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Abstract

Empirical evaluation of parallelizing correlation algorithms for sequential

telecommunication devices data

Kevin Kim

Context: Connected devices within IoT is a source of generating big data. The data measured

from devices consists of large number of features from hundreds to thousands. Analyzing these

features is both data and computing intensive. Distributed and parallel processing frameworks such

as Apache Spark provide in-memory processing technologies to design feature analytic workflows.

However, algorithms for discovering data patterns and trends over time series are not necessarily

ready to cooperate issues such as data partition, data shuffling that rise from distribution and

parallelism. Aim: This thesis aims to explore the relation between algorithm characteristics and

parallelisms as well as the effects on clustering results and the system performance. Method:

System level techniques were developped to address particularly the data partition, load-balancing

and data shuffling issues. Furthermore, these techniques are applied to adopt clustering algorithms

on distributed parallel computing frameworks. In the evaluation, two workflows were built in which

each consists of a clustering algorithm and its corresponding metrics for measuring distances of any

two time series data. Result: These system level techniques improve the overall performance and

execution of the workflows. Conclusion: The distribution and parallel workflows address both

algorithmic factors and parallelism factors to improve accuracy and performance of processing big

time series data of connected devices.
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Chapter 1

Introduction

In this era of Big Data, 90 % of the data today has been created in the past two years and the global

population is generating 2.5 quintillion bytes of data daily [45]. In 2017, there were 3.7 billion users

on the internet generating a vast amount of data constantly whether they are at work, exercising,

commuting, running errands, watching their favorite series and even sleeping. There are various

definition and usage of the term Big data. The use of these terms generally refers to ”Information

assets characterized by a High Volume, Velocity, and Variety to require specific Technology and

Analytical Methods for its transformation into Value” [46]. This flood of data becomes a liability

unless the right technologies and analytical methods are adopted to navigate through this flood of

information in order to drive value and insight.

The impact of data are numerous and are benefiting those who embrace this challenge and make

sense of it. In this digital age, businesses are able to bring this further by processing more data,

from many more sources, faster and with better accuracy than ever before. For many reasons such

as the ones stated, Data has been declared as a new class of economic asset along with currency and

gold. With the right technology and skilled workforces, businesses can drive value by becoming data-

driven by using this data to make better decisions and to drive operational improvements through

data analysis. Bigger players who had a leg start in the data business bring this further by seeing

opportunities to commercialize the data. The data that they generated for their own businesses

that gave them a competitive edge over their markets are many times highly sought for and can

be accessed and sold to other related or unrelated businesses. In 2015, IBM acquired most of the

Weather Network, which owns weather.com and weather underground for a reported US $ 2 billion

for the quality and vast historical weather dataset which can be used to sell to other companies who

need to know about how the weather influences their businesses.

Data analytics, the process of drawing conclusions and confirming a hypothesis by examining

the data, is not a novel science and has benefitted and drove innovation for many companies from

various industries for many decades. The novel aspect which is a differentiator and the fundamental

challenge of big data is its volume. The rate of generation of the data has outpaced the standard

capability of processing and storing it. Traditional technologies were never conceived to handle,

store and process such vast volume of data.
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In the midst of this era, technologies have gained many grounds to face these challenges. There

are various industry adopted tools and large vendor products which tackles these challenges through

parallel processing enabled technologies. The idea of parallel processing is to tackle the scalability

challenge by running the same computational task on multiple processors at the same times in order

to achieve a common task. By leveraging a computing cluster, multiple processing nodes acting as

a single computing unit, these massive datasets can now be broken down, sent to each processing

nodes and processed in parallel which would otherwise be limited by the traditional computing

technologies.

A popular open source tool that provides a solution to big data challenges is Hadoop which

quickly became an industry standard for big data and parallel processing.

1.1 Internet of Things

Internet of Things (IoT) stands for the evolution of home, mobile and embedded application being

connected to the internet to integrate greater computing capabilities. Millions of devices have already

been connected to the internet. These intelligent devices and groups of devices acting as systems

share data over the cloud. The data generated from these devices have been analyzed to transform

the operations of many industrial domains [1] [27] [28] [34].

IoT promises much application to human life, making it easier and safer and smarter. Applica-

tions range from smart cities, smart homes, transportation, energy, smarter healthcare, and many

more. An example of smarter healthcare is the continuous monitoring of a patient health condition

through an IoT device, where the physiological data are gathered through sensors and sent to the

cloud for analysis. Once the data is stored and analyzed, it is returned to both patient and health

care professional for a constant flow of information and more effective health care measures. Another

application is the use of smart home IoT products to make human lives easier, more convenient and

more comfortable. Connected home energy equipment such as lighting and thermostat can be tuned

to the tenant’s preferences when he is present or tuned down during his absence to lower electric

bill and energy consumption.

Data gathered directly from these devices usually are unformatted and have thousands of features.

Such raw data need to go through transformation, pre-processing and intensive analysis in order to

understand the underlying insights of data. A common type of data generated is time-series, which

is defined as data that is acquired at a fixed interval over a period of time. Examples are datasets of

the home temperature of a smart thermostat over the course of many days; the heart rate gathered

by a smart wristband over a run; the GPS location of a smart car driver over the span of the

run, and networking infrastructure metrics from a telecommunication service provider reflecting

the demand incurred by the end-users. On their own, individual devices can be processed by any

traditional analytical tools. However, with millions of devices each producing a sequence of time

series [39] [40], more scalable tools are essential for applications relying on timely and accurate

analysis. An illustrating case of the above challenges is observed from data sets collected by a

telecommunication service company based in the USA where datasets on networking devices have
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been collected to measure the key performance indicators of the operational networks. A record of

each feature of the device is producing a reading at each time stamp. There are over 350 features of

each type of devices. These features have correlations but with no prior information. The motivation

behind the research methods in this thesis is to identify patterns within this dataset and to find

correlations between different devices. Such findings lead to applications that yield business values.

1.2 Challenge

With such a vast amount of data generated daily, fully realizing the potential of this new asset

does not come without a battle. There are many technical challenges when trying to unlock its

value. Creation of value through big data is a process made of multiple stages [47] [48] which usually

consists of data acquisition, information extraction and cleansing, data integration, modeling and

analysis, and interpretation. Challenges are found at any step in this process.

Moreover, the complexity of the data itself is overwhelming. High Dimensionality, a term de-

scribing data with a large number of attributes, are often encountered when dealing with Big Data.

High Dimensional data sets could be images, videos, medical records, historical stock market time-

series for instances. For scalability and performance reasons, only a curated view of the raw dataset

should be processed for optimal outcomes.

Even curated, these data sets are too large for traditional modeling and analysis tools. When

dealing with a large dataset, it is often required to leverage a cluster of resources to process, transform

and apply models on these datasets. Traditional algorithms need to be adapted and tuned for these

parallel workflows. Algorithms which were designed to have all the data available on a single node will

not yield statistically accurate results on a parallel and distributed environment without considerable

effort to parallelize and tune algorithms for this distributed environment.

The research questions of scalable analysis raise from three aspects upon distributed and parallel

development, including:

1. High dimentionality - How to process multiple features in parallel so that operations on

features such as join or group are executed on partitioned datasets?

2. Unknown data correlation - What are the metrics to measure the correlation? How relevant

data features are identified for an application?

3. Algorithm diversity - How does an algorithm affect parallelism, potentially causing data

skews and eventually degrading scalability?

This thesis presents parallel clustering methods to identify the correlation pattern. Techniques

are developed to realize a clustering method using different types of algorithms. Two parallel work-

flows are designed where each consists of clustering algorithms and its corresponding distance metrics

adapted for the distributed parallel computing framework. To horizontally scale the system, tech-

niques are developed to address data partitioning, load-balancing and data shuffling. Each clustering

workflow and their integrated algorithms are extensively evaluated to identify the factors related to

data locality, data skew and overall system scalability.
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1.3 Contribution

The work presented in this Thesis is primarily focused on understanding the data set in order to

build accurate production ready applications at a large scale.

The contributions of this thesis are four-fold:

1. Developed scalable and parallel workflows by combining distance measures and statistical

algorithms for time series analysis with system performance evaluation;

2. Integrate statistical models into parallel workflows and developed a parallel version of the

Neighbor-Joining Hierarchical Clustering Algorithm;

3. Identify limitation from experiments on parallelism raised by the relation between workflows

and the underlying system framework;

4. Provide Spark tuning recommendations on performing data dependent partitioning when par-

allelizing algorithms using Spark’s framework

The first contribution is the creation of parallel workflows, a sequence of data processing tasks, us-

ing Spark’s Distribution framework to enable time series processing, time series comparison through

similarity measures and time series clustering capabilities through unsupervised learning algorithms.

These capabilities were selected and prioritized based on the complexity and the structure of the

data in-scope of this study. The time series processing capabilities, referred as pre-processing in this

study due to being the first step of the parallel workflows, consists of turning raw log data sampled

at inconsistent time intervals into a standardized data format that can be further processed. This

standardized format for a time series object consists of a series of timestamps, a series value corre-

sponding to each timestamp, and a label. Additional processing is enabled through binning, which

reduces the dimensionality of the time series, or concatenating, which group related time series by

appending them sequentially and creating an artificially longer timeline. Once standardized, com-

parison and clustering can be achieved. Time series are compared through similarity measures and

in this study, the comparison capabilities enabled were parallel comparisons of time series through

Euclidean distance and fast Dynamic Time warping, an optimized version of this commonly used

measure. Results are stored using a distributed Distance matrix. An intermediate process is enabled

on the distance matrix to reduce its dimension before being clustering through Principal Component

Analysis. In this study, clustering capabilities enabled were parallelized DBSCAN and Neighbor-

joining as these were suited for identified unknown patterns in the dataset. These capabilities were

enabled in Spark in this study and can be selected and tuned based on the dataset. Although each

capability at each step of the workflows can be combined differently, two distinct use case were

identified for comparative purposes which are detailed in section 4 and 5 respectively.

The second contribution builds on top of the first contribution. In the process of creating parallel

workflows and enabling parallel processing of time series, there was an inherent need to perform and

apply statistical algorithms in a distributed environment. Statistical models and algorithms are tra-

ditionally derived and computed on a single computer with the assumption of processing manageable
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sized datasets on traditional non-distributed technologies. In this thesis, the second contribution is

adapting statistical algorithms for distributed and parallel application using Spark’s Framework for

enabling analysis of large time series datasets. In this thesis, Fast Dynamic time Warping, Principal

Component Analysis, Pearson’s Correlation, and parallel DBSCAN implementation were leveraged

from open source libraries, integrated and adapted to be enabled in the spark workflows for parallel

time series analysis. In the case of Neighbor-joining (NJ), there was no available open source parallel

version of this algorithm in Spark. In this thesis, a parallel version of this algorithm is presented

which was implemented in Spark. This algorithm was inspired by the latest publication and research

papers on parallelizing the NJ, which is then integrated and enabled as part of the Spark Time series

analysis workflows.

The third contribution consists of identifying limitation from experiments on parallelism raised

by the relation between workflows and the underlying system framework. Spark excels at fast in-

memory processing. Optimal performance and scalability can only be achieved if the application

itself can be adapted to its system’s framework. In this study, parallelizing Neighbor-Joining, a

matrix-based recursive hierarchical clustering algorithm, has shown to be a challenge for multiple

reasons. For starters, the recursive nature of the algorithm slows down the execution of the overall

application. Dependencies on its previous iteration prevent the ability to execute each iteration in

parallel. Parallelization was achieved ”intra”-iterations, was the calculation on each iteration was

processed in parallel. The results of each iteration needed to be completed first in order to proceed

to the next iteration. The second challenge was to perform more granular matrix manipulations

in Spark. At the time of this writing, Spark’s default data structure was not suitable for matrix-

based algorithms out of the box. Custom representation of a matrix using Sparks RDD is presented

in this thesis which provided more flexibility to perform the required algebra to implement the

Neighbor-Joining algorithm in Spark.

The fourth contribution consists of performance tuning recommendations and key lessons learned

that were identified throughout the development and system evaluation of these Spark parallel

workflows.

• Leverage the Spark broadcast method to reduce data movement which translates by shortening

the execution time by removing unnecessary shuffle read and shuffle write time for the related

tasks.

• Redundant RDD calculations should be discarded to remove repetitive. For instance, due

to its diagonal symmetry of a distance matrix, calculating a distance matrix translates into

duplicated spark tasks which can be discarded and inferred by either upper or lower diagonal.

• Naive Recursive algorithm implementation in spark can exponentially increase the complexity

of each iteration. Internally, due to its in-memory processing framework, Spark has to re-

calculate every previous iteration before addressing the current iteration. Temporally storing

in-memory the output of each iteration truncates the spark lineage which prevents exponential

complexity of each iteration.

• Different spark methods such as groupbyKey, reducebykey and Union can create unwanted data

5



skew in the partitions. Adequate use of coalescing can solve data skew hurdles by optimizing

data partitioning and reducing shuffle read and shuffle write time for the related tasks.

The publications from this thesis includes:

• IEEE Access Paper entitled ”Distributed and Parallel Clustering Methods to Discover Pat-

terns of IoT Device Time Series Data” (under major revision at the time of this writing)

• US Patent entitled ”Systems and methods for automated feature selection and pattern dis-

covery of multi-variate time-series” - Filing Date: September 9 2018

The remaining of this thesis is structured as follows. Chapter 2 will provide an overview of related

topics and outlying a lack of similar papers using the methods and approach. Chapter 3 will present

the problem statement which was the root of this research where more details on the datasets and

its challenges to transform it from raw data into application-ready data are discussed. Chapter 4

and 5 go into the details of the two workflows derived. Chapter 6 presents the system evaluation

and the results of the experimentations. Chapter 7 will present reflections and discussions. Chapter

8 presents closing words on this thesis and the related work. Finally, Chapter 9 provides more

implementations details in the Annex and figures which may complement the understanding of the

audience.
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Chapter 2

Background

This chapter provides preliminary background material foundational for the theory and study de-

rived in this thesis. The chapter starts by presenting the Parallel and Distribution Paradigm, data

partitioning, data locality, and data skew which are key principles and challenges often encountered

in distributed environment applications. Then, the chapter presents the Map Reduce model, a key

concepts which contributed heavily to make scalable big data processing possible. Finally, the chap-

ter provides a brief literature survey of similar publications around the topics of IoT, time series

analysis research space, and the existent tools for time series analysis.

