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CHAPTER I

ON THE INFORMATIONAL CONTENT OF THE FUTURES

PRICE IN THE COMMODITY FUTURES MARKET

1.1 Introduction

The commodity futures market has been the subject of extensive literature since the begin-

ning of the 21st century. One of the reasons that researchers are keen to investigate the

dynamics of this market is its growing importance in investment portfolios in particular and

in the economy in general. Participants in a commodity futures market agree to buy or sell a

predetermined amount of a commodity at a pre-specified price at a stated date in the future.

These terms and conditions make a futures contract. The pre-specified price in the contract

is called the futures price and since the contract matures at a time in the future, the futures

price should be the predictor of the price of the commodity at the maturity date - which is

called the spot price. The primary rationale that participants engage in such markets is the

volatility of commodity prices. For example, in case of an expected fall in the price of wheat,

by entering into a futures contract, a producer of wheat would be able to fix the selling price

of her product long before the delivery of the commodity to the buyer and avoid a loss. To

efficiently manage the aforementioned process, which is known as hedging, the commodity

producer investigates the price movements in the market. Such investigation in our example,

helps the wheat producer speculate on the future price of her commodity or, in other words,

predict the future spot price of wheat. The aforesaid setting highlights the key relationship

between the futures price and the spot price of a single commodity. In pursuance of studying

this relationship, the theory needs to be established first.

The association between the futures price and the spot price is built upon a theory which
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is called the efficient market hypothesis. It was introduced by Fama (1969) and Samuel-

son (1965). Both define efficiency as the impossibility of beating the market consistently;

put differently, a market is said to be efficient if prices are unpredictable. The only differ-

ence between the two is that Fama builds efficiency on the random walk definition, whereas

Samuelson employs the martingale. Later, Fama (1991) introduces three forms of efficiency

conditional on different information sets available to the players in the market. In the strong

efficient market, prices reflect all information, including instant insider information. In the

semi-strong efficient market, prices reflect public information and instantaneous changes to

them. Finally, in the weak efficient market, prices reflect only publicly available informa-

tion. The weak form of the theory has been tested extensively for financial markets in the

literature, and the outcome of these tests appears to be engaging. Even though the theory is

well-established, its validation in empirical research has yielded mixed results. (For a review

on efficiency, see Lo, 2008). Here I try to classify the different works done on the subject and

I shall mention that although different methodologies have been used to analyze the dynam-

ics of the commodity futures market, this paper inquires into the market through time series

analysis.

The first strand of literature revolves around the investigation of efficiency employing co-

integration analysis. The underlying assumptions are that the logarithm of spot and futures

prices exhibit unit root and as a result, there exists the possibility of co-integration among the

pair. The co-integration vector of .1,�1/ is defined and tested. Baillie and Bollerslev (1989)

use the Phillips and Perron (1988) tests of unit root and find non-stationarity in the spot and

forward exchange rates as well as co-integration in the premium. The outcome that verifies

efficiency in the long-run. As they point out in their paper, similar results are likely to be true

for other financial assets with alike characteristics such as commodity futures. McKenzie and

Holt (2002) follow the same methodology, but they only consider agricultural commodities.

They test market efficiency and unbiasedness (see section 2.1 for details regarding unbiased-

ness) by utilizing co-integration and error correction models and conclude that live cattle,

hogs, corn, and soybeans are efficient in the long-run. Switzer and El-Khoury (2007) test
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the efficiency of the NYMEX’s light sweet crude oil from 1986 to 2005 and by rejecting

the hypothesis of no co-integration using Johansen (1991) tests, conclude the presence of the

long-run relationship between spot and futures prices.

The second strand of literature challenges the previous approach and proposes a more

general form to capture the kinetics of the market. One of the early studies in this category

is Baillie and Bollerslev (1994). According to the authors, fractionally integrated models,

namely I .d/, that capture the long memory characteristics of a time series, are better rep-

resentations of the futures price. They assert that the "traditional" way of testing efficiency

proves the existence of a co-integration vector of .1,�1/ between spot and futures prices;

but their results demonstrate that instead, a co-integration vector of .1, d/ should be utilized

in analyzing forward exchange market efficiency. Baillie and Bollerslev (1994) set the way

for using fractional integration in modeling spot and futures prices. Later on, Cavaliere et al.

(2015) provide bootstrap tests for market efficiency and the underlying assumption in their

work is that log of spot and futures prices, as well as the basis (the difference between spot

and futures), exhibit long memory. They estimate the long-memory parameter by applying

auto-regressive fractionally moving average (ARFIMA) models and find inefficiency in the

oil market. (See section 2.3 for details on ARFIMA).

The third strand that investigates the time-series properties of prices considers more so-

phisticated methods to account for long memory in a series. Cajueiro and Tabak (2007) test

the efficiency of crude oil markets of Brent and West Texas Intermediate (WTI) by means of

estimating the long memory parameter. They estimate the Hurst exponent by using rescaled

range analysis and conclude that these markets become more efficient in time. Another study

that concludes the crude oil market is consistent with the efficient market hypothesis in the

long-run is Alvarez-Ramirez et al. (2008). They utilize detrended fluctuation analysis to

estimate the Hurst exponent dynamics of returns. See Kristoufek and Vosvrda (2013) for a

comprehensive review on the subject.

The fourth strand of literature ventures to add another perspective in inspecting the futures

market and that is the informational content of the futures. Here, the central notion is not
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merely testing efficiency or unbiasedness, but to examine the relative predictive power of

futures prices among a set of commodities as well. Chinn and Coibion (2014) examine the

predictive power of futures prices for a set of fourteen commodities, including energy, base,

and precious metals, and agricultural commodities by carrying out estimation and statistical

inference on the relationship between the futures basis and ex-post price change. They find

out that futures prices of precious metals are the least accurate predictors of subsequent prices.

A fact that highlights the heterogeneity among commodities in terms of market structure

and the corresponding participants. Bernard et al. (2015) examine two methodologies in

studying the dynamics of the oil market, namely, equilibrium models and time series analysis.

They test alternative models to examine which could produce more accurate forecasts and

it turns out to be models that allow for time-varying convenience yield. In other words,

models that incorporate both the price level and the distance between the price and spot price

perform better in terms of predictability. Alquist and Kilian (2010) is another study that

finds weak accuracy for futures in the oil market. They study oil futures spread and unravel

high variability of futures about the spot price using a two-country, multi-period general

equilibrium model of futures and spot markets.

Having discussed the 4 main approaches in the literature, there are a few points that need

to be explained regarding this article. This paper is in alignment to the last approach, namely,

investigating the predictability of futures prices and their informational content. As a matter

of fact, it could be considered as a complementary work to Chinn and Coibion (2014) in

covering a longer period in the empirical application and in introducing an alternative way

of measuring the predictive power. In Chinn and Coibion (2014), the basis equation is the

center of the attention. The basis, which is simply the difference between the futures price

and the spot price, has information to explain the pattern in the price change of a commodity.

Therefore, investigating this relationship could be helpful to shed more light on different

commodity markets.

The core question that I address is how accurate the futures price is in predicting the spot

price? If we reconsider our example of wheat producers, we will be able to understand the
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importance of the question. The players in the commodity futures market should be able to

measure the information contained in the futures since they observe the futures price as a

proxy of the future value of the underlying commodity. The main contribution of the paper is

suggesting the causality measure, which is popular for its simplicity, as a tool to capture the

accuracy of futures to predict subsequent spot prices.

The paper is structured as follows. Section 2 explains the methodology which provides

a comprehensive explanation of the concepts in commodity markets, causality measure, and

parametric long memory models. Section 3 delivers the empirical analysis which contains a

description of the data, the basis regression analysis, stationarity, and long memory tests, and

finally investigation of the causal relationship. Lastly, section 4 concludes.

1.2 Methodology

The methodology is divided into three sections. The first section introduces the commodity

futures market setting and its corresponding variables and the relationships among them. The

second section presents the definitions of the causality and causality measure that will be

used later in the third section to examine the informational content of commodity futures in

a prediction model.

1.2.1 Commodity Futures Market

As discussed in the introduction, the futures price is a prediction of the spot price. As Mcken-

zie and Holt (1998) emphasize, the statement that the futures price is an unbiased predictor

of the spot price is a joint hypothesis of market efficiency and risk neutrality. According to

Brenner and Kroner (1995) “the assumptions of risk neutrality and rationality are so central

in many financial models that their importance cannot be understated”. These statements are

about the difference in the current futures and future spot prices. But we have another no-

tion in commodities that is called the basis. Fama and French (1987) express the difference

between the futures price and the current spot price of a commodity as the following:
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ft ,tCh � st D Et [� t ,tCh ]C Et [st � stCh ] (1)

Where the left-hand side is the basis, h is the horizon by which contract expires, and

therefore ft ,tCh is the (log) time t of a futures contract price that matures at time t C h, st is

the time t spot price, Et [� t ,tCh ] is the expected premium, and Et [st � stCh ] is an expected

change in the spot price. The expected premium is defined as the forecast error of the futures

price as a predictor of the spot price:

Et [� t ,tCh ] D ft ,tCh � Et [stCh ] (2)

To assess the predictability power of the futures, Fama and French (1987) introduce the

following regression that is known as the basis regression:

stCh � st D � C �. ft ,tCh � st/C utCh (3)

� expresses the informational content of futures. If � D 0, then the basis has no pre-

dictability power. Consequently, as noted by Chinn and Coibion (2014), the joint hypothesis

of � D 0 and � D 1 tests whether the basis is the optimal predictor of the change in the spot

price.

Chinn and Coibion (2014) express the above relationship in terms of futures prices at

different horizons which yields the following:

ftCh�1,tCh � ft ,tC1 D � C �. ft ,tCh � ft ,tC1/C utCh (4)

Equations (3) and (4) are equivalent. The left-hand side of (4) represents the ex-post

price change (hereafter the price change) and the right-hand side is the contemporaneous

basis (hereafter the basis) for any horizon h. Below, another notation of (4) is presented:

p.t C h/ D � C �[b.t C h/]C u.t C h/ (5)
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Where p.t C h/ is the time series of price change, and b.t C h/ is the time series of the

basis of a single commodity for time horizon h. This simplified notation will be used later in

examining the information of futures by means of causality measure.

1.2.2 Concepts and Definitions of Causality Measure

The statistical concept of causality among two vectors dates back to Granger (1969). He

discusses the causality as the predictability of a stationary variable X , by its own past and

the past of another variable Y , in a bivariate setting. Later Geweke (1982, 1984) introduced

the causality measure in the first horizon; the idea that was extended by Dufour and Renault

(1998) to any arbitrary horizon h, with 1 � h � 1. Here I borrow the exposition of causality

measure, which is introduced by Zhang et al. (2015) and Dufour and Taamouti (2010), and

I accommodate the setting of the commodity futures market in them, namely, the basis .bi /

and price change .pi / for a single commodity i .

Denote L2 � L2.•, A, Q/ a Hilbert space with finite second moments. Information set

is denoted by I .t/ D fI .t/ : t 2 Z, t > !g with t < t«) I .t/ � I .t«/ for all t > !. I .t/ is

defined on the Hilbert subspace of L2 and ! 2 Z[ f�1g represents a "starting point", Z is

the set of all integers. Now consider two multivariate stochastic processes:

p.t/ D .p1,t , ..., pi ,t/
0, i D 1, ...k1, k1 � 1

b.t/ D .b1,t , ..., b j ,t/
0, j D 1, ...k2, k2 � 1

p.!, t ] and b.!, t ] are the Hilbert spaces spanned by the components of pi .� / and bi .� /

respectively with ! < � < t . In other words, p.!, t ] and b.!, t ] represent information on the

history of the price change and the basis. Regarding the information sets, the following can

be stated:
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Ip.t/ D I .t/C p.!, t ]

Ipb.t/ D Ip.t/C b.!, t ]

For any information set, I .t/ and any positive integer h (horizon), P [p.t C h/jI .t/] in-

dicates the best linear forecast of p.t C h/ given the information set I .t/, and the followings

are the corresponding prediction error and variance:

u[pi .t C h/jI .t/] D pi .t C h/� P [pi .t C h/jI .t/] (6)

� 2[pi .t C h/jI .t/] D Efu2[pi .t C h/jI .t/]g (7)

For a vector of observations, below corresponds to the best linear forecast of p.t C h/

and variance-covariance matrix:

P [p.t C h/jI .t/] D .u[p1.t C h/jI .t/]
0, ..., u[pk1.t C h/jI .t/]

0 (8)

6[p.t C h/jI .t/] D EfU [p.t C h/jI .t/]U [p.t C h/jI .t/]0g (9)

where U [p.t C h/] is the forecast error at horizon h.

Having defined the prediction vector and variance-covariance matrix, it is now time to de-

fine causality (non-causality). The following is the first part of the definition of non-causality

provided in Dufour and Renault (1998) that has been modified for the setting of the commod-

ity futures market:

Definition 1 Non-causality at horizon h, for h � 1:

the basis .b/ does not cause price change .p/ at horizon h given I [denoted b9
h
pjI ] if

and only if:
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P [p.t C h/Ip.t/] D P [p.t C h/jIpb.t/], 8t > ! (10)

Where Ip.t/ D I .t/C p.!, t ] and Ipb.t/ D Ip.t/C b.!, t ].

Another way of characterizing non-causality is by the following proposition presented in

Dufour and Tammouti (2010):

Proposition 2 Covariance characterization of non-causality at horizon h, for h � 1:

the basis .b/ does not cause price change .p/ at horizon h given I [denoted b9
h
pjI ] if

and only if:

det6[p.t C h/jIp.t/] D det6[p.t C h/jIpb.t/], 8t > ! (11)

Where 6[p.t C h/j.] is defined by EfU [s.t C h/j.]U [s.t C h/j.]«g

After presenting the definition of non-causality, I assimilate commodity futures market

variables into the definition of the causality measure defined by Dufour and Taamouti (2010):

Definition 3 Mean-square causality measure at horizon h relative to an information set I

and for h � 1 is shown as:

C.b �!
h
pjI / D ln[

det6[p.t C h/jIp.t/]

det6[p.t C h/jIpb.t/]
] (12)

The interpretation of the above definition is important. If the basis does not have informa-

tional significance to predict the price change, then the knowledge of the history of the basis

will not help us predict the future price change. Therefore the two terms in the fraction can-

cel out and the measure equals zero. However, as the predictive power of basis increases, the

determinant in the denominators shrinks relative to the numerator and the measure indicates

a value greater than zero.

9



1.2.3 The Prediction Model

A group of models that can capture long memories in time series is auto-regressive fraction-

ally integrated moving average (ARF I MA) models. This class of models was first intro-

duced by Granger (1980), Granger and Joyeux (1980) and Hosking (1981). A uni-variate

ARF I MA with p as the auto-regressive order, q as the moving average order, and d as the

order of integration is represented by:

8.L/.1� L/d yt D 2.L/zt (13)

Where L is the backward-shift operator and zt is i .i .d.0, �
2/. Auto-regressive, moving

average, and the fractional differencing operators are defined by:

8.L/ D 1� �1L � ...� � pL
p (14)

2.L/ D 1C '1L C ...C 'qL
q (15)

.1� L/d D
1X
kD0

0.k � d/Lk

0.�d/0.k C 1/
(16)

Where 0 denotes the gamma function and d is allowed to be any real value in a general

form of the process. For the process to be stationary and invertible, d needs to be in the

interval of .� 1
2
, 1
2
/1.

Now consider the following vector on L2:

�.t/ D .p.t/0, b.t/0/ (17)

�.t/ is defined by a stationary and invertible bi-variate ARFIMA. A bivariate class of

models can be extracted from a multi-variate ARFIMA presented in Tsay (2010), and it can

be shown as:

1In the case of d D 0, the model turns to Autoregressive-Moving-Average (ARMA).

