 61
5.3.1 Naïve Bayes Classifier ... 61
5.3.2 Logistic Regression.. 63
5.3.3 Random Forest ... 67
5.3.4 Gradient Boosting .. 69

5.4 CONCLUSION ... 71
REFRENCES …………..……………………..……………………………………………………………75

APPENDIX A CODE FOR THE ANALYSIS OF DATASET 1 …………………...……………………….…78

APPENDIX B CODE FOR THE ANALYSIS OF DATASET 2 ………………………………...………...…114

viii

List of Figures

2.2.1 Graph of Logistic Curve ………………………………...……………………………………...…. 11

2.3.1 Decision Tree Example ..……………………………………………………………..………....…. 13

2.4.1 Comparisons Between the Classical Statistical Method and the Machine Learning ………....….... 15

2.4.2 Common Loss Functions .………………………………………………………………………..... 17

2.4.3 Common Loss Functions for Regression ….…………………………..……………………………19

2.5 K-Means Clustering Example ..………………………………………………………..……………. 30

3.1.1 ROC Curve ...…………………………………………………..………………………….………...31

3.2.1 Confusion Matrix Sample ……….……………………………………..………………………….. 32

4.1.1 Bar Chart and Pie Chart of the Response Variable……….……………………..…………………. 36

4.1.2 Imbalanced Correlation Matrix and Sub-Sample Correlation Matrix……………………..………. 37

4.3.1 Connecting the Dots ………………..…………………………………………………………….....39

4.3.2 Synthesizing New Dots Between Existing Dots………………..………………………………….. 40

4.3.3 SMOTE Process ….……………………………………………………..………………………..…41

4.4.1 Confusion Matrix - Naive Bayes ..…………………………………….…………………..………. 44

4.4.3 Box Plot of ClaimSize and Age………………………………………………………….…..……...45

4.4.4 ROC Curve - Logistic Regression….…………..………………………………………………….. 46

4.4.5 Confusion Matrix - Logistic Regression………………...…………………………………………. 47

4.4.6 ROC Curve – Random Forest……………………………………..……………………………….. 49

4.4.7 Confusion Matrix – Random Forest……………..…………..……………………………………...50

4.4.8 ROC Curve - Gradient Boosting……………………………………..…………………………….. 51

4.4.9 Confusion Matrix - Gradient Boosting……….………………………………..…………………... 52

5.1.1 Bar Chart and Pie Chart of the Response Variable……………………………………..……….......57

5.1.2 Correlation Matrix………………………………………………………………………………...... 58

5.3.1 ROC Curve – Naïve Bayes……………………....…………..……………………………………...61

5.3.2 Confusion Matrix – Naïve Bayes……………………………………..……………………………. 62

ix

5.3.3 S-shaped Curve of Total Claim Amount and Age……………………..………………………........63

5.3.4 Box Plot of Vehicle_Claim and Injury_Claim………………………………….……….……......... 64

5.3.5 ROC Curve - Logistic Regression....……………………………………………………..………....65

5.3.6 Confusion Matrix - Logistic Regression.……………………………………………….………….. 66

5.3.7 ROC Curve – Random Forest………………………….…...………………………….………........67

5.3.8 Confusion Matrix – Random Forest…………………………….……………...……..………......... 68

5.3.9 ROC Curve - Gradient Boosting .……………………………………….………….………….........69

5.3.10 Confusion Matrix - Gradient Boosting…………………………………………...………………. 70

x

List of Tables

2.1.1 A Training Set Containing Labeled Data Rows……………………...……………………………….7

2.1.2 An Example of Sensor Values Captured from Smartphone Sensors…………...…………………….8

3.4.1 Confusion Matrix…………………………………………..……………………………..…………32

4.1.1 Claim Severity Summary Statistics………………………………….………………….…………...35

4.4.1 Recall and Precision Table - Naive Bayes……………………………..……………………………42

4.4.2 Recall and Precision Table - Logistic Regression………………………………..…..…………..…47

4.4.3 Recall and Precision Table – Random Forest……………………………………………..……...…50

4.4.4 Recall and Precision Table - Gradient Boosting……………...…………..…………………………52

4.5.1 Overall Recall and Precision Table……………………...………………………..…..…………..…53

4.6.1 Overall Recall Table for Clustered Data…………………………………………………..……...…55

4.6.2 Overall Recall Table For the Best Methods……………...………………………………………….56

5.3.2 Recall and Precision table – Logistic Regression………………..…………...…………………..…66

5.3.3 Recall and Precision Table – Random Forest……………………………..………………………...68

5.4.1 Recall and Precision table - Gradient Boosting……………...……………………..……………….70

5.4 Overall Recall and Precision Table…………………………………....………………………..…..…71

1

Introduction

The insurance industry is undergoing a major transformation due to the need to improve customer

experience and rapid claims processing. Insurers operate in a highly competitive environment, and

each additional cost can seriously affect their profitability.

Organized fraudsters often use multiple product lines, like using fake identities to remain

undiscovered, and often collude with the employees and suppliers. Insurance companies are also

often seen as acceptable and easy targets for opportunity fraud. In the current environment, it is

necessary to detect more fraud. In the particular Property and Casualty (P&C) insurance is

subjected to fraud, hence insurers try to detect, investigate and prevent fraud in claims, while

minimizing the impact on real claimants. And most of detection methods used in insurers are the

Machine learning (ML) classification models.

It is known that ML is about more than just using computers for fast calculation and data retrieval.

Combining these two capabilities of a computer system makes it seem to learn and make rational

decisions based on previously observed conditions and previous actions or reactions, rather than

just acting on a fixed program. ML is used not only for search engines and stock market analysis,

but also for classification of DNA sequencing, medical diagnostics, speech and handwriting

recognition, and robotics. Machine learning technology can be used in a wide range of applications,

and more uses are discovered over time. It allows computer systems to be improved in a dynamic

environment where the input signal is unknown, and the best decisions can only be learned from

historical data.

2

In this situation, data scientists came up with ML uses to solve problems in insurance companies.

One such example is fraudulent insurance claim detection, where a policy-holder’s attributes are

related to the response variable; fraudulent claims equal to 1; and 0 otherwise.

3

Chapter 1

Literature Review

1.1 Overview

Fraud detection is a topic that applies to many industries, including banking and finance, insurance,

government agencies and law enforcement agencies. In recent years, fraudulent attempts have

increased dramatically, making fraud detection more important. Despite the efforts of different

institutions, large amounts of money are lost each year due to fraud. The detection of these frauds

is difficult because the percentage of fraudulent activities is very small (see [14, 15, 18]).

In insurance, 25% of claims include different kinds of fraud, resulting in approximately 10% of

insurance expenses. The scope of fraud ranges from exaggerated losses to accidents that result in

expenditures. Because of the different methods to fraud, it becomes more difficult to identify them

(see [18]).

Data mining and statistics help predict and quickly detect fraud and take immediate action to

minimize the cost. By using sophisticated data mining tools, one can search millions of claims to

discover patterns and detect fraudulent claims.

An important early step in fraud detection is to identify factors that are related to fraud. Once these

phenomena and characteristics are identified, it is easier to manage and detect fraud. Then the next

step is to use some predictive models to identify the fraudulent claims.

1.2 Existing Methods

There are some existing models used to detect the fraudulent claims, such as naïve Bayes, logistic

regression and random forest.

Ridgeway (1998) used the evidence reconstruction formula of the naive Bayesian scoring to

diagnose insurance claim fraud. This method combined the advantages of boosting and

representative attractiveness of the probability weights of the evidence scoring framework. They

4

presented the results of an experimental comparison, focusing on the discriminative power and

probability estimates’ calibration. The dataset evaluated for this method included a representative

set of closed personal injury protection auto insurance claims of accidents in Massachusetts in

1993. The results show that this method has a valuable contribution to an effective, efficient and

easy fraud detection.

With the increase of credit card transactions, credit card fraud has become more and more common

in recent years. Fraud is a serious problem faced by credit card issuers. In 2004, credit card

transactions in the United States caused a total loss of fraud of $800 million. The same year in UK,

credit card fraud caused losses of 425 million pounds ($750 million). In China, the lag in risk

management has become one of the biggest obstacles to business growth and profitability. So, for

researchers in the private finance business of some banks, credit card risk management has become

one of the most important topics. In this situation, Sahin and Duman (2001) proposed to use

logistic regression to detect the credit card fraud, which also achieved great improvements for the

fraud detection.

What is more, auto insurance fraud is spreading all over the world, and detecting the automobile

insurance fraud is more and more important to the society and insurance company (see [23, 28]).

Due to the imbalanced dataset (classes of dataset are not represented equally) of actual auto

insurance claims and the real data of auto insurance company being selected, a random forest fraud

model was established to detect the auto insurance fraud (Li, Yan, Liu and Li, 2016). The error of

the model is analyzed, and then the method is verified by empirical analysis. The empirical results

show that compared with the traditional model, the auto insurance fraud detection model (random

forest) is suitable for large and imbalanced dataset. It can be better used for the classifying the auto

insurance claims and detecting fraudulent claims. Besides, it also has good accuracy and

robustness.

1.3 Discussion About Existing Methods

There is no doubt that before using these models, the first step is to clean the dataset such as dealing

with those variables with missing data and unbalanced data.

https://ieeexplore.ieee.org/author/37718526500
https://ieeexplore.ieee.org/author/37529138100

5

In terms of dealing with unbalanced dataset, one common technique is the SMOTE method to

rebalance the dataset; while others use a combination of SMOTE and undersampling to rebalance

the dataset. When using a combination of SMOTE and undersampling methods, it is important to

calibrate the ratio of SMOTE over undersampling. People normally suggest to use a 2:1 ratio

(SMOTE:undersampling). For different datasets, maybe different ratios will be better; for instance,

after testing for this thesis, a 3:2 ratio was seen to be better than 2:1.

After cleaning the dataset, it is common to choose logistic regression, because in many cases, it

provides better model sensitivity than a naïve Bayes. Naïve Bayes is a simple probability calculator.

Before using logistic regression, data analysts usually check assumptions, such as multicollinearity

or continuous independent variables being linearly related to dependent variables. Then the related

variables can serve as input into the model to get a confusion matrix that measures the quality of

logistic regression prediction accuracy.

In addition, as mentioned before, some analysts use decision trees or random forest to detect

fraudulent claims. These two methods are relatively easier to use than logistic regression, because

there is no need to check for assumptions before implementing them. The computations are also

very fast. What is more, the theories behind these two methods is simple. For decision trees, at

each root node, if the Gini index is small, then the classification at that root node is good. For

random forest, which is a combination of several resampled decision trees, the result is the same

as that of most decision trees.

To check the quality of different models, some analysts use the accuracy rate, although I

personally think it is not that good. Here our main objective is to find fraudulent claims, so we

need to focus on the recall to see what percentage of fraudulent claims have been detected. This

will be discussed in detail later in Section 3.3.

6

Chapter 2

Theories of Clustering and Different Classification Methods

2.1 The Naïve Bayes Classifier

The naïve Bayes classifier is a probabilistic classifier based on Bayes’ theorem (see Murphy, 2006).

The latter describes the relation between conditional probabilities of a hypothesis and observations

as given in Eq. (2.1 invisible). Assume that h represents the hypothesis and O represents the

observation made.

𝑃(ℎ|𝑂) = 𝑃(𝑂|ℎ)𝑃(ℎ)

𝑃(𝑂)
 , (2.1)

where:

• 𝑃(ℎ) = prior probability of the hypothesis,

• 𝑃(𝑂) = prior probability of observations O,

• 𝑃(ℎ|𝑂) = probability of hypothesis given O (posterior probability),

• 𝑃(𝑂|ℎ) = probability of O given hypothesis (likelihood).

Typically, the most probable hypothesis or the maximum a posteriori hypothesis needs to be

identified. The maximum posterior (ℎ𝑀𝐴𝑃) is given by Eq. (2.2):

 ℎ𝑀𝐴𝑃 = arg max 𝑃(ℎ|𝑂) = arg max
𝑃(𝑂|ℎ)𝑃(ℎ)

𝑃(𝑂)
 = arg max 𝑃(𝑂|ℎ)𝑃(ℎ). (2.2)

Now, let 𝐻 = ℎ𝑗 𝜖 {ℎ1, ℎ2, … , ℎ𝑚} be the hypotheses, assuming that hypotheses are mutually

exclusive and exhaustive and 〈𝑂1 = 𝑜1, 𝑂2 = 𝑜2, … , 𝑂𝑛 = 𝑜𝑛〉 be the various observations made.

Then the most probable hypothesis is given by Eq. (2.3):

ℎ𝑀𝐴𝑃 = arg 𝑚𝑎𝑥𝐻 𝑃(ℎ𝑗|𝑜1, 𝑜2 ,…, 𝑜𝑛)

= arg 𝑚𝑎𝑥𝐻
𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗)𝑃(ℎ𝑗)

𝑃𝑜1,𝑜2 ,…, 𝑜𝑛

= arg 𝑚𝑎𝑥𝐻 𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗)𝑃(ℎ𝑗). (2.3)

7

The naïve Bayes classifier assumes that the conditional probability of observations given a

hypothesis equals to the production of conditional probabilities of each observation given the

hypothesis according to Eq. (2.4):

𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗) = ∏ 𝑃(𝑜𝑖|ℎ𝑗). (2.4)

𝑖

A substitution of 𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗) by ∏ 𝑃(𝑜𝑖|ℎ𝑗) 𝑖 in Eq. (2.3) shows that the naive Bayes

classifier is given by Eq. (2.5):

ℎ𝑁𝐵 = arg 𝑚𝑎𝑥𝐻 𝑃(ℎ𝑗) ∏ 𝑃(𝑜𝑖|ℎ𝑗). (2.5)

𝑖

The naïve Bayes classifier is a supervised learning algorithm, which means it needs to be trained

before it can be classified. Therefore, it must have a training set that contains several observations

and categories of classification. For example, the training set shown in Table 2.1.1 contains four

parameters (T, L, H, P) and one class (Fraud) values, where various parameter value sequences

are classified.

T L H P Fraud
A B A C NO
A A B A NO
B B A A NO
A A C C NO
B A B C YES
B C C A YES
B A B B YES

Table 2.1.1: A Training Set Containing Labeled Data Rows.
(Source: Murphy, 2006, p11)

The purpose of the naive Bayes classifier is to classify an unobserved sequence of parameter values

into a class in the training set. Suppose the values to be classified are B, A, A, C. The classifier

must classify this sequence of va‘giveslues into one of the fraud categories: YES or NO. According

to Eq. (2.5), you must choose a hypothesis with a greater likelihood. The classifier needs to

reference the training set to calculate the probability of each class based on the probability

distribution in the training set. To calculate the probability of class NO, when the data row is

8

classified as NO, the classifier must calculate the number of data rows with T equal to B. The

standard has 1 data row; there are 3 data rows, where T is equal to B, and the data row is classified

as YES. Therefore, the conditional probability of T is equal to B, and given NO is equal to 1/4.

The classifier calculates all conditional probabilities.

As shown in Table 2.1.2, raw values of smartphone sensors are numeric (i.e. continuous) whereas,

the input data of the naive Bayes classifier should be nominal. Thus, a method is required for

converting numeric data to nominal data.

Temperature (℃) Light (lux) Humidity (Percent) Pressure (mbar)

23 350 33 989.5

22.5 400 32 1001.5

23 410 33 1000.5

23 510 35 993.9

24 71 33 998.5

24 55 32 100.4

Table 2.1.2: An Example of Sensor Values Captured from Smartphone Sensors.
(Source: Murphy, 2006, p12)

2.2 The Logistic Regression Classifier

2.2.1 Introduction

Multivariate statistical analysis methods commonly appear in many fields. The terms

"multivariable analysis" and "multivariate analysis" are often used in the literature. Strictly

speaking, multivariate analysis refers to the simultaneous prediction of multiple outcomes.

Multivariate analysis uses several variables to predict one outcome. The multivariable approach

explores the relationship between more than one independent variable and the dependent variable.

Then we obtain the coefficients that give the best fit for the certain model. The coefficients

represent the effects of independent variables on the dependent variable.

The model has two purposes: (1) it predicts the dependent variable for the new value of the

independent variable, and (2) it can help to show the contribution of each independent variable to

the dependent variable and control the other independent variables of the influencing factor.

9

The four multivariable methods (linear regression, logistic regression, discriminant analysis, and

proportional hazard regression) have many mathematical similarities, but the dependent variables

are expressed and formatted differently. In linear regression, for example, in health science, the

dependent variable is continuous, such as blood pressure. In logistic regression, dependent

variables are usually binary events such as ‘alive’ versus ‘dead’.

2.2.2 Concepts About Logistic Regression

According to Park (2013), logistic regression refers to the logistic model, analyzing the

relationship between several independent variables and the categorical dependent variable, and

estimating the probability of occurrence of the event by fitting a logistic curve to the data.

2.2.2.1 Odds

The odds mean the ratio of the event occur probability to the probability that it does not occur. If

the probability of occurring is p, the probability of not occurring is (1 - p). Then the corresponding

odds is given by:

odds = 𝑃

1−𝑃
 .

Since the probability of a logistic regression calculation event occurring exceeds the probability

that the event did not occur, the effect of the independent variable is usually explained by the odds.

Using logistic regression, the average response variable p in terms of the explanatory variable x is

modeled relating p and x by the equation 𝑝 = 𝛼 + 𝛽𝑥.

Unfortunately, this is not a good model because the extremum of x gives a value of 𝛼 + 𝛽𝑥, which

does not necessarily fall between 0 and 1. The logistic regression solution to this problem is to use

the natural logarithmic to transform the odds. Using logistic regression, we can get the natural log

odds as a linear function:

logit(y) = ln(odds) = ln (
𝑝

1−𝑝
) = 𝛼 + 𝛽𝑥 . (2.6)

This is a simple logistic model. If we take the antilog of Eq. (2.6) on both sides, we can derive an

equation for the prediction of the occurrence probability of the outcome as

10

𝑝 = 𝑃(𝑌 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 | 𝑋 = 𝑥, 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑎𝑙𝑢𝑒)

=
𝑒𝛼+𝛽𝑥

1 + 𝑒𝛼+𝛽𝑥
=

1

1 + 𝑒−(𝛼+𝛽𝑥)
 .

If we extend the simple logistic regression to multiple predictors, we can get a complex logistic

regression as

logit(y) = ln (
𝑝

1 − 𝑝
) = 𝛼 + 𝛼1𝑥1 + ⋯ + 𝛼𝑘𝑥𝑘 .

Therefore,

𝑝 = 𝑃(𝑌 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒| 𝑋1 = 𝑥1, … , 𝑋𝑘 = 𝑥𝑘)

=
𝑒𝛼 + 𝛽1𝑥1+⋯+ 𝛽𝑘𝑥𝑘

1 + 𝑒𝛼 + 𝛽1𝑥1+⋯+ 𝛽𝑘𝑥𝑘
=

1

𝑒−(𝛼 + 𝛽1𝑥1+⋯+ 𝛽𝑘𝑥𝑘)
 .

2.2.2.2 The Logistic Curve

When y contains binary code (0, 1-- failed, successful), logistic regression is a method to fit the

regression curve, 𝑦 = 𝑓(𝑥). When the dependent variable is binary and x is a numerical value,

logistic regression fits the logistic curve between x and y. Logistic curves are “S”-shaped or

sigmoid curves that are commonly used to model population growth.

A basic logistic function is defined by:

𝑓(𝑥) =
𝑒𝑥

1+ 𝑒𝑥 =
1

1+ 𝑒−𝑥 ,

which is graphed in Figure 2.2.1.

To provide flexibility, the above function can be extended to the form:

𝑓(𝑥) =
𝑒𝛼+𝛽𝜒

1+ 𝑒𝛼+𝛽𝜒 =
𝑒𝛼+𝛽𝜒

1+ 𝑒−(𝛼+𝛽𝜒) ,

where α and β mean the logistic intercept and slope.

11

Figure 2.2.1 shows the logistic function with α and β being 0 and 1, respectively. The logistic

function is used to transform the S-shaped curve into an approximate line and change the scale

from 0 - 1 to -∞ - +∞ as

logit(𝑝) = ln(𝑜𝑑𝑑𝑠) = ln (
𝑝

1−𝑝
) = 𝛼 + 𝛽𝑥 ,

where p is the probability of interested outcome, α is the intercept parameter, β is a regression

coefficient, and χ is a predictor.

Figure 2.2.1: Graph of Logistic Curve Where 𝛼 = 0 and 𝛽 = 1
(Source: Park, 2013, p16)

2.2.2.3 Assumptions of Logistic Regression

Logistic regression does not require some of the main assumptions of linear regression models,

especially on the linear relationships between independent variables and the dependent variable,

the normality of the error and the homoskedasticity of the error. Logistic regression can deal with

the nonlinear relationship between the dependent variable and the independent variable because it

applies a nonlinear logarithmic transformation to linear regression. The error terms (residual) do

not need to have a multivariate normal distribution - although multivariate normality produces a

more stable solution. For each level of independent variable, the variance of the error can be

heteroscedastic.