2.1 Parallel and Distribution Paradigm

Mining patterns on this dataset involve pair-wise operations of all the data records. The volume

of the dataset explored in this thesis is only a small portion of the production environment data.

The preprocessing operations as Extract-Transform-Load (ETL) and the machine learning algo-

rithms become data and computing intensive [2]. Parallelism and distribution are both computing

paradigms that address large data volume applications. Parallelism is the process of launching mul-

tiple computing instances of the same task in parallel. Distributed computing stems from the need

to leverage a networked cluster of processing nodes in order to achieve a common computing goal.

Parallelism can be achieved on both a single multi-core node or on a cluster of commodity nodes.

By leveraging the elasticity of cloud computing that computing nodes are added and removed on

demands, it is obvious that combining both computing is more scalable than single node parallelism.

Under this paradigm, the dataset as the input is partitioned over a number of working nodes, and

all the working nodes are executing operations in parallel.

Frameworks such as Apache Hadoop, Apache Spark, and Apache Storm provides various types of

distributed parallel runtimes that allow the programming of data processing and analysis operations.

In this thesis, Apache Spark [29] was selected for building the distributed and parallel data operations

that involve functions for ETL and machine learning algorithms. This choice is justified in three

folds. Ease of access to a data center that has virtual instances that contain a full stack of software for

running a Spark cluster was the first deciding factor. Second, the programming model of a resilient
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distributed dataset (RDD) of Spark is suitable to develop the proposed data clustering methods

with data models and the associated operations requirements. Finally, the machine learning library

of Apache Spark was beneficial to implement critical steps of the clustering methods.

2.2 Data Locality

In its general term, Data locality refers to the process of moving the data close to where the com-

putation is performed in order to maximize throughput and faster processing of the data. In a

distributed environment such as Spark data locality can have a significant impact on the jobs per-

formance [49]. Generally, the closer the data is to the computation, the faster the job tends to be.

In Apache Spark, the different levels of locality are presented below in order of closest to farthest:

1. Data is in the same JVM as your code;

2. Data is on the same node as your running processes. Data may need to move between processes

on the same node;

3. Data is on the same rack server. Data may need to be moved through the network.

4. Data is anywhere on the network and needs to be sent over the network.

By default, Spark tries to optimize data locality whenever possible by waiting for a free CPU

where the data is found. If it times out, the data is then moved to the CPU. Spark provides the

ability to overwrite default behaviors specifying which level of data locality it should prioritize.

2.3 Data Partitionning

Data partitioning is the process of dividing large chunks of data into more manageable smaller

chunks and accessed separately [50]. This has multiple benefits on scalability and performance when

applied configured optimally for based on your dataset and the complexity of your computation. Big

Data frameworks are built on the key concept of data partitioning and processing and by default

partitions large data chunks and processes seamlessly. There are three strategies to partition data:

1. Horizontal partitionning (Sharding) where each partition is in a different data store but

has the same schema (Figure 1).

2. Vertical partitionning where each partition holds a subset of fields for items in a data store.

The select field subset can be designed by a pattern of usage such as frequent to less frequent

access (Figure 2).

3. Functional partitionning where each partition is organized by the bounded context in the

system (Figure 3).
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Figure 1: Sample of Horizontally partitioning (sharding) data based on a partition key. [50]

Figure 2: Sample of Vertically partitioning data by its pattern of use. [50]

Big data frameworks such as Hadoop and Apache spark automatically partitions large datasets.

In Spark, Spark processes data through RDD’s - resilient distributed datasets which divide datasets

and spreads them out across multiple nodes because they cannot fit a single one. By default, the

framework automatically performs the partitioning across the cluster and resources available at the

time of the execution.

2.4 Data Skew

In its general term, Data skew primarily refers to the nonuniform distribution of a database [69].

In the context of distributed and parallel computing, data skew represents a condition of uneven

distribution of data across the cluster [52]. Data skew can severely impact the performance of a job

and the cluster as some nodes will store more data than others which negatively affects the queries.
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Figure 3: Sample of Functionally partitioning data by bounded context or subdomain. [50]

Processing with Apache Spark default partitioning [53] configurations can present skewed data due

to aggregation operations involving data shuffle.

In Apache Spark, symptoms of data skew are noticeable when a tasks, a partial computation

of part of a spark job, takes longer than its other tasks or is stuck and hangs the whole job. A

Symptom of data skew can be observed when all tasks are completed but one outstanding task of

the same type can hold back and stall a job for hours.

Data skew can be caused for various reasons. The most common source of data skew using

Spark’s distributed framework arises when the data prior to an operation requiring a shuffle such

as a join was already skewed as depicted in Figure 4. By default, Spark hashes the join column

and sorts it and tries to keep the records with same hashes in a single partition [62]. The example

in Figure 4 depicts a join operation between two sample tables [62] with car registration and car

maker data. Analysis of the Two tables reveals a nonuniform distribution favoring entries values

Ford and Fiested in the Make and model columns. When performing a join operation using the

make and model column as join keys, the default spark behavior will attempt at partitioning entries

with common entries within the same partition. As depicted in Figure 4, due to the naturally

skewed starting tables, the outcome of the join operation will aggregate the majority of the rows

into Partition1 and the task assigned to this partition will have a longer execution time due to

the greater amount of data to process. Data skew can arise for a multitude of reasons based on the

dataset and the operations performed as depicted by this simple scenario. Data skews will negatively

impact the spark program as the computing cluster is not leveraged optimally.

The most intuitive approach at solving a data skew scenario is to ensure prior to an operation

involving data shuffle such as reduceBy, groupBy, Join, and more to partition the data evenly. Spark

10



Figure 4: Sample skewed Spark RDD [62]

provides built-in methods to facilitate this tuning process of repartition through the repartition and

coalesce method. These methods will perform data repartition based on the rule provided. Although

proper partitioning of the data can neglect the hurdle of data skews, improper use of these methods

can backfire and perform the opposite desired result and become a performance bottleneck. In later

sections of this thesis, data skew scenarios were encountered and the approach and techniques used

to solve them are presented in the System Evaluation chapter.

2.5 Map Reduce Model

Map Reduce is a programming paradigm that made possible processing scalability across a large

number of nodes. This programming model was the solution to process terabytes of data in parallel

to achieve faster analysis and was first used and built at Google in 2003 to analyze their search

queries [55].

Map Reduce is at the heart of Apache Hadoop, the widely popular framework for distributed

storage and big data processing. Map Reduce is at the core component and integral part of this

framework’s key functionalities.

MapReduce facilitates the use of parallel and distributed systems. It can concurrently process

petabytes of data by dividing it into smaller chunks and automatically processing them in parallel on

Hadoop commodity servers. By default, the program does not have to configure data partitioning,

scheduling of the program on all the nodes of the cluster, handling machine failure, and inter-machine

communication as these are all handled automatically by the runtime system. [57]

Figure 5 outlines an example of how MapReduce processes data in parallel. MapReduce can be

defined by two key sequential functions: map and reduce. Figure 5 presents a sample use case for

counting the recurrence of each letter from the input dataset.
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Figure 5: Sample diagram portraying how map reduce works [56]

• Map - The input data is first split into smaller blocks. Each block is then assigned to a mapper

for processing. The goal of the mapper function is to map each input key/value pair to a set

of intermediate key/value pairs. In the example, each block’s key’s are mapped to the integer

1.

• Reduce - When all mappers complete processing, the framework shuffles and sort the results

before passing them on to the reducers. A reducer cannot start while a mapper is still in

progress. The reducer has 3 primary phases: shuffle, sort and reduce. In this example, the

output of the mapper is shuffled and grouped by common key, sorted then all key reduces are

aggregated on a single node (reduced) to provide the count of each letter in the input dataset.

Generally, there are two key operations, but MapReduce can have optional intermediary steps

such as Combine and Partition which reduces the output on each mapper and defines how data

is presented to the reducer respectively.

2.5.1 Map Reduce and Apache Spark

Apache Spark is a system developed by UC Berkeley as a research project and became part of the

Apache umbrella in June 2013. Apache Spark is a general-purpose data processing engine suitable

for in-memory processing. This capability is essential and more suitable for performance advance

analysis and parallel implementation of algorithms. [59]

Apache Spark Framework comes with a suite of impressive tools such as machine learning tool

M Lib, structured data processing, Spark SQL, graph processing took Graph X, stream processing

engine called Spark Streaming, and Shark for fast interactive question device as presented Figure 7

reinforcing its position in advance analysis and parallel algorithms implementation over Hadoop.

12



Figure 6: Apache Spark vs Hadoop’s Map reduce data processing comparison [60].

Although Apache Spark is more suitable than Hadoop for parallel algorithm implementation, they

should not be seen as competitors but as complements. Spark provides capabilities that Hadoop

lacks, while Hadoop has features such as a distributed file system and strong batch processing to

complement Spark. [59].

2.6 Related Work

This section provides an overview of the related literature around the challenges and the available

solutions to analyze Internet of Things datasets, more specifically time series.

2.6.1 Internet of Things Challenges

Challenges from mining large datasets from IoT devices have been recognized in aspects of system

capabilities, algorithmic design and business models [3], [7] [28] [35]:

• Analytics Architecture - What is the optimal architecture for data analytics remains unclear;

• Distributed Machine Learning - Standard machine learning techniques are not trivial to deploy

in a distributed environment and thus require research to scope the problems and generate

suitable solutions;

• High Dimensionality - Handling high dimensionality of data requires approaches to compres-

sion, sampling, and feature engineering that trade-off information accuracy and computing

capability.
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Figure 7: Apache Spark Capabilities [68]

2.6.2 Machine Learning on the Internet of Things

The proliferation of IoT devices capable of sensing, measuring, inferring and sharing these pieces

of information across platforms is fueled by a variety of enabling wireless technologies transforming

the internet into a fully integrated one [16]. Machine learning of IoT device data involves analyzing

patterns in large time series to discover hidden information using suitable algorithms based on the

problem and the application proposed [17] [18]. These datasets come from various sources, sensors,

and devices in a multitude of formats. The machine learning techniques include classification,

clustering, association analysis, time series forecasting, and outlier detection [3] Although there are

many personal, profession and economic benefits from the rise IoT, there are also various challenges

associated with the development of IoT [19] [20].

2.6.3 Time Series Analysis Surveys

The interest of time series analysis has been on the rise for numerous reasons as there are numerous

world application which output this type of data. The rise of Big data and IoT is contributing

to the effervescence in this research space and is generating a lot of research interest in finding

methods to make sense of Time series datasets [34] [36] [38]. A paper named ”Recent techniques

of clustering of time series data: a survey.” [41] surveyed time series clustering papers in various

domains such as science, engineering, finance and more summarizes the permutation of distance

measures and clustering algorithms researched and presents their limitations. This same paper also

performed a survey on the most relevant 50 time series paper and attempted at reproducing all

their results. Their conclusion has been that there is a need for a benchmark in this space and that

the results claimed in most of the papers do not have significant value in real-world applications

due to data bias and experimental flaws. In another paper named ”A Decade Review” [42], a

survey is performed on this research space through another angle which seeks on summarizing the

research done on time Series time series clustering. The conclusion was that the work in this space
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addresses two main focus: the ability to reduce the high dimensionality of Time series for the use

of conventional clustering algorithms and distance measure evaluation. The findings in these survey

papers have served as general guidelines to pivot this thesis in the right directions. The derived

workflows offer a novel approach at clustering times series with distinct and novel combinations of

similarity measures and clustering methods. The work presented in this thesis stemmed from the

work performed between academia and an industry partnership. Contrary to what most research

in this space, the objective of this research has been to drive value through real-world applications

using industry-wide technologies and tackling common challenges.

2.6.4 Time Series Test Data Survey

There is a lack of substantial literature around Time series analysis for large scale data. The literature

in this space use either proprietary data not available to the community or open source datasets

available which are collectively in an archive [43] of papers. A call to the community presented as a

survey [44] of 340 recent papers on time series revealed that 89% of the test data used could fit on

a 1.4 MB floppy disk.

2.6.5 Tools for Time Series Data Analysis

A number of open source and commercial tools [37] with rich sets of libraries are available for time

series analytics [12] [13] [14] [15]. Programming languages such as R and Python both support com-

prehensive algorithms and methods designed for statistical computing and visualization [6]. Apache

Moa is a non-distributed data stream mining framework that includes implementations of classifi-

cation, regression, clustering and frequent pattern mining [5]. Apache Mahout is a distributed data

mining platform based on MapReduce/Hadoop [4] in the batch mode. Therefore, Mahout is not

directly suitable for data stream analysis. To overcome the limitations of Mahout on data streams,

SAMOA [25] features a pluggable architecture that runs several distributed stream processing en-

gines such as Storm, S4, and Samza. In addition, SAMOA (Scalable Advanced Massive Online

Analysis) is a library for many machine learning algorithms and statistical methods. Comparing to

the architecture designed in this paper, the distributed and parallel framework of Spark was utilized

to akin to the role of SAMOA. Even with a handful choice of distributed data stream processing

platforms, the principles of converting existing algorithms into parallel and distributed environment

still remain under-addressed. This is addressed in this thesis as a systematic parallel workflow are

designed and optimized for parallel processing along each stage of a workflow by scrutinizing the

data level operations and their effects on system performance and scalability.

Commercial players such as IBM tackled this analytics business need by offering their own plat-

form named Physical Analytics Integrated Repository and Services (PAIRS) [31] as a service. This

platform is built on top of open source software and enables business-friendly manipulation, ag-

gregation, and analytics on various datasets with space and/or time dimensions. SAS also has a

dedicated module with a full suite of time series analytics capabilities with libraries of methods to

process, apply statistics, clustering and many more [32]. These platforms are that they are designed

for Businesses and are not available to the opensource community.
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2.6.6 Time Series Anomaly Detection

Anomaly detection is the predictive analytics capability of finding unexpected patterns in a dataset

with the end goal of taking action or gaining insight for better outcomes. Data mining on time series

can be translated to application such as ecosystem modeling, network traffic monitoring, medical

diagnosis, and other domains by detecting events such as heart arrythmia in electrocardiogram,

intrusions in network data, congestion in traffic data, and ecosystem disturbances in Earth science

data [74].

