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ABSTRACT 

Effects of Connections Detailing and Friction Dissipation Devices on the Seismic Response of a 

Hospital Steel Braced Frame Building 

Masaaki Ohira 
 
Hospitals are post-disaster buildings designed to withstand seismic forces that are amplified with 

an importance factor of IE= 1.5. Their seismic force-resisting system (SFRS) should be designed 

with Rd> 2.0, while the interstorey drift at each floor is limited to 1.0%hs. Herein, Rd is the 

ductility-related force modification factor and hs is the storey height. Although the non-structural 

components and the hospital contents are not part of this research, they constitute a larger loss in 

the event of an earthquake. As such, both interstorey drifts and floor accelerations should be 

within the required limits. 

Concentrically braced frames (CBFs) are frequently employed as earthquake-resistant systems 

due to their high stiffness and moderate ductility. However, this system has shown several 

drawbacks such as the concentration of damage within a floor and high floor accelerations, 

which may be critical for acceleration-sensitive non-structural components. Recent experimental 

studies revealed that even moderately ductile concentrically braced frames (MD-CBF) may 

undergo unintended failure modes due to the limited deformation capacity of brace-to-frame 

connections. To overcome this drawback, it is proposed to provide an 8tg elliptical clearance 

band in the brace-to-frame gusset plate instead of a linear 2tg clearance, which is recommended 

by the code. Herein, tg is the thickness of the gusset plate. The results pointed out that gusset 

plates with 8tg elliptical clearance require less thickness than that with 2tg linear clearance and 

provide larger rotation capacity. In consequence, the ductility of MD-CBF with brace-to-frame 

gusset plates detailed with 8tg elliptical clearance is improved. Furthermore, in order to mitigate 

the floor acceleration, braces of CBFs can be replaced with sliding friction braces (SF), where 

each SF brace is made of a friction damper installed in-line with an HSS brace. The proposed 

sliding friction braced frame (SF-BF) system behaves elastically as a traditional CBF before 

friction devices are activated and experience nonlinear response after that. Thus, in the case of 

SF-BF system, the input energy is dissipated by friction devices and all adjacent members such 

as braces, connections, beams, and columns of the CBF system are designed to remain in the 

elastic range. It is noted that SF-BF systems are prone to residual interstorey drift, which can be 
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mitigated by: (i) using braced frame’s columns continuous over all floors or (ii) adding back-up 

moment-resisting frames designed to provide the elastic frame action. The main objective of this 

thesis was three folds:  (i) to investigate the inelastic behaviour of MD-CBF systems with 8tg 

elliptical clearance gusset plate versus 2tg linear clearance band; (ii) to develop an accurate 

numerical model for braces equipped with friction dampers using the OpenSees software and 

(iii) to examine the seismic response of SF-BF systems. 

To carry out this research, a detailed model of a 4-storey hospital located in Victoria, BC on Site 

Class C was developed in OpenSees and subjected to 10 historical ground motions for nonlinear 

time-history analysis. In this manner, a model replicating the MD-CBF with 2tg linear clearance 

band gusset plates for brace-to-frame connections and a model replicating the MD-CBF with 8tg 

elliptical clearance band for brace-to-frame gusset plate detail were developed and the nonlinear 

time-history responses expressed in terms of interstorey drift, residual interstorey drift and floor 

acceleration were compared. A force-based design method was applied to design the SF-BF 

system. By optimizing the slip length and slip force in the damper, the slip-lock phase exhibited 

due to the bearing of the pretensioned bolts can be postponed while maintaining the drift below 

the code limits. Dynamic instability may become an issue when dampers with large slip lengths 

are installed.  

From this research it was found that small difference was observed in the response of MD-CBFs 

when brace-to-frame gusset plates with 8tg elliptical clearance was selected instead of 2tg linear 

band detail. When the SF-BF system was designed using the force based design method, the HSS 

brace was proportioned such that the compression resistance of brace to be equal or greater than 

130% slip force. Then, capacity design was employed to design the beams and columns of 

braced frames. An OpenSees model was developed to simulate the behaviour of Pall friction 

damper and brace assembly. From nonlinear dynamic analysis, it was found that large residual 

interstorey drift was observed when columns of braced frame were continuous over two storeys, 

although the interstorey drift is within the code limit, which is 1.0%hs for a hospital building. To 

mitigate the residual drift, continuous columns over the building height were considered. 

However, it was concluded that SF-BFs are not recommended for hospitals located in high risk 

seismic zones unless back-up moment-resisting frames designed for 25% base shear are 

provided. 
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Chapter 1  

INTRODUCTION 

 

1.1 General / Background 

Natural disasters are often unpredictable and vulnerable cities are at risk. In high seismic zones, 

earthquakes may cause severe damages to the building stock. When disaster strikes, repairing the 

infrastructure lifeline network is the key to restoring the social organization of communities 

(World Bank, 2008). Meanwhile, communities need to be prepared for such disasters and all 

leadership entities (municipal, provincial, federal) should assure the safety and security of the 

public by maintaining its public facilities operational throughout the event and its aftermath. All 

building structures of normal importance category, designed according to the modern codes and 

standards, are expected to withstand seismic loading while undergoing moderate to severe 

damage. However, hospital buildings, categorized as post-disaster importance category, should 

exhibit light damage and remain functional (e.g. non-structural components such as cladding, 

partition walls, ceilings should exhibit no to light damage and plumbing, electrical, heating 

system, elevators, etc. should remain operational). 

In regions where earthquakes of higher than expected magnitudes may occur, there is a need to 

investigate the behaviour of existing post-disaster buildings to identify if the seismic details are 

adequate. Buildings in British Columbia (BC) are subjected to crustal earthquakes and to 

subduction earthquakes caused by the Cascadia subduction fault. 

In North America, the steel concentrically braced frame (CBF) is a very popular structural 

system due to its high stiffness, moderate ductility, and ease to construct. However, past studies 

(Tremblay, 2001, Kotulka, 2007) have revealed the sensitivity of brace-to-frame connections 

during the braces inelastic response, when these yield in tension and buckle in compression. 

Recently, analytical and experimental studies on brace-to-frame gusset plate connections showed 

that current design requirements may lead to stiffer and stronger gusset plates, which possess 

limited deformation capacity, and in turn, may drive the CBF system to premature failure. Thus, 
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the yielding mechanisms and the failure hierarchy of the system’s components are strongly 

linked to one another and need to be considered simultaneously (Roeder et al., 2011 and 2013). 

Accordingly, the fracture of braces caused by low-cycle fatigue should be the primary failure 

mechanism and their gusset plate failure to be the second. Meanwhile, the brace-gusset plate 

system should be detailed to allow the out-of-plane deflection of braces under earthquake 

shaking. To assure the collapse prevention performance of CBFs, changes in the gusset plate 

geometry that allow braces to fail at larger interstorey drift are recommended. To overcome this 

drawback, researchers proposed to modify the clearance geometry of brace-to-frame gusset plate 

connection considering that a smaller and thinner gusset plate increases the ductility of HSS 

braces. Hence, a gusset plate with 8tg elliptical clearance band was proposed instead of the 2tg 

linear band recommended by the current standard, where tg is the thickness of the gusset plate. 

Allowing gusset plates to yield, the performance of CBF braces improves. To provide adequate 

brace-to-frame gusset plate connections, the CSA/S16 standard requires that these connections to 

respond in the elastic range when sustaining forces resulted from the probable tensile and 

probable buckling strength of brace members. 

Appling a ductile seismic design procedure and capacity design method according to the current 

code and standard, the energy dissipated through brace yielding and buckling is exhibited, while 

the adjacent CBF members respond in the elastic range. It is known that HSS braces buckle out-

of-plane and the attached gusset must possess larger tensile and compression strength than that of 

the brace members. In order to allow HSS braces to bend out-of-plane, the standard provisions 

complying with gusset plate design detail with a 2tg linear clearance model is applied. Brace 

fracture at its mid-span length is the desired failure mechanism occurring after plastic hinges are 

developed in the 2tg area of gusset plates. Thus, the thickness of the gusset plate and its geometry 

strongly influence the brace yielding mechanism.  

Several researchers have conducted experimental tests to emphasize on the behaviour of brace-

to-frame gusset plate connections (Whitmore, 1952, Astaneh-Asl, 1998). However, these tests 

were conducted without considering the complete frame action and the brace deformation 

demand when they experienced yielding in tension and buckling/ post-buckling in compression. 

Hence, in practice, it was shown that the linear clearance models have limited inelastic cyclic 

deformation, which resulted in fewer numbers of cycles triggered by braces’ response. 
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As the number of components assembled in shop keeps increasing, special attention should be 

given to connections of a brace member with attached Passive Energy Dissipating Device 

(PEDD). Among the PEDDs, friction dampers rely on friction between specially coated plates to 

dissipate the input energy. These devices are usually installed in-line with braces. However, the 

current design proceedings do not provide design guidelines for braces equipped with friction 

dampers. 

 

1.2 Objectives and Scope 

The aim of this research project is three-fold: 

 To investigate the nonlinear behaviour of multi-storey hospital building braced with 

moderately ductile concentrically braced frame system (CBF) with braces to frame gusset 

plate connections detailed with 8tg elliptical clearance band against the 2tg linear 

clearance. 

 To develop an accurate numerical model for braces equipped with friction dampers using 

the OpenSees software. 

 To refine the design method for multi-storey braced frame building equipped with 

friction dampers installed in-line with diagonal braces (FS-BF) and to identify the 

potential failure mode. 

Through this analytical research, the overall understanding of nonlinear behaviour of CBFs with 

different seismic detailing and CBFs equipped with friction dampers employed in multi-storey 

post-disaster buildings is improved. The outcomes of this research can be used for design 

regulations and as input for further experimental tests.  

 

1.3 Description of methodology 

For attaining the aforementioned objectives, the following steps were carried out: 
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 Results from analytical and experimental tests were selected to design brace to frame 

gusset plate connections detailed with 8tg elliptical clearance versus 2tg linear clearance band 

subjected to monotonic and cyclic loadings. Based on these results, an analytical brace model 

was developed in OpenSees to study the influence of time-history loading on braces response. 

All selected braces are tubular, compact cross-sections, HSS, belonging to Class 1. 

 To bring refinement in the design of multi-storey CBF equipped with friction-sliding 

braces (FS-BF). Data from experimental tests was analysed and a numerical model was 

proposed. 

 To improve the overall understanding of the multi-storey moderately ductile CBF (MD-

CBF) system equipped with advanced brace-to-frame connection detailing and that of the FS-BF 

system. A case study consisted of a 4-storey hospital building located on Site Class C (firm soil) 

in Victoria, British Columbia, was considered. Suitable ground motions were selected and scaled 

to match the design spectrum for Victoria according to NBCC 2010.  The OpenSees models were 

developed for the 4-storey hospital building equipped with braced frames with three different 

seismic detailing: (i) MD-CBF with brace-to-frame gusset plate connections detailed with 2tg, 

(ii) MD-CBF with brace-to-frame gusset plate connections detailed with 8tg elliptical clearance, 

and (iii) friction sliding braces for the FS-BF system. The obtained results are discussed in terms 

of interstorey drift, residual interstorey drift and floor acceleration. 

 

1.4 Thesis organization 

This thesis is organised in six chapters. The first chapter contains a brief introduction, the scope 

and thesis objectives, the methodology as well as the thesis organization. The second chapter 

summarises the literature review related to past studies presenting design principles and 

behavioural characteristics of concentrically braced frame systems with 2tg linear clearance, 8tg 

elliptical clearance and friction damper devices. Chapter 3 is related to brace-to-frame gusset 

plate connections design and guidelines. Experimental tests conducted on gusset plate detailed 

with 2tg linear clearance and 8tg elliptical clearance from the literature are investigated in order 

to calibrate the OpenSees model and replicate the behaviour of these connections. Using an 

existing full-scale experimental test conducted on an HSS brace equipped with Pall friction 
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damper, the OpenSees model was calibrated. The behaviour stages of a friction damper such as: 

slip-stick, sliding and bearing are discussed. In Chapter 4, a case study of a 4-storey hospital 

building located in Victoria, B.C is presented. The seismic force resisting system of the 4-storey 

building consists of MD-CBFs equipped with brace-to-frame gusset plate connections detailed 

with both clearance bands. Similarly, in Chapter 5, the nonlinear behaviour of the same 4-storey 

hospital building braced with the FS-BF system is investigated. Conclusions and 

recommendations for the future work are presented in Chapter 6. 
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Chapter 2  

LITERATURE REVIEW 

 

Seismic design provisions are considered in order to assure the safety of inhabitants and protect 

the value of their properties and their contents. This section contains existing guidelines related 

to the seismic design of post-disaster buildings. A brief summary of relevant past experiments 

focusing on the effect of brace-to-frame connection in CBF systems is also presented. Then, a 

literature review on passive energy dissipation devices, known as Pall friction dampers, is 

conducted. 

 

2.1 Importance Categories for Buildings 

2.1.1 Importance Category and the Limit States Design according to NBCC 2010 

The National Building Code of Canada 2010 (NBCC) sets out technical provisions for the design 

and construction of new structures. For the purpose of computing all loads, an Importance 

Category must be assigned to buildings based on its use and occupancy as provided in Table 2.1. 

Thus, to provide an adequate safety level, schools, community centres, hospitals, power plants, 

emergency response facilities and other buildings containing hazardous materials are designed 

using increased importance factors, which determine how much the environmental loads for that 

structures need to be increased from a base reference design load. The snow, wind, and 

earthquake loads are known as environmental loads. Table 2.2 summarizes different importance 

factors used to scale up or down the environmental loads in function of the building’s importance 

category. The importance factors for snow loads, Is, wind loads, Iw, and earthquake loads IE are 

different for ultimate limit state design (ULS) and for the serviceability limit state design (SLS). 
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Table 2.1 Importance Categories for buildings according to NBCC 2010 
 

 

 

Table 2.2 Importance factors Is, Iw and IE corresponding to building importance category (NBCC 
2010) 

 

 

According to NBCC 2010, the ULS is concerned about safety and verifies that the load-carrying 

capacity of the system is not exceeded. The SLS may limit the intended use and occupancy of the 

buildings due to deflection limits, vibration, permanent deformation (e.g. residual interstorey 

drift) and local structural damage. According to Clause 4.1.3.5 of NBCC 2010, the intended use 

Importance Earthquake, IE

Category ULS SLS ULS SLS ULS
Low 0.8 0.9 0.8 0.75 0.8

Normal 1 0.9 1 0.75 1
High 1.15 0.9 1.15 0.75 1.3

Post-disaster 1.25 0.9 1.25 0.75 1.5

Snow, IS Wind, Iw

Importance
Category

    • low human-occupancy buildings, where it can be shown that collapse is not likely to cause injury
      or other serious consequences
    • minor storage buildings

Normal 

    • as an elementary, middle or secondary school
    • as a community centre
 Manufacturing and storage facilities containing toxic, explosive or other hazardous substances in 
 sufficient quatities to be dangerous to the public if released

 disaster, and include:
    • hospitals, emergency treatment facilities and blood banks
    • telephone exchanges
    • power generating station and electrical substations
    • control centres for air, land and marine transportation
    • public water treatment and storage facilities, and pumping stations
    • sewage treatment facilities and buildings having critical national defence functions 
    • buildings of the following types, unless exempted from this designation by the authority:
           • emergency response facilities
           • fire, rescue and police stations, and housing for vehicles used for such purposes
           • communications facilities, including radio and television stations 

Low 

High

Post-disaster

Use and Occupancy

 Buildings that are likely to be used as post-disaster shelters, including buildings whose primary use is:

 Buildings that represent a low direct or indirect hazard to human life in the event of failure, including:

 Post-disaster buildings are buildings that are essential to the provision of services in the event of a

 All buildings except those listed in Importance Caterories Low, High and Post-disaster
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of a building and the amount of damage that non-structural and structural members can withstand 

should be taken into consideration when proportioning structural members to avoid serviceability 

problems related to deflection. Thus, the building’s lateral deflection under wind load and 

earthquake load must be verified to be within the code limits with respect to the building’s 

importance category. 