12

Generally speaking, it uses maximum likelihood estimation to predict group membership.

However, in order to accurately interpret the predictions of group members, a preliminary analysis

of the data set needs to be conducted to check if the assumptions of logistic regression are met.

2.2.2.3.1 Absence of Multicollinearity

The limitation of logistic regression is that it is sensitive to variables that have very high

correlations with each other. Highly collinear variables usually produce very large standard errors

and expanded regression estimates. Therefore, it is necessary to observe the collinearity between

the independent variables in the model. The standard procedure that allows this is to calculate the

tolerance of each variable. The tolerance statistic is the calculation of the variance of each

independent variable in the model, not the interpretation of all other independent variables in the

model. Higher tolerance values indicate lower collinearity levels. Menard (2010) believes that

tolerances less than 0.2 are alarming. Although logistic regression software usually does not

provide a tolerance function, we can calculate the model as linear regression to observe the

relationship between independent variables.

2.2.2.3.2 Independence

Logistic regression also requires that dependent variables only have mutually exclusive categories.

This requirement is met in this thesis because the customer's claim is either fraudulent or

reasonable. In addition, each of the clients’ claims come from a different unrelated case so there

are no dependencies of the responses.

2.2.2.3.3 Lack of Outliers (Logistic Regression)

An outlier is a value that is very different from the other data values in a data set. This can skew

results. Outliers often have a significant effect on the sample mean and standard deviation.

Because of this, we must take steps to first remove outliers from our data sets before performing

any analysis.

13

2.3 The Random Forest Classifier

Before talking about the random forest algorithm, we need to know the concept of decision tree,

because the random forest is just the combination of decision trees, which is based on Breiman

(2001).

2.3.1 Introduction to Decision Trees

In machine learning, a decision tree can be used to visually and explicitly represent decision

making. As the name implies, it uses a tree-like model to make decisions. Decision trees have

decision nodes and branches. The decision node is a point where a choice must be made; it is

shown as an oval in Figure 2.3.1. The branches extending from a decision node are decision

branches, each branch representing one of the possible alternatives or courses of action available

at that point. The set of alternatives must be mutually exclusive (if one is chosen, the others cannot

be chosen) and collectively exhaustive (all possible alternatives must be included in the set).

Figure 2.3.1: Decision Tree Example
(Source: Bird, 2018, p4)

The decision tree can be constructed based on the Gini index (G), which is calculated by

subtracting the sum of the squared probabilities of each class from one:

14

𝐺 = 1 − ∑ (𝑝)2𝐶
𝑖=1 ,

Where p is the probability of the ooutcome of interest, as above.

For example, out of 14 instances, say yes = 9 and no = 5. Then

𝐺 = 1 − (
9

14
)

2

− (
5

14
)

2

.

If the G index is smaller, then the classification in that root node is better.

The dataset contains a large set of features, which results in many splits, in turn producing a very

large tree. Such trees are complex and can lead to overfitting.

2.3.2 Introduction to Random Forest

Random forest is one of the most popular and powerful machine learning algorithms. The

difference between the random forest algorithm and the decision tree algorithm is that in the

random forest, the process of finding the root node and segmenting the feature nodes will run

randomly. Bagging (Bootstrap Aggregating) is a technique for converting a single decision tree

with poor prediction capabilities into a more accurate prediction function. However, bagging is

often affected by tree correlation. The random forest is a modification of the bagging technique,

which builds many decorrelated trees. Then get the random forest result from those decision trees.

For instance, out of 10 trees, if 6 trees show “yes” and 4 trees show “no”. The random forest output

will be “yes”, because “yes” takes a larger percentage.

Often, there is a direct relationship between the number of trees in the forest and the results

available: the more trees there are, the more accurate the results will be. For imbalanced dependent

variables, when we focus on a certain dependent variable, many trees may lead to bad accuracy,

so random forest is not necessarily an improvement.

2.4 The Gradient Boosting Classifier

15

It is a machine learning method that produces a predictive model (usually decision trees). It builds

models in stages like other enhancement methods and promotes these models by allowing the

optimization of arbitrary differentiable loss functions (Friedman, 2001).

The gradient boosting contains two techniques: boosting combined with gradient descent, which

is also called the steepest descent method. In order to introduce these two concepts, we first need

to discuss some theoretical background notions. Therefore, the technical framework will be

explained in the following sections before this section focuses directly on gradient boosting.

2.4.1 Predictive Model Framework

Before we introduce machine learning methods, the comparisons with traditional methods are

important. Figure 2.4.1 shows the original situation and compares basic statistical methods with

machine learning methods. Here, Figure 2.4.1a shows the relationships between input x and output

y, also known as the data generation process, as shown in Figure 2.4.1b. Classical statistical

methods attempt to describe this relationship through interpretable models. These models usually

follow several assumptions that the data may or may not satisfy. If not, these models need to be

questioned. By contrast, machine learning does not build relationships directly. Instead, it treats

the connection as a black box function, using the learning algorithm to learn x and y as close as

possible (see Figure 2.4.1c), which is based on Coors (2018).

Figure 2.4.1: Comparisons Between the Classical Statistical Method and the Machine Learning Method.
(Source: Coors, 2018, p10)

https://en.wikipedia.org/wiki/Differentiable_function

16

Therefore, the machine learning method is always good at building a good model at the expense

of interpretability. Therefore, data scientists usually check whether there is a need to interpret the

impact of a single independent variable and choose traditional statistical methods, or instead using

machine learning methods. Typical predictive model setup includes a system with a d-dimensional

random response vector y ∈ 𝑅𝑑 and a set of features 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}.

The feature x is called explanatory variables and y is called result. Then, the aim of predictive

model is to use the training dataset that contains tuples (𝑥𝑖, 𝑦𝑖) for i = 1,...,n, to estimate the

unknown dataset system by using the function 𝑓(), such as:

 𝑓(𝑥) = 𝑦. (2.7)

The goodness of predictive model is measured by a loss function 𝐿(y, f(x)) and its expected value,

which is called risk:

ℛ(𝑓(𝑥)) = 𝔼 [𝐿(𝑦, 𝑓(𝑥))] = ∫ 𝐿(𝑦, 𝑓(𝑥))𝑑ℙ𝑥𝑦 . (2.8)

From this function, we can see that the loss is calculated by the point-by-point deviation of the

estimated model 𝑓(𝑥) from the actual data point y. Normally, the loss function can be chosen

arbitrarily. But most of the loss functions used are the least-squares loss:

𝐿(𝑦, 𝑓(𝑥)) = (𝑦 − 𝑓(𝑥))
2
, − 𝜕𝐿

𝜕𝑓(𝑥)
= 2(𝑦 – 𝑓(𝑥)) . (2.9)

This is equivalent to the maximum likelihood method of the normal distribution error and is

therefore sometimes referred to as Gaussian Loss. As shown in Figure 2.4.2, the quadratic loss is

gradually weighted to the point where the distance 𝑓(𝑥) is the highest. Therefore, it is not robust

to outliers. Another type of loss function is called absolute loss:

 𝐿(y, 𝑓(𝑥)) = |𝑦 − 𝑓(𝑥)|, −
𝜕𝐿

𝜕𝑓(𝑥)
= 𝑠𝑖𝑔𝑛(𝑦 − 𝑓(𝑥)), for x ≠ 0.

17

Figure 2.4.2: Common Loss Functions.

(Source: Coors, 2018, p11)

This type of loss function is robust, which can be seen in Figure 2.4.2 (Coors, 2018).

While the Huber loss contains the advantages of both loss functions mentioned before because it

combines both of them. For any δ > 0, the Huber loss is defined as

 𝐿(𝑦, 𝑓(𝑥)) = {

1

2
(𝑦 − 𝑓(𝑥))2 , for |𝑦 − 𝑓(𝑥)| ≤ δ

δ|𝑦 − 𝑓(𝑥)| −
1

2
 δ2, otherwise

 ,

hence

−
𝜕𝐿

𝜕𝑓(𝑥)
= {

𝑦 − 𝑓(𝑥), for |𝑦 − 𝑓(𝑥)| ≤ δ

𝑠𝑖𝑔𝑛(𝑦 − 𝑓(𝑥)), otherwise
.

Huber loss is not only differentiable but also robust because it is quadratic in the interval around

0, followed by linear continuity.

18

When switching to other tasks like the binary classification, some other types of loss functions will

also be used because the regression function is not reasonable. But the Zero-One loss function is

not totally smooth, so it is not suitable for optimization, as shown in Figure 2.4.3. By contrast, loss

functions with smooth and convex characteristics are commonly used for the classification, as

shown in Figure 2.4.3 (Coors, 2018). The popular example is an exponential loss, defined as

𝐿(𝑦, 𝑓(𝑥)) = {
exp(−𝑦𝑓(𝑥)) for y ∈ {−1, +1}

exp(−(2𝑦 − 1)𝑓(𝑥)) for y ∈ {0, 1}
 .

Compared to the following methods, it is less robust to observations of strong misclassifications

due to the exponential increase in negative values. In addition, the truncated hinge loss is also

suitable for classification work, which is shown as below:

 𝐿(𝑦, 𝑓(𝑥)) = max(0, 1 − 𝑦𝑓(𝑥)) = |1 − 𝑦𝑓(𝑥)|+ .

It is more robust due to the linearity of negative values. Another possibility has the same rate of

return. It is called binomial loss:

𝐿(𝑦, 𝑓(𝑥)) = {
ln (1 + exp(−2𝑦𝑓(𝑥))) for y ∈ {−1, +1}

−𝑦𝑓(𝑥) + ln(1 + 𝑒𝑥𝑝(𝑓(𝑥))) for y ∈ {0, 1}
 . (2.10)

19

Figure 2.4.3: Common Loss Functions for Regression.
(Source: Coors, 2018, p11)

A similar approach is possible for all maximum likelihood models, which leads to the use of

negative log-likelihood as a loss function. By assuming a multinomial model, the binomial loss

function can be simply extended to a multi-class classification problem, which is also known as

the softmax function. This function produces the probability of every data point belonging to which

class, and is also used as the objective function for multi-class classification, which is called

softprob.

Obviously, to finding an optimal estimate 𝑓(𝑥), which minimizes the risk ℛ(𝑓(x)) over the joint

distribution of the training set, then 𝑓(𝑥) is determined by

 𝑓(𝑥) = arg min ℛ(𝑓(x)) (2.11)

= arg min 𝔼 [𝐿(𝑦, 𝑓(𝑥))]

= arg min 𝔼𝑥,𝑦 [𝐿(𝑦, 𝑓(𝑥))]

= arg min 𝔼𝑥 [𝔼𝑦 (𝐿(𝑦, 𝑓(𝑥))) |𝑥] .

20

2.4.2 Gradient-descent optimization

When it comes to focusing on optimization problems, the stochastic methods can be separated.

Deterministic methods are usually faster than random methods, however, the risk of being trapped

at a local minimum is significantly higher. Some random methods of hyperparameters and

threshold adjustments are described later in this article. However, gradient descent method is a

deterministic nonparametric iterative method for numerical function optimization that is often

proposed to minimize empirical risk. We consider the case of the Eq. (2.11) with an arbitrary,

differentiable target function 𝑓(x). From Coors (2018), the gradient ∇𝑓(𝑥) can be seen as a pointer,

which is always displayed in the steepest ascent direction. Similarly, −∇𝑓(x) points to the steepest

descent in 𝑓(x). Thus, then gradient means the graph’s tangemt slope, which is very similar to

derivative.

But compared with the scalar-valued derivative, the gradient is a value that contains the above

directions and depends on the underlying space.

So, for 𝑓 ∶ ℝ𝑛 ⟶ ℝ:

∇𝑓(𝑥) = 𝑔𝑟𝑎𝑑 𝑓(𝑥) = (
𝜕𝑓(𝑥)

𝑥1
, … ,

𝜕𝑓(𝑥)

𝑥𝑛
)

𝑇

. (2.12)

Then, we select a starting point 𝑥(0) as the initial guess. This point can be improved, i.e. we can

also select the next point 𝑥(1) such as:

𝑥(1) = 𝑥(0) − 𝜐∇𝑓(𝑥(0)),

so in general for iteration 𝑚,

𝑥(𝑚) = 𝑥(𝑚−1) − 𝜐∇𝑓(𝑥(𝑚−1)) for 𝑚 = 1, … , 𝑀, (2.13)

where 𝜐 controls the step size in the steepest descent direction. The optimal 𝜐 is able to change in

each iteration. And the choice is to minimize the objective function:

21

𝜐(𝑚) = arg min 𝑓 (𝑥(𝑚−1) − 𝜐∇𝑓(𝑥(𝑚))) , 𝜐 > 0 . (2.14)

Eq. (2.14) is called line search. If the algorithm reaches an 𝑥(𝑚) ∈ ℝ𝑛 with ∇𝑓(𝑥
(𝑚)) = 0 ∈

 ℝ𝑛, then a local minimum can be reached. For the Figure 2.4, it illustrates the procedure for a

two-dimensional function 𝑓(𝑥, 𝑦) = 2𝑥2 + 𝑦2.

2.4.3 Boosting

The property of boosting is that the performance of weak learner can be improved by adding

additional learners. So, boosting means the stagewise additive models:

𝑓(𝑥) = ∑ 𝑓𝑚(𝑥) = ∑ 𝛽𝑚ℎ(𝑥, 𝜃𝑚)

𝑀

𝑚=1

.

𝑀

𝑚=1

 (2.15)

To minimize the empirical risk for Eq. (2.8):

ℛ = ∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = ∑ 𝐿 (𝑦𝑖, ∑ 𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚)

𝑀

𝑚=1

) ,

𝑛

𝑖=1

𝑛

𝑖=1

 (2.16)

that depends on the function ℎ(x, 𝜃𝑚) and especially the 𝛽𝑚 and 𝜃𝑚. Hence, ℛ needs to be

minimized with regard to parameters (𝛽, 𝜃) = ((𝛽1, 𝜃1), … , (𝛽𝑀, 𝜃𝑀)) which can be difficult if

we depend on the chosen loss function L. Therefore, optimization can be reached by using the

iterative “greedy” forward stagewise additive model approach. Thus, for optimizing

(𝛽∗, 𝜃∗) = arg min ∑ 𝐿 (𝑦𝑖, ∑ 𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚)

𝑀

𝑚=1

) ,

𝑛

𝑖=1

 (2.17)

we can use

(𝛽∗, 𝜃∗) = arg min ∑ 𝐿 (𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝛽ℎ(𝑥𝑖, 𝜃)), (2.18)

𝑛

𝑖=1

in order to get

𝑓𝑚(x) = 𝑓𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚), (2.19)
with

22

𝑓𝑚−1(𝑥) = ∑ 𝛽𝑗ℎ(𝑥𝑖 , 𝜃𝑗). (2.20)

𝑚−1

𝑗=1

Here, adding each component step by step means that the previous model is fixed and therefore

will not be readjusted. This strategy is called enhancement in a machine learning context.

The typical weak learner ℎ(𝑥, 𝜃), also known as the base function, is tree stumps, which is a

decision tree with few splitting points. These tree stumps bring some advantages for the decision

trees, including support for classification features and missing values or robustness with respect to

outliers. In addition, the training tree is faster than training other algorithms.

What is more, boosting can greatly improve prediction performance when compared with just

training one single tree. However, it is clear to see that they lose some interpretability when

combining some trees. These advantages are like random forest methods, which use bootstrap

aggregation to combine several decision trees for modeling.

2.4.4 Gradient Boosting algorithm

The gradient boosting method contains the gradient descent algorithm in Section 2.4.2 with the

boosting method described in Section 2.4.3 above. This means that the gradient boosting uses a

phased additional model whose empirical risk ℛ is minimised by gradient descent.

The additive model for Eq. (2.15), we want to find a combination of the parameters (𝛽𝑚
∗ , 𝜃𝑚

∗), as

shown in Eq. (2.18); that is, we want to find the new additive component 𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚) of Eq. (2.19)

for iteration 𝑚. Here, Eq. (2.19), 𝛽𝑚 is the step size of the gradient descent, and the former part is

also expressed as 𝜐, also known as the learning rate. If 0 < 𝛽𝑚 ≪ 1, only a small number of base

learners are considered in the m-th iteration. This helps prevent overfitting of additive models.

Cross-validation can be used to select an appropriate learning rate 𝜐 in a given application; repeatedly

fitting a model for different values of 𝜐 to select the one that produces the fitted model with smallest loss,

23

2.4.4.1 Regression

First of all, the nonparametric model is considered in which each individual observation 𝑥𝑖 of the

n observations of the training dataset can be arbitrarily predicted. This leads to n parameters 𝑓(𝑥𝑖),

but there is no generalization of the whole space 𝑥. By gradient descent, we can get the gradient

with Eq. (2.12) for a loss function L at the point 𝑥𝑗 by:

∇ℛ|𝑥𝑗
=

𝜕ℛ

𝜕𝑓(𝑥𝑗)
=

𝜕 ∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖))𝑛
𝑖=1

𝜕𝑓(𝑥𝑗)
=

𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑗))

𝜕𝑓(𝑥𝑗)
. (2.21)

Hence, the update for iteration m by gradient descent is

𝑓𝑚(𝑥𝑗) ⟵ 𝑓𝑚−1(𝑥𝑗) − 𝛽
𝜕 ∑ 𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))𝑛

𝑖=1

𝜕𝑓𝑚−1(𝑥𝑗)
 . (2.22)

Consequently, we can determine the steepest descent direction for each 𝑥𝑖 and also define these as

pseudo residuals 𝑟𝑖𝑚:

𝑟𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
]

𝑓(𝑥)= 𝑓𝑚−1(𝑥)

 . (2.23)

Thus, the optimal weight 𝛽𝑚 for iteration m can obtain by setting 𝑟𝑖𝑚 = ℎ(𝑥𝑖, 𝜃𝑚) in Eq. (2.18):

𝛽𝑚 = arg min ∑ 𝐿 (𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) − 𝛽 [
𝜕𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))

𝜕𝑓𝑚−1(𝑥𝑗)
]). (2.24)

𝑛

𝑖=1

However, as mentioned above, this only applies to a single observation 𝑥𝑗 of the training set.

Therefore, it is necessary for the generalization of all x ϵ χ, which can be achieved by using the

regression model to approximate the negative gradient as well as possible. The regression model

is called the base function or the weak learner in Section 2.4.3.

ℎ(x, 𝜃𝑚) = −𝑟𝑚 = − [
𝜕𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗))

𝜕𝑓(𝑥𝑗)
] = − [

𝜕 ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑛
𝑖=1

𝜕𝑓(𝑥𝑗)
]. (2.25)

24

And, minimizing the risk

ℛ(ℎ(x, 𝜃𝑚)) = 𝐿(ℎ(𝑥, 𝜃𝑚), 𝑟𝑚) (2.26)

leads to

𝜃𝑚 = arg min ∑ 𝐿(𝑟𝑚, ℎ(𝑥𝑖, 𝜃)) . (2.27)

𝑛

𝑖=1

This gives us the best parameter θ for the Eq. (2.18). Finally, the new entire additive portion that

contains the weak learner ℎ(x, 𝜃𝑚) can be interpreted as a component that improves the model

towards the maximum reduction in loss, where 𝛽𝑚 is determined by Eq. (2.24), indicating the step

size of this move. By using the least squares loss function, Eq. (2.27) reduced to

𝜃𝑚 = arg min ∑(𝑟𝑚, ℎ(𝑥𝑖, 𝜃))
2

. (2.28)

𝑛

𝑖=1

Each learner can be fitted by a quadratic loss. In addition, the solution is numerically efficient.

As mentioned earlier, the choice of decision trees as a basic learner has advantages, which makes

them the first choice for autoxgboost:

ℎ(𝑥, 𝑏, 𝑅) = ∑ 𝑏𝑗𝕀(𝑥 𝜖 𝑅𝑗), (2.29)

𝐽

𝑗=1

where 𝑅𝑗 is the disjoint regions, defined by the tree’s terminal nodes with the corresponding means

𝛾𝑗.

25

Algorithm 1: Gradient Boosting Algorithm.

Initialize: 𝒇𝟎(𝒙) = 𝒂𝒓𝒈 𝒎𝒊𝒏 ∑ 𝑳(𝒚𝒊, 𝜽𝟎) 𝒏
𝒊=𝟏

1. for m = 1 ⟶ M do
2. for all i do

3. Calculate 𝒓𝒊𝒎 = −[
𝜕𝐿(𝑦,𝑓(𝑥))

𝜕𝑓(𝑥𝑖)
]𝒇(𝒙𝒊) = 𝒇𝒎−𝟏(𝒙𝒊)

4. end
5. Fit regression base learner to the pseudo-residuals 𝑟𝑖𝑚:
6. 𝜃𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ (𝑟𝑖𝑚 − ℎ(𝑥𝑖, 𝜃))2𝑛

𝑖=1
7. Find via line search:
8. 𝛽𝑚 = arg min ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥) + 𝛽ℎ(𝑥, 𝜃𝑚))𝑛

𝑖=1
9. Update 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥, 𝜃𝑚)
10. end

 Output: 𝑓(𝑥) = 𝑓𝑀(𝑥)

Putting Eq. (2.29) into Eq. (2.19) leads to

𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝛽𝑚 ∑ 𝑏𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚),

𝐽𝑚

𝑗=1

 (2.30)

which can be reduced to

𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + ∑ 𝛾𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚).