In general, time series anomolys can be characterized by high or low values or unusual subse-

quences and patterns. Characterizing normal and abnormal behaviour is a challenge in anomaly

detection which often requires industry or domain experts to provide or guide towards that infor-

mation.

DBSCAN has demonstrates several advantages over statistical approach on discovering anomolies

on time series dataset. According to his paper, DBSCAN can identify anomolies even if there are

no extreme values.

The EGADS Framework at Yahoo is a large scale anomoly detection which automatically mon-

itors and alert on millions of time-series on different use cases [76]. This framework is leverages

Hadoop and Storm for real time stream processing. Their approach at detecting anomalous time-

series leverages multiple time series features such as spectral entropy, autocorrelation euclidean

distance and involves clustering times series into a set of clusters. Their cluster analysis involves

intra or inter-cluster time-series anomaly detection by measuring the deviation within or among the

cluster centroids and the time-series. This paper is provides an high level overview of their gen-

eral use case framework, but does not provide much information on the use of algorithms that are

discussed in this thesis and the system level approach and methods used towards scalability [76].
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Chapter 3

Industry Background

This section will provide an overview of the partnertship with Ciena Corporation, a United States-

based global supplier of telecommunications networking equipment, software, and services, and pro-

vide context on processing platform and industry datasets made available for our academic research.

This section will start by providing the partnership motive, provide details the big data platform

which stands up the experimental environment, and finally, describe the industry provided datasets

made available by our partner and their clients for our research.

3.1 Partnership motive

Capitalizing on big data analytics provides many opportunities for innovation and value creation for

customers. Industry and Academia partnership commonly drives benefits for both parties through

synergies which increases the rate at which innovation turns to customer value.

Academia is where a lot of the theoretical and experimental work takes place. In the analytics

space, the challenges for academia have been to access real world usage data that can be used to

train models and to access platform in which AI and ML algorithms can be deployed and tested at

scale [70].

Industry players can greatly benefit from academic partnership as academic’s scientific method

used in research are needed in the application of machine learning to real industry problems. Imple-

menting machine learning is not like implementing new software functionality. For most functionality

you can specify requirements and come up with a development schedule. Instead, machine learning

requires lots of experimentation, which looks more a like an academic science experiment. In this

way, the academic culture of establishing a hypothesis followed by iterative experiments is what is

is needed to successfully deploy machine learning in industry [70].
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3.2 Big Data platform with parallel analysis of telecommu-

nication Data

In the wake of the industrial revolution 4.0, disruption from technologies such as big data, cloud,

IoT and 5G presents an urgent need to provide and support product and services capable to drive

customer value in this new era of digital businesses. Current telecommunication service providers are

facing many challenges in their key business processes which involves IT and networking functions.

Common and ongoing challenges are the overwhelming and ever increasing demand from their clients

imposing an stressfull workload on their network, siloed it operations, and the orchestration and

management of complex multi-vender fragmented network to handle the ever increasing needs of

today’s connected world. Such challenges reinforce the need for Intelligent automation which will

provide the capabilities to address the needs of tomorrow.

Our partner, being at the forefront of innovation, invested time and resource into their big data

and analytics platform which provides deep insights in order to optimize network and IT perfor-

mance through intelligent software-based network automation. Their solution achieves intelligent

automation by leveraging analytics, multi-domain orchestration, federated inventory management,

and route optimization and assurance. This open, data-driven approach optimally aligns and ac-

celerates mission-critical business processes that span the network and IT to deliver faster time to

revenue, reduced costs, and ultimately a better customer experience [71].

Fundamentally, all these capabilities are enabled by a strong awareness of the network state and

the ability to analyze performance data from a multi-vendor network. Through this partnership, a

development platform similar to their big data analytisc plaform was made available for the research

in this thesis where algorithm experimentation and deployment can take place and analyzed.

3.3 Access to real world datasets

As a telecommunication equipment supplier and service provider, our partner has access to a wide

and vast variety of communication network data generated from their own operations or client

operations.

These datasets can be sourced and generated from many devices on a communication network

and can capture information from many angles such as the network components, the communication

channels, and other entities such as business context, end users, and more Network components,

whether they are physical or virtual, can generate data about performance monitoring (PM), alarms,

and logging data such as power levels, error counters, received, transmitted, or dropped packets,

CPU utilization, and many more [73].

Communication channels can also generate performance monitoring data for all layers of the open

systems interconnection model. For example, the performance of the optical layer is characterized

by optical signal-to-noise ratio, chromatic dispersion, polarization-mode dispersion, transmit and

received power, and bit error rate. The performance of the IP layer is characterized by bandwidth,

throughput, latency, jitter, and error rate [73].
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Whenever the data described above is collected, it is important to record a timestamp for ev-

ery reading. This added time dimension enables opportunities for time analysis such correlating

independent data sources and providing trends through time-series. In general, communication net-

works are connecting many different devices types from different venders producing data in different

formats which can be collected at different frequencies for variable and prolonged periods of time.

Communication Networks sourced can be described as “Big Data” for its high variety, velocity and

volume of data.

Throughout this partnership, a few datasets were made available for our academic research. Due

to non-disclosure agreements, security reasons, partner priorities and time restrictions, the focus of

this paper will be on a selected dataset described in Chapter 4. This dataset is a sample of a real

world communication network data provided by our partner’s client. This dataset size provided is

only 350 mb. Although this dataset is on the smaller side, proving value and scalability on such

dataset builds confidence when scaling to larger datasets.

Due to the nature of the partnership, our partners influenced many aspects of this thesis and

assumptions and injected industry knowledge will be stated throughout this thesis whenever the

academic research presented in this paper was influenced as such.

19



Chapter 4

The Problem Statement

This chapter starts with presenting the dataset that influenced the scope of this thesis. The problem

statement is presented to outline key challenges encountered through the study and analysis of such

dataset. Then, preprocessing steps and derived techniques to standardize the data suitable to enable

further analysis are presented. Finally, the chapter presents an overview of the spark workflow and

solution derived to address the problem statement.

4.1 The Dataset

As part of a predictive analytics proposal for a third party, our partner was provisioned a trial

dataset to demonstrate their methodologies and capabilities. This trial dataset originated from the

syslogs of an Alcatel-Lucent router and was identified as a important part of their business processes.

Syslogs, a standard for message logging, holds event logging data from network devices event

which about where, when, and why the log was sent. Limited knowledge on this data set was

provided as the intention was for Ciena to demonstrate their methodologies and their Big data

platform capabilities. Subsequently, as their academic partners, our research attention was focused

on this dataset and only this dataset will be covered in this thesis.

The dataset under study consists of 358 columns and 305078 rows occupying approximately 350

MB. Each columns represents a specific type of alarm and each row number represents how many

times a the alarm was raised based on the syslog within a certain time period. The frequency at

which each row was collected was assumed to be at consistent interval of time. Hence, this dataset is

a collection of columns-based time-series of alarm counter values representing network performance

data over an unknown period of time coming from a third party’s network.

4.2 Problem Statement

As part of a proposal, our partner intents to use this dataset as input to machine learning models

for predictive analytic. It is good practice to limit the number of input used by machine learning

classifiers to what is truly necessary, and not blindly use all features in order to increase robustness
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against noise or bad-quality data, to avoid scalability bottlenecks with bigger datasets, and to

accelerate iterations of the model-building process.

Analyzing these features is both data and computing intensive. The high dimensionality of this

dataset impose the technical challenges on exploring the answers to questions such as

Q1. Do different time series datasets correlate to each other?

Q2. Which features can be discarded to help reduce the computational burden while keeping the

analysis accuracy desired?

Q3. Do the clustering methods discover recurrent patterns in the telecommunication device based

time series data?

These questions can be resolved through a pairwise analysis of features. Suppose there are n

number of features and the sample size is m, the computation size of the dataset can be estimated

at the level of n2×m. When the computation of analysis exceeds the capacity of a single computing

node, it is essential to scale out the analysis to a distributed cluster.

With the paradigm of distributed computing, the dataset is partitioned at two levels. At the

first level, dataset partitions m samples to p partitions, thus each node has m ÷ p time series. At

this level, the partition is evenly distributed in terms of the data size.

At the second level, operations on pair wised features such as merging or joining further produce

new sets of intermediate data. The new dataset is further aggregated by keys and shuffled across

the partitions. When the partitions are distributed on separate nodes, the shuffling cause network

traffic.

From the above analysis, the problem is further scoped into two issues that this thesis is focused

on:

1. Data locality. According to an algorithm, the data with correlations are ensured to locate in

the same partition or with close partitions. Hence, the analysis tasks at runtime are moved to

the location where necessary data is located to complete the computation.

2. Data Repartition. At the intermediate stage of the analysis, newly produced data may cause

an imbalance of data partitions and thus leads to data skew. Hence, repartition at runtime is

performed. In addition, the repartition needs to be tuned to have optimal system performance,

such as tuning the frequencies of repartition.

4.3 The Method Overview

The industry partner effort was focused on deriving predictive analytics application for their client

whereas the academic research presented in this thesis focused on the work derived to explore, under-

stand and prepare the data feeding into the industry partner’s machine learning models. Throughout

this process driven by the research questions, the thesis explores the relation between algorithm char-

acteristics and parallelisms as well as the effects on clustering results and the system performance.
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Figure 8: Overview of the multi-stage workflow, from data pre-processing, distance metrics genera-
tion, dimentionality reduction, to clustering

Although, the work was initiated based on a specific dataset, the contributions of this thesis can be

generalized to similar time series processing problems.

The distributed and parallel machine learning method derived and driven by the research ques-

tions will be presented in the following chapters structured as the key four stages of the method

namely (1) Preprocessing, (2) Distance Matrix Generation, (3) Dimensionality Reduction, and (4)

Clustering.

Preprocessing handles issues such that devices have different sampling intervals, and the sam-

ples in time series have missing data. Distance Matrix Generation estimates the correlation

among features. Two distance matrix is computed. Each is used as input for one clustering al-

gorithm. Dimensionality Reduction solves the issue of the high dimensionality of features and

prepares the time series for clustering analysis. Finally, Clustering analysis applies two algorithms,

Neighbor-Joining (NJ) and Density-based spatial clustering of applications with noise (DBSCAN),

to validate the results. Since different matrix and algorithms are applied, the method is realized by

two parallel workflows. Figure 8 presents a high-level overview of components and sequences two

workflows: Workflow 1) Pre-processing ; Distance Matrix Generation using Correlation and Clus-

tering using Neighbor-Joining; and Workflow 2) Pre-processing ; Distance Matrix Generation using

Dynamic Time Warping (DTW); Dimensionality Reduction using Principal Component Analysis

(PCA); Clustering using DBSCAN.

Industry provided Recommendation: The distance-based method Neighbor-Joining was

proposed by our industry partner as a suitable algorithm to find patterns in sequences of data such

as time series. To complement our Industry recommendations and challenge their perspective, the

second workflow using spatial density based clustering method DBSCAN was explored to see if it

would find complementary information.
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Figure 9: Sample of the input data stored in a Spark RDD

4.4 Data Preprocessing

The initial limited industry expert provided knowledge of the dataset reveals that:

1. Data comes from a single router device

2. All rows represent a set of 358 features extracted from the Syslogs at an unknown timestamp

3. Data is highly sparse with over 40% empty data.

4. Data sequences is sampled at successive equally spaced point in time, but no timestamps are

provided

Figure 9 provides a sample of the input file stored in a Spark Time Series RDD after it has gone

through a standardization process of replacing empty fields with zeros.

4.4.1 Data Preprocessing Techniques

A sample of the plotting of the data set is depicted in Figure 10. The plot shows an example of 3

features from 3 devices that consist of 9 time series. The sampling interval is at every 5 seconds

and is observed from 0 to 60 seconds. Data coming from the same feature have a similar curve

irrespective of the device they are from. Different features also show different behaviors. The three

bottom time series show constant low values with little fluctuation. The middle three series have a

spike starting at the 25 seconds that last till the 45 seconds before they set back to normal. The

upper three time series are of higher values with constant fluctuation.

Figure 10 serves only as a high-level visual representation tool and is representative conceptually

to describe the structure of the dataset available. In this case, the dataset headers suggest that

each row represents a set of concurrent Alarm counts, and each column represents a specific type

of alarm, presumably coming from the IoT network device. In the context of this dataset, an alarm

represents a state of a property describing the health of the device. Hence, empty cells are assumed
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Figure 10: Plots of 9 dummy time series of 3 features on 3 devices used solely in this section for
visual representation of the preprocessing techniques

to mean that no alarm was raised, and was filled with a zero. This figure will be used as a reference

in the subsequent chapter on data pre-processing and will provide visuals that were built on top of

this one.

Data preprocessing helps to assess the correlation between features. The purpose is to identify

which of over 358 features are redundant that should be further merged for dimensional reduction. In

fact, the gathered time series have different sampling intervals. Also, these time series have missing

data. The preprocessing techniques below are highlighting the transformations steps applied on the

raw dataset prior to applying the algorithms downstream in the next stage of the workflows. This

ensures that the data prior to analysis is formatting adequatly for further analysis.

Throughout the research effort, multiple data processing techniques were explored and derived.

Below are some of the key data preprocessing techniques explored throughout this thesis.

1. Column-based Raw time series data converted into distributed Vector of values. Each sequence

of values were converted into a Vector data type in spark in order to maintain preserve the

information provided by the order of those values. When loaded into an RDD, ll values of

a time series are distributed as a single vector and are not broken down in parts across the

cluster.

2. Filling sparse data with a replacement value a 0. This technique, also called imputation, is a

common approach at handling sparse data. For univariate timeseries, there are various widely

used techniques and algorithms to replace empty values. The more common ones are replace by

value, interpolation, mean, moving average, kalman smoothing to name a few which all comes

with their own sets of benefits and trade offs. Industry provided Recommendation: This

processing technique was applied based on recommendation from a industry domain expert

stating that empty values corresponds to no alarms raised in the dataset which can be safely

replaced by 0.
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Figure 11: The original 9 time series in Figure 10 are aligned into 3 time series, one for each feature
that is generated by averaging the readings per time stamps from 3 devices.

