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ABSTRACT 
Machine Learning Methods for the Detection of Fraudulent Insurance Claims 

 

Sisheng Zhao, M.A. 

 

This thesis focuses on automotive fraudulent claims detection, a particular Property and Casualty 

(P&C) insurance product. By analyzing the customer's information, we try to define a model to 

determine if one customer has filed a fraudulent claim. 

 

Two datasets used in this thesis. One of them is very imbalanced, as 6.1% of policyholders file 

fraudulent claims (coded as 1) and 93.9% of policyholders file normal claims (coded as 0). So, we 

need to deal with the imbalanced classes, by using rebalanced methods such as SMOTE and under-

sampling. Then we use classical methods (naïve Bayes and logistic regression) and new data 

science methods (random forest and gradient boosting) to detect the fraudulent claims. During the 

process, we compare these methods to find which one performs better for this application.  

 

In addition, the combination of SMOTE and clustering is also used to these two datasets, which is 

unusual in fraud detection. But the results have been improved a lot for all these four classification 

models. What is more, link analysis method has also been mentioned in the conclusion. 

 

These methods have also been used to another dataset, which is not that imbalanced, with 24.7% 

of fraudulent claims and 75.3% of normal claims. The reason for using two datasets is to see if the 

degree of imbalance affects the performance of the oversampling, undersampling and different 

models. If so, then these methodologies will be more convincing. If not, we can dig deeper to find 

the reason. 
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Introduction 
 

The insurance industry is undergoing a major transformation due to the need to improve customer 

experience and rapid claims processing. Insurers operate in a highly competitive environment, and 

each additional cost can seriously affect their profitability. 

 

Organized fraudsters often use multiple product lines, like using fake identities to remain 

undiscovered, and often collude with the employees and suppliers. Insurance companies are also 

often seen as acceptable and easy targets for opportunity fraud. In the current environment, it is 

necessary to detect more fraud. In the particular Property and Casualty (P&C) insurance is 

subjected to fraud, hence insurers try to detect, investigate and prevent fraud in claims, while 

minimizing the impact on real claimants. And most of detection methods used in insurers are the 

Machine learning (ML) classification models. 

 

It is known that ML is about more than just using computers for fast calculation and data retrieval. 

Combining these two capabilities of a computer system makes it seem to learn and make rational 

decisions based on previously observed conditions and previous actions or reactions, rather than 

just acting on a fixed program. ML is used not only for search engines and stock market analysis, 

but also for classification of DNA sequencing, medical diagnostics, speech and handwriting 

recognition, and robotics. Machine learning technology can be used in a wide range of applications, 

and more uses are discovered over time. It allows computer systems to be improved in a dynamic 

environment where the input signal is unknown, and the best decisions can only be learned from 

historical data. 
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In this situation, data scientists came up with ML uses to solve problems in insurance companies. 

One such example is fraudulent insurance claim detection, where a policy-holder’s attributes are 

related to the response variable; fraudulent claims equal to 1; and 0 otherwise. 
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Chapter 1 

Literature Review 

1.1 Overview 

Fraud detection is a topic that applies to many industries, including banking and finance, insurance, 

government agencies and law enforcement agencies. In recent years, fraudulent attempts have 

increased dramatically, making fraud detection more important. Despite the efforts of different 

institutions, large amounts of money are lost each year due to fraud. The detection of these frauds 

is difficult because the percentage of fraudulent activities is very small (see [14, 15, 18]). 

In insurance, 25% of claims include different kinds of fraud, resulting in approximately 10% of 

insurance expenses. The scope of fraud ranges from exaggerated losses to accidents that result in 

expenditures. Because of the different methods to fraud, it becomes more difficult to identify them 

(see [18]). 

Data mining and statistics help predict and quickly detect fraud and take immediate action to 

minimize the cost. By using sophisticated data mining tools, one can search millions of claims to 

discover patterns and detect fraudulent claims. 

An important early step in fraud detection is to identify factors that are related to fraud. Once these 

phenomena and characteristics are identified, it is easier to manage and detect fraud. Then the next 

step is to use some predictive models to identify the fraudulent claims. 

 

1.2 Existing Methods 

There are some existing models used to detect the fraudulent claims, such as naïve Bayes, logistic 

regression and random forest. 

Ridgeway (1998) used the evidence reconstruction formula of the naive Bayesian scoring to 

diagnose insurance claim fraud. This method combined the advantages of boosting and 

representative attractiveness of the probability weights of the evidence scoring framework. They 
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presented the results of an experimental comparison, focusing on the discriminative power and 

probability estimates’ calibration. The dataset evaluated for this method included a representative 

set of closed personal injury protection auto insurance claims of accidents in Massachusetts in 

1993. The results show that this method has a valuable contribution to an effective, efficient and 

easy fraud detection. 

With the increase of credit card transactions, credit card fraud has become more and more common 

in recent years. Fraud is a serious problem faced by credit card issuers. In 2004, credit card 

transactions in the United States caused a total loss of fraud of $800 million. The same year in UK, 

credit card fraud caused losses of 425 million pounds ($750 million). In China, the lag in risk 

management has become one of the biggest obstacles to business growth and profitability. So, for 

researchers in the private finance business of some banks, credit card risk management has become 

one of the most important topics. In this situation, Sahin and Duman (2001) proposed to use 

logistic regression to detect the credit card fraud, which also achieved great improvements for the 

fraud detection. 

What is more, auto insurance fraud is spreading all over the world, and detecting the automobile 

insurance fraud is more and more important to the society and insurance company (see [23, 28]). 

Due to the imbalanced dataset (classes of dataset are not represented equally) of actual auto 

insurance claims and the real data of auto insurance company being selected, a random forest fraud 

model was established to detect the auto insurance fraud (Li, Yan, Liu and Li, 2016). The error of 

the model is analyzed, and then the method is verified by empirical analysis. The empirical results 

show that compared with the traditional model, the auto insurance fraud detection model (random 

forest) is suitable for large and imbalanced dataset. It can be better used for the classifying the auto 

insurance claims and detecting fraudulent claims. Besides, it also has good accuracy and 

robustness. 

 

1.3 Discussion About Existing Methods 

There is no doubt that before using these models, the first step is to clean the dataset such as dealing 

with those variables with missing data and unbalanced data. 

https://ieeexplore.ieee.org/author/37718526500
https://ieeexplore.ieee.org/author/37529138100
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In terms of dealing with unbalanced dataset, one common technique is the SMOTE method to 

rebalance the dataset; while others use a combination of SMOTE and undersampling to rebalance 

the dataset. When using a combination of SMOTE and undersampling methods, it is important to 

calibrate the ratio of SMOTE over undersampling. People normally suggest to use a 2:1 ratio 

(SMOTE:undersampling). For different datasets, maybe different ratios will be better; for instance, 

after testing for this thesis, a 3:2 ratio was seen to be better than 2:1. 

After cleaning the dataset, it is common to choose logistic regression, because in many cases, it 

provides better model sensitivity than a naïve Bayes. Naïve Bayes is a simple probability calculator. 

Before using logistic regression, data analysts usually check assumptions, such as multicollinearity 

or continuous independent variables being linearly related to dependent variables. Then the related 

variables can serve as input into the model to get a confusion matrix that measures the quality of 

logistic regression prediction accuracy. 

In addition, as mentioned before, some analysts use decision trees or random forest to detect 

fraudulent claims. These two methods are relatively easier to use than logistic regression, because 

there is no need to check for assumptions before implementing them. The computations are also 

very fast. What is more, the theories behind these two methods is simple. For decision trees, at 

each root node, if the Gini index is small, then the classification at that root node is good. For 

random forest, which is a combination of several resampled decision trees, the result is the same 

as that of most decision trees. 

To check the quality of different models, some analysts use the accuracy rate, although I 

personally think it is not that good. Here our main objective is to find fraudulent claims, so we 

need to focus on the recall to see what percentage of fraudulent claims have been detected. This 

will be discussed in detail later in Section 3.3. 
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Chapter 2 

Theories of Clustering and Different Classification Methods 

2.1 The Naïve Bayes Classifier 

The naïve Bayes classifier is a probabilistic classifier based on Bayes’ theorem (see Murphy, 2006). 

The latter describes the relation between conditional probabilities of a hypothesis and observations 

as given in Eq. (2.1 invisible). Assume that h represents the hypothesis and O represents the 

observation made. 

𝑃(ℎ|𝑂) = 𝑃(𝑂|ℎ)𝑃(ℎ)

𝑃(𝑂)
 ,                                                                  (2.1) 

where: 

• 𝑃(ℎ) = prior probability of the hypothesis, 

• 𝑃(𝑂) = prior probability of observations O, 

• 𝑃(ℎ|𝑂) = probability of hypothesis given O (posterior probability), 

• 𝑃(𝑂|ℎ) = probability of O given hypothesis (likelihood). 

Typically, the most probable hypothesis or the maximum a posteriori hypothesis needs to be 

identified. The maximum posterior (ℎ𝑀𝐴𝑃) is given by Eq. (2.2): 

                ℎ𝑀𝐴𝑃 = arg max 𝑃(ℎ|𝑂) = arg max
𝑃(𝑂|ℎ)𝑃(ℎ)

𝑃(𝑂)
 = arg max 𝑃(𝑂|ℎ)𝑃(ℎ).      (2.2) 

Now, let 𝐻 =  ℎ𝑗  𝜖 {ℎ1, ℎ2, … , ℎ𝑚}  be the hypotheses, assuming that hypotheses are mutually 

exclusive and exhaustive and 〈𝑂1 =  𝑜1, 𝑂2 =  𝑜2, … , 𝑂𝑛 =  𝑜𝑛〉 be the various observations made. 

Then the most probable hypothesis is given by Eq. (2.3): 

ℎ𝑀𝐴𝑃 = arg 𝑚𝑎𝑥𝐻 𝑃(ℎ𝑗|𝑜1, 𝑜2 ,…, 𝑜𝑛)                                                                                

= arg 𝑚𝑎𝑥𝐻  
𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗)𝑃(ℎ𝑗)

𝑃𝑜1,𝑜2 ,…, 𝑜𝑛

                                                 

= arg 𝑚𝑎𝑥𝐻 𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗)𝑃(ℎ𝑗).                                                                       (2.3) 
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The naïve Bayes classifier assumes that the conditional probability of observations given a 

hypothesis equals to the production of conditional probabilities of each observation given the 

hypothesis according to Eq. (2.4): 

𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗) =  ∏ 𝑃(𝑜𝑖|ℎ𝑗).                                      (2.4)

𝑖

 

A substitution of 𝑃(𝑜1, 𝑜2 ,…, 𝑜𝑛|ℎ𝑗) by ∏ 𝑃(𝑜𝑖|ℎ𝑗)  𝑖 in Eq. (2.3) shows that the naive Bayes 

classifier is given by Eq. (2.5): 

ℎ𝑁𝐵 = arg 𝑚𝑎𝑥𝐻 𝑃(ℎ𝑗) ∏ 𝑃(𝑜𝑖|ℎ𝑗).                                      (2.5)

𝑖

 

The naïve Bayes classifier is a supervised learning algorithm, which means it needs to be trained 

before it can be classified. Therefore, it must have a training set that contains several observations 

and categories of classification. For example, the training set shown in Table 2.1.1 contains four 

parameters (T, L, H, P) and one class (Fraud) values, where various parameter value sequences 

are classified. 

T L H P Fraud 
A B A C NO 
A A B A NO 
B B A A NO 
A A C C NO 
B A B C YES 
B C C A YES 
B A B B YES 

 

Table 2.1.1: A Training Set Containing Labeled Data Rows.                                                                                                                              
(Source: Murphy, 2006, p11) 

The purpose of the naive Bayes classifier is to classify an unobserved sequence of parameter values 

into a class in the training set. Suppose the values to be classified are B, A, A, C. The classifier 

must classify this sequence of va‘giveslues into one of the fraud categories: YES or NO. According 

to Eq. (2.5), you must choose a hypothesis with a greater likelihood. The classifier needs to 

reference the training set to calculate the probability of each class based on the probability 

distribution in the training set. To calculate the probability of class NO, when the data row is 
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classified as NO, the classifier must calculate the number of data rows with T equal to B. The 

standard has 1 data row; there are 3 data rows, where T is equal to B, and the data row is classified 

as YES. Therefore, the conditional probability of T is equal to B, and given NO is equal to 1/4. 

The classifier calculates all conditional probabilities. 

As shown in Table 2.1.2, raw values of smartphone sensors are numeric (i.e. continuous) whereas, 

the input data of the naive Bayes classifier should be nominal. Thus, a method is required for 

converting numeric data to nominal data. 

Temperature (℃) Light (lux) Humidity (Percent) Pressure (mbar) 

23 350 33 989.5 

22.5 400 32 1001.5 

23 410 33 1000.5 

23 510 35 993.9 

24 71 33 998.5 

24 55 32 100.4 
 

Table 2.1.2: An Example of Sensor Values Captured from Smartphone Sensors.                                                                               
(Source: Murphy, 2006, p12) 

 

2.2 The Logistic Regression Classifier 

2.2.1 Introduction 

Multivariate statistical analysis methods commonly appear in many fields. The terms 

"multivariable analysis" and "multivariate analysis" are often used in the literature. Strictly 

speaking, multivariate analysis refers to the simultaneous prediction of multiple outcomes. 

Multivariate analysis uses several variables to predict one outcome. The multivariable approach 

explores the relationship between more than one independent variable and the dependent variable. 

Then we obtain the coefficients that give the best fit for the certain model. The coefficients 

represent the effects of independent variables on the dependent variable. 

The model has two purposes: (1) it predicts the dependent variable for the new value of the 

independent variable, and (2) it can help to show the contribution of each independent variable to 

the dependent variable and control the other independent variables of the influencing factor.  
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The four multivariable methods (linear regression, logistic regression, discriminant analysis, and 

proportional hazard regression) have many mathematical similarities, but the dependent variables 

are expressed and formatted differently. In linear regression, for example, in health science, the 

dependent variable is continuous, such as blood pressure. In logistic regression, dependent 

variables are usually binary events such as ‘alive’ versus ‘dead’.  

 

2.2.2 Concepts About Logistic Regression 

According to Park (2013), logistic regression refers to the logistic model, analyzing the 

relationship between several independent variables and the categorical dependent variable, and 

estimating the probability of occurrence of the event by fitting a logistic curve to the data.  

 

2.2.2.1 Odds 

The odds mean the ratio of the event occur probability to the probability that it does not occur. If 

the probability of occurring is p, the probability of not occurring is (1 - p). Then the corresponding 

odds is given by:  

odds = 𝑃

1−𝑃
 . 

Since the probability of a logistic regression calculation event occurring exceeds the probability 

that the event did not occur, the effect of the independent variable is usually explained by the odds. 

Using logistic regression, the average response variable p in terms of the explanatory variable x is 

modeled relating p and x by the equation 𝑝 =  𝛼 +  𝛽𝑥.  

Unfortunately, this is not a good model because the extremum of x gives a value of 𝛼 + 𝛽𝑥, which 

does not necessarily fall between 0 and 1. The logistic regression solution to this problem is to use 

the natural logarithmic to transform the odds. Using logistic regression, we can get the natural log 

odds as a linear function: 

logit(y) = ln(odds) = ln (
𝑝

1−𝑝
) =  𝛼 + 𝛽𝑥 .                              (2.6) 

This is a simple logistic model. If we take the antilog of Eq. (2.6) on both sides, we can derive an 

equation for the prediction of the occurrence probability of the outcome as 
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𝑝 = 𝑃(𝑌 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 | 𝑋 =  𝑥, 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑎𝑙𝑢𝑒) 

=  
𝑒𝛼+𝛽𝑥

1 +  𝑒𝛼+𝛽𝑥
=  

1

1 + 𝑒−(𝛼+𝛽𝑥)
 . 

If we extend the simple logistic regression to multiple predictors, we can get a complex logistic 

regression as 

logit(y) = ln (
𝑝

1 − 𝑝
) =  𝛼 + 𝛼1𝑥1 + ⋯ +  𝛼𝑘𝑥𝑘  . 

Therefore, 

𝑝 = 𝑃(𝑌 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒| 𝑋1 =  𝑥1, … , 𝑋𝑘 =  𝑥𝑘) 

=  
𝑒𝛼 + 𝛽1𝑥1+⋯+  𝛽𝑘𝑥𝑘 

1 +  𝑒𝛼 + 𝛽1𝑥1+⋯+  𝛽𝑘𝑥𝑘 
=  

1

𝑒−(𝛼 + 𝛽1𝑥1+⋯+  𝛽𝑘𝑥𝑘) 
 . 

 

2.2.2.2 The Logistic Curve 

When y contains binary code (0, 1-- failed, successful), logistic regression is a method to fit the 

regression curve, 𝑦 = 𝑓(𝑥). When the dependent variable is binary and x is a numerical value, 

logistic regression fits the logistic curve between x and y. Logistic curves are “S”-shaped or 

sigmoid curves that are commonly used to model population growth.  

A basic logistic function is defined by: 

𝑓(𝑥) =  
𝑒𝑥

1+ 𝑒𝑥 =  
1

1+ 𝑒−𝑥 , 

 

which is graphed in Figure 2.2.1.  

To provide flexibility, the above function can be extended to the form: 

𝑓(𝑥) =  
𝑒𝛼+𝛽𝜒

1+ 𝑒𝛼+𝛽𝜒 =  
𝑒𝛼+𝛽𝜒

1+ 𝑒−(𝛼+𝛽𝜒) , 

where α and β mean the logistic intercept and slope. 
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Figure 2.2.1 shows the logistic function with α and β being 0 and 1, respectively. The logistic 

function is used to transform the S-shaped curve into an approximate line and change the scale 

from 0 - 1 to -∞ - +∞ as 

logit(𝑝) = ln(𝑜𝑑𝑑𝑠) = ln (
𝑝

1−𝑝
) =  𝛼 + 𝛽𝑥 , 

where p is the probability of interested outcome, α is the intercept parameter, β is a regression 

coefficient, and χ is a predictor. 

 

Figure 2.2.1: Graph of Logistic Curve Where 𝛼 = 0 and 𝛽 = 1                                                                                                                             
(Source: Park, 2013, p16) 

 

2.2.2.3 Assumptions of Logistic Regression 

Logistic regression does not require some of the main assumptions of linear regression models, 

especially on the linear relationships between independent variables and the dependent variable, 

the normality of the error and the homoskedasticity of the error. Logistic regression can deal with 

the nonlinear relationship between the dependent variable and the independent variable because it 

applies a nonlinear logarithmic transformation to linear regression. The error terms (residual) do 

not need to have a multivariate normal distribution - although multivariate normality produces a 

more stable solution. For each level of independent variable, the variance of the error can be 

heteroscedastic.  
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Generally speaking, it uses maximum likelihood estimation to predict group membership. 

However, in order to accurately interpret the predictions of group members, a preliminary analysis 

of the data set needs to be conducted to check if the assumptions of logistic regression are met. 

2.2.2.3.1 Absence of Multicollinearity  

The limitation of logistic regression is that it is sensitive to variables that have very high 

correlations with each other. Highly collinear variables usually produce very large standard errors 

and expanded regression estimates. Therefore, it is necessary to observe the collinearity between 

the independent variables in the model. The standard procedure that allows this is to calculate the 

tolerance of each variable. The tolerance statistic is the calculation of the variance of each 

independent variable in the model, not the interpretation of all other independent variables in the 

model. Higher tolerance values indicate lower collinearity levels. Menard (2010) believes that 

tolerances less than 0.2 are alarming. Although logistic regression software usually does not 

provide a tolerance function, we can calculate the model as linear regression to observe the 

relationship between independent variables. 

2.2.2.3.2 Independence 

Logistic regression also requires that dependent variables only have mutually exclusive categories. 

This requirement is met in this thesis because the customer's claim is either fraudulent or 

reasonable. In addition, each of the clients’ claims come from a different unrelated case so there 

are no dependencies of the responses.   

2.2.2.3.3 Lack of Outliers (Logistic Regression) 

An outlier is a value that is very different from the other data values in a data set. This can skew 

results. Outliers often have a significant effect on the sample mean and standard deviation. 

Because of this, we must take steps to first remove outliers from our data sets before performing 

any analysis. 
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2.3 The Random Forest Classifier 

Before talking about the random forest algorithm, we need to know the concept of decision tree, 

because the random forest is just the combination of decision trees, which is based on Breiman 

(2001). 

2.3.1 Introduction to Decision Trees 

In machine learning, a decision tree can be used to visually and explicitly represent decision 

making. As the name implies, it uses a tree-like model to make decisions. Decision trees have 

decision nodes and branches. The decision node is a point where a choice must be made; it is 

shown as an oval in Figure 2.3.1. The branches extending from a decision node are decision 

branches, each branch representing one of the possible alternatives or courses of action available 

at that point. The set of alternatives must be mutually exclusive (if one is chosen, the others cannot 

be chosen) and collectively exhaustive (all possible alternatives must be included in the set). 