𝐽𝑚

𝑗=1

 (2.31)

when setting 𝛾𝑗𝑚 = 𝛽𝑚𝑏𝑗𝑚 , where like before, 𝛽𝑚 is determined by line search. Again,

minimizing the loss function provides the optimal coefficients for 𝛾𝑗𝑚 which is done by

 𝛾𝑗𝑚 = arg min ∑ 𝐿 (𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + ∑ 𝛾𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚)

𝐽𝑚

𝑗=1

). (2.32)

𝑛

𝑖

26

Algorithm 2: Gradient Tree Boosting Algorithm.

Initialize: 𝒇𝟎(𝒙) = 𝐚𝐫𝐠 𝐦𝐢𝐧 ∑ 𝑳(𝒚𝒊, 𝜽𝟎) 𝒏
𝒊=𝟏

1. for m = 1 ⟶ M do
2. for all i do

3. Calculate 𝒓𝒊𝒎 = −[
𝜕𝐿(𝑦,𝑓(𝑥))

𝜕𝑓(𝑥𝑖)
]𝒇(𝒙𝒊) = 𝒇𝒎−𝟏(𝒙𝒊)

4. end
5. Fit regression tree to the pseudo-residuals 𝑟𝑖𝑚 given terminal regions 𝑅𝑗𝑚, 𝑗 = 1, … , 𝐽𝑚:

6. for 𝑗 = 1 → 𝐽𝑚 do

7. 𝛾
𝑗𝑚

= arg min ∑ 𝐿(𝑦
𝑖
, 𝑓

𝑚−1
(𝑥𝑖) + 𝛾)𝑥𝑖∈𝑅𝑗𝑚

8. end

9. Update 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + ∑ 𝛾𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚)
𝐽𝑚
𝑗=1

10. end

 Output: 𝑓(𝑥) = 𝑓𝑀(𝑥)

Because the 𝑅𝑗 are disjoint, we can also get:

𝛾𝑗𝑚 = arg min ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) + 𝛾). (2.33)

𝑥𝑖𝜖𝑅𝑗𝑚

For the loss function L, this result is the optimal update given the function 𝑓𝑚−1. It can also be

determined directly within each terminal region. So, Algorithm 1 is changed to Algorithm 2 above.

2.4.4.2 Classification

The general gradient boosting in Algorithm 1 depends entirely on the loss function L. For the

regression, we choose the least squares loss, which equals to the maximum likelihood method of

the normal distribution error. In terms of classification, we have seen the appropriate loss functions

in Section 2.4.1, and we hope to discuss their mathematical derivation in more detail. The first

limiting binary classification means that our target variable does not contain contiguous but two

classification levels, for example y ∈ {0, 1}. If the output of the model is mapped on real values,

the positive values can be treated as an indication of class 1 and a negative value of class 0,

respectively. Therefore, we obtain a discrete prediction by 𝕀(𝑓(𝑥) > 0). Or, we convert the model

so that its function value is in the interval [0, 1]. This can be achieved by applying a logical

distribution function:

27

𝑙𝑜𝑔𝑖𝑡(η) =
exp (𝜂)

1 + exp(𝜂)
. (2.34)

where 𝜂 is called link function, because it related to prediction probabilities:

𝜋𝑖1 = ℙ(𝑦𝑖 = 1|𝑥𝑖1, … ,𝑥𝑖𝑘) = 𝑙𝑜𝑔𝑖𝑡(𝜂𝑖) =
exp (𝜂𝑖)

1 + exp(𝜂𝑖)
, (2.35)

where

 𝜂𝑖 = 𝑥𝑖
𝑇𝛽𝑖, 𝑥𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑘 .

Hence, probability 𝑥𝑖1 is indirectly modeled by the logit function

𝜂𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑦𝑖 = 1|𝑥𝑖1, … , 𝑥𝑖𝑘) = 𝑙𝑛
𝜋𝑖1

1 − 𝜋𝑖1
= 𝑥𝑖

𝑇𝛽𝑖 . (2.36)

Getting the log-likelihood by applying the maximum likelihood method:

 ∑(𝑦𝑖𝑙𝑛𝜋𝑖1 + (1 − 𝑦𝑖) ln(1 − 𝜋𝑖1))

𝑛

𝑖=1

= ∑(𝑦𝑖𝑓(𝑥𝑖) − ln(1 + exp(𝑓(𝑥𝑖)))).

𝑛

𝑖=1

 (2.37)

For 𝑓(𝑥𝑖) = 𝑥𝑖
𝑇𝛽𝑖. Defining the negative log-likelihood of Eq. (2.31) as new loss function which

has been metioned in Eq. (2.10) in Section 2.4.1. That is

𝐿(y, 𝑓(x)) = −𝑦𝑓(𝑥) + ln(1 + exp(𝑓(𝑥))), with −
𝜕𝐿

𝜕𝑓(𝑥)
= 𝑦 − 𝜋1(𝑥) ,

where 𝜋1(𝑥) is the prediction for the posterior probability of class 1, that is

�̂�(𝑦 = 1|𝑥) = 𝑙𝑜𝑔𝑖𝑡(𝑓(𝑥)).

By using the maximum likelihood methods, we obtain as loss function:

28

𝐿(𝑦𝑘, 𝑓𝑘(x)) = − ∑ 𝑦𝑘𝑙𝑛𝜋𝑘(𝑥) , (2.38)

𝐾

𝑘=1

where 𝑦𝑘 = 𝕀(𝑦 = 𝑘) for class k. So, the posterior probability of class k is given by

𝜋𝑘(𝑥) = �̂�(𝑦 = 𝑘|𝑥) =
exp (𝑓𝑘(𝑥))

∑ exp (𝑓𝑗(𝑥))𝐽
𝑗=1

 , (2.39)

taking the first derivatives:

𝑟𝑖𝑘,𝑚 = − [
𝜕𝐿 (𝑦

𝑖𝑘
, 𝑓

𝑘,𝑚
(𝑥𝑖))

𝜕𝑓
𝑘,𝑚

(𝑥𝑖)
]

𝑓𝑘,𝑚(𝑥)= 𝑓𝑘,𝑚−1(𝑥)

= 𝑦
𝑖𝑘

− 𝜋𝑘,𝑚−1(𝑥𝑖), (2.40)

where 𝜋𝑘,𝑚−1(𝑥𝑖) is derived from Eq. (2.39) for 𝑓𝑘,𝑚−1. We see that K models (trees) are fitted in

each iteration m to predict the pseudo residuals 𝑟𝑖𝑘,𝑚. Every single tree has J terminal nodes with

regions {𝑅1𝑘,𝑚, … , 𝑅𝐽𝑘,𝑚}:

𝛾𝑖𝑘,𝑚 = arg min ∑ ∑ 𝜙 (𝑦𝑖𝑘, 𝑓𝑘,𝑚−1(𝑥𝑖) + ∑ 𝛾
𝑗𝑘

𝐽
𝑗=1 𝕀(𝑥𝑖 𝜖 𝑅𝑗,𝑚)) ,𝐾

𝑘=1
𝑛
𝑖=1 (2.41)

with ϕ(𝑦𝑘, 𝑓𝑘(x)) = −𝑦𝑘ln 𝜋𝑘(𝑥) from Eq. (2.38).

Based on a single Newton-Raphson step, it can be separated into a single calculation for each

terminal node:

𝛾𝑗𝑘,𝑚 =
𝐾−1

𝐾

∑ 𝛾𝑖𝑘,𝑚𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

∑ |𝛾𝑖𝑘,𝑚|(1− |𝛾𝑖𝑘,𝑚|)𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

 , (6.36)

which serves for the update

𝑓𝑘,𝑚(𝑥) = 𝑓𝑘,𝑚−1(𝑥) + ∑ 𝛾𝑗𝑘,𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑘,𝑚). (6.37)
𝐽𝑚
𝑗=1

29

Algorithm 3: K-class Classification Gradient Tree Boosting Algorithm.

Initialize: 𝑓𝑘,0(𝑥) = 0, 𝑘 = 1, … , 𝐾
1. for m = 1 ⟶ M do

2. Set 𝜋𝑘(𝑥) =
𝒆𝒙𝒑(𝒇𝒌(𝒙))

∑ 𝒆𝒙𝒑(𝒋(𝒙))
𝑱
𝒋=𝟏

 for k = 1 ⟶ M do

3. Calculate 𝑟𝑖𝑘,𝑚 = 𝑦𝑖𝑘 − 𝜋𝑘,𝑚−1(𝑥𝑖), 𝑖 = 1, … , 𝑛.
4. Fit regression tree to the pseudo-residuals 𝑟𝑖𝑘,𝑚 given terminal regions 𝑅𝑗𝑘,𝑚, 𝑗 = 1, … , 𝑚:

5. for 𝑗 = 1 → 𝐽𝑚 do

6. 𝛾
𝑗𝑘,𝑚

=
𝐾−1

𝐾

∑ 𝛾𝑖𝑘,𝑚𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

∑ |𝛾𝑖𝑘,𝑚|(1− |𝛾𝑖𝑘,𝑚|)𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

7. end

8. Update 𝑓𝑘,𝑚(𝑥) = 𝑓𝑘,𝑚−1(𝑥) + ∑ 𝛾𝑗𝑘,𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑘,𝑚)
𝐽𝑚
𝑗=1

9. end
10. end

 Output: 𝑓(𝑥) = 𝑓𝑘,𝑀(𝑥)

Finally, after M steps, 𝑓𝑘,𝑀(𝑥) is returned as a final model, as shown in Algorithm 3.

2.5 The K-Means Clustering

K-means clustering is a vector quantization method, which is very popular in cluster analysis of

data mining. The k-means clustering aims to divide n observations into k clusters, where each

observation belongs to the cluster with the nearest mean.

For example, given a set of observations {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} , where each observation is a d-

dimensional real vector, k-means clustering aims to divide these n observations into k (≤n) sets

S = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛} in order to minimize the sum of variance within the cluster. In other words,

the goal is to find:

arg min ∑ ∑ ‖𝑥 − 𝜇𝑖‖2 = arg min ∑|𝑆𝑖|𝑉𝑎𝑟(𝑆𝑖)

𝑘

𝑖−1𝑥𝜖 𝑆𝑡

𝑘

𝑖=1

,

Where 𝜇𝑖 is the mean of different points in set 𝑆𝑖. And the above equation equals to minimizing

the pairwise squared deviations of the distances:

arg min ∑
1

2|𝑆𝑖|
∑ ‖𝑥 − 𝑦‖2

𝑥,𝑦𝜖 𝑆𝑡

𝑘

𝑖=1

30

And the above equation can be deduced from ∑ ‖𝑥 − 𝜇𝑖‖
2 = 𝑥𝜖𝑆𝑖

∑ (𝑥 − 𝜇𝑖)(𝜇𝑖 − 𝑦)𝑥≠𝑦𝜖𝑆𝑖
. This

is because the total variance will not change, which equals to the sum of squared deviations

between points in different clusters.

Figure 2.5: K-Means Clustering Example
(Source: Wikipedia)

31

Chapter 3

Performance Measures

3.1 ROC Curve

In the Receiver Operating Characteristic (ROC) curve, the true positive rate is plotted as a function

of the false positive rate for different cut-off points. Each point on the ROC curve represents a

sensitivity/specificity pair. A test with perfect discrimination has ROC curve across the upper left

corner. Therefore, the closer the ROC curve is to the upper left corner, the higher the overall

accuracy of the test.

Since the area under the ROC curve is typically a measure of test usefulness. In other words, a

larger area means a more useful test, and the area under the ROC curve is also used to compare

the usefulness of the test (Narkhede, 2018).

Figure 3.1.1: ROC Curve
(Source: Narkhede, 2018, p2)

3.2 Confusion Matrix

In the field of machine learning, especially statistical classification problems, the confusion matrix

is also known as an error matrix, which takes a specific table layout that allows the visualization

https://towardsdatascience.com/@narkhedesarang?source=post_page-----68b2303cc9c5----------------------

32

of an algorithm’s performance. Each row of the matrix represents an instance in the predictive

class, and each column represents an instance in the actual class. This name stems from the fact

that it makes it easy to see if the system confuses two classes.

Figure 3.2.1: Confusion Matrix Sample
(Source: Narkhede, 2018, p2)

3.3 Recall and Precision

The performance of machine learning algorithms is usually evaluated by the confusion matrix, as

shown in Figure 3.3.1. The column is the predicted class and the row is the actual class. In the

confusion matrix, TN (True Negative) is the number of examples of correct negative (as 0)

classification, FP (False Positives) is the number of negative (as 0) misclassified as positive (as 1),

and FN (False Negative) is the number of positive (as 1) that are misclassified as negative (as 0),

while TP (True Positives) is the number of positive (as 1) correctly classified.

 Predicted
Negative

Predicted
Positive

Actual
Negative

TN

FP

Actual
Positive FN TP

Table 3.3.1: Confusion Matrix

33

Predictive accuracy is a measure of the performance of machine learning algorithms and is defined

as Accuracy = (TP + TN) / (TP + FP + TN + FN). For balanced data sets and equal error costs, it

is reasonable to use error rates as performance metrics. The Error Rate is (1 − Accuracy).In the

case of an imbalanced dataset with unequal error costs, it is more appropriate to use ROC curves

or other similar measures. The ROC curve can be thought of as the best decision boundary family

representing the relative cost of TP and FP. On the ROC curve, the X-axis represents %FP = FP /

(TN + FP) and the Y-axis represents %TP = TP / (TP + FN). The ideal point of the ROC curve is

(0, 1.0); that is, all positive cases are correctly classified and no negative examples are

misclassified as positive. One way in which the ROC curve can be swept is by manipulating the

balance of the training samples for each class in the training set. In the ROC curve, the line y = x

represents the scenario of the random guess class. The Area under the ROC Curve (AUC) is a

useful measure of the classifier performance because it is independent of the chosen criterion and

prior probability. AUC can be used for comparisons between different classifiers.

For some examples, the AUC method is not that useful to see the accuracy of the classifier. For

instance, The Information Retrieval (IR) domain also faces the problem of imbalances in the data

set. Take a document or web page that is converted to a word bag representation; that is, a feature

vector reflecting the appearance of the word in the page is constructed. Often, there are very few

instances of interest categories in text categorization. In information retrieval problems, the

excessive performance of negative categories may lead to problems in assessing classification

performance. Since the error rate is not a good indicator for skewed data sets, the classification

performance of algorithms in information retrieval is usually measured by recall and precision:

recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,

precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 .

In terms of this thesis, we need to detect insurance fraud, which means we need to correctly find

the insurance frauds among real fraudulent claims. Instead of using accuarcy rate, we need to use

recall to measure the quality of models, because from the above equation, we can see that recall

34

means what percentage of fraudulent claims can be detected, which is the main objective.

Therefore, the first and most important step is to improve the performance of recall to measure

most of the real fraudulent claims that have been detected. And then we can see if the precision is

good enough. Because precision stands for what percentage of legitimate claims will not be

mistook for fraudulent claims, which is not as important as recall.

35

Chapter 4

Dataset 1 Description and Manipulation

4.1 Description
4.1.1 Dependent Variable

The first dataset studied is about car insurance claims and it can be found at Kaggle (url:

https://www.kaggle.com/srikanthmalyala/exleq/data). It consists of 11,554 observations with 32

variables. The response variable named the “FraudFound_P” is either 1 for a driver who filed a

fraudulent claim or 0 for car insurance claims that are legitimate. There are also 31 independent

variables being the information of each driver (sex, age of policyholder, age of vehicle, vehicle

price, claim size, etc.).

count 11,554
mean 22,966
std 26,995
min 0
25% 4,149
0% 8,131
75% 46,490
max 141,394

Table 4.1.1: Claim Severity Summary Statistics

As shown in Table 4.1, 75% of claims are small than $46,490. The mean claim amount is $22,966,
and the median claim amount is $8,131. Also, from the common sense, we know the minimum of
claim is 0, which means there is no accident for certain clients.

The dependent variable for fraudulent claims, yes or no, is bivariate (1 or 0), and it is clear from
Figure 4.1.1 that this dependent variable is very imbalanced (6.1% if 1s and 93.9% if 0s). This is
quite common in practice, because only a few drivers filed fraudulent claims.

https://www.kaggle.com/srikanthmalyala/exleq/data

36

 Figure 4.1.1: Bar Chart and Pie Chart of the Response Variable

4.1.2 Correlation Matrices

Correlation matrices are central to understanding our data, because we want to know what features

would influence the detection of fraud. Instead of using the dataset to get correlation matrix directly,

it is important to use the adjusted dataset (subsample) to get a more obvious relationship among

different features and the fraudulent claims.

Before doing that, an adjustment is needed as the dependent variable is very unbalanced. So, we

use a subsample in our correlation matrix; otherwise, our correlation matrix will be affected by the

high imbalance between the classes, due to the high unbalance in the original dataset.

Once we determine how many instances are considered as fraudulent claim (Fraud = "1"), we need

to reduce the non-fraudulent claims frequency to the same number as fraudulent transactions

(assuming we want a 1/1 ratio), this will be equivalent to 659 cases of fraudulent and 659 cases of

non-fraudulent transactions. After implementing this subsample technique, we get a sub-sample

of our dataset with a 1/1 ratio with regards to our classes, and then use it to get the correlation

matrix.

The main issue with "random under-sampling" is the risk that our classification models will not

perform as accurately as we expect since there is a great deal of information loss (reducing to 659

non-fraudulent transactions from 10,641).

37

Figure 4.1.2: Imbalanced Correlation Matrix and Sub-Sample Correlation Matrix

From the output, we can see that the correlations are more obvious after using the subsample in

the correlation matrix. And we can also see that the “VehicleCategory” and “BasePolicy" tend to

have a positive relationship with the response variable, while the “Fault_thirdparty” has a negative

relationship with the dependent value (fraudulent claim).

A note of caution, the coefficient of correlation might not be a good mesure of depence when

applied to a binary response, like we have here, and to independent variables that can be binary,

categorical or discrete.

4.2 Data Manipulations

In this part, we detail some common data manipulations that were carried out across all the

analyses, any specific manipulation required for certain analyses will be stated in this section. To

be able to perform cross-validation, the dataset was first divided into two parts. The training dataset

contains 9,243 observations, and the testing set contains 2,311 observations.

38

4.2.1 Features Selection

Before fitting any models, it is important to check the relation between all the features, there are

two main reasons:

• If two features are highly linearly correlated, the data may have multicollinearity effects,

especially for the logistic regression.

• By reducing the number of input variables, we may have fewer parameters requiring tuning when

fitting models and consequently reduce the computational load.

4.2.2 Standardization and Scaling

Since our features are expressed in different measurement scales, we standardize or scale the

features based on the following:

• AccidentArea: Change to 1 (Urban) and 0 (Rural)

• Sex: Change to 1 (Male) and 0 (Female)

• MaritalStatus: Change to 1 (Single) and 0 (Married)

• Fault: Change to 1 (Third Party) and 0 (Policy Holder)

• Witness: Change to 1 (Yes) and 0 (No)

• AgentType: Change to 1 (External) and 0 (Internal)

• PolicyRepordField: Change to 1 (Yes) and 0 (No)

• BasePolicy, VehicleCategory: Dummy variables

4.2.3 Missing Data

In terms of the missing data, there are several situations:

• If the data is missing randomly and more than 70% data of certain feature is missing, then

delete this feature directly;

• If the feature with missing data has a trend based on time, then fill in the missing data by

time;

• Check if those features with missing data have some relationships with other features. If

so, using other related variables as independent variables and using the missing data as the

dependent variable to build a model in order to predict those missing data.

39

4.3 Unbalanced Dependent Variable
4.3.1 SMOTE

SMOTE stands for the Synthetic Minority Over-Sampling Technique. We propose an

oversampling method that oversamples a few classes by creating a "synthetic" sample instead of

replacing oversampling. This approach was inspired by a technique for success in handwritten

character recognition. The idea is to create additional training data by performing certain

operations on real data. In this case, operations such as rotation and tilting are natural ways to

disrupt training data. We generate synthetic examples in a less application-specific way by

operating in the "feature space" instead of the "data space." The minority class is over-sampled by

taking each minority class sample and introducing synthetic examples along the line segments

joining all the k minority class nearest neighbors. The values of the k nearest neighbors are

randomly selected according to the required oversampling amount. The composite sample is

generated as follows: the difference between the considered feature vector (sample) and its nearest

neighbor. Multiply this difference by a random number between 0 and 1 and add it to the feature

vector under consideration. This results in the selection of random points along with the line

segments between two features (Chawla et al, 2002).