3. Data binning by averaging the values at every time stamp. At each time stamp, there are

multiple data records for each feature from different devices. This approach first performs

alignment of all-time series of the same feature by time stamps. If a timestamp has no readings

from any devices, the missing value is filled as zero. Then the average value is taken for each

feature at each timestamp. A sample plot of the dataset in Figure 10 after the alignment is

shown in Figure 11. This technique is also usefull when dealing with sparse data because as

the values are aggregated, there are less empty values per data points. Although this technique

can reduce the dimensionality of the input, there is a drawback of information loss the more

the binning window is large.

The window size of data readings was a tunable parameter throughout this thesis as it was

a driving performance factor for the workflows. Tuning was required to find the right trade-

off balance between the processing time and information retention. Figure 13 and Figure 14

show the time series after the binning technique for the window size of 10 seconds and 20

seconds respectively. Industry provided Recommendations: This processing technique

was derived based on recommendation from a industry domain expert stating that using the

average aggregation function is sufficient for their data exploration use cases. For this reason,

no alternate aggregate functions and their trade-offs where explored in this thesis as further

exploration with variants with aggregate function would have required more time.

4. Concatenating the time series from different devices sequentially. This approach first creates a

list of all devices. Then time series is created for each feature by concatenating the time series

of the devices by respecting the order of that list. This is achieved by creating an artificial

and longer timeline of readings. Again, empty readings are filled by zero. The order in which

the time series is appended must stay consistent across different features. Figure 12 plots the

concatenated time series of Figure 10. The window size is a tunable parameter as it becomes

a factor for a trade-off between the processing time and information retention. Figure 13 and
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Figure 12: The original 9 time series in Figure 10 are aligned into 3 time series. The 3 devices of the
same feature are appended one after the other. Device one has the time serieis from the data points
ranging between 0 to 60 seconds; device 2’s values range between 65 to 125 seconds; and devices 3’
values are from 130 to 190 seconds respectively.

Figure 14 show the time series after the binning technique for the window size of 10 seconds

and 20 seconds respectively.

Limitation: This technique was explored for datasets that are not presented in this thesis

. The need for this technique steemed from the existence of sub-categories of time series in

alternate datasets which presented the need to compare the main categories of time series but

also, sub-categories of time series in parallel. This approach would concatenate the related

sub-categories of a timeseries into single main time series.
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Figure 13: Times series from Figure 12 after applying binning by average on a window of 10 seconds.
Technique applied for a different dataset and use case not covered in this thesis

Figure 14: Times series from Figure 12 after applying binning by average on a window of 20 seconds.
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Chapter 5

The Correlation and

Neighbor-Joining Clustering

Method

This Chapter presents a clustering method integrating statistical models such as Pearson’s Correla-

tion the Neighbor-Joining Hierarchical Clustering Algorithm into a parallel workflow. This method

provides a tool which can be used to address the problem statements questions Q1, Q2, and Q3.

The Chapter starts by providing an overview of the algorithms integrated into this method. The

algorithm definition and traditional non-distributed applications are introduced to prepare for the

subsequent sections which will focus on their adaptation and integration to the parallel workflow.

One of the section will highlight the implementation of PCA using the Spark Framework. The

chapter continues with the Parallel Neighbor-Joining which was designed in this thesis and highlights

key challenges from adapting a matrix-based statistical algorithm into a distributed framework such

as Spark. The chapter ends with the presenting output of the Correlation and Neighbor-Joining

Clustering Method.

5.1 Algorithms Overview

This section provides an overview of the algorithms discussed and part of the Correlation and

Neighbor-Joining Clustering Method by providing their standard definition.

5.1.1 Correlation

In statistics, Correlation can be broadly defined as the degree of association between two variables

and the direction of their relationship. The result of the correlation given by equation 1 is called the

correlation coefficient and will be in the range of−1 to +1. The direction of the relationship is defined

by the sign of the correlation coefficient. The most widely used correlation statistic is Pearson’s
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correlation which measures the degree of relationship between linearly related variables [66].

ρ = CORR(X,Y ) =

∑
[(X − µX)(Y − µY )]

σXσY
(1)

where X and Y are two random variables; µX and µY are their respective mean, and σX and

σY are their respective standard deviation

In practice, correlations provide a statistical measure to compare the relationship between two

variables which can be exploited for predictive analysis.

5.1.2 Neighbor-Joining

Neighbor-Joining is a recursive clustering algorithm where each iteration finds the closest two nodes,

joins them by replacing with a new node, and finally calculates the distance of this new node to all

other existing nodes. The algorithm contains four stages.

The first stage of the algorithm computes the sum of rows of the input distance matrix, called

Ri computation. The variable Ri holds the sum of every row of the input distance matrix, dm.

The second stage of an iteration is finding the minimum Qh calculation given by [10]. Minimum

Qh is calculated by application equation (1) on a vectorized version of the distance matrix [26]. This

vectorized version of the distance matric DVh formats the distance matrix into a vector to simplify

calculation without affecting performance.

Qh = (N − 2)DV (h)− (R(i) +R(j)) (2)

where i = 1...N − 1; j = i+ 1...N ;h = ((i− 1)(2n− i))/(2 + j − i).
Equation (1) performs transformations on the distance matrix dm to derive the matrix Qh. The

smallest value of Qh, denoted as minQh, identifies the two closest nodes to merge.

The third stage involves calculating the new distance values that result from merging the nodes

identified by the minimum Qh. It calculates the distance of a node k to the newly merged node U1

as the given formula of Equation (2). The new values are then inserted at their respective distance

matrix indexes for the next iteration.

DU1k =
Dik +Djk

2
(3)

where k = 1...N ; k 6= i, j and

Diz =

N∑
k=1

Dik

N − 2

and

Djz =

N∑
k=1

Djk

N − 2

The formula to calculate the branch lengths LiU1
and LjU1

against this newly joint node are

given by equations
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Figure 15: Neighbor-Joining example on an arbitrary distance matrix. In iteration 1, the phylogenic
tree initializes all the nodes with equal distances. The Q matrix is computed from the initial distance
matrix, where time series a and b are identified as the closest nodes. These nodes are joined as node
u. Their branch length is calculated and the distance matrix is updated. In iteration 2, time series
c and u are joined as node v. Their branch length is calculated and the distance matrix is updated.
In iteration 3, branch node v and time series d are joined as node w and their branch length is
calculated. The distance between w and e is finally calculated.

LiU1
=
Dij +Diz −Djz

2
(4)

LjU1 =
Dij +Djz −Diz

2

The final stage updates the distance matrix for the next iteration.

Figure 15 illustrates a simple example of the neighbor-joining process. The result is a phylogenic

tree that visually shows the relationship between time series. Similar to a binary tree, the leaves of

this phylogenic tree represents a time series while nodes are connected to others through branches

proportional to their level of similarity measured as the distance metrics applied.

5.2 Parallel Processing of Feature Correlation

The Neighbor-Joining algorithm requires a distance measure for every pair-wise combination of time

series. These distance measures are stored in a distance matrix that serves as a similarity measure

between any two time series.

The distance matrix is of the size of N ×N , where N is the number of time series in the dataset.

The correlation coefficient of a pair-wise combination of the time series is used as the distance
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Figure 16: Left: Standard matrix data structure on a single core. Right: the matrix abstraction on
a distributed environment where RDDs that represent cells of the matrix are spread out amongst
three nodes.

measure. The correlation coefficient between two random variables X and Y is defined as

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )

The naive approach of generating a distance matrix is to iterate through each cell of the matrix

and apply the above formula to corresponding cells.

Cells of a distance matrix are represented using Resilient Distributed Datasets (RDDs) from

Apache Spark [9]. There is no native matrix in the Spark. However, operations crucial to the

Neighbor-Joining algorithm are not fully supported at the time being of this project. Therefore,

RDDs of the type [(Long, Long), Double] are defined as the main distributed matrix abstraction in

this workflow and use it as the input to the Neighbor-Joining algorithm.

Each cell is represented by an RDD of type [(Long, Long), Double], where both Long variables

correspond to indexes of row i and column j. The Double variable is a placeholder for the distance

measure. Such an RDD is a distributed variable.

RDDs are first created by reading the dataset from a stable storage such as HDFS into partitioned

collection of records. These RDDs are further transformed by operations such as map, filter, groupBy,

reduce.

The parallelization breaks down a matrix into units of elements. Figure 16 illustrates the partition

of the initial matrix into a distributed matrix.

This distance matrix populated with the correlation coefficient of the pairwise combination of

time series provides the ability to benchmark their level of similarity. By doing so, the problem

statement Q1 and also Q2 are addressed by providing a tool which can be used, if desired, for pre-

liminary feature reduction by discarding time series that are highly correlated to reduce unnecessary

computation effort downstream.

In listing 5.1, the source code written in scala depicts how the correlation matrix is first computed

for the Upper Diagonal. From there, the already calculated values are assigned to the opposite index

of this distance matrix which is achieved by setting the values of a tuple (i, j) to the tuple (j, i).

Listing 5.2, provides the source code for the correlation matrix calculation on the pairwise sets of

time series which was achieved by integrating the Spark MLlib statistic library method.

31



val (dmResult,labels) = DistanceMatrix.upperCorrelationMatrix(preprocessedData)

dmResult.collect().foreach{

case((i,j),v) =>

denseMatrix(i.toInt,j.toInt) = v;

denseMatrix(j.toInt,i.toInt) = v;

Listing 5.1: Calculating Correlation Matrix in Spark

def upperCorrelationMatrix(input:RDD[(String,Vector)]):(RDD[((Long,Long),

Double)],RDD[(Long,String)]) =

{

val indexed = input.zipWithIndex().cache()

val vectors = indexed.map{case(s,v)=> (s._2)}.cache()

val labels = indexed.map{case(s,v)=> (v,s._1)}

val cnt = indexed.count.toInt

val correlMatrix: Matrix = Statistics.corr(transpose(vectors), "pearson")

//isolate upper matrix

val upperDmRDD = sqlContext.sparkContext.parallelize(

for { i <- 0 until cnt

j <- 0 until cnt

if( i < j)

} yield ((i.toLong, j.toLong), 1 - Math.abs(correlMatrix.apply(i,j)))

)

//Substitite NaN

val result = upperDmRDD.mapValues{ case(v) => if ( v.isNaN ) 1.0 else (1.0 - v)}

(result,labels)

}

Listing 5.2: Correlation Matrix implementation in Spark Code Snippet
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5.3 Parallel Neighbor-Joining Algorithm

The parallelization of Neighbor-Joining is limited to the level of each iteration because each iteration

depends on its previous one. In every iteration of the algorithm, matrix Qh is calculated using

equation (2) on the input distance matrix used to identify the closest two nodes to join.

The parallelization of this algorithm comes down to parallelizing the calculation of Qh. This is

achieved by mapping each cell of the initial distance matrix to its new value of Qh. The mapping

operation is convenient in this process because the new Qh matrix is of the same size as the distance

matrix at the beginning of each iteration. The parallelization version of the algorithm is presented

in Algorithm 1.

Algorithm 1 Parallel Neighbor-Joining Algorithm

Require:
The number of time series N ;
The distance matrix dm;

Ensure:
The updated distance matrix dm;

1: Broadcast dm
2: for h = 1 to N − 2 do do
3: Compute Ri in parrallel.
4: Broadcast Ri;
5: for all i , j do
6: Compute Qh using broadcasted Ri in parallel using Spark’s map transformation. Equation

(2) is applied to all cells of the distance matrix dm;
7: end for
8: Compute the minimum Qh to get neighbors i and j. The Spark filter transformation is applied

to obtain the minumum Qh;
9: Nodes i and j are joined as a new Node Uh;

10: Compute updated distance Duhk according to Equation (3);
11: Compute branch lengths LiUh

and LjUh
according to Equation (4);

12: Delete nodes i and j, and add Uh to current node lists;
13: Update the distance matrix dm;
14: end for
15: Join the last two nodes N-2 and N-1
16: return dm

Figure 17 depicts the Neighbor-Joining workflow implemented in Spark. This flow summarizes

the key spark transformations of each iteration of the algorithm. The workflow can be broken

down into 4 logical stages where the first stage computes Ri a variable used throughout subsequent

calculations, the second stage implements the NJ algorithm which identifies the nodes to join, the

third stage prepares the distance matrix with the joined node, while stage 4 prepares other variables

for the next iteration.

5.3.1 Parallel Neighbor-Joining implementation in Spark

This section provides an overview of the spark implementation of the parallel neighbor-joining al-

gorithm. The following listing highlights substeps of the pseudo-code presented in Algorithm 1.
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Figure 17: The neighbor-joining parallel workflow with 4 main stages through every iteration

Algorithm 1 captured the high level flow of the parallel neighbor joining algorithm derived for this

thesis but was not directly implemented in the same exact pattern. The following Listings will serve

as a medium to highlight key spark implementation steps tackling the challenge of parallelizing a

statistical algorithm.

Initiation of the Parallel Neighbor-Joining is presented in Listing 5.3 which highlights the Scala

source code written in Spark. This method picks off from the result of the correlation matrix created

in the previous section.

val (dmResult, labels) = DistanceMatrix.upperCorrelationMatrix(filtereddata)

NeighborJoiningParallel.init(dmResult, labels)

result = NeighborJoiningParallel.convertTreeInNewick()

Listing 5.3: Neighbor-Joining initialization In Spark Snippet

The body of the NJ algorithm coordinating and sequencing each iteration as defined in Line 2

and 13-16 in Algorithm 1 is highlighted in the Listing 5.4. The recursive nature of the implemented

algorithm can be observed as the performNeighborJoining method is iteratively called on the same

distance matrix variable. It can be observed that localcheckpoint is used to cache the distance matrix

variable before each iteration for performance reasons discussed in the next section. Coalesce is also

used to address data partitioning and data shuffling impacting performance of the workflow. More

details on this tuning technique are provided in Section 6.4.4.

object NeighborJoiningParallel {

...
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//Initialize the tree to store the results of NJ and start NJ

def init(dm: RDD[((Long, Long), Double)],labels:RDD[(Long,String)]) = {

//setup variables

initTree(labels)

InitialTaxaCount = labels.count()

var currentDm = dm

currentDm.localCheckpoint()

TaxaOrder = IndexedRDD(labels)

initialNumPartitions = currentDm.getNumPartitions

var currentOptimalNumPartition = initialNumPartitions

for( h <- InitialTaxaCount to 3 by -1){

N = h

currentDm = performNeighborJoining(currentDm)

currentDm.localCheckpoint()

//coalesce required to repartition data due to unwanted partition creation from

union

if(h % 1 == 0 ) {

currentDm = currentDm.coalesce(initialNumPartitions)

}

}

val remainingDist = currentDm.first()._2

TREE(1).setBranchLength(remainingDist)

}

...