 

2.1.2 Snow Load and Wind Load Calculation According to NBCC 2010 

According to Clause 4.1.6 of NBCC 2010, the specified snow load, S, due to snow and 

associated rain accumulation is calculated with Equation (2.1), where Is is the importance factor 

for snow load, Ss is the 1-in-50 year ground snow load, Cb is the basic roof snow load factor, Cw 

is the wind exposure factor, Cs is the slope factor, Ca is the shape factor and Sr is the 1-in-50 year 

associated rain load.  

𝑆 = 𝐼 [𝑆 (𝐶 𝐶 𝐶 𝐶 ) + 𝑆 ]     (2.1) 

 

According to Clause 4.1.7 of NBCC 2010, the static procedure for wind load calculation is 

applied to buildings that are lower than 60m in height with a natural frequency greater than 1 Hz. 

In this light, the specified external pressure and suction, p, due to the wind is calculated using 

Eq.(2.2). 

 

𝑝 = 𝐼 𝑞𝐶 𝐶 𝐶      (2.2) 

 

Herein, Iw is the importance factor for wind load, q is the reference velocity pressure, while Ce, 

Cg, and Cp are the exposure, gust effect, and pressure coefficient factor, respectively. Buildings 

that are taller than 60m, with the height-to-width ratios higher than 4 or with a natural frequency 

lower than 1 Hz are considered to be dynamically sensitive and a dynamic procedure shall be 

employed. 

 

Buildings where H/Ds< 1.0 and H ≤ 20 m are considered low-rise and those where H/Ds≥ 1.0 or 

H >20 m are considered high-rise. Herein, H is the building height and Ds is the smaller plan 
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dimension. Static procedure for wind calculation is different for low-rise and high-rise buildings. 

In addition, partial loading cases must be conducted to examine the most severe torsional effects 

anticipated from wind loading. 

 

The lateral deflection of buildings due to service wind and gravity loads shall be checked to 

ensure that structural and non-structural components will not be damaged. The total drift per 

storey under service wind and gravity loads shall not exceed 1/500 of the storey height unless 

other drift limits are specified in the design standard.  

 

2.1.3 Earthquake Load Calculation According to NBCC 2010 

The equation for estimating the fundamental period of the building, Ta, depends on the selected 

type of Seismic Force Resisting System (SFRS). For steel braced frames, the expression used to 

calculate the fundamental period Ta is given below. Based on this equation, the period Ta is only 

dependent on the total building height, hn, hence the period yields the same value regardless of 

the direction under consideration. In this light, dynamic analysis can be used to determine the 

fundamental period of vibration in each principal direction of the building, however, the resulted 

period should not exceed 2Ta. 

 

𝑇 = 0.025ℎ       (2.3) 

 

The Uniform Hazard Spectrum (UHS) approach, based on 2% probability of exceedance in 50 

years corresponding to 2475 years return period, was first introduced in NBCC 2005. For Site 

Class C, (Fa=Fv=1) the design spectrum (DS) is the same with the UHS. Using the equivalent 

static force procedure, the lateral design base shear, V, is calculated with Equation (2.4). 

However, V shall not be less than the minimum base shear as per Equation (2.5) and need not to 

be greater than the maximum base shear calculated using Equation (2.6) for any SFRS with 

𝑅 ≥ 1.5. 

𝑉 = 𝑆(𝑇 )      (2.4) 
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𝑉 = 𝑆(2.0)𝑀 𝐼 𝑊/𝑅 𝑅      (2.5) 

 

𝑉 =
( . )

( )
     (2.6) 

 

where the 5% damped spectrum response acceleration S(Ta) is given at specific periods of 0.2, 

0.5, 1.0 and 2.0 s for each location. This spectrum response acceleration S(Ta) is then amplified 

with factors that take into account the higher mode effects on base shear Mv and the building's 

importance category IE. In the above equations, W is the building seismic weight including 25% 

snow load. The elastic base shear is reduced with the ductility-related force modification factor, 

Rd and the overstrength-related force modification factor, Ro. The typical values for Rd and Ro for 

each SFRS are given in the NBCC. These factors were incorporated to provide an economical 

design. Thus, buildings are designed to absorb and dissipate energy through the ductility capacity 

of the structure during earthquakes. Nonetheless, when higher values of Rd are selected during 

preliminary design, the building is more flexible and significant detailing of connections is 

required to provide the development of such high ductility. 

According to NBCC, additional considerations are required for post-disaster buildings. In cases 

where 𝐼 𝐹 𝑆 (1.0) ≥ 0.35,  the post-disaster building shall not have any irregularities 

conforming to Type 1 (vertical stiffness irregularity), Type 3 (vertical geometric irregularity), 

Type 4 (in-plane discontinuity in vertical seismic force resisting system), Type 5 (out-of-plane 

offsets), Type 6 (weak storey) and Type 7 (torsional sensitivity). Furthermore, the building must 

have a SFRS with 𝑅 ≥ 2.0 and have no storey with a lateral stiffness that is less than that of the 

storey above it. 

Based on the maximum allowable lateral deflection limit set by NBCC, the largest interstorey 

drift at any level shall be limited to 0.01ℎ , 0.02ℎ  and 0.025ℎ  for post-disaster buildings, high 

importance category buildings and all other buildings respectively. 
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2.2 Seismic Design Requirements for Concentrically Braced Frames and Seismic Detailing 

Concentrically braced frames (CBFs) provide the stiffness and strength needed to achieve 

operational performance objectives, which are primarily defined by the performance of non-

structural elements (Hsiao, 2012). Proper detailing of brace-to-frame connections is required in 

order to allow braces to exhibit inelastic excursions during extreme events. Moreover, the 

surrounding frame members must remain elastic to avoid frame instability. In this matter, CBF 

systems are more likely to have a ductile mode of behaviour prior to brace fracture. The structure 

must tolerate these large inelastic demands without undergoing collapse or loss of life. Current 

design requirements and recent experimental findings of CBFs are presented hereafter. 

 

2.2.1 Seismic Design of Concentrically Braced Frames according to CSA S16 2009 standard 

The rules and requirements for the design of steel CBFs, are provided in the Canadian Standard 

Association CSA/S16. To establish a strength hierarchy along the load path, the seismic design 

provisions are based on the capacity design approach, which implies that the inelastic action 

occurs in members of the seismic force resisting system that are detailed for such action. Thus, 

specific elements or connections are designed to dissipate energy. These dissipative zones are 

detailed to suppress undesirable premature failure modes, such as local buckling and member 

instability, while the surrounding structural members are made sufficiently strong to allow for 

this energy dissipation while maintaining the structural integrity (Bruneau et al., 1998). For 

CBFs, the brace is expected to dissipate energy through its inelastic behavior during a severe 

seismic event. Thus, the surrounding structural elements such as beams, columns and brace-to-

frame connections should be designed to resist the probable resistance of braces in order to 

behave elastically during earthquake events. As per CSA/S16 2009, for tension-compression 

braces, two loading scenarios are considered in design: (i) prior to reaching brace buckling, the 

brace is expected to develop its probable tensile and compressive resistance, Tu and Cu, 

respectively and (ii) after the occurrence of brace buckling, the brace member possesses only the 

probable post-buckling compression resistance Cu' and in the tension side, it possesses the 

probable tensile strength Tu. However, for a building of 4-storey height and less, the probable 

tensile strength can be reduced to 0.6Tu. 
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According to CSA S16.1-09, the tensile resistance, Tr and the probable tensile resistance, Tu of a 

brace member subjected to axial tension force respectively are calculated using the following 

Equations: 

𝑇 = φ𝐴 𝐹       (2.7) 

𝑇 = 𝐴 𝑅 𝐹       (2.8) 

Herein, Ag is the gross cross-sectional area of the brace member, φ is the resistance factor equal 

to 0.9, while the value of Ry can be taken as 1.1 for W-shape sections and the probable yield 

strength, RyFy, should not be taken less than 385 MPa. However, the probable yield stress RyFy 

shall not be less than 460 MPa for HSS sections. 

The axial compressive resistance Cr, the probable compression resistance, Cu and the probable 

post-buckling compressive resistance, Cu', of brace members shall be calculated as: 

 

C = φA F (1 + λ ) ⁄  𝑤ℎ𝑒𝑟𝑒 λ =
π

   (2.9) 

C = min 1.2C R /φ  ,   A R F where φ = 0.9    (2.10) 

C′ = min C R /φ  ,   0.2A R F     (2.11) 

Herein, Ag is the cross-sectional area of the brace, n=1.34 for hollow structural sections HSS 

manufactured in accordance with CSA G40.20, Class C (cold formed non-stress relieved). In the 

above equations, φ is a resistance factor taken as 0.9 unless otherwise specified. The brace 

member is considered pinned connected to the frame, which means k=1. However, kL in Eq. 

(2.9) is the effective length of the brace, marked LH in Fig. 2.1. For simplification, LH may be 

estimated at 0.9 LC-C. 
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Figure 2.1 Brace to frame gusset plate connection detailed to accommodate end inelastic rotation 
(CSA/S16 2009 Commentaries) 

 

 

The MD-CBFs are able to dissipate a moderate amount of energy through yielding of bracing 

members and are designed with Rd = 3.0 and Ro = 1.3. The MD-CBFs with tension-compression 

braces shall not exceed 40 m in height when designed in areas where the specified short-period 

acceleration ratio IEFaSa(0.2) ≥ 0.35 or IEFvSa(1.0) >0.3. The slenderness ratio, KL/r, of tension-

compression bracing members shall not exceed 200. The effects of translational and rotational 

restraints at the brace ends should be accounted for in the calculation of KL. When KL/r ≤ 100, 

for rectangular and square HSS, the width-to-thickness ratio computed as [(b-4t)/t] should be ≤ 

330/Fy
0.5 where b is the HSS section dimension and t is its wall thickness. 

 

The factored resistance of brace connections shall exceed both Tu and Cu values that may be 

developed by the brace section. Buckling of braces induces a rotational demand at the brace-

gusset plate connections; hence, the gusset plate inserted in the slotted HSS brace should be 

detailed to possess sufficient flexural resistance to prevent any premature fracture. According to 

Astaneh and Goel (1985) and the CSA/S16 commentaries, in the case of an HSS brace attached 

to a single gusset plate, a ductile rotational behaviour must be allowed for in the gusset plate in 

order to accommodate the out of plane buckling of the HSS brace. According to Fig. 2.1, this can 

be achieved by providing a clear band equal to two times the thickness of the gusset plate, 2tg, at 
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the end of the brace member. Details on the brace-to-frame connection design are further 

discussed in Chapter 3. 

 

2.2.2 Learning from existing tests conducted on the brace and gusset plate systems of CBFs 

To improve the inelastic response of CBF braces, an adequate seismic detailing of braces to 

frame connections is required. A summary of previous experimental tests conducted to 

understand the importance of brace to frame connection detail on the inelastic behaviour of 

braces is presented below. 

 

Several researchers (e.g., Wakabayashi 1973, Kahn and Hanson 1976, Astaneh et al. 1982, 

Aslani and Goel 1989) have studied the behaviour of brace-to-gusset plate connection systems 

subjected to monotonic and cyclic axial deformations loading. They have considered various 

design parameters such as the slenderness ratio, width-to-thickness ratio, gusset plate clearances, 

bolted vs. welded connection and in-plane vs. out-of-plane buckling response. The relevant 

conclusions that were reached in these studies are briefly summarized below. 

Astaneh et al. (1985) conducted tests on double angle bracing specimens with tapered gusset 

plates at the University of Michigan. At that time, there were no seismic detailing specifications 

to predict the gusset plate deformation under a severe earthquake event. New modifications in 

the detailing of gusset plates were proposed to improve the energy dissipation capacity of braces 

and the structure's ductility.  

The study led by Astaneh et al. (1985) provided several key findings, which are listed below: 

1. The effective slenderness ratio and width-to-thickness ratio are the most influential 

parameters in determining the hysteretic behavior of bracing members. 

2. The maximum compressive strength of brace decreases with the increasing number of 

cycles, hence strength deterioration was observed. 

3. The development of buckling force in brace members may differ in the case of bolted 

gusset plate connections compared to welded connections due to the slippage of the bolts 

in the connections. 
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4. Bolt slippage can cause a pinched hysteresis loop, which decreases the energy dissipation 

capacity of the system. 

5. A 2tg linear clearance within the gusset plate was proposed to be provided at the end of 

the brace. 

When brace buckles out-of-plane, the end rotation of brace causes significant rotation and 

bending demands on the gusset plates. The 2tg clearance intends to accommodate the out-of-

plane buckling of the brace by allowing the gusset plates to yield and bend in this 2tg clearance 

band where plastic hinges will form. 

 

Hardash and Bjorhovde (1985) confirmed that the Whitmore’s method (1952) was appropriate to 

estimate the tensile stress and the tensile fracture capacity of the gusset plates. Then, the 

compressive capacity and the buckling strength of the gusset plates were investigated by 

Thornton in 1984. Based on the procedures proposed by Whitmore and Thornton, the tensile and 

compressive capacities of gusset plates was estimated. Then, several experimental studies were 

conducted to assess the response of gusset plate with 2tg clearance subjected to monotonic and 

cyclic loading (Rabinovitch and Cheng 1993, Brown 1988, Grondin et al. 2000).  From these 

studies, the following key conclusions were noted: 

1. The design philosophy of weak gusset plate-strong brace combination resulted in a larger 

energy dissipation than that developed when the strong gusset plate-weak brace approach 

was employed. 

2. The Whitmore method provided a conservative estimate of gusset plate capacity for 

compact specimens and overestimated the strength of slender brace connections. 

To calculate the ultimate capacity of gusset plates, a schematic connection detail is presented in 

Figure 2.2. Researchers have assumed that the axial load spreads out at a 30-degree angle from 

the brace – gusset plate intersection line to the brace’s end (see the grey brace segment). By 

joining the 300 lines at the end of the brace, the Whitmore’s width, Ww parameter was revealed. 

Using this Whitmore’s width and the effective length of the gusset, the compressive and tensile 

capacity of the gusset plate is calculated. The detailed calculation is presented in a later section.  
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To bring knowledge on the seismic response of chevron CBFs, Uriz and Mahin (2004) 

conducted at the University of California, Berkeley, a series of 8 tests consisting of HSS brace 

sections and gusset plate connections. Experimental testing on a full-scale two-storey CBF 

system with HSS brace sections was then carried out by Uriz (2005). All of the tapered gusset 

plates in this test used the 2tg offset, as seen in Figure 2.3.  

 
Figure 2.2 Establishing the gusset plate dimensions (Whitmore, 1952) 

 
 

Figure 2.3 The 2-storey chevron CBF full-scale specimen tested at the University of Berkeley 
(Uriz, 2005) 

 
 

Welding length 

Gusset plate 
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The frame (beams and columns) was not sized for reuse, instead, it was designed as per the 1997 

AISC seismic code, and so the beams were very large in order to account for the unbalanced 

vertical load that is associated with braces in a chevron configuration. The objectives of the tests 

were to improve the understanding of the behavior of full CBF systems, improve computer 

models and assess the design guidelines available at that time. A brief summary of the findings is 

listed below. 

1. The framing elements experienced considerable damage at large drift ranges. This 

implies that the behavior of braced frames is highly system-dependent; meaning the 

framing element contribution must be included in the system performance.  

2. After brace reached fracture, the lateral resistance of the structure is provided by the 

frame action of beams and columns. This can result in as much as a 30% loss of the 

initial pre-fracture capacity.  

3. Uriz (2005) reported that when braces develop a slight amount of buckling, the 

distribution of lateral drift was nearly identical for the upper and lower floor. However, 

once the bottom floor braces were damaged at their mid-span as shown in Figure 2.4a, 

the inelastic behaviour and damage were concentrated on that specific floor. Due to the 

reduced load capacity of buckled braces, the lateral stiffness of the bottom floor was 

decreased, resulting in a soft-storey like response. This led to the complete fracture of the 

braces (Figure 2.4c) with the failure of the lower-level beam-to-column connections 

occurring soon after. Braced frame systems are more susceptible to soft storey effects 

than other SFRSs. 