 

Figure 2.3.1: Decision Tree Example                                                                                                                                                         
(Source: Bird, 2018, p4) 

The decision tree can be constructed based on the Gini index (G), which is calculated by 

subtracting the sum of the squared probabilities of each class from one: 
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𝐺 = 1 −  ∑ (𝑝)2𝐶
𝑖=1  , 

Where p is the probability of the ooutcome of interest, as above. 

For example, out of 14 instances, say yes = 9 and no = 5. Then  

𝐺 = 1 −  (
9

14
)

2

− (
5

14
)

2

. 

If the G index is smaller, then the classification in that root node is better. 

The dataset contains a large set of features, which results in many splits, in turn producing a very 

large tree. Such trees are complex and can lead to overfitting.  

 

2.3.2 Introduction to Random Forest 

Random forest is one of the most popular and powerful machine learning algorithms. The 

difference between the random forest algorithm and the decision tree algorithm is that in the 

random forest, the process of finding the root node and segmenting the feature nodes will run 

randomly. Bagging (Bootstrap Aggregating) is a technique for converting a single decision tree 

with poor prediction capabilities into a more accurate prediction function. However, bagging is 

often affected by tree correlation. The random forest is a modification of the bagging technique, 

which builds many decorrelated trees. Then get the random forest result from those decision trees. 

For instance, out of 10 trees, if 6 trees show “yes” and 4 trees show “no”. The random forest output 

will be “yes”, because “yes” takes a larger percentage.  

Often, there is a direct relationship between the number of trees in the forest and the results 

available: the more trees there are, the more accurate the results will be. For imbalanced dependent 

variables, when we focus on a certain dependent variable, many trees may lead to bad accuracy, 

so random forest is not necessarily an improvement.  

 

2.4 The Gradient Boosting Classifier 
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It is a machine learning method that produces a predictive model (usually decision trees). It builds 

models in stages like other enhancement methods and promotes these models by allowing the 

optimization of arbitrary differentiable loss functions (Friedman, 2001). 

The gradient boosting contains two techniques: boosting combined with gradient descent, which 

is also called the steepest descent method. In order to introduce these two concepts, we first need 

to discuss some theoretical background notions. Therefore, the technical framework will be 

explained in the following sections before this section focuses directly on gradient boosting. 

 

2.4.1 Predictive Model Framework 

Before we introduce machine learning methods, the comparisons with traditional methods are 

important. Figure 2.4.1 shows the original situation and compares basic statistical methods with 

machine learning methods. Here, Figure 2.4.1a shows the relationships between input x and output 

y, also known as the data generation process, as shown in Figure 2.4.1b. Classical statistical 

methods attempt to describe this relationship through interpretable models. These models usually 

follow several assumptions that the data may or may not satisfy. If not, these models need to be 

questioned. By contrast, machine learning does not build relationships directly. Instead, it treats 

the connection as a black box function, using the learning algorithm to learn x and y as close as 

possible (see Figure 2.4.1c), which is based on Coors (2018). 

 

Figure 2.4.1: Comparisons Between the Classical Statistical Method and the Machine Learning Method.                                          
(Source: Coors, 2018, p10) 

https://en.wikipedia.org/wiki/Differentiable_function
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Therefore, the machine learning method is always good at building a good model at the expense 

of interpretability. Therefore, data scientists usually check whether there is a need to interpret the 

impact of a single independent variable and choose traditional statistical methods, or instead using  

machine learning methods. Typical predictive model setup includes a system with a d-dimensional 

random response vector y ∈  𝑅𝑑 and a set of features 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}.  

The feature x is called explanatory variables and y is called result. Then, the aim of predictive 

model is to use the training dataset that contains tuples (𝑥𝑖, 𝑦𝑖) for i = 1,...,n, to estimate the 

unknown dataset system by using the function 𝑓(), such as: 

                                                                 𝑓(𝑥) = 𝑦.                                                                  (2.7) 

The goodness of predictive model is measured by a loss function 𝐿(y, f(x)) and its expected value, 

which is called risk:  

ℛ(𝑓(𝑥)) =  𝔼 [𝐿(𝑦, 𝑓(𝑥))] =  ∫ 𝐿(𝑦, 𝑓(𝑥))𝑑ℙ𝑥𝑦 .                              (2.8)               

From this function, we can see that the loss  is calculated by the point-by-point deviation of the 

estimated model 𝑓(𝑥)  from the actual data point y. Normally, the loss function can be chosen 

arbitrarily. But most of the loss functions used are the least-squares loss: 

𝐿(𝑦, 𝑓(𝑥)) = (𝑦 − 𝑓(𝑥))
2
, − 𝜕𝐿

𝜕𝑓(𝑥)
= 2(𝑦 –  𝑓(𝑥)) .                             (2.9) 

This is equivalent to the maximum likelihood method of the normal distribution error and is 

therefore sometimes referred to as Gaussian Loss. As shown in Figure 2.4.2, the quadratic loss is 

gradually weighted to the point where the distance 𝑓(𝑥) is the highest. Therefore, it is not robust 

to outliers. Another type of loss function is called absolute loss: 

      𝐿(y, 𝑓(𝑥)) =  |𝑦 − 𝑓(𝑥)|, −
𝜕𝐿

𝜕𝑓(𝑥)
= 𝑠𝑖𝑔𝑛(𝑦 −  𝑓(𝑥)),     for x ≠ 0. 
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Figure 2.4.2: Common Loss Functions.                                                                                                                                                                   

(Source: Coors, 2018, p11)                                                     

This type of loss function is robust, which can be seen in Figure 2.4.2 (Coors, 2018).  

While the Huber loss contains the advantages of both loss functions mentioned before because it 

combines both of them. For any δ > 0, the Huber loss is defined as 

     𝐿(𝑦, 𝑓(𝑥)) = {

1

2
(𝑦 − 𝑓(𝑥))2 , for |𝑦 − 𝑓(𝑥)|  ≤  δ

δ|𝑦 − 𝑓(𝑥)| −  
1

2
 δ2,         otherwise

   , 

hence 

−
𝜕𝐿

𝜕𝑓(𝑥)
=  {

𝑦 − 𝑓(𝑥), for |𝑦 − 𝑓(𝑥)|  ≤  δ   

𝑠𝑖𝑔𝑛(𝑦 − 𝑓(𝑥)),        otherwise
. 

Huber loss is not only differentiable but also robust because it is quadratic in the interval around 

0, followed by linear continuity. 



18 
 

When switching to other tasks like the binary classification, some other types of loss functions will 

also be used because the regression function is not reasonable. But the Zero-One loss function is 

not totally smooth, so it is not suitable for optimization, as shown in Figure 2.4.3. By contrast, loss 

functions with smooth and convex characteristics are commonly used for the classification, as 

shown in Figure 2.4.3 (Coors, 2018). The popular example is an exponential loss, defined as 

𝐿(𝑦, 𝑓(𝑥)) = {
exp(−𝑦𝑓(𝑥))           for y ∈ {−1, +1}

exp(−(2𝑦 − 1)𝑓(𝑥))    for y ∈ {0, 1}
 . 

Compared to the following methods, it is less robust to observations of strong misclassifications 

due to the exponential increase in negative values. In addition, the truncated hinge loss is also 

suitable for classification work, which is shown as below: 

       𝐿(𝑦, 𝑓(𝑥)) = max(0, 1 − 𝑦𝑓(𝑥)) =   |1 − 𝑦𝑓(𝑥)|+ . 

It is more robust due to the linearity of negative values. Another possibility has the same rate of 

return. It is called binomial loss: 

𝐿(𝑦, 𝑓(𝑥)) = {
ln (1 +  exp(−2𝑦𝑓(𝑥)))           for y ∈ {−1, +1}

−𝑦𝑓(𝑥) + ln(1 + 𝑒𝑥𝑝(𝑓(𝑥)))      for y ∈ {0, 1}
 .              (2.10) 
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Figure 2.4.3: Common Loss Functions for Regression.                                                                                                                                      
(Source: Coors, 2018, p11)  

A similar approach is possible for all maximum likelihood models,  which leads to the use of 

negative log-likelihood as a loss function. By assuming a multinomial model, the binomial loss 

function can be simply extended to a multi-class classification problem, which is also known as 

the softmax function. This function produces the probability of every data point belonging to which 

class, and is also used as the objective function for multi-class classification, which is called 

softprob. 

Obviously, to finding an optimal estimate 𝑓(𝑥), which minimizes the risk ℛ(𝑓(x)) over the joint 

distribution of the training set, then 𝑓(𝑥) is determined by  

                 𝑓(𝑥) = arg min ℛ(𝑓(x))                                                                                                    (2.11)

= arg min 𝔼 [𝐿(𝑦, 𝑓(𝑥))]

=  arg min 𝔼𝑥,𝑦 [𝐿(𝑦, 𝑓(𝑥))]                                        

= arg min 𝔼𝑥  [𝔼𝑦 (𝐿(𝑦, 𝑓(𝑥))) |𝑥]  . 
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2.4.2 Gradient-descent optimization     

When it comes to focusing on optimization problems, the stochastic methods can be separated. 

Deterministic methods are usually faster than random methods, however, the risk of being trapped 

at a local minimum is significantly higher. Some random methods of hyperparameters and 

threshold adjustments are described later in this article. However, gradient descent method is a 

deterministic nonparametric iterative method for numerical function optimization that is often 

proposed to minimize empirical risk. We consider the case of the Eq. (2.11) with an arbitrary, 

differentiable target function 𝑓(x).  From Coors (2018), the gradient ∇𝑓(𝑥) can be seen as a pointer, 

which is always displayed in the steepest ascent direction. Similarly, −∇𝑓(x)  points to the steepest 

descent in 𝑓(x). Thus, then gradient means the graph’s tangemt slope, which is very similar to 

derivative.  

But compared with the scalar-valued derivative, the gradient is a value that contains the above 

directions and depends on the underlying space. 

So, for 𝑓 ∶  ℝ𝑛  ⟶  ℝ: 

∇𝑓(𝑥) = 𝑔𝑟𝑎𝑑 𝑓(𝑥) =  (
𝜕𝑓(𝑥)

𝑥1
, … ,

𝜕𝑓(𝑥)

𝑥𝑛
)

𝑇 

.                             (2.12) 

Then, we select a starting point 𝑥(0) as the initial guess. This point can be improved, i.e. we can 

also select the next point 𝑥(1) such as: 

𝑥(1) =  𝑥(0) − 𝜐∇𝑓(𝑥(0)), 

so in general for iteration 𝑚, 

𝑥(𝑚) =  𝑥(𝑚−1) −  𝜐∇𝑓(𝑥(𝑚−1)) for 𝑚 =  1, … , 𝑀,                   (2.13) 

where 𝜐 controls the step size in the steepest descent direction. The optimal 𝜐 is able to change in 

each iteration. And the choice is to minimize the objective function: 
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𝜐(𝑚) =  arg min  𝑓 (𝑥(𝑚−1)  −  𝜐∇𝑓(𝑥(𝑚))) ,         𝜐 > 0 .                             (2.14) 

Eq. (2.14) is called line search. If the algorithm reaches an 𝑥(𝑚)  ∈  ℝ𝑛 with ∇𝑓(𝑥
(𝑚)) = 0 ∈

 ℝ𝑛, then a local minimum can be reached. For the Figure 2.4, it illustrates the procedure for a 

two-dimensional function 𝑓(𝑥, 𝑦) = 2𝑥2 +  𝑦2. 
 

 

2.4.3 Boosting  

The property of boosting is that the performance of weak learner can be improved by adding 

additional learners. So, boosting means the stagewise additive models: 
 

𝑓(𝑥) =  ∑ 𝑓𝑚(𝑥) =  ∑ 𝛽𝑚ℎ(𝑥, 𝜃𝑚)

𝑀

𝑚=1

.

𝑀

𝑚=1

                                              (2.15) 

 

To minimize the empirical risk for Eq. (2.8): 

ℛ =  ∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) =  ∑ 𝐿 (𝑦𝑖, ∑ 𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚)

𝑀

𝑚=1

) ,

𝑛

𝑖=1

𝑛

𝑖=1

                         (2.16) 

 

 

that depends on the function ℎ(x, 𝜃𝑚) and especially the 𝛽𝑚 and 𝜃𝑚. Hence, ℛ needs to be 

minimized with regard to parameters (𝛽, 𝜃) = ((𝛽1, 𝜃1), … , (𝛽𝑀, 𝜃𝑀)) which can be difficult if 

we depend on the chosen loss function L. Therefore, optimization can be reached by using the 

iterative “greedy” forward stagewise additive model approach. Thus, for optimizing 

(𝛽∗, 𝜃∗) = arg min ∑ 𝐿 (𝑦𝑖, ∑ 𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚)

𝑀

𝑚=1

) ,

𝑛

𝑖=1

                      (2.17) 

we can use 

(𝛽∗, 𝜃∗) = arg min ∑ 𝐿 (𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) +  𝛽ℎ(𝑥𝑖, 𝜃)),                    (2.18)

𝑛

𝑖=1

  

 

in order to get  
 

𝑓𝑚(x) =  𝑓𝑚−1(𝑥) +  𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚),                                      (2.19) 
with 
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𝑓𝑚−1(𝑥) =  ∑ 𝛽𝑗ℎ(𝑥𝑖 , 𝜃𝑗).                                          (2.20)

𝑚−1

𝑗=1

 

 
 

Here, adding each component step by step means that the previous model is fixed and therefore 

will not be readjusted. This strategy is called enhancement in a machine learning context.  

 

The typical weak learner ℎ(𝑥, 𝜃), also known as the base function, is tree stumps, which is a 

decision tree with few splitting points. These tree stumps bring some advantages for the decision 

trees, including support for classification features and missing values or robustness with respect to 

outliers. In addition, the training tree is faster than training other algorithms.  

 

What is more, boosting can greatly improve prediction performance when compared with just 

training one single tree. However, it is clear to see that they lose some interpretability when 

combining some trees. These advantages are like random forest methods, which use bootstrap 

aggregation to combine several decision trees for modeling. 

 

2.4.4 Gradient Boosting algorithm 

The gradient boosting method contains the gradient descent algorithm in Section 2.4.2 with the 

boosting method described in Section 2.4.3 above. This means that the gradient boosting uses a 

phased additional model whose empirical risk ℛ is minimised by gradient descent. 

 

The additive model for Eq. (2.15), we want to find a combination of the parameters (𝛽𝑚
∗ , 𝜃𝑚

∗ ), as 

shown in Eq. (2.18); that is, we want to find the new additive component 𝛽𝑚ℎ(𝑥𝑖, 𝜃𝑚) of Eq. (2.19) 

for iteration 𝑚. Here, Eq. (2.19), 𝛽𝑚 is the step size of the gradient descent, and the former part is 

also expressed as 𝜐, also known as the learning rate. If 0 <  𝛽𝑚  ≪ 1, only a small number of base 

learners are considered in the m-th iteration. This helps prevent overfitting of additive models. 

Cross-validation can be used to select an appropriate learning rate 𝜐 in a given application; repeatedly 

fitting a model for different values of 𝜐 to select the one that produces the fitted model with smallest loss,  
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2.4.4.1 Regression 

First of all, the nonparametric model is considered in which each individual observation 𝑥𝑖 of the 

n observations of the training dataset can be arbitrarily predicted. This leads to n parameters 𝑓(𝑥𝑖), 

but there is no generalization of the whole space 𝑥. By gradient descent, we can get the gradient 

with Eq. (2.12) for a loss function L at the point 𝑥𝑗 by: 

 

∇ℛ|𝑥𝑗
=  

𝜕ℛ

𝜕𝑓(𝑥𝑗)
=  

𝜕 ∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖))𝑛
𝑖=1

𝜕𝑓(𝑥𝑗)
=  

𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑗))

𝜕𝑓(𝑥𝑗)
.                        (2.21) 

 

Hence, the update for iteration m by gradient descent is 

𝑓𝑚(𝑥𝑗)  ⟵  𝑓𝑚−1(𝑥𝑗) −  𝛽
𝜕 ∑ 𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))𝑛

𝑖=1

𝜕𝑓𝑚−1(𝑥𝑗)
 .                              (2.22) 

Consequently, we can determine the steepest descent direction for each 𝑥𝑖 and also define these as 

pseudo residuals 𝑟𝑖𝑚: 

𝑟𝑖𝑚 =  − [
𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
]

𝑓(𝑥)= 𝑓𝑚−1(𝑥)

 .                                    (2.23) 

 

Thus, the optimal weight 𝛽𝑚 for iteration m can obtain by setting 𝑟𝑖𝑚 = ℎ(𝑥𝑖, 𝜃𝑚) in Eq. (2.18): 

𝛽𝑚 = arg min ∑ 𝐿 (𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖)  −  𝛽 [
𝜕𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))

𝜕𝑓𝑚−1(𝑥𝑗)
]).               (2.24)

𝑛

𝑖=1

 

However, as mentioned above, this only applies to a single observation 𝑥𝑗  of the training set. 

Therefore, it is necessary for the generalization of all x ϵ χ, which can be achieved by using the 

regression model to approximate the negative gradient as well as possible. The regression model 

is called the base function or the weak learner in Section 2.4.3. 

ℎ(x, 𝜃𝑚) =  −𝑟𝑚 =  − [
𝜕𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗))

𝜕𝑓(𝑥𝑗)
] =  − [

𝜕 ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑛
𝑖=1

𝜕𝑓(𝑥𝑗)
].                     (2.25) 
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And, minimizing the risk 

ℛ(ℎ(x, 𝜃𝑚)) = 𝐿(ℎ(𝑥, 𝜃𝑚), 𝑟𝑚)                                                 (2.26) 

leads to  

𝜃𝑚 = arg min ∑ 𝐿(𝑟𝑚, ℎ(𝑥𝑖, 𝜃)) .                                           (2.27)

𝑛

𝑖=1

 

This gives us the best parameter θ for the Eq. (2.18). Finally, the new entire additive portion that 

contains the weak learner ℎ(x, 𝜃𝑚)  can be interpreted as a component that improves the model 

towards the maximum reduction in loss, where 𝛽𝑚 is determined by Eq. (2.24), indicating the step 

size of this move. By using the least squares loss function, Eq. (2.27) reduced to 

𝜃𝑚 = arg min ∑(𝑟𝑚, ℎ(𝑥𝑖, 𝜃))
2

.                                            (2.28)

𝑛

𝑖=1

 

Each learner can be fitted by a quadratic loss. In addition, the solution is numerically efficient.  

As mentioned earlier, the choice of decision trees as a basic learner has advantages, which makes 

them the first choice for autoxgboost: 

ℎ(𝑥, 𝑏, 𝑅) =  ∑ 𝑏𝑗𝕀(𝑥 𝜖 𝑅𝑗),                                              (2.29)

𝐽

𝑗=1

 

where 𝑅𝑗 is the disjoint regions, defined by the tree’s terminal nodes with the corresponding means 

𝛾𝑗. 
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Algorithm 1: Gradient Boosting Algorithm.    

Initialize: 𝒇𝟎(𝒙) = 𝒂𝒓𝒈 𝒎𝒊𝒏 ∑ 𝑳(𝒚𝒊, 𝜽𝟎) 𝒏
𝒊=𝟏  

1. for m = 1 ⟶ M do  
2.      for all i do 

3.            Calculate 𝒓𝒊𝒎 =  −[
𝜕𝐿(𝑦,𝑓(𝑥))

𝜕𝑓(𝑥𝑖)
]𝒇(𝒙𝒊) = 𝒇𝒎−𝟏(𝒙𝒊) 

4.       end  
5.       Fit regression base learner to the pseudo-residuals 𝑟𝑖𝑚:  
6.            𝜃𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ (𝑟𝑖𝑚 − ℎ(𝑥𝑖, 𝜃))2𝑛

𝑖=1  
7.       Find via line search: 
8.            𝛽𝑚 = arg min ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥) +  𝛽ℎ(𝑥, 𝜃𝑚))𝑛

𝑖=1  
9.       Update 𝑓𝑚(𝑥) =  𝑓𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥, 𝜃𝑚) 
10. end 

       Output:  𝑓(𝑥) = 𝑓𝑀(𝑥) 

 

 

  

 
Putting Eq. (2.29) into Eq. (2.19) leads to 

𝑓𝑚(𝑥) =  𝑓𝑚−1(𝑥) + 𝛽𝑚 ∑ 𝑏𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚),

𝐽𝑚

𝑗=1

                                (2.30) 

which can be reduced to  

𝑓𝑚(𝑥) =  𝑓𝑚−1(𝑥) +  ∑ 𝛾𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚).

𝐽𝑚

𝑗=1

                                  (2.31) 

when setting 𝛾𝑗𝑚 =  𝛽𝑚𝑏𝑗𝑚 , where like before, 𝛽𝑚  is determined by line search. Again, 

minimizing the loss function provides the optimal coefficients for 𝛾𝑗𝑚 which is done by 

                                      𝛾𝑗𝑚 = arg min ∑ 𝐿 (𝑦𝑖, 𝑓𝑚−1(𝑥𝑖)  +  ∑ 𝛾𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚)

𝐽𝑚

𝑗=1

).                 (2.32)

𝑛

𝑖
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Algorithm 2: Gradient Tree Boosting Algorithm.    