}

Listing 5.4: Neighbor-Joining initialization implementation in Spark snippet

Line 3-13 of Algorithm 1 embodies the definition of Neighbor-Joining algorithm. It can be

observed in Listing 5.5 that the spark broadcast variable was leveraged to calculate the summation

variables of Equation (2) defined in the method findMinQh. The summation variable required to be

calculated prior to perform spark mapping operations because a summation operation performed on

a single data partition will not be equivalent to the summation operation performed on the whole

data set. This is sample hurdle of parallelizing a statistical algorithm, where the design must ensure

that the signifiance of the algorithm is not loss from performing operations on partitionned data.

//Execute a set of methods that consists of an iteration of the NJ algorithm
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def performNeighborJoining(dm: RDD[((Long, Long), Double)]): RDD[((Long, Long),

Double)] = {

//Calculate Qh and return the smallest Qh as minQh

val minQh = findMinQh(dm)

//Calculate Duhk

val updatedDM = computeDuhk(dm,minQh._1._1,minQh._1._2,minQh._2)

//Update tree and DM to store result of this iteration

updateTaxaOrder(minQh)

updateTree(minQh)

//Return updated Distance Matrix for the next iteration

updatedDM

}

// Calculates Qh inspired by equation (2) and return the smallest value of Qh

def findMinQh(dm:RDD[((Long,Long),Double)]):

((Long,Long),Double) = {

// Generate a map variable from Ri for quick access during Qh calculation in the

next below

val riMap = computeRi(dm).cache().collectAsMap()

// Broadcast Ri to worker nodes

val Ri = sqlContext.sparkContext.broadcast(riMap)

//finding Ri using broadcast

val Qh = dm.map{ case(k,v)=>

//Use broadcasted Ri

val ri = Ri.value.getOrElse(k._1,0.0)

val rj = Ri.value.getOrElse (k._2,0.0)

val Q = ((N-2) * v) - (ri - rj)

(k,Q)}.localCheckpoint()

val minQh = Qh.min()(new Ordering[Tuple2[(Long,Long), Double]]() {

override def compare(x: ((Long,Long), Double), y: ((Long,Long), Double)): Int =

Ordering[Double].compare(x._2, y._2)})

val minDist = dm.lookup(minQh._1)

//I and J of smallest Qh with value of their corresponding Dij;

return (minQh._1,minDist(0))

}
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//Calculate once the sum of rows

def computeRi(dm: RDD[((Long,Long),Double)]):RDD[(Long,Double)] = {

val summedRowDm = dm.map{case((i,j),v)=> (i,v)}

.reduceByKey( _ + _)

summedRowDm

}

Listing 5.5: Neighbor-Joining source code in Spark capturing Line 3-13 of Algorithm 1

Another challenge of parallelizing a statistical algorithm was to performing matrix operations

on a distributed data structure. The Neighbor-Joining algorithm requires reducing by one column

and one row conceptually every iteration as the result of merging two closest nodes, as shown in

Figure 18.

Since the distance matrix is an RDD of indexes-value pairs, deleting a row and a column becomes

the operation on query RDDs with keys corresponding to a row and column indexes. Adding the

merged node is done by creating a new RDD with the merged value of distance. Consequently, the

remaining RDDs’ key is updated to reflect the changing indexes of rows and columns in adjacent

sequential order with no gap.

Listing 5.6 highlights Line 9-13 of Algorithm 1 capturing necessary matrix operations for the

Neigbor-Joining algorithm. Matrix dimension reduction technique is present in the computeDuhk

method. In this method, the spark variable updatedIndexDm is the final product of removing any

occurrence of the i and j to create variable subtractedDm, by merging the new Duk values in

unionDm, and by re-indexing in the rdd distance matrix abstraction for the next iteration. These

matrix operations were made possible from the distance matrix abstraction presented in this thesis.
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Figure 18: Scenario of distance matrix update in one iteration. Left: The black cell corresponds to
the smallest value of Qh obtained. Hence the closest nodes X6 and X1 need to be merged. Right:
The corresponding row and column that contain nodes X6 and X1 are deleted from the distance
matrix. A new cell U is placed at the smallest index position, row 1 in this case. The new distance
between node U and remaining nodes are computed.

//Calculate Duhk as defined by Equation (2)

def computeDuhk(dm:RDD[((Long,Long),Double)],i:Long,j:Long, Dij:

Double):RDD[((Long,Long),Double)]= {

val I = Math.min(i,j) //I is assumed to be the smaller index

val J = Math.max(i,j)

val dmWithI = dm.filter( t => t._1._1 == I || t._1._2 == I).localCheckpoint()

val Dik = dmWithI.map{ t =>

val i = if (t._1._1 == I) t._1._1 else t._1._2

val k = if (t._1._1 != I) t._1._1 else t._1._2

(k,(i,t._2))

}.localCheckpoint()

val dmWithJ = dm.filter( t => t._1._1 == J || t._1._2 == J).localCheckpoint()

val Djk = dmWithJ.map{ t =>

val j = if (t._1._1 == J) t._1._1 else t._1._2

val k = if (t._1._1 != J) t._1._1 else t._1._2

(k,(j,t._2))

}.localCheckpoint()

//Return an RDD containing all pairs of elements with matching keys

val Duk = Dik.join(Djk,initialNumPartitions)

.map{t =>

val u = t._2._1._1 //u will be smaller index

val k = t._1

val newDist = (t._2._1._2 + t._2._2._2) /2
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((u,k),newDist)}

//Remove trace of old I and J values

val subtractedDm = dm.subtractByKey(dmWithI)

.subtractByKey(dmWithJ)

//Add newly calculated Duk

val unionDm = subtractedDm.union(Duk)

// Update index values of the Dm due to the matrix size reduction from the node

merge

val updatedIndexDm = unionDm.map{ case ((i,j),v) =>

val updatedI = if( i > J) i -1 else i

val updatedJ = if( j > J) j -1 else j

((updatedI,updatedJ),v)}

//Calculate Branch length

calculateBranchLength(Dij,Dik,Djk)

return updatedIndexDm

}

calculation steps in Spark },captionpos=b]

//Calculate new node branch length following Equation (3)

def calculateBranchLength(Dij:Double ,dik:RDD[(Long,(Long,Double))],

djk:RDD[(Long,(Long,Double))]) = {

val DizSum = dik.map{case(k,(i,v))=> (v)}

.sum()

val Diz = DizSum/ (N-2)

val DjzSum= djk.map{case(k,(j,v))=> (v)}

.sum()

val Djz = DjzSum / (N-2)

val Liu = (Dij + Diz - Djz) / 2

val Lju = (Dij + Djz - Diz) / 2

BranchLiu = Math.abs(Liu)

BranchLju = Math.abs(Lju)

}

}

Listing 5.6: Neighbor-Joining source code in Spark capturing Line 9-13 of Algorithm 1
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5.4 Performance Tuning

Throughout the development of the Parallel Neighbor-Joining algorithm in Spark, two performance

tuning opportunities were identified.

The first performance tuning was addressing a limitation from the Spark distributed framework

when provided a recursive function. Internally, due to its in-memory processing framework, Spark

has to re-calculate every previous iteration before addressing the current iteration. This translates

into a very long and expansive RDD lineage. Although the neighbor-joining function complexity

gradually reduces over its iterations, the naive implementation of this recursive function displayed

significantly increasing execution time for each iteration. In order, to reduce the complexity of this

operation, the localcheckpoint method was introduced at key stages of each iteration in order to

truncate the lineage. The checkpoint performs a memory cache of the variable and making the RDD

at the point of caching to ”remember” its contents the first time it passes by there. As depicted

Listing 4.1, the localcheckpoint method was applied variable Q. This translates into storing in

memory the result of Q so that subsequent iterations can leverage off this computed value and not

recompute it.

The second performance tuning opportunity was to leverage the broadcast spark method to

reduce redundant computing efforts of a common variable required by parallel tasks. As depicted

Listing 5.7, Ri is computed first on the driver then broadcasted to executors for subsequent parallel

tasks similar to a global variable in traditional programming. This variable is used to calculate ri

and rj when calculating Qh through a map operation. Through this map operation, each task can

directly read and access the indexed value through the broadcasted variable Ri instead of each tasks

having to recalculate Ri making this computing step more scalable and efficient.

To compute Ri, the cells of the distance matrix were grouped by their row index i and summed

using the reduceByKey transformation. A collectAsMap transformation is applied to Ri at the be-

ginning of the next stage in order to obtain a map variable with the row i as key and the sum of the

row as values. Once broadcasted, each task can access the relevant sum of row value using the row

index as a key.

def findMinQh(dm:RDD[((Long,Long),Double)]):

((Long,Long),Double) = {

// Generate a map variable from Ri for quick access during Qh calculation in the next

below

val riMap = computeRi(dm).cache().collectAsMap()

// Broadcast Ri to worker nodes

val Ri = sqlContext.sparkContext.broadcast(riMap)

//finding Ri using broadcast

val Qh = dm.map{ case(k,v)=>
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//Use broadcasted Ri

val ri = Ri.value.getOrElse(k._1,0.0)

val rj = Ri.value.getOrElse (k._2,0.0)

val Q = ((N-2) * v) - (ri - rj)

(k,Q)}.localCheckpoint()

val minQh = Qh.min()(new Ordering[Tuple2[(Long,Long), Double]]() {

override def compare(x: ((Long,Long), Double), y: ((Long,Long), Double)): Int =

Ordering[Double].compare(x._2, y._2)})

val minDist = dm.lookup(minQh._1)

//I and J of smallest Qh with value of their corresponding Dij;

return (minQh._1,minDist(0))

}

Listing 5.7: Broadcast and localcheckpoint in Neigbor-Joining in Spark

5.5 The Workflow Output

The output of the workflow follows the Newick tree, a format to represent a graph-theoretical trees

with edge lengths. This output is further converted to a cladogram based on industry recommen-

dation which is a diagram that shows the relation between entities based on the branch length.

The shorter the branch length, the more related the two entities are. Figure 19 plots the clustering

result. In this plot, small regions with multiple short branch lengths correspond to time series that

are closely related. It can be observed that time series with common labels are grouped into clusters.

Figure 20 and Figure 21 provides enlarged section of Figure 19. It can be observed that the

enlarged sections of Figure 19 that neighboring features from the same cluster tend to have similar

label names, such as starting with SVCMGR or BGP, which are unknown prefixes found in the feature

names in the dataset. Without injecting telecom domain knowledge, the workflow manages to group

these features solely from their statistical correlations.

The output of this Newick tree generated from this workflow provides the ability to visualize a

cladogram of time series where the proximity and the length of the branches outline the strength of

their relationship and similarity. In this thesis, the derived Neighbor-Joining workflow and its output

provide a tool which can address the problem statements questions Q1, Q2, and Q3. Through this

particular use case using this dataset and workflow, the resulting cladogram provided an early

pattern of similarity based on common prefixes Q3. Such a pattern can help lessen the technical

challenge on exploring high dimensional datasets by correlating time series Q1 and discarding Q2

highly similar time series to reduce computational burden down the road.
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Figure 19: Visualization of Neighbour-Joining clustering of devices.

42



Figure 20: Visualization of Neighbour-Joining clustering of devices. Zoom in on the bottom right of
the whole cladogram to display that neighbour features from the same cluster tend to have similar
names

Figure 21: Visualization of Neighbour-Joining clustering of devices. Zoom in on the top right of
the whole cladogram to display that neighbour features from the same cluster tend to have similar
names
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5.5.1 Cluster Analysis

In this section, analysis of the correlation neighbor-joining parallel workflow output is presented in

order to confirm the design and implementation validity. If valid, the parallel workflow output should

contain clusters where each cluster is distinct from each other cluster, and the objects within each

cluster are broadly similar to each other. Although initial observations of the clusters are provided,

data mining effort to search and generate information from this dataset was not in scope in this

thesis.

A dendrogram is a tree-like display that lists the objects which are clustered along the x-axis,

and the distance at which the cluster was formed along the y-axis. A cladogram can be abstracted

to a circular dendogram. In order to identify clusters in a dendrogram, a line must be drawn across

the branches of the diagram in order to delimit the clusters. Following the same methodology, given

the circular shape of the cladogram, a circle delimiter was placed in the middle of the cladogram as

depicted in Figure 22.

The placement of the circle was determine based on the current structure of the cladogram. It

can be noticed that some aggregations of words are tighly related due to their short branch length

- see clusters 1-3-6-7-8-9, whereas other clusters are aggregated with longer branch length - see

clusters 2-4-5-10. In this analysis, the placement of the circle was determined in order to delimit

those distinct 10 groups of objects.

Without industry knowledge on the dataset, it is challenging to assess how the objects within

clusters are similar. What can be achieved is through their labeling. To provided statistical signifi-

cance to the observation above regarding common prefixes within clusters, each objects within each

clusters were compared based on their labeling.

In order to generate the numbers in Figure 23, the size of the clusters based on the unique labels

were compared to the count of unique prefixes. In this dataset, a prefix was the string of text before

the second occurance of a dash ”-” character . In example, for the object labeled ”port-minor-

SonetsdhdAlarmSet-2001”, the prefix is ”port-minor”. In this case, when a cluster has a low count

of distinct prefix, it implies that many of the objects have similar prefix. In this analysis, a lower

percentage of distinct prefix ( highlighted in green ) indicates that the objects within the cluster

have similar prefixes meaning they are similar based on the labeling pattern. Furthermore, it can

be noticed that tightly aggregated clusters due to their short branch length clusters (1,3,6,7,8,9)

have on average a higher rate of similar labels from their prefixes than the clusters (2,4,5,10) with

the longer branch length.In summary, in Figure23, the lower the % of distinct prefix, the

higher the similarity for time series within the respective cluster. This analysis confirms

that the clustering is valid because it was able to cluster objects with more similarity together based

solely the values of the time series and without injection of telecommunication knowledge in the

workflow.
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Figure 22: Cluster delimitation on Figure 20

Figure 23: Cluster analysis results based on labelling.
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Chapter 6

The DBSCAN Clustering Method

This chapter presents the exploration of an alternate approach at analyzing the time series data

through spatial distance in contrast to correlation distance in the previous method. The motivation

in developing a alternate method is to explore if different clustering methods could find complimen-

tary results as the Neighbor-Joining Method. As a result, a scalable and parallel workflow for time

series analysis using density based clustering was developed with system performance evaluation.