4. The beam was much larger than the column, hence the column received more critical 

damage in the form of local buckling and fracture on the flange facing the beam-to-

column connection as shown in Figure 2.5. As illustrated in Figure 2.5 no stiffeners were 

provided in the W-shape column at the line of W-shape beam flanges. 

5. Buckling Restrained Braces (BRB) were also installed in the same setup on the first floor 

while traditional CBFs were kept on the upper floor, however, BRB’s are beyond the 

scope of this report. 



 

 

 

Figure 2.4 The HSS Brace response 

Figure 2.5 Beam

 

2.2.3 Learning on the behaviour of CBF with elliptical clearance gusset plate connection

This section will briefly summarize the findings from two full

purpose of these tests was to understand the response of CBFs while focusing on the gusse

brace to frame connection performance. Various gusset plate connection design parameters were 

investigated, including the thickness and geometry of 

clearance on the plate, and bolted and welded connections.

The first full-scale experimental program discussed hereafter was conducted under the guidance 

of Roeder and Lehman (2008). In this testing program, a single bay, single storey CBF was 

tested to establish the design guidelines on the detailing of gusset plates
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The HSS Brace response a) brace buckling b) crack propagation c) 

rupture (Uriz, 2005) 

 

Beam-to-column connection failure (Uriz, 2005) 

he behaviour of CBF with elliptical clearance gusset plate connection

This section will briefly summarize the findings from two full-scale specimen test programs. The 

purpose of these tests was to understand the response of CBFs while focusing on the gusse

brace to frame connection performance. Various gusset plate connection design parameters were 

thickness and geometry of the gusset plate, types and sizes of 

bolted and welded connections. 

scale experimental program discussed hereafter was conducted under the guidance 

. In this testing program, a single bay, single storey CBF was 

tested to establish the design guidelines on the detailing of gusset plates and to improve the base 

 

rack propagation c) complete 

he behaviour of CBF with elliptical clearance gusset plate connection 

scale specimen test programs. The 

purpose of these tests was to understand the response of CBFs while focusing on the gusset plate 

brace to frame connection performance. Various gusset plate connection design parameters were 

gusset plate, types and sizes of 

scale experimental program discussed hereafter was conducted under the guidance 

. In this testing program, a single bay, single storey CBF was 

and to improve the base 



 

 

knowledge of braced frame behavior (Johnson 2005, Herman 2006, Kotulka 2007 and Powell 

2008). The test setup is shown in Fig. 2.6. The width of the CBF frame with 

brace is 12’ (3.66m) and the height is 12’ (3.66m)

 

Figure 2.6 Test setup components and boundary conditions (Johnson 2005)

The tested specimen consists of typical beam and column sizes used in braced frames but the 

slab effects were not accounted for. F

with the balanced design procedure

prevent undesirable failure modes. In this testing program, an HSS 5x5x3/8 (HSS127x127x9.5) 

section was used for braces, the W16x45 (W410x67) section was used for beams and W12x72 

(W310x107) for columns. The braced frame specimen was subjected to cyclic loading and 

various brace-to-frame connection design parameters were investigated and employed to 
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knowledge of braced frame behavior (Johnson 2005, Herman 2006, Kotulka 2007 and Powell 

The test setup is shown in Fig. 2.6. The width of the CBF frame with a 

brace is 12’ (3.66m) and the height is 12’ (3.66m). 

Test setup components and boundary conditions (Johnson 2005)

 

specimen consists of typical beam and column sizes used in braced frames but the 

slab effects were not accounted for. For this test, all CBF members were sized in accordance 

balanced design procedure, which is based on balancing the yield mechanisms to 

prevent undesirable failure modes. In this testing program, an HSS 5x5x3/8 (HSS127x127x9.5) 

braces, the W16x45 (W410x67) section was used for beams and W12x72 

(W310x107) for columns. The braced frame specimen was subjected to cyclic loading and 

frame connection design parameters were investigated and employed to 

knowledge of braced frame behavior (Johnson 2005, Herman 2006, Kotulka 2007 and Powell 

a single diagonal 

 

Test setup components and boundary conditions (Johnson 2005) 

specimen consists of typical beam and column sizes used in braced frames but the 

or this test, all CBF members were sized in accordance 

which is based on balancing the yield mechanisms to 

prevent undesirable failure modes. In this testing program, an HSS 5x5x3/8 (HSS127x127x9.5) 

braces, the W16x45 (W410x67) section was used for beams and W12x72 

(W310x107) for columns. The braced frame specimen was subjected to cyclic loading and 

frame connection design parameters were investigated and employed to 
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determine their effects on the overall performance of the frame. Several of these parameters are 

listed below. 

 The shape of the gusset plate: tapered or rectangular gussets. 

 Type of interface weld between the gusset plate and framing members: fillet and 

complete joint penetration (CJP) welds. 

  Bolted and welded connections between the gusset plate and brace. 

 Gusset plate thickness. 

 Type and size of the clearance band of gusset plates: linear (2tg) and elliptical (8tg) for 

corner gusset plates. 

 

A photo of the test setup illustrating the boundary conditions and loading techniques used during 

the experiment is given (Figure 2.7). To induce the expected frame behaviour of a real CBF 

system, the beams and columns were restrained from out-of-place buckling. An actuator applied 

displacement to the frame through the load beam, which was connected to the north beam and 

post-tensioned axial rods were installed to simulate the gravity loads in the columns. 

Amongst the various conclusions that were derived from this testing program, the proposal of an 

8tg elliptical clearance for a corner gusset plate illustrated in Figure 2.8b is considered in this 

study. For comparison purposes, a corner gusset plate connections detailed with 2tg linear 

clearance is also shown in Figure 2.8a. 
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Figure 2.7 Single storey single bay test set up photograph (Johnson, 2005) 

 

 
 

Figure 2.8 Corner gusset plate connection details: a) tapered 2tg linear clearance, b) rectangular 
8tg elliptical clearance 
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Brace fracture at its mid-span length is the desired failure mechanism after plastic hinges are 

developed in the gusset plates at both ends of the brace located within the clearance band. Thus, 

the thickness of the gusset plate and its geometry strongly influence the brace yielding 

mechanism. However, previous studies revealed that although 2tg linear clearance is provided for 

tapered gusset plates, it often leads to larger and thicker brace-to-frame connections, which 

possess limited deformation capacity, and in turn may drive the CBF system to premature failure. 

To overcome this drawback, researchers proposed to provide an 8tg elliptical clearance band 

instead of the 2tg linear clearance band in the gusset plate, as it often permits smaller and more 

compact gusset plates, in particular when rectangular shaped plates are used. The resulted 

connections have larger rotation capacity, which delays the fracture of the brace and reduces the 

damage to the welds between the gusset plate and the frame members, beams and columns. In 

this manner, the inelastic performance of the brace and the ductility of the CBF under large 

earthquake loads are improved. 

Other recommendations that were outlined in the aforementioned studies are: 

 Use of an interface weld between the gusset plate and framing elements equal to the 

gusset plate thickness with an electrode that matches the gusset plate metal to prevent 

premature weld cracking.  

 

 Tapered gusset plates behave slightly differently than rectangular gusset plates. The 

tapered connection usually results in a smaller size but thicker gusset plate. Thus, they 

have the ability to reduce the plastic strain concentration at the brace center, prolonging 

the fracture life of the brace but they increase the inelastic demand on gusset interface 

welds and base metal. At large drift demands, crack welds and base metal fracture may 

be expected as shown in Figure 2.9. 
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Figure 2.9 Experimental brace-to-frame connection failure a) Crack at gusset-to-column weld b) 

Base metal fracture c) Base metal tear near column face (Kotulka, 2007) 

 

The second testing program presented herein was continued at the National Center of Research 

Engineering (NCREE) in Taipei, China. In this program, the study of CBF was extended from 

the single storey frame to a multi-brace, multi-level configuration. The objective was to 

investigate the effect of composite concrete slabs on the CBF system and connection behavior 

under cyclic loading. For the first time, these tests allowed examination of the behavior of the 

middle gusset plate with different thicknesses of elliptical clearance band. The tests were 

performed and analyzed in two phases: three full-scale two-storey single-bay frames using multi-

level X-brace configuration (Clark, 2009) and three full-scale three-storey frames using multi-

level X-brace configuration at the bottom two stories and a chevron brace configuration at the 

top floor (Lumpkin, 2009). Both frame configurations included reusable composite floor slabs 

and were subjected to reversed cyclic loading at the roof level. 

During the first phase, three tests labelled TCBF1-HSS, TCBF1-WF, and TCBF1-2t were 

conducted by Clark under the supervision of Profs Roeder and Lehman from Washington State 

University, US. The first two tests used 8tp elliptical clearance on the corner and middle gusset 

plates while the third test TCBF1-2t utilized tapered gusset plates with 2tp linear clearance 

required by the current code. Both specimens TCBF1-HSS and TCBF1-2t used HSS 5x5x3/8 for 

braces and specimen TCBF1-WF used wide flange braces. The frame setup for all three tests is 

shown in Figure 2.10. 
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Figure 2.10 Test specimen TCBF1-HSS at NCREE in Taipei, Taiwan (Clark, 2009) 

 

Lumpkin E.J. (2009) proceeded with the final phase and three tests where the specimens were 

labeled TCBF2-HSS, TCB2-WF andTCB2-IP were performed at NCREE under the guidance of 

Roeder. C.W.. The same braced frame configuration, which consisted of two W21x106 columns 

with two W21x68 beams at the bottom floors and a W24x94 beam at the top floor was used for 

all TCB2-series tests (Figure 2.11). The specimen TCBF2-HSS was designed for out-of-plane 

buckling using HSS 5x5x3/8 (HSS 127x127x9.5) on each storey, while the TCBF2-WF used 

wide flange braces H175x175x11. The TCBF2-IP was designed with in-plane buckling HSS 

125x125x9 braces on each floor (Lumpkin, 2009). For TCBF2-HSS, the corner gusset plate used 

an 8tp elliptical clearance band while the middle gusset plate used a 6tp vertical offset from the 

beam as clearance. Both gusset plates were 3/8” (9.5 mm) thick and were rectangular in shape. 

For beam-to-column connections, a shear plate connection was used on the first floor and full 

moment resisting connections were used on the upper two levels. 

A cyclic, pseudo-static, loading protocol was applied at the top of the frame. The actuators 

induced frame drift as the displacement control variable. To maintain a relatively constant 

loading rate, the duration of each cycle increased with increasing frame drift values. The resulted 

loading protocol (Figure 2.12) was used for all tests using the TCBF2 frame. The fracture of the 

North brace of Specimen TCBF1-HSS located at the 1st storey is shown in Figure 2.13. 



 

 

Figure 2.11 Test specimen TCBF2

Figure 2.12 Loading protocol for TCBF2 series (Lumpkin,

Figure 2.13 North brace of Specimen TCBF1
hinge b) Initial tear lines c) Partial fracture d) Fracture Opening (Lumpkin, 2009)
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Test specimen TCBF2-HSS at NCREE in Taipei, Taiwan (Lumpkin, 2009)

Loading protocol for TCBF2 series (Lumpkin, 2009)

North brace of Specimen TCBF1-HSS on the 1st storey a) Brace fracture at 
hinge b) Initial tear lines c) Partial fracture d) Fracture Opening (Lumpkin, 2009)

HSS at NCREE in Taipei, Taiwan (Lumpkin, 2009) 

2009) 

 

fracture at plastic 
hinge b) Initial tear lines c) Partial fracture d) Fracture Opening (Lumpkin, 2009) 
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The relevant findings and recommendations formed from analysing the behaviour of specimens 

TCBF1-HSS and TCBF2-HSS are listed below.  

 The benefit of 8tg elliptical clearance band for corner gusset plates can be extended to 

multi-level buildings. 

 Gusset plate interface welds should be designed for the full plastic capacity of the gusset 

plate rather than the brace.  

 It is recommended to use a 6tg vertical offset from the beam for clearance on middle 

gusset plates because it allows for substantial out-of-plane rotation while delaying 

interface weld tearing. This clearance is also allowed for more compact middle gusset 

plates, which require less or no edge stiffeners to better control the buckling of the plate. 

 Shear plate connections result in less beam frame action because they are unable to 

transfer as much moment as fully welded connections. However, fully welded beam to 

column connections increase the frame action that occurs during the inelastic phases of 

CBF behavior, and thus the CBF is able to maintain a higher resistance after brace 

fracture or buckling. This, in turn, can decrease the possibility of a collapse or 

concentration of damage. 

 The proposed balanced design procedure effectively balances the yield mechanisms and 

prevents undesirable failure modes in multi-level structures. As expected, first, the 

buckling of brace occurred and caused a plastic hinge to form at the middle of the brace 

under compressive load. At load reversal, initial tear lines appear at the plastic hinge, 

which is then followed by a partial fracture of the brace at the next tension cycle. The 

partial tear in the brace caused a reversal of the direction of buckling due to the new 

eccentricity created by the partial tear. 
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2.3 Past studies on Pall Friction dampers 

The basic function of passive energy dissipation devices (PEDD) in a building is to absorb the 

earthquake input energy, thereby reducing energy dissipation demand on primary structural 

members and minimizing structural damage. The PEDDs can be classified into three categories: 

hysteretic devices, viscoelastic devices, and others. Hysteretic devices rely on the relative 

displacements of components within the device and are typically based on either metallic 

yielding or frictional sliding, while viscoelastic devices are velocity dependent. A brief summary 

of each PEDD with their advantages, disadvantages and their ideal hysteretic behavior are 

presented in Table 2.3. 

Table 2.3 Characteristics of the most popular PEDDs (Symans et al., 2008) 

 

In this study, friction dampers are selected for further investigations. Friction damper devices 

dissipate energy via frictional sliding across the interface between two solid bodies. Examples of 

such dampers include a series of steel plates that are bolted together. The activation of slip forces 

must occur before braces reach buckling. At the sliding interface between the steel plates, special 

materials may be utilized to promote stable coefficients of friction. Depending on the type of 

friction devices, they could be installed in line with single-diagonal or chevron steel braces. In 

the past, Pall (1979), Pall and March (1981) have proposed to be installed at the intersection of 

the X-braces. In general, hysteretic devices are installed in line with a brace and able to undergo 

the lateral deformation demand, while dissipating the hysteretic energy through friction. The 

purpose of installing friction devices into the structural system is to maintain the structural 

Type of PEDD Advantages Disadvantages

Viscous Fluid Damper - Activated at low displacements - Possible fluid seal leakage

- Minimal restoring force required - Higher initial cost

- Proven record of performance

Metallic Damper - Stable hysteretic behavior - Device replacement after earthquake damage

- Familiar behavior (Yielding) - May require nonlinear analysis (nonlinear behavior)

Friction Damper - Large energy dissipation per cycle - Sliding conditions may change with time (reliability)

- Not sensitive to temperature - Nonlinear behavior

- Large remnant displacements if no restoring force

is provided by another system



 

 

components in the elastic range. The main frame and the 

share the same deformation, which in turn is that of the entire system. It is paramount to assure 

stable response of devices under dynamic loading. Thus, the energy dissipation devices installed 

in new or retrofitted buildings should slip before the shear resistance of the main structural 

system is reached. For example, friction energy dissipating devices are recommended to be used 

as follows: 

 Friction devices in-line with brace members are added to the MRF system in

reduce the interstorey drift.