10



8.L/diag.rd/�.t/ D 2.L/Z.t/ (18)

Where diag.rd/ D

264rd1 0

0 rd2

375 , r D 1� L , and Z.t/ D .z1,t , z2,t/
0. Z.t/ is i .i .d.

random with E [Z.t/] D 0, E [Z.t/Z.s/] D 6Z for t D s and E [Z.t/Z.s/0] D 0 for t 6D s.

8.L/ and 2.L/ are finite order matrix polynomials such that:

8.L/ D 80 �81L � ...�8pL
p (19)

2.L/ D 20 C21L C ...C2qL
q (20)

Where 80 D 20 D I d2, and I d2 is a two by two identity matrix. To model the causality

measure from b.t/ to p.t/, we need to specify the structure of another process that only

captures the price change, that is:

�0.t/ D p.t/
0 (21)

This process follows a uni-variate stationary ARF I MA that is represented by the follow-

ing:

80.L/.1� L/
d�0.t/ D 20.L/z.t/ (22)

Where z.t/ are i .i .d randomwith E [z.t/] D 0, E [z.t/z.s/] D � z for t D s and E [z.t/z.s/] D

0 for t 6D s. 80.L/ and 20.L/ are lag polynomials.

Under stationarity and invertibility assumptions, �.t/ has a V MA.1/ representation:

�.t/ D
1X
jD0

9 j Z.t � j/ (23)

Where 9 j are impulse response functions with 90 D I d2.The linear forecast error of

11



�.t C h/ and its variance-covariance matrix are:

UL [�.t C h/jI�.t/] D
h�1X
jD0

9 j Z.t C h � j/ (24)

6[�.t C h/jI�.t/] D
h�1X
jD0

9 jE [Z.t C h � j/Z.t C h � j/
0]9 j D

h�1X
jD0

9 j6Z9
0
j (25)

Thus the MSE for the linear forecast of p.t C h/ is:

� 2[p.t C h/jI�.t/] D
h�1X
jD0

J19 j6Z9
0
j J
0
1 (26)

Where J1 D .1 0/.

Same as �.t/, �0.t/ can be written as an MA(1) such as:

�0.t/ D
1X
jD0

 j z.t � j/ (27)

And the forecast error for the linear forecast of p.t C h/ and its variance are:

UL [�0.t C h/jI�0.t/] D
h�1X
jD0

 j z.t C h � j/ (28)

6[�0.t C h/jI�0.t/] D
h�1X
jD0

 2jE [z
2.t C h � j/] D � 2z

h�1X
jD0

 2j (29)

Consequently, the causality measure that captures the predictive power of the basis to

predict future price change in the commodity futures market is expressed as:

C.b!
h
p/ D ln[

� 2[p.t C h/jI�0.t/]

� 2[p.t C h/jI�.t/]
] D ln[

� 2z

h�1P
jD0
 2j

h�1P
jD0
J19 j6Z9

0
j J
0
1

] (30)

Now the issue is estimating the above measure. To estimate C , the linear estimation ap-

proach proposed by Dufour and Taamouti (2010) is used. Under the invertibility assumption,

�.t/ can be written as an infinite auto-regressive process such as the following:

12



�.t/ D
1X
iD1

5i�.t � i/CU .t/ (31)

Given the realization �.1/, ..., �.t/, one can approximate the above by a finite order V AR.k/

model:

�.t/ D
kX
iD1

5ik�.t � i/CUk.t/ (32)

And by using least squares, the coefficients of the fitted V AR.k/, 5 and the variance-

covariance of the error terms, 6U jk can be estimated. The order k is selected by using the

AIC. The similar procedure can be done for the uni-variate time series, �0.t/ to enable us to

estimate the measure as the following:

bC D ln[ b� �h�1P
jD0

b 2j
h�1P
jD0
J1b9 j

c6Zb9 0j J 01 ] (33)

After capturing the informational content of futures in estimating the measure, the relative

predictive power of the basis for a set of commodities is presented in the following definition.

Definition 4 The Relative predictive power of the basis:

Based on the causality measure in multiple horizons and for a set of K commodities,

K 2 N, the following relation ranks the commodities based on the predictive power of their

basis in predicting price changes:

cC1.b!
h
pjI / < ... < cCK .b!

h
pjI / (34)

The aforementioned definition provides a ranking among commodities based on the in-

formation available in their corresponding basis. To transform the causality measure into a

benchmark measure between zero and one, I present the following definition:

13



Definition 5 The Predictive power of the basis:

Based on the causality measure presented for the predictive power of the basis to predict

the price change, and for a given commodity i , the ensuing relation yields the predictive

power of the basis:

� D 1�
1

1C bCi (35)

The intuition of � is pretty simple. It is a bounded measure between zero and one. If

the futures price does not have the power to predict the spot price, the causality measure

and � indicate a zero value. As the information in futures increases, they become useful in

forecasting the spot price and consequently, causality measure rises and � converges to one.

1.3 Empirical Analysis

1.3.1 Data

Similar to Chinn and Coibion (2014), a set of fourteen commodities is examined. The com-

modities are categorized into four groups, namely energy, base metals, precious metals, and

agricultural commodities. The source of the data is Bloomberg, but due to the heterogeneous

nature of the commodities, the numbers of observations and the covered periods are different

across the data-set. Energy products that include West Texas Intermediate crude oil (hereafter

WTI), natural gas, heating oil, and gasoline have contracts that expire in each month of the

year and they are available from 1990 at 1-, 3-, 6-, and 12-month horizons. Gasoline contracts

underwent a change in 2006, and therefore two tickers of HU and XB are combined2 (See

Table (8) in the Appendix). Base metals, including aluminum, copper, lead, nickel, and tin

have the same maturity patterns, but they are available from 1997. Concerning agricultural

commodities, they are not delivered in each month of the year. March, May, July, September,

and December are the months of delivery for wheat and corn; and soybeans are delivered in

January, March, May, July, August, September, and November.

2Unleaded gasoline had a change in contract in 2006 to a new Reformulated Gasoline Blendstock for Oxygen

Blending (RBOB) contract. The data of the two contracts are combined to make the gasoline time-series.
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Apart from the availability of the time series, this is how the two vectors of the basis and

price change are built. For instance, using equation (4) for the 3-month horizon, the basis

and price change are identified by . ft ,tC3� ft ,tC1/ and . ftC3�1,tC3� ft ,tC1/, respectively. The

basis is simply the difference between the 3- and 1- month horizon futures and the price

change is the difference between the 1-month horizon futures forwarded 2 months ahead and

1-month horizon futures. The same is done for the two variables in the 6- and 12-month

horizons. Chinn and Coibion (2014) state that since the correlation between the ex-post spot

price and the 1-month futures is close to zero, this setting allows for the 1-month horizon to

be used as the spot price.

1.3.2 The Basis Regression

Let us consider the basis regression to examine the predictability of the basis in different

markets. Within energy products, the basis of gasoline and natural gas tend to be the most

effective ones in predicting price changes. Crude oil and heating oil behave similarly. Table

(1) exhibits the regression outcomes by OLS, for equation (4). The table is first introduced in

Chinn and Coibion (2014) and here the null of .� D 0/ is added and regression is run using

the new data-set. First, the relatively higher R2 in energy and agricultural futures compared

to base and precious metals is a criterion that can demonstrate higher predictability.

Second, testing the null hypothesis of � D 0 is reported in column p. Results show its

rejection for all energy and agricultural products at 5 % level3. This is an indication that

the basis has predictive content for the price change. The opposite is true for the base and

precious metals. The null cannot be rejected4 at 5 % level; a symptom of an uninformative

basis. The test results are robust to heteroskedasticity and possible auto-correlation up to

some lag since the standard error of � is reported by the Newey-West method.

Third, column Wald expresses the p-value of the joint hypotheses of � D 0 and � D 1,

which is known as testing for market efficiency. In a bigger picture, the null is rejected at 5

3The null is rejected at 1 % level for wheat in the 12-month horizon.
4For copper in the 3-month horizon, the null is rejected at 5 % but not at 1 % level.
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% level for the majority of commodities. Copper and gold in 3-month horizons violate this

pattern and show signs of efficiency. The absence of efficiency may create an opportunity

to beat the market and earn unexpected profit by speculation. The test results presented here

once again demonstrate that market efficiency which is widely accepted in theory is hard to

prove.

Fourth, the unbiasedness hypothesis, namely � D 1, is mostly rejected for the base and

precious metals. There are instances in energy and agricultural markets that the unbiasedness

is rejected, but overall agricultural commodities seem to have better unbiased properties.

Gold and lead are interesting cases. The point estimate of � is always negative, which shows

a negative relationship between the basis and price change. One explanation given by Chinn

and Coibion (2014) is that since gold is used as a hedge against inflation, this might make it

behave like an exchange rate rather than a commodity and the negative relationship can be

similar to what is knows as forward discount anomaly observed in exchange rates by Engel

(1996).

In sum, the regression brightens up the heterogeneity across commodities. It appears

that in energy and agricultural markets the basis has information to predict the price change,

whereas in the base and precious metals, the basis is uninformative. In a more restrictive

definition, except for a few, market efficiency is consistently violated for all futures.
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1.3.3 Testing for Stationarity and Long Memory

The augmented Dicky-Fuller test (hereafter ADF), with the null hypothesis of unit root or

I .1/, is commonly used in the literature to examine the stationarity of a process under dif-

ferent options. The test is done for the basis and price change in level first5. For the basis,

running the test without a constant term results in rejection6 of the null for all commodities in

all horizons at the 10% level, except gold in the 12-month horizon. Considering a 5 % level,

gold is the only commodity that is non-stationary in the 3- and 12-month horizons. Taking

into account other options, namely with intercept only and intercept and trend, the results

show rejection of the null for all energy products. In other groups, the rejection happens less

frequently, specifically for the base metals and gold. Copper is the one that behaves non-

stationary in all horizons. The same is true for aluminum and lead in the 12- and corn in the

3-month horizon. The rejection frequency increases when testing the price change in level.

In the 3-month horizon, all commodities show stationarity under all of the options. In the

6-month horizon, gold, corn, and wheat and in the 12-month horizon, copper, gold, silver,

corn, and wheat seem to be non-stationary.

For robustness, unit root tests are accompanied by stationarity tests such as Kwiatkowski–

Phillips–Schmidt–Shin (hereafter KPSS) test that considers the null hypothesis of I .0/. Same

as ADF, KPSS is done for data in level first. Looking at the basis, among the energy products,

WTI and natural gas reject the null with a constant term in all horizons at the 10% level. For

base metals, all except tin show non-stationarity for all horizons considering a constant and

a trend option7. Gold and silver display consistent rejection for all the horizons given a

constant term; and for agricultural products, they seem to be generally stationary. As for the

price change, the only regular rejection is for gold given a constant and a trend.

Table (2) summarizes the results of the two tests for variables in level at 5 % significance

5The detailed results are reported in the appendix.
6With a 10% significance level and less.
7The null of I .0/ is rejected for tin as well in the 12-month horizon with 10% significance level.
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Table 2: Summary of the ADF and KPSS Tests for the Basis and Price Change in Level

The table demonstrates the results of Augmented Dickey-Fuller (ADF) and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) tests of stationarity for the basis and price change in level. R

and CR stand for "reject" and "cannot reject" the tested hypothesis. The first element of (.,.)

refers to ADF and the second to KPSS test results. For ADF we have H0 : I .1/ or H0 : the
variable has unit root. For KPSS the null hypothesis is H0 :the variable is stationary. The
significance level is 5 percent.

(a) Basis 3-month horizon 6-month horizon 12-month horizon

Constant Constant Constant Constant Constant Constant

& trend & trend & trend

Energy products

WTI (R, R) (R, CR) (R, R) (R, CR) (R, CR) (R, CR)

Natural gas (R, CR) (R, CR) (R, R) (R, CR) (R, R) (R, CR)

Heating oil (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Gasoline (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Base metals

Aluminum (R, CR) (R, CR) (R, CR) (R, CR) (CR, CR) (CR, R)

Copper (CR, CR) (CR, CR) (CR, CR) (CR, R) (CR, CR) (CR, R)

Lead (R, CR) (CR, R) (R, CR) (CR, R) (CR, CR) (CR, R)

Nickel (R, CR) (R, CR) (CR, CR) (R, R) (R, CR) (CR, R)

Tin (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Precious metals

Gold (CR, R) (CR, CR) (CR, R) (CR, CR) (CR, R) (CR, CR)

Silver (R, R) (R, CR) (R, R) (CR, CR) (R, R) (R, CR)

Agricultural products

Corn (R, CR) (CR, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Soybean (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Wheat (R, CR) (R, CR) (R, CR) (CR, CR) (R, CR) (R, CR)

(b) Price change 3-month horizon 6-month horizon 12-month horizon

Constant Constant Constant Constant Constant Constant

& trend & trend & trend

Energy products

WTI (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Natural gas (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Heating oil (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Gasoline (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Base metals

Aluminum (R, CR) (R, CR) (R, CR) (CR, CR) (R, CR) (R, CR)

Copper (R, CR) (R, CR) (R, CR) (CR, CR) (R, CR) (CR, CR)

Lead (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (CR, CR)

Nickel (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Tin (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Precious metals

Gold (R, CR) (R, R) (CR, CR) (CR, R) (CR, CR) (CR, R)

Silver (R, CR) (R, CR) (R, CR) (R, CR) (CR, CR) (CR, CR)

Agricultural products

Corn (R, CR) (R, CR) (CR, CR) (CR, CR) (CR, CR) (CR, CR)

Soybean (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (CR, CR)

Wheat (R, CR) (R, CR) (CR, CR) (CR, CR) (CR, CR) (CR, CR)
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Table 3: Summary of the ADF and KPSS Tests for the Basis and Price Change in First

Difference

The table demonstrates the results of Augmented Dickey-Fuller (ADF) and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) tests of stationarity for the basis and price change in the first

difference. R and CR stand for "reject" and "cannot reject" the tested hypothesis. The first

element of (.,.) refers to ADF and the second to KPSS test results. For ADF we have H0 :
I .1/ or H0 : the variable has unit root. For KPSS the null hypothesis is H0 :the variable is
stationary. The significance level is 5 percent. † shows 10 percent significance level.

(a) Basis 3-month horizon 6-month horizon 12-month horizon

Constant Constant Constant Constant Constant Constant

& trend & trend & trend

Energy products

WTI (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Natural gas (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Heating oil (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Gasoline (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Base metals

Aluminum (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Copper (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Lead (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Nickel (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Tin (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Precious metals

Gold (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Silver (R, CR) (R, CR) (R, CR) (R, CR) (R†, CR) (CR, CR)

Agricultural products

Corn (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Soybean (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Wheat (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

(b) Price change 3-month horizon 6-month horizon 12-month horizon

Constant Constant Constant Constant Constant Constant

& trend & trend & trend

Energy products

WTI (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Natural gas (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Heating oil (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Gasoline (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Base metals

Aluminum (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Copper (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Lead (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Nickel (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Tin (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Precious metals

Gold (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Silver (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Agricultural products

Corn (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Soybean (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Wheat (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)
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level. The outcomes of the two tests are presented with a pair. The first element of the pair

refers to ADF, while the second corresponds to KPSS. Kwiatkowski et al. (1992) explain the

combined results as the following. The pair (R, CR) which states one can reject the ADF

and cannot reject the KPSS is an indication of stationarity, whereas (CR, R) refers to the unit

root. (CR, CR) is the case that data are not sufficiently informative to differentiate between

the two nulls; and for (R, R) there would be no clear conclusion. However, as Coakley et al.