This workflow features a transformation step which applies DTW to evaluate he similarity between

time series and projects the distance matrix into a spatial dimension using PCA. The DBSCAN

algorithm selected in this workflow performs unsupervised learning in spatial dimension and excel

with noisy data.

This Chapter further explores a clustering method which explores the relation between the pair-

wise time series by evaluating their association level and explores potential patterns amongst the

dataset. This method results in a tool which can be used to address our problem statements questions

Q1, Q2, and Q3. An overview of the workflow is presented in Figure 24.

The Chapter starts by providing an overview of the algorithms integrated into this method. The

algorithm definition and traditional non-distributed applications are introduced to prepare for the

subsequent sections which will focus on their adaptation and integration to the parallel workflow.

Three stages of the parallel workflow are then presented in their respective section. The workflow first

Figure 24: An overview of the DBSCAN clustering method. The leftmost represents the distance
matrix of the input time series measured with DTW. PCA is then applied to reduce the dimen-
sionality. These pairs of principal components from PCA are then projected into a two-dimensional
space where the X axis is component 1 and the Y axis is component 2. Finally, DBSCAN is applied
to these points to find clusters based on the principal components.
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computes the distance of any two pairs of time series. This produces a distance matrix that follows

the Dynamic Time Warping (DTW) coefficients of any two time series. This distance matrix is

further transformed by the algorithm of Principal Component Analysis (PCA). PCA transforms the

distance matrix into a set of linearly uncorrelated variables, called principal components. Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm clusters the output from

PCA. The chapter ends by presenting the output of the DBSCAN clustering method.
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6.1 Algorithms Overview

This section provides an overview of the algorithms discussed and part of the DBSCAN Clustering

method by providing their standard definition.

6.1.1 Dynamic Time Warping

DTW measures the similarity between sequences of any two time series that may vary in speed

referred to as a lag (or delay). DTW corrects the lag by finding the minimal distance D(i, j)

between two time series Xi and Yj . D(i, j) is defined as a recursive function with the mapping

starting from (1, 1) and ending at (i, j).

D(i, j) = |Xi + Yj |+ min
{
D(i− 1, j);D(i− 1, j − 1);D(i, j − 1)

}
(5)

The computing complexity of DTW is of O(n2).

6.1.2 Principal Component Analysis

Principal Component Analysis is a mathematical procedure used orthogonal transformations that

converts a number of variables assumed to be correlated into a smaller set of linearly uncorrelated

variables named Principal Components [63].

Each possible principal component is defined in such a way that the preceding component has a

higher variance leading to the first principal component having the largest possible variance.

By definition, PCA is obtained by 1) evaluating the covariance matrix X of the dataset and then

2 ) finding the eigenvectors of X through eigendecomposition.

C = Covariance(X) = XXT /(n− 1).

Since C is a symmetric matrix, it can be diagonalized such that

C = V IV T

where V is a matrix of eigenvectors and I is a diagonal matrix of eigenvalues. The principal

components of X are now given by XV . The i-th principal component is given by the i-th column of

XV . The only parameter specified through PCA is the number of principal components k expected.

If the initial matrix X is of dimension n ×m, the result of PCA on X is an n x k matrix, where

each column corresponds to a principal component.

Patterns of data can be difficult to grasp in a higher dimension. To facilitate the analysis and

pattern identification of the data, Principal Component Analysis can serve as a tool for dimension-

ality reduction on high dimension datasets in which the reduced dimensions retains most of the

information from its source [64].
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Figure 25: The DTW Distance Matrix Computation in Spark. A mapping transformation calculating
the DTW algorithm is applied to an RDD of indexes. Each of these indexes corresponds to vectors
of values which defines the time series.

6.1.3 Density-Based Spatial Clustering of Applications with Noise

Density-based spatial clustering of applications with noise (DBSCAN) clusters a set of spatial data

points based on their proximity. This unsupervised machine learning method does not require prior

knowledge of the count of clusters in the dataset and can find clusters of arbitrary shape [24].

Two parameters are expected for the DBSCAN algorithm, namely minPts and eps. minPts is the

minimum number of objects required to form a dense region. eps is a measure of proximity that

defines if a spatial point should be considered into a cluster.

DBSCAN clustering method distinguishes itself with the ability to find patterns and structures

in the data that are not arbitrary shape in spatial databases with noise [65].

6.2 Parallel Processing of Dynamic Time Warping

In The DBSCAN Clustering Method, the first stage of the workflow consists of generating the Dis-

tance Matrix using the Dynamic Time Warping Algorithm. The parallel processing of the Dynamic

Time Warping and details how it was integrated into the DBSCAN Clustering Method are presented

in this section.

A naive approach of generating a distance matrix is to iterate through each cell of the matrix

and apply Equation 5. Figure 25 illustrates the parallel processing to generate a distance matrix

applying Equation 5. The distance matrix abstraction in this thesis is represented by an RDD of

type [(Long, Long),Double], where both Long variables correspond to indexes of row i and column j.

The Double variable is a placeholder for the distance measure that is the DTW measurement in this

case. Indexes i and j refer to two specific time series. Hence, the distance matrix RDD is generated

by means of a map transformation that applies Equation 5 to all instances of an RDD.

While implementing the DTW from equation 5 and applying it as a Spark Mapping Operation

to all pairwise time series, it was quickly observed in the Spark UI, Spark’s application interface,

that this operation was taking too long to complete to the point where the workflow seemed to stall.

This stage was a clear bottleneck of the workflow because it would take an extended amount of

time to process this task and it would delay the overall execution time of the job. Due to the high
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Algorithm 2 FastDTW

Require: Time series Xi, Xj , (i 6= j) and radius - distance to search outside of the projected warp
path of the previous resolution when refining the warp path

Ensure: dtwCoefficient between warp path of Xi and Xj

1: minTSsize = radius +2
2: if (|Xi| ≤ minTSsize OR |Xj | ≤ minTSsize) then
3: //For small input time series, run traditional DTW
4: RETURN DTW(Xi, Xj)
5: else
6: Xi = Xi.reduceByHalf()
7: Xj = Xj .reduceByHalf()
8: lowResPath = FastDTW(Xi,Xj , radius)
9: searchWindow = ExpandedResWindow(lowResPath,Xi, Xj ,radius)

10: RETURN DTW(Xi, Xj ,searchWindow)
11: end if

dimensionality of the dataset and the quadratic computing complexity of DTW is O(n2), it became

apparent that this distance matrix generation step required revision.

The solution was to adopt an approximation of FastDTW [22] with computing complexity O(n).

The authors of the paper propose a linear version of the traditional quadratic complexity DTW

algorithm that approximates accurately the optimal path between two times series while discarding

unnecessary computation. This implementation of the distance measure is more suitable for larger

time series. The algorithm of FastDTW is detailed in Algorithm 2. Integration of this optimized

algorithm to this method was achieved by leveraging the open source Java implementation made

available by the authors [67]. Listing 6.1 provides the details of this stage of the workflow using

Spark. Once FastDTW was imported as a library, all pairwise combination of time series were

applied a Spark mapping operation with FastDTW as the mapping function.

This optimization step significantly lessened the performance bottleneck previously experienced

by making the distance matrix generation using DTW a linear complexity task instead of a quadratic

complexity one.

By measuring the distance between all the time series using the distance measure FastDTW,

the thesis addresses Q1 by providing a measure of similarity on the input time series dataset and

also Q2 by providing initial benchmarking criteria for, if needed, discarding time series that are

identified as highly similar through small FastDTW coefficients.

//FastDTW distance matrix generation using Open Source Java implementation

def fastDtwDistanceMatrixWithBroadcast(input:RDD[(String,Vector)]):

RDD[(Long,(Array[Double],String))] =

{

//Broadcast TS RDD

val tsMap = input.zipWithIndex().map{case(v,i)=>(i,v)}

.collectAsMap()
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val broadcastedTsMap = sqlContext.sparkContext.broadcast(tsMap)

//Prepare indices corresponding to Upper Diagonal cells

val cnt = input.count.toInt

//Pruning the lower diagonal indexes

val indices = sqlContext.sparkContext.parallelize(

for { i <- 0 until cnt

j <- 0 until cnt

if( i < j)

} yield (i.toLong, j.toLong)

)

val distFn = DistanceFunctionFactory.getDistFnByName("EuclideanDistance")

val fastDtwRDD = indices.map{ case (i, j) => {

val seq1 = new

TimeSeries(broadcastedTsMap.value.get(i).get._2.toArray.toBuffer.asJava)

val seq2 = new

TimeSeries(broadcastedTsMap.value.get(j).get._2.toArray.toBuffer.asJava)

val fastDtwCoefficient = FastDTW.getWarpDistBetween(seq1,seq2,distFn)

((i,j),fastDtwCoefficient)

}

}

//Invert results for to obtain other triangle of the matrix

val otherDtwTriangle = fastDtwRDD.map{ case ((i,j),v) => ((j,i),v) }

// Adding the diagonal of the dtw matrix since a dtw of a Variable with itself is

equal to 0

val diagonal = sqlContext.sparkContext.parallelize(for { i <- 0 until cnt} yield

((i.toLong,i.toLong),0.0))

// Combine all parts of the distance matrix

val distanceMatrix = fastDtwRDD.union(otherDtwTriangle).union(diagonal)

val initialSet = mutable.ArrayBuffer.empty[(Long,Double)]

val addToSet = (s: mutable.ArrayBuffer[(Long,Double)], v: (Long,Double)) => s += v

val mergePartitionSets = (p1: mutable.ArrayBuffer[(Long,Double)], p2:

mutable.ArrayBuffer[(Long,Double)]) => p1 ++= p2

def mapFunc(lines:Iterator[((Long,Long),Double)])={

lines.map{case ((i,j),v) => (i,(j,v))}

}
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//Replaced map by mapPartitions for optimization

val formattedDm = distanceMatrix.mapPartitions(mapFunc)

.aggregateByKey(initialSet)(addToSet,

mergePartitionSets)

.mapValues(_.toArray.sortBy(_._1).map(_._2))

//Combine Labelled with FastDTW DM Results

val formattedDmLabelled = formattedDm.map{ case (i, v) => (i, (v,

broadcastedTsMap.value.get(i).get._1))}

formattedDmLabelled

}

Listing 6.1: FastDTW in Spark Code Snippet

6.3 Principal Component Analysis in Parallel

In the DBSCAN Clustering Method, PCA is then applied to perform dimensionality reduction on

the distance measure generated using a Dynamic Time Warping algorithm. PCA is used to projects

the high dimensional distance matrix into a lower linear space to perform spatial clustering in a

visualizable space. PCA performs an orthogonal projection of the distance matrix into a lower

dimensional linear space with the maximized variance of the data.

The implementation of PCA is derived from the Spark MLLibs library [11] and its Spark Source

code are detailed in Listing 6.2. Using Spark MLLibs, PCA is performed in two stages. The first

stage generates the covariance matrix of X. The second stage is the eigenvalue decomposition

achieved through Singular Value Decomposition (SVD). This method accepts a single parameter

k that specify how many principal components the user seeks. The input is the distance matrix

formatted in RDD[vector], whereby each vector contains the data points of one time series. Internally,

the method converts the input RDD [Vector] into Spark RowMatrix, an abstraction of a row-oriented

distributed matrix with properties defining the number of rows and columns. RowMatrix consists of

a set of numerical algorithms on matrixes that applies breeze [23], a generic, and powerful numerical

processing library. Finally, the principal components are stored as a local matrix of size n × k,

where each column corresponds for one principal component. The columns are in descending order

of component variance. This matrix is used as input to the DBSCAN algorithm.

By integrating the PCA in the DBSCAN Clustering Method, this part of the workflow addresses

Q2 by staging the data for spatial clustering in a lower dimension found in the next stage of this

method and Q3 by reducing the computational burden of processing a high dimensional distance

matrix while maintaining the information and potential patterns from the higher dimension.

Limitation: However, a limitation should be noted. The DBSCAN implementation in this

thesis is restricted to 2-dimensional space clustering which requires the dimensionality reduction
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through PCA to only use the first two principal components. This constraint will have impacts on

this workflow output as information in higher principal components are loss due to potentially risk

over reducing the dimensionality.

def fit(sources: RDD[Vector]): PCAModel = {

val numFeatures = sources.first().size

require(k <= numFeatures, s "source vector size $numFeatures must be no less than

k=$k")

require(PCAUtil.memoryCost(k, numFeatures) < Int.MaxValue,

"The param k and numFeatures is too large for SVD computation. " +

"Try reducing the parameter k for PCA, or reduce the input feature " +

"vector dimension to make this tractable.")

val mat = new RowMatrix(sources)

val (pc, explainedVariance) = mat.computePrincipalComponentsAndExplainedVariance(k)

val densePC = pc match {

case dm: DenseMatrix => dm

case sm: SparseMatrix => sm.toDense /*Convert a Spark matrix to dense. */

case m => throw new IllegalArgumentException("Unsupported matrix format.

Expected " + s"SparseMatrix or DenseMatrix. Instead got: ${m.getClass}")

}

val denseExplainedVariance = explainedVariance match {

case dv: DenseVector => dv

case sv: SparseVector => sv.toDense

}

new PCAModel(k, densePC, denseExplainedVariance)

}

Listing 6.2: PCA Spark Implementation

6.4 The Parallel DBSCAN Algorithm

The last stage in the DBSCAN Clustering Method consists of applying the DBSCAN algorithm in

order to identify potential patterns and/or structures in the dataset.