Initialize: 𝒇𝟎(𝒙) = 𝐚𝐫𝐠 𝐦𝐢𝐧 ∑ 𝑳(𝒚𝒊, 𝜽𝟎) 𝒏
𝒊=𝟏  

1. for m = 1 ⟶ M do  
2.      for all i do 

3.            Calculate 𝒓𝒊𝒎 =  −[
𝜕𝐿(𝑦,𝑓(𝑥))

𝜕𝑓(𝑥𝑖)
]𝒇(𝒙𝒊) = 𝒇𝒎−𝟏(𝒙𝒊) 

4.       end  
5.       Fit regression tree to the pseudo-residuals 𝑟𝑖𝑚 given terminal regions 𝑅𝑗𝑚, 𝑗 = 1, … , 𝐽𝑚: 

6.      for 𝑗 = 1 →  𝐽𝑚 do 

7.            𝛾
𝑗𝑚

= arg min ∑ 𝐿(𝑦
𝑖
, 𝑓

𝑚−1
(𝑥𝑖)  +  𝛾)𝑥𝑖∈𝑅𝑗𝑚

 

8.      end 

9.      Update 𝑓𝑚(𝑥) =  𝑓𝑚−1(𝑥) +  ∑ 𝛾𝑗𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑚)
𝐽𝑚
𝑗=1  

10. end 

       Output:  𝑓(𝑥) = 𝑓𝑀(𝑥) 

 

 

  

Because the 𝑅𝑗 are disjoint, we can also get: 

𝛾𝑗𝑚 = arg min ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖)  +  𝛾).                              (2.33)

𝑥𝑖𝜖𝑅𝑗𝑚

 

For the loss function L, this result is the optimal update given the function 𝑓𝑚−1. It can also be 

determined directly within each terminal region. So, Algorithm 1 is changed to Algorithm 2 above. 

2.4.4.2 Classification 

The general gradient boosting in Algorithm 1 depends entirely on the loss function L. For the 

regression, we choose the least squares loss, which equals to the maximum likelihood method of 

the normal distribution error. In terms of classification, we have seen the appropriate loss functions 

in Section 2.4.1, and we hope to discuss their mathematical derivation in more detail. The first 

limiting binary classification means that our target variable does not contain contiguous but two 

classification levels, for example y ∈ {0, 1}. If the output of the model is mapped on real values, 

the positive values can be treated as an indication of class 1 and a negative value of class 0, 

respectively. Therefore, we obtain a discrete prediction by 𝕀(𝑓(𝑥) > 0). Or, we convert the model 

so that its function value is in the interval [0, 1]. This can be achieved by applying a logical 

distribution function: 
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𝑙𝑜𝑔𝑖𝑡(η) =  
exp (𝜂)

1 + exp(𝜂)
.                                                   (2.34) 

where 𝜂 is called link function, because it related to prediction probabilities: 

𝜋𝑖1 =  ℙ(𝑦𝑖 = 1|𝑥𝑖1, … ,𝑥𝑖𝑘) = 𝑙𝑜𝑔𝑖𝑡(𝜂𝑖) =  
exp (𝜂𝑖)

1 + exp(𝜂𝑖)
,                   (2.35) 

where 

                                         𝜂𝑖 =  𝑥𝑖
𝑇𝛽𝑖, 𝑥𝑖 =  𝑥𝑖1, … , 𝑥𝑖𝑘  .                          

Hence, probability 𝑥𝑖1 is indirectly modeled by the logit function 

𝜂𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑦𝑖 = 1|𝑥𝑖1, … , 𝑥𝑖𝑘) = 𝑙𝑛
𝜋𝑖1

1 −  𝜋𝑖1
=  𝑥𝑖

𝑇𝛽𝑖 .                             (2.36) 

Getting the log-likelihood by applying the maximum likelihood method: 

                          ∑(𝑦𝑖𝑙𝑛𝜋𝑖1 + (1 −  𝑦𝑖) ln(1 −  𝜋𝑖1))                                                                         

𝑛

𝑖=1

= ∑(𝑦𝑖𝑓(𝑥𝑖)  − ln(1 + exp(𝑓(𝑥𝑖)))).

𝑛

𝑖=1

                                                                (2.37) 

For 𝑓(𝑥𝑖) =  𝑥𝑖
𝑇𝛽𝑖. Defining the negative log-likelihood of Eq. (2.31) as new loss function which 

has been metioned in Eq. (2.10) in Section 2.4.1. That is 

𝐿(y, 𝑓(x)) =  −𝑦𝑓(𝑥) + ln(1 + exp(𝑓(𝑥))), with − 
𝜕𝐿

𝜕𝑓(𝑥)
= 𝑦 −  𝜋1(𝑥) , 

where 𝜋1(𝑥) is the prediction for the posterior probability of class 1, that is 

�̂�(𝑦 = 1|𝑥) = 𝑙𝑜𝑔𝑖𝑡(𝑓(𝑥)). 

By using the maximum likelihood methods, we obtain as loss function: 
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𝐿(𝑦𝑘, 𝑓𝑘(x)) =  − ∑ 𝑦𝑘𝑙𝑛𝜋𝑘(𝑥) ,                                                    (2.38)

𝐾

𝑘=1

 

where 𝑦𝑘 =  𝕀(𝑦 = 𝑘) for class k. So, the posterior probability of class k is given by 

𝜋𝑘(𝑥) =  �̂�(𝑦 = 𝑘|𝑥) =  
exp (𝑓𝑘(𝑥))

∑ exp (𝑓𝑗(𝑥))𝐽
𝑗=1

 ,                                  (2.39) 

taking the first derivatives: 

𝑟𝑖𝑘,𝑚 =  − [
𝜕𝐿 (𝑦

𝑖𝑘
, 𝑓

𝑘,𝑚
(𝑥𝑖))

𝜕𝑓
𝑘,𝑚

(𝑥𝑖)
]

𝑓𝑘,𝑚(𝑥)= 𝑓𝑘,𝑚−1(𝑥)

=  𝑦
𝑖𝑘

−  𝜋𝑘,𝑚−1(𝑥𝑖),               (2.40) 

where 𝜋𝑘,𝑚−1(𝑥𝑖) is derived from Eq. (2.39) for 𝑓𝑘,𝑚−1. We see that K models (trees) are fitted in 

each iteration m to predict the pseudo residuals 𝑟𝑖𝑘,𝑚. Every single tree has J terminal nodes with 

regions {𝑅1𝑘,𝑚, … , 𝑅𝐽𝑘,𝑚}: 

𝛾𝑖𝑘,𝑚 = arg min ∑ ∑ 𝜙 (𝑦𝑖𝑘, 𝑓𝑘,𝑚−1(𝑥𝑖)  + ∑ 𝛾
𝑗𝑘

𝐽
𝑗=1 𝕀(𝑥𝑖  𝜖 𝑅𝑗,𝑚)) ,𝐾

𝑘=1
𝑛
𝑖=1           (2.41)   

with ϕ(𝑦𝑘, 𝑓𝑘(x)) =  −𝑦𝑘ln 𝜋𝑘(𝑥) from Eq. (2.38). 

Based on a single Newton-Raphson step, it can be separated into a single calculation for each 

terminal node: 

𝛾𝑗𝑘,𝑚 =  
𝐾−1

𝐾

∑ 𝛾𝑖𝑘,𝑚𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

∑ |𝛾𝑖𝑘,𝑚|(1− |𝛾𝑖𝑘,𝑚|)𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

 ,                                          (6.36) 

which serves for the update 

𝑓𝑘,𝑚(𝑥) =  𝑓𝑘,𝑚−1(𝑥) +  ∑ 𝛾𝑗𝑘,𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑘,𝑚).                            (6.37) 
𝐽𝑚
𝑗=1   
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Algorithm 3: K-class Classification Gradient Tree Boosting Algorithm.    

Initialize: 𝑓𝑘,0(𝑥) = 0, 𝑘 = 1, … , 𝐾 
1. for m = 1 ⟶ M do  

2.     Set 𝜋𝑘(𝑥) =  
𝒆𝒙𝒑(𝒇𝒌(𝒙))

∑ 𝒆𝒙𝒑(𝒋(𝒙))
𝑱
𝒋=𝟏

 for k = 1 ⟶ M do  

3.       Calculate 𝑟𝑖𝑘,𝑚 =  𝑦𝑖𝑘 − 𝜋𝑘,𝑚−1(𝑥𝑖), 𝑖 = 1, … , 𝑛. 
4.         Fit regression tree to the pseudo-residuals 𝑟𝑖𝑘,𝑚 given terminal regions 𝑅𝑗𝑘,𝑚, 𝑗 = 1, … , 𝑚: 

5.       for 𝑗 = 1 →  𝐽𝑚 do 

6.             𝛾
𝑗𝑘,𝑚

=
𝐾−1

𝐾
 

∑ 𝛾𝑖𝑘,𝑚𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

∑ |𝛾𝑖𝑘,𝑚|(1− |𝛾𝑖𝑘,𝑚|)𝑥𝑖𝜖𝑅𝑗𝑘,𝑚

 

7.        end     

8.        Update 𝑓𝑘,𝑚(𝑥) =  𝑓𝑘,𝑚−1(𝑥) + ∑ 𝛾𝑗𝑘,𝑚𝕀(𝑥 𝜖 𝑅𝑗𝑘,𝑚)
𝐽𝑚
𝑗=1    

9.      end 
10. end 

       Output:  𝑓(𝑥) = 𝑓𝑘,𝑀(𝑥) 

 

 

  

 

Finally, after M steps, 𝑓𝑘,𝑀(𝑥) is returned as a final model, as shown in Algorithm 3. 

 

2.5 The K-Means Clustering 

K-means clustering is a vector quantization method, which is very popular in cluster analysis of 

data mining. The k-means clustering aims to divide n observations into k clusters, where each 

observation belongs to the cluster with the nearest mean.  

For example, given a set of observations {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} , where each observation is a d-

dimensional real vector, k-means clustering aims to divide these n observations into k (≤n) sets 

S = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛} in order to minimize the sum of variance within the cluster. In other words, 

the goal is to find: 

arg min ∑ ∑ ‖𝑥 −  𝜇𝑖‖2 = arg min ∑|𝑆𝑖|𝑉𝑎𝑟(𝑆𝑖)

𝑘

𝑖−1𝑥𝜖 𝑆𝑡

𝑘

𝑖=1

, 

Where 𝜇𝑖 is the mean of different points in set 𝑆𝑖. And the above equation equals to minimizing 

the pairwise squared deviations of the distances: 

arg min ∑
1

2|𝑆𝑖|
∑ ‖𝑥 −  𝑦‖2

𝑥,𝑦𝜖 𝑆𝑡

𝑘

𝑖=1
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And the above equation can be deduced from ∑ ‖𝑥 −  𝜇𝑖‖
2 = 𝑥𝜖𝑆𝑖

∑ (𝑥 − 𝜇𝑖)(𝜇𝑖 − 𝑦)𝑥≠𝑦𝜖𝑆𝑖
. This 

is because the total variance will not change, which equals to the sum of squared deviations 

between points in different clusters. 

 

Figure 2.5: K-Means Clustering Example                                                                                                                                                         
(Source: Wikipedia) 
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Chapter 3 

Performance Measures 

3.1 ROC Curve 

In the Receiver Operating Characteristic (ROC) curve, the true positive rate is plotted as a function 

of the false positive rate for different cut-off points. Each point on the ROC curve represents a 

sensitivity/specificity pair. A test with perfect discrimination has ROC curve across the upper left 

corner. Therefore, the closer the ROC curve is to the upper left corner, the higher the overall 

accuracy of the test. 

Since the area under the ROC curve is typically a measure of test usefulness. In other words, a 

larger area means a more useful test, and the area under the ROC curve is also used to compare 

the usefulness of the test (Narkhede, 2018). 

 

Figure 3.1.1:  ROC Curve                                                                                                                                                                                       
(Source: Narkhede, 2018, p2) 

 

3.2 Confusion Matrix 

In the field of machine learning, especially statistical classification problems, the confusion matrix 

is also known as an error matrix, which takes a specific table layout that allows the visualization 

https://towardsdatascience.com/@narkhedesarang?source=post_page-----68b2303cc9c5----------------------
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of an algorithm’s performance. Each row of the matrix represents an instance in the predictive 

class, and each column represents an instance in the actual class. This name stems from the fact 

that it makes it easy to see if the system confuses two classes. 

 

Figure 3.2.1: Confusion Matrix Sample                                                                                                                                                                  
(Source: Narkhede, 2018, p2) 

 

3.3 Recall and Precision 

The performance of machine learning algorithms is usually evaluated by the confusion matrix, as 

shown in Figure 3.3.1. The column is the predicted class and the row is the actual class. In the 

confusion matrix, TN (True Negative) is the number of examples of correct negative (as 0) 

classification, FP (False Positives) is the number of negative (as 0) misclassified as positive (as 1), 

and FN (False Negative) is the number of positive (as 1) that are misclassified as negative (as 0), 

while TP (True Positives) is the number of positive (as 1) correctly classified.  

 

 

 

 

 

 

 Predicted 
Negative 

Predicted 
Positive 

Actual 
Negative 

TN 

 

FP 

Actual 
Positive FN TP 

Table 3.3.1: Confusion Matrix 
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Predictive accuracy is a measure of the performance of machine learning algorithms and is defined 

as Accuracy = (TP + TN) / (TP + FP + TN + FN). For balanced data sets and equal error costs, it 

is reasonable to use error rates as performance metrics. The Error Rate is (1 − Accuracy).In the 

case of an imbalanced dataset with unequal error costs, it is more appropriate to use ROC curves 

or other similar measures. The ROC curve can be thought of as the best decision boundary family 

representing the relative cost of TP and FP. On the ROC curve, the X-axis represents %FP = FP / 

(TN + FP) and the Y-axis represents %TP = TP / (TP + FN). The ideal point of the ROC curve is 

(0, 1.0); that is, all positive cases are correctly classified and no negative examples are 

misclassified as positive. One way in which the ROC curve can be swept is by manipulating the 

balance of the training samples for each class in the training set. In the ROC curve, the line y = x 

represents the scenario of the random guess class. The Area under the ROC Curve (AUC) is a 

useful measure of the classifier performance because it is independent of the chosen criterion and 

prior probability. AUC can be used for comparisons between different classifiers. 

For some examples, the AUC method is not that useful to see the accuracy of the classifier. For 

instance, The Information Retrieval (IR) domain also faces the problem of imbalances in the data 

set. Take a document or web page that is converted to a word bag representation; that is, a feature 

vector reflecting the appearance of the word in the page is constructed. Often, there are very few 

instances of interest categories in text categorization. In information retrieval problems, the 

excessive performance of negative categories may lead to problems in assessing classification 

performance. Since the error rate is not a good indicator for skewed data sets, the classification 

performance of algorithms in information retrieval is usually measured by recall and precision: 

recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 

precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 . 

In terms of this thesis, we need to detect insurance fraud, which means we need to correctly find 

the insurance frauds among real fraudulent claims. Instead of using accuarcy rate, we need to use 

recall to measure the quality of models, because from the above equation, we can see that recall 
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means what percentage of fraudulent claims can be detected, which is the main objective. 

Therefore, the first and most important step is to improve the performance of recall to measure 

most of the real fraudulent claims that have been detected. And then we can see if the precision is 

good enough. Because precision stands for what percentage of legitimate claims will not be 

mistook for fraudulent claims, which is not as important as recall. 
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Chapter 4 

Dataset 1 Description and Manipulation 

4.1 Description 
4.1.1 Dependent Variable 

The first dataset studied is about car insurance claims and it can be found at Kaggle (url: 

https://www.kaggle.com/srikanthmalyala/exleq/data). It consists of 11,554 observations with 32 

variables. The response variable named the “FraudFound_P” is either 1 for a driver who filed a 

fraudulent claim or 0 for car insurance claims that are legitimate. There are also 31 independent 

variables being the information of each driver (sex, age of policyholder, age of vehicle, vehicle 

price, claim size, etc.).  

count           11,554 
mean           22,966 
std               26,995 
min                      0 
25%               4,149 
0%                 8,131 
75%              46,490 
max             141,394 

Table 4.1.1: Claim Severity Summary Statistics 

 

As shown in Table 4.1, 75% of claims are small than $46,490. The mean claim amount is $22,966, 
and the median claim amount is $8,131. Also, from the common sense, we know the minimum of 
claim is 0, which means there is no accident for certain clients. 
 
The dependent variable for fraudulent claims, yes or no, is bivariate (1 or 0), and it is clear from 
Figure 4.1.1 that this dependent variable is very imbalanced (6.1% if 1s and 93.9% if 0s). This is 
quite common in practice, because only a few drivers filed fraudulent claims. 

https://www.kaggle.com/srikanthmalyala/exleq/data
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                                                                 Figure 4.1.1: Bar Chart and Pie Chart of the Response Variable 

4.1.2 Correlation Matrices 

Correlation matrices are central to understanding our data, because we want to know what features 

would influence the detection of fraud. Instead of using the dataset to get correlation matrix directly, 

it is important to use the adjusted dataset (subsample) to get a more obvious relationship among 

different features and the fraudulent claims. 

 

Before doing that, an adjustment is needed as the dependent variable is very unbalanced. So, we 

use a subsample in our correlation matrix; otherwise, our correlation matrix will be affected by the 

high imbalance between the classes, due to the high unbalance in the original dataset. 

 

Once we determine how many instances are considered as fraudulent claim (Fraud = "1"), we need 

to reduce the non-fraudulent claims frequency to the same number as fraudulent transactions 

(assuming we want a 1/1 ratio), this will be equivalent to 659 cases of fraudulent and 659 cases of 

non-fraudulent transactions. After implementing this subsample technique, we get a sub-sample 

of our dataset with a 1/1 ratio with regards to our classes, and then use it to get the correlation 

matrix. 

 

The main issue with "random under-sampling" is the risk that our classification models will not 

perform as accurately as we expect since there is a great deal of information loss (reducing to 659 

non-fraudulent transactions from 10,641).  
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Figure 4.1.2: Imbalanced Correlation Matrix and Sub-Sample Correlation Matrix 

From the output, we can see that the correlations are more obvious after using the subsample in 

the correlation matrix. And we can also see that the “VehicleCategory” and “BasePolicy" tend to 

have a positive relationship with the response variable, while the “Fault_thirdparty” has a negative 

relationship with the dependent value (fraudulent claim). 

A note of caution, the coefficient of correlation might not be a good mesure of depence when 

applied to a binary response, like we have here, and to independent variables that can be binary, 

categorical or discrete.   

 

4.2 Data Manipulations 

In this part, we detail some common data manipulations that were carried out across all the 

analyses, any specific manipulation required for certain analyses will be stated in this section. To 

be able to perform cross-validation, the dataset was first divided into two parts. The training dataset 

contains 9,243 observations, and the testing set contains 2,311 observations.  
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4.2.1 Features Selection 

Before fitting any models, it is important to check the relation between all the features, there are 

two main reasons: 

• If two features are highly linearly correlated, the data may have multicollinearity effects, 

especially for the logistic regression. 

• By reducing the number of input variables, we may have fewer parameters requiring tuning when 

fitting models and consequently reduce the computational load. 

 

4.2.2 Standardization and Scaling 

Since our features are expressed in different measurement scales, we standardize or scale the 

features based on the following: 

• AccidentArea: Change to 1 (Urban) and 0 (Rural) 

• Sex: Change to 1 (Male) and 0 (Female) 

• MaritalStatus: Change to 1 (Single) and 0 (Married) 

• Fault: Change to 1 (Third Party) and 0 (Policy Holder) 

• Witness: Change to 1 (Yes) and 0 (No) 

• AgentType: Change to 1 (External) and 0 (Internal) 

• PolicyRepordField: Change to 1 (Yes) and 0 (No) 

• BasePolicy, VehicleCategory: Dummy variables 

 

4.2.3 Missing Data 

In terms of the missing data, there are several situations: 

• If the data is missing randomly and more than 70% data of certain feature is missing, then 

delete this feature directly; 

• If the feature with missing data has a trend based on time, then fill in the missing data by 

time; 

• Check if those features with missing data have some relationships with other features. If 

so, using other related variables as independent variables and using the missing data as the 

dependent variable to build a model in order to predict those missing data. 
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4.3 Unbalanced Dependent Variable 
4.3.1 SMOTE 

SMOTE stands for the Synthetic Minority Over-Sampling Technique. We propose an 

oversampling method that oversamples a few classes by creating a "synthetic" sample instead of 

replacing oversampling. This approach was inspired by a technique for success in handwritten 

character recognition. The idea is to create additional training data by performing certain 

operations on real data. In this case, operations such as rotation and tilting are natural ways to 

disrupt training data. We generate synthetic examples in a less application-specific way by 

operating in the "feature space" instead of the "data space." The minority class is over-sampled by 

taking each minority class sample and introducing synthetic examples along the line segments 

joining all the k minority class nearest neighbors. The values of the k nearest neighbors are 

randomly selected according to the required oversampling amount. The composite sample is 

generated as follows: the difference between the considered feature vector (sample) and its nearest 

neighbor. Multiply this difference by a random number between 0 and 1 and add it to the feature 

vector under consideration. This results in the selection of random points along with the line 

segments between two features (Chawla et al, 2002).  