Figure 4.3.1: Connecting the Dots
(Chawla et al, 2002, pp321-357)

40

Figure 4.3.2: Synthesizing New Dots Between Existing Dots
(Chawla, 2002, pp321-357)

For each instance 𝑥𝑖 in the minority class, SMOTE searches its k nearest neighbors and one

neighbor is randomly selected as 𝑥′ (we call instances 𝑥𝑖 and 𝑥′, the seed sample). Then a random

number 𝛿 between [0, 1] is generated. The new artificial sample 𝑥𝑛𝑒𝑤 (from Figure 4.3.1 to Figure

4.3.2) is created as:

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + (𝑥′ − 𝑥𝑖) × 𝛿 .

This approach effectively forces minority decision-making areas to become more common.

Note that SMOTE is bound to become a popular method for fraud detection, as it is particularly

suited for large datasets where the proportion of fraudulent records is very small (highly

unbalanced large datasets).

4.3.2 Under-Sampling

The majority class is under-sampled by removing samples randomly from the majority class until

the minority class becomes a specified percentage of the majority class. This forces learners to

experience varying degrees of under-sampling, and in a higher degree of under-sampling, minority

groups have a greater percentage in the training set.

Again, this method has to be used with care in small data sets, where undersampling might fix the

unbalce problem at the cost of producing training datasets that are too small to be fitted any model

with an acceptable precision.

41

4.3.3 Combine SMOTE and Under-Sampling

Instead of using under-sampling or oversampling separately, we also consider combining these

two sampling methods. By applying a combination of under-sampling and oversampling, the

learner's initial bias for the minority class is reversed to a majority class. The classifier is learned

on a data set that is influenced by “SMOTE” the minority and under-sampling the majority. In this

thesis, we use different sampling methods to test each model in order to get a better result.

The first method is to “SMOTE” the minority class into 4,000 (around 1:2); the second method is

to “SMOTE” the minority class into 9,000 (1:1); the third method is “SMOTE” the minority class

into 9,000 and under-sample the majority class into 6,000 (3:2).

4.3.4 A Common Mistake

There is a common mistake implementing these methods; if you want to undersample or

oversample your data you should not do it before cross-validation (Altini, 2015). Because if you

get the minority class (“Fraud” in our case) and create the synthetic points before cross-validation,

you have a certain influence on the "validation set" of the cross-validation process. But remember

how cross-validation works; let us assume we are splitting the data into 5 batches, then 4/5 of the

dataset will be the training set and 1/5 of the dataset will be the validation set. The test set should

not be touched. For that reason, we should do the creation of synthetic data points before cross-

validation, just like below:

Figure 4.3.3: SMOTE Process
(Source: Altini, 2015, p3)

42

4.4 Results
4.4.1 Naïve Bayes Classifier
4.4.1.1 Confusion Matrix

Figure 4.4.1: Confusion Matrix - Naive Bayes

From the above confusion matrix, we can clearly see the performance of an algorithm by numbers.

In addition, we can also get the recall and precision from the confusion matrix:

Naïve Bayes

Recall

Precision

No SMOTE
No undersampling 0.09 0.065

SMOTE (4,000)
No undersampling 0.29 0.077

SMOTE (9,000)
No undersampling 0.41 0.078

SMOTE (9,000)
Undersampling (6,000) 0.79 0.08

Table 4.4.1: Recall and Precision Table - Naive Bayes

43

From the above table, it is clear that the recall will increase when the SMOTE sample increases.

While at the same time, the precision will decrease if we just increase the SMOTE sample from

4,000 to 9,000. If we combine the SMOTE and the undersampling methods, the recall improves

substantially from 0.41 to 0.79, but the precision almost keeps the same. In terms of the

combination of SMOTE (9,000) and undersampling (6,000), a recall of 0.79 means 79% fraudulent

claims can be detected; a precision of 0.08 means among all the predicted fraudulent claims, 8%

claims were really fraudulent.

4.4.1.2 Discussion

4.4.1.2.1 Advantages

The naive Bayesian algorithm assumes that the dataset attributes are independent of each other, so

the logic of the algorithm is very simple and the algorithm is relatively stable. When the data

exhibits different characteristics, the classification performance of naïve Bayes is not greatly

different. In other words, the naive Bayes algorithm is more robust and does not show much

difference for different types of data sets. The naive Bayesian classification algorithm performs

well when the relationships between dataset attributes are relatively independent.

4.4.1.2.2 Disadvantages

The condition of independence of attributes is also a disadvantage of the naive Bayes classifier.

The independence of dataset attributes is difficult to satisfy in many cases, because the attributes

of datasets are often related to each other. If such problems occur in the classification process, the

classification performance will be greatly affected.

4.4.2 Logistic Regression
4.4.2.1 Check the Assumptions

4.4.2.1.1 Continuous Independent Variables (IVs) being Linearly Related to the LOG ODDS

Logistic regression does not require continuous independent variables (IVs) to be linearly related

to dependent variables (DVs). But it requires the continuous IVs to be linearly related to the log

odds of the DVs. One way to test this is to use the graph and look for an S-shaped curve. Sometimes

the S-shaped curve will not be obvious. The figure should have a flat or flattish top and bottom

with an increase or decrease in the middle.

44

Figure 4.4.2: Curve of ClaimSize and Age

So, from the output, it is obvious that both “ClaimSize” and “Age” are linearly related to the

dependent value (“FraudFound_P”), which satisfies the first assumption.

4.4.2.1.2 Absence of Multicollinearity

A simple approach to check multicollinearity is to use the correlation matrix to find any highly

correlated variables. If there are variables that are highly correlated, then we need to drop one of

them because they are measuring the same or similar things.

From Figure 4.4.2, we can see there is some multicollinearity among the variables, such as

“MonthClaimed” and “Month”, “MaritalStatus_alone” and “AgeOfVehicle_year”,

“MaritalStatus_alone” and “AgeOfPolicyHolder”. What is needed here is to delete one of these

variables.

4.4.2.1.3 Lack of Outliers (Logistic Regression)

The assumption of lack of outliers is an easy one to check. One can get a feel of this with the

descriptive statistics provided by the “.describe()” function in R. It is also very easy to check for

outliers by using a box plot. Since there is a large difference between the values used to measure

ClaimSize and Age, two separate box plots are generated.

45

Figure 4.4.3: Box Plot of ClaimSize and Age

From the two outputs, we can see that there are some outliers in both "ClaimSize" and "Age". For

the variable "ClaimSize", there is one claim at about $140,000, which is much larger than the most

claims. But we cannot directly delete this variable, because some “ClaimSize” can be much bigger

than the mean value, which is reasonable. In terms of "Age", we can see there are some points

around 0. But due to the common sense, we know it is impossible that the age of a driver is about

0, so we could judge these points as outliers and then delete them.

46

4.4.2.2 Results

4.4.2.2.1 ROC Curve

 Figure 4.4.3: ROC Curve - Logistic Regression

From the ROC Curve of logistic regression, we can see that for the imbalanced dataset, the overall

accuracy rate of the combination of SMOTE and undersampling is the highest; while the sampling

method without SMOTE and undersampling is the lowest.

47

4.4.2.2.2 Confusion Matrix

Figure 4.4.4: Confusion Matrix - Logistic Regression

From the above confusion matrix, we can clearly see the performance of an algorithm as

summarized in a few numbers. In addition, we can also get the recall and precision from the

confusion matrix:

Logistic Regression

Recall

Precision

No SMOTE
No undersampling 0.0 0.0

SMOTE (4,000)
No undersampling 0.203 0.117

SMOTE (9,000)
No undersampling 0.647 0.08

SMOTE (9,000)
Undersampling (6,000) 0.856 0.1

Table 4.4.2: Recall and Precision Table - Logistic Regression

48

From Table 4.4.2, it is clear that the recall will increase when the SMOTE sample increases. While

at the same time, the precision will decrease if we just increase the SMOTE. But, if we combine

SMOTE and the undersampling methods, then both recall and precision improve a lot. In terms of

the combination of SMOTE (9,000) and Undersampling (6,000), recall (0.856) means 85.6%

fraudulent claims can be detected; while precision (0.1) means among all the predicted fraudulent

claims, 10% claims are really fraudulent. In practice, this model can be useful.

4.4.2.3 Discussion

4.4.2.3.1 Advantages

It is a widely used technology because it is very efficient, does not require too much computing

resources, it is highly interpretable, it does not require scaling input; and it does not require any

tuning. Like linear regression, logistic regression is very efficient when you remove attributes that

are not related to the response variable and attributes that are very similar (correlated) to each other.

Therefore, data cleaning plays an important role in the performance of logistic regression. What is

more, logistic regression is very easy to implement and trains very effectively.

4.4.2.3.2 Disadvantages

A disadvantage of logistic regression is that it cannot solve non-linear problems since its decision

surface is linear. Also, to use logistic regression, the data should satisfy many assumptions, that in

practice, are either not be satisfied or difficult to verify.

49

4.4.3 Random Forest
4.4.3.1 ROC Curve

Figure 4.4.5: ROC Curve – Random Forest

For the Random Forest classification method, the overall accuracy rate of SMOTE (9,000) is the

best and is even better than that of the combination of SMOTE (9,000) and undersampling (6,000).

The performance of SMOTE (4,000) and non-SMOTE methods are poor, with an accuracy rate of

0.5.

50

4.4.3.2 Confusion Matrix

Figure 4.4.6: Confusion Matrix – Random Forest

From the above confusion matrix, we can also clearly see the performance of the random forest :

Random Forest

Recall

Precision

No SMOTE
No undersampling 0.0 0.0

SMOTE (4,000)
No undersampling 0.5 0.165

SMOTE (9,000)
No undersampling 0.713 0.133

SMOTE (9,000)
Undersampling (6,000) 0.89 0.12

Table 4.4.3: Recall and Precision Table – Random Forest

From the Table 4.4.3, it is clear that the recall will also increase when the SMOTE increases.

While at the same time, the precision will decrease from 0.165 to 0.133 if we just increase SMOTE.

51

If we combine the SMOTE and undersampling methods, then the recall improves from 0.713 to

0.89 and precision decreases from 0.133 to 012. In terms of the combination of SMOTE (9,000)

and undersampling (6,000), recall (0.89) means 89% fraudulent claims can be detected; precision

(0.12) means among all those predicted fraudulent claims, 12% claims are really fraudulent. In

practice, the model can also be useful.

4.4.4 Gradient Boosting
4.4.4.1 ROC Curve

Figure 4.4.7: ROC Curve - Gradient Boosting

For the random forest classification method, the overall accuracy rate of SMOTE (4,000) is the

best and is even better than that of the combination of SMOTE (9,000), undersampling (6,000)

and learning rate (0.05), with classifier score being 0.8679. The performance of non-SMOTE

method is poor, with an accuracy rate of about 0.5. For gradient boosting, the combination of

SMOTE (9,000), undersampling (6,000) and learning rate (0.05) do not perform that well, with

the classifier score just being 0.6860.

52

4.4.4.2 Confusion Matrix

Figure 4.4.8: Confusion Matrix - Gradient Boosting

From the above confusion matrix, we can also clearly see the performance of an algorithm by

numbers. In addition, we can also get the recall and precision from the confusion matrix:

Gradient Boosting

Recall

Precision

No SMOTE
Any learning rate 0.0 0.0

SMOTE (4,000)
Any learning rate (0.5) 0.18 0.17

SMOTE (9,000)
Any learning rate (0.5) 0.57 0.14

SMOTE (9,000)
Undersampling (6,000)
Any learning rate (0.5)

0.95 0.09

Table 4.4.4: Recall and Precision Table - Gradient Boosting

53

From Table 4.4.4, it is clear that recall will also increase when the SMOTE increases. At the same

time, the precision will increase from 0 to 0.17 if we just increase SMOTE from 0 to 4,000. But

different from the above methods, the precision will decrease from 0.17 to 0.4 by increasing the

SMOTE from 4,000 to 9,000. If we combine the SMOTE and undersampling methods, then the

recall has been improved significantly from 0.57 to 0.95 and precision decreases from 0.14 to 0.09.

In terms of combination of SMOTE (9,000) and undersampling (6,000), recall (0.95) means 95%

fraudulent claims can be detected; precision (0.09) means among all those predicted fraudulent

claims, 9% claims are really fraudulent. In practice, the model is also useful.

4.5 Conclusion

In general, random forest and gradient boosting classifiers are easy to train. We do not need to

consider missing values or independence; while for naïve Bayes and logistic regression, we need

to care about these conditions.

What is more, in order to compare different classification methods, we just focus on the

combination of SMOTE (9,000) and undersampling (6,000), because in this situation, the

classification performance is the best. As shown below:

 Recall Precision
Naive Bayes 0.79 0.08

Logistic Regression 0.856 0.1
Random Forest 0.89 0.12

Gradient Boosting 0.95 0.09

Table 4.5.1: Overall Recall and Precision Table

From Table 4.5.1, it is clear to see that for the combination of SMOTE (9,000) and undersampling

(6,000), gradient boosting has the highest recall, which means it can detect the most percentage of

the fraudulent claims. Although the random forest method has better precision (percentage of

predicted fraudulent claims that are actual fraudulent claims), gradient boosting is also the best

classification method, because compared to random forest, the recall of gradient boosting

increases by 0.06 (from 0.89 to 0.95), but the precision just decreases 0.03 (from 0.12 to 0.09),

which is acceptable. Remember that recall meaures the percentage of fraudulent claims that can

54

be detected, which is the quantity of interest here, to be maximized. The precision error is a less

important decision variable in this application.

In terms of each classification method, we can see that the recall will be improved by increasing

the SMOTE index, but the precision will decrease at the same time.

Even though the recalls of gradient boosting and random forest are very good, there are still some

things to improve in fraudulent claim detection. From Table 4.5 above, we see that the precision

is very low, which means many real-claim customers will be bothered when we classify them as

fraudulent claims. Therefore, we need to find a way to improve recall and precision simultaneously.

4.6 Original Idea

Reaching this step, we can also use a combination of clustering and classification models. Starting

form the SMOTE (9,000) step, the first method is to use k-means clustering to divide the whole

dataset into three clusters, and only then apply the proper classification model to these three

clusters. By using this method, the performance can also be improved. However, this method

cannot be applied to small datasets, because there would not be enough observations in all small

clusters to train the classification model.

What is more, the method of changing the order of SMOTE (9,000) and k-means clustering has

also been tested, which means using k-means clustering to group the data and then using SMOTE

to resample each cluster. The results were almost the same. After checking the data in each

clustering, by using SMOTE (9,000) and k-means clustering, all these three clusters are very

balanced (around 1:1, 5:4 and 4:5). Maybe this is why the order does not change the final results.

55

4.6.1 Performances of Different Models in Three Clusters

Table 4.6.1: Overall Recall Table for Clustered Data

From the table above, we can see that in the first cluster, random forest is the best method, with

recall being 0.8469, while in second and third clusters, gradient boosting is the best, with recall

being 0.96 and 0.84 respectively.

4.6.2 The Effect of Using Clustering

But when comes to the overall performance of different models, it is clear to see from the below

graph that randon forest and logistic regression are the best. By using the combination method of

SMOTE and clustering, the performances (recall) of all these four models have been improved a

lot.

56

Table 4.6.2: Overall Recall Table For the Best Methods

What is more, gradient boosting is almost the best model in all situations, but in the combination

method of clustering and classification models, it is not an ideal model, because the theory of

gradient boosting is to build a tree first, and then iteratively build other trees to improve the error

of the previous tree, which means the number of observations will influence the performance of

gradient boosting. Dividing the dataset into clusters means smaller number of observations in each

cluster, which will lead to a worse performance.

57

Chapter 5

Dataset 2 Description and Manipulation

5.1 Description
5.1.1 Dependent Variable

The second dataset analyzed is also about car insurance claims, which can be found at Kaggle (url:

https://www.kaggle.com/roshansharma/insurance-claim). It consists of 1,000 observations with 39

variables. The response variable named the “fraud_reported” is either 1 for a driver who filed a

fraudulent claim or 0 for car insurance claims that are legitimate. There are 38 explanatory

variables with information on each driver (sex, age, education level, claim amount or claim time,

for example).

The dependent variable is binary (1 or 0), and it is clear from the following figure that this

dependent variable is somewhat imbalanced (24.7% if 1s and 75.3% if 0s). So for this dataset,

a transformation of the dependent variable to correct the imbalance may not be necessary, which

means the result without the SMOTE method may be acceptable.

Figure 5.1.1: Bar Chart and Pie Chart of the Response Variable

https://www.kaggle.com/roshansharma/insurance-claim

58

5.1.2 Correlation Matrices

Figure 5.1.2: Correlation Matrix

From the output, we can easily see the “incident_type” tends to have negative a negative

relationship with “total_claim_amount”, “vehicle_claim”, “injury_claim” and “property_claim”;

while the “vehicle_claim” has a positive relationship with “total_claim_amount”, “vehicle_claim”

and “property_claim”. So, when we use a logistic regression model, it is important to check these

instances of multicollinearity.

5.2 Data Manipulations

In this section, we detail some common data manipulations that are carried out for all the analyses,

plus any specific manipulation required for certain. To be able to perform cross-validation, the

dataset was first divided into two parts. The training dataset contains 700 observations, and the

59

testing dataset contains 300 observations, for a total of 1,000 rows, which is not a large dataset.

Compared with the first dataset, we need to increase the percentage of testing set (30%).

5.2.1 Features Selection

Before fitting any models, it is important to check the relation between all the features, for two

main reasons:

• If two features are highly linearly correlated, the data may show multicollinearity effects,

especially for the logistic regression.

• By reducing the number of input variables, we may have fewer parameters requiring tuning when

fitting the model and consequently reduce the computational load.

5.2.2 Standardization and Scaling

Since our features are expressed in different measurement scales, we standardize or scale the

following features:

• fraud_reported: Change to 1 (Yes) and 0 (No).

• Sex: Change to 1 (Male) and 0 (Female).

• MaritalStatus: Change to 1 (Single) and 0 (Married).

• Collision_type: Replace the missing data with the most common collision type (Back

Collision).

• Witness: Change to 1 (Yes) and 0 (No).

• Property_damage: Replace the missing data with “No”, because we just treat missing data

as no response for the property damage.

• Police_report_available: Replace the missing data with “No”, because we just treat missing

data as no police report.

• Insured_education_level, incident_type, insured_relationship, insured_hobbies, etc.:

Target Encoding.

• Policy_number, policy_bind_date, incident_date, incident_location: delete these variables

because they do not contain any useful information for the fraud detection.

60

5.2.3 Missing Data

In terms of the missing data, as mentioned before, there are also several standards:

• If the data is missing randomly and more than 70% data of certain feature is missing, then

delete this feature directly;

• If the feature with missing data has a trend based on time, then fill in the missing data by

time;

• Check if those features with missing data have some relationships with other features. If

so, treat other related variables as independent variables and treat the missing data as the

dependent variable to build a model in order to predict those missing data.

5.2.4 Target Encoding
The second dataset contains some categorical variables that have more than two categories. In this case,

instead of using one-hot encoding (used in Dataset 1) method to deal with them, target encoding method is

more convenient and efficient. Because if there are many categorical variables having multiple categories,

one-hot encoding method will produce many columns, which may lead to memory issues.

The main idea of target encoding method is to average the value by category. For example, there is a

categorical variable x and a dependent variable y (y can be binary or continuous). For each distinct

element in 𝑥𝑖, we can replace each 𝑥𝑖 by computing the average of the corresponding values in y.

All of this calculation is pretty easy in “pandas” library of Python. This means it can help to produce

categorical variables with little effort.

5.2.5 Combine SMOTE and Under-Sampling

By applying a combination of undersampling and oversampling, the learner's initial bias for the

minority class is reversed to a majority class. The classifier is learned on a data set that is

influenced by “SMOTE” the minority and under-sampling the majority.

In this thesis, we use different sampling methods to test each model in order to get a better result.

The first method is to “SMOTE” the minority class into 376 (around 1:2); the second method is to

“SMOTE” the minority class into 753 (1:1); the third method is “SMOTE” the minority class into

753 and undersample the majority class into 502 (3:2).

61

5.3 Results
5.3.1 Naïve Bayes Classifier
5.3.1.1 ROC Curve

Figure 5.3.1: ROC Curve – Naïve Bayes

From the ROC Curve of logistic regression, we can see that for the imbalanced dataset, the overall

accuracy rate of the combination of SMOTE and undersampling is the highest; while the sampling

method without SMOTE and undersampling is the lowest.

62

5.3.1.2 Confusion Matrix

Figure 5.3.2: Confusion Matrix – Naïve Bayes

From the above confusion matrix, we can clearly see the performance of an algorithm as

summarized in a few numbers. In addition, we can also get the recall and precision from the

confusion matrix:

Naïve Bayes

Recall

Precision

No SMOTE
No undersampling 0.30 0.37

SMOTE (376)
No undersampling 0.66 0.29

SMOTE (753)
No undersampling 0.79 0.29

SMOTE (753)
Undersampling (502) 0.82 0.29

Table 5.3.1: Recall and Precision Table - Naive Bayes

63

From the above table, it is clear that the recall will increase when the SMOTE sample increases.