This thesis adopts an open source implementation of DBSCAN on Spark [8] for a two-dimensional

space clustering. This dbscan implementation imposes a technical requirement for the input spatial

points to be in two dimensions in this thesis. This is achieved by using PCA with a number

of principal components k = 2 on the distance matrix. In contrast to the traditional DBSCAN

algorithm, this parallel version introduces the third parameter maxPts that limits the maximum
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Figure 26: Overview of DBSCANs workflow adapted for Spark. The distance matrix is the starting
point of the workflow where each cell is the coefficient obtained from the distance function applied
to Xi and Xj . Then the distance matrix is transformed by PCA. In this case, the first two principal
components are maintained. These two components are used as spatial coordinates. Each pair of
cells is represented as a point in the spatial plot. Eventually, DBSCAN is applied to identify clusters
based on the principal components.

number of points. The implementation of the entire workflow using Spark is depicted in Figure 26.

More details of this Parallel DBSCAN Implementation in Apache Spark is provided below.

The parallel implementation of DBSCAN follows the Map-Reduce principles by mapping (or

breaking down) the global spatial area that englobes all input data spatial points into smaller areas

with an even number of spatial points that can be processed in parallel. The results of each smaller

areas are then reduced (or aggregated) to obtain the final DBSCAN result for the entire spatial area.

The parallel DBSCAN algorithm is broken down into three main stages:

1. Data partitioning - consists of spatial points divided evenly into partitions based on their

proximity;

2. Local clustering - application of a traditional naive DBSCAN to each partition containing the

spatial points;

3. Global merging - merging of local clusters of each partition to generate global clusters.

Step 1 Data Partitionning as detailed in Listing 6.3 distributes evenly the input spatial points

into smaller rectangular spaces based on spatial proximity. The input is a RDD[Vector], where each

vector is of size two containing a horizontal x and vertical y coordinates of a spatial point. This

RDD[Vector] goes through transformations based on spatial density in order to identify their initial

partition that is associated with a rectangle subspace space in the global search area. As depicted

in Figure 27, a rectangle is an object defined by dialog coordinates. These rectangles are partitioned

input to local clustering where DBSCAN is applied to each partition in parallel.

The rectangle object is generated by mapping each spatial point in the RDD[Vector] to a rectangle

space of the size eps ∗ eps, where eps is the measure of proximity. AggregateByKey is then used to

group and count all the points that fit within the same rectangular space of the size eps ∗ eps. The

resulting variable minimumRectangleWithCounts is a list of spatial rectangles and the count spatial

points it contains and serves as the initial step to data partitioning.
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Figure 27: Representation of spatial partitioning in smaller rectangles of the global rectangle area.

The variable minimumRectangleWithCounts, is then partitioned using the custom partition method

of EvenSplitPartitioner. This recursive method iterates through each rectangle to ensure a rectangle

should contain spatial points less than the maxPointsPerPartition. Otherwise, the partition method

recursively splits the rectangle and resizes it until the rectangle meets that criteria.
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The partitions are finally merged into common clusters. These spatial points are formatted with

a label of their respective partition. This variable is a RDD[id,point], where id is an integer referring

to a partition; and point is a tuple of values identifying the spatial coordinates of a data point.

//Generate the smallest rectangles that split the space and count the points contained

in each rectangle

val minimumRectanglesWithCount = vectors

.map(toMinimumBoundingRectangle)

.map((_, 1))

.aggregateByKey(0)(_ + _, _ + _)

.collect()

.toSet

//Find the best partitions for the data space

val localPartitions = EvenSplitPartitioner

.partition(minimumRectanglesWithCount, maxPointsPerPartition, minimumRectangleSize)

val localMargins = localPartitions

.map({ case (p, _) => (p.shrink(eps), p, p.shrink(-eps)) })

.zipWithIndex

//Broadcast local variable localMargins to be used for parallel processing in the next

step

val margins = vectors.context.broadcast(localMargins)

// Assign each point to its proper partition

val duplicated = for {

point <- vectors.map(DBSCANPoint)

((inner, main, outer), id) <- margins.value

if outer.contains(point)

} yield (id, point)

val numOfPartitions = localPartitions.size

Listing 6.3: Data Partitionning in parellel DBSCAN

Step 2 Local DBSCAN applies Local DBSCAN to each partition of the data as detailed

in Listing 6.4. Spatial points are first grouped into their partition using the Spark groupByKey

transformation. Then, a traditional local DBSCAN is applied to each partition using the Spark

flatMapValues transformation on an array of spatial points in this case.

// Perform local dbscan

val clustered = duplicated
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.groupByKey(numOfPartitions)

.flatMapValues(points =>

new LocalDBSCANNaive(eps, minPoints).fit(points)).cache()

Listing 6.4: Local DBSCAN

Step 3 Global Clustering merges above local clusters into global clusters as detailed in List-

ing 6.5. The RDDs in step 2 are labelled by a local cluster id from the local DBSCAN transformations.

The map transformation is applied to the local cluster id by assigning a distinct id to unique clusters

and a common cluster id to connected clusters.

//find all cluster ids

val localClusterIds = clustered

.filter({ case (_, point) => point.flag != Flag.Noise })

.mapValues(_.cluster)

.distinct()

.collect()

.toList

val (total, clusterIdToGlobalId) = localClusterIds.foldLeft((0, Map[ClusterId, Int]()))

{

case ((id, map), clusterId) => {

map.get(clusterId) match {

case None => {

val nextId = id + 1

val connectedClusters = adjacencyGraph.getConnected(clusterId) + clusterId

logDebug(s"Connected clusters $connectedClusters")

val toadd = connectedClusters.map((_, nextId)).toMap

(nextId, map ++ toadd) }

case Some(x) => (id, map)

}

}

}

Listing 6.5: Global Clusters generation source code snippet

6.5 The Workflow Output

Finally, the output of DBSCAN Clustering method results in the time series labeled with their

associated cluster. The cluster is plotted in Figure 28. The points represent the spatial projection

generated by PCA on the distance matrix. To compare with the Neighbor-Joining clustering method,

the data points are plotted with labels starting with BGP. It can be observed that the objects
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Figure 28: Visualization of DBSCAN output resulting in 6 clusters based on Eps 40

similarly labelled further spread into five clusters of different color schemes.

The output of this workflow provides the ability to visualize the spatial positioning of the time

series and assess the presence of any unknown clusters. The output of this workflow is a tool which

can be used to address the problem statements questions Q1, Q2, and Q3. In this particular use case

using this dataset and workflow, the resulting clusters do not provide a conclusive pattern that can

be used to correlate or discarding features. Furthermore, to cross-validate with the findings from the

Neighbor-joining output, Figure 28 27 provides two plots where each plots highlights labeled points

with similar Prefixes. As a reminder, the Neighbor-joining workflow managed to group together

time series with common prefixes which were cannot observe in these figures.

Although this particular workflow use case and dataset did not contain distinct clusters, the de-

rived DBSCAN workflow provides another tool to help address the technical challenges on exploring

high dimensional time series datasets and the questions captured in the problem statements Q1,

Q2, and Q3.

6.5.1 Cluster Analysis

In this section, analysis of the DBSCAN workflow output is presented in order to confirm the design

and implementation validity. If valid, the parallel workflow output should contain clusters where

each cluster is distinct from each other cluster, and the objects within each cluster are broadly

similar to each other. Although initial observations of the clusters are provided, data mining effort

to search and generate information from this dataset was not in scope in this thesis.

The results in Figure 28 was selected as it shown the most count of clusters. This particular
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Figure 29: Visualization of DBSCAN output resulting in 4 clusters based on eps 100

results was presented due to its clear clustering based on the visually observed data spatial density.

Further exploration and Industry input would be needed in order to ensure clusters

are deterministic.

Although, data mining was not the objective of this thesis, the observation from the Neighbor-

joining output was cross validated with the sample dbscan output in Figure 28 . Selected prefix

labels were displayed on their respective spatial data points and it can be observed that data points

with similar prefix are not aggregated in any particular clusters, but are in fact spread out across

all the data space. The absence of the observation found in the Neighor-joining workflow does not

invalidate the ability to cluster data points based on density, but that this observation is not found

in using the dbscan workflow results with these specific parameters and 2D Spatial dimension.

Furthermore, The motivation was to compliment results from NJ, the same hypothesis was

applied on these results: ”Are similarly labeled time series clustered together?”. Due to the number

of data points and the inability to clearly label each points with their respective labels, only one

subset of data points with similar prefix was labelled on the figure. It can be observed that these

similarly labeled data points are spread out across all clusters. The methodology to statistically

evaluate our hypothesis is to count the numbers of points in each cluster was also applied on dbscan

outputs. In Figure 29, we observe the statistical evaluation on the dbscan output where 4 clusters

were observed. By Counting ratio by which the similarly labelled timeseries are found within each

cluster, we can notice that cluster one has the lowest ratio of distinct Prefix. In summary, In

Figure 29,using the same logic as in the NJ workflow, the lower the % of distinct

prefix, the higher the similarity for time series within the respective cluster. Hence, it

can be noticed that clusters from the dbscan output do have high similarity within the

first cluster, but subsequent clusters seem to be very distinct. From a statistical point

of view, some similarity can be derived, but visual as shown in In Figure 28 similarly

labelled time series do not seem to fall under the same spatial cluster when using 2

Principal components

With further research time and access to our partner’s development environment, exploration of

this dataset using this workflow in higher dimensions would have been considered for more exhaustive

analysis of the clustering results due to the assumption that information was loss by over reducing

the dimensionality of the data given the implemention constraints at the time of this writting.In

addition to explore different dimensions, more extensive cluster analysis would have been applied

using the same methodology of statistically evaluating the distribution of similarly labeled times
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series and observe their cluster distribution for all times series.
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Chapter 7

The System Evaluation

In this section, the thesis aims to evaluate the system performance and scalability of the two work-

flows developed by varying:

1. the cluster size

2. the parallelism

3. data size through resampling

4. partition through Spark transformations

These four factors impact the workload on the system. To further identify the performance

bottlenecks, the thesis will experiment applying the workflows through different scenarios which will

simulate different configurations of the four parameters above.

Scalability is a big data performance requirement as the data captured is exponential. Scala-

bility is the capability of a system, network or a process to accommodate to rapid changes in the

growth of data either in traffic or in volume. In algorithm design, scalability is said to be suitably

scalable when facing a large processing load. If the algorithm fails when the load increases it does

not scale. There are two general methods to add more resources:

1. Scaling horizontally - to add more nodes ( or remove nodes ) such as a server to a distributed

cluster

2. Scaling vertically - to add more processing resources such as GPU or memory to a single

computer or node in a system.

The chapter starts with presenting the experiment setup and the total resources available in

the cluster. The chapter then presents the evaluation approach of each workflow derived and their

results. The system level findings are then presented.
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Figure 30: Spark Master resources view with no jobs running.

Figure 31: Spark Cluster Architecture in this experiment setup

7.1 The Experiment Setup

7.1.1 Environment

The experimental environment was an on-premise cluster made out of 3 in-house servers configured

with Apache Spark 1.6.3. Each of those servers has 2 CPUs that translated into 10 Virtual Cores,

128 GB of RAM, and 2 TB of storage as shown in Figure 33. The cluster’s total resource is provided

in Figure 30. This cluster was configured with 1 master node and 2 worker nodes as depicted in

Figure 31. Apache sparks require a storage area for parallel processing and intermediary file storage.

In this on-premise cluster, the master node was leveraged as the distributed file system. To achieved

this, a specific directory on the master node was mounted on the other two slave nodes using NFS -

Network File System, a distributed file system protocol that allows you to mount remote directories

on your server. Each node has the ability to write to this defined directory for any write operations

raised by the execution of a Spark job. The resulting shared file system is depicted in Figure 32.
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Figure 32: On-premise NFS Shared file system used for common storage between nodes in this
experiment setup

Figure 33: Individual Specifications of each server in the experiment setup

63



Figure 34: Job, Stages, Tasks of an RDD

7.1.2 Execution Terminologies

To assess and study the performance bottlenecks of the workflows, it is essential to understand how

Spark evaluates a submitted program and breaks it down through its engine as Spark Jobs, Spark

stages and Spark Tasks The three main building blocks of a Spark unit of executions are Jobs,

Stages, and Tasks in order of magnitude.

1. Jobs are computations that physically move data of an RDD in order to produce some result.

These computations are sliced into Stages based on the presences of shuffle or reduce operations.

2. Stages compute partial results of a function executed as part of a Spark job. A Stage is

composed of a set of parallel tasks of a single RDD

3. Tasks are the smallest unit of computational work in Spark which is associated to a Stage.

Each task are performed on a single partition specific to an RDD

Basically, as presented in Figure 34 each job gets divided into Stages delimited by operations

requiring data shuffle and each of the stages is broken down into smaller sets of tasks for execution

on each partition of a specific RDD.

7.1.3 Performance Metrics

There are common evaluation metrics for each task - the smallest unit of execution in Spark. A

task’s execution time can be broken up as the Scheduler Delay, Deserialization Time, Shuffle Read

Time, Executor Runtime, Shuffle Write Time, Result Serialization Time, and Getting Result Time.

Assessment and tuning of these aspects can help optimize performance and understand system-level

bottlenecks. [54].

1. Executor Computing Time consists of the following parts: data read/write time from and

to the file system, CPU execution time, and Java garbage collector (GC) time

2. Getting Result Time consists of the time to collect the results from all the partition to the

driver node.

3. Result Serialization Time consists of the duration for Spark to perform object serialization.
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Figure 35: Sample DBSCAN workflow completed Spark jobs summary

4. Scheduler Delay consists of time gaps between tasks where the Spark framework is searching

for the best executor satisfying it’s configured data locality preference.

5. Shuffle Read Time consists of the duration for shuffle data read operations.

6. Shuffle Write Time consists of the duration for shuffle data write operations.

In this study, performance bottlenecks will be assessed against these performance metrics as a

variation to the factors affecting the workload ( cluster size, parallelism, data size, and partition) are

applied. The following section addresses the performance study of the two workflows derived. The

evaluation approach was to extract the data for all the tasks from each execution summary provided

from the Spark UI as seen in Figure 34, consolidate them and analyze their distribution by metrics

and their fluctuation as the factors that impact the workload ( cluster size, parallelism, data size,

and partition ) vary.

7.2 Scalability of Neighbour-Joining Workflow

Scalability is the ability of a system to sustain increasing workloads by making use of additional

resources. In the context of the clustering workflows, the workload is produced by data processing

tasks that load the data into RDDs and perform transformations on RDDs. A data processing task

is broken up across stages, therefore generates new RDDs and thus new partitions as the result of

each stage. Each task is assigned to a single or multiple cores. The number of cores affects the level

of parallelism by driving the number of Spark executors required for a task.