 

Figure 4.3.1: Connecting the Dots                                                                                                                                                                      
(Chawla et al, 2002, pp321-357) 
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Figure 4.3.2: Synthesizing New Dots Between Existing Dots                                                                                                                     
(Chawla, 2002, pp321-357) 

For each instance 𝑥𝑖  in the minority class, SMOTE searches its k nearest neighbors and one 

neighbor is randomly selected as 𝑥′ (we call instances 𝑥𝑖 and 𝑥′, the seed sample). Then a random 

number 𝛿 between [0, 1] is generated. The new artificial sample 𝑥𝑛𝑒𝑤 (from Figure 4.3.1 to Figure 

4.3.2) is created as: 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 + (𝑥′ − 𝑥𝑖)  ×  𝛿 . 

This approach effectively forces minority decision-making areas to become more common. 

Note that SMOTE is bound to become a popular method for fraud detection, as it is particularly 

suited for large datasets where the proportion of fraudulent records is very small (highly 

unbalanced large datasets). 

 

4.3.2 Under-Sampling 

The majority class is under-sampled by removing samples randomly from the majority class until 

the minority class becomes a specified percentage of the majority class. This forces learners to 

experience varying degrees of under-sampling, and in a higher degree of under-sampling, minority 

groups have a greater percentage in the training set. 

Again, this method has to be used with care in small data sets, where undersampling might fix the 

unbalce problem at the cost of producing training datasets that are too small to be fitted any model 

with an acceptable precision. 
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4.3.3 Combine SMOTE and Under-Sampling 

Instead of using under-sampling or oversampling separately, we also consider combining these 

two sampling methods. By applying a combination of under-sampling and oversampling, the 

learner's initial bias for the minority class is reversed to a majority class. The classifier is learned 

on a data set that is influenced by “SMOTE” the minority and under-sampling the majority. In this 

thesis, we use different sampling methods to test each model in order to get a better result. 

 

The first method is to “SMOTE” the minority class into 4,000 (around 1:2); the second method is 

to “SMOTE” the minority class into 9,000 (1:1); the third method is “SMOTE” the minority class 

into 9,000 and under-sample the majority class into 6,000 (3:2). 

 

4.3.4 A Common Mistake 

There is a common mistake implementing these methods; if you want to undersample or 

oversample your data you should not do it before cross-validation (Altini, 2015). Because if you 

get the minority class (“Fraud” in our case) and create the synthetic points before cross-validation, 

you have a certain influence on the "validation set" of the cross-validation process. But remember 

how cross-validation works; let us assume we are splitting the data into 5 batches, then 4/5 of the 

dataset will be the training set and 1/5 of the dataset will be the validation set. The test set should 

not be touched. For that reason, we should do the creation of synthetic data points before cross-

validation, just like below:  

 

Figure 4.3.3: SMOTE Process                                                                                                                                                                                     
(Source: Altini, 2015, p3) 
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4.4 Results 
4.4.1 Naïve Bayes Classifier 
4.4.1.1 Confusion Matrix 

 
Figure 4.4.1: Confusion Matrix - Naive Bayes 

From the above confusion matrix, we can clearly see the performance of an algorithm by numbers. 

In addition, we can also get the recall and precision from the confusion matrix: 

 
Naïve Bayes 

 

 
Recall 

 
Precision 

No SMOTE 
No undersampling 0.09 0.065 

SMOTE (4,000) 
No undersampling 0.29 0.077 

SMOTE (9,000) 
No undersampling 0.41 0.078 

SMOTE (9,000) 
Undersampling (6,000) 0.79 0.08 

 

Table 4.4.1: Recall and Precision Table - Naive Bayes 
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From the above table, it is clear that the recall will increase when the SMOTE sample increases. 

While at the same time, the precision will decrease if we just increase the SMOTE sample from 

4,000 to 9,000. If we combine the SMOTE and the undersampling methods, the recall  improves 

substantially from 0.41 to 0.79, but the precision almost keeps the same. In terms of the 

combination of SMOTE (9,000) and undersampling (6,000), a recall of 0.79 means 79% fraudulent 

claims can be detected; a precision of 0.08 means among all the predicted fraudulent claims, 8% 

claims were really fraudulent. 

4.4.1.2 Discussion 

4.4.1.2.1 Advantages 

The naive Bayesian algorithm assumes that the dataset attributes are independent of each other, so 

the logic of the algorithm is very simple and the algorithm is relatively stable. When the data 

exhibits different characteristics, the classification performance of naïve Bayes is not greatly 

different. In other words, the naive Bayes algorithm is more robust and does not show much 

difference for different types of data sets. The naive Bayesian classification algorithm performs 

well when the relationships between dataset attributes are relatively independent. 

4.4.1.2.2 Disadvantages 

The condition of independence of attributes is also a disadvantage of the naive Bayes classifier. 

The independence of dataset attributes is difficult to satisfy in many cases, because the attributes 

of datasets are often related to each other. If such problems occur in the classification process, the 

classification performance will be greatly affected. 

 

4.4.2 Logistic Regression 
4.4.2.1 Check the Assumptions  

4.4.2.1.1 Continuous Independent Variables (IVs) being Linearly Related to the LOG ODDS  

Logistic regression does not require continuous independent variables (IVs) to be linearly related 

to dependent variables (DVs). But it requires the continuous IVs to be linearly related to the log 

odds of the DVs. One way to test this is to use the graph and look for an S-shaped curve. Sometimes 

the S-shaped curve will not be obvious. The figure should have a flat or flattish top and bottom 

with an increase or decrease in the middle. 
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Figure 4.4.2: Curve of ClaimSize and Age 

So, from the output, it is obvious that both “ClaimSize” and “Age” are linearly related to the 

dependent value (“FraudFound_P”), which satisfies the first assumption. 

4.4.2.1.2 Absence of Multicollinearity 

A simple approach to check multicollinearity is to use the correlation matrix to find any highly 

correlated variables. If there are variables that are highly correlated, then we need to drop one of 

them because they are measuring the same or similar things. 

From Figure 4.4.2, we can see there is some multicollinearity among the variables, such as  

“MonthClaimed” and “Month”, “MaritalStatus_alone” and “AgeOfVehicle_year”, 

“MaritalStatus_alone” and “AgeOfPolicyHolder”. What is needed here is to delete one of these 

variables.  

4.4.2.1.3 Lack of Outliers (Logistic Regression) 

The assumption of lack of outliers is an easy one to check. One can get a feel of this with the 

descriptive statistics provided by the “.describe()” function in R. It is also very easy to check for 

outliers by using a box plot. Since there is a large difference between the values used to measure 

ClaimSize and Age, two separate box plots are generated. 
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Figure 4.4.3: Box Plot of ClaimSize and Age 

From the two outputs, we can see that there are some outliers in both "ClaimSize" and "Age". For 

the variable "ClaimSize", there is one claim at about $140,000, which is much larger than the most 

claims. But we cannot directly delete this variable, because some “ClaimSize” can be much bigger 

than the mean value, which is reasonable. In terms of "Age", we can see there are some points 

around 0. But due to the common sense, we know it is impossible that the age of a driver is about 

0, so we could judge these points as outliers and then delete them. 
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4.4.2.2 Results 

4.4.2.2.1 ROC Curve  

 

    Figure 4.4.3: ROC Curve - Logistic Regression 

From the ROC Curve of logistic regression, we can see that for the imbalanced dataset, the overall 

accuracy rate of the combination of SMOTE and undersampling is the highest; while the sampling 

method without SMOTE and undersampling is the lowest. 
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4.4.2.2.2 Confusion Matrix 

Figure 4.4.4: Confusion Matrix - Logistic Regression 

From the above confusion matrix, we can clearly see the performance of an algorithm as 

summarized in a few numbers. In addition, we can also get the recall and precision from the 

confusion matrix: 

 
Logistic Regression 

 

 
Recall 

 
Precision 

No SMOTE 
No undersampling 0.0 0.0 

SMOTE (4,000) 
No undersampling 0.203 0.117 

SMOTE (9,000) 
No undersampling 0.647 0.08 

SMOTE (9,000) 
Undersampling (6,000) 0.856 0.1 

 

Table 4.4.2: Recall and Precision Table - Logistic Regression 
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From Table 4.4.2, it is clear that the recall will increase when the SMOTE sample increases. While 

at the same time, the precision will decrease if we just increase the SMOTE. But, if we combine  

SMOTE and the undersampling methods, then both recall and precision improve a lot. In terms of 

the combination of SMOTE (9,000) and Undersampling (6,000), recall (0.856) means 85.6% 

fraudulent claims can be detected; while precision (0.1) means among all the predicted fraudulent 

claims, 10% claims are really fraudulent. In practice, this model can be useful.  

4.4.2.3 Discussion 

4.4.2.3.1 Advantages 

It is a widely used technology because it is very efficient, does not require too much computing 

resources, it is highly interpretable, it does not require scaling input; and it does not require any 

tuning. Like linear regression, logistic regression is very efficient when you remove attributes that 

are not related to the response variable and attributes that are very similar (correlated) to each other. 

Therefore, data cleaning plays an important role in the performance of logistic regression. What is 

more, logistic regression is very easy to implement and trains very effectively. 

4.4.2.3.2 Disadvantages 

A disadvantage of logistic regression is that it cannot solve non-linear problems since its decision 

surface is linear. Also, to use logistic regression, the data should satisfy many assumptions, that in 

practice, are either not be satisfied or difficult to verify.  
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4.4.3 Random Forest 
4.4.3.1 ROC Curve 

 

Figure 4.4.5: ROC Curve – Random Forest 

For the Random Forest classification method, the overall accuracy rate of SMOTE (9,000) is the 

best and is even better than that of the combination of SMOTE (9,000) and undersampling (6,000). 

The performance of SMOTE (4,000) and non-SMOTE methods are poor, with an accuracy rate of 

0.5. 
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4.4.3.2 Confusion Matrix 

Figure 4.4.6: Confusion Matrix – Random Forest 

From the above confusion matrix, we can also clearly see the performance of the random forest : 

 
Random Forest 

 

 
Recall 

 
Precision 

No SMOTE 
No undersampling 0.0 0.0 

SMOTE (4,000) 
No undersampling 0.5 0.165 

SMOTE (9,000) 
No undersampling 0.713 0.133 

SMOTE (9,000) 
Undersampling (6,000) 0.89 0.12 

 

Table 4.4.3: Recall and Precision Table – Random Forest 

From the Table 4.4.3, it is clear that the recall will also increase when the SMOTE increases. 

While at the same time, the precision will decrease from 0.165 to 0.133 if we just increase SMOTE. 
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If we combine the SMOTE and undersampling methods, then the recall improves from 0.713 to 

0.89 and precision decreases from 0.133 to 012. In terms of the combination of SMOTE (9,000) 

and undersampling (6,000), recall (0.89) means 89% fraudulent claims can be detected; precision 

(0.12) means among all those predicted fraudulent claims, 12% claims are really fraudulent. In 

practice, the model can also be useful.  

4.4.4 Gradient Boosting 
4.4.4.1 ROC Curve 

 

Figure 4.4.7: ROC Curve - Gradient Boosting 

For the random forest classification method, the overall accuracy rate of SMOTE (4,000) is the 

best and is even better than that of the combination of SMOTE (9,000), undersampling (6,000) 

and learning rate (0.05), with classifier score being 0.8679. The performance of non-SMOTE 

method is poor, with an accuracy rate of about 0.5. For gradient boosting, the combination of 

SMOTE (9,000), undersampling (6,000) and learning rate (0.05) do not perform that well, with 

the classifier score just being 0.6860. 
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4.4.4.2 Confusion Matrix 

Figure 4.4.8: Confusion Matrix - Gradient Boosting 

From the above confusion matrix, we can also clearly see the performance of an algorithm by 

numbers. In addition, we can also get the recall and precision from the confusion matrix: 

 
Gradient Boosting 

 

 
Recall 

 
Precision 

No SMOTE 
Any learning rate 0.0 0.0 

SMOTE (4,000) 
Any learning rate (0.5) 0.18 0.17 

SMOTE (9,000) 
Any learning rate (0.5) 0.57 0.14 

SMOTE (9,000) 
Undersampling (6,000) 
Any learning rate (0.5) 

0.95 0.09 

 

Table 4.4.4: Recall and Precision Table - Gradient Boosting 
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From Table 4.4.4, it is clear that recall will also increase when the SMOTE increases. At the same 

time, the precision will increase from 0 to 0.17 if we just increase SMOTE from 0 to 4,000. But 

different from the above methods, the precision will decrease from 0.17 to 0.4 by increasing the 

SMOTE from 4,000 to 9,000. If we combine the SMOTE and undersampling methods, then the 

recall has been improved significantly from 0.57 to 0.95 and precision decreases from 0.14 to 0.09. 

In terms of combination of SMOTE (9,000) and undersampling (6,000), recall (0.95) means 95% 

fraudulent claims can be detected; precision (0.09) means among all those predicted fraudulent 

claims, 9% claims are really fraudulent. In practice, the model is also useful.  

4.5 Conclusion 

In general, random forest and gradient boosting classifiers are easy to train. We do not need to 

consider missing values or independence; while for naïve Bayes and logistic regression, we need 

to care about these conditions. 

What is more, in order to compare different classification methods, we just focus on the 

combination of SMOTE (9,000) and undersampling (6,000), because in this situation, the 

classification performance is the best. As shown below: 

 Recall Precision 
Naive Bayes 0.79 0.08 

Logistic Regression 0.856 0.1 
Random Forest 0.89 0.12 

Gradient Boosting 0.95 0.09 
 

Table 4.5.1: Overall Recall and Precision Table 

From Table 4.5.1, it is clear to see that for the combination of SMOTE (9,000) and undersampling 

(6,000), gradient boosting has the highest recall, which means it can detect the most percentage of 

the fraudulent claims. Although the random forest method has better precision (percentage of 

predicted fraudulent claims that are actual fraudulent claims), gradient boosting is also the best 

classification method, because compared to random forest, the recall of gradient boosting 

increases by 0.06 (from 0.89 to 0.95), but the precision just decreases 0.03 (from 0.12 to 0.09), 

which is acceptable. Remember that recall meaures the percentage of fraudulent claims that can 
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be detected, which is the quantity of interest here, to be maximized. The precision error is a less 

important decision variable in this application. 

In terms of each classification method, we can see that the recall will be improved by increasing 

the SMOTE index, but the precision will decrease at the same time. 

Even though the recalls of gradient boosting and random forest are very good, there are still some 

things to improve in fraudulent claim detection. From Table 4.5 above, we see that the precision 

is very low, which means many real-claim customers will be bothered when we classify them as 

fraudulent claims. Therefore, we need to find a way to improve recall and precision simultaneously. 

 

4.6 Original Idea 

Reaching this step, we can also use a combination of clustering and classification models. Starting 

form the SMOTE (9,000) step, the first method is to use k-means clustering to divide the whole 

dataset into three clusters, and only then apply the proper classification model to these three 

clusters. By using this method, the performance can also be improved. However, this method 

cannot be applied to small datasets, because there would not be enough observations in all small 

clusters to train the classification model.  

What is more, the method of changing the order of SMOTE (9,000) and k-means clustering has 

also been tested, which means using k-means clustering to group the data and then using SMOTE 

to resample each cluster. The results were almost the same. After checking the data in each 

clustering, by using SMOTE (9,000) and k-means clustering, all these three clusters are very 

balanced (around 1:1, 5:4 and 4:5). Maybe this is why the order does not change the final results. 
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4.6.1 Performances of Different Models in Three Clusters 
 

 

Table 4.6.1: Overall Recall Table for Clustered Data 

 

From the table above, we can see that in the first cluster, random forest is the best method, with 

recall being 0.8469, while in second and third clusters, gradient boosting is the best, with recall 

being 0.96 and 0.84 respectively. 

4.6.2 The Effect of Using Clustering 

But when comes to the overall performance of different models, it is clear to see from the below 

graph that randon forest and logistic regression are the best. By using the combination method of 

SMOTE and clustering, the performances (recall) of all these four models have been improved a 

lot.  



56 
 

   

Table 4.6.2: Overall Recall Table For the Best Methods 

 

What is more, gradient boosting is almost the best model in all situations, but in the combination 

method of clustering and classification models, it is not an ideal model, because the theory of 

gradient boosting is to build a tree first, and then iteratively build other trees to improve the error 

of the previous tree, which means the number of observations will influence the performance of 

gradient boosting. Dividing the dataset into clusters means smaller number of observations in each 

cluster, which will lead to a worse performance.  
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Chapter 5 

Dataset 2 Description and Manipulation 

5.1 Description 
5.1.1 Dependent Variable 

The second dataset analyzed is also about car insurance claims, which can be found at Kaggle (url: 

https://www.kaggle.com/roshansharma/insurance-claim). It consists of 1,000 observations with 39 

variables. The response variable named the “fraud_reported” is either 1 for a driver who filed a 

fraudulent claim or 0 for car insurance claims that are legitimate. There are 38 explanatory 

variables with information on each driver (sex, age, education level, claim amount or claim time, 

for example).  

 

The dependent variable is binary (1 or 0), and it is clear from the following figure that this 

dependent variable is somewhat imbalanced (24.7% if 1s and 75.3% if 0s). So for this dataset,  

a transformation of the dependent variable to correct the imbalance may not be necessary, which 

means the result without the SMOTE method may be acceptable. 

  
Figure 5.1.1: Bar Chart and Pie Chart of the Response Variable 

 

https://www.kaggle.com/roshansharma/insurance-claim
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5.1.2 Correlation Matrices 

 

Figure 5.1.2: Correlation Matrix 

From the output, we can easily see the “incident_type” tends to have negative a negative 

relationship with  “total_claim_amount”, “vehicle_claim”, “injury_claim” and “property_claim”; 

while the “vehicle_claim” has a positive relationship with “total_claim_amount”, “vehicle_claim” 

and “property_claim”. So, when we use a logistic regression model, it is important to check these 

instances of multicollinearity. 

 

5.2 Data Manipulations 

In this section, we detail some common data manipulations that are carried out for all the analyses, 

plus any specific manipulation required for certain. To be able to perform cross-validation, the 

dataset was first divided into two parts. The training dataset contains 700 observations, and the 
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testing dataset contains 300 observations, for a total of 1,000 rows, which is not a large dataset. 

Compared with the first dataset, we need to increase the percentage of testing set (30%). 

 

5.2.1 Features Selection 

Before fitting any models, it is important to check the relation between all the features, for two 

main reasons: 

• If two features are highly linearly correlated, the data may show multicollinearity effects, 

especially for the logistic regression. 

• By reducing the number of input variables, we may have fewer parameters requiring tuning when 

fitting the model and consequently reduce the computational load. 

 

5.2.2 Standardization and Scaling 

Since our features are expressed in different measurement scales, we standardize or scale the 

following features: 

• fraud_reported: Change to 1 (Yes) and 0 (No). 

• Sex: Change to 1 (Male) and 0 (Female). 

• MaritalStatus: Change to 1 (Single) and 0 (Married). 

• Collision_type: Replace the missing data with the most common collision type (Back 

Collision).  

• Witness: Change to 1 (Yes) and 0 (No). 

• Property_damage: Replace the missing data with “No”, because we just treat missing data 

as no response for the property damage. 

• Police_report_available: Replace the missing data with “No”, because we just treat missing 

data as no police report. 

• Insured_education_level, incident_type, insured_relationship, insured_hobbies, etc.: 

Target Encoding. 

• Policy_number, policy_bind_date, incident_date, incident_location: delete these variables 

because they do not contain any useful information for the fraud detection. 
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5.2.3 Missing Data 

In terms of the missing data, as mentioned before, there are also several standards: 

• If the data is missing randomly and more than 70% data of certain feature is missing, then 

delete this feature directly; 

• If the feature with missing data has a trend based on time, then fill in the missing data by 

time; 

• Check if those features with missing data have some relationships with other features. If 

so, treat other related variables as independent variables and treat the missing data as the 

dependent variable to build a model in order to predict those missing data. 
 

5.2.4 Target Encoding 
The second dataset contains some categorical variables that have more than two categories. In this case, 

instead of using one-hot encoding (used in Dataset 1) method to deal with them, target encoding method is 

more convenient and efficient. Because if there are many categorical variables having multiple categories, 

one-hot encoding method will produce many columns, which may lead to memory issues.  

The main idea of target encoding method is to average the value by category. For example, there is a 

categorical variable x and a dependent variable y (y can be binary or continuous). For each distinct 

element in 𝑥𝑖, we can replace each 𝑥𝑖 by computing the average of the corresponding values in y. 