(2011) point out, the pair (R, R) could be a symptom of the presence of long memory in the

variables. What can be emphasized from the two panels in table (2) is the relative presence of

stationarity in the price change compared to the basis. Table (3) presents the outcome of two

tests when the data is transformed by the first difference8. Both vectors for all commodities

and in all horizons show stationarity except silver in 12-month when a constant and trend are

considered.

The upshot of table (3) suggests that differencing the data can make them all stationary

and suitable for fitting in a vector auto-regressive model. However, since an ARMA represen-

tation is one of the underlying assumptions in the ADF test statistic and there exist seemingly

conflicting results between the unit root and the stationarity tests, it is imperative to account

for more general cases. It should be noted that KPSS allows for the differencing parameter d

to be in the interval of .� 1
2
, 1
2
/ and it is often used as a complement to the tests of long mem-

ory, but it would be desirable to consider tests that allow d move beyond stationary interval9.

One of the semi-parametric routines that estimates the long memory and tests unit root and

stationarity is Phillips modified Geweke-Porter-Haduk (hereafter GPH) log periodogram re-

gression estimator10. The regression is applied to the two vectors in level and a summary11

of the results are presented in Table (4)12. Let us first consider the basis. The choice of

8The detailed results are reported in the appendix.
9Note that for d � 1

2
, the variance of the series is infinite.

10The test is a modified type of GPH to account for the unit root as well as testing a consistent estimate of d

against fractional alternatives of d > 1 and d < 1. The advantages of using semiparametric estimates of long

memory are good asymptotic properties and high power. (Hauser (1997), Velasco (1999)).
11The detailed results are reported in the appendix
12The estimation is sensitive to the choice of the number of Fourier frequencies � considered in the spectral

regression. For robustness, two choices of powers of 0.5 and 0.7 are included in the regression where � D
p
T
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the power considerably influences the estimation. It can be seen that generally power of 0.7

increases the point estimate of d . Although this is not supported for the base metals in the

3-month horizon. The hypothesis of I .0/ cannot be rejected for energy products in the 3- and

6-month horizons considering the power of 0.5. In general, looking at the power of 0.7, (R,

R) is relatively more frequent. Looking at the price change, the majority of commodities fit

into the stationary long memory, given 0.5 as the power. Note that at the power of 0.7 signs

of I .1/ start to appear especially in the 12-month horizon.

Agiakloglou et al. (1993), Choi and Zivot (2007), and Coakley et al. (2011) argue that

since GPH estimator has a finite sample bias in the presence of auto-regressive terms, they

may be misleading. Therefore, the same as Coakley et al. (2011) the parametric ARFIMA

representation with at least one auto-regressive term is fitted. The non-linear least square

method is chosen since it does not put stationarity constraint on d. Results are reported in

Table (6)13. Considering the ARFIMA estimation, all energy products are I .0/ in the 3- and

6-month horizons. Base metals demonstrate almost consistent long memory in all horizons.

Gold can be classified as I .1/ in the 3- and 12-month horizons and the same can be said about

silver in the 6-month horizon. Looking at the results for price change, nearly all estimations

of the fractional differencing parameter are in the stationarity interval.

It is important to emphasize that long memory is present especially in the basis, but the

fractional differencing parameter can still be found in the stationary interval. This is important

since it lets us examine the causal channels in the futures market using the causality measure

which is done in the following section.

and � D T 0.7.
13The estimation is done by OxMetrics 6. (See Doornik, 1999).
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Table 4: Summary of the Phillips Modified GPH Test for the Basis and Price Change in Level

Panel (a) and (b) summarize the Modified Geweke-Porter-Hudak (GPH) test results of long

memory for the contemporaneous basis and the ex-post price change in power levels of 0.5

and 0.7. R stands for "reject", and CR stands for "cannot reject" the hypothesis. The first

element of (.,.) refers to H0 : d D 1, and the second to H0 : d D 0. The significance level is
5 percent.

(a) Basis 3-month horizon 6-month horizon 12-month horizonp
T T 0.7

p
T T 0.7

p
T T 0.7

Energy products

WTI (R, R) (R, R) (R, R) (R, R) (R, R) (R, R)

Natural gas (R, CR) (R, CR) (R, CR) (R, R) (R, R) (R, R)

Heating oil (R, CR) (R, R) (R, CR) (R, R) (R, CR) (R, R)

Gasoline (R, CR) (R, R) (R, CR) (R, R) (R, R) (R, R)

Base metals

Aluminum (R, R) (R, R) (R, R) (R, R) (CR, R) (CR, R)

Copper (R, R) (R, R) (CR, R) (R, R) (CR, R) (CR, R)

Lead (CR, R) (R, R) (CR, R) (R, R) (CR, R) (R, R)

Nickel (R, R) (R, R) (R, R) (CR, R) (R, R) (CR, R)

Tin (R, CR) (R, R) (R, CR) (R, R) (R, R) (CR, R)

Precious metals

Gold (CR, R) (CR, R) (CR, R) (CR, R) (R, R) (R, R)

Silver (CR, R) (R, R) (CR, R) (CR, R) (CR, R) (R, R)

Agricultural products

Corn (R, R) (R, R) (R, R) (R, R) (R, CR) (R, R)

Soybean (R, CR) (R, R) (R, R) (R, R) (R, CR) (R, R)

Wheat (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (R, R)

(b) Price change 3-month horizon 6-month horizon 12-month horizonp
T T 0.7

p
T T 0.7

p
T T 0.7

Energy products

WTI (R, CR) (R, CR) (R, CR) (R,R) (R, CR) (CR, R)

Natural gas (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (CR, R)

Heating oil (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (CR, R)

Gasoline (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (R, R)

Base metals

Aluminum (R, R) (R, R) (R, CR) (R, R) (R, CR) (CR, R)

Copper (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (CR, R)

Lead (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (CR, R)

Nickel (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (CR, R)

Tin (R, CR) (R, CR) (R, CR) (CR, R) (R, CR) (R, R)

Precious metals

Gold (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (CR, R)

Silver (R, CR) (R, CR) (R, CR) (R, R) (R, CR) (CR, R)

Agricultural products

Corn (R, CR) (R, CR) (R, CR) (CR, R) (CR, R) (CR, R)

Soybean (R, CR) (R, CR) (R, CR) (R, R) (R, R) (CR, R)

Wheat (R, CR) (R, CR) (R, CR) (CR, R) (CR, R) (CR, R)

23



Table 5: Summary of the Phillips Modified GPH Test for the Basis and Price Change in First

Difference

Panel (a) and (b) summarize the Modified Geweke-Porter-Hudak (GPH) test results of long

memory for the contemporaneous basis and the ex-post price change in power levels of 0.5

and 0.7. R stands for "reject", and CR stands for "cannot reject" the hypothesis. The first

element of (.,.) refers to H0 : d D 1, and the second to H0 : d D 0. The significance level is
5 percent.

(a) Basis 3-month horizon 6-month horizon 12-month horizonp
T T 0.7

p
T T 0.7

p
T T 0.7

Energy products

WTI (R, CR) (R, CR) (R ,CR) (R, CR) (R, CR) (R, CR)

Natural gas (R, CR) (R, R) (R ,CR) (R, R) (R, CR) (R, R)

Heating oil (R, R) (R, R) (R, CR) (R, R) (R, CR) (R, CR)

Gasoline (CR, R) (R, R) (CR, R) (R, R) (R, R) (R, R)

Base metals

Aluminum (R, CR) (R, R) (R, CR) (R, R) (R, CR) (R, CR)

Copper (R, CR) (R, R) (R, CR) (R, R) (R, CR) (R, CR)

Lead (R, CR) (R, R) (R, CR) (R, R) (R, CR) (R, R)

Nickel (R, R) (R, R) (R, R) (R, R) (R, R) (R, CR)

Tin (R, CR) (R, R) (R, CR) (R, R) (R, CR) (R, CR)

Precious metals

Gold (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Silver (R, CR) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Agricultural products

Corn (R, CR) (R, R) (R, CR) (R, R) (R, CR) (R, CR)

Soybean (R, CR) (R, R) (R, CR) (R, CR) (R, CR) (R, CR)

Wheat (R, R) (R, R) (R, CR) (R, CR) (R, CR) (R, R)

(b) Price change 3-month horizon 6-month horizon 12-month horizonp
T T 0.7

p
T T 0.7

p
T T 0.7

Energy products

WTI (R, CR) (R, R) (R, CR) (R, CR) (R, CR) (R, R)

Natural gas (R, R) (R, CR) (R, CR) (R, CR) (R, R) (R, CR)

Heating oil (R, CR) (R, R) (R, CR) (R, CR) (R, CR) (R, R)

Gasoline (CR, R) (R, CR) (R, R) (R, CR) (R, R) (R, CR)

Base metals

Aluminum (R, R) (R, CR) (R, CR) (R, CR) (R, CR) (R, R)

Copper (R, CR) (R, R) (R, R) (R, R) (R, CR) (R, R)

Lead (R, R) (R, R) (R, R) (R, R) (R, R) (R, CR)

Nickel (CR, R) (R, CR) (R, CR) (R, CR) (R, CR) (R, R)

Tin (R, CR) (R, R) (R, CR) (R, CR) (R, CR) (R, R)

Precious metals

Gold (R, CR) (R, R) (R, R) (R, R) (R, CR) (R, CR)

Silver (R, R) (R, CR) (R, CR) (R, R) (R, CR) (R, CR)

Agricultural products

Corn (R, CR) (R, R) (R, CR) (R, CR) (CR, CR) (R, CR)

Soybean (CR, R) (R, CR) (R, CR) (R, CR) (R, CR) (R, CR)

Wheat (R, CR) (R, R) (R, R) (R, CR) (R, CR) (R, CR)
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1.3.4 Causality Measure Estimation

Table (7) presents the Granger causality analysis done on the relationship between the basis

and the price change. Since the predictability of the basis is the subject of our interest, the

direction of causality is set from the basis to the price change (shown by b ! p). As it was

discussed in the previous section, the basis of some commodities behaves non-stationary in

some horizons. This can be taken care of by differencing the data in the first order. It is shown

in the table when the value of L is equal to 1. A V AR.k/ model is estimated by OLS with k

being identified by the BIC. After fitting the V AR model, the Granger causality test is done

by inspecting if the past values of the basis have useful information for predicting the price

change. Wald presents the p-value of the Granger causality test with the null hypothesis

that the basis does not Granger-cause the price change. The null is rejected for all energy

products in all the horizons and for all agricultural products in the 3- and 6-month horizons

at 5 % level. For the base and precious metals, the null is not rejected except for copper in

the 12-month and silver in the 6-month horizon.

Ĉ is the causality measure that is measured using equation (33) which captures the in-

formation in the basis. Across commodities, base and precious metals perform poorly in this

respect, whereas energy commodities have better characteristics when it comes to unbiased-

ness theory. Across the time horizon, for energy products, the point estimate of the measure

appears to be generally increasing as the horizon expands. For natural gas, for instance, Ĉ

rises from 0.148 to 0.393 going from the 3- to 12-month horizons. The fact that can be seen in

the confidence intervals as well. In the agricultural products, a similar pattern can be observed

in the 3- and 6-month horizons. All the agricultural basis do not show signs of information

in the 12-month horizon, but jumping from 3- to 6-month increases the predictability of the

basis considerably.

The overall results indicate that the energy market possesses the most informative basis.

And across this group of commodities, natural gas, heating oil, and gasoline appear to have

more predictive basis than crude oil. Yet the oil basis as the least informative one among this
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group, performs better than the base and precious metals combined. Agricultural goods can

be classified in between of the two.

A few points need to be emphasized though. The period of this study is not the same for

all commodities. For the base metals, observations are available from 1997 only, whereas in

the energy markets, the futures prices are consistently available from 1990. The other issue is

the heterogeneity over the markets in terms of market structure and market participants. Gold

is known as a popular hedge against inflation. When CPI is expected to soar, managers keep

their assets in gold to avoid the loss. Even though traditionally gold is used as an inflation

hedge, recent studies prove that copper could be a better option14. The red metal is sensitive to

macroeconomic shocks and historically, in times of inflation, its value increased three times

more than gold. Thus, the importance of macroeconomic shocks should be considered when

one studies the behavior of futures price.

A possible extension to this paper is considering the indirect causality. In the setting

of the commodity futures market, volume seems to be a proper candidate. Volume can be

linked to liquidity in commodity futures. Traders prefer commodities with higher liquidity.

Therefore, establishing an indirect link between the basis and the volume in one hand and

the volume and the price, on the other, seems to be informative regarding the efficiency and

unbiasedness of the markets. Another interesting area to discover is examining the causality

measures jointly. Since some markets are closely related such as the gold and oil markets,

conducting joint inference on the true causality measures seems to be enlightening.

14More Precious Than Gold? Copper’s the Better Inflation Hedge. Susanne Barton. Bloomberg, June 2017.
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1.4 Concluding Remarks

The commodity market has been the subject of ample research recently and they are gaining

increasing importance in alternative investments due to their unique characteristics. In this

paper, a new approach for investigating the informational content of commodity futures in

the context of the causal relationship between the basis and the price change is suggested.

Quantifying the causality from the basis towards the price change in the market can reveal

the degree of unbiasedness in the futures. This has been done on a set of fourteen commodi-

ties and results indicate that energy and agricultural products seem to have information and

therefore unbiased properties in their basis in terms of predicting the price change, whereas

the base and precious metals seem to fail in this regard.

Yet another direction worthy of research scrutiny is the interconnection between the com-

modities. For instance, the gold market contains information that could help predict the price

change in energy futures in general and crude oil in particular. This can be done by defin-

ing an indirect causality from the basis in gold futures to the price change in the oil market

through the oil basis. Due to the linkage of these two markets, there might exist significant

causality through which one basis in a market causes the price change in another and vice

versa. This is currently under investigation by the author.
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1.5 Appendix

In the appendix, Table (8) presents the mnemonics for the futures which includes the market,

ticker, and time period. Table (9) shows the summary statistics of futures contracts which

could be interesting for studying the price dynamics for each commodity. Table (10) demon-

strates the same stats for the basis and the price change. Tables (11) and (12) exhibit Phillips

modified GPH estimation results for the basis in level and first difference, respectively. Table

(13) and (14) present the same outcomes for the price change. KPSS test results of stationarity

are reported in Table (15) and (16) for the variables in level and first difference, respectively.

Finally, Tables (17) and (18) display the results of the unit root tests. The appendix ends with

the algorithm to obtain the bootstrap confidence intervals in Dufour and Taamouti (2010).

Table 8: Bloomberg Mnemonics for Futures Prices and Available Samples

Available sample

Market Futures ticker 1-month 3-month 6-month 12-month

Energy products

WTI NYMEX CL 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3

Natural gas NYMEX NG 1990:5-2017:3 1990:5-2017:3 1990:5-2017:3 1990:7-2017:3

Heating oil NYMEX HO 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3

Gasoline NYMEX HU/XB 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3

Base metals

Aluminum CME LA 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3

Copper CME LP 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3

Lead CME LL 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3

Nickel CME LN 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3

Tin CME LT 1997:7-2017:3 1997:7-2017:3 1997:7-2017:3 1997:11-2017:3

Precious metals

Gold NYMEX GC 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3 1990:3-2017:3

Silver NYMEX SI 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3 1990:3-2015:3

Agricultural products

Corn LME C 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3 1994:7-2016:5

Soybean LME S 1990:1-2017:3 1990:1-2017:3 1990:1-2017:3 1992:5-2017:3

Wheat LME W 1990:1-2017:3 1990:1-2017:3 1990:1-2017:1 2000:1-2016:11
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For robustness, Dufour and Taamouti (2010) construct the bootstrap confidence interval

for the causality measure and present its asymptotic validity. The algorithm to obtain the

percentile bootstrap confidence intervals is the following:

� Step 1: estimate a V AR.k/ model, given the data realization and store the residuals:

∼
u D �.t/�

kP
iD1

b5ik�.t � i/, for t D k C 1, ...T .