While at the same time, the precision will decrease from 0.37 to 0.29 and then remain the same if

we just increase the SMOTE sample from 376 to 753. But if we combine the SMOTE and the

undersampling methods, the recall improves a lot, and the precision also does not change. In terms

of the combination of SMOTE (753) and undersampling (502), recall (0.84) means 82% fraudulent

claims can be detected; precision (0.29) means among all the predicted fraudulent claims, 29%

claims were really fraudulent.

5.3.2 Logistic Regression
5.3.2.1 Check the Assumptions

5.3.2.1.1 Continuous Independent Variables (IVs) being Linearly Related to the LOG ODDS

Logistic regression does not require continuous independent variables (IVs) to be linearly related

to dependent variables (DVs). But it requires the continuous IVs be linearly related to the log odds

of the DVs. One way to test this is to use the graph and look for an S-shaped curve. Sometimes the

S-shaped curve will not be obvious. The figure should have a flat or flattish top and bottom with

an increase or decrease in the middle.

Figure 5.3.3: S-shaped Curve of Total Claim Amount and Age

So, from the output, it is obvious that both “total_claim_amount” and “age” are linearly related to

the dependent value (“fraud_reported”), which satisfies the first assumption.

64

5.3.2.1.2 Absence of Multicollinearity

A simple approach to check multicollinearity is to use the correlation matrix to find any highly

correlated variables. If there are variables that are highly correlated, then we need to drop one of

them because they are measuring the same or similar things.

From Figure 5.1.2, we can see there is some multicollinearity among the variables, such as

“incident_type” and “total_claim_amount”. What we need to do is delete “total_claim_amount”

because the sum of “injury_claim”, “property_claim” and “vehicle_claim” equals to

“total_claim_amount”. So, we can delete “total_claim_amount” without losing any information.

5.3.2.1.3 Lack of Outliers (Logistic Regression)

The assumption of lack of outliers is an easy one to check. One can get a feel of this with the

descriptive statistics provided by the “.describe() ” function in R. But it is also very easy to check

the outliers by using a box plot. Since there is a huge difference between the values used to measure

"vehicle_claim" and "injury_claim", two separate box plots are generated. And from the two

outputs, we can see that there is no outliers in "vehicle_claim" and "injury_claim".

Figure 5.3.4: Box Plot of Vehicle_Claim and Injury_Claim

65

5.3.2.2 Results

5.3.2.2.1 ROC Curve

Figure 5.3.5: ROC Curve - Logistic Regression

From the ROC Curve of logistic regression, we can see that for the imbalanced dataset, the overall

accuracy rate of the SMOTE (1:753) is the highest and very close to the combination of SMOTE

and undersampling; while the sampling method without SMOTE and undersampling is the lowest.

66

5.3.2.2.2 Confusion Matrix

Figure 5.3.6: Confusion Matrix - Logistic Regression

From the above confusion matrix, we can clearly see the performance of an algorithm as

summarized in a few numbers. In addition, we can also get the recall and precision from the

confusion matrix:

Logistic Regression

Recall

Precision

No SMOTE
No undersampling 0.66 0.75

SMOTE (376)
No undersampling 0.81 0.74

SMOTE (753)
No undersampling 0.86 0.70

SMOTE (753)
Undersampling (502) 0.84 0.66

Table 5.3.2: Recall and Precision table – Logistic Regression

67

From the Table 5.3.2, it is clear that the recall will also increase when the SMOTE increases. But

at the same time, the precision will decrease from 0.75 to 0.70 if we just increase the SMOTE from

0 to 753. But different from the above methods, the precision will decrease from 0.70 to 0.66 by

using a combination method of SMOTE (753) and undersampling (502), while the recall just

increases from 0.86 to 0.84. Then we can say, in this case, for logistic regression, the combination

method does not work well. In this case, choosing SMOTE (753) is the best, because this method

more sense in practice. The recall (0.86) means 86% fraudulent claims can be detected; precision

(0.7) means among all those predicted fraudulent claims, 70% claims are really fraudulent.

5.3.3 Random Forest
5.3.3.1 ROC Curve

Figure 5.3.7: ROC Curve – Random Forest

For the random forest classification method, the overall accuracy rate of the combination of

SMOTE (753) and undersampling (502) is the best, with classifier score of 0.5. The performance

of raw dataset is poor.

68

5.3.3.2 Confusion Matrix

Figure 5.3.8: Confusion Matrix – Random Forest

From the above confusion matrix, we can also clearly see the performance of the random forest :

Random Forest

Recall

Precision

No SMOTE
No undersampling 0.64 0.79

SMOTE (376)
No undersampling 0.84 0.68

SMOTE (753)
No undersampling 0.84 0.68

SMOTE (753)
Undersampling (502) 0.84 0.68

Table 5.3.3: Recall and Precision Table – Random Forest

69

From the Table 5.3.3, it is clear that the recall will also increase from 0.64 to 0.84 and the precision

will decrease from 0.79 to 0.68, and then remain unchanged when the SMOTE increases from 0

to 376 and then to 753, even though we combine the undersampling method at the same time.

Maybe for the dataset with not that imbalanced dependent variable, when we use random forest

model, the SMOTE ratios and undersampling methods do not have a lot influence to the result.

In terms of the combination of SMOTE (753) and undersampling (502), a recall (0.84) means 84%

fraudulent claims can be detected; a precision (0.68) means among all those predicted fraudulent

claims, 68% claims are really fraudulent. In practice, the model can also be useful.

5.3.4 Gradient Boosting
5.3.4.1 ROC Curve

Figure 5.3.9: ROC Curve - Gradient Boosting

For the random forest classification method, the overall accuracy rate of SMOTE (376) is the, with

classifier score being 0.8023. But for gradient boosting model, the performance of the combination

of SMOTE (753), undersampling (376) and learning rate (0.05) is the lowest, with classifier score

being only 0.5122.

70

5.3.4.2 Confusion Matrix

Figure 5.3.10: Confusion Matrix - Gradient Boosting

From the above confusion matrix, we can also clearly see the performance of an algorithm by

numbers. In addition, we can also get the recall and precision from the confusion matrix:

Gradient Boosting

Recall

Precision

No SMOTE
Any learning rate 0.29 0.63

SMOTE (376)
Any learning rate (0.5) 0.39 0.58

SMOTE (753)
Any learning rate (0.5) 0.78 0.35

SMOTE (753)
Undersampling (502)
Any learning rate (0.5) 0.91 0.29

Table 5.4.1: Recall and Precision table - Gradient Boosting

71

From the Table 5.3.4, it is clear that the recall will also increase from 0.29 to 0.78 when the

SMOTE increases. At the same time, the precision will decrease constantly from 0.63 to 0.35 if

we just increase the SMOTE from 0 to 753. If we combine the SMOTE and undersampling

methods, then the recall has been improved significantly from 0.78 to 0.91 and precision decreases

from 0.35 to 0.26. In terms of combination of SMOTE (753) and undersampling (502), a recall

(0.91) means 91% fraudulent claims can be detected; precision (0.29) means among all those

predicted fraudulent claims, 29% claims are really fraudulent. In practice, the model is also useful.

5.4 Conclusion

For this dataset, in order to compare different classification methods, we also just focus on the

combination of SMOTE (753) and undersampling (502), because in this situation, the performance

of classification is the best. As shown below:

 Recall Precision
Naive Bayes 0.82 0.29

Logistic Regression 0.86 0.70
Random Forest 0.84 0.68

Gradient Boosting 0.91 0.29

Table 5.4: Overall Recall and Precision Table

From Table 5.4.1, it is clear to see that for the combination of SMOTE and undersampling (3:2),

gradient boosting also has the highest recall, which means it can detect the most percentage of the

fraudulent claims. Compared to logistic regression, the recall of gradient boosting increases by 0.5

(from 0.86 to 0.91), while the precision decreases from 0.70 to 0.29. If we just focus on the recall,

we regard the combination of SMOTE (753) and undersampling (502) methods as the best one;

but if we care about both recall and precision, then logistic regression is the best model, because

the recall of logistic regression is just 5% less than gradient boosting, but the precision is 41%

higher than the precision of gradient boosting.

In terms of each classification method, we can see that the recall will be improved by increasing

the SMOTE index, but the precision will decrease at the same time. Therefore, in practice, if we

want to increase the precision and we do not need recall to be that high, then we can decrease the

72

ratio between SMOTE and undersampling to get a better precision. Because in this case, less noise

will be introduced to the model.

73

Conclusions

The two datasets studied here are totally separate, although both are about car insurance claims

fraud detection. We analysed these two datasets in order to get more general conclusions, that not

only pertain to a single example, so they are more convincing.

Comparing all the SMOTE, undersampling methods and models, we can comfortably say that

when increasing the SMOTE ratio, the recall increases. And for most of these models, the recall

is even better if we combine the SMOTE and undersampling methods.

Focusing just on the combination of SMOTE and undersampling methods, it seems that, based on

these two samples of auto insurance, gradient boosting is the best model to maximize the fraudulent

claims detected, because the recall of gradient boosting is the highest, which is the primary

objective.

In addition, it is easy to see from Figure 4.1.1 and Figure 5.1.1 that these two datasets are

unbalanced at different degrees (6.1% to 93.9% and 24.7% to 75.3%). From the output, it is clear

that for the datasets with different unbalance ratios, the performances of different models and ratios

between SMOTE and under-sampling will also change.

For the very unbalanced dataset (6.1% to 93.9%), choosing a higher ratio of SMOTE and

undersampling (3:2) seems reasonable, which can improve the recall, while the precision does not

decrease significantly. The best model is gradient boosting, but for the dataset that is slightly less

unbalanced (24.7% to 75.3%), choosing the SMOTE (753) method is the best, maximizing recall

without precision decreasing much at the same time. Also, for this second dataset, logistic

regression is the best model if a high precisionis seeked, even though its recall is not the highest.

In addition, for this second dataset with a smaller unbalance ratio (24.7% to 75.3%), it also yields

a higher precision. For example, for both datasets, if logistic regression is used, the recalls of two

datasets are almost the same, 0.856 and 0.86, respectively, while the precisions are 0.1 and 0.7.

This means that the less unbalanced dataset tends to have a much better precision.

74

There is also another method to deal with unbalanced datasets, using a combination of clustering

and SMOTE methods, to then apply separate models for each cluster. From the graph in Figure

4.6.2, it is clear that the recall of all these four classification models have improved significantly.

In conclusion, as mentioned before, even though recall is high enough for some models, we also

see that the precision is a quite low, which means that many legitimate-claim customers will be

bothered when investigated for fraudulent claims. Therefore, there is still a need to find methods

that maintain a high precision while maximizing recall.

Finally, we can also use link analyses to improve fraud detection. Using other related datasets for

the same policy holders, such as their education background, their residential address, information

on their friends and social networks, the time at which the car accident occured or their financial

credit, can help improve fraud detection.

In this thesis we did not consider these factors, like accident time, because the public datasets used

do not include such detailed personal information. Insurance companies have detailed longitudinal

records for each policyholder, for more than a year. In this case, the time factor can also be

considered. For example, one client buys several policies in a short time period, and then this

policyholder files a large insurance claim. This behaviour should be detected.

Therefore, in practice, insurance data scientists can also use the time factor as an important variable

to detect insurance fraud.

75

References

[1] Altini, M. “Dealing With Imbalanced Data: Undersampling, Oversampling And Proper Cross-

Validation”, Aug. 2015, https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-

undersampling-oversampling-and-proper-cross-validation.

[2] Amjad, M. “Naive Bayes Classifier-Based Fire Detection Using Smartphone Sensors”, Master

Thesis, Dept. Engineering and Science, University of Agder, Grimstad, June 2014.

[3] Breiman, L. “Random Forests”, Dept. Statistics, University of California, Berkeley, CA,

January 2001.

[4] Brid, Rajesh S. “Decision Trees a Simple Way to Visualize a Decision”,

https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-

dc506a403aeb

[5] Brockett, L., Golden, L. and Guillen, M. “A Robust Unsupervised Method for Fraud Rate

Estimation”, Journal of Risk & Insurance 80(1): 121-143, Jan. 2011.

[6] Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. “SMOTE: synthetic minority

over-sampling technique”, Journal of Artificial Intelligence Research 16, 321-357.

[7] Coors, S. “Automatic Gradient Boosting”, Master’s Thesis, Dept. Statistics, Ludwig

Maximilians University, Munich, March 2018.

[8] Efimov, D. “Gradient Boosting Trees: Theory and Applications”. Nov. 2016. http://efimov-

ml.com/pdfs/Lvov_xgboost_2016.pdf

[9] Friedman, H. “Greedy Function Approximation: A Gradient Boosting Machine”, Annals of

Statististics 29 (2001), no. 5, 1189--1232. https://projecteuclid.org/euclid.aos/1013203451.

[10] Li, Y., Yan, C., Liu, W. and Li, M. “Research and application of random forest model in

mining automobile insurance fraud”, 2016 12th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Aug. 2016.

https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-undersampling-oversampling-and-proper-cross-validation
https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-undersampling-oversampling-and-proper-cross-validation
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
http://www.jair.org/papers/paper953.html
http://www.jair.org/papers/paper953.html
http://efimov-ml.com/pdfs/Lvov_xgboost_2016.pdf
http://efimov-ml.com/pdfs/Lvov_xgboost_2016.pdf
https://projecteuclid.org/euclid.aos/1013203451
https://ieeexplore.ieee.org/author/37405582500
https://ieeexplore.ieee.org/author/37085890326
https://ieeexplore.ieee.org/xpl/conhome/7580922/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7580922/proceeding

76

[11] Murphy, P. “Naive Bayes Classifiers”, Oct. 24, 2006,

https://www.ic.unicamp.br/~rocha/teaching/2011s1/mc906/aulas/naive-bayes.pdf.

[12] Narkhede, S. “Understanding AUC - ROC Curve”, Towards Data Science,

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

[13] Oates, S. “A Logistic Regression Analysis of Score Sending and College Matching Among

High School Students”, Ph.D. Thesis, Dept. Philosophy, University of Iowa, Fall 2015.

[14] Park, H. “An Introduction to Logistic Regression: From Basic Concepts to Interpretation with

Particular Attention to Nursing Domain”, J Korean Acad Nurs, Vol.43, No.2, Apr. 2013.

[15] Shen, A., Tong, R. and Deng, Y. “Application of Classification Models on Credit Card Fraud

Detection”, IEEE, June 2007.

[16] Sahin, Y. and Duman, E. “Detecting credit card fraud by ANN and logistic regression”, 2011

International Symposium on Innovations in Intelligent Systems and Applications, Jun. 2001.

[17] Schapire, E. “A Brief Introduction to Boosting”, IJCAI'99 Proceedings of the 16th

International Joint Conference on Artificial Intelligence - Volume 2, USA, 1998.

[18] Shubham, J. “Naïve Bayes Theorem”, June 2018. https://becominghuman.ai/naive-bayes-

theorem-d8854a41ea08.

[19] Viaene, S., Derrig, S. and Dedene, G. “Boosting Naive Bayes for Claim Fraud Diagnosis”,

International Conference on Data Warehousing and Knowledge Discovery , Sep. 2002.

[20] Zheng, Z., Cai, Y. and Li, Y. “Oversampling Method for Imbalanced Classification”,

Computing and Informatics, Vol. 34, 1017–1037, 2015.

[21] “Cross Validated, Area Under Curve of ROC vs. Overall Accuracy”.

https://stats.stackexchange.com/questions/68893/area-under-curve-of-roc-vs-overall-accuracy.

[22] “Kaggle, Credit Card Fraud Detection”. https://www.kaggle.com/joparga3/in-depth-skewed-

data-classif-93-recall-acc-now.

[23] “Kaggle, Fraud Detection in Insurance Claims”.

https://www.kaggle.com/roshansharma/fraud-detection-in-insurance-claims/notebook#Data-

Processing

https://towardsdatascience.com/@narkhedesarang?source=post_page-----68b2303cc9c5----------------------
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://ieeexplore.ieee.org/author/37927457300
https://ieeexplore.ieee.org/author/37666506700
https://ieeexplore.ieee.org/author/37934772700
https://ieeexplore.ieee.org/author/37718526500
https://ieeexplore.ieee.org/author/37529138100
https://ieeexplore.ieee.org/xpl/conhome/5935581/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5935581/proceeding
https://becominghuman.ai/naive-bayes-theorem-d8854a41ea08
https://becominghuman.ai/naive-bayes-theorem-d8854a41ea08
https://link.springer.com/conference/dawak
https://stats.stackexchange.com/questions/68893/area-under-curve-of-roc-vs-overall-accuracy
https://www.kaggle.com/joparga3/in-depth-skewed-data-classif-93-recall-acc-now
https://www.kaggle.com/joparga3/in-depth-skewed-data-classif-93-recall-acc-now
https://www.kaggle.com/roshansharma/fraud-detection-in-insurance-claims/notebook#Data-Processing
https://www.kaggle.com/roshansharma/fraud-detection-in-insurance-claims/notebook#Data-Processing

77

[24] “Kaggle, Fraud Detection with Naive Bayes Classifier”.

https://www.kaggle.com/lovedeepsaini/ fraud-detection-with-naive-bayes-classifier.

[25] “Kaggle, Prediction with Gradient Boosting classifier”. https://www.kaggle.com/beagle01/

prediction-with-gradient-boosting-classifier.

[26] “Logistic Regression Theory: An Overview”. https://dzone.com/articles/logistic-regression-

theory

[27] “Python for Data Science, Logistic Regression”. https://pythonfordatascience.org/logistic-

regression-python/

[28] Ravelin, “Link Analysis For Fraud Detection”. https://www.ravelin.com/insights/link-analysis-

and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_

campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435

564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_

acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&g

clid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-

D4T1X3ZFwaAvyLEALw_wcB.

[29] Wikipedia, “Gradient Boosting”. https://en.wikipedia.org/wiki/Gradient_boosting.

https://www.kaggle.com/lovedeepsaini/%20fraud-detection-with-naive-bayes-classifier
https://www.kaggle.com/beagle01/%20%20prediction-with-gradient-boosting-classifier
https://www.kaggle.com/beagle01/%20%20prediction-with-gradient-boosting-classifier
https://dzone.com/articles/logistic-regression-%20theory
https://dzone.com/articles/logistic-regression-%20theory
https://pythonfordatascience.org/logistic-regression-python/
https://pythonfordatascience.org/logistic-regression-python/
https://www.ravelin.com/insights/link-analysis-and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_%20campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_%20acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&gclid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-D4T1X3ZFwaAvyLEALw_wcB
https://www.ravelin.com/insights/link-analysis-and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_%20campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_%20acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&gclid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-D4T1X3ZFwaAvyLEALw_wcB
https://www.ravelin.com/insights/link-analysis-and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_%20campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_%20acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&gclid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-D4T1X3ZFwaAvyLEALw_wcB
https://www.ravelin.com/insights/link-analysis-and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_%20campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_%20acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&gclid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-D4T1X3ZFwaAvyLEALw_wcB
https://www.ravelin.com/insights/link-analysis-and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_%20campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_%20acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&gclid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-D4T1X3ZFwaAvyLEALw_wcB
https://www.ravelin.com/insights/link-analysis-and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_%20campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_%20acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&gclid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-D4T1X3ZFwaAvyLEALw_wcB
https://www.ravelin.com/insights/link-analysis-and-graph-database-for-fraud-detection?utm_term=fraud%20analysis&utm_%20campaign=Online+fraud&utm_source=adwords&utm_medium=ppc&hsa_ver=3&hsa_grp=70183435564&hsa_kw=fraud%20analysis&hsa_tgt=kwd-296702529729&hsa_mt=b&hsa_%20acc=6420205522&hsa_net=adwords&hsa_ad=355069767789&hsa_src=g&hsa_cam=1746763886&gclid=Cj0KCQiAvc_xBRCYARIsAC5QT9kvgFZiBNHTZPXDx-f7wilI87Uu5J63uXRf1qLwkC27G-D4T1X3ZFwaAvyLEALw_wcB
https://en.wikipedia.org/wiki/Gradient_boosting

78

Appendix A

Code for the Analysis of Dataset 1

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from imblearn.over_sampling import SMOTE

from sklearn.metrics import confusion_matrix

import seaborn as sns

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import recall_score, precision_score, accuracy_score, f1_score

from itertools import cycle

from sklearn.metrics import
confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_re
port

from sklearn.model_selection import train_test_split

from imblearn.over_sampling import SMOTE

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import cross_val_score

from sklearn.metrics import roc_curve

79

from sklearn.model_selection import cross_val_predict

from sklearn.cluster import KMeans

data = pd.read_csv('C:/Users/Jason/Desktop/Thesis/Data.csv')

df2 = pd.read_csv('C:/Users/Jason/Desktop/Thesis/Data_Cleaned.csv')

df = data

data.head()

data.FraudFound_P.value_counts()

bar chart

from matplotlib import pyplot as plt

name_list = ['1', '0']

num_list = [data['FraudFound_P'].sum(), 11300-data['FraudFound_P'].sum()]

plt.bar(range(len(num_list)), num_list, color = 'rgb', tick_label = name_list)

pie chart

labels = '1', '0'

sizes = [data['FraudFound_P'].sum(), 11300-data['FraudFound_P'].sum()]

plt.pie(sizes, labels = labels, autopct = '%1.1f%%', shadow = False)

check the correlation

data['FraudFound_P'].corr(data['DriverRating'])