All of this calculation is pretty easy in “pandas” library of Python. This means it can help to produce 

categorical variables with little effort. 

 

5.2.5 Combine SMOTE and Under-Sampling 

By applying a combination of undersampling and oversampling, the learner's initial bias for the 

minority class is reversed to a majority class. The classifier is learned on a data set that is 

influenced by “SMOTE” the minority and under-sampling the majority. 

 

In this thesis, we use different sampling methods to test each model in order to get a better result. 

The first method is to “SMOTE” the minority class into 376 (around 1:2); the second method is to 

“SMOTE” the minority class into 753 (1:1); the third method is “SMOTE” the minority class into 

753 and undersample the majority class into 502 (3:2). 
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5.3 Results 
5.3.1 Naïve Bayes Classifier 
5.3.1.1 ROC Curve 

 

Figure 5.3.1: ROC Curve – Naïve Bayes 

From the ROC Curve of logistic regression, we can see that for the imbalanced dataset, the overall 

accuracy rate of the combination of SMOTE and undersampling is the highest; while the sampling 

method without SMOTE and undersampling is the lowest. 
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5.3.1.2 Confusion Matrix 

 

 

Figure 5.3.2: Confusion Matrix – Naïve Bayes 

From the above confusion matrix, we can clearly see the performance of an algorithm as 

summarized in a few numbers. In addition, we can also get the recall and precision from the 

confusion matrix: 

 
Naïve Bayes 

 

 
Recall 

 
Precision 

No SMOTE 
No undersampling 0.30 0.37 

SMOTE (376) 
No undersampling 0.66 0.29 

SMOTE (753) 
No undersampling 0.79 0.29 

SMOTE (753) 
Undersampling (502) 0.82 0.29 

 

Table 5.3.1: Recall and Precision Table - Naive Bayes 
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From the above table, it is clear that the recall will increase when the SMOTE sample increases. 

While at the same time, the precision will decrease from 0.37 to 0.29 and then remain the same if 

we just increase the SMOTE sample from 376 to 753. But if we combine the SMOTE and the 

undersampling methods, the recall  improves a lot, and the precision also does not change. In terms 

of the combination of SMOTE (753) and undersampling (502), recall (0.84) means 82% fraudulent 

claims can be detected; precision (0.29) means among all the predicted fraudulent claims, 29% 

claims were really fraudulent. 

5.3.2 Logistic Regression 
5.3.2.1 Check the Assumptions  

5.3.2.1.1 Continuous Independent Variables (IVs) being Linearly Related to the LOG ODDS  

Logistic regression does not require continuous independent variables (IVs) to be linearly related 

to dependent variables (DVs). But it requires the continuous IVs be linearly related to the log odds 

of the DVs. One way to test this is to use the graph and look for an S-shaped curve. Sometimes the 

S-shaped curve will not be obvious. The figure should have a flat or flattish top and bottom with 

an increase or decrease in the middle. 

  

Figure 5.3.3: S-shaped Curve of Total Claim Amount and Age 

So, from the output, it is obvious that both “total_claim_amount” and “age” are linearly related to 

the dependent value (“fraud_reported”), which satisfies the first assumption. 
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5.3.2.1.2 Absence of Multicollinearity 

A simple approach to check multicollinearity is to use the correlation matrix to find any highly 

correlated variables. If there are variables that are highly correlated, then we need to drop one of 

them because they are measuring the same or similar things. 

From Figure 5.1.2, we can see there is some multicollinearity among the variables, such as 

“incident_type” and “total_claim_amount”. What we need to do is delete “total_claim_amount” 

because the sum of “injury_claim”, “property_claim” and “vehicle_claim” equals to 

“total_claim_amount”. So, we can delete “total_claim_amount” without losing any information. 

5.3.2.1.3 Lack of Outliers (Logistic Regression) 

The assumption of lack of outliers is an easy one to check. One can get a feel of this with the 

descriptive statistics provided by the  “.describe() ” function in R. But it is also very easy to check 

the outliers by using a box plot. Since there is a huge difference between the values used to measure 

"vehicle_claim" and "injury_claim", two separate box plots are generated. And from the two 

outputs, we can see that there is no outliers in "vehicle_claim" and "injury_claim".  

  

Figure 5.3.4: Box Plot of Vehicle_Claim and Injury_Claim 
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5.3.2.2 Results 

5.3.2.2.1 ROC Curve  

 

Figure 5.3.5: ROC Curve - Logistic Regression 

From the ROC Curve of logistic regression, we can see that for the imbalanced dataset, the overall 

accuracy rate of the SMOTE (1:753) is the highest and very close to the combination of SMOTE 

and undersampling; while the sampling method without SMOTE and undersampling is the lowest. 
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5.3.2.2.2 Confusion Matrix 

 

Figure 5.3.6: Confusion Matrix - Logistic Regression 

From the above confusion matrix, we can clearly see the performance of an algorithm as 

summarized in a few numbers. In addition, we can also get the recall and precision from the 

confusion matrix: 

 
Logistic Regression 

 

 
Recall 

 
Precision 

No SMOTE 
No undersampling 0.66 0.75 

SMOTE (376) 
No undersampling 0.81 0.74 

SMOTE (753) 
No undersampling 0.86 0.70 

SMOTE (753) 
Undersampling (502) 0.84 0.66 

 

Table 5.3.2: Recall and Precision table – Logistic Regression 
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From the Table 5.3.2, it is clear that the recall will also increase when the SMOTE increases. But 

at the same time, the precision will decrease from 0.75 to 0.70 if we just increase the SMOTE from 

0 to 753. But different from the above methods, the precision will decrease from 0.70 to 0.66 by 

using a combination method of SMOTE (753) and undersampling (502), while the recall just 

increases from 0.86 to 0.84. Then we can say, in this case, for logistic regression,  the combination 

method does not work well. In this case, choosing SMOTE (753) is the best, because this method 

more sense in practice.  The recall (0.86) means 86% fraudulent claims can be detected; precision 

(0.7) means among all those predicted fraudulent claims, 70% claims are really fraudulent.  

 

5.3.3  Random Forest 
5.3.3.1 ROC Curve 

 

Figure 5.3.7: ROC Curve – Random Forest 

For the random forest classification method, the overall accuracy rate of the combination of 

SMOTE (753) and undersampling (502) is the best, with classifier score of 0.5. The performance 

of raw dataset is poor. 
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5.3.3.2 Confusion Matrix 

 

Figure 5.3.8: Confusion Matrix – Random Forest 

From the above confusion matrix, we can also clearly see the performance of the random forest : 

 
Random Forest 

 

 
Recall 

 
Precision 

No SMOTE 
No undersampling 0.64 0.79 

SMOTE (376) 
No undersampling 0.84 0.68 

SMOTE (753) 
No undersampling 0.84 0.68 

SMOTE (753) 
Undersampling (502) 0.84 0.68 

 

Table 5.3.3: Recall and Precision Table – Random Forest 
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From the Table 5.3.3, it is clear that the recall will also increase from 0.64 to 0.84 and the precision 

will decrease from 0.79 to 0.68, and then remain unchanged when the SMOTE increases from 0 

to 376 and then to 753, even though we combine the undersampling method at the same time. 

Maybe for the dataset with not that imbalanced dependent variable, when we use random forest 

model, the SMOTE ratios and undersampling methods do not have a lot influence to the result.  

In terms of the combination of SMOTE (753) and undersampling (502), a recall (0.84) means 84% 

fraudulent claims can be detected; a precision (0.68) means among all those predicted fraudulent 

claims, 68% claims are really fraudulent. In practice, the model can also be useful.  

 

5.3.4 Gradient Boosting 
5.3.4.1 ROC Curve 

 

 

Figure 5.3.9: ROC Curve - Gradient Boosting 

For the random forest classification method, the overall accuracy rate of SMOTE (376) is the, with 

classifier score being 0.8023. But for gradient boosting model, the performance of the combination 

of SMOTE (753), undersampling (376) and learning rate (0.05) is the lowest, with classifier score 

being only 0.5122.  
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5.3.4.2 Confusion Matrix 

 

Figure 5.3.10: Confusion Matrix - Gradient Boosting 

From the above confusion matrix, we can also clearly see the performance of an algorithm by 

numbers. In addition, we can also get the recall and precision from the confusion matrix: 

 
Gradient Boosting 

 

 
Recall 

 
Precision 

No SMOTE 
Any learning rate 0.29 0.63 

SMOTE (376) 
Any learning rate (0.5) 0.39 0.58 

SMOTE (753) 
Any learning rate (0.5) 0.78 0.35 

SMOTE (753) 
Undersampling (502) 
Any learning rate (0.5) 0.91 0.29 

 

Table 5.4.1: Recall and Precision table - Gradient Boosting 
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From the Table 5.3.4, it is clear that the recall will also increase from 0.29 to 0.78 when the 

SMOTE increases. At the same time, the precision will decrease constantly from 0.63 to 0.35 if 

we just increase the SMOTE from 0 to 753. If we combine the SMOTE and undersampling 

methods, then the recall has been improved significantly from 0.78 to 0.91 and precision decreases 

from 0.35 to 0.26. In terms of combination of SMOTE (753) and undersampling (502), a recall 

(0.91) means 91% fraudulent claims can be detected; precision (0.29) means among all those 

predicted fraudulent claims, 29% claims are really fraudulent. In practice, the model is also useful.  

 

5.4 Conclusion 

For this dataset, in order to compare different classification methods, we also just focus on the 

combination of SMOTE (753) and undersampling (502), because in this situation, the performance 

of classification is the best. As shown below: 

 Recall Precision 
Naive Bayes 0.82 0.29 

Logistic Regression 0.86 0.70 
Random Forest 0.84 0.68 

Gradient Boosting 0.91 0.29 
 

Table 5.4: Overall Recall and Precision Table 

From Table 5.4.1, it is clear to see that for the combination of SMOTE and undersampling (3:2), 

gradient boosting also has the highest recall, which means it can detect the most percentage of the 

fraudulent claims. Compared to logistic regression, the recall of gradient boosting increases by 0.5 

(from 0.86 to 0.91), while the precision decreases from 0.70 to 0.29. If we just focus on the recall, 

we regard the combination of SMOTE (753) and undersampling (502) methods as the best one; 

but if we care about both recall and precision, then logistic regression is the best model, because 

the recall of logistic regression is just 5% less than gradient boosting, but the precision is 41% 

higher than the precision of gradient boosting. 

In terms of each classification method, we can see that the recall will be improved by increasing 

the SMOTE index, but the precision will decrease at the same time. Therefore, in practice, if we 

want to increase the precision and we do not need recall to be that high, then we can decrease the 
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ratio between SMOTE and undersampling to get a better precision. Because in this case, less noise 

will be introduced to the model. 
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Conclusions 
 

The two datasets studied here are totally separate, although both are about car insurance claims 

fraud detection. We analysed these two datasets in order to get more general conclusions, that not 

only pertain to a single example, so they are more convincing. 

Comparing all the SMOTE, undersampling methods and models, we can comfortably say that 

when increasing the SMOTE ratio, the recall increases. And for most of these models, the recall 

is even better if we combine the SMOTE and undersampling methods.  

Focusing just on the combination of SMOTE and undersampling methods, it seems that, based on 

these two samples of auto insurance, gradient boosting is the best model to maximize the fraudulent 

claims detected, because the recall of gradient boosting is the highest, which is the primary 

objective. 

In addition, it is easy to see from Figure 4.1.1 and Figure 5.1.1 that these two datasets are 

unbalanced at different degrees (6.1% to 93.9% and 24.7% to 75.3%). From the output, it is clear 

that for the datasets with different unbalance ratios, the performances of different models and ratios 

between SMOTE and under-sampling will also change.  

For the very unbalanced dataset (6.1% to 93.9%), choosing a higher ratio of SMOTE and 

undersampling (3:2) seems reasonable, which can improve the recall, while the precision does not 

decrease significantly. The best model is gradient boosting, but for the dataset that is slightly less 

unbalanced (24.7% to 75.3%), choosing the SMOTE (753) method is the best, maximizing recall 

without precision decreasing much at the same time. Also, for this second dataset, logistic 

regression is the best model if a high precisionis seeked, even though its recall is not the highest.  

In addition, for this second dataset with a smaller unbalance ratio (24.7% to 75.3%), it also yields 

a higher precision. For example, for both datasets, if logistic regression is used, the recalls of two 

datasets are almost the same, 0.856 and 0.86, respectively, while the precisions are 0.1 and 0.7. 

This means that the less unbalanced dataset tends to have a much better precision. 
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There is also another method to deal with unbalanced datasets, using a combination of clustering 

and SMOTE methods, to then apply separate models for each cluster. From the graph in Figure 

4.6.2, it is clear that the recall of all these four classification models have improved significantly. 

In conclusion, as mentioned before, even though recall is high enough for some models, we also 

see that the precision is a quite low, which means that many legitimate-claim customers will be 

bothered when investigated for fraudulent claims. Therefore, there is still a need to find methods 

that maintain a high precision while maximizing recall. 

Finally, we can also use link analyses to improve fraud detection. Using other related datasets for 

the same policy holders, such as their education background, their residential address, information 

on their friends and social networks, the time at which the car accident occured or their financial 

credit, can help improve fraud detection.   

In this thesis we did not consider these factors, like accident time, because the public datasets used 

do not include such detailed personal information. Insurance companies have detailed longitudinal 

records for each policyholder, for more than a year. In this case, the time factor can also be 

considered. For example, one client buys several policies in a short time period, and then this 

policyholder files a large insurance claim. This behaviour should be detected.  

Therefore, in practice, insurance data scientists can also use the time factor as an important variable 

to detect insurance fraud. 
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Appendix A 
 

Code for the Analysis of Dataset 1 

import numpy as np 

import pandas as pd 

from matplotlib import pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

from imblearn.over_sampling import SMOTE 

from sklearn.metrics import confusion_matrix 

import seaborn as sns 

from sklearn.metrics import accuracy_score 

from sklearn.linear_model import LogisticRegression 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import recall_score, precision_score, accuracy_score, f1_score 

from itertools import cycle 

from sklearn.metrics import 
confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_re
port 

from sklearn.model_selection import train_test_split 

from imblearn.over_sampling import SMOTE 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import roc_curve 
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from sklearn.model_selection import cross_val_predict 

from sklearn.cluster import KMeans 

 

 

data = pd.read_csv('C:/Users/Jason/Desktop/Thesis/Data.csv') 

df2 = pd.read_csv('C:/Users/Jason/Desktop/Thesis/Data_Cleaned.csv') 

df = data 

 

data.head() 

 

data.FraudFound_P.value_counts() 

 

# bar chart 

from matplotlib import pyplot as plt 

name_list = ['1', '0'] 

num_list = [data['FraudFound_P'].sum(), 11300-data['FraudFound_P'].sum()] 

plt.bar(range(len(num_list)), num_list, color = 'rgb', tick_label = name_list) 

 

# pie chart 

labels = '1', '0' 

sizes = [data['FraudFound_P'].sum(), 11300-data['FraudFound_P'].sum()] 

plt.pie(sizes, labels = labels, autopct = '%1.1f%%', shadow = False) 

 

# check the correlation 

data['FraudFound_P'].corr(data['DriverRating']) 

 

## Clustering & SMOTE 

df5 = df.sample(frac=1) 

X5 = df5.iloc[:, :-1] 

y5 = df5.iloc[:, -1] 
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X5_train, X5_test, y5_train, y5_test = train_test_split(X5, y5, test_size=0.2, random_state=42) 

 

sm = SMOTE(ratio={1: 9000},random_state=42) 

X5sm_train, y5sm_train = sm.fit_sample(X5_train, y5_train) 

X5sm_train = pd.DataFrame(X5sm_train) 

y5sm_train = pd.DataFrame(y5sm_train) 

 

# sum(y5sm_train==1) 

 

# X5sm_train, y5sm_train = X5_train, y5_train 

train = X5sm_train 

train['test'] = 0 

train['fraud'] = y5sm_train 

 

test = X5_test 

test['test'] = 1 

test['fraud'] = y5_test 

train.columns = test.columns 

data77 = pd.concat([train, test]) 

data99 = data77.iloc[:,:-2] 

data99['fraud'] = data77.iloc[:, 31:32] 

data99['test'] = data77.iloc[:, 32:33] 

clf=KMeans(n_clusters=3) 

clf=clf.fit(data99) 

 

# clf.cluster_centers_ 

data99['label']=clf.labels_ 

data99['test']=data77.iloc[:,-2].values 

data99['fraud']=data77.iloc[:,-1].values 

data0=data99.loc[data99["label"] == 0] 
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data1=data99.loc[data99["label"] == 1] 

data2=data99.loc[data99["label"] == 2] 

 

### data0 ############### 

data0=data99.loc[data99["label"] == 0] 

data0_test = data0.loc[data0['test']==1] 

data0_test = data0_test.drop(['test', 'label'],axis=1) 

X_test0 = data0_test.iloc[:,:-1] 

y_test0 = data0_test.iloc[:,-1] 

 

data0_train = data0.loc[data0['test']==0] 

# sm = SMOTE(ratio={1: 9000},random_state=42) 

# X5sm_train, y5sm_train = sm.fit_sample(X5_train, y5_train) 

# X5sm_train = pd.DataFrame(X5sm_train) 

# y5sm_train = pd.DataFrame(y5sm_train) 

 

data0_train = data0_train.drop(['test', 'label'],axis=1) 

X_train0 = data0_train.iloc[:,:-1] 

y_train0 = data0_train.iloc[:,-1] 

 

# Randon Forest Classifier 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree.fit(X_train0, y_train0) 

# tree best estimator 

tree_clf = grid_tree.best_estimator_ 

y_pred_tree0 = tree_clf.predict(X_test0) 
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recall_score(y_test0, y_pred_tree0, average='binary') # 0.8469387755102041 

precision_score(y_test0, y_pred_tree0) # 0.10863874345549739 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

 

### Naive Bayes 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.naive_bayes import GaussianNB 

from sklearn.preprocessing import QuantileTransformer 

 

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline.fit(X_train0, y_train0) 

y_pred_tree0 = pipeline.predict(X_test0) 

 

recall_score(y_test0, y_pred_tree0, average='binary') # 0.35714285714285715 

precision_score(y_test0, y_pred_tree0) # 0.13307984790874525 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

 

# LR Classifier 

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} 

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg.fit(X_train0, y_train0) 
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log_reg = grid_log_reg.best_estimator_ 

y_pred_log = log_reg.predict(X_test0) 

 

recall_score(y_test0, y_pred_log, average='binary') # 0.8088235294117647  0.7857142857142857 

precision_score(y_test0, y_pred_log) # 0.1323024054982818 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_log, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

# Gradient Boosting 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc 

 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb4.fit(X_train0, y_train0) 

 

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2, 
random_state = 0)   ### 0.05 => 0.95  0.09 

gb4.fit(X_train0, y_train0) 

y_pred_tree0 = gb4.predict(X_test0) 

 

recall_score(y_test0, y_pred_tree0, average='binary') # 0.5714285714285714 

precision_score(y_test0, y_pred_tree0) # 0.14583333333333334 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 
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### data1 ############### 

data0 = data1 

data0_test = data0.loc[data0['test']==1] 

data0_test = data0_test.drop(['test', 'label'],axis=1) 

X_test0 = data0_test.iloc[:,:-1] 

y_test0 = data0_test.iloc[:,-1] 

 

data0_train = data0.loc[data0['test']==0] 

data0_train = data0_train.drop(['test', 'label'],axis=1) 

X_train0 = data0_train.iloc[:,:-1] 

y_train0 = data0_train.iloc[:,-1] 

 

 

# Randon Forest Classifier 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree.fit(X_train0, y_train0) 

# tree best estimator 

tree_clf = grid_tree.best_estimator_ 

y_pred_tree0 = tree_clf.predict(X_test0) 

 

recall_score(y_test0, y_pred_tree0, average='binary') # 0.72 

precision_score(y_test0, y_pred_tree0) # 0.16822429906542055 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 
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# NB 

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline.fit(X_train0, y_train0) 

y_pred_tree0 = pipeline.predict(X_test0) 

 

recall_score(y_test0, y_pred_tree0, average='binary') # 0.92 

precision_score(y_test0, y_pred_tree0) # 0.09787234042553192 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

# LR Classifier 

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} 

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg.fit(X_train0, y_train0) 

log_reg = grid_log_reg.best_estimator_ 

y_pred_log = log_reg.predict(X_test0) 

 

recall_score(y_test0, y_pred_log, average='binary') # 0.88 

precision_score(y_test0, y_pred_log) # 0.15602836879432624 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_log, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

# Gradient Boosting 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc 
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learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb4.fit(X_train0, y_train0) 

 

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2, 
random_state = 0)   ### 0.05 => 0.95  0.09 

gb4.fit(X_train0, y_train0) 

y_pred_tree0 = gb4.predict(X_test0) 

 

recall_score(y_test0, y_pred_tree0, average='binary') # 0.96 

precision_score(y_test0, y_pred_tree0) # 0.125 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