Where b5ik is estimated by OLS and 6ujk D TP
tDkC1

eu.t/eu.t/0
.T�k/ is the covariance matrix with

eu.t/ Dbu.t/� TP
tDpC1

bu.t/
.T�k/ andbu.t/ D �.t/� kP

iD1

b5ik�.t � i/.
� Step 2: Generate .T � k/ bootstrap residuals u�.t/ by random sampling with replace-

ment from the V AR residualsbu.t/, t D k C 1, ..., T .
� Step 3: Set aside the vector of initial observation up to k, ��.0/ D .�.1/0, ..., �.k/0/0.

� Step 4: Given b5ik , fu�.t/gTtDkC1, and ��.0/, generate .T � k/ the bootstrap sample form
the equation

��.t/ D
kP
iD1

b5ik��.t � i/C u�.t/, for t D k C 1, ..., T .

� Step 5: Estimate a V AR.k/ model with OLS using the bootstrap sample generated in

step 4.

� Step 6: By employing the bootstrap sample of the price change in f��.t/gTtD1, estimate

an ARI MA.k, 0, 0/ model and save the residuals.

� Step 7: Using the bootstrap sample, calculate the causality measure by bC . j/�.b!
h
pjI /

in equation (30).

� Step 8: Choose B such that 1
2
�.BC 1/ be an integer and repeat steps (2) to (7) B times.

� Step 9: Construct the 95% percentile confidence interval by sorting bC . j/�.
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CHAPTER II

ASSET PRICING IMPLICATIONS OF GROUPED PATTERNS

OF HETEROGENEITY

2.1 Introduction

Firms are connected through different types of links. Some links are well-established and

observable, whereas some are less transparent and ambiguous. As an example of the former,

one can consider input-output accounts data (also known as I-O tables) which are available

on an annual basis by the Bureau of Economic Analysis (BEA). Depending upon examina-

tion by rows or columns, the table reveals links between economic sectors in terms of their

production. Furthermore, input-output links can be compared to a different setting in which

firms are grouped, but not necessarily due to the usual links of tradable goods and services.

One example is the volatility spillover among firms and groups of firms. In this new setting,

the focus will be on recovering the so-called opaque links and that introduces new challenges

such as the criteria by which the firms are grouped and the implications of those criteria for

economics and finance.

This paper attempts to find answers to the above questions by designing a network of

realized volatility of common stocks as a candidate of the financial network and then inves-

tigating its asset pricing implications. Thanks to the recent popularity of network theory and

application, there exists a rich literature in the field1. Networks are simple to understand and

they can easily be defined by two sets of features, namely nodes and edges. Nodes in my

proposed network are groups of firms that have similar volatility series. Edges are volatility

spillovers among nodes. Two factors are derived in turn that describe the network. The first

1Related work includes Cohen and Frazzini (2008), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), and

Allen and Babus (2009).
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is the concentration factor that narrates the evolution of nodes. The second is sparsity which

unfolds the transformation of edges.

Herskovic (2018) is the first to propose concentration and sparsity as factors to examine

networks of production. Ahern (2013) considers only the node property and concludes that

industries with central positions earn higher returns than others. Later on, Herskovic (2018)

completes this picture by introducing another property to take into account the edges that

connecting firms; hence creating a complete network for real activities in the economy. In

a general equilibrium model, Herskovic (2018) drives two factors that describe the input-

output relationship among the economic sectors. Concentration narrates the evolution of

nodes (sectors) and sparsity reports the evolution of edges (commodity flows among sectors).

Both factors are tested and they show to have statistically significant risk premia for a diverse

set of assets.

Concerning the volatility networks in particular and the financial networks in general, this

paper is motivated by Billio et al. (2012), Bianchi et al. (2015), Deibold and Yilmaz (2014),

Dufour and Jian (2016), and Barigozzi and Brownlees (2016). The research of Dufour and

Jian (2016) is comparatively related to this paper. They define networks of volatility for firms

in the S&P 100 by utilizing the multiple horizon causality measures of Dufour and Taamouti

(2010). One feature of this paper, which makes it distinguishable from Dufour and Jian

(2016) and the other works in the literature, is the fact that I try to recover financial factors

from the real connections among firms (that can be named as the real economics or network)

and compare their pricing powers with factors that were derived in Herskovic (2018). In other

words, this research is a comparative study of financial and real networks.

Since this research is inspired by Herskovic (2018) and many notions are similar in def-

inition to the ones presented in his work, I present an example to explain concentration and

sparsity.
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Table 19: Example of Network Economies

Network (A), (B), and (C) are all representatives of three-sector economies. The matrices in

the second row represent different networks. Network A is symmetric; whereas, in B and C,

links are not equally distributed among sectors. The last row presents the output share for

each sector given the total output in each sample economy is 1. In A and B shares are equal,

but in C sector 1 plays the central role.

Network (A) Network (B) Network (C)

three-sector economy three-sector economy three-sector economy

w1=

240.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

35 w2=

24 0.1 0.45 0.45

0.45 0.1 0.45

0.45 0.45 0.1

35 w3=

240.6 0.2 0.2

0.6 0.2 0.2

0.6 0.2 0.2

35

�1=
�
0.33 0.33 0.33

�
�2=
�
0.33 0.33 0.33

�
�3=
�
0.6 0.2 0.2

�

2.1.1 Network and its Descriptive Factors: Example

Let us explore the two factors in an example. In Table (19) there are three different networks

that are representatives of three-sector economies. Network (A), (B), and (C) are shown by

the square matrices w1, w2, and w3, respectively. The total output of the economy is 1 and �

shows the output shares. (A) is an example of a symmetric network. If we read the matrix by

row, sector 1 purchases 33% of its needed input from its own, 33% from sector 2, and 33%

from sector 3. Shares are also equally distributed. In (B), the links are differently shaped,

but the shares remain the same. Sector 1 purchases 10% of its needed input from its own,

45% from sector 2, and 45% from sector 3. If we look at the other two rows, we can see

that the outflows of input from different sectors are stronger than the diagonal elements of

the self-consuming inputs. In terms of real activities, (B) represents an economy with higher

specialization than (A).

In network (C), sector 1 becomes highly influential. This is evident from �3. Sector 1

produces 60% of the total output and because of this, the outflow of inputs from sector 1 is

relatively stronger than other links, a fact that can be observed in w3. To distinguish networks
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Figure 1: Example of Network Economies: Graphs

The graphs visualize different networks. Network A is a symmetric, network B has a higher

sparsity relative to network A. Finally, network C has a higher concentration compared to

network B.

Network (A) Network (B) Network (C)

Concentration -1.09 Concentration -1.09 Concentration -0.95

Sparsity -1.09 Sparsity -0.95 Sparsity -0.95

based on the characteristics of their nodes and edges, Herskovic (2018) drives the following

two equations that represent the concentration and sparsity, respectively:

HNC.t/ D
nX
jD1

� j .t/ log � j .t/ (36)

HNS.t/ D
nX
iD1

�i .t/
nX
jD1

wi j .t/ logwi j .t/ (37)

where n is the number of sectors, � j is the output share of sector j , and wi j is the entry of

input-output table when sector i purchases an input weight from sector j . HNC is network

concentration and HNS refers to network sparsity (the notation that I will respect in this

paper as well). Herskovic derives these two expressions through the conditions of a general

equilibrium model. They both are negative. Concentration is the negative entropy of the

output shares. If it shows rather a small number, then the output is dominated by only a few

sectors’ shares. On the other hand, sparsity indicates the thickness of the connections among

sectors. If it rises, it is an indication of more specialization in the economy.

Now the numbers at the bottom of Figure (1) start to make sense. Network sparsity is
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the edge-characteristic of the network. By comparing (B) to (A), we can see that although

the output shares are the same, the outflow of input becomes stronger and therefore (B) has

a higher sparsity level. Furthermore, in (C) since sector 1 manipulates the most of economic

activities and the network concentration is the node-property. Therefore, the network has a

higher level of concentration relative to (A) and (B).

As was mentioned earlier, the transparent connections between firms based on real activ-

ities do not necessarily hold in the financial realm. The main objective of this paper is to shed

more light on this subject by recovering those obscure links for a financial network.

The paper has the following structure. In the data description section, the data and their

properties are presented. Then, in the network representation section, factors are defined. In

evidence, the time series of concentration and sparsity and the appropriate asset pricing tests

are explored. And finally, the last section concludes.

2.2 Data Description

The data-set contains the realized volatility series of firms listed as common stocks and their

corresponding customers which are known as the U.S. firm-customer links. To the best of my

knowledge, Cohen and Frazzini (2008)2 are the first who gathered the information regarding

the firm-customer supply links for the U.S. from 1980 to 2005. Looking at their data, each

firm is spotted by a unique permanent number (PERMNO) that is identifiable in Compus-

tat/CRSP. Going through Compustat customer historical segments, one can observe the name

of all customers that purchase at least 10% of the final product of a firm in an annual fre-

quency. The difficult part is matching the names of the customer with the set of PERMNOs

in Compustat to identify the customer’s ticker and other relative information. Herskovic

(2018) went through the process to update the data-set in Cohen and Frazzini (2008) until

2013. I upgraded his set by tracking down the firm-customer links until 2017 and adding

more common stocks that perhaps were missing. The result is a set of firm-customer links

2The original data-set which covers 1980 to 2005 is available in Andrea Frazzini’s data library at

http://people.stern.nyu.edu/afrazzin/data_library.htm
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for the U.S. from 1980 to 2017. Table (20) presents a summary statistics of the data.

Table 20: Summary Statistics of the U.S.Firm-customer Links

To update the firm-customer dataset, the first step is acquiring all the common stocks with

share codes 10, 11, and 12 listed in NASDAQ, AMEX, and NYSE from 2014 to 2017. The

next step is getting the principal customers of these firms through the historical segment.

After removing geographical and international customers, there remain business firms only

as customers. The final step is matching the customers’ names with PERMNO in our common

stock list since the assumption is that the customer is a common stock as well. I could do that

by running a fuzzy algorithm in Excel and match the customer names with the closest match

and then, return its corresponding PERMNO. The final outcome is an annual list of the U.S.

firm-customer links that covers 38 years.

Time Series (38 Annual Observations, 1980–2017)

Min Max Mean SD Median

Number of firms in the sample per year 260 1218 806 289 825

Number of customers in the sample per year 156 1067 599 315 485

Full sample % coverage of stock universe 14 25 18 4 17

To extract realized volatility series, I follow Barunik et al. (2014). Suppose that the price

process p.t/ is given by:

p.t/ D p.0/C

tZ
0

�.s/dW .s/ (38)

where W is the standard Brownian motion, and � is the strictly positive volatility process

with the integrated variance of
tR
0

� 2.s/d.s/. A measure for quadratic variance is presented

by Barndorff-Nielsen (2002) and Andersen et al. (2001) which is the summation of squared

daily returns. Therefore, the realized variance of t daily returns is given by:

RVar D
TX
tD0

r2.t/ (39)

The realized volatility is simply the square root of the realized variance:

RVol D
p
RVar (40)
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The square returns are added over a week (T D 4 for 5 working days starting from 0) and

leave us with around 52 observations of realized volatility for each year. The return series are

obtained from CRSP.

A possible extension to the data construction would be taking into consideration high-

frequency data to estimate the volatility. In this new frequency, one can think of the possibility

of jumps in the processes. Since the frequency of my data-set is weekly, I disregard jumps

for now.

2.3 Network Representation

This section introduces two factors that describe the realized volatility network. Concentra-

tion is obtained by employing the concept of grouped patterns of heterogeneity, (also known

as grouping the data or clustering). Sparsity is derived by utilizing theories of causality mea-

sure as a method to capture the volatility spillover among groups of firms.

2.3.1 Concentration Factor

There are dimensions in the data that are unknown to the econometrician. This is called

heterogeneity. Manresa and Bonhomme (2014) introduce a theoretical framework to take

into account heterogeneities and efficiently estimate them. To recall their model, consider the

following:

Yi .t/ D xi .t/� C cgi .t/C ui .t/, i D 1, ..., N , t D 1, ..., T (41)

Where Yi is the panel of dependent variables, x
0
i is the set of co-variates, and cgi is the

group-specific time effect for G groups g 2 f1, ...,Gg. There are N features and T data

points in time. The choice of G is something that I discuss later in this section and it is very

important in designing the network.

Without the presence of co-variates (i.e. � D 0), the model coincides with the well-known

kmeans algorithm (Forgy, 1965 and Steinley, 2006). The clustering algorithms allow for

patterns to emerge from the unlabeled data and therefore they are classified as unsupervised
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learning algorithms. Going back to the realized volatility network, I can identify Yi .t/ as

the weekly realized volatility series of firm i , namely RVoli .t/. For the sake of notational

simplicity, I will show RVoli .t/ as Vi .t/ for the rest of the paper.

To estimate cgi .t/, the following is the minimization problem that needs to be solved:

ĉ D argmin
c

NX
iD1

. min
g2f1,...,Gg

TX
tD1

.Vi .t/� cgi .t//
2/ (42)

A critical question in grouping the data is how many groups .G/ the researcher would

choose to run the algorithm. G in the network of realized volatility represents the number of

nodes (nodes are groups of firms with similar volatility series). I use the notation in Man-

resa and Bonhomme (2015) that formalize a BIC-form information criterion. To define the

criterion:

I .G/ D
1

NT

NX
iD1

TX
tD1

.Vi .t/�bcg.t//2 CGPNT (43)

I denotes the information criterion and PNT is a penalty term. The optimal number of

groups minimizes the below objective function:

G� D argmin
G2f1,...,Gmaxg

I .G/ (44)

where Gmax is the maximum choice of G and is set by the researcher. Following Manresa

and Bonhomme (2015), I select Gmax equal 15. The information criterion is in the form of

the BIC and it has the following expression:

BIC.G/ D
1

NT

NX
iD1

TX
tD1

.Vi .t/�bcg.t//2 Cb� 2GT C N
NT

ln.NT / (45)

where �̂ 2 is the consistent estimator of the variance of ui and it is given by:

�̂ 2 D
1

NT �GmaxT � N

NX
iD1

TX
tD1

.Vi .t/�bcg.t//2 (46)

The group assignment that yields the minimum value of BIC corresponds to the optimal
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value of grouping, namely G�. As was mentioned before, G� is the number of groups of firms

with similar realized volatility patterns. Once G� is identified, the concentration time-series

is described as the negative entropy of the nodes’ shares:

NC.t/ D
G�X
jD1

� j .t/ log � j .t/ (47)

where � j is defined as:

� j .t/ D
Mcap j
G�P
iD1
Mcapi

(48)

Mcap j is the market capitalization of group j which is the sum of stock price multiply by

the number of shares outstanding of firms within each group. Thus, the concentration factor

measures the negative entropy of the capital shares’ distribution.

2.3.2 Sparsity Factor

To complete the network, I need to define the edges that connect the nodes. A directed edge

with causal interpretation is a suitable way to define the connections in an economic network.

Therefore, I use the notions of multiple horizon causality measures introduced by Dufour and

Taamouti (2010). I borrow the exposition of causality measure, introduced by Dufour and

Taamouti (2010) and Dufour et al. (2015), and I accommodate the realized volatility market

within them.

Suppose there exists a jointly stationary process V .t/ that includes three multivariate sto-

chastic processes such that V .t/ D .V1.t/, V2.t/, V3.t//, where V1.t/ D .v11.t/, ..., v1m1.t//
0,

V2.t/ D .v21.t/, ..., v2m2.t//
0, and V3.t/ D .v31.t/, ..., v3m3.t//

0 with m1 C m2 C m3 D N .