Clustering & SMOTE

df5 = df.sample(frac=1)

X5 = df5.iloc[:, :-1]

y5 = df5.iloc[:, -1]

80

X5_train, X5_test, y5_train, y5_test = train_test_split(X5, y5, test_size=0.2, random_state=42)

sm = SMOTE(ratio={1: 9000},random_state=42)

X5sm_train, y5sm_train = sm.fit_sample(X5_train, y5_train)

X5sm_train = pd.DataFrame(X5sm_train)

y5sm_train = pd.DataFrame(y5sm_train)

sum(y5sm_train==1)

X5sm_train, y5sm_train = X5_train, y5_train

train = X5sm_train

train['test'] = 0

train['fraud'] = y5sm_train

test = X5_test

test['test'] = 1

test['fraud'] = y5_test

train.columns = test.columns

data77 = pd.concat([train, test])

data99 = data77.iloc[:,:-2]

data99['fraud'] = data77.iloc[:, 31:32]

data99['test'] = data77.iloc[:, 32:33]

clf=KMeans(n_clusters=3)

clf=clf.fit(data99)

clf.cluster_centers_

data99['label']=clf.labels_

data99['test']=data77.iloc[:,-2].values

data99['fraud']=data77.iloc[:,-1].values

data0=data99.loc[data99["label"] == 0]

81

data1=data99.loc[data99["label"] == 1]

data2=data99.loc[data99["label"] == 2]

data0 ###############

data0=data99.loc[data99["label"] == 0]

data0_test = data0.loc[data0['test']==1]

data0_test = data0_test.drop(['test', 'label'],axis=1)

X_test0 = data0_test.iloc[:,:-1]

y_test0 = data0_test.iloc[:,-1]

data0_train = data0.loc[data0['test']==0]

sm = SMOTE(ratio={1: 9000},random_state=42)

X5sm_train, y5sm_train = sm.fit_sample(X5_train, y5_train)

X5sm_train = pd.DataFrame(X5sm_train)

y5sm_train = pd.DataFrame(y5sm_train)

data0_train = data0_train.drop(['test', 'label'],axis=1)

X_train0 = data0_train.iloc[:,:-1]

y_train0 = data0_train.iloc[:,-1]

Randon Forest Classifier

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree.fit(X_train0, y_train0)

tree best estimator

tree_clf = grid_tree.best_estimator_

y_pred_tree0 = tree_clf.predict(X_test0)

82

recall_score(y_test0, y_pred_tree0, average='binary') # 0.8469387755102041

precision_score(y_test0, y_pred_tree0) # 0.10863874345549739

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

Naive Bayes

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.naive_bayes import GaussianNB

from sklearn.preprocessing import QuantileTransformer

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline.fit(X_train0, y_train0)

y_pred_tree0 = pipeline.predict(X_test0)

recall_score(y_test0, y_pred_tree0, average='binary') # 0.35714285714285715

precision_score(y_test0, y_pred_tree0) # 0.13307984790874525

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

LR Classifier

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg.fit(X_train0, y_train0)

83

log_reg = grid_log_reg.best_estimator_

y_pred_log = log_reg.predict(X_test0)

recall_score(y_test0, y_pred_log, average='binary') # 0.8088235294117647 0.7857142857142857

precision_score(y_test0, y_pred_log) # 0.1323024054982818

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_log, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

Gradient Boosting

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb4.fit(X_train0, y_train0)

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2,
random_state = 0) ### 0.05 => 0.95 0.09

gb4.fit(X_train0, y_train0)

y_pred_tree0 = gb4.predict(X_test0)

recall_score(y_test0, y_pred_tree0, average='binary') # 0.5714285714285714

precision_score(y_test0, y_pred_tree0) # 0.14583333333333334

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

84

data1 ###############

data0 = data1

data0_test = data0.loc[data0['test']==1]

data0_test = data0_test.drop(['test', 'label'],axis=1)

X_test0 = data0_test.iloc[:,:-1]

y_test0 = data0_test.iloc[:,-1]

data0_train = data0.loc[data0['test']==0]

data0_train = data0_train.drop(['test', 'label'],axis=1)

X_train0 = data0_train.iloc[:,:-1]

y_train0 = data0_train.iloc[:,-1]

Randon Forest Classifier

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree.fit(X_train0, y_train0)

tree best estimator

tree_clf = grid_tree.best_estimator_

y_pred_tree0 = tree_clf.predict(X_test0)

recall_score(y_test0, y_pred_tree0, average='binary') # 0.72

precision_score(y_test0, y_pred_tree0) # 0.16822429906542055

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

85

NB

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline.fit(X_train0, y_train0)

y_pred_tree0 = pipeline.predict(X_test0)

recall_score(y_test0, y_pred_tree0, average='binary') # 0.92

precision_score(y_test0, y_pred_tree0) # 0.09787234042553192

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

LR Classifier

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg.fit(X_train0, y_train0)

log_reg = grid_log_reg.best_estimator_

y_pred_log = log_reg.predict(X_test0)

recall_score(y_test0, y_pred_log, average='binary') # 0.88

precision_score(y_test0, y_pred_log) # 0.15602836879432624

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_log, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

Gradient Boosting

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc

86

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb4.fit(X_train0, y_train0)

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2,
random_state = 0) ### 0.05 => 0.95 0.09

gb4.fit(X_train0, y_train0)

y_pred_tree0 = gb4.predict(X_test0)

recall_score(y_test0, y_pred_tree0, average='binary') # 0.96

precision_score(y_test0, y_pred_tree0) # 0.125

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

data2 ###############

data0 = data2

data0_test = data0.loc[data0['test']==1]

data0_test = data0_test.drop(['test', 'label'],axis=1)

X_test0 = data0_test.iloc[:,:-1]

y_test0 = data0_test.iloc[:,-1]

data0_train = data0.loc[data0['test']==0]

data0_train = data0_train.drop(['test', 'label'],axis=1)

X_train0 = data0_train.iloc[:,:-1]

y_train0 = data0_train.iloc[:,-1]

87

Randon Forest Classifier

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree.fit(X_train0, y_train0)

tree best estimator

tree_clf = grid_tree.best_estimator_

y_pred_tree0 = tree_clf.predict(X_test0)

recall_score(y_test0, y_pred_tree0, average='binary') # 0.6842105263157895

precision_score(y_test0, y_pred_tree0) # 0.16666666666666666

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

NB

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline.fit(X_train0, y_train0)

y_pred_tree0 = pipeline.predict(X_test0)

recall_score(y_test0, y_pred_tree0, average='binary') # 0.7894736842105263

precision_score(y_test0, y_pred_tree0) # 0.13157894736842105

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

88

LR Classifier

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg.fit(X_train0, y_train0)

log_reg = grid_log_reg.best_estimator_

y_pred_log = log_reg.predict(X_test0)

recall_score(y_test0, y_pred_log, average='binary')

precision_score(y_test0, y_pred_log)

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_log, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

Gradient Boosting

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb4.fit(X_train0, y_train0)

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2,
random_state = 0) ### 0.05 => 0.95 0.09

gb4.fit(X_train0, y_train0)

y_pred_tree0 = gb4.predict(X_test0)

89

recall_score(y_test0, y_pred_tree0, average='binary') # 0.15789473684210525

precision_score(y_test0, y_pred_tree0) # 0.10714285714285714

import seaborn as sn

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

from sklearn.model_selection import train_test_split

X = np.array(data.ix[:, data.columns != 'FraudFound_P'])

y = np.array(data.ix[:, data.columns == 'FraudFound_P'])

X1 = df2.iloc[:, :-1]

y1 = df2.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.2, random_state=42)

Standardization

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_train = pd.DataFrame(X_train)

X_test = sc.transform(X_test)

X1_train = sc.fit_transform(X1_train)

X1_test = sc.transform(X1_test)

Correlation Matrices

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(24,20))

90

corr = df.corr()

sns.heatmap(corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax1)

ax1.set_title("Imbalanced Correlation Matrix", fontsize=14)

New

df = df.sample(frac=1)

non_fraud_df = df.loc[df['FraudFound_P'] == 0][:685]

fraud_df = df.loc[df['FraudFound_P'] == 1]

normal_distributed_df = pd.concat([fraud_df, non_fraud_df])

new_df = normal_distributed_df.sample(frac=1, random_state=42)

sub_sample_corr = new_df.corr()

sns.heatmap(sub_sample_corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax2)

ax2.set_title('SubSample Correlation Matrix', fontsize=14)

plt.show()

Check Assumptions of LR

ASSUMPTION OF CONTINUOUS IVS BEING LINEARLY RELATED TO THE LOG ODDS

import statsmodels.formula.api as smf

C_S = sns.regplot(x= 'ClaimSize', y= 'FraudFound_P', data= df, logistic= True).set_title("ClaimSize Log Odds
Linear Plot")

C_S = sns.regplot(x= 'Age', y= 'FraudFound_P', data= df, logistic= True).set_title("Age Log Odds Linear Plot")

ASSUMPTION OF ABSENCE OF MULTICOLLINEARITY

df.corr()

Delete the MULTICOLLINEARITY Variables

columns = ['Month', 'AgeOfVehicle_year', 'AgeOfPolicyHolder', 'Year', 'BasePolicy', 'VehiclePrice',
'VehicleCategory', 'PolicyNumber']

df1 = df.drop(columns, axis=1)

ASSUMPTION OF LOCK OF OUTLIERS

91

ClaimSize_box = sns.boxplot(data= df[['ClaimSize']]).set_title("ClaimSize Box Plot")

from sklearn.model_selection import cross_val_score

log_reg_score = cross_val_score(log_reg, X_train, y_train, cv=5)

print('Logistic Regression Cross Validation Score: ', round(log_reg_score.mean() * 100, 2).astype(str) + '%')

LR

SMOTE

from imblearn.over_sampling import SMOTE

SMOTE Technique (OverSampling) After splitting and Cross Validating

sm = SMOTE(ratio={1: 4000},random_state=42)

Xsm_train, ysm_train = sm.fit_sample(X_train, y_train)

X1sm_train, y1sm_train = sm.fit_sample(X1_train, y1_train)

sm1 = SMOTE(ratio={1: 8514},random_state=42)

X3sm_train, y3sm_train = sm1.fit_sample(X_train, y_train)

X2sm_train, y2sm_train = sm1.fit_sample(X1_train, y1_train)

Under - Smaple & SMOTE for LR

df3 = df2.sample(frac=1)

non_fraud_df = df3.loc[df['FraudFound_P'] == 0][:6000]

fraud_df = df3.loc[df['FraudFound_P'] == 1]

normal_distributed_df = pd.concat([fraud_df, non_fraud_df])

new_df1 = normal_distributed_df.sample(frac=1, random_state=42)

X8 = new_df1.iloc[:, :-1]

y8 = new_df1.iloc[:, -1]

X8_train, X8_test, y8_train, y8_test = train_test_split(X8, y8, test_size=0.2, random_state=42)

92

sm = SMOTE(ratio={1: 9000},random_state=42)

X8sm_train, y8sm_train = sm.fit_sample(X8_train, y8_train)

Logistic Regression

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg.fit(X1_train, y1_train)

log_reg = grid_log_reg.best_estimator_

y_pred_log = log_reg.predict(X1_test)

Logistic Regression After SMOTE (1:4000)

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

grid_log_reg2 = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg2.fit(X1sm_train, y1sm_train)

log_reg2 = grid_log_reg2.best_estimator_

y1sm_pred_log = log_reg2.predict(X1_test)

Logistic Regression After SMOTE (1:9000)

grid_log_reg3 = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg3.fit(X2sm_train, y2sm_train)

log_reg3 = grid_log_reg3.best_estimator_

y2sm_pred_log = log_reg3.predict(X1_test)

Undersampling & SMOTE

grid_log_reg8 = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg8.fit(X8sm_train, y8sm_train)

log_reg8 = grid_log_reg8.best_estimator_

y8sm_pred_log = log_reg8.predict(X8_test)

93

ROC Curve

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

log_reg_pred = cross_val_predict(log_reg, X1_train, y1_train, cv=5)

log_fpr, log_tpr, log_thresold = roc_curve(y1_train, log_reg_pred)

log_reg_pred2 = cross_val_predict(log_reg2, X1sm_train, y1sm_train, cv=5)

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2)

log_reg_pred3 = cross_val_predict(log_reg3, X2sm_train, y2sm_train, cv=5)

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3)

log_reg_pred8 = cross_val_predict(log_reg8, X8sm_train, y8sm_train, cv=5)

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8)

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(log_fpr, log_tpr, label='Logistic Regression (Before SMOTE) Classifier Score:
{:.4f}'.format(roc_auc_score(y1_train, log_reg_pred)))

 plt.plot(log_fpr2, log_tpr2, label='Logistic Regression (After SMOTE 1:4000) Classifier Score:
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2)))

 plt.plot(log_fpr3, log_tpr3, label='Logistic Regression (After SMOTE 1:8514) Classifier Score:
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3)))

 plt.plot(log_fpr4, log_tpr4, label='Logistic Regression (SMOTE 1:9000 & Under-sample 1:6000) Classifier
Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

94

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3),

 arrowprops=dict(facecolor='#6E726D', shrink=0.05),

)

 plt.legend()

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2)

plt.show()

Randon Forest Classifier

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree.fit(X_train, y_train)

tree best estimator

tree_clf = grid_tree.best_estimator_

y_pred_tree = tree_clf.predict(X_test)

Decision Tree SMOTE 4000

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree_sm1 = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree_sm1.fit(Xsm_train, ysm_train)

log_reg_sm1 = grid_tree_sm1.best_estimator_

ysm_pred_tree1 = log_reg_sm1.predict(X_test)

95

SMOTE 8514

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree_sm2 = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree_sm2.fit(X3sm_train, y3sm_train)

log_reg_sm2 = grid_tree_sm2.best_estimator_

ysm_pred_tree2 = log_reg_sm2.predict(X_test)

Undersampling & SMOTE

df5 = df.sample(frac=1)

non_fraud_df5 = df5.loc[df5['FraudFound_P'] == 0][:6000]

fraud_df5 = df5.loc[df5['FraudFound_P'] == 1]

normal_distributed_df5 = pd.concat([fraud_df5, non_fraud_df5])

new_df5 = normal_distributed_df5.sample(frac=1, random_state=42)

X5 = new_df5.iloc[:, :-1]

y5 = new_df5.iloc[:, -1]

X5_train, X5_test, y5_train, y5_test = train_test_split(X5, y5, test_size=0.2, random_state=42)

sm = SMOTE(ratio={1: 9000},random_state=42)

X5sm_train, y5sm_train = sm.fit_sample(X5_train, y5_train)

grid_tree_sm5 = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree_sm5.fit(X5sm_train, y5sm_train)

log_reg_sm5 = grid_tree_sm5.best_estimator_

ysm_pred_tree5 = log_reg_sm5.predict(X_test)

recall -- RF

from sklearn.metrics import recall_score

96

UNDER-SAMPLE (1:6000) and SMOTE (1:9000)

recall_score(y_test, ysm_pred_tree5, average='binary') # 0.8897058823529411

precision_score(y_test, ysm_pred_tree5) # 0.12015888778550149

Logistic Regression After SMOTE (1:9000)

recall_score(y_test, ysm_pred_tree2, average='binary') # 0.7132352941176471

precision_score(y_test, ysm_pred_tree2) # 0.13324175824175824

Logistic Regression After SMOTE (1:4000)

recall_score(y_test, ysm_pred_tree1, average='binary') # 0.5

precision_score(y_test, ysm_pred_tree1) # 0.1650485436893204

No SMOTE

recall_score(y_test, y_pred_tree, average='binary') # 0

precision_score(y_test, y_pred_tree) # 0

Tree Report

from sklearn.metrics import classification_report

y_pred_tree = tree_clf.predict(X_test)

print(classification_report(y_test, y_pred_tree))

ysm_pred_tree = log_reg_sm2.predict(X_test)

print(classification_report(y_test, ysm_pred_tree))

confusion_matrix Logistic Regression

from sklearn.metrics import confusion_matrix

log_cf = confusion_matrix(y_test, y_pred_log)

97

log_cf_sm = confusion_matrix(y_test, ysm_pred_log)

confusion_matrix Tree

from sklearn.metrics import confusion_matrix

tree_cf = confusion_matrix(y_test, y_pred_tree)

tree_cf_sm = confusion_matrix(y_test, ysm_pred_tree)

ROC Curve

from sklearn.metrics import roc_curve

Check cross validation of the Decision Tree DecisionTree Classifier Cross Validation Score 94.06%

tree_score = cross_val_score(tree_clf, X_train, y_train, cv=5)

print('DecisionTree Classifier Cross Validation Score', round(tree_score.mean() * 100, 2).astype(str) + '%')

from sklearn.model_selection import cross_val_predict

Create a DataFrame with all the scores and the classifiers names.

log_reg_pred = cross_val_predict(log_reg, X_train, y_train, cv=5, method="decision_function")

svc_pred = cross_val_predict(svc, X_train, y_train, cv=5, method="decision_function")

from sklearn.metrics import roc_curve

from sklearn.metrics import roc_auc_score

print('Logistic Regression: ', roc_auc_score(y_train, log_reg_pred))

print('Decision Tree Classifier: ', roc_auc_score(y_train, tree_pred))

recall -- LR

from sklearn.metrics import recall_score

UNDER-SAMPLE (1:6000) and SMOTE (1:9000)

recall_score(y8_test, y8sm_pred_log, average='binary')

98

precision_score(y8_test, y8sm_pred_log) # 0.1

Logistic Regression After SMOTE (1:8514)

recall_score(y1_test, y2sm_pred_log, average='binary')

precision_score(y1_test, y2sm_pred_log)

Logistic Regression After SMOTE (1:4000)

recall_score(y1_test, y1sm_pred_log, average='binary')

precision_score(y1_test, y1sm_pred_log)

Logistic Regression

recall_score(y1_test, y_pred_log, average='binary')

precision_score(y1_test, y_pred_log)

confusion_matrix LR

from sklearn.metrics import confusion_matrix

LR_cf1 = confusion_matrix(y1_test, y_pred_log)

LR_cf2 = confusion_matrix(y1_test, y1sm_pred_log)

LR_cf3 = confusion_matrix(y1_test, y2sm_pred_log)

LR_cf4 = confusion_matrix(y8_test, y8sm_pred_log)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(LR_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues)

ax[0, 0].set_title("Logistic Regression \n Confusion Matrix", fontsize=14)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(LR_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues)

ax[0][1].set_title("Logistic Regression_SMOTE(1:4000) \n Confusion Matrix", fontsize=14)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

99

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(LR_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues)

ax[1][0].set_title("Logistic Regression_SMOTE(1:8514) \n Confusion Matrix", fontsize=14)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(LR_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues)

ax[1][1].set_title("Logistic Regression_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion Matrix",
fontsize=14)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

RF

recall_score(y_test, y_pred_tree, average='binary')

precision_score(y_test, y_pred_tree)

recall_score(y_test, ysm_pred_tree1, average='binary')

precision_score(y_test, ysm_pred_tree1)

recall_score(y_test, ysm_pred_tree2, average='binary')

precision_score(y_test, ysm_pred_tree2)

recall_score(y_test, ysm_pred_tree5, average='binary')

precision_score(y_test, ysm_pred_tree5)

confusion_matrix Tree

from sklearn.metrics import confusion_matrix

tree_cf1 = confusion_matrix(y_test, y_pred_tree)

tree_cf2 = confusion_matrix(y_test, ysm_pred_tree1)

tree_cf3 = confusion_matrix(y_test, ysm_pred_tree2)

100

tree_cf4 = confusion_matrix(y_test, ysm_pred_tree5)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues)

ax[0, 0].set_title("Random Forest Classifier \n Confusion Matrix", fontsize=14)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues)

ax[0][1].set_title("Random Forest Classifier_SMOTE(1:4000) \n Confusion Matrix", fontsize=14)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues)

ax[1][0].set_title("Random Forest Classifier_SMOTE(1:8514) \n Confusion Matrix", fontsize=14)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues)

ax[1][1].set_title("Random Forest Classifier_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion
Matrix", fontsize=14)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

rf_reg_pred = cross_val_predict(tree_clf, X_train, y_train, cv=5)

rf_fpr, rf_tpr, rf_thresold = roc_curve(y_train, rf_reg_pred)