Each Spark executor hosts a single or multiple data partitions that the tasks are executed. Thus

the number of executors for a stage is driven by the factors of (1) the number of tasks of a stage,

which is driven by the transformations within a workflow; (2) spark.task.cpus, the number of cores

allocated for each task, which is one by default; and (3) spark.executor.cores, the number of cores to

use on each executor, which is one by default.
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Figure 36: Scalability of the Neigbhour-Joining workflow

In the evaluation experiments, the same dataset was maintained and the total number of cores

was varied to observe the processing time of the same workload. Figure 36 plots the processing

time of the Neighbour-Joining workflow as the number of cores scales from 1 to 55. Beyond 55

cores, it has not been observed any improvement. The processing time is more than 8 minutes when

only a single core is set. The optimal processing time is reduced to approximately 3 minutes at 12

cores allocated. Over 12 cores, the overhead of data partition on distributed cores surpasses the

performance gain of parallelism.

To further identify the tasks that contribute most to the processing time, the processing time

is decomposed as plotted in Figure 37 when the number of cores changes from 10 to 20. The plot

shows the most significant change is the percentage of Shuffle Read/Write Time that increases from

7.6% to 17.18%, more than twice. This confirms that increasing the number of cores incurs the

higher level of parallelism but more overhead of data shuffling.

7.3 Scalability of DBSCAN Workflow

The DBSCAN workflow is evaluated in the same experimental setup. The processing time of the

workflow is measured by varying the number of cores. The measured processing time includes the

stages of DTW and PCA. The plot in Figure 38 shows the processing time of the workflow is

approximately 6 minutes. After the system reaches 20 cores, the processing time remains a plateau

value of approximately 1 minute even when the number of cores increases from 20 to 60 cores as

opposed to the scalability plot of the Neighbour-Joining workflow where the processing time goes

back up past the optimal amount of cores. The plot shows changing the number of cores that

increases the level of parallelism has no significant effect on the processing time.

To identify the intrinsic factors leading to this scalability behavior, the processing time of each

job is decomposed as shown in Figure 39. As mentioned previously, a task’s execution time can

be broken up as the Scheduler Delay, Deserialization Time, Shuffle Read Time, Executor Runtime,
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Figure 37: Processing time decomposition of Neighour-Joining tasks by varying number of cores
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Figure 38: Scalability of the DBSCAN workflow

Shuffle Write Time, Result Serialization Time, and Getting Result Time. Figure 39 was generated

by aggregating all these tasks level execution details in order to understand which type of system

level operation impact the length of the jobs processing time. The top chart of Figure 39 provides

the job execution breakdown for the DBSCAN workflow using the Correlation matrix. It can be

observed that the majority of the processing time is spent on data preprocessing and generation of

distance metrics as inputs to PCA and DBSCAN.

The bottom chart of Figure 39 was generated by using the DBSCAN workflow with FastDTW

distance measure instead of the Correlation. The goal in this figure was to observe and compare

how a different distance measure would affect the performance of the workflow.

It can be observed in Figure 39 a larger data processing time for the workflow using FastDTW

than its counterpart. This large difference in processing time can be attributed and justified by the

computational complexity of the distance measures. Fast DTW has a linear O(n) complexity [22]

while Pearson’s correlation is a constant O(c) complexity. Figure 39 shows the fast DTW occupies

approximately 58% of the total process time, while the correlation method only incurs 15% of the

total processing time.

Above results indicate the operations in the DTW-PCA-DBSCAN workflow reach to the optimal

level of parallelism running on 20 cores given the dataset. The data shuffling load in this workflow

is not a dominating factor and thus increasing the number of cores does not adversarially cause

overhead on the processing time.
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Figure 39: Processing time decomposition of DBSCAN tasks with different distance metrics
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Figure 40: Effect of a Spark transformation using Broadcast on Job Shuffle Read

7.4 Parallism and Performance Tuning

The performance of both workflows are affected by common factors related to research questions

presented in the introduction section, namely (R1) data correlation; (R2) in-memory representation

of high dimension and partitioned data sets, and (R3) algorithms to transform the data. In this

section, performance tuning techniques are discussed for each factor identified within the workflows.

7.4.1 Reduce Data Shuffling

Data shuffling is caused when tasks cross multiple stages need the same data, the data on demand is

transferred across the network and passes through the software stack. An example of these operations

are ReduceByKey, GroupByKey from Spark. In these operations, all the key value tuples from all

partitions are shuffled across the cluster to conform to the reducing rule. This generates significant

data transferred over the network and negatively affects the end-to-end performance of the analytic

workflow.

The optimization technique is using Spark broadcast variables to keep read-only data cached on

each node. The preprocessed time series data (see Figure 13 and Figure 14) are stored in broadcast

variables on each worker nodes. The broadcast variables are also used in the Neighbour-Joining

method (see Algorithm 1).

These broadcast variables are stored and retrieved from hashmap by the corresponding keys. It

was observed that the byte size of Shuffle Read reduces to zero during those tasks when the broadcast

variables are applied as plotted in Figure 40.
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7.4.2 Prune Matrix Operations

Pruning matrix operations further optimize performance. The pairwise matrix in Neighbour-Joining

and DTW is diagonally symmetric that means the upper diagonal contains the same information

as the lower diagonal. Therefore, the computation on the lower matrix was pruned by mapping the

computation from the upper matrix to the lower matrix. This pruning operation was performed for

distance matrix generation as the parallel processing of pairwise time series along with a similarity

measure is computationally expansive. A sample of such pruning operation can be observed in

Listing 6.1 which highlights the FastDTW distance Matrix Generation source code. At the comment

section mentioning prune, the upper diagonal matrix indexes are generated and only the time series

referenced by these indexes are applied the FastDTW mapping function. From it can be observed

that the results are inverted to the lower diagonal by assigning the similarity value to the inverted

indexes.

7.4.3 Truncate RDD Lineage Graph

An RDD lineage is a graph of all the parent RDDs of an RDD. The lineage graph is built when

certain transformations are executed on the RDD. Meanwhile, a logical execution plan involving the

parent RDD is created. This lineage graph also serves the base of resiliency as it allows to recompute

missing or damaged partitions due to node failures. One issue encountered is the lineage graph is

repetitively re-processing transformations within all previous iterations in every following iteration

of the Neighbour-Joining algorithm. This is observed as the phenomenon that each iteration takes

longer delay than its previous one. The solution is to truncate the RDD lineage graph at the end

of each iteration, using the method of RDD.checkpoint() to save the previous computing result in

RDDs to an HDFS filesystem.

7.4.4 Coalesce and Repartition

The intermediate transformation generates extra data even larger than the original input data size.

An example is the RDD.union() the transformation used in each iteration of the Neighbor-Joining

algorithm to combine RDDs that causes shuffling. If similar keys or range of keys are stored in

the same partition then the shuffling is minimized and the processing of union() becomes substan-

tially fast. However, it was observed that the number of partitions keeps doubling each time the

RDD.union() transformation is invoked. This causes unnecessary data shuffling from/to new par-

titions. To solve this problem, a repartition was explicitly enforced on the RDDs. There are two

partition methods:

1. Repartition allows increasing or decreasing of the number of partitions;

2. Coleasce only decreases the number of partitions.

The selection of the repartition method considers two factors: (1) the processing time of the

algorithm; (2) when and how often the repartition should be applied.
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Figure 41: Comparing Coalesce and Repartition Effect for Processing Time

For the evaluation purpose, both methods were compared by measuring the processing time by

changing the number of iterations before one partition method is invoked. The plot in Figure 41

shows that coalesce performs up to 8.5% better than repartition when it is applied at every itera-

tion. The plot also indicates that repartition at every iteration in the case of the Neighbor-Joining

algorithm on the dataset delivers better performance results.

7.4.5 Reduce Time Series Binning

Time series binning techniques were applied in the data preprocessing step of the workflows. In

a nutshell, the binning technique consists of reducing a window of values into a single value. The

bigger the window, the less information kept on the actual time series. The plots in Figure 42

displays a different level of binning with window sizes of 10, 20, 40 and 60. It was observed as the

window size increases, less outlining points appear in the PCA projection. The binning window size

becomes a tuning parameter as the trade-off between processing time and information retention.
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Figure 42: Time series in PCA projection with different levels of binning
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Chapter 8

Reflection and Discussion

In this thesis, two workflows were developed integrating a different set of algorithms for clustering

analysis. On the same dataset, parallelism was observed for each workflow and the effectiveness

of data partition on the scalability and performance of each workflow. Based on the above sys-

tem evaluation results, the insights applicable to distributed time series analysis, in general, were

reflected.

Multiple Models. From raw data to extracted insights, there remains a chain of analysis steps.

Each step has multiple choices of models. Composing multiple workflows of different models helps

to produce an insightful understanding of the data, as well as efficiency (in term of parallelism) and

effectiveness (in term of accuracy) of the analysis. For example, in the workflow of DBSCAN, the

DTW model was identified as computationally intensive to generate distance metrics as an input to a

clustering method. While in the workflow of Neighbour-Joining, the parallelization of this algorithm

was achieved to an extent, since each iteration had dependencies on the previous one. In this case,

the calculation steps between two iterations were designed to be parallelized using Spark.

Model Monitoring. In fact, any model eventually turns into operations and transformations

on data in a data structure, such as a hash map, vector, and matrix. When such a data structure is

partitioned across distributed nodes, the way of data partition is determined by the size of the data,

the available nodes and cores, and the transformations. It is necessary to monitor the data partition

size and the data shuffling ratio at run-time to make a decision on adjusting the data partition.

8.1 Further work

Due to the time limitation, a more extended evaluation of the workflows through more time series

datasets were not accomplished. Different datasets of different sizes would have provided a more

thorough analysis and evaluation on the effectiveness and the scalability of the workflows. The

study and the derived workflow is general enough to be applicable to different datasets as long as

the dataset provided is in time series format. Otherwise, pre-processing steps need to be considered

to make sure that data inputted the workflows can be processed.
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Although the workflow derived are generic enough for various datasets, obtaining the best per-

formance of each dataset will require tuning of the certain components of the workflows mainly the

DBSCAN parameters, the resampling rate, and the level of parallelism.

Experimentation with different datasets would have impacted the scalability and would have

affected the workflow similarly to the experiments with different resampling rates. From a data

mining perspective, it would have been particularly interesting to study different dataset to see

what interesting patterns or insights can potentially be uncovered on various datasets.
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Chapter 9

Conclusion

This thesis presents an investigation of the issues involved in distributed and parallel machine learn-

ing of IoT data streams. A systematic experimental principle was followed in order to develop two

end-to-end workflows that consist of two sets of algorithms. The dominating factors of parallelism

at the level of data operations and transformations that are common to a wide range of algorithms

were investigated. Hence the observations are generally applicable, not specific to the algorithms

examined. Based on the observations and experiences, this thesis advocate the practices of (1) the

development principle of having multiple models to analyze the same datasets to produce comple-

mentary insights of the data; (2) reducing data shuffling by means of partition methods and choice

of transformation; (3) monitoring at run-time the intermediate data partitions that are subject to

re-partition; (4) increasing the parallelism by adding more computing cores is not necessarily im-

prove the performance nor scalability. The bottleneck lies on the internal dependent iterations of

algorithms.

In this thesis, the tuning and optimization of the workflow are still manually devised. Future

research focuses on building a middleware layer that encapsulates the monitoring and re-partition

so that they are automatically integrated to scale a workflow.

76



Bibliography

[1] Zeinab, Kamal Aldein Mohammed, and Sayed Ali Ahmed Elmustafa. ”Internet of Things appli-

cations, challenges and related future technologies.” World Scientific News 2.67 (2017): 126-148.

[2] Rusitschka, S., Eger, K. and Gerdes, C., 2010, October. Smart grid data cloud: A model for

utilizing cloud computing in the smart grid domain. In Smart Grid Communications (Smart-

GridComm), 2010 First IEEE International Conference on (pp. 483-488). IEEE.

[3] MR, M.S., 2017. Data Mining for Internet of Things. International Journal of Current Trends

in Science and Technology, 7(12), pp.20556-20560.

[4] Owen, Sean, and Sean Owen. ”Mahout in action.” (2012).

[5] Bifet, Albert, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. ”Moa: Massive online

analysis.” Journal of Machine Learning Research 11, no. May (2010): 1601-1604.

[6] Team, R. Core. ”R: A language and environment for statistical computing.” (2013): 201.

[7] Verleysen, Michel, and Damien François. ”The curse of dimensionality in data mining and time

series prediction.” In International Work-Conference on Artificial Neural Networks, pp. 758-770.

Springer, Berlin, Heidelberg, 2005.

[8] Cordova, Irving, and Teng-Sheng Moh. ”Dbscan on resilient distributed datasets.” In High

Performance Computing & Simulation (HPCS), 2015 International Conference on, pp. 531-540.

IEEE, 2015.

[9] Zaharia, Matei, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng et al. ”Apache spark: a unified engine for big data processing.” Commu-

nications of the ACM 59, no. 11 (2016): 56-65.

[10] Al-Neama, Mohammed W., Naglaa M. Reda, and Fayed FM Ghaleb. ”Accelerated guide trees

construction for multiple sequence alignment.” International Journal of Advanced Research 2,

no. 4 (2014): 14-22.

[11] Meng, Xiangrui, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies

Liu, Jeremy Freeman et al. ”Mllib: Machine learning in apache spark.” The Journal of Machine

Learning Research 17, no. 1 (2016): 1235-1241.

77



[12] Ahmed, Nesreen K., Amir F. Atiya, Neamat El Gayar, and Hisham El-Shishiny. ”An empirical

comparison of machine learning models for time series forecasting.” Econometric Reviews 29,

no. 5-6 (2010): 594-621.

[13] Kalpakis, Konstantinos, Dhiral Gada, and Vasundhara Puttagunta. ”Distance measures for

effective clustering of ARIMA time-series.” In Data Mining, 2001. ICDM 2001, Proceedings

IEEE International Conference on, pp. 273-280. IEEE, 2001.

[14] Aghabozorgi, Saeed, Ali Seyed Shirkhorshidi, and Teh Ying Wah. ”Time-series clustering–A

decade review.” Information Systems 53 (2015): 16-38.
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