 A minimum percentage of 25% MRF is required in order to reduce the residual drift 

when friction devices are installed in

assure a back-up frame action

Pall friction dampers dissipate energy through friction developed by the relative sliding within 

two surfaces in contact, which are clamped by post

defined by the distance from the initial position of the

slotted hole. Also, the slip force is defined as the minimum required force to initiate sliding in 

the friction damper and is computed as the product between the friction coefficient and the 

normal force arising from the clamping action of the plate through pre

a smooth friction force 6 different materials or mechanical processes as depicted in Fig. 2.14 

were considered by Pall (1979). The ideal hysteretic behavior of Pall friction dampers follow

smooth rectangular shape, which is characteristic of Coulomb friction. 

Figure 2.14 The response of the LSB joint: a) monotonic test; b) back
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components in the elastic range. The main frame and the supplemental energy dissipation system 

share the same deformation, which in turn is that of the entire system. It is paramount to assure 

stable response of devices under dynamic loading. Thus, the energy dissipation devices installed 

d buildings should slip before the shear resistance of the main structural 

system is reached. For example, friction energy dissipating devices are recommended to be used 

line with brace members are added to the MRF system in

interstorey drift. 

A minimum percentage of 25% MRF is required in order to reduce the residual drift 

when friction devices are installed in-line with braces of the CBF system in order to 

up frame action (Tirca et al, 2018). 

Pall friction dampers dissipate energy through friction developed by the relative sliding within 

which are clamped by post-tensioned bolts. Herein, the slip length is 

defined by the distance from the initial position of the pre-tensioned bolt and the edge of the 

slotted hole. Also, the slip force is defined as the minimum required force to initiate sliding in 

the friction damper and is computed as the product between the friction coefficient and the 

clamping action of the plate through pre-tensioned bolts. To obtain 

a smooth friction force 6 different materials or mechanical processes as depicted in Fig. 2.14 

. The ideal hysteretic behavior of Pall friction dampers follow

which is characteristic of Coulomb friction.  

The response of the LSB joint: a) monotonic test; b) back-bone curve; c) hysteretic 

behaviour (Pall, 1979) 

supplemental energy dissipation system 

share the same deformation, which in turn is that of the entire system. It is paramount to assure a 

stable response of devices under dynamic loading. Thus, the energy dissipation devices installed 

d buildings should slip before the shear resistance of the main structural 

system is reached. For example, friction energy dissipating devices are recommended to be used 

line with brace members are added to the MRF system in order to 

A minimum percentage of 25% MRF is required in order to reduce the residual drift 

line with braces of the CBF system in order to 

Pall friction dampers dissipate energy through friction developed by the relative sliding within 

tensioned bolts. Herein, the slip length is 

tensioned bolt and the edge of the 

slotted hole. Also, the slip force is defined as the minimum required force to initiate sliding in 

the friction damper and is computed as the product between the friction coefficient and the 

tensioned bolts. To obtain 

a smooth friction force 6 different materials or mechanical processes as depicted in Fig. 2.14 

. The ideal hysteretic behavior of Pall friction dampers follows a 

 

bone curve; c) hysteretic 
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However, due to factors such as temperature, wear effects, and loss of pretension load, the 

friction coefficient during sliding may fluctuate, and in turn, affect the hysteretic behavior. In 

order to provide a stable friction coefficient in slip bolted joints, Pall investigated several types 

of surface treatments and lining materials under monotonic and quasi-static cyclic loading. The 

tests used a high-strength 12.7 mm pre-tensioned bolts to clamp the plates together. The 

hysteretic behavior of the six case studies and their associated degradation factor are shown in 

Figure 2.15. 

 

Figure 2.15 LSB joint and its hysteresis response under cyclic test of six case studies (Pall, 1979) 

 

Pall has concluded that the most stable behavior was achieved when brake lining pads were used 

in contact with mill scale surface on plates. However, minor differences between the static and 

dynamic friction coefficients were observed.  

In 1985, a reduced scale three-storey frame equipped with friction dampers was tested on a shake 

table at the University of British Columbia, Vancouver (Filiatrault, 1988). The response of 

friction dampers installed in braces added to a moment resisting frame (MRF) was much superior 

to that of a bare MRF. An earthquake record with a peak acceleration of 0.9g did not cause any 

damage to the friction sliding braced frame, while the MRF exhibited large permanent 
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deformations. In 1987, a nine-storey three-bay MRF frame equipped with friction dampers in an 

X-bracing system was tested on a shake table at Earthquake Engineering Research Center of the 

University of California at Berkeley (Aiken, 1993). All members of the friction damped MRF 

frame remained elastic for 0.84g acceleration, which was the maximum capacity of the shake 

table, while the MRF frame yielded at about 0.3g acceleration. The peak interstorey drift was 

1%hs. However, the behavior of a friction-sliding tension-compression diagonal brace (FSB) 

employed in this study may differ in several aspects.  

As stated previously, Pall friction-dampers possess large rectangular hysteresis loops with a 

negligible fade over several cycles of reversals (Pall 1980, Filiatrault 1988). However, under 

large seismic excitations, the post-tensioned bolts may impact into the end of the slotted hole and 

undergo bearing or even bolt shear failure. Hence, the hysteretic behavior of the friction dampers 

is composed of four phases: elastic, slipping, bearing and failure of bolts, and the associated 

back-bone curve is illustrated in Figure 2.14b. However, the latter two phases were not 

considered in the previous testing by Pall. The latter phases were well documented in later 

studies conducted by Roik et al. (1988) and Lukkunaprasit et al. (2004). Furthermore, most 

computer models with friction dampers do not consider the limitation of slip distance and nor the 

bearing stage. In this light, Morales proposed design guidelines to calculate the required slip 

length in order to avoid the slip-lock phase (Morales, 2012). It is noted that, due to the lack of 

experimental tests on the bearing stage of friction dampers, the proposed computer model does 

not account for degradation during sliding once bearing has occurred. Also, the bearing and bolt 

tearing phases of friction damper are not calibrated with respect to experimental data, as there 

were none at that time. 

Recent experimental testing of Pall friction dampers installed in line with braces was conducted 

in the Structure Lab of Polytechnique University Montreal (2014). The tests were carried out on 

full-scale brace-damper assemblies having 2 different nominal slip force capacities Fs1 = 550 kN 

and Fs2 = 700 kN. As shown in Figure 2.16, the test setup consists of a 550 kN friction damper 

installed in line with an HSS 203x203x9.5 (Fy = 350 MPa) at one end and connected to a 

W530x138 beam via a gusset plate on the other end. The damper specimen was detailed to 

accommodate a total slip distance of 1.3∆d = +/- 65 mm, where ∆d is the design slip length. Two 

high performance 1000 kN dynamic actuators were used to induce storey drift to the test setup. 
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The specimen was subjected to cyclic quasi-static displacement, real-time displacement histories 

obtained from a case study and wind load protocols as prescribed in ASCE/SEI 7-10. The test 

was reported by Tirca et al. (2018). 

 

Figure 2.16 Friction damper test setup at Polytechnique University Montreal (Tirca et al., 2018) 

 

In all these tests, the damper exhibited a uniform and stable hysteretic response with high energy 

dissipation capacity (Figure 2.16). Moreover, the slip force recorded slightly deteriorates from 

cycle to cycle under cyclic loading. 

 

Figure 2.17 Sub-assemblage subjected to harmonic displacement cycles (Tirca et al., 2018) 

 

In North America, the first design guidelines addressing some provisions for steel frame with 

friction dampers were introduced in FEMA 356 (2000) and FEMA 450 (2003). Later on, the 
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aforementioned design guidelines were incorporated in Chapter 14 of ASCE 41-13, as well as in 

Chapter 18 of ASCE/SEI 7-10 standard. However, the aforementioned documents do not provide 

a force-based design method compatible with the building code. 

Recent studies released by Tirca et al. (2018) proposed a simple force-based design method 

using Rd=5.0 and Ro=1.1 to design buildings equipped with friction dampers installed in CBF 

braces and a back-up MRF system. This approach in design represents a more attractive solution 

for day-to-day practices due to its similarities to CBF design. During the design process, ductility 

and overstrength related force modification factors Rd and Ro significantly reduce the base shear. 

In theory, friction sliding braced frame (FS-BF) could be assigned a high value of RdRo due to 

their high energy dissipation capacities and the possibility to adjust their slip length to 

accommodate anticipated displacements. However, the FS-BF system has little lateral stiffness 

during slippage, which makes the entire system prone to progressive drifting towards one 

predominant direction due to P-delta effects. In this parametric study, values of 4, 5 and 6 were 

considered for Rd, while the Ro factor was set to 1.1. In this light, a simple force-based method 

using Rd =5.0 and Ro=1.1 was concluded to have a median peak drift ratio between 1% and 1.5% 

for buildings up to 10-storey under both crustal and subduction ground motions. The study also 

proposes to design the MRF to resist 25% of the base shear used for the FSBF such that the 

frame behaves elastically up to 1.5% hs.  

The aforementioned guidelines specify general requirements, analysis procedures, and testing 

program required for friction damper. A brief review of these guidelines with highlights on 

friction damper devices design is presented below. 

 Friction dampers are designed not to slip under wind load. 

 Design HSS braces such that its compressive resistance Cr to be greater than 1.3 times the 

slip force of the attached friction damper(𝐶 ≥ 1.3𝐹 ). 

 Similarly, apply capacity design to size the W-shape beams and columns of friction 

sliding braced frames. Consider Cu of braces in order to size the beam and columns 

assuming that braces should be kept straight during sliding. 
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 From time-history analysis establish the maximum damper displacement demand, ∆ . 

Then, compute the required slip length of friction dampers, ∆  to be larger than 1.3 

∆ in order to assure the required slip length, which is manufactured by friction 

damper’s fabricator.  

 To assure the frame action of FS-BFs, provide an additional MRF system designed to 

carry 25% of calculated base shear. Beams of MRF system should be designed to yield 

after friction dampers start to behave in the nonlinear range. 

 

2.4 Modelling of Concentrically Braced Frames using OpenSees 

Open System for Earthquake Engineering Simulation (OpenSees) is a computational platform for 

research in performance-based earthquake engineering developed at the Pacific Earthquake 

Engineering Research Center (McKenna 1997). Given its open-source nature, this software 

framework has been widely adopted by researchers for finite-element (FE) nonlinear analysis of 

structures due to its flexibility in material calibration.  

A good CBF model would be able to replicate the post-buckling behavior of braces in 

compression and the fracture of brace due to re-loading in tension. To validate the plastic 

behaviour of braces, several parameters defined in the OpenSees model have been studied and 

validated against the experimental test results. The following models were built with nonlinear 

beam-column elements. Herein, the Menegotto-Pinto steel material (Steel02) was the nonlinear 

constitutive law used to model the material behaviour of all brace frame members (Aguero et al. 

2006). To induce the out-of-plane buckling of braces, an initial imperfection of L/500 (L is the 

effective length of brace) is applied to the brace. Uriz et al. (2008) conducted an experimental 

and analytical study on CBF with chevron braces. It was concluded that brace fracture is often 

due to low-cycle fatigue. Hence, a fatigue material for HSS braces was first developed by Uriz 

and Mahin (2005). It consisted of a fatigue material assigned to the parental material (Steel02) of 

the brace to mimic the strength deterioration and eventual brace fracture of CBF. Thus, to 

simulate the behaviour of HSS braces, Uriz proposed to use 20 nonlinear beam-column element 

with distributed plasticity and fiber based section. The value of strain at which one cycle will 

cause failure (𝜀 ) and the slope of the Coffin-Manson curve in log-log space (m) are required as 
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input parameters in the definition of fatigue material in OpenSees. Later on, in order to further 

improve the accuracy of the material, Lignos and Karamachi (2013) proposed an empirical 

equation for HSS braces that is based on regression analysis where the strain 𝜀  is computed as a 

function of slenderness ratio, width-to-thickness ratio, and properties of brace steel material, 

while m was considered equal to -0.3. The expression for 𝜀  proposed by Lignos and Karamachi 

(2013) is shown below with its associated parameter conditions. 

 

𝑖𝑓

27 ≤ 𝐾𝐿
𝑟 ≤ 85

4.20 ≤ 𝑤
𝑡 ≤ 30.40

223 ≤ 𝐹 ≤ 532 𝑀𝑃𝑎

  𝑡ℎ𝑒𝑛 𝜀 = 0.291
. . .

             (2.14) 

 

As resulted, the equation was calibrated for stocky braces. 

Similarly, to cover a larger interval of brace slenderness ratios, the following empirical equation 

was proposed for HSS braces by Tirca and Chen (2014) to predict the brace fracture due to low-

cycle fatigue. 

When 50 ≤ 𝐾𝐿
𝑟 ≤ 150   then 𝜀 = 0.006

. . .

  (2.15) 

In the above equation, according to CSA/S16 standard, 𝑏 = 𝑏 − 4𝑡  where 𝑏  is the effective 

width and 𝑡 is the thickness of the HSS brace. It is noted that the slope of Coffin-Manson m is 

assumed to be -0.5, which is the same as the value proposed by Uriz and Mahin (2005).  

As more test data became available, a minimum of sixteen nonlinear beam-column with 

distributed plasticity was deemed sufficient to accurately simulate the hysteretic behavior of HSS 

brace upon failure (Hsiao et al. 2012). Several studies have shown that the gusset plate 

connection has a significant effect on the stiffness, resistance and inelastic deformation capacity 

of CBF. In this light, Hsiao provided an accurate simulation of brace-to-frame connection in 

OpenSees, which is discussed in a later section. In addition, it is required to consider other 

deterioration models associated with plastic hinging in steel components of CBF members like 

beam and columns that are involved in the development of storey mechanism, encountered after 

brace’s fracture occurs (Lignos et al., 2012). 
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2.5 Gusset plate with linear clearance for brace-to-frame connection 

Through the capacity design, the gusset plate of HSS brace connections is designed and detailed 

to provide ductile rotational behaviour. Thus, the factored flexural resistance of the connection 

shall equal or exceed 1.1ZRyFy of bracing member. Meanwhile, according to CSA/S16, the 

factored resistance of brace-to-frame connection shall equal or exceed both the probable tensile 

resistance of bracing members in tension, Tu and the probable tensile resistance of bracing 

members in compression, Cu. For chevron braces, when the tension brace force is less than Tu 

(e.g. 0.6Tuallowed for 4-storey and lower buildings)connections shall resist the gravity load 

combined with the forces associated with the attainment of Ry times the nominal flexural 

resistance of the beam at the brace connection. In this light, possible yield mechanisms and 

failure modes of CBF were identified by Johnson (2005) and are shown in Figure 2.18. 

 

Seeing that seismic performance of CBFs relies on the ductility of the structure, all yield 

mechanisms such as yielding of the gusset plate, tensile yielding of braces, yielding of beams 

and columns at the gusset plate edge, and bolt hole elongation may all enhance the ductility of 

the frame (Kotulka, 2007). During severe earthquakes, these yielding will mitigate the overall 

damage to the structure by dissipating the energy through inelastic deformation. However, at all 

times, the failure modes shown in Figure 2.18 should not occur prior to brace fracture. By 

postponing the fracture of the brace, the brace is more likely to achieve its maximum inelastic 

deformation while dissipating energy. Herein, guidelines from CSA/S16 are followed to estimate 

the failure modes such as net section fracture of the brace, net section fracture of the gusset plate, 

buckling of the gusset plate, bolt fracture and block shear fracture are summarized in Table 2.5. 

In this study, the gusset plate inserted in the slotted HSS brace is welded as shown in Fig. 2.19. 

The probable axial force developed in the HSS brace member is transferred to the gusset plate 

through four fillet welds.  
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Figure 2.18 Yield mechanisms and failure modes (Johnson, 2005) 
 

 

Table 2.4 Brace-to-frame gusset plate connection design 

 

 

 

 

 

 

 

 

 

 

 

According to CSA/S16, the minimum effective length of a fillet weld should be 38mm or 4 times 

the size of the fillet, whichever is larger. Meanwhile, the length of the fillet weld should provide 

a sufficient shear capacity in order to carry the transferred forces from brace to frame. The shear 

resistance of welding is the minimum between the strength per unit length of the base metal 
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along the fusion face of the weld and the shear resistance of the weld itself as per the equation 

shown below. 