Define the information set I D fI .t/ : t 2 Z, t > � g and t < t 0) I .t/ � I .t 0/ for all t > � ,

where I .t/ is defined on the Hilbert subspace of L2, � 2 Z [ f�1g represents a starting

point. If V1.� , t ], V2.� , t ], and V3.� , t ] are the Hilbert spaces spanned by the components of

V1, V2, and V3 respectively then the information sets are the following:
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IV1.t/ D I .t/C V1.� , t ]

IV1V2.t/ D I .t/C V1.� , t ]C V2.� , t ]

Definition 6 Granger non-causality at horizon h : For any arbitrary forecast horizon h, V2

does not Granger-cause V1, given information set I , if and only if:

P [V1.t C h/jIV1.t/] D P [V1.t C h/jIV1V2.t/] (49)

Here, P [V1.t C h/jIV1.t/] is the best linear forecast of V1.t C h/, based on the information

set IV1.t/.

To measure the Granger causality from the above definition of non-causality, Dufour and

Taamouti (2010) present the below definition:

Definition 7 Granger causality measure at horizon h : For any arbitrary forecast horizon h,

such that 1 � h <1,

GC.V2!
h
V1jI / D ln[

detf6[V1.t C h/jIV1.t/]g

detf6[V1.t C h/jIV1V2.t/]g
] (50)

GC is the mean-square Granger causality measure from V2 to V1 at horizon h given,

the information set I . The vector of prediction errors and the corresponding matrix of their

second moments 6 are:

U [V1.t C h/jI .t/] D .u[v11.t C h/jI .t/], ..., v1m1.t C h/jI .t/]/
0 (51)

where u[v1i .t C h/jI .t/] D v1i .t C h/� P [v1i .t C h/jI .t/] (52)

6[V1.t C h/jIV1.t/] D EfU [V1.t C h/jI .t/]U [V1.t C h/jI .t/]
0g (53)
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2.3.2.1 Causality Measure for VAR(p) Models

Dufour and Taamouti (2010) introduce the general framework to estimate the causality mea-

sure for the set of invertible processes which includes vector autoregressive (VAR) models.

Consider the aforementioned process V .t/ D .V1.t/, V2.t/, V3.t// as a vector autoregressive

model of order p. To define the measure, the unconstrained and constrained models need to

be defined. The unconstrained process V .t/ D .V1.t/, V2.t/, V3.t// is stationary and has a

V AR.1/ representation:

V .t/ D
1X
jD1

8 jV .t � j/C u.t/ (54)

Having the realizations of fV .1/, ..., V .T /g, the unconstrained process can be approxi-

mated by a finite order V AR.k/:

V .t/ D
kX
jD1

8 jkV .t � j/C uk.t/ (55)

To estimate the causality measure from V2.t/ to V1.t/, the constrained process V0.t/ D

.V1.t/, V3.t// needs to be defined. Same as the unconstrained process, V0.t/ has a V AR.1/

representation:

V0.t/ D
1X
jD1

8 jV0.t � j/C ".t/ (56)

that can, in turn, be approximated by a finite order V AR.k/:

V0.t/ D
kX
jD1

8 jkV0.t � j/C "k.t/ (57)

To estimate the causality measure, 4 sets of variables should be estimated: the autoregres-

sive coefficients of the unconstrained model, the autoregressive coefficients of the constrained

model, the variance-covariance matrix of the error term uk.t/, and the variance-covariance

matrix of the error term "k.t/. Thus, we need the estimation of the following variables:
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8 jk D [�1k ,�2k , ...,�kk ] (58)

6ujk (59)

8 jk D [�1k ,�2k , ...,�kk ] (60)

6"jk (61)

In the unconstrained process, the estimated variance-covariance matrix of the forecast

errors of V .t C h/ is:

b6k.h/ D h�1X
jD0

b9 jk
b6ujkb9 0jk (62)

where b9 jk Db� j1k ,b�01k D Im ,b�11k Db�1,b�. jC1/1k Db�. j/2k Cb�. j/1k b�1k .
Similarly, for the constrained model:

e60.h/ D h�1X
jD0

e9 jk
e6"jke9 0jk (63)

Thus, the estimator of the causality measure from V2.t/ to V1.t/ is:

dGCh.V2! V1jI / D ln[
detf[J0e60.h/J 00]g
detf[J1b6k.h/J 01]g ] (64)

with J1 D [Im10 0] and J0 D [Im1 0].

Due to the high dimension of the data (a large number of firms in each group), instead

of estimating the measure for clustered volatility series, I use the estimated centroids bcg.t/
for each group. For example, in the case of G� D 10, there are 10 estimated centroids

53



bcg.t/ D fbc1.t/, ...,bc10.t/g that can be used in a V AR.k/ model. The centroids are the esti-
mated realized volatility series that represent each group of firms. The vector autoregressive

models are estimated by OLS, equation by equation. In the case of G� � 10, LASSO (Tib-

shirani, 1996) is needed to shrink the dimension.

Now that I have the estimated causality measures, I can create a table that represents the

linkage (also known as volatility spillover) between nodes. Therefore, the realized volatility

network is:

266664
dGCh11.t/ � � � dGCh1G�.t/
...

. . .
...dGChG�1.t/ � � � dGChG�G�.t/

377775 (65)

wheredGCh1G�.t/ is the causality from group 1 to group G� at time horizon h and it mea-
sures the volatility spillover (directed edge) from node 1 to node G� in the network. To obtain

GChii .t/ for i D 1, ...,G� past information of node i is removed from the information set.

Thus, the causality from i to i seems to capture the relevance of the past observations in each

node. Each row of the causality table shows the causality from one group to another. These

measures are transformed into weighted measures by defining the following relationship:

whi j .t/ D
dGChi j .t/

1CdGChi j .t/ (66)

As a result, we have the following weighted volatility network:

266664
wh11.t/ � � � wh1G.t/

...
. . .

...

whG1.t/ � � � whGG.t/

377775 (67)

As mentioned earlier, the sparsity factor reveals the evolution of edges. Therefore, it

needs to be obtained by the causality table. Similar to Herskovic (2018), the sparsity factor

is specified as the following:
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NS D
G�X
iD1

�i .t/
G�X
jD1

wi j .t/ logwi j .t/ (68)

This factor measures the thickness of the edges (wi j ). In other words, sparsity is the

negative entropy of weights, scaled by the share of each node.

2.4 Evidence

This section exhibits the main results. Section 4.1 studies the factors in the Arbitrage Pricing

Theory and estimates pricing errors. Section 4.2 examines the sorted portfolios created by

exposure of assets to the network factors. Section 4.3 estimates the price of risk by using

two-stage regressions of Fama and Macbeth (1973). And finally, section 4.4 discusses the

robustness checking.

Figure (2) shows the time series of concentration (panel 1) and sparsity (panel 2) com-

puted by (47) and (68), respectively. Concentration appears to be responsive to the financial

crisis as it is evident by a sharp drop in the graph during the 2007-2009 period. This can be

explained by the loss of market capitalization and the fact that the network transforms into

one with more evenly distributed node sizes. Sparsity is more difficult to interpret. The graph

seems to be less volatile after 2000 with the exception of a hit in 2005. Network graphs that

highlight the evolution of the factors during the financial crisis are presented in the appendix.
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Figure 2: Concentration and Sparsity

The figure shows the time series of concentration and sparsity. Panel 1 is obtained by calcu-

lating (47), and panel 2 by calculating (68) in annual frequency. The time-domain starts in

1980 and ends in 2017. For concentration Gmax is 15, for sparsity V AR is of order 1, and the

first horizon is chosen to obtain the forecast errors.
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Table 21: Summary Statistics and Factor Correlation

Panel 1 is a summary statistics of concentration and sparsity. Autocorrelations in lag p and

their p-values of the Ljung-Box Q-test are reported in front of AC(p) for p=1,2,3, and 4. The

null hypothesis is no autocorrelation. Panel 2 shows the correlation coefficients and their

p-values in parentheses for network factors. Panel 3 demonstrates the correlations between

concentration and sparsity and the Fama-French 3 factors, namely, market factor (Mkt), size

(smb), and book/market (hml). I add the two factors of concentration and sparsity presented

in Herskovic (2018).

Panel 1

Summary Statistics of Network Factors

NC NS

Level p� value Level p� value

Mean -0.07 - -1.32 -

S.D. 0.08 - 0.50 -

AC.1/ 0.18 (0.38) 0.09 (0.16)

AC.2/ 0.08 (0.50) -0.26 (0.20)

AC.3/ -0.09 (0.57) -0.14 (0.19)

AC.4/ -0.10 (0.68) -0.17 (0.29)

Panel 2

Network Factors Correlation

NC

NS
0.03

(0.83)

Panel 3

All Factors Correlation

Mkt smb hml HNC HNS

NC
0.04

(0.79)

-0.15

(0.33)

-0.21

(0.20)

0.14

(0.39)

-0.35

(0.03)

NS
0.25

(0.11)

-0.12

(0.44)

0.04

(0.78)

-0.08

(0.59)

0.01

(0.95)

Table (21) reports the summary statistics and correlations matrices. Upon examination

of autocorrelations and p-values in panel 1, the null hypothesis of no autocorrelations in the

Ljung-Box Q-test cannot be rejected. Network factors show no sign of correlation in panel

2, and the evidence of any co-movement between network factors and the Fama-French 3
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factors, namely market, size, and book/market is low. I add Herskovic (2018) factors (HNC

and HNS) at the end. NC demonstrates a correlation of -0.35 with HNS. The fact that NS

and NC are not correlated might imply that they are two distinct sources of risk. In section

4.4, I will address the possible correlations by controlling for various factors.

2.4.1 The APT Pricing Errors

According to the Arbitrage Pricing Theory (APT), an asset return is a linear function of a set

of factors and an error term. Here, I use the notation and description presented in Geweke

and Zhou (1996). To show the APT model in vector form, consider the following:

r.t/ D � C �f.t/C �.t/ (69)

where r.t/ is the vector of asset returns, � is the intercept or the expected return of any

asset, f.t/ is the set of explanatory factors, � is the vector of factor loadings, and �.t/ is the

idiosyncratic component. The APT has the following assumptions:

� E[f.t/] D 0

� E[f.t/f0.t/]=I

� E[�.t/jf.t/] D 0

� E[�.t/�0.t/jf.t/] D6

According to Ross (1977), in the absence of riskless arbitrage opportunities, the expected

return of asset of i is:

�i � �0 C � i1�1 C � � � C � ik�k (70)

The focus is on the pricing error which is an average of the squared pricing errors across

assets. Therefore:
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p2 D
1

N

NX
iD1

.�i � �0 � � i1�1 � � � � � � ik�k/
2 (71)

where p is the pricing error of asset i and �k is the risk premium on the k-th factor. As the

number of assets approaches to zero, p converges to zero as well. Geweke and Zhou (1996)

further show that conditional of � and �, the minimized average pricing error is:

p2D
1

N
�0[IN��

�.��0��/�1��0]� (72)

where �� D .1N ,�/ and � is an N � K matrix of factor loadings.

Given the above description of the pricing errors, the accuracy of the factor model can

be estimated. I consider 12 industry portfolio returns 3 (available in Kenneth French’s data

library) to examine the errors. For every portfolio, the excess returns are regressed on a

constant and the network factors. Since the network has two factors, four regressions are

considered. The first one has no factor. The second includes only the concentration factor.

The third is similar to the second but with sparsity as the explanatory variable. And finally,

the fourth regression considers both factors.

ri .t/ D �0i C �i .t/ (73)

ri .t/ D �1i C �
NC
i NC.t/C � i .t/ (74)

ri .t/ D �2i C �
NS
i NS.t/C �i .t/ (75)

ri .t/ D �3i C �
NC
i NC.t/C �NSi NS.t/C �i .t/ (76)

To obtain a series of pricing errors, the estimation is done on a rolling window. For every

t and every industry portfolio, the regression is done over a 15-year window from t-14 to t.

Then, the process is repeated until the last year of the sample.

3The summary statistics of the portfolios are available in the appendix.
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Table (22) presents the results. With no factor (K=0), the pricing error is 0.1333. Once

the concentration factor is entered into the model, the error drops to 0.0254. The same is true

for sparsity. With the presence of sparsity only, the pricing error falls to 0.0259. However,

when the two are put together in the regression, there does not seem to be a significant drop in

the pricing error. This fact is in alignment with Geweke and Zhou’s (1996) empirical findings

which assert that introducing more factors does not necessarily reduce the pricing error by a

significant amount.

Comparing the errors across a broader set of factors, I include concentration and sparsity

in Herskovic (2018). HNC seems to do a worse job compare to NC , as it drops the errors to

0.026. But HNS is more successful than NS. HNC and HNS together appear to perform

marginally better than NC and NS.

Table 22: Average Pricing Errors for the Network Factors

The table reports the average pricing errors for different factors based on the Arbitrage Pricing

Theory. The set of test assets is 12 industry annual portfolio returns available on Kenneth

French’s website. K indicates the number of factors in the model. p reports the pricing error,

S.E. indicates the standard errors, and the last column demonstrates the 95 percent confidence

interval.

Industry returns (N = 12)

K p S.E. 95% C.I.

0 0.1333 0.0329 [0.1197, 0.1469]

NC 0.0254 0.0055 [0.0232, 0.0277]

NS 0.0259 0.0055 [0.0236, 0.0282]

NC & NS 0.0244 0.0055 [0.0221, 0.0266]

HNC 0.0262 0.0058 [0.0238, 0.0286]

HNS 0.0236 0.0051 [0.0213, 0.0255]

HNC & HNS 0.0229 0.0049 [0.0207, 0.0247]

To investigate the proposed factors further, in the next section I examine portfolios created

by exposure of stocks to the factors and then estimate the factor prices of risk and compare

them to concentration and sparsity in Herskovic (2018).
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2.4.2 Sorted Portfolios

Creating portfolios based on the sensitivities of asset returns to financial factors is a method

to test if equities with different exposures to the common risk factors have different returns.

To present this formally, consider the following:

ri .t/ D �3i C �
NC
i NC.t/C �NSi NS.t/CControls C �i .t/ (77)

This model is similar to (73) except that here, there exist control variables. The controls

will be investigated in the robustness analysis later. ri .t/ is the time series of excess returns of

firm i . NC.t/ and NS.t/ are time series of concentration and sparsity, respectively. Finally,

�NCi and �NSi measure the exposure of stock returns to the two factors.

For the equity returns, I consider all the common stocks with shares codes of 10, 11, and

12 in CRSP. Penny stocks (stocks with price less than $5) are then removed from the series.

To create portfolios, a rolling window regression is utilized. In a window length of 15 years

and at every period t , I run the above regression from t � 14 to t . The equities are then sorted

by each beta and portfolios are formed at t C 1. I repeat this process until the end of the

period. The annual risk-free rate is downloaded from Kenneth French’s data library.

Table (23) reports the statistics for tercile portfolios sorted by �NC and �NS . Each tercile

has an ID that is shown in front of "Rank". H � L refers to the spread between the high

beta portfolio (tercile 3) and the low beta portfolio (tercile 1). The next four rows report

the mean, standard deviation, log of market capitalization, and book-to-market ratio of each

tercile. In panel 1, the portfolios formed on high concentration beta stocks have a%2.15 lower

return on average than portfolios formed on low concentration stocks (Column (H � L)).

The t-statistics shows that the spread is significant and the negative sign affirms a negative

price of risk for concentration. Upon examination of panel 2, I arrive at similar conclusions.

There exists a significant spread of %0.83 between high sparsity and low sparsity portfolios

annually.