### data2 ############### 

data0 = data2 

data0_test = data0.loc[data0['test']==1] 

data0_test = data0_test.drop(['test', 'label'],axis=1) 

X_test0 = data0_test.iloc[:,:-1] 

y_test0 = data0_test.iloc[:,-1] 

 

data0_train = data0.loc[data0['test']==0] 

data0_train = data0_train.drop(['test', 'label'],axis=1) 

X_train0 = data0_train.iloc[:,:-1] 

y_train0 = data0_train.iloc[:,-1] 
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# Randon Forest Classifier 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree.fit(X_train0, y_train0) 

# tree best estimator 

tree_clf = grid_tree.best_estimator_ 

y_pred_tree0 = tree_clf.predict(X_test0) 

 

recall_score(y_test0, y_pred_tree0, average='binary') # 0.6842105263157895 

precision_score(y_test0, y_pred_tree0) # 0.16666666666666666 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

 

# NB 

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline.fit(X_train0, y_train0) 

y_pred_tree0 = pipeline.predict(X_test0) 

 

recall_score(y_test0, y_pred_tree0, average='binary') # 0.7894736842105263 

precision_score(y_test0, y_pred_tree0) # 0.13157894736842105 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 
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# LR Classifier 

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} 

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg.fit(X_train0, y_train0) 

log_reg = grid_log_reg.best_estimator_ 

y_pred_log = log_reg.predict(X_test0) 

 

recall_score(y_test0, y_pred_log, average='binary')  

precision_score(y_test0, y_pred_log)  

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_log, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

 

 

# Gradient Boosting 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc 

 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb4.fit(X_train0, y_train0) 

 

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2, 
random_state = 0)   ### 0.05 => 0.95  0.09 

gb4.fit(X_train0, y_train0) 

y_pred_tree0 = gb4.predict(X_test0) 
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recall_score(y_test0, y_pred_tree0, average='binary') # 0.15789473684210525 

precision_score(y_test0, y_pred_tree0) # 0.10714285714285714 

 

import seaborn as sn 

confusion_matrix = pd.crosstab(y_test0, y_pred_tree0, rownames=['Actual'], colnames=['Predicted']) 

sn.heatmap(confusion_matrix, annot=True) 

 

from sklearn.model_selection import train_test_split 

X = np.array(data.ix[:, data.columns != 'FraudFound_P']) 

y = np.array(data.ix[:, data.columns == 'FraudFound_P']) 

 

X1 = df2.iloc[:, :-1] 

y1 = df2.iloc[:, -1] 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.2, random_state=42) 

 

# Standardization 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

# X_train = pd.DataFrame(X_train) 

X_test = sc.transform(X_test) 

 

X1_train = sc.fit_transform(X1_train) 

X1_test = sc.transform(X1_test) 

 

# Correlation Matrices 

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(24,20)) 
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corr = df.corr() 

sns.heatmap(corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax1) 

ax1.set_title("Imbalanced Correlation Matrix", fontsize=14) 

 

# New 

df = df.sample(frac=1) 

non_fraud_df = df.loc[df['FraudFound_P'] == 0][:685] 

fraud_df = df.loc[df['FraudFound_P'] == 1] 

normal_distributed_df = pd.concat([fraud_df, non_fraud_df]) 

 

new_df = normal_distributed_df.sample(frac=1, random_state=42) 

sub_sample_corr = new_df.corr() 

sns.heatmap(sub_sample_corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax2) 

ax2.set_title('SubSample Correlation Matrix', fontsize=14) 

plt.show() 

 

# Check Assumptions of LR 

# ASSUMPTION OF CONTINUOUS IVS BEING LINEARLY RELATED TO THE LOG ODDS 

import statsmodels.formula.api as smf 

C_S = sns.regplot(x= 'ClaimSize', y= 'FraudFound_P', data= df, logistic= True).set_title("ClaimSize Log Odds 
Linear Plot") 

C_S = sns.regplot(x= 'Age', y= 'FraudFound_P', data= df, logistic= True).set_title("Age Log Odds Linear Plot") 

 

# ASSUMPTION OF ABSENCE OF MULTICOLLINEARITY 

df.corr() 

# Delete the MULTICOLLINEARITY Variables 

columns = ['Month', 'AgeOfVehicle_year', 'AgeOfPolicyHolder', 'Year', 'BasePolicy', 'VehiclePrice', 
'VehicleCategory', 'PolicyNumber'] 

df1 = df.drop(columns, axis=1) 

 

# ASSUMPTION OF LOCK OF OUTLIERS 
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ClaimSize_box = sns.boxplot(data= df[['ClaimSize']]).set_title("ClaimSize Box Plot") 

 

from sklearn.model_selection import cross_val_score 

log_reg_score = cross_val_score(log_reg, X_train, y_train, cv=5) 

print('Logistic Regression Cross Validation Score: ', round(log_reg_score.mean() * 100, 2).astype(str) + '%') 

 

 

# LR 

# SMOTE 

from imblearn.over_sampling import SMOTE 

# SMOTE Technique (OverSampling) After splitting and Cross Validating 

sm = SMOTE(ratio={1: 4000},random_state=42) 

Xsm_train, ysm_train = sm.fit_sample(X_train, y_train) 

X1sm_train, y1sm_train = sm.fit_sample(X1_train, y1_train) 

 

sm1 = SMOTE(ratio={1: 8514},random_state=42) 

X3sm_train, y3sm_train = sm1.fit_sample(X_train, y_train) 

X2sm_train, y2sm_train = sm1.fit_sample(X1_train, y1_train) 

 

 

# Under - Smaple & SMOTE for LR 

df3 = df2.sample(frac=1) 

non_fraud_df = df3.loc[df['FraudFound_P'] == 0][:6000] 

fraud_df = df3.loc[df['FraudFound_P'] == 1] 

normal_distributed_df = pd.concat([fraud_df, non_fraud_df]) 

new_df1 = normal_distributed_df.sample(frac=1, random_state=42) 

 

X8 = new_df1.iloc[:, :-1] 

y8 = new_df1.iloc[:, -1] 

X8_train, X8_test, y8_train, y8_test = train_test_split(X8, y8, test_size=0.2, random_state=42) 
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sm = SMOTE(ratio={1: 9000},random_state=42) 

X8sm_train, y8sm_train = sm.fit_sample(X8_train, y8_train) 

 

 

# Logistic Regression 

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} 

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg.fit(X1_train, y1_train) 

log_reg = grid_log_reg.best_estimator_ 

y_pred_log = log_reg.predict(X1_test) 

 

# Logistic Regression After SMOTE (1:4000) 

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} 

grid_log_reg2 = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg2.fit(X1sm_train, y1sm_train) 

log_reg2 = grid_log_reg2.best_estimator_ 

y1sm_pred_log = log_reg2.predict(X1_test) 

 

# Logistic Regression After SMOTE (1:9000) 

grid_log_reg3 = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg3.fit(X2sm_train, y2sm_train) 

log_reg3 = grid_log_reg3.best_estimator_ 

y2sm_pred_log = log_reg3.predict(X1_test) 

 

# Undersampling & SMOTE 

grid_log_reg8 = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg8.fit(X8sm_train, y8sm_train) 

log_reg8 = grid_log_reg8.best_estimator_ 

y8sm_pred_log = log_reg8.predict(X8_test) 
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# ROC Curve 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 

 

log_reg_pred = cross_val_predict(log_reg, X1_train, y1_train, cv=5) 

log_fpr, log_tpr, log_thresold = roc_curve(y1_train, log_reg_pred) 

 

log_reg_pred2 = cross_val_predict(log_reg2, X1sm_train, y1sm_train, cv=5) 

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2) 

 

log_reg_pred3 = cross_val_predict(log_reg3, X2sm_train, y2sm_train, cv=5) 

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3) 

 

log_reg_pred8 = cross_val_predict(log_reg8, X8sm_train, y8sm_train, cv=5) 

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8) 

 

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(log_fpr, log_tpr, label='Logistic Regression (Before SMOTE) Classifier Score: 
{:.4f}'.format(roc_auc_score(y1_train, log_reg_pred))) 

    plt.plot(log_fpr2, log_tpr2, label='Logistic Regression (After SMOTE 1:4000) Classifier Score: 
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2))) 

    plt.plot(log_fpr3, log_tpr3, label='Logistic Regression (After SMOTE 1:8514) Classifier Score: 
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3))) 

    plt.plot(log_fpr4, log_tpr4, label='Logistic Regression (SMOTE 1:9000 & Under-sample 1:6000) Classifier 
Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 
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    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), 

                arrowprops=dict(facecolor='#6E726D', shrink=0.05), 

                ) 

    plt.legend() 

 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2) 

plt.show() 

 

# Randon Forest Classifier 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree.fit(X_train, y_train) 

# tree best estimator 

tree_clf = grid_tree.best_estimator_ 

y_pred_tree = tree_clf.predict(X_test) 

 

# Decision Tree SMOTE 4000 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree_sm1 = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree_sm1.fit(Xsm_train, ysm_train) 

log_reg_sm1 = grid_tree_sm1.best_estimator_ 

ysm_pred_tree1 = log_reg_sm1.predict(X_test) 
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# SMOTE 8514 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree_sm2 = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree_sm2.fit(X3sm_train, y3sm_train) 

log_reg_sm2 = grid_tree_sm2.best_estimator_ 

ysm_pred_tree2 = log_reg_sm2.predict(X_test) 

 

# Undersampling & SMOTE 

df5 = df.sample(frac=1) 

non_fraud_df5 = df5.loc[df5['FraudFound_P'] == 0][:6000] 

fraud_df5 = df5.loc[df5['FraudFound_P'] == 1] 

normal_distributed_df5 = pd.concat([fraud_df5, non_fraud_df5]) 

new_df5 = normal_distributed_df5.sample(frac=1, random_state=42) 

 

X5 = new_df5.iloc[:, :-1] 

y5 = new_df5.iloc[:, -1] 

X5_train, X5_test, y5_train, y5_test = train_test_split(X5, y5, test_size=0.2, random_state=42) 

 

sm = SMOTE(ratio={1: 9000},random_state=42) 

X5sm_train, y5sm_train = sm.fit_sample(X5_train, y5_train) 

 

grid_tree_sm5 = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree_sm5.fit(X5sm_train, y5sm_train) 

log_reg_sm5 = grid_tree_sm5.best_estimator_ 

ysm_pred_tree5 = log_reg_sm5.predict(X_test) 

 

# recall  --  RF 

from sklearn.metrics import recall_score 
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# UNDER-SAMPLE (1:6000) and SMOTE (1:9000) 

recall_score(y_test, ysm_pred_tree5, average='binary') # 0.8897058823529411 

precision_score(y_test, ysm_pred_tree5)  # 0.12015888778550149 

 

# Logistic Regression After SMOTE (1:9000) 

recall_score(y_test, ysm_pred_tree2, average='binary') # 0.7132352941176471 

precision_score(y_test, ysm_pred_tree2)  # 0.13324175824175824 

 

# Logistic Regression After SMOTE (1:4000) 

recall_score(y_test, ysm_pred_tree1, average='binary')  # 0.5 

precision_score(y_test, ysm_pred_tree1)  # 0.1650485436893204 

 

# No SMOTE 

recall_score(y_test, y_pred_tree, average='binary') # 0 

precision_score(y_test, y_pred_tree) # 0 

 

# Tree Report 

from sklearn.metrics import classification_report 

 

y_pred_tree = tree_clf.predict(X_test) 

print(classification_report(y_test, y_pred_tree)) 

 

ysm_pred_tree = log_reg_sm2.predict(X_test) 

print(classification_report(y_test, ysm_pred_tree)) 

 

# confusion_matrix Logistic Regression 

from sklearn.metrics import confusion_matrix 

 

log_cf = confusion_matrix(y_test, y_pred_log) 
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log_cf_sm = confusion_matrix(y_test, ysm_pred_log) 

 

# confusion_matrix Tree 

from sklearn.metrics import confusion_matrix 

tree_cf = confusion_matrix(y_test, y_pred_tree) 

tree_cf_sm = confusion_matrix(y_test, ysm_pred_tree) 

 

# ROC Curve 

from sklearn.metrics import roc_curve 

 

# Check cross validation of the Decision Tree   DecisionTree Classifier Cross Validation Score 94.06% 

tree_score = cross_val_score(tree_clf, X_train, y_train, cv=5) 

print('DecisionTree Classifier Cross Validation Score', round(tree_score.mean() * 100, 2).astype(str) + '%') 

 

from sklearn.model_selection import cross_val_predict 

# Create a DataFrame with all the scores and the classifiers names. 

 

log_reg_pred = cross_val_predict(log_reg, X_train, y_train, cv=5, method="decision_function") 

svc_pred = cross_val_predict(svc, X_train, y_train, cv=5, method="decision_function") 

 

from sklearn.metrics import roc_curve 

from sklearn.metrics import roc_auc_score 

print('Logistic Regression: ', roc_auc_score(y_train, log_reg_pred)) 

print('Decision Tree Classifier: ', roc_auc_score(y_train, tree_pred)) 

 

# recall  -- LR 

from sklearn.metrics import recall_score 

 

# UNDER-SAMPLE (1:6000) and SMOTE (1:9000) 

recall_score(y8_test, y8sm_pred_log, average='binary') 
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precision_score(y8_test, y8sm_pred_log)  # 0.1 

 

# Logistic Regression After SMOTE (1:8514) 

recall_score(y1_test, y2sm_pred_log, average='binary') 

precision_score(y1_test, y2sm_pred_log) 

 

# Logistic Regression After SMOTE (1:4000) 

recall_score(y1_test, y1sm_pred_log, average='binary') 

precision_score(y1_test, y1sm_pred_log) 

 

# Logistic Regression 

recall_score(y1_test, y_pred_log, average='binary') 

precision_score(y1_test, y_pred_log) 

 

# confusion_matrix LR 

from sklearn.metrics import confusion_matrix 

LR_cf1 = confusion_matrix(y1_test, y_pred_log) 

LR_cf2 = confusion_matrix(y1_test, y1sm_pred_log) 

LR_cf3 = confusion_matrix(y1_test, y2sm_pred_log) 

LR_cf4 = confusion_matrix(y8_test, y8sm_pred_log) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(LR_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues) 

ax[0, 0].set_title("Logistic Regression \n Confusion Matrix", fontsize=14) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

sns.heatmap(LR_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues) 

ax[0][1].set_title("Logistic Regression_SMOTE(1:4000) \n Confusion Matrix", fontsize=14) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 
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ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(LR_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues) 

ax[1][0].set_title("Logistic Regression_SMOTE(1:8514) \n Confusion Matrix", fontsize=14) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(LR_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues) 

ax[1][1].set_title("Logistic Regression_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion Matrix", 
fontsize=14) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

# RF 

recall_score(y_test, y_pred_tree, average='binary') 

precision_score(y_test, y_pred_tree) 

 

recall_score(y_test, ysm_pred_tree1, average='binary') 

precision_score(y_test, ysm_pred_tree1) 

 

recall_score(y_test, ysm_pred_tree2, average='binary') 

precision_score(y_test, ysm_pred_tree2) 

recall_score(y_test, ysm_pred_tree5, average='binary') 

precision_score(y_test, ysm_pred_tree5) 

 

# confusion_matrix Tree 

from sklearn.metrics import confusion_matrix 

tree_cf1 = confusion_matrix(y_test, y_pred_tree) 

tree_cf2 = confusion_matrix(y_test, ysm_pred_tree1) 

tree_cf3 = confusion_matrix(y_test, ysm_pred_tree2) 
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tree_cf4 = confusion_matrix(y_test, ysm_pred_tree5) 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues) 

ax[0, 0].set_title("Random Forest Classifier \n Confusion Matrix", fontsize=14) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues) 

ax[0][1].set_title("Random Forest Classifier_SMOTE(1:4000) \n Confusion Matrix", fontsize=14) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues) 

ax[1][0].set_title("Random Forest Classifier_SMOTE(1:8514) \n Confusion Matrix", fontsize=14) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues) 

ax[1][1].set_title("Random Forest Classifier_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion 
Matrix", fontsize=14) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 

 

rf_reg_pred = cross_val_predict(tree_clf, X_train, y_train, cv=5) 

rf_fpr, rf_tpr, rf_thresold = roc_curve(y_train, rf_reg_pred) 
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rf_reg_pred2 = cross_val_predict(log_reg_sm1, Xsm_train, ysm_train, cv=5) 

rf_fpr2, rf_tpr2, rf_thresold2 = roc_curve(ysm_train, rf_reg_pred2) 

 

rf_reg_pred3 = cross_val_predict(log_reg_sm2, X3sm_train, y3sm_train, cv=5) 

rf_fpr3, rf_tpr3, rf_thresold3 = roc_curve(y3sm_train, rf_reg_pred3) 

 

rf_reg_pred4 = cross_val_predict(log_reg_sm5, X5_train, y5_train, cv=5) 

rf_fpr4, rf_tpr4, rf_thresold4 = roc_curve(y5_train, rf_reg_pred4) 

 

def graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(rf_fpr, rf_tpr, label='Random Forest (Before SMOTE) Classifier Score: 
{:.4f}'.format(roc_auc_score(y_train, rf_reg_pred))) 

    plt.plot(rf_fpr2, rf_tpr2, label='Random Forest (After SMOTE 1:4000) Classifier Score: 
{:.4f}'.format(roc_auc_score(ysm_train, rf_reg_pred2))) 

    plt.plot(rf_fpr3, rf_tpr3, label='Random Forest (After SMOTE 1:8514) Classifier Score: 
{:.4f}'.format(roc_auc_score(y3sm_train, rf_reg_pred3))) 

    plt.plot(rf_fpr4, rf_tpr4, label='Random Forest (SMOTE 1:9000 & Under-sample 1:6000) Classifier Score: 
{:.4f}'.format(roc_auc_score(y5_train, rf_reg_pred4))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 

    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), 

                arrowprops=dict(facecolor='#6E726D', shrink=0.05),) 

    plt.legend() 

 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 

graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2) 
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plt.show() 

 

from itertools import cycle 

from sklearn.metrics import 
confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_re
port 

 

lr = LogisticRegression(C = 0.01, penalty = 'l1') 

lr.fit(X_train, y_train) 

y_pred_undersample_proba = lr.predict_proba(X_test) 

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 

colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal', 'red', 'yellow', 'green', 
'blue','black']) 

 

plt.figure(figsize=(5,5)) 

 

j = 1 

for i, color in zip(thresholds, colors): 

    y_test_predictions_prob = y_pred_undersample_proba[:, 1] > i 

    precision, recall, thresholds = precision_recall_curve(y4_test, y_test_predictions_prob) 

 

    # Plot Precision-Recall curve 

    plt.plot(recall, precision, color=color, 

    label='Threshold: %s' % i) 

    plt.xlabel('Recall') 

    plt.ylabel('Precision') 

    plt.ylim([0.0, 1.05]) 

    plt.xlim([0.0, 1.0]) 

    plt.title('Precision-Recall example') 

    plt.legend(loc="lower left") 
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# Gradient Boosting 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc 

 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb1.fit(X_train, y_train) 

    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb1.score(X_train, y_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb1.score(X_test, y_test))) 

    print() 

 

 

gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2, 
random_state = 0)    ### 0  0 

gb1.fit(X_train, y_train) 

predictions1 = gb1.predict(X_test) 

print("Confusion Matrix:") 

print(confusion_matrix(y_test, predictions)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions)) 

 

##### SMOTE 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb2.fit(Xsm_train, ysm_train) 
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    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb2.score(Xsm_train, ysm_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb2.score(X_test, y_test))) 

    print() 

 

gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2, 
random_state = 0)   ### 0.5 => 0.18  0.17 

gb2.fit(Xsm_train, ysm_train) 

predictions2 = gb2.predict(X_test) 

print("Confusion Matrix:") 

print(confusion_matrix(y_test, predictions2)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions2)) 

 

##### SMOTE (9000) 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb3.fit(X3sm_train, y3sm_train) 

    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb3.score(X3sm_train, y3sm_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb3.score(X_test, y_test))) 

    print() 

 

gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2, 
random_state = 0)   ### 0.05 => 0.57  0.14 

gb3.fit(X3sm_train, y3sm_train) 

predictions3 = gb3.predict(X_test) 

print("Confusion Matrix:") 
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print(confusion_matrix(y_test, predictions)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions)) 

 

########## SMOTE & Undersampling 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb4.fit(X4sm_train, y4sm_train) 

    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb4.score(X4sm_train, y4sm_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb4.score(X_test, y_test))) 

    print() 

 

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 2, 
random_state = 0)   ### 0.05 => 0.95  0.09 

gb4.fit(X4sm_train, y4sm_train) 

predictions4 = gb4.predict(X_test) 

print("Confusion Matrix:") 

print(confusion_matrix(y_test, predictions)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions)) 

 

# ROC Curve 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 

 

log_reg_pred = cross_val_predict(gb1, X_train, y_train, cv=5) 
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log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred) 