 

𝑉 = 𝑚𝑖𝑛
0.67𝜑 𝐴 𝐹 (yielding at the weld to base metal interface)

 0.67𝜑 𝐴 𝑋 (fracture if the weld metal through weld throat)
  (2.16) 

 

where 𝐴 is the shear area of effective fusion face 𝐴 = 𝐷 𝐿  and Xu=490MPa (E49XX 

electrode). Herein, 𝐷  and 𝐿  are the weld leg width and weld length. Conversely, 𝐴  is the 

area of effective weld throat defined as𝐴 = 0.707𝐷 𝐿 . For both cases, the coefficient 𝜑  is 

considered as 0.67. 

 

The yielding resistance of the gusset plate, Tr is given by Eq. (2.17). 

 

Tr = ϕ𝐴 𝐹       (2.17) 

 

where Agp is the effective area of gusset plate calculated as the product 𝑊 𝑡  where Ww is the 

Whitmore width. The Whitmore width (𝑊 ) is calculated using the following equation 𝑊 =

2𝐿 tan 30° + 𝑏  , which is established based on geometry.  

 

The buckling resistance of the gusset plate, Cr is calculated with the following equation. 

 

Cr = ϕ𝐴 𝐹 (1 + 𝜆 ) /      (2.18) 

 

The compressive buckling resistance of the gusset plate is based on the slenderness 𝜆 =

  , which requires to first determine the critical effective length 𝐿 . In the latter 

equation, K is considered equal to 0.67, while 𝐿  is calculated as an average value between the 

three lengths (𝐿 , 𝐿 , 𝐿 ) resulted from the gusset plate geometry shown in Figure 2.19. This 

calculation is according to Hsiao et al. (2013). Furthermore, the radius of gyration of gusset 

plates 𝑟 is estimated using 𝑟 = 𝐼 𝐴⁄  where 𝐼 = 𝑊 𝑡 /12 is the gusset plate's moment of 
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inertia in its weak section. In this manner, the buckling resistance of gusset plate 𝐶 =

𝜙𝐴 𝐹 (1 + 𝜆 ) ⁄  is determined using 𝑛 = 1.34.  

 

 

Figure 2.19 HSS brace to gusset plate connection after Hsiao et al., 2013 

 

Based on the research conducted by Martinez-Saucedo and Packer (2009), the welding length 

has an influence over the net rupture of HSS braces due to the reduction of the cross-sectional 

area at the gusset plate slot. The cross-sectional capacity of the HSS brace is reduced due to 

shear lag. For this reason, a new clause 12.3.3.4 has been added to CSA/S16-14 to further reduce 

the effective area 𝐴  by a shear lag factor 𝑈  for all slotted HSS welded connections (ie. 

𝐴 = 𝑈𝐴 ). This function defining the cross-sectional efficiency is plotted in Fig. 2.20 and is 

shown a smooth transition across the three limit states observed during testing: i) yielding and 

necking, ii) net section fracture from the shear lag effect and iii) tube wall tear out from block 

shear as presented in CSA/S16 commentaries. 

 

 

4 fillet 
welds 

Cover 
plate 

HSS brace 
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Figure 2.20 Shear lag effects on slotted HSS brace ends (Martinez-Saucedo and Packer, 2009 

and CSA/S16 2004) 
 

 

The net fracture of HSS brace is calculated as: 

Tr = ϕu𝐴 𝐹       (2.19a) 

where ϕu =0.67 and Ane = AnU when 𝑥 ′ 𝐿 > 0.1 and Ane = An when 𝑥 ′ 𝐿  ≤ 0.1. Herein, 𝑥 ′ is 

the distance between the centre of gravity of half of the HSS cross-section taken from the edge of 

the connection plate (see Fig. 2.20) and Lw is the length of a single weld segment on the HSS (the 

usual case has the total weld length being 4Lw) according to CSA/S16, 2014. Hence: 

𝑈 = 1.1 −
′

≥ 0.8𝐴    𝑤ℎ𝑒𝑛 𝑥′ 𝐿 > 0.1    (2.19b) 

𝑈 = 1.0 𝑤ℎ𝑒𝑛 𝑥′ 𝐿 ≤ 0.1     (2.19c) 

 

HSS 
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In Figure 2.20, the bilinear approximation (solid line) given in the aforementioned equations was 

calibrated against experimental results (dashed line). It is noted that the curve suggested by 

CSA/S16-14 slightly underestimates the value of U to provide a conservative approach.  

The tensile resistance of HSS brace connection due to block shear failure is calculated using 

Equation (2.20). 

𝑇 = 𝜙 𝑈 𝐴 𝐹 + 0.6𝐴     (2.20) 

 

where 𝜙  is a factor taken as 0.75 for steel and 𝑈  represents the efficiency factor taken as 1.0 

for symmetrical blocks such as HSS brace. This equation has two parts: one is related to the net 

area in tension 𝐴 , whereas the other is associated with the gross area along the shear failure 

plane𝐴 . Since the gusset plate is not welded to the brace end (dimension perpendicular to brace 

length), there is no net area in tension, hence 𝐴 = 0 while 𝐴 = 4𝐿 𝐷  (assuming four fillet 

welds). The Agv and An is shown in Fig. 2.21. 

 

 

Figure 2.21 Illustration of Agv and An areas (Lumpkin, 2009) 

 

The HSS braces of the CBF systems are also prone to net fracture due to the reduction of the 

cross-sectional area of the brace at the gusset plate slot. This area can be reinforced with two 

cover plates. The tensile resistance of the brace with cover plates can be obtained using Eq. 

(2.21) where 𝜙 , 𝜙 and 𝑅  are taken as 0.75, 1.0 and 1.1, respectively (AISC 2005, Haddad and 

Tremblay 2006). 

𝑇 , = 𝑈 𝜙 𝑅 𝐴 𝐹 , + 𝜙𝐴 , 𝐹 ,     (2.21) 

Gusset plate 
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n the above equation, 𝐴  represents the cross-sectional area of the brace with the consideration 

of the gusset plate slot; 𝐴 ,  is the gross cross-sectional area of the added cover plate. 

 

2.5.1 The geometry of 2tg linear gusset plate 

The geometry of 2tg linear gusset plates can be determined graphically, using a computer-aided 

drafting program such as AutoCAD. This 2tgclearance is measured from the end of the brace to a 

line that is perpendicular to the brace centerline as seen in Figure 2.22.  

 

Figure 2.22 Geometry of gusset plate with 2tg clearance (Lumpkin, 2009) 

 

The centerline of the brace should intersect the working point (WP), which is defined as the 

intersection of the centerlines of the beam and column. With the WP established, it is possible to 

determine the gusset plate height (H) and width (W) by satisfying the equation given in AISC 

(20xx) and reproduced below.  

 

𝛼 + 𝑒 = 𝑒 tan 𝜃  + 𝛽 tan 𝜃     (2.22) 

 

where α and β are given in Figure 2.22. Herein, β is defined as the distance from the beam flange 

to the centroid of the gusset-to-column connection, α is defined as the distance from the column 

flange to the centroid of the column-to-beam connection, 𝑒  is half of the beam depth and 𝑒  is 

W-shape 

 beam 

W-shape 
column 
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half of the column depth. Thus, α and β essentially locate the centroids of the gusset-to-column 

and gusset-to-beam connections along the centerline of the brace. This graphical method may be 

used to construct the 2tg linear gusset plates. Equations for the height (H) and width (W) of the 

gusset plate are generated from the geometry shown in Figure 2.23. 

 

 

Figure 2.23 The gusset plate dimensions H and W are obtained graphically (after Johnson2005) 

 

𝐻𝑒𝑖𝑔ℎ𝑡 = ℎ + ℎ = (𝑥 + 𝐿 )𝑠𝑖𝑛𝛳 + ( 𝑏 + s)cos (𝜃)   (2.23) 

𝑊𝑖𝑑𝑡ℎ = 𝑤 +  𝑤 = ( − 𝑒 ) +
 ( )

    (2.24) 

 

As results, the value of x' can increase or decrease incrementally until a value satisfying Eq. 

(2.24) is found through convergence. 

2.6 Elliptical clearance gusset plate 

In 2005, Johnson has proposed the elliptical gusset plate. An 8tg elliptical clearance band was 

recommended instead of a linear 2tg clearance recommended by the code. It was concluded that 
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gusset plates with 8tg elliptical clearance may lead to thinner and more flexible brace-to-frame 

connections, which allow larger out-of-plane deflection of braces while supporting the maximum 

load transferred by the brace. By allowing the gusset plate to yield and rotate during brace 

buckling, the strain accumulation at the center of the brace is reduced, thus prolonging the life of 

the brace. It is noted that the gusset plate must not fail prior to brace fracture as required by the 

capacity design method. In order to reduce the size of the gusset plate, an 8tg elliptical clearance 

should be used for the brace-to-frame connection. The gusset plate geometry can be determined 

graphically, or mathematically using a procedure outlined by Kotulka (2007). 

 

2.6.1 Rectangular gusset plate geometry design (Kotulka 2007) 

Through experimental and analytical simulations by Yoo (2007), a value of 8tg was deemed to 

provide the greatest inelastic deformation capacity prior to brace fracture. A list of steps to 

design the geometry of a rectangular gusset plate with an elliptical clearance is provided by 

Kotulka (2007). To determine the gusset plate dimensions (HT, WT) and the location of the 

center of the ellipse, it is required to use an iterative process until three geometric conditions are 

met. Furthermore, once the geometry is deemed adequate through convergence, the gusset plate 

is designed to satisfy equations provided in Table 2.4. In case that the thickness of the gusset 

plate needs to be changed, the whole process is repeated until all previous requirements are met. 
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Chapter 3  

BRACE-TO-FRAME CONNECTIONS 

 

The brace-to-frame connection design considers the effect of brace forces in order to allow the 

best overall seismic performance of the system while maximizing the system ductility prior to 

brace fracture. The HSS brace members of the CBF system are expected to exhibit fracture 

failure caused by low-cycle fatigue (Kotulka, 2007, Hsiao et al., 2013). Providing adequate 

connections detailing, the HSS braces will be able to yield and buckle out-of-plane, thus to 

elongate and shorten in order to dissipate energy. When braces are still loaded in compression 

after they exhibited buckling, a plastic hinge is formed at the brace mid-span length. To allow an 

HSS brace member to deflect out-of-plan, the gusset plate needs to possess sufficient flexural 

capacity to accommodate the brace deformation. After several loading and unloading cycles, a 

plastic hinge is intended to form in the clearance band of the brace-to-frame gusset plate 

connection. In this chapter, design procedures for 2tg linear clearance gusset plate recommended 

by the code are presented first. Secondly, a more recent 8tg elliptical clearance approach is also 

described in detail. Finally, relevant studies on the connection of Pall friction dampers installed 

in-line with CBF braces are presented. The OpenSees model for these connections is also 

presented. 

 

To calculate the geometry of elliptical gusset plate shown Fig. 3.1, the procedure to follow is 

provided hereafter. The HT is assumed to be known and WT can be calculated as shown below: 

HT = b +Ntg      (3.10) 

WT = a + Ntg      (3.11) 

where N is considered 8 and tg is the thickness of gusset plate. From the above Eqs., it is required 

to determine a and b.  
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Figure 3.1 The gusset plate dimensions HT and WT obtained graphically (according to Kotulka, 
2007) 

 
 
From the triangle colored in green it results: ec +xb = eb/tanϴ or xb = eb/tanϴ - ec. 

From the orange triangle it results: WT –xb-xs = b/tanϴ or WT = b/tanϴ +xb +xs and Eq. (3.11) 

gives: 

a = WT-8tg = b/tanϴ +xb +xs- 8tg     (3.12) 

Using the yellow triangle provided in Fig. 3.1, x1 = lc cosϴ and the x coordinate is computed as: 

x = x1 +xs+x2= lccosϴ +xs+(bf/2 +s)cos2ϴ/sinϴ   (3.13) 

The y coordinate given in Fig. 2.24 is: 

y = lcsinϴ+ (bf/2 +s)cosϴ      (3.14) 

As shown in Figure 3.1, the ellipse is offset from the beam and column faces at a distance of 8tg. 

x 



 

46 
 

3.1 Modelling of gusset plate using ABAQUS 

Due to the simplification in the modelling of gusset plates in OpenSees, it is not possible to get 

the stress or strain distribution in the gusset plate. By using finite element software Abaqus, it is 

possible to investigate where stresses are concentrated in the gusset plates when braces buckle. 

In this light, all brace-to-frame connections modelled in the case study in Chapter 4 were verified 

to have the expected 2tg linear or 8tg elliptical clearance band. The model in Abaqus did not 

consider the frame action. The purpose of the Abaqus model is to verify that the geometry of the 

gusset plate provides the expected clearance band. 

There are 5 aspects of an element that characterizes its behaviour: type of elements, degrees of 

freedom, number of nodes (order of interpolation), formulation (Eulerian, Lagrangian, etc) and 

integration (Gaussian quadrature, reduced integration, etc). Shell elements are suitable for 

analyzing thin to moderately-thick shell elements with large nonlinear strain applications. In 

addition, higher-order elements are often used to avoid any hourglassing in the model, while 

reduced integration can be used to reduce the likelihood of shear locking to occur and to 

minimize computational time. Hence, all structural members are modelled as 8-node quadratic 

Shell element with reduced integration (S8R elements) to provide a relatively accurate result. 

The mesh size for braces and gusset plates are 30x15mm and 15x15mm, respectively. These 

mesh sizes were recommended by Hsiao et al. (2012) and illustrated in Figure 3.2. In his study, 

the finite element analysis was done in ANSYS using a 4-node quadrilateral shell element with 6 

DOF (SHELL 181). The material is defined as a bilinear elastic-inelastic steel behavior with 

Young modulus 200GPa and Poisson's ratio 0.3. 
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Figure 3.2 Finite element model in ANSYS by Hsiao et al. (2012) 

Hourglassing may occur when large point loads are applied on a thin plate shell. This 

phenomenon is due to the Gauss points exhibiting zero strains. To avoid these types of 

hourglassing, rigid links were introduced at the reference point (master), where the load is 

applied, to the HSS perimeter nodes (slave), in order to have a realistic load path in the 

model. To simplify the modelling of welds, the residual stresses and distortions due to the 

welding process are completely neglected. Hence, the welded connections were modeled 

using tie constraints. Using symmetry, the model can be further reduced by carefully 

selecting adequate boundary conditions. The bases of the gusset plates were fully constrained 

to mimic the frame-to-gusset welded connections. From past experiments, the expected stress 

distribution or yield line is shown in the following figure. 
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Figure 3.3 a) Boundary condition of gusset plate model in ABAQUS b) Expected yield line 
for 2tg linear clearance c) Expected yield line for 8tg elliptical clearance (Lumpkin, 2009) 

 

Using ABAQUS and the modelling technique mentioned above, in Fig. 3.4 are shown the 

stress distributions obtained for a brace – gusset plate connection designed for the Case study 

presented in the Chapter 4. The 2tg linear clearance model definitely has linear-like stress 

propagation, while the elliptical model shows stress concentrated around the brace, similar to 

what is observed in the experimental tests illustrated in Fig. 3.3 (Lumpkin E.J., 2009). 

 

 
Figure 3.4 Stress distribution for both types of clearance band resulted from ABAQUS 

models 
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3.2 Friction damper in-line with diagonal brace 

Previous studies have used mainly elastic-plastic models, which considered only the rectangular 

hysteresis shape characterised by the dry Coulomb friction, while the bearing phase has been 

ignored. Lukkunaprasit et al. (2004) have pointed out that previous studies did not take into 

account the nonlinear behaviour nor the slip-lock phase.  In this light, Morales (2012) developed 

a computer model of friction damper device able to integrate the slipping and the slip-lock phase 

using the finite element library of the OpenSees software. It is noted that, due to the lack of 

experimental tests on the bearing stage of friction dampers, the proposed computer model does 

not account properly for it. Also, the bearing and bolt tearing phases of friction damper are not 

calibrated with respect to experimental data, as there were none at that time. 