�CAPM and �FF3 measure the intercepts of the capital asset pricing and Fama-French
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three-factor models, respectively. In panel 1, both alphas are significant, meaning that the

CAPM and Fama-French three-factor models are not able to explain the spread. The same

is true for sparsity in panel 2. Notwithstanding a lower t-statistics compared to the spread in

concentration, both models fail to explain the spread in high-minus-low investment strategies.
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Table 23: Portfolio Sorting by Exposure to Concentration and Sparsity

The table reports the results of the univariate sorting by exposure to the concentration

and sparsity factors. To estimate the betas the following regression is run: ERi .t/ D
�i C �nci NC.t/ C �

ns
i NS.t/ C �i .t/. To construct the terciles, excess returns of common

stocks are regressed on the sparsity and concentration factors from t � 14 to t . The betas
are then sorted and portfolios are constructed at t C 1 . Mean displays the average return for
each portfolio. Std. Dev. reports the standard deviations of returns. Size is log of average

market capitalization within portfolio. Book/Market is the average book to market value ra-

tio. �CAPM and �FF3 demostrate the � of the capital asset pricing and Fama-French 3 factor

models, respectively. Pre-formation � indicates the average � of portfolio formation periods.

H-L (high minus low) shows the long-short portfolio strategy. Student t-statistics are reported

in square brackets.

Panel 1

Sorting by Concentration

Tercile H � L

Rank 1 2 3 3 - 1 t-stat

Mean(%) 4.55 3.65 2.39 -2.15 [-6.87]

Std. Dev. 2.95 2.45 2.85 - -

Size 4.56 5.16 5.22 - -

Book/Market 0.70 0.71 0.70

�CAPM 2.34 1.26 0.15 -4.53 [-10.12]

�FF3 2.14 1.15 -0.07 -2.19 [-6.26]

Pre-Formation � -0.73 -0.11 0.34 - -

Panel 2

Sorting by Sparsity

Tercile H � L

Rank 1 2 3 3 - 1 t-stat

Mean(%) 3.98 3.47 3.14 -0.83 [-1.90]

Std. Dev. 3.34 2.52 2.46 - -

Size 4.87 5.21 4.96 - -

Book/Market 0.72 0.71 0.70

�CAPM 1.80 1.11 0.84 -3.29 [-5.83]

�FF3 1.49 1.02 0.70 -0.95 [-1.96]

Pre-Formation � -0.07 -0.01 0.03 - -

Following Ang et al. (2006), I report the pre-formation betas in the last row. These are the

63



average values of coefficients (�NC and �NS) in each rolling regressions in each tercile. For

both panels, they are monotonically increasing. However, the evidence is more convincing

for concentration as we observe an increase of 1.07 (from -0.73 in tercile 1 to 0.34 in tercile

3) compared to a rise of 0.1 (from -0.07 to 0.03) for sparsity.

2.4.3 Measuring the Price of Risk

Table (23) establishes that the spread between portfolios created by stocks with high and low

concentration (sparsity) betas cannot be explained by the CAPM and Fama-French 3-factor

models. To proceed with investigating these two factors further, the next step is estimating

their corresponding prices of risk. To do so, I estimate the two-stage regression of Fama and

Macbeth (1973). This is a well-known routine to estimate the risk premia for any risk factor

that is assumed to have explanatory power in the cross-section of asset returns. The regression

has two steps. In the first step, I regress each asset’s returns on the risk factor to estimate the

factor betas (�) in a time series regression. In the second step, I regress all assets’ returns on

the estimated betas obtained in the first step in a panel regression to estimate the price of risk

for each factor (�).

I create three sets of test assets to be used in the Fama-Macbeth regressions. The first

set is the panel of 25 (5 by 5) portfolios double sorted on the market and concentration

factor. Common stocks are regressed on the market and concentration factors. Then, quintile

portfolios are created based on the betas of the market factor. Next, in each quintile, another

set of quintile portfolios are created by the exposure of each group to the concentration factor.

That creates a diverse set of portfolios that can be used in the estimation of the price of risk.
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Table 24: The Price of Concentration Risk

The table shows the price of risk for the concentration factor using the two-stage regression

of Fama-Macbeth. The test assets are 25 portfolios sorted on the market and concentra-

tion factors. Models (1) to (4) refer to different sets of explanatory variables in the Fama-

Macbeth regressions. Model (1) has the market and concentration factor mimicking port-

folios (Fm-NC) as explanatory variables. Model (2) adds Fama-French two factors of smb

and hml. Model (3) adds the network concentration of Herskovic, and finally (4) excludes

the traditional Fama-French factors and examines the effects of concentration and sparsity

in Herskovic (2018) on the test assets. The last row reports the adjusted R-square. Student

t-statistics are in square brackets.

(1) (2) (3) (4)

Constant
0.0032

[0.48]

0.0021

[0.28]

0.0048

[0.62]

-0.0025

[-0.33]

Mkt
0.0136

[0.14]

0.0040

[0.04]

-0.0346

[-0.38]

smb
0.0272

[0.95]

0.0009

[0.02]

hml
-0.0990

[-1.78]

-0.0850

[-1.53]

HNC
0.0319

[0.44]

0.0147

[0.28]

HNS
0.0949

[1.74]

Fm_NC
-0.0140

[-4.09]

-0.0148

[-3.81]

-0.0146

[-3.75]

-0.0157

[-4.09]

Ad justed R2 0.43 0.51 0.55 0.58
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Table 25: The Price of Sparsity Risk

The table shows the price of risk for the sparsity factor using the two-stage regression of

Fama-Macbeth. The test assets are 25 portfolios sorted on the market and sparsity factors.

Models (1) to (4) refer to different sets of explanatory variables in the Fama-Macbeth regres-

sions. Model (1) has the market and sparsity factor mimicking portfolios FmN S as explana-

tory variables. Model (2) adds Fama-French two factors of smb and hml. Model (3) adds the

network concentration of Herskovic, and finally (4) adds network sparsity of Herskovic. The

last row reports the adjusted R-square. Student t-statistics are in square brackets.

(1) (2) (3) (4)

Constant
0.0007

[0.08]

0.0033

[0.38]

0.0001

[0.01]

-0.0048

[-0.63]

Mkt
-0.0090

[-0.08]

-0.0607

[-0.57]

-0.1126

[-1.38]

smb
-0.0124

[-0.52]

-0.0073

[-0.33]

hml
-0.0440

[-0.69]

-0.0073

[-0.16]

HNC
-0.0670

[-1.33]

HNS
0.0685

[1.20]

0.0957

[2.10]

Fm_NS
-0.0143

[-1.93]

-0.0173

[-1.93]

-0.0195

[-2.48]

-0.0181

[-2.78]

Ad justed R2 0.20 0.28 0.29 0.29

Table (24) reports the Fama-Macbeth regression results for 25 portfolios sorted on the

market and concentration. Each column corresponds to a different model specification. Mkt ,

smb, and hml refer to the three factors in the Fama-French model (Mkt alone in a model indi-

cates the CAPM). HNC , and HNS point out to the concentration and sparsity in Herskovic

(2018), respectively. Fm_NC is the concentration factor mimicking portfolio I created by

going long the portfolio that has high beta (tercile 3) and short the portfolio that has low

beta (tercile 1). Model (1) presents the results of the regression of the test assets on Mkt

and Fm_NC . Market is not significant, but the factor mimicking portfolio is and carries a
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negative sign, consistent with the negative spread found in table (23). Model (2) adds size

and book/market. None is significant except for the concentration mimicking portfolio. The

results do not change when I add the concentration factor of Herskovic (2018) in model (3).

Finally, model (4) isolates only concentration and sparsity in Herskovic (2018) and examines

them along with the concentration mimicking portfolio. Across all the models, the factor

mimicking portfolio preserves its sign and appears to have the same magnitude and remains

significant.

In table (25), I repeat the same procedure for the sparsity factor. Adjusted R-square is

relatively lower than the previous case, inferring the lower explanatory power of sparsity

mimicking portfolio. The value of the estimated coefficient of sparsity mimicking portfolio

remains significant and negative in all the models. However, in model (4) HNS appears

significant with the correct sign. HNC is not significant, but it has the correct negative sign

in model (4) as well.

To explore further the price of risk, I construct more test assets. In table (26), the assets

are 25 portfolios double sorted by HNC and HNS. Model (1) regresses the assets on the

market factor and concentration and sparsity mimicking portfolios. All variables appear to be

significant with the correct sign. Model (2) adds Fama-French three factors into the model.

Still, factor mimicking portfolios and market are significant, but size and book/market do

not show explanatory powers. Model (3) keeps the market factor and puts together two con-

centration and two sparsity factors. My proposed factor mimicking portfolios are significant

with negative signs. HNC of Herskovic (2018) has a low t-value, but HNS has the highest

absolute t-value, confirming the results in Herskovic (2018).
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Table 26: The Price of Risk: All Factors

The table reports the price of risk of factors for real and financial networks by using the

two-stage regression model of Fama-Macbeth. The test assets are 25 portfolios sorted on the

network concentration and sparsity introduced by Herskovic (2018). Models (1) to (4) refer

to different sets of explanatory variables in the Fama-Macbeth regression model. Model (1)

includes the market and concentration factor mimicking portfolio. Model (2) adds in the 3

factor model of Fama-French. Model (3) enters the concentration of Herskovic, and finally

model (4) includes the sparsity factor of Herskovic as well. The final row reports the adjusted

R-square. T-statistics are shown in square brackets.

(1) (2) (3)

Constant
-0.0060

[-0.89]

-0.0017

[-0.26]

-0.0081

[-1.07]

Mkt
0.2319

[3.00]

0.1811

[2.64]

0.3137

[3.53]

smb
0.0048

[0.16]

hml
-0.1065

[-2.18]

HNC
0.0424

[1.39]

HNS
0.0466

[4.92]

Fm_NC
-0.0184

[-2.60]

-0.0148

[-2.01]

-0.0207

[-2.83]

Fm_NS
-0.0190

[-2.31]

-0.0235

[-2.74]

-0.0277

[-3.59]

Ad justed R2 0.57 0.54 0.57

2.4.4 Robustness Checking

To check for the robustness of the main results, first, I examine the spread in long-short

strategies for different choices of control variables in (77). Tables (28), (29), and (30) in the

appendix present the portfolio sorting outcomes when I control for market, book/market, and

size. Controlling for the market, the spread in the H � L strategy declines slightly for both

factors, but sparsity is no longer significant. However, the signs remain the same meaning
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that the high-beta-factor portfolios earn a lower return on average. The outcome is similar

when controlling for book/market. Assets sorted by concentration betas keep their spread

returns, pre-formation betas appear to be spread widely among terciles, and the alpha in long-

short portfolios seems to be inexplicable by the CAPM and Fama-French three-factor models.

Examining sparsity, the spread shrinks more and H � L strategy is no longer significant.

Although alpha in the spread cannot be explained by CAPM.

In table (30) the outcomes are similar to the original sorting portfolios in table (23). Both

spreads are negative and significant, �CAPM and �FF3 are not able to justify the presence of

a negative return between the last and the first terciles. Overall, the evidence of the existence

of annual average negative return in the spread is ample, although it is more convincing and

robust for the network concentration.

Additionally, I check for different forecast horizons in the causality measure. Table (31)

controls for h in the causality table. The spread in portfolios sorted by sparsity seems to be

more significant for the 5, 10, and 15 horizons, compared to 1 in my main results.

Finally, the last piece of robustness checking controls for the window length in the rolling

window regressions. The length can take 16, 17, 18, 19, and 20 years. Panel 1 and 2 of the

table (32) demonstrate the long-short portfolio returns (H � L) for different choices of the

window. The strategies are relatively significant with the correct signs for both factors. As

it is expected, portfolios sorted by concentration earn higher spread than sparsity across the

different windows.

2.5 Concluding Remarks

Firms are connected through links that are less transparent in financial markets. This study

is an attempt to uncover such linkages in a network and study their properties. By using

the U.S. firm-customer links data from Compustat and their corresponding return data from

CRSP, I design a network of realized volatility from which two factors are recovered. The

concentration factor depicts the node-property, whereas the sparsity factor describes the edge-

characteristics. In the APT setting, both factors have considerable potential to reduce pricing
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errors. Upon further examinations of portfolios sorted by the exposures of common stocks

to concentration and sparsity, results indicate significant negative average returns in high-

minus-low investment strategies.
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2.6 Appendix

2.6.1 Concentration and Sparsity in Herskovic (2018)

To replicate the factors in Herskovic, I used the updated data-set by the author which is the

U.S. firm-customer links from 1980 to 2013, and then I upgraded the data until 2017. The

data-set contains PERMNOs of the U.S. firms and their customers that purchase at least %10

of their final output. To calculate the factors, firms need to be aggregated by the North Amer-

ican Industry Classification System (NAICS). However, NAICS is quite a new system and

most of the firms are still identified by the Standard Industrial Classification (SIC). There-

fore, I converted SIC codes to NACIS and then aggregated the firms into two-digit sector

codes4. Figure (3) shows the replicated time series obtained by (36) and (37).

Figure 3: Replication of Concentration and Sparsity in Herskovic (2018)
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4For the direct relationship between SIC and NAICS visit https://www.census.gov/eos/www/naics/concordances/concordances.html
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2.6.2 Kmeans estimation algorithm

The iterative algorithm that solves (42), alternates between two steps:

� Start with the initial values.

� Assignment step: given an initial set of groups, assign each observation to the closest

(Euclidean distance) group assignment (centroid).

� update step: calculate the means of the observations in each group and call them the

new centroids.

� Repeat until convergence (when group assignment stops changing).

Figure 4 sets an example for the iterative algorithm. The left panel demonstrates two-

dimensional random data. After performing the kmeans algorithm for 1000 times, the final

outcome is present in the right panel. Here, the pre-specified group number is 3 and the

center of groups (centroids) are emphasized by a cross for each group (color). The estimation

is done by the built-in MATLAB function, Kmeans.

Figure 4: Example of Using Kmeans to Group the Data
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2.6.3 Complementary Tables and Figures

Table (27) reports the summary statistics of 12-industry portfolios that are used in calculating

the pricing errors. Tables (28), (29), and (30) present the robustness checking for sorted port-

folios, controlling for market, book/market, and size, respectively. Table (32) does robustness

checking to the choice of the window length in the rolling window analysis that was carried

out in the evidence. Figures (5) and (6) at the end of the appendix portray two network graphs

that visualize the recent financial crisis.

Table 27: Summary Statistics of 12 Industry Portfolios

table reports statistics for 12 industry portfolios. The list of industries includes 1. consumer

nondurables, 2. consumer durable, 3. manufacturing, 4. energy, 5. chemicals, 6. business

equipment, 7. telecom, 8. utilities, 9. wholesale and retail, 10. healthcare, 11. finance, and

12. other.

Auto-correlation

Variable Mean S.D. AC(1) AC(2) AC(3) AC(4)

Industry 1 14.71 22.53 -0.155 -0.260 0.289 -0.065

Industry 2 14.07 31.80 -0.221 -0.357 0.199 0.040

Industry 3 15.10 23.52 -0.255 -0.327 0.221 0.035

Industry 4 12.03 39.19 -0.023 -0.256 0.154 0.190

Industry 5 15.34 23.50 -0.279 -0.280 0.318 -0.121

Industry 6 18.63 39.62 -0.310 -0.093 -0.077 0.294

Industry 7 19.02 41.12 -0.307 -0.099 -0.172 0.273

Industry 8 15.18 14.60 -0.256 -0.197 0.277 -0.030

Industry 9 14.57 28.22 -0.193 -0.195 0.096 -0.119

Industry 10 20.93 39.74 -0.262 -0.167 -0.016 0.107

Industry 11 17.04 22.98 0.108 -0.057 0.102 -0.061

Industry 12 13.98 25.91 -0.294 -0.185 0.101 -0.021
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Table 28: Univariate Portfolio Sorting: Controlling for Market

The table reports the results of the univariate sorting by exposure to the sparsity and concen-

tration factors after controlling for market factor. In order to estimate the betas, the following

regression is run: ERi .t/ D �i C �mkti Mkt .t/C �nci NC.t/C �
ns
i NS.t/C �i .t/. To construct

the terciles, excess returns of common stocks are regressed on the factors from t � 14 to t .
The betas are then sorted and portfolios are constructed at t C 1 . Mean displays the average
return for each portfolio. Std. Dev. reports the standard deviation of returns. Size is log of

average market capitalization within portfolio. Book/Market is the average book to market

value ratio. �CAPM and �FF3 demostrate the � of the capital asset pricing and Fama-French

3 factor models, respectively. Pre-formation � indicates the average � of portfolio formation

periods. H-L (high minus low) shows the long-short portfolio strategy. Student t-statistics are

reported in square brackets.