101

rf_reg_pred2 = cross_val_predict(log_reg_sm1, Xsm_train, ysm_train, cv=5)

rf_fpr2, rf_tpr2, rf_thresold2 = roc_curve(ysm_train, rf_reg_pred2)

rf_reg_pred3 = cross_val_predict(log_reg_sm2, X3sm_train, y3sm_train, cv=5)

rf_fpr3, rf_tpr3, rf_thresold3 = roc_curve(y3sm_train, rf_reg_pred3)

rf_reg_pred4 = cross_val_predict(log_reg_sm5, X5_train, y5_train, cv=5)

rf_fpr4, rf_tpr4, rf_thresold4 = roc_curve(y5_train, rf_reg_pred4)

def graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(rf_fpr, rf_tpr, label='Random Forest (Before SMOTE) Classifier Score:
{:.4f}'.format(roc_auc_score(y_train, rf_reg_pred)))

 plt.plot(rf_fpr2, rf_tpr2, label='Random Forest (After SMOTE 1:4000) Classifier Score:
{:.4f}'.format(roc_auc_score(ysm_train, rf_reg_pred2)))

 plt.plot(rf_fpr3, rf_tpr3, label='Random Forest (After SMOTE 1:8514) Classifier Score:
{:.4f}'.format(roc_auc_score(y3sm_train, rf_reg_pred3)))

 plt.plot(rf_fpr4, rf_tpr4, label='Random Forest (SMOTE 1:9000 & Under-sample 1:6000) Classifier Score:
{:.4f}'.format(roc_auc_score(y5_train, rf_reg_pred4)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3),

 arrowprops=dict(facecolor='#6E726D', shrink=0.05),)

 plt.legend()

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2)

102

plt.show()

from itertools import cycle

from sklearn.metrics import
confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_re
port

lr = LogisticRegression(C = 0.01, penalty = 'l1')

lr.fit(X_train, y_train)

y_pred_undersample_proba = lr.predict_proba(X_test)

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal', 'red', 'yellow', 'green',
'blue','black'])

plt.figure(figsize=(5,5))

j = 1

for i, color in zip(thresholds, colors):

 y_test_predictions_prob = y_pred_undersample_proba[:, 1] > i

 precision, recall, thresholds = precision_recall_curve(y4_test, y_test_predictions_prob)

 # Plot Precision-Recall curve

 plt.plot(recall, precision, color=color,

 label='Threshold: %s' % i)

 plt.xlabel('Recall')

 plt.ylabel('Precision')

 plt.ylim([0.0, 1.05])

 plt.xlim([0.0, 1.0])

 plt.title('Precision-Recall example')

 plt.legend(loc="lower left")

103

Gradient Boosting

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb1.fit(X_train, y_train)

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb1.score(X_train, y_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb1.score(X_test, y_test)))

 print()

gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2,
random_state = 0) ### 0 0

gb1.fit(X_train, y_train)

predictions1 = gb1.predict(X_test)

print("Confusion Matrix:")

print(confusion_matrix(y_test, predictions))

print()

print("Classification Report")

print(classification_report(y_test, predictions))

SMOTE

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb2.fit(Xsm_train, ysm_train)

104

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb2.score(Xsm_train, ysm_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb2.score(X_test, y_test)))

 print()

gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2,
random_state = 0) ### 0.5 => 0.18 0.17

gb2.fit(Xsm_train, ysm_train)

predictions2 = gb2.predict(X_test)

print("Confusion Matrix:")

print(confusion_matrix(y_test, predictions2))

print()

print("Classification Report")

print(classification_report(y_test, predictions2))

SMOTE (9000)

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb3.fit(X3sm_train, y3sm_train)

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb3.score(X3sm_train, y3sm_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb3.score(X_test, y_test)))

 print()

gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2,
random_state = 0) ### 0.05 => 0.57 0.14

gb3.fit(X3sm_train, y3sm_train)

predictions3 = gb3.predict(X_test)

print("Confusion Matrix:")

105

print(confusion_matrix(y_test, predictions))

print()

print("Classification Report")

print(classification_report(y_test, predictions))

########## SMOTE & Undersampling

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb4.fit(X4sm_train, y4sm_train)

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb4.score(X4sm_train, y4sm_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb4.score(X_test, y_test)))

 print()

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2,
random_state = 0) ### 0.05 => 0.95 0.09

gb4.fit(X4sm_train, y4sm_train)

predictions4 = gb4.predict(X_test)

print("Confusion Matrix:")

print(confusion_matrix(y_test, predictions))

print()

print("Classification Report")

print(classification_report(y_test, predictions))

ROC Curve

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

log_reg_pred = cross_val_predict(gb1, X_train, y_train, cv=5)

106

log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred)

log_reg_pred2 = cross_val_predict(gb2, Xsm_train, ysm_train, cv=5)

log_fpr2, log_tpr2, log_thresold2 = roc_curve(ysm_train, log_reg_pred2)

log_reg_pred3 = cross_val_predict(gb3, X3sm_train, y3sm_train, cv=5)

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y3sm_train, log_reg_pred3)

log_reg_pred4 = cross_val_predict(gb4, X4sm_train, y4sm_train, cv=5)

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y4sm_train, log_reg_pred4)

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(log_fpr, log_tpr, label='Gradient Boosting (Before SMOTE) & Any Learning Rate Classifier Score:
{:.4f}'.format(roc_auc_score(y_train, log_reg_pred)))

 plt.plot(log_fpr2, log_tpr2, label='Gradient Boosting (After SMOTE 1:4000) & Learning Rate(0.5)
Classifier Score: {:.4f}'.format(roc_auc_score(ysm_train, log_reg_pred2)))

 plt.plot(log_fpr3, log_tpr3, label='Gradient Boosting (After SMOTE 1:8514) Learning Rate(0.05)
Classifier Score: {:.4f}'.format(roc_auc_score(y3sm_train, log_reg_pred3)))

 plt.plot(log_fpr4, log_tpr4, label='Gradient Boosting (SMOTE 1:9000 & Under-sample 1:6000) Learning
Rate(0.05) Classifier Score: {:.4f}'.format(roc_auc_score(y4sm_train, log_reg_pred4)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05),)

 plt.legend()

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

107

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2)

plt.show()

confusion_matrix Tree

from sklearn.metrics import confusion_matrix

tree_cf1 = confusion_matrix(y_test, predictions1)

tree_cf2 = confusion_matrix(y_test, predictions2)

tree_cf3 = confusion_matrix(y_test, predictions3)

tree_cf4 = confusion_matrix(y_test, predictions4)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues)

ax[0, 0].set_title("Gradient Boosting & Any Learning Rate \n Confusion Matrix", fontsize=14)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues)

ax[0][1].set_title("Gradient Boosting_SMOTE(1:4000) & Learning Rate(0.5) \n Confusion Matrix",
fontsize=14)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues)

ax[1][0].set_title("Gradient Boosting_SMOTE(1:8514) & Learning Rate(0.05) \n Confusion Matrix",
fontsize=14)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues)

108

ax[1][1].set_title("Gradient Boosting_SMOTE(1:9000) & Undersampling(1:6000) & Learning Rate(0.05) \n
Confusion Matrix", fontsize=14)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

Naive Bayes

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.naive_bayes import GaussianNB

from sklearn.preprocessing import QuantileTransformer

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline.fit(X1_train, y1_train)

y_pred66 = pipeline.predict(X1_test)

y_pred66_prob = pipeline.predict_proba(X1_test)

recall_score(y1_test,y_pred66) # 0.09

NB1 = confusion_matrix(y1_test,y_pred66)

pipeline11 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline11.fit(X1sm_train, y1sm_train)

y_pred6 = pipeline11.predict(X1_test)

y_pred6_prob = pipeline11.predict_proba(X1_test)

recall_score(y1_test,y_pred6) # 0.2857142857142857

NB2 = confusion_matrix(y1_test,y_pred6)

pipeline7 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline7.fit(X2sm_train, y2sm_train)

y_pred7 = pipeline7.predict(X1_test)

recall_score(y1_test,y_pred7) # 0.406

NB3 = confusion_matrix(y1_test,y_pred7)

109

pipeline8 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline8.fit(X8sm_train, y8sm_train)

y_pred8 = pipeline8.predict(X8_test)

recall_score(y8_test,y_pred8) # 0.7857142857142857

NB4 = confusion_matrix(y8_test,y_pred8)

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.naive_bayes import GaussianNB

from sklearn.preprocessing import QuantileTransformer

def get_predictions(clf, X_train, y_train, X_test):

 # create classifier

 clf = clf

 # fit it to training data

 clf.fit(X_train,y_train)

 # predict using test data

 y_pred = clf.predict(X_test)

 # Compute predicted probabilities: y_pred_prob

 y_pred_prob = clf.predict_proba(X_test)

 #for fun: train-set predictions

 train_pred = clf.predict(X_train)

 print('train-set confusion matrix:\n', confusion_matrix(y_train,train_pred))

 return y_pred, y_pred_prob

def print_scores(y_test,y_pred,y_pred_prob):

 print('test-set confusion matrix:\n', confusion_matrix(y_test,y_pred))

 print("recall score: ", recall_score(y_test,y_pred))

 print("precision score: ", precision_score(y_test,y_pred))

 print("f1 score: ", f1_score(y_test,y_pred))

110

 print("accuracy score: ", accuracy_score(y_test,y_pred))

print("ROC AUC: {}".format(roc_auc_score(y_test, y_pred_prob[:,1])))

y_pred, y_pred_prob = get_predictions(GaussianNB(), X1_train, y1_train, X1_test)

print_scores(y1_test,y_pred,y_pred_prob)

y_pred, y_pred_prob = get_predictions(GaussianNB(), X1sm_train, y1sm_train, X1_test)

print_scores(y1_test,y_pred,y_pred_prob)

y_pred, y_pred_prob = get_predictions(GaussianNB(), X2sm_train, y2sm_train, X1_test)

print_scores(y1_test,y_pred,y_pred_prob)

y_pred, y_pred_prob = get_predictions(GaussianNB(), X8sm_train, y8sm_train, X8_test)

print_scores(y8_test,y_pred,y_pred_prob)

ROC Curve

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

log_reg_pred = cross_val_predict(log_reg, X1_train, y1_train, cv=5)

log_fpr, log_tpr, log_thresold = roc_curve(y1_train, log_reg_pred)

log_reg_pred2 = cross_val_predict(log_reg2, X1sm_train, y1sm_train, cv=5)

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2)

log_reg_pred3 = cross_val_predict(log_reg3, X2sm_train, y2sm_train, cv=5)

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3)

log_reg_pred8 = cross_val_predict(log_reg8, X8sm_train, y8sm_train, cv=5)

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8)

111

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(log_fpr, log_tpr, label='Logistic Regression (Before SMOTE) Classifier Score:
{:.4f}'.format(roc_auc_score(y1_train, log_reg_pred)))

 plt.plot(log_fpr2, log_tpr2, label='Logistic Regression (After SMOTE 1:4000) Classifier Score:
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2)))

 plt.plot(log_fpr3, log_tpr3, label='Logistic Regression (After SMOTE 1:8514) Classifier Score:
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3)))

 plt.plot(log_fpr4, log_tpr4, label='Logistic Regression (SMOTE 1:9000 & Under-sample 1:6000) Classifier
Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3),

 arrowprops=dict(facecolor='#6E726D', shrink=0.05),

)

 plt.legend()

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2)

plt.show()

confusion_matrix Tree

from sklearn.metrics import confusion_matrix

tree_cf1 = confusion_matrix(y_test, y_pred_tree)

tree_cf2 = confusion_matrix(y_test, ysm_pred_tree1)

tree_cf3 = confusion_matrix(y_test, ysm_pred_tree2)

112

tree_cf4 = confusion_matrix(y_test, ysm_pred_tree5)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues)

ax[0, 0].set_title("RandomForest Classifier \n Confusion Matrix", fontsize=14)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues)

ax[0][1].set_title("RandomForest Classifier_SMOTE(1:4000) \n Confusion Matrix", fontsize=14)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues)

ax[1][0].set_title("RandomForest Classifier_SMOTE(1:8514) \n Confusion Matrix", fontsize=14)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues)

ax[1][1].set_title("RandomForest Classifier_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion
Matrix", fontsize=14)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(NB1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues)

ax[0, 0].set_title("Naive Bayes \n Confusion Matrix", fontsize=14)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

113

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(NB2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues)

ax[0][1].set_title("Naive Bayes_SMOTE(1:4000) \n Confusion Matrix", fontsize=14)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(NB3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues)

ax[1][0].set_title("Naive Bayes_SMOTE(1:8514) \n Confusion Matrix", fontsize=14)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(NB4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues)

ax[1][1].set_title("Naive Bayes_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion Matrix",
fontsize=14)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

114

Appendix B

Code for the Analysis of Dataset 2

data = pd.read_csv('C:/Users/Jason/Desktop/Thesis/insurance_claims_original.csv')

df2 = pd.read_csv('C:/Users/Jason/Desktop/Thesis/insurance_claims_original.csv')

data = data.drop(['policy_number','policy_bind_date', 'incident_date','incident_location','auto_model'],
axis = 1)

fill in missing data

check missing data

data.isnull().any().any()

data = data.replace('?',np.NaN)

data['collision_type'].fillna(data['collision_type'].mode()[0], inplace = True)

data['property_damage'].fillna('NO', inplace = True)

data['police_report_available'].fillna('NO', inplace = True)

data['fraud_reported'] = data['fraud_reported'].replace(('Y','N'),(1,0))

bar chart

from matplotlib import pyplot as plt

name_list = ['1', '0']

num_list = [data['fraud_reported'].sum(), 1000-data['fraud_reported'].sum()]

plt.bar(range(len(num_list)), num_list, color = 'rgb', tick_label = name_list)

pie chart

labels = '1', '0'

sizes = [data['fraud_reported'].sum(), 1000-data['fraud_reported'].sum()]

115

plt.pie(sizes, labels = labels, autopct = '%1.1f%%', shadow = False)

Check Assumptions of LR

ASSUMPTION OF CONTINUOUS IVS BEING LINEARLY RELATED TO THE LOG ODDS

import statsmodels.formula.api as smf

C_S = sns.regplot(x= 'total_claim_amount', y= 'fraud_reported', data= df, logistic=
True).set_title("Total_Claim_Amount Log Odds Linear Plot")

C_S = sns.regplot(x= 'age', y= 'fraud_reported', data= df, logistic= True).set_title("Age Log Odds Linear
Plot")

C_S = sns.regplot(x= 'months_as_customer', y= 'fraud_reported', data= df, logistic=
True).set_title("Months_As_Customers Log Odds Linear Plot")

C_S = sns.regplot(x= 'policy_annual_premium', y= 'fraud_reported', data= df, logistic=
True).set_title("Policy_Annual_Premium Log Odds Linear Plot")

ASSUMPTION OF ABSENCE OF MULTICOLLINEARITY

df.corr()

Delete the MULTICOLLINEARITY Variables

columns = ['Month', 'AgeOfVehicle_year', 'AgeOfPolicyHolder', 'Year', 'BasePolicy', 'VehiclePrice',
'VehicleCategory', 'PolicyNumber']

df1 = df.drop(columns, axis=1)

ASSUMPTION OF LOCK OF OUTLIERS

ClaimSize_box = sns.boxplot(data= df[['vehicle_claim']]).set_title("vehicle_claim Box Plot")

ClaimSize_box = sns.boxplot(data= df[['injury_claim']]).set_title("injury_claim Box Plot")

let's check the correlation auto make with the target

data['incident_type'] = data['incident_type'].replace(('Vehicle Theft','Parked Car','Multi-vehicle
Collision', 'Single Vehicle Collision'),(0.09, 0.10, 0.28,0.30))

data['insured_sex'] = data['insured_sex'].replace(('FEMALE','MALE'),(0.24,0.27))

data['policy_csl'] = data['policy_csl'].replace(('500/1000','100/300','250/500'),(0.22,0.26,0.27))

data['policy_state'] = data['policy_state'].replace(('IL','IN','OH'),(0.23,0.255,0.26))

116

data['insured_education_level'] = data['insured_education_level'].replace(('Masters', 'High
School','Associate', 'JD','College', 'MD','PhD'),(0.22,0.23,0.24,0.26,0.27,0.28,0.29))

data['police_report_available'] = data['police_report_available'].replace(('NO','YES'),(0.23,0.26))

data[['auto_make','fraud_reported']].groupby(['auto_make'], as_index = False).mean().sort_values(by =
'fraud_reported', ascending = False)

data['auto_make'] = data['auto_make'].replace(('Jeep','Nissan','Toyota','Accura','Saab','Suburu',

'Dodge','Honda','Chevrolet','BMW','Volkswagen','Audi','Ford','Mercedes'),
(0.17,0.18,0.19,0.19,0.23,0.24,0.25,0.26,0.27,0.28,0.28,0.30,0.31,0.36))

data[['incident_city','fraud_reported']].groupby(['incident_city'],as_index = False).mean().sort_values(by
= 'fraud_reported', ascending = False)

data['incident_city'] = data['incident_city'].replace(('Northbrook','Riverwood','Northbend','Springfield',

'Hillsdale','Columbus','Arlington'),(0.22,0.22,0.23,0.24,0.25,0.26,0.29))

data[['incident_state','fraud_reported']].groupby(['incident_state'], as_index =
False).mean().sort_values(by = 'fraud_reported', ascending = False)

let's perform target encoding for incident state

data['incident_state'] = data['incident_state'].replace(('WV','NY','VA','PA','SC','NC','OH'),

 (0.18,0.22,0.23,0.27,0.29,0.31,0.43))

data[['authorities_contacted','fraud_reported']].groupby(['authorities_contacted'],

 as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['authorities_contacted'] =
data['authorities_contacted'].replace(('None','Police','Fire','Ambulance','Other'),
(0.07,0.21,0.27,0.29,0.31))

data[['insured_relationship','fraud_reported']].groupby(['insured_relationship'], as_index =
False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['insured_relationship'] = data['insured_relationship'].replace(('husband','own-child','unmarried',

 'not-in-family','wife','other-relative'),(0.20,0.21,0.24,0.26,0.27,0.29))

117

data[['insured_hobbies','fraud_reported']].groupby(['insured_hobbies'],

 as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['insured_hobbies'] = data['insured_hobbies'].replace(('camping', 'kayaking', 'golf','dancing',

 'bungie-jumping','movies', 'basketball','exercise','sleeping','video-games','skydiving','paintball',

 'hiking','base-jumping','reading','polo','board-games','yachting', 'cross-fit','chess'),(0.09, 0.09,

 0.11, 0.12,0.16,0.16,0.18,0.19,0.19,0.20,0.22,0.23,0.24,0.27,0.27,0.28,0.29,0.30,0.74,0.83))

data[['insured_occupation','fraud_reported']].groupby(['insured_occupation'],

 as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['insured_occupation'] = data['insured_occupation'].replace(('other-service','priv-house-serv',

 'adm-clerical','handlers-cleaners','prof-specialty','protective-serv',

 'machine-op-inspct','armed-forces','sales','tech-support','transport-moving','craft-repair',

 'farming-fishing','exec-managerial'),(0.16, 0.17,0.17, 0.21,0.22,0.23,0.24,0.25,0.28,0.29,

 0.291,0.297,0.30,0.37))

data[['property_damage','fraud_reported']].groupby(['property_damage'],

 as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['property_damage'] = data['property_damage'].replace(('NO','YES'),(0.24,0.26))

data[['collision_type','fraud_reported']].groupby(['collision_type'],

 as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['collision_type'] = data['collision_type'].replace(('Rear Collision', 'Side Collision', 'Front Collision'),

 (0.31,0.25,0.28))

data[['incident_severity','fraud_reported']].groupby(['incident_severity'],

 as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['incident_severity'] = data['incident_severity'].replace(('Trivial Damage','Minor Damage','Total
Loss', 'Major Damage'),(0.06,0.11,0.13,0.61))

118

data[['authorities_contacted','fraud_reported']].groupby(['authorities_contacted'], as_index =
False).mean().sort_values(by = 'fraud_reported', ascending = False)

data['authorities_contacted'] =
data['authorities_contacted'].replace(('None','Police','Fire','Ambulance','Other'),(0.06,0.21,0.27,0.30,0.3
2))

x = data.drop(['fraud_reported'], axis = 1)

y = data['fraud_reported']

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 42)

Correlation Matrix

plt.rcParams['figure.figsize'] = (15, 10)

sns.heatmap(X_train.corr(), cmap = 'copper')

plt.title('Heat Map for Correlations', fontsize = 20)

plt.show()

SMOTE

from imblearn.over_sampling import SMOTE

SMOTE Technique (OverSampling) After splitting and Cross Validating

sm = SMOTE(ratio={1: 376},random_state=42)

Xsm_train, ysm_train = sm.fit_sample(X_train, y_train)

X1sm_train, y1sm_train = sm.fit_sample(X_train, y_train)

sm1 = SMOTE(ratio={1: 753},random_state=42)

X3sm_train, y3sm_train = sm1.fit_sample(X_train, y_train)

X2sm_train, y2sm_train = sm1.fit_sample(X_train, y_train)

Under - Smaple & SMOTE for LR

df = data

df3 = data.sample(frac=1)

non_fraud_df = df3.loc[df['fraud_reported'] == 0][:502]