3.2.1 Modelling of friction damper in OpenSees 

To reproduce the smooth transition from elastic behaviour to friction sliding, the simulation of 

this behavioural type was replicated by using the Bouc-Wen material developed in the OpenSees 

software. A parametric study has been conducted by Morales (2012). To simulate the stick-lock 

behaviour that occurs when the available slip length is consumed and the end post-tensioned 

bolts of friction device hit the edge of slotted hole, Morales (2012) used the model proposed by 

Lukkunaprasit et al. (2004)and added a series of translational springs made of 

ElasticPerfectlyPlastic Gap materials defined in both oscillation directions (tension and 

compression). Failure of friction damper device may be considered when the seismic demand 

expressed in terms of storey-drift is greater than the available slipping length of friction damper 

and the post-tensioned bolts impact the edge of slotted hole driving the post-tensioned bolts to 

behave either in bearing or in shear. For the first time, Morales (2012) has shown that the length 

of the slotted hole is an important design parameter for friction damper device. Hence, on the one 

hand, if the length of the slotted hole is too small, the energy dissipation capacity of the device is 

greatly reduced and the slip-lock phase is encountered earlier. On the other hand, if the slip 

length is too big (e.g. 2.5%hs interstorey drift or greater), instability problems may occur and 

important permanent deformations are anticipated because the damper device does not possess a 

re-centering mechanism. 
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To capture the potential failure of friction damper, a MinMax material may be assigned to the 

ElasticPerfectlyPlastic Gap material to decouple the device when the maximum bolt bearing or 

shearing force is reached. The schematic representation of the friction-sliding brace is shown in 

Figure3.5. 

 

Figure 3.5 Schematic model and he hysteresis response including the bearing stage of a friction-
slipping brace (Tirca, 2015) 

 

As depicted, the device starts slipping when the slipping force, Ps is reached. The stiffness of the 

friction-sliding brace is the stiffness of the brace and the displacement at yielding (sliding) is Δy 

= Ps/Kb. As shown in Figure 3.5b, the available slipping distance is ±ua. When the demand is 

larger than the available slipping distance the bearing phase occurs. 

 

3.2.2 Calibration of parameters for the Bouc-Wen model 

The parameters involved in the Bouc-Wen model influence the shape of the hysteresis response. 

Thus, tuning the hysteresis response parameters in accordance with the frame system behaviour, 

is an important issue addressed by several researchers (Baber and Noori 1985, Foliente 1993, 

Haukaas and Der Kiureghian 2004, Song and Der Kiureghian 2006). To simulate the inelastic 

behaviour of friction dampers based on the Bouc-Wen (BW) model a parameter study regarding 

its hysteresis shape was conducted by Morales (2012) and is illustrated in Figure 3.6. A summary 

of findings and recommendations regarding friction damper modelling is listed below: 

 The BoucWen material is able to simulate the high nonlinear Coulomb friction and has 

the ability to represent different hysteresis shapes. It also ensures that there is a smooth 
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transition between the different phases of the friction damper, hence decreasing the 

likelihood of convergence problems. 

 Parameters γ and β control the shape of the hysteresis cycle and the exponent n influences 

the sharpness of the model in the transition zones. Let y, Pslip and k0 represent the 

yielding displacement, the slip force and the initial stiffness of the friction damper, which 

is the brace stiffness. 

𝛾 + 𝛽 =
∆

   𝑤ℎ𝑒𝑟𝑒   ∆ =  𝑎𝑛𝑑 𝑛 = 10   (3.15) 

 The effect of the parameter "exponent n" on the hysteresis response is illustrated in 

Figure 3.12. As n increases, a smooth model is obtained, which approaches the elasto-

plastic behaviour and better approximates the sharp transition zone. The restoring force 

Ps(du/dt,z) has a linear and a nonlinear component as: Ps(du/dt, z) = αkou +(1-α)koz 

where z is the hysteresis variable. 

 For BW model without pinching or degradation, the value of n = 10 gives an acceptable 

level of prediction because the difference is reduced rapidly throughout the evolution of 

the post yielding stage (Morales 2012). 

 The degradation process in stiffness and material related to loss of pretension force in 

bolts due to bolt impact and bearing were not considered. Thus, parameters controlling 

degradation were taken as:  

𝐴 = 1 𝑎𝑛𝑑 𝛼 = 𝐴 = 𝜈 = 𝜂 = 0    (3.16) 

 

 



 

52 
 

 
Figure 3.6 The effect of the parameter "exponent n" on the hysteresis response of Bouc-Wen 

model (Morales, 2012) 
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Chapter 4  

CASE STUDY OF A HOSPITAL CBF BUILDING WITH ELLIPTICAL VERSUS 

TRADITIONAL GUSSET PLATE BRACE-TO-FRAME CONNECTIONS 

 

In this chapter, a detailed design methodology is presented and a case study of a 4-storey hospital 

building located in Victoria, B.C. on Site Class C is illustrated. The proposed design method for 

CBFs with elliptical clearance brace-to-frame connections is developed considering the 

provisions for CBFs with linear clearance brace-to-frame connections provided in S16-2009 

standard.  

The case study is subjected to dynamic analyses by means of the linear modal response spectrum 

method using ETABS and the numerical integration nonlinear time-history method using the 

OpenSees software. The hospital building was subjected to a set of historical records selected 

and scaled to match the design spectrum (DS) for Victoria, B.C. For scaling, the procedure 

presented in ASCE/SEI 7-10 that was developed by Reyes and Kalkan (2011) was considered. A 

comparison between the response of CBFs with linear clearance gusset plate brace-to-frame 

connections and elliptical clearance gusset plate connections is presented. 

 

4.1 Design requirements for hospital buildings 

4.1.1 Building description and geometry 

The selected case study is a 4-storey hospital building, located on firm soil (Site Class C) in 

Victoria, B.C. The typical floor plan of the hospital is the same as that of the Lion Gate hospital 

located in Vancouver, B.C. (Sherstobitoff, 2004). As illustrated in Fig. 4.1, the hospital building 

covers a rectangular area of 21.5 m times 80.4 m. The seismic force resistant system consists of 

four chevron MD-CBFs in the N-S direction and four MD-CBFs with diagonal braces in the E-

W direction as presented in Fig. 4.2. All MD-CBFs are designed with tension-compression 

braces. The total building height is 18.2m, while the height of the ground floor is 5.0 m and that 

of typical floors is 4.4m. 
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Figure 4.1 Plan view of typical floor 
 

 

 
Figure 4.2 Elevation of braced frames: a) MD-CBFs with diagonal braces in E-W direction; b) 

Chevron MD-CBF in N-S direction 

 

Prior to the frame design, it is required to estimate all loads and to determine the sections of 

members that will resist the gravity load. In this manner, the total seismic weight of the building 

can be estimated with adequate precision. All gravity loads, such as dead load (D), live load (L) 

and snow load (S) are assumed to be uniformly distributed. The dead load for typical floor and 

roof is provided in Table 4.1, while relevant climatic data for snow load and seismic load (E) 

estimation is shown in Table 4.2. 

a) b) 
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Table 4.1 Dead load on structure 

DL on Typical floor (kPa) 
Material Load (kPa) 

Steel Deck with 100mm concrete cover 1.9 
Partition walls 1.0 
Mechanical components 0.3 
Ceiling 0.1 
Flooring 0.2 
  

Total: 3.5 
DL on Roof (kPa) 

Steel Deck with 100mm concrete cover 1.9 
Mechanical components 0.3 
Ceiling 0.1 
Green roof (saturated weight)  1.0 
Drainage and roof slope 0.4 
Roofing (insulation, roof membrane) 0.2 
  

 
Total: 3.9 

DL -Cladding (kPa) 
East-West walls 2.0 
North-South walls 1.0 

 

 

Herein, a CANAM composite steel deck (38 mm deep steel deck with concrete topping equating 

100mm thickness) was selected. Thus, for typical floor and roof, the dead load is 3.5 kPa and 3.9 

kPa, respectively. 

Table 4.2 Climatic data for Victoria, B.C., from NBCC 2010 

Location 
Snow load, 

[kPa] 
Wind 

Pressure, 
[kPa] 

Seismic Data 
[g] 

Ss Sr Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) PGA 
Victoria 1.1 0.2 0.57 1.2 0.82 0.38 0.19 0.6 

 

According to NBCC 2010, for Victoria, the computed snow load at the roof level using Eq. (2.1) 

is S= 1.25[1.1(0.8 × 1.0 × 1.0 × 1.0) + 0.2] = 1.35 𝑘𝑃𝑎 , where IS=1.25 for post-disaster 

category buildings. The live load is presented in Table 4.3. 
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Table 4.3 Live load and Snow load on building 

Floor 
Minimum Specified 

Live Load (kPa) 
Use and Occupancy 

Roof 1.0 Flat roof with snow load = 1.35 kPa 

4th floor 
2.4 Office and Recovery area, light equipment 

3rd floor 

2nd floor 3.6 Operation room and laboratories 

Ground floor 4.8 Lobby and Cafeteria 

 

The building structure is composed of a gravity system and a lateral force resisting system 

(LFRS). The gravity system is designed to withstand the maximum factored load obtained from 

the following load combinations: 

𝑎)   1.4𝐷        (4.1a) 

𝑏)   1.25𝐷 + 1.5𝐿 + 0.5𝑆      (4.1b) 

c)   1.25𝐷 + 1.5𝑆 + 0.5𝐿      (4.1c) 

All secondary beams, girders, and columns are selected as W-sections, while brace members are 

made of hollow structural sections (HSS). In addition, all columns and beams were made of CSA 

G40.21 steel with nominal yield strength Fy=345 MPa and Fu=450 MPa. The summary of the 

design is provided in Table 4.4 for secondary beams and girders and in Table 4.5 for gravity 

columns. Secondary beams and girders were selected such that the factored moment resistance of 

the member 𝑀  is larger than the maximum bending moment 𝑀 , due to gravity loads 

(𝑀 > 𝑀 , ). However, in some cases, the serviceability criterion, which limits the beam 

deflection to be smaller than l/360, where l is the total beam length in millimetres, governed the 

selection of beam’s sections. Gravity columns were designed such that the axial compressive 

resistance 𝐶  to be greater than the factored axial compressive force 𝐶 . It is noted that the live 

load reduction factor was taken into consideration as per NBCC 2010 requirements. 
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Table 4.4 Beam sizes of gravity system 

Beam Sections (from Gravity Design) 

Storey 
Secondary beam 

(6.5m span) 
Secondary beam 

(8m span) 
Interior Girder 

(4.7m span) 
Edge Girder 
(4.7m span) 

Roof W310x21 W310x28 W360x33 W310x28 
3rd& 4th floor W310x21 W310x28 W360x33 W310x28 

2nd floor W310x24 W310x33 W360x39 W310x33 
 
 

Table 4.5 Gravity column sections for 4-storey hospital building 

Column Sections  (from Gravity Design) 
Storey Interior Columns Corner and Edge Columns 
Roof W200x42 W200x36 

4th floor W200x42 W200x36 
3rd floor W200x71 W200x52 
2nd floor W200x71 W200x52 

 

The columns of LFRS are designed to withstand the maximum factored load obtained from the 

load combinations presented as equations 4.2a and 4.2b. The earthquake load combination (Eq. 

4.2b) governs the design of LFRS at all floors.  

𝑎)   1.25𝐷 + 1.4𝑊 + 0.5𝐿 𝑜𝑟 0.5𝑆     (4.2a) 

𝑏)   1.0𝐷 + 1.0𝐸 + 0.5𝐿 + 0.25𝑆     (4.2b) 

As mentioned in Section 2.1.3, the empirical fundamental period of the building in the direction 

of loading, Ta, is computed as 0.025hn for braced frames, where hn is the building height. Thus, 

the fundamental period is 𝑇 = 0.025 × 18.2 = 0.455 𝑠 .According to NBCC 2010, when a 

dynamic analysis is provided, the computed fundamental period shall not be taken greater than 

2Ta. In this light, the design period used for the preliminary design of the studied building is 

selected as 2Ta= 0.91s. Then, a numerical model of the structure was developed to assess its 

dynamic response based on modal response spectrum analysis using the ETABS computer 

program (CSI, 2016). Based on the equivalent static force procedure (ESFP), the base shear, V is 

computed from the following equation: V = S(Ta)Mv IEW/(Rd R0). The 5% damped spectral 
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response acceleration S(Ta)= 0.459g ~ 0.46g corresponding to Ta= 0.91s is obtained by 

interpolation. The factor accounting for higher modes effect on base shear is Mv =1.0, while the 

earthquake importance factor IE for post-disaster buildings is 1.5 (IE = 1.5). For MD-CBFs, the 

values of the ductility-related and overstrength-related force modification factors are Rd=3.0 and 

R0= 1.3, respectively. The total seismic weight of the building, W, including 25% snow load at 

the roof level is 32807 kN. The seismic weight of each floor is provided in Table 4.6. Thus, 

according to the ESFP, the base shear is V = 0.46x1.0x1.5x32807/(3x1.3) = 5804 kN. 

Table 4.6 Seismic weight 

Floor 
Dead load Additional framing load 

Total 
kN Load 

kPa 
Area 
m2 

Total DL 
kN 

Column/Beam 
kN 

Snow 25% 
kN 

Facade 
kN 

4 3.9 1759 6861 413 594 677 8544 
3 3.5 1759 6157 475 0 1353 7985 
2 3.5 1759 6157 540 0 1353 8050 
1 3.5 1759 6157 625 0 1445 8228 
            TOTAL 32807 

 

 The storey force acting on the SFRS with torsional effect is determined using Eq.(4.3).  

𝐹 = 𝐹
∑

±
∑

      (4.3) 

In the equation above, the first term is related to the distribution of shear force among the MD-

CBFs displaced in the direction of calculation and the second term is related to the shear 

component caused by torsion where all MD-CBFs regardless of their orientation participate.  In 

this light, SFRSs that are located further from the CR (center of rigidity) are expected to have 

larger brace sections because of the torsion effect. In the N-S direction, the additional shear 

caused by torsion account for 33% and 10% in the case of outer chevron, and inner chevron, 

respectively. However, in the E-W direction, the 2% contribution of the shear caused by torsion 

is negligible. According to Fig. 4.1, the plan is symmetric in both orthogonal directions and the 

CR and CM are in the same location leading to ex = 0. Thus, the eccentricity is equal to 

accidental eccentricity. 
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The brace sections obtained through the preliminary design are shown in Table 4.7. From the 

modal response spectrum analysis using ETABS software, the resulted first mode period is 

T1=0.559 s in the N-S direction and T1 =0.561 s in the E-W direction, and the associated dynamic 

base shear is Vdyn,N-S =7848 kN and Vdyn,E-W = 8719 kN, respectively. It is noted that both values 

are greater than V= 5804 kN resulted from the equivalent static force procedure provided in the 

NBCC. The dynamic base shear Vdyn is significantly larger than the design base shear; hence 

members of MD-CBFs are redesigned and upgraded locally using the dynamic storey forces 

obtained in ETABS to meet the strength criteria. This iterative process adds more stiffness to the 

building, which shortens the dynamic period and is repeated until the increase in Vdyn no longer 

requires any structural alteration. During each iteration, the effects of P-∆ were considered in the 

analysis when required. The P-∆ effects amplify the seismic force. If the stability coefficient 𝜃  

is greater than 0.1, the P-∆ effect must be taken into account during the design by amplifying the 

storey forces Fx by a factor U2x  associated to that floor. If the stability coefficient 𝜃  is lesser 

than 0.1, the effects of P-∆ is negligible and can be ignored in the design. 