Panel 1

Sorting by Concentration

Tercile H � L
Rank 1 2 3 3 - 1 t-stat

Mean(%) 4.49 3.53 2.57 -1.91 [-5.60]

Std. Dev. 2.94 2.56 2.78 - -

Size 4.61 5.16 5.20 - -

Book/Market 0.73 0.72 0.70

�CAPM 2.25 1.14 0.35 -4.24 [-7.61]

�FF3 2.03 1.00 0.16 -1.89 [-4.97]

Pre-Formation � -0.72 -0.11 0.35 - -

Panel 2

Sorting by Sparsity

Tercile H � L
Rank 1 2 3 3 - 1 t-stat

Mean(%) 3.83 3.48 3.27 -0.56 [-1.27]

Std. Dev. 3.25 2.50 2.56 - -

Size 4.91 5.20 4.93 - -

Book/Market 0.70 0.71 0.70

�CAPM 1.62 1.11 1.01 -2.95 [-4.89]

�FF3 1.33 1.01 0.86 -0.61 [-1.24]

Pre-Formation � -0.07 -0.01 0.03 - -
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Table 29: Univariate Portfolio Sorting: Controlling for Book/Market

The table reports the results for the univariate sorting by exposure to the sparsity and con-

centration factors after controlling for the book/market factor. In order to estimate the betas,

the following regression is run: ERi .t/ D �i C�hmli hml.t/C�nci NC.t/C�
ns
i NS.t/C �i .t/.

To construct the terciles, excess returns of common stocks are regressed on the factors from

t � 14 to t . The betas are then sorted and portfolios are constructed at t C 1 . Mean displays
the average return for each portfolio. Std. Dev. reports the standard deviation of returns. Size

is log of average market capitalization within portfolio. Book/Market is the average book to

market value ratio. �CAPM and �FF3 demostrate the � of the capital asset pricing and Fama-

French 3 factor models, respectively. Pre-formation � indicates the average � of portfolio

formation periods. H-L (high minus low) shows the long-short portfolio strategy. Student

t-statistics are reported in square brackets.

Panel 1

Sorting by Concentration

Tercile H � L
Rank 1 2 3 3 - 1 t-stat

Mean(%) 4.50 3.63 2.46 -2.04 [-5.41]

Std. Dev. 2.82 2.41 3.12 - -

Size 4.58 5.19 5.18 - -

Book/Market 0.71 0.71 0.70

�CAPM 2.27 1.22 0.26 -4.36 [-8.74]

�FF3 2.08 1.13 -0.00 -2.08 -4.63

Pre-Formation � -0.76 -0.12 0.40 - -

Panel 2

Sorting by Sparsity

Tercile H � L
Rank 1 2 3 3 - 1 t-stat

Mean(%) 3.79 3.50 3.31 -0.48 [-1.15]

Std. Dev. 3.35 2.51 2.45 - -

Size 4.92 5.20 4.92 - -

Book/Market 0.74 0.73 0.73

�CAPM 1.62 1.09 1.04 -2.92 [-4.57]

�FF3 1.33 1.02 0.85 -0.47 [-1.07]

Pre-Formation � -0.08 -0.01 0.04 - -
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Table 30: Univariate Portfolio Sorting: Controlling for Size

The table reports the results for the univariate sorting by exposure to the sparsity and concen-

tration factors after controlling for the size factor. In order to estimate the beta, the following

regression is run: ERi .t/ D �i C �smbi smb.t/C �nci NC.t/C �
ns
i NS.t/C �i .t/. To construct

the terciles, excess returns of common stocks are regressed on the factors from t � 14 to t .
The betas are then sorted and portfolios are constructed at t C 1 . Mean displays the average
return for each portfolio. Std. Dev. reports the standard deviation of returns. Size is log of

average market capitalization within portfolio. Book/Market is the average book to market

value ratio. �CAPM and �FF3 demostrate the � of the capital asset pricing and Fama-French

3 factor models respectively. Pre-formation � indicates the average � of portfolio formation

periods. H-L (high minus low) shows the long-short portfolio strategy. Student t-statistics are

reported in square brackets.

Panel 1

Sorting by Concentration

Tercile H � L
Rank 1 2 3 3 - 1 t-stat

Mean(%) 4.50 3.54 2.55 -1.94 [-5.00]

Std. Dev. 2.97 2.55 2.84 - -

Size 4.60 5.19 5.17 - -

Book/Market 0.72 0.71 0.73

�CAPM 2.34 1.17 0.23 -4.46 [-8.63]

�FF3 2.11 1.08 0.01 -2.09 [-4.60]

Pre-Formation � -0.68 -0.07 0.40 - -

Panel 2

Sorting by Sparsity

Tercile H � L
Rank 1 2 3 3 - 1 t-stat

Mean(%) 2.84 1.94 2.32 -0.52 [-2.04]

Std. Dev. 3.22 2.16 2.69 - -

Size 4.97 5.12 4.98 - -

Book/Market 0.72 0.71 0.72

�CAPM 0.70 -0.40 -0.00 -3.05 [-5.83]

�FF3 0.47 -0.53 -0.22 -0.69 [-2.44]

Pre-Formation � -0.07 0.00 0.05 - -
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Table 31: Univariate Portfolio Sorting: Controlling for Forecast Horizon

The table reports the results of long-short portfolio returns for different choices of the forecast

horizon in the estimation of causality tables. The panel shows the average annual returns for

high-minus-low investment strategies for sparsity. �CAPM and �FF3 are the intercepts of

the capital asset pricing and Fama-French 3-factor models. T-values are reported in square

brackets.

Long-Short Portfolios Sorted by Sparsity

hori zon 5 10 15

H � L
-1.24

[-3.83]

-2.19

[-5.10]

-2.07

[-4.31]

�CAPM
-2.76

[-6.66]

-3.80

[-9.63]

-3.61

[-8.41]

�FF3
-1.12

[-3.06]

-2.24

[-4.33]

-2.18

[-3.94]

Table 32: Univariate Portfolio Sorting: Controlling for Window Length

The table reports the results of long-short portfolio returns for different choices of window

length in the rolling window regression used to sort portfolios. Panel 1 and 2 show the av-

erage annual returns for high-minus-low investment strategies for concentration and sparsity,

respectively. �CAPM and �FF3 are the intercepts of the capital asset pricing and Fama-French

3-factor models. T-values are reported in square brackets.

Panel 1: Concentration

Long-Short Portfolios

Window length 16 17 18 19 20

H � L
-2.48

[-8.48]

-2.53

[-8.82]

-2.36

[-7.11]

-2.43

[-6.97]

-1.69

[-5.05]

�CAPM
-4.70

[-9.84]

-4.56

[-11.45]

-4.20

[-11.15]

-4.11

[-10.21]

-3.12

[-7.59]

�FF3
-2.49

[-7.12]

-2.35

[-7.37]

-2.25

[-6.19]

-2.44

[-6.95]

-1.60

[-4.28]

Panel 2: Sparsity

Long-Short Portfolios

Window length 16 17 18 19 20

H � L
-1.11

[-2.23]

-1.26

[-2.49]

-1.02

[-2.07]

-1.08

[-2.17]

-1.27

[-3.72]

�CAPM
-3.37

[-5.78]

-3.33

[-5.69]

-2.98

[-5.30]

-2.86

[-5.93]

-2.87

[-6.64]

�FF3
-1.00

[-1.83]

-1.10

[-1.92]

-0.78

[-1.37]

-0.81

[-1.43]

-1.17

[-3.02]
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Figure 5: Network Graph of 2007

The figure depicts the network graph for the year 2007. The number of groups (G�) is 15.

Each group is identified by an ID. Different sizes in nodes correspond to different market

shares in (48). A thicker edge reveals a higher level of causality from a cluster to another in

the realized volatility network. Groups 1 and 2 appear to have the highest and lowest shares

in the network, respectively.
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Figure 6: Network Graph of 2009

The figure depicts the network graph for the year 2009. The number of groups (G�) is 15.

Each group is identified by an ID. Different sizes in nodes correspond to different market

shares in (9). A thicker edge reveals a higher level causality from a cluster to another in the

realized volatility network.
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CHAPTER III

A NETWORK OF COMMODITY REALIZED VOLATILITIES

3.1 Introduction

Investigating the commodity futures market through the lens of the network theory is rather a

new strand of literature. Commodity futures are a group of assets that have gained popularity

in the 21st century due to the growth in their investment in recent years. Initially, they were

considered as a segmented body of assets from the traditional markets such as the equities,

but since more and more speculators are participating in commodity investing, some theories

establish a close relationship between the commodities and the overall market movements.

The theory of financialization explains the commodity price volatility due to the presence

of speculators that spillover the effects from the equity market to the commodity market.

Investigating the integration of these two markets will potentially contribute to the literature.

Another fairly new field of research is the network-based analysis of the financial markets.

Assets are linked through unobservable linkages and spillover, and a network can help us

uncover such links and explore their pricing implications. Networks are easy to understand

and they can be visualized as graphs to help us better investigate the relationship among

assets. In the commodity futures market, a node can be a single or a group of commodities.

The connections among nodes are features that can, later on, be established based on the

usual phenomena of a financial network such as volatility spillover.

This paper is an attempt to answer two main questions. First, do group patterns and

spillover effects exist among the volatility series of various commodities in the 21st century?

And second, are the factors describing the commodity network priced in the cross-section of

commodity futures returns? Depending on the nature of each commodity, we might or might

not encounter group patterns. In a wide set of commodities, it is logical to observe WTI and
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Brent crude oil to be categorized in a group. But since each market has its fundamentals, we

might surprisingly see a commodity such as sugar to join this group. Uncovering such group

patterns and then investigating their pricing implications is an interesting subject.

Diebold et al. (2017) are closely related to this paper. By the variance decomposition from

vector autoregressive models of commodity volatilities, they document clustering patterns in

19 subindices of the Bloomberg Commodity Price Index. The clustering patterns are evident

in precious metals, grain, livestock, energy, and industrial metals. Softs such as cocoa and

coffee show no sign of clustering, on the contrary. Although their connectedness measure

captures the spillover effect, they do not recover factors that can fully explain the evolution

of the network. Here, I contribute to their work by defining two factors that can formally

explain the behavior of nodes and edges.

The paper also contributes to network-based factor pricing. Commodity network factors

describe the commodity network as a segmented body from other financial markets such as

the equity market. This will allow me to compare the performance of concentration and

sparsity in the commodity network along with factors driven from theories that explain the

price behavior of commodities such as the hedging pressure and the basis. Along the same

lines as Herskovic (2018), I will investigate the pricing powers of the factors.

The rest of the paper is set out as follows: Section 2 reviews the data-set and obtains the

desired realized volatility series. Section 3 presents the network factors and examines them

in graphs. In section 4, asset pricing implications are investigated. And finally, section 5

concludes.

3.2 Commodity Data

I consider 25 commodities whose data are available from January 2000 onwards in Bloomberg.

Out of 25, 16 commodities are included in the sub-indices of the Bloomberg Commodity

Price Index. Commodities are classified into five categories: energy, grains and oilseeds,

livestock, metals, and softs. Table (33) presents an upshot of different futures contracts along

with their exchange, ticker, delivery months, and unit.
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Table 33: Commodity Futures Contracts

Category Commodity Exchange Ticker Delivery Months Unit

Energy Brent crude oil ICE CO 1:12 1,000 barrels

Gasoil ICE QS 1:12 100 tonnes

Heating oil NYMEX HO 1:12 1,000 barrels

Natural gas NYMEX NG 1:!2 10,000 mmbtu

WTI crude oil NYMEX CL 1:12 1,000 barrels

Grains Corn CBOT C 3,5,7,9,12 5,000 bushels

& Oilseeds Soybeans CBOT S 1,3,5,7,8,9,11 5000 bushels

Wheat CBOT W 3,5,7,9,12 5,000 bushels

Livestock Feeder cattle CME FC 1,3,4,5,8,9,10,11 40,000 lbs

Lean hogs CME LH 2,4,6,7,8,10,12 40,000 lbs

Live cattle CME LC 2,4,6,8,10,12 40,000 lbs

Metals Aluminium LME LA 1:12 25 metric tons

Copper LME LP 1:12 25,000 lbs

Gold COMEX GC 2,4,6,8,10,12 100 troy oz.

Lead LME LL 1:12 25 metric tons

Nickel LME LN 1:12 6 metric tons

Platinum COMEX PL 1,4,7,10 50 troy oz

Silver COMEX SI 1,3,5,7,9,12 5000 troy oz.

Tin LME LT 1:12 5 metric tons

Zinc LME LX 1:12 25 metric tons

Softs Cocoa ICE CC 3,5,7,9,12 10 metric tons

Coffee ICE KC 3,5,7,9,12 37,500 lbs

Cotton ICE CT 3,5,7,10,12 50,000 lbs

Lumber CME LB 1,3,5,7,9,11 1000 board feet

Sugar ICE SB 3,5,7,10 112,000 lbs

Following Diebold et al. (2017), I use the ranged-based volatility of Garman and Klass

(1980). The ranged-based volatility is widely available and easy to calculate. The realized

variance,b� 2, is defined as:

b� 2i .t/ D 0.511.Hi .t/� L i .t//
2 � 0.019[.Ci .t/� Oi .t//.Hi .t/C Li.t/� 2Oi .t//

�2.Hi .t/� Oi .t//.L i .t/� Oi .t//]� 0.383.Ci .t/� Oi .t//
2 (78)

where Hi .t/, L i .t/, Ci .t/, and Oi .t/ are log of high, low, closing, and opening prices
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for commodity i at time t , respectively. Figure (7) plots the daily realized volatilities.The

time-domain starts in 2000 and ends in 2017. One important feature which is evident in the

plots is the autocorrelation in the time series. To take care of that, I take the first difference

for all commodities before using them as inputs for the network design.
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3.3 Commodity Network

As was discussed earlier, to design a network, the sets of nodes and edges should be present.

Here, the desired network is perceived as the volatility spillover among clusters of commodi-

ties. So the first step is recovering clustering behavior in the market, if such patterns exist.