119

fraud_df = df3.loc[df['fraud_reported'] == 1]

normal_distributed_df = pd.concat([fraud_df, non_fraud_df])

new_df1 = normal_distributed_df.sample(frac=1, random_state=42)

X8 = new_df1.iloc[:, :-1]

y8 = new_df1.iloc[:, -1]

X8_train, X8_test, y8_train, y8_test = train_test_split(X8, y8, test_size=0.3, random_state=42)

sm = SMOTE(ratio={1: 753}, random_state=42)

X8sm_train, y8sm_train = sm.fit_sample(X8_train, y8_train)

from collections import Counter

Logistic Regression

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg.fit(X_train, y_train)

log_reg = grid_log_reg.best_estimator_

y_pred_log = log_reg.predict(X_test)

Logistic Regression After SMOTE (1:376)

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

grid_log_reg2 = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg2.fit(X1sm_train, y1sm_train)

log_reg2 = grid_log_reg2.best_estimator_

y1sm_pred_log = log_reg2.predict(X_test)

Logistic Regression After SMOTE (1:753)

grid_log_reg3 = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg3.fit(X2sm_train, y2sm_train)

log_reg3 = grid_log_reg3.best_estimator_

120

y2sm_pred_log = log_reg3.predict(X_test)

Undersampling & SMOTE

grid_log_reg8 = GridSearchCV(LogisticRegression(), log_reg_params)

grid_log_reg8.fit(X8sm_train, y8sm_train)

log_reg8 = grid_log_reg8.best_estimator_

y8sm_pred_log = log_reg8.predict(X_test)

ROC Curve

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

log_reg_pred = cross_val_predict(log_reg, X_train, y_train, cv=5)

log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred)

log_reg_pred2 = cross_val_predict(log_reg2, X1sm_train, y1sm_train, cv=5)

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2)

log_reg_pred3 = cross_val_predict(log_reg3, X2sm_train, y2sm_train, cv=5)

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3)

log_reg_pred8 = cross_val_predict(log_reg8, X8sm_train, y8sm_train, cv=5)

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8)

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(log_fpr, log_tpr, label='Logistic Regression (Before SMOTE) Classifier Score:
{:.4f}'.format(roc_auc_score(y_train, log_reg_pred)))

 plt.plot(log_fpr2, log_tpr2, label='Logistic Regression (After SMOTE 1:376) Classifier Score:
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2)))

121

 plt.plot(log_fpr3, log_tpr3, label='Logistic Regression (After SMOTE 1:753) Classifier Score:
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3)))

 plt.plot(log_fpr4, log_tpr4, label='Logistic Regression (SMOTE 1:753 & Under-sample 1:502) Classifier
Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05))

plt.legend()

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2)

plt.show()

DecisionTree Classifier

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree.fit(X_train, y_train)

tree best estimator

tree_clf = grid_tree.best_estimator_

y_pred_tree = tree_clf.predict(X_test)

Decision Tree SMOTE

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

122

grid_tree_sm1 = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree_sm1.fit(X1sm_train, y1sm_train)

log_reg_sm1 = grid_tree_sm1.best_estimator_

ysm_pred_tree1 = log_reg_sm1.predict(X_test)

SMOTE

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree_sm2 = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree_sm2.fit(X2sm_train, y2sm_train)

log_reg_sm2 = grid_tree_sm2.best_estimator_

ysm_pred_tree2 = log_reg_sm2.predict(X_test)

Undersampling & SMOTE

from sklearn.model_selection import GridSearchCV

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)),

 "min_samples_leaf": list(range(5,7,1))}

grid_tree_sm5 = GridSearchCV(DecisionTreeClassifier(), tree_params)

grid_tree_sm5.fit(X8sm_train, y8sm_train)

log_reg_sm5 = grid_tree_sm5.best_estimator_

ysm_pred_tree5 = log_reg_sm5.predict(X_test)

recall -- LR

from sklearn.metrics import recall_score

UNDER-SAMPLE (1:6000) and SMOTE

recall_score(y_test, y8sm_pred_log, average='binary')

precision_score(y_test, y8sm_pred_log)

123

Logistic Regression After SMOTE

recall_score(y_test, y2sm_pred_log, average='binary')

precision_score(y_test, y2sm_pred_log)

Logistic Regression After SMOTE

recall_score(y_test, y1sm_pred_log, average='binary')

precision_score(y_test, y1sm_pred_log)

Logistic Regression

recall_score(y_test, y_pred_log, average='binary')

precision_score(y_test, y_pred_log)

confusion_matrix LR

from sklearn.metrics import confusion_matrix

LR_cf1 = confusion_matrix(y_test, y_pred_log)

LR_cf2 = confusion_matrix(y_test, y1sm_pred_log)

LR_cf3 = confusion_matrix(y_test, y2sm_pred_log)

LR_cf4 = confusion_matrix(y_test, y8sm_pred_log)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(LR_cf1, ax=ax[0][0], annot=True, cmap='copper')

ax[0, 0].set_title("Logistic Regression \n Confusion Matrix", fontsize=10)

ax[0, 0].set_xticklabels(['', ''], fontsize=10, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=10, rotation=360)

sns.heatmap(LR_cf2, ax=ax[0][1], annot=True, cmap='copper')

ax[0][1].set_title("Logistic Regression_SMOTE(1:376) \n Confusion Matrix", fontsize=10)

ax[0][1].set_xticklabels(['', ''], fontsize=10, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=10, rotation=360)

124

sns.heatmap(LR_cf3, ax=ax[1][0], annot=True, cmap='copper')

ax[1][0].set_title("Logistic Regression_SMOTE(1:753) \n Confusion Matrix", fontsize=10)

ax[1][0].set_xticklabels(['', ''], fontsize=10, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=10, rotation=360)

sns.heatmap(LR_cf4, ax=ax[1][1], annot=True, cmap='copper')

ax[1][1].set_title("Logistic Regression_SMOTE(1:753) & Undersampling(1:502) \n Confusion Matrix",
fontsize=10)

ax[1][1].set_xticklabels(['', ''], fontsize=10, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=10, rotation=360)

RF

UNDER-SAMPLE (1:6000) and SMOTE (1:9000)

recall_score(y_test, ysm_pred_tree5, average='binary')

precision_score(y_test, ysm_pred_tree5)

Logistic Regression After SMOTE

recall_score(y_test, ysm_pred_tree2, average='binary')

precision_score(y_test, ysm_pred_tree2)

Logistic Regression After SMOTE

recall_score(y_test, ysm_pred_tree1, average='binary')

precision_score(y_test, ysm_pred_tree1)

No SMOTE

recall_score(y_test, y_pred_tree, average='binary')

precision_score(y_test, y_pred_tree)

confusion_matrix Tree

from sklearn.metrics import confusion_matrix

125

tree_cf1 = confusion_matrix(y_test, y_pred_tree)

tree_cf2 = confusion_matrix(y_test, ysm_pred_tree1)

tree_cf3 = confusion_matrix(y_test, ysm_pred_tree2)

tree_cf4 = confusion_matrix(y_test, ysm_pred_tree5)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap='copper')

ax[0, 0].set_title("RandomForest Classifier \n Confusion Matrix", fontsize=10)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap='copper')

ax[0][1].set_title("RandomForest Classifier_SMOTE(1:376) \n Confusion Matrix", fontsize=10)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap='copper')

ax[1][0].set_title("RandomForest Classifier_SMOTE(1:753) \n Confusion Matrix", fontsize=10)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap='copper')

ax[1][1].set_title("RandomForest Classifier_SMOTE(1:753) & Undersampling(1:502) \n Confusion
Matrix", fontsize=10)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

126

rf_reg_pred = cross_val_predict(tree_clf, X_train, y_train, cv=5)

rf_fpr, rf_tpr, rf_thresold = roc_curve(y_train, rf_reg_pred)

rf_reg_pred2 = cross_val_predict(log_reg_sm1, X1sm_train, y1sm_train, cv=5)

rf_fpr2, rf_tpr2, rf_thresold2 = roc_curve(y1sm_train, rf_reg_pred2)

rf_reg_pred3 = cross_val_predict(log_reg_sm2, X2sm_train, y2sm_train, cv=5)

rf_fpr3, rf_tpr3, rf_thresold3 = roc_curve(y2sm_train, rf_reg_pred3)

rf_reg_pred4 = cross_val_predict(log_reg_sm5, X8sm_train, y8sm_train, cv=5)

rf_fpr4, rf_tpr4, rf_thresold4 = roc_curve(y8sm_train, rf_reg_pred4)

def graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(rf_fpr, rf_tpr, label='Random Forest (Before SMOTE) Classifier Score:
{:.4f}'.format(roc_auc_score(y_train, rf_reg_pred)))

 plt.plot(rf_fpr2, rf_tpr2, label='Random Forest (After SMOTE 1:376) Classifier Score:
{:.4f}'.format(roc_auc_score(y1sm_train, rf_reg_pred2)))

 plt.plot(rf_fpr3, rf_tpr3, label='Random Forest (After SMOTE 1:753) Classifier Score:
{:.4f}'.format(roc_auc_score(y2sm_train, rf_reg_pred3)))

 plt.plot(rf_fpr4, rf_tpr4, label='Random Forest (SMOTE 1:753 & Under-sample 1:502) Classifier Score:
{:.4f}'.format(roc_auc_score(y8sm_train, rf_reg_pred4)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05),)

 plt.legend()

127

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2)

plt.show()

from itertools import cycle

from sklearn.metrics import
confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_report

lr = LogisticRegression(C = 0.01, penalty = 'l1')

lr.fit(X_train, y_train)

y_pred_undersample_proba = lr.predict_proba(X_test)

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal', 'red', 'yellow', 'green',
'blue','black'])

plt.figure(figsize=(5,5))

j = 1

for i, color in zip(thresholds, colors):

 y_test_predictions_prob = y_pred_undersample_proba[:, 1] > i

 precision, recall, thresholds = precision_recall_curve(y4_test, y_test_predictions_prob)

 # Plot Precision-Recall curve

 plt.plot(recall, precision, color=color,

 label='Threshold: %s' % i)

 plt.xlabel('Recall')

 plt.ylabel('Precision')

 plt.ylim([0.0, 1.05])

 plt.xlim([0.0, 1.0])

 plt.title('Precision-Recall example')

128

 plt.legend(loc="lower left")

import machine learning algorithms

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb1.fit(X_train, y_train)

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb1.score(X_train, y_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb1.score(X_test, y_test)))

 print()

gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2,
random_state = 0) ### 0 0

gb1.fit(X_train, y_train)

predictions1 = gb1.predict(X_test)

print("Confusion Matrix:")

print(confusion_matrix(y_test, predictions1))

print()

print("Classification Report")

print(classification_report(y_test, predictions1))

###SMOTE

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb2.fit(Xsm_train, ysm_train)

129

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb2.score(X1sm_train, y1sm_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb2.score(X_test, y_test)))

 print()

gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2,
random_state = 0) ### 0.5 => 0.18 0.17

gb2.fit(X1sm_train, y1sm_train)

predictions2 = gb2.predict(X_test)

print("Confusion Matrix:")

print(confusion_matrix(y_test, predictions2))

print()

print("Classification Report")

print(classification_report(y_test, predictions2))

#####SMOTE

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb3.fit(X2sm_train, y2sm_train)

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb3.score(X2sm_train, y2sm_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb3.score(X_test, y_test)))

 print()

gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth =
2, random_state = 0) ### 0.05 => 0.57 0.14

gb3.fit(X2sm_train, y2sm_train)

predictions3 = gb3.predict(X_test)

print("Confusion Matrix:")

130

print(confusion_matrix(y_test, predictions3))

print()

print("Classification Report")

print(classification_report(y_test, predictions3))

SMOTE & Undersampling

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

 gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2,
max_depth = 2, random_state = 0)

 gb4.fit(X8sm_train, y8sm_train)

 print("Learning rate: ", learning_rate)

 print("Accuracy score (training): {0:.3f}".format(gb4.score(X8sm_train, y8sm_train)))

 print("Accuracy score (validation): {0:.3f}".format(gb4.score(X_test, y_test)))

 print()

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth =
2, random_state = 0) ### 0.05 => 0.95 0.09

gb4.fit(X8sm_train, y8sm_train)

predictions4 = gb4.predict(X_test)

print("Confusion Matrix:")

print(confusion_matrix(y_test, predictions4))

print()

print("Classification Report")

print(classification_report(y_test, predictions4))

ROC Curve

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

log_reg_pred = cross_val_predict(gb1, X_train, y_train, cv=5)

131

log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred)

log_reg_pred2 = cross_val_predict(gb2, X1sm_train, y1sm_train, cv=5)

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2)

log_reg_pred3 = cross_val_predict(gb3, X2sm_train, y2sm_train, cv=5)

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3)

log_reg_pred4 = cross_val_predict(gb4, X8sm_train, y8sm_train, cv=5)

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred4)

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(log_fpr, log_tpr, label='Gradient Boosting (Before SMOTE) & Any Learning Rate Classifier
Score: {:.4f}'.format(roc_auc_score(y_train, log_reg_pred)))

 plt.plot(log_fpr2, log_tpr2, label='Gradient Boosting (After SMOTE 1:376) & Learning Rate(0.5)
Classifier Score: {:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2)))

 plt.plot(log_fpr3, log_tpr3, label='Gradient Boosting (After SMOTE 1:753) Learning Rate(0.05)
Classifier Score: {:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3)))

 plt.plot(log_fpr4, log_tpr4, label='Gradient Boosting (SMOTE 1:753 & Under-sample 1:502) Learning
Rate(0.05) Classifier Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred4)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05),)

 plt.legend()

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

132

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2)

plt.show()

confusion_matrix Tree

from sklearn.metrics import confusion_matrix

tree_cf1 = confusion_matrix(y_test, predictions1)

tree_cf2 = confusion_matrix(y_test, predictions2)

tree_cf3 = confusion_matrix(y_test, predictions3)

tree_cf4 = confusion_matrix(y_test, predictions4)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap='copper')

ax[0, 0].set_title("Gradient Boosting & Any Learning Rate \n Confusion Matrix", fontsize=10)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap='copper')

ax[0][1].set_title("Gradient Boosting_SMOTE(1:376) & Learning Rate(0.5) \n Confusion Matrix",
fontsize=10)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap='copper')

ax[1][0].set_title("Gradient Boosting_SMOTE(1:753) & Learning Rate(0.05) \n Confusion Matrix",
fontsize=10)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap='copper')

133

ax[1][1].set_title("Gradient Boosting_SMOTE(1:753) & Undersampling(1:502) & Learning Rate(0.05) \n
Confusion Matrix", fontsize=10)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

Naive Bayes

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.naive_bayes import GaussianNB

from sklearn.preprocessing import QuantileTransformer

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline.fit(X_train, y_train)

y_pred6 = pipeline.predict(X_test)

y_pred6_prob = pipeline.predict_proba(X_test)

recall_score(y_test,y_pred6)

pipeline67 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline67.fit(X2sm_train, y2sm_train)

y_pred67 = pipeline67.predict(X_test)

recall_score(y_test,y_pred67)

pipeline7 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline7.fit(X2sm_train, y2sm_train)

y_pred7 = pipeline7.predict(X_test)

recall_score(y_test,y_pred7)

pipeline8 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB())

pipeline8.fit(X8sm_train, y8sm_train)

134

y_pred8 = pipeline8.predict(X_test)

recall_score(y_test,y_pred8)

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.naive_bayes import GaussianNB

from sklearn.preprocessing import QuantileTransformer

def get_predictions(clf, X_train, y_train, X_test):

 # create classifier

 clf = clf

 # fit it to training data

 clf.fit(X_train,y_train)

 # predict using test data

 y_pred = clf.predict(X_test)

 # Compute predicted probabilities: y_pred_prob

 y_pred_prob = clf.predict_proba(X_test)

 #for fun: train-set predictions

 train_pred = clf.predict(X_train)

 print('train-set confusion matrix:\n', confusion_matrix(y_train,train_pred))

 return y_pred, y_pred_prob

def print_scores(y_test,y_pred,y_pred_prob):

 print('test-set confusion matrix:\n', confusion_matrix(y_test,y_pred))

 print("recall score: ", recall_score(y_test,y_pred))

 print("precision score: ", precision_score(y_test,y_pred))

 print("f1 score: ", f1_score(y_test,y_pred))

 print("accuracy score: ", accuracy_score(y_test,y_pred))

 print("ROC AUC: {}".format(roc_auc_score(y_test, y_pred_prob[:,1])))

135

y_pred, y_pred_prob = get_predictions(GaussianNB(), X_train, y_train, X_test)

print_scores(y_test,y_pred,y_pred_prob)

y_pred, y_pred_prob = get_predictions(GaussianNB(), X1sm_train, y1sm_train, X_test)

print_scores(y_test,y_pred,y_pred_prob)

y_pred, y_pred_prob = get_predictions(GaussianNB(), X2sm_train, y2sm_train, X_test)

print_scores(y_test,y_pred,y_pred_prob)

y_pred, y_pred_prob = get_predictions(GaussianNB(), X8sm_train, y8sm_train, X8_test)

print_scores(y8_test,y_pred,y_pred_prob)

y_pred, y_pred_prob = get_predictions(GaussianNB(), X8sm_train, y8sm_train, X_test)

print_scores(y_test,y_pred,y_pred_prob)

ROC Curve

from sklearn.metrics import roc_curve

from sklearn.model_selection import cross_val_predict

log_reg_pred = cross_val_predict(pipeline, X_train, y_train, cv=5)

log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred)

log_reg_pred2 = cross_val_predict(pipeline67, X1sm_train, y1sm_train, cv=5)

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2)

log_reg_pred3 = cross_val_predict(pipeline7, X2sm_train, y2sm_train, cv=5)

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3)

log_reg_pred8 = cross_val_predict(pipeline8, X8sm_train, y8sm_train, cv=5)

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8)

136

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2):

 plt.figure(figsize=(16,8))

 plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18)

 plt.plot(log_fpr, log_tpr, label='Naive Bayes (Before SMOTE) Classifier Score:
{:.4f}'.format(roc_auc_score(y_train, log_reg_pred)))

 plt.plot(log_fpr2, log_tpr2, label='Naive Bayes (After SMOTE 1:376) Classifier Score:
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2)))

 plt.plot(log_fpr3, log_tpr3, label='Naive Bayes (After SMOTE 1:753) Classifier Score:
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3)))

 plt.plot(log_fpr4, log_tpr4, label='Naive Bayes (SMOTE 1:753 & Under-sample 1:502) Classifier Score:
{:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8)))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.axis([-0.01, 1, 0, 1])

 plt.xlabel('False Positive Rate', fontsize=16)

 plt.ylabel('True Positive Rate', fontsize=16)

 plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5),
xytext=(0.6, 0.3),

 arrowprops=dict(facecolor='#6E726D', shrink=0.05),

)

 plt.legend()

import matplotlib.pyplot as plt

from sklearn.metrics import roc_auc_score

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2)

plt.show()

from sklearn.metrics import confusion_matrix

clf1 = GaussianNB()

clf1.fit(X_train, y_train)

y_pred11 = clf1.predict(X_test)

train_pred11 = clf1.predict(X_test)

NB1 = confusion_matrix(y_test,train_pred11)

137

recall_score(y_test,y_pred11)

clf2 = GaussianNB()

clf2.fit(X1sm_train, y1sm_train)

y_pred12 = clf2.predict(X_test)

train_pred12 = clf2.predict(X_test)

NB2 = confusion_matrix(y_test,train_pred12)

recall_score(y_test,y_pred12)

clf3 = GaussianNB()

clf3.fit(X2sm_train, y2sm_train)

y_pred13 = clf3.predict(X_test)

train_pred13 = clf3.predict(X_test)

NB3 = confusion_matrix(y_test,train_pred13)

recall_score(y_test,y_pred13)

clf4 = GaussianNB()

clf4.fit(X8sm_train, y8sm_train)

y_pred14 = clf4.predict(X_test)

train_pred14 = clf4.predict(X_test)

NB4 = confusion_matrix(y_test,train_pred14)

recall_score(y_test,y_pred14)

from sklearn.metrics import confusion_matrix

fig, ax = plt.subplots(2, 2,figsize=(22,12))

sns.heatmap(NB1, ax=ax[0][0], annot=True, cmap='copper')

ax[0, 0].set_title("Naive Bayes \n Confusion Matrix", fontsize=10)

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360)

138

sns.heatmap(NB2, ax=ax[0][1], annot=True, cmap='copper')

ax[0][1].set_title("Naive Bayes_SMOTE(1:376) \n Confusion Matrix", fontsize=10)

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(NB3, ax=ax[1][0], annot=True, cmap='copper')

ax[1][0].set_title("Naive Bayes_SMOTE(1:753) \n Confusion Matrix", fontsize=10)

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360)

sns.heatmap(NB4, ax=ax[1][1], annot=True, cmap='copper')

ax[1][1].set_title("Naive Bayes_SMOTE(1:753) & Undersampling(1:502) \n Confusion Matrix",
fontsize=10)

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90)

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360)