 

log_reg_pred2 = cross_val_predict(gb2, Xsm_train, ysm_train, cv=5) 

log_fpr2, log_tpr2, log_thresold2 = roc_curve(ysm_train, log_reg_pred2) 

 

log_reg_pred3 = cross_val_predict(gb3, X3sm_train, y3sm_train, cv=5) 

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y3sm_train, log_reg_pred3) 

 

log_reg_pred4 = cross_val_predict(gb4, X4sm_train, y4sm_train, cv=5) 

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y4sm_train, log_reg_pred4) 

 

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(log_fpr, log_tpr, label='Gradient Boosting (Before SMOTE) & Any Learning Rate Classifier Score: 
{:.4f}'.format(roc_auc_score(y_train, log_reg_pred))) 

    plt.plot(log_fpr2, log_tpr2, label='Gradient Boosting (After SMOTE 1:4000) & Learning Rate(0.5) 
Classifier Score: {:.4f}'.format(roc_auc_score(ysm_train, log_reg_pred2))) 

    plt.plot(log_fpr3, log_tpr3, label='Gradient Boosting (After SMOTE 1:8514) Learning Rate(0.05) 
Classifier Score: {:.4f}'.format(roc_auc_score(y3sm_train, log_reg_pred3))) 

    plt.plot(log_fpr4, log_tpr4, label='Gradient Boosting (SMOTE 1:9000 & Under-sample 1:6000) Learning 
Rate(0.05) Classifier Score: {:.4f}'.format(roc_auc_score(y4sm_train, log_reg_pred4))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 

    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05),) 

    plt.legend() 

 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 
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graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2) 

plt.show() 

 

# confusion_matrix Tree 

from sklearn.metrics import confusion_matrix 

tree_cf1 = confusion_matrix(y_test, predictions1) 

tree_cf2 = confusion_matrix(y_test, predictions2) 

tree_cf3 = confusion_matrix(y_test, predictions3) 

tree_cf4 = confusion_matrix(y_test, predictions4) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues) 

ax[0, 0].set_title("Gradient Boosting & Any Learning Rate \n Confusion Matrix", fontsize=14) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues) 

ax[0][1].set_title("Gradient Boosting_SMOTE(1:4000) & Learning Rate(0.5) \n Confusion Matrix", 
fontsize=14) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues) 

ax[1][0].set_title("Gradient Boosting_SMOTE(1:8514) & Learning Rate(0.05) \n Confusion Matrix", 
fontsize=14) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues) 
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ax[1][1].set_title("Gradient Boosting_SMOTE(1:9000) & Undersampling(1:6000) & Learning Rate(0.05) \n 
Confusion Matrix", fontsize=14) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

##### Naive Bayes 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.naive_bayes import GaussianNB 

 

from sklearn.preprocessing import QuantileTransformer 

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline.fit(X1_train, y1_train) 

y_pred66 = pipeline.predict(X1_test) 

y_pred66_prob = pipeline.predict_proba(X1_test) 

recall_score(y1_test,y_pred66) # 0.09 

NB1 = confusion_matrix(y1_test,y_pred66) 

 

pipeline11 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline11.fit(X1sm_train, y1sm_train) 

y_pred6 = pipeline11.predict(X1_test) 

y_pred6_prob = pipeline11.predict_proba(X1_test) 

recall_score(y1_test,y_pred6) # 0.2857142857142857 

NB2 = confusion_matrix(y1_test,y_pred6) 

 

pipeline7 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline7.fit(X2sm_train, y2sm_train) 

y_pred7 = pipeline7.predict(X1_test) 

recall_score(y1_test,y_pred7) # 0.406 

NB3 = confusion_matrix(y1_test,y_pred7) 
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pipeline8 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline8.fit(X8sm_train, y8sm_train) 

y_pred8 = pipeline8.predict(X8_test) 

recall_score(y8_test,y_pred8) # 0.7857142857142857 

NB4 = confusion_matrix(y8_test,y_pred8) 

 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.naive_bayes import GaussianNB 

from sklearn.preprocessing import QuantileTransformer 

 

def get_predictions(clf, X_train, y_train, X_test): 

    # create classifier 

    clf = clf 

    # fit it to training data 

    clf.fit(X_train,y_train) 

    # predict using test data 

    y_pred = clf.predict(X_test) 

    # Compute predicted probabilities: y_pred_prob 

    y_pred_prob = clf.predict_proba(X_test) 

    #for fun: train-set predictions 

    train_pred = clf.predict(X_train) 

    print('train-set confusion matrix:\n', confusion_matrix(y_train,train_pred)) 

    return y_pred, y_pred_prob 

def print_scores(y_test,y_pred,y_pred_prob): 

    print('test-set confusion matrix:\n', confusion_matrix(y_test,y_pred)) 

    print("recall score: ", recall_score(y_test,y_pred)) 

    print("precision score: ", precision_score(y_test,y_pred)) 

    print("f1 score: ", f1_score(y_test,y_pred)) 
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    print("accuracy score: ", accuracy_score(y_test,y_pred)) 

print("ROC AUC: {}".format(roc_auc_score(y_test, y_pred_prob[:,1]))) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X1_train, y1_train, X1_test) 

print_scores(y1_test,y_pred,y_pred_prob) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X1sm_train, y1sm_train, X1_test) 

print_scores(y1_test,y_pred,y_pred_prob) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X2sm_train, y2sm_train, X1_test) 

print_scores(y1_test,y_pred,y_pred_prob) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X8sm_train, y8sm_train, X8_test) 

print_scores(y8_test,y_pred,y_pred_prob) 

 

# ROC Curve 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 

 

log_reg_pred = cross_val_predict(log_reg, X1_train, y1_train, cv=5) 

log_fpr, log_tpr, log_thresold = roc_curve(y1_train, log_reg_pred) 

 

log_reg_pred2 = cross_val_predict(log_reg2, X1sm_train, y1sm_train, cv=5) 

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2) 

 

log_reg_pred3 = cross_val_predict(log_reg3, X2sm_train, y2sm_train, cv=5) 

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3) 

 

log_reg_pred8 = cross_val_predict(log_reg8, X8sm_train, y8sm_train, cv=5) 

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8) 
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def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(log_fpr, log_tpr, label='Logistic Regression (Before SMOTE) Classifier Score: 
{:.4f}'.format(roc_auc_score(y1_train, log_reg_pred))) 

    plt.plot(log_fpr2, log_tpr2, label='Logistic Regression (After SMOTE 1:4000) Classifier Score: 
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2))) 

    plt.plot(log_fpr3, log_tpr3, label='Logistic Regression (After SMOTE 1:8514) Classifier Score: 
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3))) 

    plt.plot(log_fpr4, log_tpr4, label='Logistic Regression (SMOTE 1:9000 & Under-sample 1:6000) Classifier 
Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 

    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), 

                arrowprops=dict(facecolor='#6E726D', shrink=0.05), 

                ) 

    plt.legend() 

 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2) 

plt.show() 

 

# confusion_matrix Tree 

from sklearn.metrics import confusion_matrix 

tree_cf1 = confusion_matrix(y_test, y_pred_tree) 

tree_cf2 = confusion_matrix(y_test, ysm_pred_tree1) 

tree_cf3 = confusion_matrix(y_test, ysm_pred_tree2) 
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tree_cf4 = confusion_matrix(y_test, ysm_pred_tree5) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues) 

ax[0, 0].set_title("RandomForest Classifier \n Confusion Matrix", fontsize=14) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues) 

ax[0][1].set_title("RandomForest Classifier_SMOTE(1:4000) \n Confusion Matrix", fontsize=14) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues) 

ax[1][0].set_title("RandomForest Classifier_SMOTE(1:8514) \n Confusion Matrix", fontsize=14) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues) 

ax[1][1].set_title("RandomForest Classifier_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion 
Matrix", fontsize=14) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(NB1, ax=ax[0][0], annot=True, cmap=plt.cm.Blues) 

ax[0, 0].set_title("Naive Bayes \n Confusion Matrix", fontsize=14) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 
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ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(NB2, ax=ax[0][1], annot=True, cmap=plt.cm.Blues) 

ax[0][1].set_title("Naive Bayes_SMOTE(1:4000) \n Confusion Matrix", fontsize=14) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(NB3, ax=ax[1][0], annot=True, cmap=plt.cm.Blues) 

ax[1][0].set_title("Naive Bayes_SMOTE(1:8514) \n Confusion Matrix", fontsize=14) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(NB4, ax=ax[1][1], annot=True, cmap=plt.cm.Blues) 

ax[1][1].set_title("Naive Bayes_SMOTE(1:9000) & Undersampling(1:6000) \n Confusion Matrix", 
fontsize=14) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 
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Appendix B 
 

Code for the Analysis of Dataset 2 

data = pd.read_csv('C:/Users/Jason/Desktop/Thesis/insurance_claims_original.csv') 

df2 = pd.read_csv('C:/Users/Jason/Desktop/Thesis/insurance_claims_original.csv') 

data = data.drop(['policy_number','policy_bind_date', 'incident_date','incident_location','auto_model'], 
axis = 1) 

 

# fill in missing data 

# check missing data 

data.isnull().any().any()  

data = data.replace('?',np.NaN) 

data['collision_type'].fillna(data['collision_type'].mode()[0], inplace = True) 

data['property_damage'].fillna('NO', inplace = True) 

data['police_report_available'].fillna('NO', inplace = True) 

data['fraud_reported'] = data['fraud_reported'].replace(('Y','N'),(1,0)) 

 

# bar chart 

from matplotlib import pyplot as plt 

name_list = ['1', '0'] 

num_list = [data['fraud_reported'].sum(), 1000-data['fraud_reported'].sum()] 

plt.bar(range(len(num_list)), num_list, color = 'rgb', tick_label = name_list) 

 

# pie chart 

labels = '1', '0' 

sizes = [data['fraud_reported'].sum(), 1000-data['fraud_reported'].sum()] 



115 
 

plt.pie(sizes, labels = labels, autopct = '%1.1f%%', shadow = False) 

 

# Check Assumptions of LR 

# ASSUMPTION OF CONTINUOUS IVS BEING LINEARLY RELATED TO THE LOG ODDS 

import statsmodels.formula.api as smf 

C_S = sns.regplot(x= 'total_claim_amount', y= 'fraud_reported', data= df, logistic= 
True).set_title("Total_Claim_Amount Log Odds Linear Plot") 

C_S = sns.regplot(x= 'age', y= 'fraud_reported', data= df, logistic= True).set_title("Age Log Odds Linear 
Plot") 

C_S = sns.regplot(x= 'months_as_customer', y= 'fraud_reported', data= df, logistic= 
True).set_title("Months_As_Customers Log Odds Linear Plot") 

C_S = sns.regplot(x= 'policy_annual_premium', y= 'fraud_reported', data= df, logistic= 
True).set_title("Policy_Annual_Premium Log Odds Linear Plot") 

 

# ASSUMPTION OF ABSENCE OF MULTICOLLINEARITY 

df.corr() 

# Delete the MULTICOLLINEARITY Variables 

columns = ['Month', 'AgeOfVehicle_year', 'AgeOfPolicyHolder', 'Year', 'BasePolicy', 'VehiclePrice', 
'VehicleCategory', 'PolicyNumber'] 

df1 = df.drop(columns, axis=1) 

 

# ASSUMPTION OF LOCK OF OUTLIERS 

ClaimSize_box = sns.boxplot(data= df[['vehicle_claim']]).set_title("vehicle_claim Box Plot") 

ClaimSize_box = sns.boxplot(data= df[['injury_claim']]).set_title("injury_claim Box Plot") 

 

# let's check the correlation auto make with the target 

data['incident_type'] = data['incident_type'].replace(('Vehicle Theft','Parked Car','Multi-vehicle 
Collision', 'Single Vehicle Collision'),(0.09, 0.10, 0.28,0.30)) 

 

data['insured_sex'] = data['insured_sex'].replace(('FEMALE','MALE'),(0.24,0.27)) 

data['policy_csl'] = data['policy_csl'].replace(('500/1000','100/300','250/500'),(0.22,0.26,0.27)) 

data['policy_state'] = data['policy_state'].replace(('IL','IN','OH'),(0.23,0.255,0.26)) 
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data['insured_education_level'] = data['insured_education_level'].replace(('Masters', 'High 
School','Associate', 'JD','College', 'MD','PhD'),(0.22,0.23,0.24,0.26,0.27,0.28,0.29)) 

data['police_report_available'] = data['police_report_available'].replace(('NO','YES'),(0.23,0.26)) 

 

data[['auto_make','fraud_reported']].groupby(['auto_make'], as_index = False).mean().sort_values(by = 
'fraud_reported', ascending = False) 

 

data['auto_make'] = data['auto_make'].replace(('Jeep','Nissan','Toyota','Accura','Saab','Suburu', 

'Dodge','Honda','Chevrolet','BMW','Volkswagen','Audi','Ford','Mercedes'), 
(0.17,0.18,0.19,0.19,0.23,0.24,0.25,0.26,0.27,0.28,0.28,0.30,0.31,0.36)) 

 

data[['incident_city','fraud_reported']].groupby(['incident_city'],as_index = False).mean().sort_values(by 
= 'fraud_reported', ascending = False) 

 

data['incident_city'] = data['incident_city'].replace(('Northbrook','Riverwood','Northbend','Springfield', 

'Hillsdale','Columbus','Arlington'),(0.22,0.22,0.23,0.24,0.25,0.26,0.29)) 

 

data[['incident_state','fraud_reported']].groupby(['incident_state'], as_index = 
False).mean().sort_values(by = 'fraud_reported', ascending = False) 

 

# let's perform target encoding for incident state 

data['incident_state'] = data['incident_state'].replace(('WV','NY','VA','PA','SC','NC','OH'), 

                                                        (0.18,0.22,0.23,0.27,0.29,0.31,0.43)) 

data[['authorities_contacted','fraud_reported']].groupby(['authorities_contacted'], 

                as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False) 

data['authorities_contacted'] = 
data['authorities_contacted'].replace(('None','Police','Fire','Ambulance','Other'), 
(0.07,0.21,0.27,0.29,0.31)) 

data[['insured_relationship','fraud_reported']].groupby(['insured_relationship'], as_index = 
False).mean().sort_values(by = 'fraud_reported', ascending = False) 

data['insured_relationship'] = data['insured_relationship'].replace(('husband','own-child','unmarried', 

                                        'not-in-family','wife','other-relative'),(0.20,0.21,0.24,0.26,0.27,0.29)) 
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data[['insured_hobbies','fraud_reported']].groupby(['insured_hobbies'], 

                as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False) 

data['insured_hobbies'] = data['insured_hobbies'].replace(('camping', 'kayaking', 'golf','dancing', 

        'bungie-jumping','movies', 'basketball','exercise','sleeping','video-games','skydiving','paintball', 

            'hiking','base-jumping','reading','polo','board-games','yachting', 'cross-fit','chess'),(0.09, 0.09, 

                0.11, 0.12,0.16,0.16,0.18,0.19,0.19,0.20,0.22,0.23,0.24,0.27,0.27,0.28,0.29,0.30,0.74,0.83)) 

 

data[['insured_occupation','fraud_reported']].groupby(['insured_occupation'], 

                as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False) 

data['insured_occupation'] = data['insured_occupation'].replace(('other-service','priv-house-serv', 

                        'adm-clerical','handlers-cleaners','prof-specialty','protective-serv', 

                'machine-op-inspct','armed-forces','sales','tech-support','transport-moving','craft-repair', 

                    'farming-fishing','exec-managerial'),(0.16, 0.17,0.17, 0.21,0.22,0.23,0.24,0.25,0.28,0.29, 

                                                          0.291,0.297,0.30,0.37)) 

 

data[['property_damage','fraud_reported']].groupby(['property_damage'], 

                as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False) 

 

data['property_damage'] = data['property_damage'].replace(('NO','YES'),(0.24,0.26)) 

 

data[['collision_type','fraud_reported']].groupby(['collision_type'], 

                as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False) 

data['collision_type'] = data['collision_type'].replace(('Rear Collision', 'Side Collision', 'Front Collision'), 

                                                        (0.31,0.25,0.28)) 

 

data[['incident_severity','fraud_reported']].groupby(['incident_severity'], 

                as_index = False).mean().sort_values(by = 'fraud_reported', ascending = False) 

data['incident_severity'] = data['incident_severity'].replace(('Trivial Damage','Minor Damage','Total 
Loss', 'Major Damage'),(0.06,0.11,0.13,0.61)) 
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data[['authorities_contacted','fraud_reported']].groupby(['authorities_contacted'], as_index = 
False).mean().sort_values(by = 'fraud_reported', ascending = False) 

data['authorities_contacted'] = 
data['authorities_contacted'].replace(('None','Police','Fire','Ambulance','Other'),( 0.06,0.21,0.27,0.30,0.3
2)) 

 

x = data.drop(['fraud_reported'], axis = 1) 

y = data['fraud_reported'] 

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 42) 

 

# Correlation Matrix 

plt.rcParams['figure.figsize'] = (15, 10) 

sns.heatmap(X_train.corr(), cmap = 'copper') 

plt.title('Heat Map for Correlations', fontsize = 20) 

plt.show() 

 

# SMOTE 

from imblearn.over_sampling import SMOTE 

# SMOTE Technique (OverSampling) After splitting and Cross Validating 

sm = SMOTE(ratio={1: 376},random_state=42) 

Xsm_train, ysm_train = sm.fit_sample(X_train, y_train) 

X1sm_train, y1sm_train = sm.fit_sample(X_train, y_train) 

 

sm1 = SMOTE(ratio={1: 753},random_state=42) 

X3sm_train, y3sm_train = sm1.fit_sample(X_train, y_train) 

X2sm_train, y2sm_train = sm1.fit_sample(X_train, y_train) 

 

# Under - Smaple & SMOTE for LR 

df = data 

df3 = data.sample(frac=1) 

non_fraud_df = df3.loc[df['fraud_reported'] == 0][:502] 
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fraud_df = df3.loc[df['fraud_reported'] == 1] 

normal_distributed_df = pd.concat([fraud_df, non_fraud_df]) 

new_df1 = normal_distributed_df.sample(frac=1, random_state=42) 

 

X8 = new_df1.iloc[:, :-1] 

y8 = new_df1.iloc[:, -1] 

X8_train, X8_test, y8_train, y8_test = train_test_split(X8, y8, test_size=0.3, random_state=42) 

 

sm = SMOTE(ratio={1: 753}, random_state=42)   

X8sm_train, y8sm_train = sm.fit_sample(X8_train, y8_train) 

from collections import Counter 

 

# Logistic Regression 

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} 

grid_log_reg = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg.fit(X_train, y_train) 

log_reg = grid_log_reg.best_estimator_ 

y_pred_log = log_reg.predict(X_test) 

 

# Logistic Regression After SMOTE (1:376) 

log_reg_params = {"penalty": ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} 

grid_log_reg2 = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg2.fit(X1sm_train, y1sm_train) 

log_reg2 = grid_log_reg2.best_estimator_ 

y1sm_pred_log = log_reg2.predict(X_test) 

 

# Logistic Regression After SMOTE (1:753) 

grid_log_reg3 = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg3.fit(X2sm_train, y2sm_train) 

log_reg3 = grid_log_reg3.best_estimator_ 
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y2sm_pred_log = log_reg3.predict(X_test) 

 

# Undersampling & SMOTE 

grid_log_reg8 = GridSearchCV(LogisticRegression(), log_reg_params) 

grid_log_reg8.fit(X8sm_train, y8sm_train) 

log_reg8 = grid_log_reg8.best_estimator_ 

y8sm_pred_log = log_reg8.predict(X_test) 

 

# ROC Curve 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 

 

log_reg_pred = cross_val_predict(log_reg, X_train, y_train, cv=5) 

log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred) 

 

log_reg_pred2 = cross_val_predict(log_reg2, X1sm_train, y1sm_train, cv=5) 

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2) 

 

log_reg_pred3 = cross_val_predict(log_reg3, X2sm_train, y2sm_train, cv=5) 

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3) 

 

log_reg_pred8 = cross_val_predict(log_reg8, X8sm_train, y8sm_train, cv=5) 

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8) 

 

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(log_fpr, log_tpr, label='Logistic Regression (Before SMOTE) Classifier Score: 
{:.4f}'.format(roc_auc_score(y_train, log_reg_pred))) 

    plt.plot(log_fpr2, log_tpr2, label='Logistic Regression (After SMOTE 1:376) Classifier Score: 
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2))) 



121 
 

    plt.plot(log_fpr3, log_tpr3, label='Logistic Regression (After SMOTE 1:753) Classifier Score: 
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3))) 

    plt.plot(log_fpr4, log_tpr4, label='Logistic Regression (SMOTE 1:753 & Under-sample 1:502) Classifier 
Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 

    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05)) 

plt.legend() 

 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2) 

plt.show() 

 