Kmeans algorithm of Forgy (1965) and Steinly (2006) is a good candidate to group the real-

ized volatilities. The key question in any clustering algorithm is the number of clusters. To

avoid any pre-specification of the network, I use a Bayesian Information Criterion (BIC) to

obtain the optimal number of groups (G�) for each period. G� defines the number of nodes

in the network and also captures the clustering patterns among commodities. By using the

notations in Manresa and Bonhomme (2015), the following BIC will produce the optimal

number of nodes:

I .G/ D
1

NT

NX
iD1

TX
tD1

.Vi .t/�bcg.t//2 CGPNT (79)

I denotes the information criterion and PNT is a penalty term. Vi .t/ is the volatility

series of commodity i and ĉg.t/ are the estimated centroids. The optimal number of groups

minimizes the below objective function:

G� D argmin
G2f1,...,Gmaxg

I .G/ (80)

where Gmax is the maximum choice of G and is set by the researcher. The information

criterion is in the form of a BIC and it has the following expression:

BIC.G/ D
1

NT

NX
iD1

TX
tD1

.Vi .t/�bcg.t//2 Cb� 2GT C N
NT

ln.NT / (81)

whereb� 2 is the consistent estimator of the variance of ui and it is given by:
b� 2 D 1

NT �GmaxT � N

NX
iD1

TX
tD1

.Vi .t/�bcg.t//2 (82)

The group assignment that yields the minimum value of BIC corresponds to the optimal
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value of grouping, namely G�. Once G� is established, the concentration time-series is de-

scribed as the negative entropy of the nodes’ shares. Thus, in the same spirit as Herskovic

(2018), I define the commodity futures network concentration factor as the following:

NCComi .t/ D
G�X
jD1

� j .t/ log � j .t/ (83)

where

� j .t/ D
Si ze j
G�P
iD1
Si zei

(84)

And Si ze j is the
KP
kD1
.Open Interest/k � .Last Pr ice/k for K commodities. Similar to

the concentration factor for realized volatility network in the equity market, size captures the

size of each node of the network in terms of market capitalization.

When the nodes are established, linkages among them are needed to complete the net-

work. I utilize the multiple horizon causality measure of Dufour and Taamouti (2010) to

capture the spillover effects. The estimator of the causality measure from V2.t/ to V1.t/ is:

dGCh.V2! V1jI / D ln[
detf[J0e60.h/J 00]g
detf[J1b6k.h/J 01]g ] (85)

with J1 D [Im10 0] and J0 D [Im1 0].e60.h/ and b6k.h/ are variance matrices of fore-
cast errors in restricted and unrestricted models. Once the measures are estimated, they are

transformed into weighted measures as !hi j .t/ D
dGChi j .t/
1CdGChi j .t/ and therefore:266664

!h11.t/ � � � !h1G.t/

...
. . .

...

!hG1.t/ � � � !hG�G�.t/

377775 (86)

To estimate the vector autoregressive models I use daily panels of data for three months.

This will produce quarterly factors.
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As mentioned earlier, the sparsity factor reveals the evolution of edges, so the factor

needs to be obtained by the causality table. Similar to Herskovic (2018), the sparsity factor

is specified as the following:

NSComi .t/ D
G�X
iD1

� j .t/
G�X
jD1

!i j .t/ log!i j .t/ (87)

Figure (8) depicts the time series of concentration and sparsity. In panel (1) there seems

to be an upward trend in concentration starting from 2005. For sparsity, the plot shows

stationarity. However, the two series are seemingly correlated. Table (34) shows a significant

correlation of 0.28 between the factors in level. Therefore to explore the pricing implications

of concentration and sparsity, I consider the innovations in both series in the next section.

Table 34: Summary Statistics and Network Factors

Panel 1 is a summary statistics of concentration and sparsity. Autocorrelations in lag p and

their p-values of Ljung-Box Q-test are reported in front of AC(p) for p=1,2,3, and 4. The null

hypothesis is no autocorrelation. Panel 2 shows the correlation coefficients and their p-values

in parentheses for network factors.

Panel 1

Summary Statistics of Network Factors

NC NS

Level p� value Level p� value
Mean -0.73 - -0.53 -

S.D. 0.36 - 0.20 -

AC.1/ 0.20 0.08 0.12 0.26

AC.2/ 0.18 0.06 -0.01 0.53

AC.3/ 0.18 0.03 -0.02 0.72

Panel 2

Network Factors Correlation

NC

NS
0.28

(0.01)
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Figure 8: Concentration and Sparsity for the Commodity Network

The figure shows the time series of concentration and sparsity for the commodity networks.

Panel 1 and 2 are obtained by calculating (83), and (87) respectively. The time-domain starts

in January 2000 and ends in December 2017. The frequency is quarterly. For concentration

Gmax is 10, for sparsity V AR is of order 1. The first horizon is chosen to obtain the forecast

errors.
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3.3.1 Network Graph

Figure (9) presents three network graphs representing the beginning, the middle, and the

end of the series. (A) depicts the network for the first quarter of 2000, (B) portrays the

first quarter of 2008, and (C) graphs the last quarter of 2017. As is evident in the figure,

the number of groups drops from 7 in (A) to 5 in (B) and (C), emphasizing the fact that

concentration is slightly rising. This is an indication that commodities are moving in larger

and more dominant groups. The edges connecting the nodes are showing more thickness in

recent years compared to the beginning of the period. Figure (9) also reveals considerable

clustering patterns among commodities in all three sub-sample network graphs.
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3.4 Pricing Factors in Commodity Futures Network

3.4.1 Returns in Commodity Futures

The first step in generating the commodity futures return data is creating the time series of

quarterly futures prices. The second is step is calculating the percentage change of those

prices.

Similar to de Roon and Szymanowska (2010), Gorton et al. (2012), and Sakkas and

Tessaromatis (2018), I assume that the holder of the futures contract holds the first nearest-to-

maturity contract until the beginning of the delivery month1. Since the holder of the contract

has no interest in receiving the commodity, he rolls over to the second nearest-to-maturity

contract. This pattern continues until I reach the last quarter of the time frame. The quarterly

futures prices are considered from the first quarter of 2000 to the last quarter of 2017, a total

of 72 observations per commodity. Table (39) in the appendix presents the summary statistics

of the return data.

3.4.2 Equity-Based Factors

Based on the law of one price and market integration, a factor that is successful in explaining

the cross-section of assets in the equity market should also be useful in pricing commodities in

the futures market. The market factor as the average return on all firms in AMEX, NASDAQ,

and NYSE is the first candidate. To move beyond the capital asset pricing models, I include

the three-factor model of Fama and French (1993). In this mode, portfolio returns sorted on

size and book-to-market are added to the market factor.

Regarding the network-based factors, the list includes the concentration and sparsity fac-

tors of Herskovic (2018). Concentration is the weighted average of output shares of economic

sectors, whereas sparsity is the weighted average of input-output linkages among them. To

expand upon Herskovic factors, I add concentration and sparsity presented in the second es-

say. There, the network reveals the volatility spillover among grouped firms that have similar

1Excluding the last trading price.
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volatility patterns.

3.4.3 Commodity-Based Factors

To investigate the pricing powers of my proposed factors, I follow the approach in Daskalaki

et al. (2014), by considering a wider set of factors and categorizing them into equity-based

and commodity-based factors. Table (35) introduces the factors and their corresponding def-

initions. Based on the law of one price, any factor that is successful in explaining the cross-

section of equity returns should have explanatory powers in commodity returns, given market

integration between commodities and equities. To look into this, I consider the market, size,

and book/market of Fama and French (1993). To include network-based factors, I add con-

centration and sparsity in Herskovic (2018), and the concentration and sparsity of the realized

volatility network in the second essay to the existing factors.

Concerning the commodity-based factors, two key theories explain the price of commod-

ity futures. The first is the theory of hedging pressure that was developed by Keynes (1930)

and Cootner (1960). It states that if the demand for short hedging against risk exceeds the

long position, then the long position should be compensated with a risk premium. To mea-

sure the hedging pressure, Roon et al. (2000), Szymanowska et al. (2013), Daskalaki et al.

(2014), present the following measure:

HPi .t/ D
number of short hedge posi tionsi .t/� number of long hedge posi tionsi .t/

total number of hedge posi tionsi .t/

(88)

To find the number of hedging positions, I consider non-commercial positions for each

commodity. These traders are the ones that hedge against the risk and are not considered

as speculators in the market. The data is available for free in Commodity Futures Trading

Commission.

The second is the theory of storage which highlights the role of inventories. The theory of

storage, developed by Working (1933) and Kaldor (1939), introduces the convenience yield
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as the benefit of keeping inventories. Thus, the storage costs and the convenience yield can

help explain the futures price. Since the data for inventory is hard to obtain, the following

measure is presented in Daskalaki et al. (2014) as an approximation to measure the basis for

commodity i :

Basisi .t/ D
Fi1.t/� Fi2.t/

Fi1.t/
(89)

where Fi1.t/ and Fi2.t/ indicate the futures prices of the nearest and the next nearest-to-

maturity contracts, respectively.
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Table (36) presents the average return for portfolios sorted on commodity-based factors.

To construct the hedging pressure portfolios, at every period t , I separate the commodities

with negative HP from the ones with positive HP. Then, at t C 1, I consider the strategy that

goes (long) the commodities with positive (negative) HP. In a similar approach, to create

basis portfolios, at every period t , commodities with a positive basis are separated from the

ones with a negative basis. Then at t C 1, long-minus-short portfolios are created in the same

manner. Concerning the commodity network factors, the approach is different. First, I regress

the time series of commodity futures returns on both concentration and sparsity factor in the

following regression:

ri .t/ D �3i C �
NC
i 1NCCom.t/C �NSi 1NSCom.t/C �i .t/ (90)

In a rolling window regression of length 20, I regress the commodity futures return series

on the network concentration and sparsity from t � 20 to t , and then I sort them from low to

high factor for each factor. Consequently, I create tercile portfolios in t C 1. HmLNCCom and

HmLNSCom reveal the average return of the strategy of going long the high network factor-

beta and short the low factor-beta.

As the results indicate, none of the long-short strategies are significant for my data-set.

The spreads for HP, basis, and concentration factors are positive, whereas sparsity demon-

strates a negative price of risk. As robustness checks, I control for the window length and

forecast horizon (h) in the causality matrix. The results are presented in the appendix.

To explore the factors further, Fama and Macbeth (1973) two-stage regression is used

to estimate the risk premia. Table (37) demonstrates the estimated lambdas and their corre-

sponding t-statistics. The table is divided into two parts of equity-based models and commodity-

based models. Concerning the equity-based models, some factors including the market, size,

concentration and sparsity in Herskovic (2018), and sparsity of realized volatility appear

with the correct signs. However, risk premia are not statistically significant. The commodity-

based models are incapable of explaining the cross-section of commodity futures returns as
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Table 36: Sorting Portfolios

The table shows the average returns on long-minus-short investment strategies for

commodity-based factors. The returns are annualized. T-statistics are reported in square

brackets.

Portfolios Sorted by Commodity-Based Factors

Average Return Standard Deviation

Hedging Pressure

High HP Portfolio 9.24% 41.79%

Low HP Portfolio 7.01% 34.60%

HmLHP 2.12% 28.46%

t-stat [0.64]

Basis

High basis portfolio 9.43% 33.32%

Low basis portfolio 7.72% 43.26%

HmLbasis 1.61% 30.39%

t-stat [0.52]

Concentration (NCCom/

High concentration portfolio 9.10% 50.77%

Medium concentration portfolio 7.65% 40.17%

Low concentration portfolio 4.83% 41.48%

HmLNCCom 4.27% 33.01%

t-stat [0.97]

Sparsity (NSCom/

High sparsity portfolio 9.33% 42.03%

Medium sparsity portfolio 6.85% 45.29%

Low sparsity portfolio 5.29% 44.95%

HmLNSCom -4.04% 34.20%

t-stat [-0.88]

well. The signs are in line with my findings in sorted portfolios for the basis and commodity

volatility network factors of concentration and sparsity.

The insignificant prices of risk for various factor models confirm the results in Daskalaki

et al. (2014) for a different period. They also indicate that the commodity market is a seg-

mented market from the equities. Commodity prices are driven by market fundamentals that

are exclusive to each commodity. Therefore, the traditional market and network factors are

not able to capture them. To explore the heterogeneous nature of commodities further, I

perform time series regression and obtain individual betas for each commodity. Table (38)
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reports the results. As it is evident from the table, equity factors perform poorly in general

and commodities respond differently to various factors. In commodity-based factors, the out-

comes are relatively more significant. Commodities are most responsive to hedging pressure

but some betas are not significant even within each commodity group. Overall, table (38)

confirms the results in Daskalaki et al. (2014). However, commodities seem to be more

heterogeneous in the 21st century compared to the period considered in their research.
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Table 37: Estimating Price of Risk

The table reports the estimation results of risk premia, using the two-stage regression of Fama

and Macbeth (1973). T-statistics are reported in square brackets. Model (1) to (4) refer to the

equity-based factors. Models (5) to (7) incorporate the commodity-based factors.

Equity_Based Models Commodity-Based Models

(1) (2) (3) (4) (5) (6) (7)

Constant
0.0194

[2.08]

0.0186

[2.10]

-0.0066

[-0.30]

-0.0010

[-0.04]

0.0192

[2.22]

0.0201

[2.41]

0.0030

[0.12]

Mkt
0.1585

[0.19]

0.2156

[0.21]

Size
0.2541

[0.26]

Book/Market
-0.2503

[-0.36]

HNC
-0.0019

[-0.25]

HNS
0.0048

[0.65]

NC
0.0001

[0.01]

NS
-0.0073

[-0.76]

HP
-0.0058

[-0.55]

Basis
0.0014

[0.06]

NCCom
0.0218

[0.43]

NSCom
-0.0362

[-1.06]

R2 0.01 0.08 0.10 0.06 0.24 0.00 0.07
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3.5 Concluding Remarks

This paper uncovers clustering behavior in the commodity futures market. In the first part, a

network of realized volatility is defined with two factors that represent the evolution of edges

and nodes, namely concentration and sparsity. In the second part, the asset pricing implica-

tions of a wide set of factors are explored. Generally, factors fit into two groups known as

equity-based and commodity-based factors. In sorting portfolios, none of the commodity-

based factors generate significant high-minus-low investment strategies for the period of the

study. Upon further examination, risk premia are not significant. However, they are in ac-

cord with positive or negative high-minus-low spreads. By performing individual time-series

regressions, the heterogeneous nature of each commodity is established. The fact that may

explain the unsuccessful pricing factors in this particular market.

3.6 Appendix

Table (39) presents the annualized average returns for each commodity. Table (40) and (41)

demonstrate the robustness analysis of the high-minus-low investment strategies, controlling

for the window length and forecast horizon, respectively.
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Table 39: Summary Statistics of Futures’ Returns

The table reports annualized average returns for the commodity futures market. Due to the

unavailability of the data, lead and silver are removed from the list.

Category Commodity Ticker Return

Energy Brent crude oil CO 11.42%

Gasoil QS 11.27%

Heating oil HO 11.40%

Natural gas NG 14.23%

WTI crude oil CL 10.27%

Grains Corn C 7.32%

& Oilseeds Soybeans S 8.75%

Wheat W 6.77%

Livestock Feeder cattle FC 4.95%

Lean hogs LH 6.42%

Live cattle LC 4.65%

Metals Aluminium LA 3.49%

Copper LP 12.69%

Gold GC 9.57%

Nickel LN 8.71%

Platinum PL 5.75%

Tin LT 11.46%

Zinc LX 9.46%

Softs Cocoa CC -7.76%

Coffee KC -3.39%

Cotton CT 6.74%

Lumber LB 6.94%

Sugar SB 11.57%
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Table 40: Sorting Portfolios: Controlling for Window Length

The table reports the high-minus-low annualized returns for different choices of the window

length.

Portfolios Sorted by Network-Based Factors

Panel 1: Concentration (NCCom/

Window Length HmLNCCom t � stat
25 2.07% [0.44]

35 0.69% [0.14]

45 -1.49% [-0.27]

Panel 2: Sparsity (NSCom/

Window Length HmLNSCom t � stat
25 -3.59% [-0.81]

35 -3.10% [-0.63]

45 -1.17% [-0.25]

Table 41: Sorting Portfolios: Controlling for Forecast Horizon

The table reports the high-minus-low annualized returns for portfolios sorted on sparsity con-

trolling for the forecast horizon h in the causality table in (86).

Portfolios Sorted by Sparsity

Forecast Horizon (h) HmLNSCom t � stat
5 -6.20% [-1.2]

10 -9.57% [-1.89]

15 -3.39% [-0.58]
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