𝑈 = 1 + 𝜃     𝑤ℎ𝑒𝑟𝑒   𝜃 =
( ∆ )    (4.4) 

where Px is the cumulated gravity load computed using the load combination D+0.5L+0.25S 

above the floor x under consideration, Rd∆x is the maximum inelastic interstorey drift at floor 

level x, Vx is the design seismic storey shear, while hsx and Ro correspond to the storey height of 

floor x and the overstrength-related force modification factor, respectively. Due to the strict drift 

limit set for post-disaster buildings, calculations show that in both directions, P-∆ effect can be 

neglected at all floors. A summary of the design progression is shown in Tables 4.7, 4.8 and 4.9. 

 

Table 4.7 Brace sections of MD-CBF1 & MD-CBF4 corrected as per ETABS analysis (N-S) 

Outer chevron brace in N-S direction (MD-CBF1 and MD-CBF4) 
Braces from ESFP 

at T=0.91s 
Tdyn=0.559s 

Cf/Cr 
from 

ESFP 

1st iteration 
Tdyn=0.495s 

Cf/Cr 
from 

ETABS 

2nd iteration 
Tdyn=0.469s 

Cf/Cr 
from 

ETABS 

3rd iteration 
Tdyn=0..471s 

Cf/Cr 
from 

ETABS 
HSS 152x9.5 0.90 HSS 178x9.5 0.87 HSS 178x13 0.80 HSS 178x13 0.82 
HSS 178x13 0.82 HSS 203x13 0.80 HSS 203x13 0.95 HSS 203x13 0.99 
HSS 203x9.5 1.00 HSS 203x16 0.87 HSS 254x13 0.80 HSS 254x13 0.82 
HSS 254x13 0.65 HSS 254x13 0.87 HSS 305x13 0.76 HSS 305x13 0.79 



 

60 
 

 

Table 4.8 Brace sections of MD-CBF2 & MD-CBF3 corrected as per ETABS analysis (N-S) 

Inner chevron brace in N-S direction (MD-CBF2 and MD-CBF3) 
Braces from 

ESFP at T=0.91s 
Tdyn=0.559s 

Cf/Cr 

from 
ESFP 

1st iteration 
Tdyn=0.495s 

Cf/Cr 

from 
ETABS 

2nd iteration 
Tdyn=0.469s 

C2/Cr 

from 
ETABS 

3rd iteration 
Tdyn=0.471s 

Cf/Cr 

from 
ETABS 

HSS 152x8 0.79 HSS 152x9.5 0.95 HSS 152x13 0.88 HSS 152x13 0.91 

HSS 152x13 0.91 HSS 178x13 0.81 HSS 178x13 0.96 HSS 203x9.5 0.95 

HSS 178x9.5 1.00 HSS 203x9.5 0.99 HSS 203x13 0.91 HSS 203x13 0.95 

HSS 203x9.5 0.97 HSS 203x16 0.87 HSS 254x13 0.78 HSS 254x13 0.81 

 
 

Table 4.9 Brace sections corrected according to ETABS analysis (MD-CBF5, 6, 7 and 8 in E-W) 

Tension-Compression diagonal braces of MD-CBF in E-W direction 
Braces from 

ESFP at T=0.91s 
Tdyn=0.561s 

Cf/Cr 

from 
ESFP 

1st iteration 
Tdyn=0.506s 

Cf/Cr 

from 
ETABS 

2nd iteration 
Tdyn=0.486s 

Cf/Cr 

from 
ETABS 

3rd iteration 
Tdyn=0.483s 

Cf/Cr 

from 
ETABS 

HSS 152x8 0.70 HSS 152x9.5 0.92 HSS 152x9.5 0.99 HSS 152x13 0.83 

HSS 152x13 0.83 HSS 178x13 0.81 HSS 178x13 0.85 HSS 178x13 0.88 

HSS 178x9.5 0.90 HSS 203x9.5 0.98 HSS 203x13 0.80 HSS 203x13 0.82 

HSS 178x13 0.93 HSS 203x16 0.85 HSS 203x16 0.88 HSS 203x16 0.90 

 

On the 4th iteration, no structural members were required to be modified and thus, the sections 

obtained from the 3rd iteration are kept. Using the updated sections, the first mode period of the 

building decreased to TN-S = 0.471 s and TE-W = 0.483 s while the base shear increased to Vdyn,N-S 

= 9621kN and Vdyn,E-W = 9349 kN. The distribution of base shear along the building height is 

provided in Table 4.10. 

Table 4.10 Distribution of base shear along the building height according to dynamic distribution 

Storey 
Storey force (N-S direction) Storey force (E-W direction) 

[kN] [kN] 
Roof 3991 3982 

4th storey 2429 2582 

3rd storey 1748 1799 

2nd storey 1181 1258 

Total base shear, Vdyn 9349 9621 
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Torsional sensitivity is determined by calculating the maximum of all values of 𝐵  in both 

principle directions at each floor 𝑥 using the following equation: 

 

𝐵 = 𝛿 𝛿⁄      (4.4) 

 

where 𝛿  is the maximum storey displacement at the extreme points of the structure at level x 

induced by the equivalent static forces acting at distances ±0.1Dnx from the centre of mass at each 

floor, while  𝛿  is the average of the displacements at the extreme points of the structure at 

level x produced by the above forces. If any of the values of 𝐵  exceeds 1.7 and 𝐼 𝐹 𝑆 (0.2) >

0.35, the building is considered torsional sensitive. In this case study, during each iteration, the 

maximum ratio resulted at the 3rd floor in both directions, i.e. B3x=1.32 for E-W and B3y=1.53 for 

N-S, which are both less than 1.7; thus the building is not torsional sensitive. 

 
 

4.1.2 Design of buildings with MD-CBF earthquake resisting system 

A detailed design procedure of the MD-CBF considered in the last iteration (E-W) direction is 

presented for exemplification. The demand to capacity ratio is also included for each structural 

member selected. This ratio shows the amount of reserve capacity of the SFRSs of building to 

resist a severe earthquake. 

4.1.2.1 Design of braces 

Braces are the first members to be designed within a MD-CBF system. These elements are 

proportioned to resist the storey shear force in combination with the gravity load component 

(DL+0.5LL+0.25SL). Based on the capacity design concept, the shear force developed in the ith 

floor is equally distributed to both tension and compression braces, which belong to the same 

storey. Braces were made of square Hollow Structural Sections (HSS) and comply with G40.21-

350W Class C steel (cold formed) having Fy= 350 MPa and Fu= 450 MPa. 

The brace element is designed to resist compression and tension factored forces (Cf, Tf) such that 

Cf≤Cr and Tf≤ Tr, where Cr and Tr are the member resistance in compression and tension, 

respectively. Herein, Cr and Tr are calculated as: Cr = 0.9AFy(1+λ2n)-1/n and Tr = 0.9AFy. In these 

formulas λ is the slenderness ratio, A is the cross-sectional area and Fy is the steel strength. 
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For this study, only Class 1 HSS brace sections were selected from CSA/S16-09. The 

slenderness ratio 𝐾𝐿 𝑟⁄  of bracing members shall not exceed 200 (𝐾𝐿 𝑟⁄ < 200). Furthermore, 

when the specified short-period spectral acceleration ratio, 𝐼 𝐹 𝑆 (0.2), is equal to or greater 

than 0.75 or the specified one-second spectral acceleration ratio, 𝐼 𝐹 𝑆 (1.0), is equal to or 

greater than 0.30, the slenderness ratio of HSS bracing members shall not be less than 70. 

𝐼 𝐹 𝑆 (0.2) = 1.5 × 1.0 × 1.20 = 1.80   > 0.75

𝐼 𝐹 𝑆 (1.0) = 1.5 × 1.0 × 0.38 = 0.57   > 0.30

  → 𝐾𝐿
𝑟 ≥ 70   (4.5) 

According to Clause 27.5.3.2 of CSA/S16, for HSS members with 𝐾𝐿 𝑟⁄ < 100, the width-to-

thickness ratio 𝑏 𝑡⁄  shall be smaller than 330 𝐹⁄ , which is equal to 17.64 for Fy = 350 MPa. 

Herein, b0 = (b-4t) where b is the width and t is the wall thickness of HSS member. 

The tension-compression diagonal brace sections resulted from design in the E-W direction are 

summarized in Table 4.11. Chevron brace sections resulted from design in the N-S direction are 

given in Table 4.12 and Table 4.13. In these tables, the gross area of braces 𝐴 , the width-to-

thickness ratio 𝑏 𝑡⁄ , the radius of gyration r, the corresponding slenderness ratio 𝐾𝐿 𝑟⁄ , the 

brace compression resistance 𝐶  and the reserve capacity in compression 𝐶 𝐶⁄  are also given. 

For all braces, the demand-to-capacity ratio 𝐶 𝐶⁄  shall be smaller than 1.0. For preliminary 

design, the effective length of the brace 𝐾𝐿 was considered as 0.9𝐿 to account for the length of 

brace-to-frame connections at brace ends. Therefore, the effective length of braces displaced in 

the E-W direction is 6180 mm and 5790 mm for ground floor braces and typical floor braces, 

respectively. Similarly, the effective length of braces displaced in the N-S direction is 5760 mm 

for braces at ground floor and 5350 mm for those at typical floor. 

 

Table 4.11 Design summary of tension-compression braces of MD-CBFs in E-W direction 

St. 
0.9Lb HSS Section Abrace b/t r KL/r λ Cr Cf/Cr Tr Tf/Tr 

m 
 

mm <17.64 mm <200 - kN <1.0 kN <1.0 
4 5.79 152x152x13 6680 15.00 56.1 103 1.37 855 0.82 2104 0.33 
3 5.79 178x178x13 7970 7.69 66.5 87 1.16 1272 0.89 2511 0.44 
2 5.79 203x203x13 9260 14.74 76.9 75 1.00 1734 0.83 2917 0.49 
1 6.18 203x203x16 11200 9.69 75.3 82 1.09 1914 0.91 3528 0.49 
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Table 4.12 Design summary of inner chevron braces of MD-CBF2 and MD-CBF3 (N-S) 

St. 
0.9Lb HSS Section Abrace b/t r KL/r λ Cr Cf/Cr Tr Tf/Tr 

m 
 

mm <17.64 mm <200 - kN <1.0 kN <1.0 
4 5.35 152x152x13 6680 14.74 56.1 95 1.27 951 0.90 2104 0.38 
3 5.35 203x203x9.5 7150 11.62 78.4 68 0.91 1469 0.95 2252 0.59 
2 5.35 203x203x13 9260 8.80 76.9 70 0.93 1870 0.95 2917 0.58 
1 5.76  254x254x13 11800 15.54 97.6 59 0.79 2714 0.80 3717 0.57 

 

Table 4.13 Design summary of outer chevron braces of MD-CBF1 and MD-CBF4 (N-S) 

St. 
 

Leff HSS Section Abrace b/t r KL/r λ Cr Cf/Cr Tr Tf/Tr 
m 

 
mm <17.64 mm <200 - kN <1.0 kN <1.0 

4 5.35 178x178x13 7970 9.69 66.5 80 1.07 1393 0.82 2511 0.42 
3 5.35 203x203x13 9260 8.80 76.9 70 0.93 1870 0.99 2917 0.61 
2 5.35 254x254x13 11800 15.54 97.6 55 0.73 2846 0.82 3717 0.61 
1 5.76 305x305x13 14400 19.46 118.0 50 0.65 3697 0.78 4536 0.62 

 

As resulted from Tables 4.12 and 4.13, for the bottom floors braces the slenderness ratio is less 

than 70 as recommended by CSA/S16 standard. To increase the slenderness ratio, one can 

increase the span between grid lines B and C from 8.0 m to 9.0 m to change the configuration of 

the braces or to increase the number of braces in order to reduce the section size. However, in the 

US steel design standard, it is not required to select braces with kL/r > 70. 

 

4.1.2.2 Design of beams and columns 

The goal of seismic design is to assure adequate strength, stiffness, and energy dissipation 

capacity for the seismic force resisting system. The current standard requires that all adjacent 

members and connections of bracing members of CBFs to be designed to resist forces 

corresponding to brace members’ capacity. A summary of the design process is provided below. 

All beams and columns were made of W-sections complying with ASTM A572 Grade 50 steel 

with 𝐹 = 345 MPa and 𝐹 = 450 MPa. For I-shape Class 1 and 2 members subjected to axial 

compression and bending, the following interaction equation is used: 
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+ 0.85 ∙ 𝑈 ∙ < 1.0   𝑤ℎ𝑒𝑟𝑒   U =
⁄

   𝑎𝑛𝑑   C =
∙

  (4.6) 

where the coefficient ω1 is taken as 1.0 for members subjected to distributed loads or a series of point 

loads between supports and 0.85 for members subjected to a concentrated load or moment between 

supports, while the Euler buckling load C  is dependent on the moment of inertia about x-x axis of the 

section 𝐼  and the beam clearance length L. 

Similarly, for I-shape Class 1 and 2 members subjected to axial tensile force and bending moments, 

equation 4.7 can be used. 

+ < 1.0      (4.7) 

As mentioned in Chapter 2, to design the beams of the CBF system with Rd> 1.5, two scenarios 

of braces buckling in compression and yielding in tension are considered: 

 a) Braces have reached the stage of post-buckling and the beam has lost its braces 

support. Thus, after buckling is experienced by the compressive brace, only the probable 

post-buckling strength estimated as 𝐶 ′ = 𝑚𝑖𝑛 𝐶 𝑅 /𝜑 ,   0.2𝐴 𝑅 𝐹  is expected in the 

compression braces. The braces in tension are expected to develop the probable tensile 

strength, Tu. However, for buildings less than 4-storey height, 0.6Tu is allowed to be used 

instead, where Tu=AFyRy. 

 b) Prior to buckling, the beam of the chevron braced frame system is supported by braces 

at its mid-span. In this scenario, brace members are expected to be able to develop the 

probable buckling strength Cu in addition to the probable tensile strength Tu. Again, for 

buildings less than 4-storey height, 0.6Tu is allowed. The probable compressive strength 

is computed as 𝐶 = 𝑚𝑖𝑛 1.2𝐶 𝑅 /𝜑 ,   𝐴 𝑅 𝐹  where 𝜑 = 0.9 and 𝑅 𝐹 = 460 𝑀𝑃𝑎. 

Herein, RyFy is the probable steel stress for HSS brace members. 

The value of 𝑇 , 𝐶  and 𝐶 ′ for each HSS brace computed with 𝑅 𝐹 = 460 𝑀𝑃𝑎 is listed in the 

tables below: 
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Table 4.14 Probable resistance of brace members of MD-CBFs in the E-W direction 

MD-CBF5, MD-CBF6, MD-CBF7 and MD-CBF8 
Floor HSS section Tu (kN) 0.6 Tu (kN) Cu (kN) Cu' (kN) 

4 HSS 152x152x13 3073 1845 1498 615 
3 HSS 178x178x13 3666 2200 2229 733 
2 HSS 203x203x13 4260 2556 3038 852 
1 HSS 203x203x16 5152 3092 3354 1030 

 
 

Table 4.15a Probable resistance of brace members in the N-S direction: inner MD-CBFs 

MD-CBF2 and MD-CBF 3 

Floor HSS section Tu 
(kN) 

0.6Tu 
(kN) 

Cu 
(kN) 

Cu' 
(kN) 

4 152x152x13 3073 1844 1666 615 
3 203x203x9.5 3289 1974 2574 658 
2 203x203x13 4260 2556 3277 852 
1 254x254x13 5428 3257 4756 1086 

 
 

Table 4.15b Probable resistance of brace members in the N-S direction: outer MD-CBFs 
 

MD-CBF1 and MD-CBF4 

Floor HSS section Tu 
(kN) 

0.6Tu 
(kN) 

Cu 
(kN) 

Cu' 
(kN) 

4 178x178x13 3666 2200 2441 733 
3 203x203x13 4260 2556 3277 852 
2 254x254x13 5428 3257 4987 1086 
1 305x305x13 6624 3974 6478 1325 

 

Beam member sections, as well as the axial force and bending moment sustained by these W-

shape beams are provided in Table 4.16 (E-W) and Tables 4.17 and 4.18 (N-S). 