# DecisionTree Classifier 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree.fit(X_train, y_train) 

# tree best estimator 

tree_clf = grid_tree.best_estimator_ 

y_pred_tree = tree_clf.predict(X_test) 

 

# Decision Tree SMOTE  

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 
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grid_tree_sm1 = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree_sm1.fit(X1sm_train, y1sm_train) 

log_reg_sm1 = grid_tree_sm1.best_estimator_ 

ysm_pred_tree1 = log_reg_sm1.predict(X_test) 

 

# SMOTE  

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree_sm2 = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree_sm2.fit(X2sm_train, y2sm_train) 

log_reg_sm2 = grid_tree_sm2.best_estimator_ 

ysm_pred_tree2 = log_reg_sm2.predict(X_test) 

 

 

# Undersampling & SMOTE 

from sklearn.model_selection import GridSearchCV 

tree_params = {"criterion": ["gini", "entropy"], "max_depth": list(range(2,4,1)), 

              "min_samples_leaf": list(range(5,7,1))} 

grid_tree_sm5 = GridSearchCV(DecisionTreeClassifier(), tree_params) 

grid_tree_sm5.fit(X8sm_train, y8sm_train) 

log_reg_sm5 = grid_tree_sm5.best_estimator_ 

ysm_pred_tree5 = log_reg_sm5.predict(X_test) 

 

# recall  -- LR 

from sklearn.metrics import recall_score 

# UNDER-SAMPLE (1:6000) and SMOTE  

recall_score(y_test, y8sm_pred_log, average='binary')    

precision_score(y_test, y8sm_pred_log)  

 



123 
 

# Logistic Regression After SMOTE  

recall_score(y_test, y2sm_pred_log, average='binary')  

precision_score(y_test, y2sm_pred_log)  

 

# Logistic Regression After SMOTE  

recall_score(y_test, y1sm_pred_log, average='binary')  

precision_score(y_test, y1sm_pred_log)  

 

# Logistic Regression 

recall_score(y_test, y_pred_log, average='binary')  

precision_score(y_test, y_pred_log)  

 

# confusion_matrix LR 

from sklearn.metrics import confusion_matrix 

LR_cf1 = confusion_matrix(y_test, y_pred_log) 

LR_cf2 = confusion_matrix(y_test, y1sm_pred_log) 

LR_cf3 = confusion_matrix(y_test, y2sm_pred_log) 

LR_cf4 = confusion_matrix(y_test, y8sm_pred_log) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(LR_cf1, ax=ax[0][0], annot=True, cmap='copper') 

ax[0, 0].set_title("Logistic Regression \n Confusion Matrix", fontsize=10) 

ax[0, 0].set_xticklabels(['', ''], fontsize=10, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=10, rotation=360) 

 

sns.heatmap(LR_cf2, ax=ax[0][1], annot=True, cmap='copper') 

ax[0][1].set_title("Logistic Regression_SMOTE(1:376) \n Confusion Matrix", fontsize=10) 

ax[0][1].set_xticklabels(['', ''], fontsize=10, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=10, rotation=360) 
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sns.heatmap(LR_cf3, ax=ax[1][0], annot=True, cmap='copper') 

ax[1][0].set_title("Logistic Regression_SMOTE(1:753) \n Confusion Matrix", fontsize=10) 

ax[1][0].set_xticklabels(['', ''], fontsize=10, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=10, rotation=360) 

 

sns.heatmap(LR_cf4, ax=ax[1][1], annot=True, cmap='copper') 

ax[1][1].set_title("Logistic Regression_SMOTE(1:753) & Undersampling(1:502) \n Confusion Matrix", 
fontsize=10) 

ax[1][1].set_xticklabels(['', ''], fontsize=10, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=10, rotation=360) 

 

# RF 

# UNDER-SAMPLE (1:6000) and SMOTE (1:9000) 

recall_score(y_test, ysm_pred_tree5, average='binary')  

precision_score(y_test, ysm_pred_tree5)   

 

# Logistic Regression After SMOTE  

recall_score(y_test, ysm_pred_tree2, average='binary')  

precision_score(y_test, ysm_pred_tree2)   

 

# Logistic Regression After SMOTE  

recall_score(y_test, ysm_pred_tree1, average='binary')   

precision_score(y_test, ysm_pred_tree1)   

 

# No SMOTE 

recall_score(y_test, y_pred_tree, average='binary')  

precision_score(y_test, y_pred_tree)  

 

# confusion_matrix Tree 

from sklearn.metrics import confusion_matrix 
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tree_cf1 = confusion_matrix(y_test, y_pred_tree) 

tree_cf2 = confusion_matrix(y_test, ysm_pred_tree1) 

tree_cf3 = confusion_matrix(y_test, ysm_pred_tree2) 

tree_cf4 = confusion_matrix(y_test, ysm_pred_tree5) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap='copper') 

ax[0, 0].set_title("RandomForest Classifier \n Confusion Matrix", fontsize=10) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap='copper') 

ax[0][1].set_title("RandomForest Classifier_SMOTE(1:376) \n Confusion Matrix", fontsize=10) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap='copper') 

ax[1][0].set_title("RandomForest Classifier_SMOTE(1:753) \n Confusion Matrix", fontsize=10) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap='copper') 

ax[1][1].set_title("RandomForest Classifier_SMOTE(1:753) & Undersampling(1:502) \n Confusion 
Matrix", fontsize=10) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 
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rf_reg_pred = cross_val_predict(tree_clf, X_train, y_train, cv=5) 

rf_fpr, rf_tpr, rf_thresold = roc_curve(y_train, rf_reg_pred) 

 

rf_reg_pred2 = cross_val_predict(log_reg_sm1, X1sm_train, y1sm_train, cv=5) 

rf_fpr2, rf_tpr2, rf_thresold2 = roc_curve(y1sm_train, rf_reg_pred2) 

 

rf_reg_pred3 = cross_val_predict(log_reg_sm2, X2sm_train, y2sm_train, cv=5) 

rf_fpr3, rf_tpr3, rf_thresold3 = roc_curve(y2sm_train, rf_reg_pred3) 

 

rf_reg_pred4 = cross_val_predict(log_reg_sm5, X8sm_train, y8sm_train, cv=5) 

rf_fpr4, rf_tpr4, rf_thresold4 = roc_curve(y8sm_train, rf_reg_pred4) 

 

def graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(rf_fpr, rf_tpr, label='Random Forest (Before SMOTE) Classifier Score: 
{:.4f}'.format(roc_auc_score(y_train, rf_reg_pred))) 

    plt.plot(rf_fpr2, rf_tpr2, label='Random Forest (After SMOTE 1:376) Classifier Score: 
{:.4f}'.format(roc_auc_score(y1sm_train, rf_reg_pred2))) 

    plt.plot(rf_fpr3, rf_tpr3, label='Random Forest (After SMOTE 1:753) Classifier Score: 
{:.4f}'.format(roc_auc_score(y2sm_train, rf_reg_pred3))) 

    plt.plot(rf_fpr4, rf_tpr4, label='Random Forest (SMOTE 1:753 & Under-sample 1:502) Classifier Score: 
{:.4f}'.format(roc_auc_score(y8sm_train, rf_reg_pred4))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 

    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05),) 

    plt.legend() 
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import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 

graph_roc_curve_multiple(rf_fpr, rf_tpr, rf_fpr2, rf_tpr2) 

plt.show() 

 

from itertools import cycle 

from sklearn.metrics import 
confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_report 

 

lr = LogisticRegression(C = 0.01, penalty = 'l1') 

lr.fit(X_train, y_train) 

y_pred_undersample_proba = lr.predict_proba(X_test) 

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 

colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal', 'red', 'yellow', 'green', 
'blue','black']) 

 

plt.figure(figsize=(5,5)) 

 

j = 1 

for i, color in zip(thresholds, colors): 

    y_test_predictions_prob = y_pred_undersample_proba[:, 1] > i 

    precision, recall, thresholds = precision_recall_curve(y4_test, y_test_predictions_prob) 

 

    # Plot Precision-Recall curve 

    plt.plot(recall, precision, color=color, 

             label='Threshold: %s' % i) 

    plt.xlabel('Recall') 

    plt.ylabel('Precision') 

    plt.ylim([0.0, 1.05]) 

    plt.xlim([0.0, 1.0]) 

    plt.title('Precision-Recall example') 
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    plt.legend(loc="lower left") 

 

# import machine learning algorithms 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc 

 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb1.fit(X_train, y_train) 

    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb1.score(X_train, y_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb1.score(X_test, y_test))) 

    print() 

gb1 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2, 
random_state = 0)    ### 0  0 

gb1.fit(X_train, y_train) 

predictions1 = gb1.predict(X_test) 

print("Confusion Matrix:") 

print(confusion_matrix(y_test, predictions1)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions1)) 

 

###SMOTE 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb2.fit(Xsm_train, ysm_train) 
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    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb2.score(X1sm_train, y1sm_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb2.score(X_test, y_test))) 

    print() 

 

gb2 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.5, max_features=2, max_depth = 2, 
random_state = 0)   ### 0.5 => 0.18  0.17 

gb2.fit(X1sm_train, y1sm_train) 

predictions2 = gb2.predict(X_test) 

print("Confusion Matrix:") 

print(confusion_matrix(y_test, predictions2)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions2)) 

 

#####SMOTE 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb3.fit(X2sm_train, y2sm_train) 

    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb3.score(X2sm_train, y2sm_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb3.score(X_test, y_test))) 

    print() 

 

gb3 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 
2, random_state = 0)   ### 0.05 => 0.57  0.14 

gb3.fit(X2sm_train, y2sm_train) 

predictions3 = gb3.predict(X_test) 

print("Confusion Matrix:") 
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print(confusion_matrix(y_test, predictions3)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions3)) 

 

#### SMOTE & Undersampling 

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] 

for learning_rate in learning_rates: 

    gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = learning_rate, max_features=2, 
max_depth = 2, random_state = 0) 

    gb4.fit(X8sm_train, y8sm_train) 

    print("Learning rate: ", learning_rate) 

    print("Accuracy score (training): {0:.3f}".format(gb4.score(X8sm_train, y8sm_train))) 

    print("Accuracy score (validation): {0:.3f}".format(gb4.score(X_test, y_test))) 

    print() 

 

gb4 = GradientBoostingClassifier(n_estimators=20, learning_rate = 0.05, max_features=2, max_depth = 
2, random_state = 0)   ### 0.05 => 0.95  0.09 

gb4.fit(X8sm_train, y8sm_train) 

predictions4 = gb4.predict(X_test) 

print("Confusion Matrix:") 

print(confusion_matrix(y_test, predictions4)) 

print() 

print("Classification Report") 

print(classification_report(y_test, predictions4)) 

 

# ROC Curve 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 

 

log_reg_pred = cross_val_predict(gb1, X_train, y_train, cv=5) 
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log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred) 

 

log_reg_pred2 = cross_val_predict(gb2, X1sm_train, y1sm_train, cv=5) 

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2) 

 

log_reg_pred3 = cross_val_predict(gb3, X2sm_train, y2sm_train, cv=5) 

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3) 

 

log_reg_pred4 = cross_val_predict(gb4, X8sm_train, y8sm_train, cv=5) 

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred4) 

 

def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(log_fpr, log_tpr, label='Gradient Boosting (Before SMOTE) & Any Learning Rate Classifier 
Score: {:.4f}'.format(roc_auc_score(y_train, log_reg_pred))) 

    plt.plot(log_fpr2, log_tpr2, label='Gradient Boosting (After SMOTE 1:376) & Learning Rate(0.5) 
Classifier Score: {:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2))) 

    plt.plot(log_fpr3, log_tpr3, label='Gradient Boosting (After SMOTE 1:753) Learning Rate(0.05) 
Classifier Score: {:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3))) 

    plt.plot(log_fpr4, log_tpr4, label='Gradient Boosting (SMOTE 1:753 & Under-sample 1:502) Learning 
Rate(0.05) Classifier Score: {:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred4))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 

    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), arrowprops=dict(facecolor='#6E726D', shrink=0.05),) 

    plt.legend() 

 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 
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graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2) 

plt.show() 

 

# confusion_matrix Tree 

from sklearn.metrics import confusion_matrix 

tree_cf1 = confusion_matrix(y_test, predictions1) 

tree_cf2 = confusion_matrix(y_test, predictions2) 

tree_cf3 = confusion_matrix(y_test, predictions3) 

tree_cf4 = confusion_matrix(y_test, predictions4) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(tree_cf1, ax=ax[0][0], annot=True, cmap='copper') 

ax[0, 0].set_title("Gradient Boosting & Any Learning Rate \n Confusion Matrix", fontsize=10) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf2, ax=ax[0][1], annot=True, cmap='copper') 

ax[0][1].set_title("Gradient Boosting_SMOTE(1:376) & Learning Rate(0.5) \n Confusion Matrix", 
fontsize=10) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf3, ax=ax[1][0], annot=True, cmap='copper') 

ax[1][0].set_title("Gradient Boosting_SMOTE(1:753) & Learning Rate(0.05) \n Confusion Matrix", 
fontsize=10) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(tree_cf4, ax=ax[1][1], annot=True, cmap='copper') 
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ax[1][1].set_title("Gradient Boosting_SMOTE(1:753) & Undersampling(1:502) & Learning Rate(0.05) \n 
Confusion Matrix", fontsize=10) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

#### Naive Bayes 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.naive_bayes import GaussianNB 

 

from sklearn.preprocessing import QuantileTransformer 

pipeline = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

 

pipeline.fit(X_train, y_train) 

y_pred6 = pipeline.predict(X_test) 

y_pred6_prob = pipeline.predict_proba(X_test) 

recall_score(y_test,y_pred6) 

 

pipeline67 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline67.fit(X2sm_train, y2sm_train) 

y_pred67 = pipeline67.predict(X_test) 

recall_score(y_test,y_pred67) 

 

pipeline7 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline7.fit(X2sm_train, y2sm_train) 

y_pred7 = pipeline7.predict(X_test) 

recall_score(y_test,y_pred7) 

 

pipeline8 = make_pipeline(QuantileTransformer(output_distribution='normal'), GaussianNB()) 

pipeline8.fit(X8sm_train, y8sm_train) 
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y_pred8 = pipeline8.predict(X_test) 

recall_score(y_test,y_pred8) 

 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.naive_bayes import GaussianNB 

from sklearn.preprocessing import QuantileTransformer 

 

def get_predictions(clf, X_train, y_train, X_test): 

    # create classifier 

    clf = clf 

    # fit it to training data 

    clf.fit(X_train,y_train) 

    # predict using test data 

    y_pred = clf.predict(X_test) 

    # Compute predicted probabilities: y_pred_prob 

    y_pred_prob = clf.predict_proba(X_test) 

    #for fun: train-set predictions 

    train_pred = clf.predict(X_train) 

    print('train-set confusion matrix:\n', confusion_matrix(y_train,train_pred)) 

    return y_pred, y_pred_prob 

 

def print_scores(y_test,y_pred,y_pred_prob): 

    print('test-set confusion matrix:\n', confusion_matrix(y_test,y_pred)) 

    print("recall score: ", recall_score(y_test,y_pred)) 

    print("precision score: ", precision_score(y_test,y_pred)) 

    print("f1 score: ", f1_score(y_test,y_pred)) 

    print("accuracy score: ", accuracy_score(y_test,y_pred)) 

    print("ROC AUC: {}".format(roc_auc_score(y_test, y_pred_prob[:,1]))) 
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y_pred, y_pred_prob = get_predictions(GaussianNB(), X_train, y_train, X_test) 

print_scores(y_test,y_pred,y_pred_prob) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X1sm_train, y1sm_train, X_test) 

print_scores(y_test,y_pred,y_pred_prob) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X2sm_train, y2sm_train, X_test) 

print_scores(y_test,y_pred,y_pred_prob) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X8sm_train, y8sm_train, X8_test) 

print_scores(y8_test,y_pred,y_pred_prob) 

 

y_pred, y_pred_prob = get_predictions(GaussianNB(), X8sm_train, y8sm_train, X_test) 

print_scores(y_test,y_pred,y_pred_prob) 

 

# ROC Curve 

from sklearn.metrics import roc_curve 

from sklearn.model_selection import cross_val_predict 

 

log_reg_pred = cross_val_predict(pipeline, X_train, y_train, cv=5) 

log_fpr, log_tpr, log_thresold = roc_curve(y_train, log_reg_pred) 

 

log_reg_pred2 = cross_val_predict(pipeline67, X1sm_train, y1sm_train, cv=5) 

log_fpr2, log_tpr2, log_thresold2 = roc_curve(y1sm_train, log_reg_pred2) 

 

log_reg_pred3 = cross_val_predict(pipeline7, X2sm_train, y2sm_train, cv=5) 

log_fpr3, log_tpr3, log_thresold3 = roc_curve(y2sm_train, log_reg_pred3) 

 

log_reg_pred8 = cross_val_predict(pipeline8, X8sm_train, y8sm_train, cv=5) 

log_fpr4, log_tpr4, log_thresold4 = roc_curve(y8sm_train, log_reg_pred8) 
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def graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2): 

    plt.figure(figsize=(16,8)) 

    plt.title('ROC Curve \n Top 4 Classifiers', fontsize=18) 

    plt.plot(log_fpr, log_tpr, label='Naive Bayes (Before SMOTE) Classifier Score: 
{:.4f}'.format(roc_auc_score(y_train, log_reg_pred))) 

    plt.plot(log_fpr2, log_tpr2, label='Naive Bayes (After SMOTE 1:376) Classifier Score: 
{:.4f}'.format(roc_auc_score(y1sm_train, log_reg_pred2))) 

    plt.plot(log_fpr3, log_tpr3, label='Naive Bayes (After SMOTE 1:753) Classifier Score: 
{:.4f}'.format(roc_auc_score(y2sm_train, log_reg_pred3))) 

    plt.plot(log_fpr4, log_tpr4, label='Naive Bayes (SMOTE 1:753 & Under-sample 1:502) Classifier Score: 
{:.4f}'.format(roc_auc_score(y8sm_train, log_reg_pred8))) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.axis([-0.01, 1, 0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=16) 

    plt.ylabel('True Positive Rate', fontsize=16) 

    plt.annotate('Minimum ROC Score of 50% \n (This is the minimum score to get)', xy=(0.5, 0.5), 
xytext=(0.6, 0.3), 

                arrowprops=dict(facecolor='#6E726D', shrink=0.05), 

                ) 

    plt.legend() 

 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_auc_score 

graph_roc_curve_multiple(log_fpr, log_tpr, log_fpr2, log_tpr2) 

plt.show() 

 

from sklearn.metrics import confusion_matrix 

clf1 = GaussianNB() 

clf1.fit(X_train, y_train) 

y_pred11 = clf1.predict(X_test) 

train_pred11 = clf1.predict(X_test) 

NB1 = confusion_matrix(y_test,train_pred11) 
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recall_score(y_test,y_pred11) 

 

clf2 = GaussianNB() 

clf2.fit(X1sm_train, y1sm_train) 

y_pred12 = clf2.predict(X_test) 

train_pred12 = clf2.predict(X_test) 

NB2 = confusion_matrix(y_test,train_pred12) 

recall_score(y_test,y_pred12) 

 

clf3 = GaussianNB() 

clf3.fit(X2sm_train, y2sm_train) 

y_pred13 = clf3.predict(X_test) 

train_pred13 = clf3.predict(X_test) 

NB3 = confusion_matrix(y_test,train_pred13) 

recall_score(y_test,y_pred13) 

 

clf4 = GaussianNB() 

clf4.fit(X8sm_train, y8sm_train) 

y_pred14 = clf4.predict(X_test) 

train_pred14 = clf4.predict(X_test) 

NB4 = confusion_matrix(y_test,train_pred14) 

recall_score(y_test,y_pred14) 

 

from sklearn.metrics import confusion_matrix 

fig, ax = plt.subplots(2, 2,figsize=(22,12)) 

sns.heatmap(NB1, ax=ax[0][0], annot=True, cmap='copper') 

ax[0, 0].set_title("Naive Bayes \n Confusion Matrix", fontsize=10) 

ax[0, 0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0, 0].set_yticklabels(['', ''], fontsize=14, rotation=360) 
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sns.heatmap(NB2, ax=ax[0][1], annot=True, cmap='copper') 

ax[0][1].set_title("Naive Bayes_SMOTE(1:376) \n Confusion Matrix", fontsize=10) 

ax[0][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[0][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(NB3, ax=ax[1][0], annot=True, cmap='copper') 

ax[1][0].set_title("Naive Bayes_SMOTE(1:753) \n Confusion Matrix", fontsize=10) 

ax[1][0].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][0].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

sns.heatmap(NB4, ax=ax[1][1], annot=True, cmap='copper') 

ax[1][1].set_title("Naive Bayes_SMOTE(1:753) & Undersampling(1:502) \n Confusion Matrix", 
fontsize=10) 

ax[1][1].set_xticklabels(['', ''], fontsize=14, rotation=90) 

ax[1][1].set_yticklabels(['', ''], fontsize=14, rotation=360) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