 
Table 4.16 Beams design of MD-CBFs in E-W direction 

 

Floor 
Beam Cf Cr Tf Tr Mf Mr Comp. Tension 

section kN kN kN kN kN.m kN.m Eq. 4.6 Eq. 4.7 
4 W360x64 1662 2389 1662 2564 107 354 0.98 0.95 
3 W410x85 2724 3240 1562 3402 88 537 0.99 0.62 
2 W460x97 3185 3733 2119 3875 88 677 0.97 0.68 
1 W460x106 3358 4098 2443 4253 98 742 0.94 0.71 
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Table 4.17 Beam design of inner chevron MD-CBF2 and MD-CBF3 in N-S direction 

 

Floor 
Beam Cf Cr Tf Tr MfDL+0.5LL+0.25SL+E Mr Comp. Tension 

section kN kN kN kN kN.m kN.m Eq. 4.6 Eq. 4.7 
4 W920x201 1588 7730 1588 8064 1762 2600 0.78 0.87 
3 W920x201 2441 7853 1483 8064 1886 2600 0.93 0.91 
2 W920x253 2773 9938 2272 10175 2411 3420 0.88 0.93 
1 W920x313 3507 12252 2822 12537 3242 4220 0.94 0.99 

 

Table 4.18 Beam design of outer chevron MD-CBF1 and MD-CBF4 in N-S direction 
 

Floor 
Beam Cf Cr Tf Tr MfDL+0.5LL+0.25SL+E Mr Comp. Tension 

Section kN kN kN Kn kN.m kN.m Eq. 4.6 Eq. 4.7 
4 W920x223 2045 8785 2045 9009 2103 2960 0.85 0.94 
3 W920x253 2944 99930 2101 10175 2443 3420 0.90 0.92 
2 W920x313 3827 12252 3142 12537 3073 4220 0.93 0.98 
1 W920x381 4237 14980 3904 15309 3957 5280 0.92 0.99 

 

The columns were assumed to be continuous over each two-storey. Similar to CBF beam design, 

columns must be sized by considering the minimum compression force resulted from the two 

scenarios: 

 Assuming that all braces reached 𝐶  and 0.6Tu, the columns of CBF shall carry the tributary 

gravity load associated with (1.0DL+0.5LL+0.25SL) in combination with the axial load due 

to brace effects 𝐶  and 0.6𝑇 . 

 By considering 𝑅 = 1  and 𝑅 = 1.3 , the columns of CBF is designed to resist the 

factored load combination (1.0DL+0.5LL+0.25SL+1.0E). 

For W-shape column members subjected to axial compression and bending, the following interaction 

equation is used: 

+ 0.85 ∙ 𝑈 ∙ < 1.0   where 𝑀𝑓 = 0.2𝑍𝐹𝑦 and 𝑀𝑟 = 𝜙𝑍𝐹𝑦  (4.8) 

where Z is the plastic section modulus of the column section and 𝜙 is taken as 0.9. A minimum of 

0.2Mp of the column should be considered for column’s design. Columns should meet the 
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requirement of Class 1 or Class 2 beam-column. The summary of CBF column design is presented in 

Table 4.19 and Table 4.20 (E-W), as well as in Table 4.21 and Table 4.22 (N-S). 

Table 4.19 Exterior Column design of MD-CBFs in E-W direction 
 

Floor 
Height Column Ag λ Cf Cr U1 Mfx Mrx 

Comp. 
Check 

m section mm2 - kN kN - kN kN Eq. 4.8 
Roof 4.4 W310x79 - - 204 - - - - - 

4 4.4 W310x79 10100 0.93 1383 2032 0.63 90 403 0.87 
3 4.4 W360x216 - - 3057 - - - - - 
2 5.0 W360x216 27600 0.66 5299 7038 0.63 298 1342 0.94 

 
 

Table 4.20 Interior Column design of MD-CBFs in E-W direction 
 

Floor 
Height Column Ag λ Cf Cr U1 Mfy Mry 

Comp. 
Check 

m section mm2 - kN kN - kN kN Eq. 4.8 
Roof 4.4 W310x107 - - - - - - - - 

4 4.4 W310x107 13600 0.76 2457 3201 0.75 56 254 0.96 
3 4.4 W360x216 - - - - - - - - 
2 5.0 W360x216 27600 0.66 5004 7038 0.68 153 687 0.90 

 
 
 

Table 4.21 Column design of inner chevron MD-CBF2 and MD-CBF3 in N-S direction 
 

Floor 
Height Column Ag λ Cf Cr U1 Mfx Mrx 

Comp. 
Check 

m section mm2 - kN kN - kN kN Eq. 4.8 
Roof 4.4 W310x86 - - - - - - - - 

4 4.4 W310x86 11000 0.92 1591 2232 0.63 99 447 0.90 
3 4.4 W360x287 - - - - - - - - 
2 5.0 W360x287 36600 0.65 6227 9422 0.63 407 1830 0.85 
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Table 4.22 Column design of outer chevron MD-CBF1 and MD-CBF4 in N-S direction 
 

Floor 
Height Column Ag λ Cf Cr U1 Mfx Mrx Comp. Check 

m section mm2 - kN kN - kN kN Eq. 4.8 
Roof 4.4 W310x107 - - - - - - - - 

4 4.4 W310x107 13600 0.76 2157 3201 0.64 124 558 0.86 
3 4.4 W360x347 - - - - - - - - 
2 5.0 W360x347 44200 0.64 8560 11430 0.63 500 2249 0.94 

 

Thus far, the same sections are for MD-CBF for both 2tg linear clearance models and 8tg 

elliptical clearance models. These sections are showed for MD-CBF (E-W) in Figure 4.3. 

 

 
Figure 4.3 Members’ section of MD-CBF in E-W direction 

 
 

4.1.3 Brace-to-frame connection design 

Current proceedings recommend to use a gusset plate with 2tg linear clearance to provide 

sufficient yield mechanism in the gusset plate connecting braces to frames, where tg is the 

thickness of the gusset plate. Using this linear clearance, it allows more cycles to be exhibited by 

the braces. Research conducted on linear clearance band of gussets with different clearance-to-
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thickness ratios, weld lengths and angles are provided in the literature. Results showed that the 

2tg linear clearance leads to satisfactory brace performance. However, from the literature resulted 

that tests were done without considering the complete frame action and excluded the deformation 

demand resulting from cyclic inelastic axial and post-buckling deformation of the brace. Hence, 

in practice, it was shown that the linear clearance models still limit the inelastic cyclic 

deformation of braces before brace experiences fracture failure. 

 Recent studies propose an elliptical clearance model to provide a better yield mechanism 

in the gusset plate. Through experimental testing, the elliptical model improved the cyclic and 

inelastic performance of the frame and provided better rotational capacity, while being smaller 

and hence the brace’s gusset plate connections could be more economical. For the elliptical 

model, different clearance-to-thickness ratio, weld length and angles were considered in testing. 

These results indicated that the 8 times the thickness of the gusset plate, 8tg, provides the best 

performance among the elliptical clearance models. For these reasons, the following gusset plate 

design details will utilize the 8tg elliptical clearance model to further improve the building 

response.  

Other related recommendations that were proposed are listed below: 

 Weld thickness should be bigger than 0.9 times the thickness of the plate. 

 Thinner gusset plate tends to perform much better; thick plates will increase the stiffness 

of the frame, hence attracting more loads to the frame. 

Sample Calculation for B.F.1 and B.F.2 at the roof level: 

 The details on how to determine the gusset plate geometry for both 2tg linear and 8tg 

elliptical clearance models are shown below. In this study, the axial force from the HSS brace is 

transferred to the gusset plate through four E49XX electrode fillet welds with the ultimate 

strength of Xu=490MPa. The first step in design is to assume a weld led width 𝐷 . In practice, 

the maximum size for a single pass weld is 8mm (Kotulka, 2007). In this manner, the required 

length of the weld can be determined using the following equation. 

𝐿 =
(   ; )

,
   𝑤ℎ𝑒𝑟𝑒   𝑉 , = min

0.67𝜑 𝐴 𝐷 𝐹
  0.67𝜑 0.707𝐷 𝑋

   (4.9) 
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Herein, 𝑉 ,  represents the strength per unit length of the weld. The calculated weld length was 

then rounded up to the next 1/8" increment for constructability and practical reasons. From 

geometry, the Whitmore width Ww can be calculated using the following equation: 

 

𝑊 = 2𝐿 tan 30 + 𝑏     (4.10) 

Next, preliminary gusset plate thicknesses 𝑡 ,  can be determined based on the yielding of the 

Whitmore width cross-section, the tensile resistance of metal base and the fracture of Whitmore 

width and, as resulted from Equations 4.11, 4.12 and 4.13, respectively. 

The minimum required gusset plate thickness 𝑡 ,  associated to yielding of gusset plate can be 

derived from Equation 2.17 of Chapter 2 as such: 

𝑡 , =       (4.11) 

Similarly, for the tensile resistance of metal base (gusset plate) 𝑇 = 𝜑𝐴 𝐹 , where𝐴  is 

assumed to be equal to 2 times the product of 𝐿  x 𝑡  (ie. 𝐴 = 2𝐿 𝑡 ), 𝜑 = 0.9 and the 

required thickness of gusset plate is calculated as: 

𝑡 , =      (4.12) 

Finally, using Equation 2.19a with 𝐴 = 𝑊 𝑡 , the minimum required gusset plate thickness 

related to net fracture of Widthmore width is: 

𝑡 , =
 (   ; )

 where 𝜑 = 0.75  (4.13) 

The gusset plate thickness 𝑡 ,  was considered and rounded up to the next 1/8" increment. 

Lastly, the buckling capacity of the gusset plate (Eq. 2.18), the tensile resistances due to block 

shear failure (Eq. 2.20) and net rupture of HSS brace with shear lag effect (Eq. 2.21) are verified 

using the obtained thickness of gusset plate. As mentioned in Chapter 2 Table 2.4, the 

compressive buckling capacity of the connection is C = 0.9A F (1 + λ ) ⁄  where A =

𝑊 𝑡  in this case. Similarly, the tensile resistance of HSS brace due to block shear failure is 

verified using 𝑇 = 𝜑 𝑈 𝐴 𝐹 + 0.6𝐴  where 𝐴 = 0 and 𝐴 = 4𝑡 𝐿 . Finally, 
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the tensile resistance of the gusset plate due to block shear failure is computed as 𝑇 =

𝜑 𝑈 𝐴 𝐹 + 0.6𝐴  using 𝐴 = 𝑡 𝑏  and 𝐴 = 2𝑡 𝐿 . 

These steps are repeated until all requirements are met. It is also noted that the initially estimated 

weld leg width Dw should be incremented to examine other possible connection designs. During 

the initial design phase, the overall height HT and width WT are often too large. By increasing 

Dw, shorter weld length Lw is achieved, which in turn produces a more compact gusset plate 

connection. Furthermore, the larger the gusset plate connection, the shorter the effective brace 

length becomes. Stocky braces tend to have less rotational capacity; hence, they should be 

avoided. 

In general, the governing failure modes for gusset plates are block shear failure and net rupture.  

If the computed thickness 𝑡 ,  does not meet all the requirements, it is recommended to 

increase the weld length 𝐿  rather than the thickness of gusset plate 𝑡 . As previously 

mentioned, thinner brace-to-frame connections tend to perform better. Furthermore, by 

increasing the weld length, thinner weld leg width 𝐷  may also be achieved; which is beneficial 

for both cost and constructability.  

In cases where block shear failure of HSS brace governs the design, it may be advantageous to 

start the design by assuming the weld length to be equal to two times the width of the attached 

brace (𝐿 = 2𝑤) and to determine the required weld leg width 𝐷  accordingly. In this manner, 

the framing system is less prone to shear lag effects and promotes thinner gusset plates. It also 

ensures that largest net area 𝐴 = 1.00𝑊 𝑡  is considered during the net rupture check. It 

should lessen the number of iterations required to meet all requirements.  

In Table 4.23, the 2tg linear clearance gusset plate design parameters for the diagonal brace in the 

E-W direction are summarized. As illustrated, the following tables contain the selected weld leg 

width Dw, welding length Lw, Whitmore width Ww, thickness of gusset plate tg, overall height HT 

and width WT of gusset plate, and the lengths L1, L2, L3 used for the compressive buckling check. 

It is noted that the minimum size of fillet weld, Dmin, used to connect two elements with a 

thickness t1 and t2 is 6.0 mm if 12 mm < max(t1; t2) ≤ 20 mm and Dmin =8mm for max(t1; t2)>20 

mm. The maximum fillet weld size, Dmax is equal to (t-2) when t≥ 6mm. Therefore, the size of 

fillet weld showed in Table 4.23 responds to these requirements. 



 

72 
 

Table 4.23 The 2tg clearance gusset geometry of brace-to-frame connections of MD-CBF (E-W) 
 

MD-CBF with diagonal braces and 2tg linear clearance for brace to frame connections (E-W) 

St. Dw Lw Ww tg L1 L2 L3 Lave=∑Li/3 HT WT 
  mm mm mm mm mm mm mm mm mm mm 
4 16 330 533 19.05 437 545 272 418 659 790 
3 16 394 633 19.05 517 627 310 485 757 920 
2 16 457 731 19.05 462 694 335 498 845 950 
1 20 457 731 25.4 346 686 346 460 901 890 

 

Similarly, the design of 8tg elliptical gusset plate follows the same design process. However, 

when the same gusset plate thickness and weld length were used, the overall dimensions of the 

gusset plate, designed for an 8tg elliptical clearance band, were much smaller than that resulted 

for the 2tg linear clearance model. From previous research, thinner gusset plates were reported to 

perform better as they are less stiff. In this light, the weld lengths Lw were increased until thinner 

gusset plates were achieved. However, if the resulted geometry is bigger than that of 2tg linear, it 

was disregarded since previous studies concluded that elliptical clearance gusset plate model 

should yield a more compact connection. In Table 4.24, the 8tg elliptical clearance gusset plate 

design parameters for the diagonal brace in the E-W direction are summarized. 

Table 4.24 The 8tg elliptical gusset geometry of brace-to-frame connections of MD-CBF (E-W) 
 

MD-CBF with diagonal braces and 8tg elliptical clearance for brace to frame connections  

Floor Dw Lw Ww tgusset L1 L2 L3 Lave=∑Li/3 HT WT 
  mm mm mm mm mm mm mm mm mm mm 
4 14 410 625 15.875 204 364 30 199 603 730 
3 16 394 633 19.05 274 397 65 245 618 771 
2 16 457 731 19.05 201 458 72 244 712 810 
1 20 473 749 22.225 120 502 126 250 815 809 

 

All 8tg elliptical clearance gusset plates are smaller in dimensions and thickness than the 2tg 

linear model. Hence, braces are slightly longer when the 8tg elliptical model is employed and 

they are expected to have better rotational capacity. The weld leg width, weld length, and 

Whitmore width remain relatively the same for the bottom three floors.  For storeys 1 and 4 

brace connections, a thinner plate is required for the 8tg elliptical model. The non-linear behavior 



 

73 
 

of the brace on these floors is expected to be more favorable. The reserve capacities of the 

connections and the demand-to-capacity ratios for each verification case are presented in Tables 

4.25 and 4.26. 

 
Table 4.25 The brace-to-frame 2tg linear clearance gusset plate connections calculations (E-W) 

 

St. 
Shear resistance 

 of welds 
Yielding  

of GP 
Metal base 
resistance 

Buckling 
of GP 

Block shear 
of HSS 

Net rupture 
of HSS 

Vr Tu/Vr Tr Tu/Tr Tr Tu/Tr Cr Cu/Cr Tr Tu/Tr Tr Tu/Tr 
4 3286 0.94 3154 0.97 3906 0.79 2863 0.52 3091 0.99 3496 0.88 
3 3918 0.94 3742 0.98 4657 0.79 3234 0.68 3685 0.99 4293 0.85 
2 4550 0.94 4323 0.99 5409 0.79 3699 0.81 4279 0.995 5061 0.84 
1 5688 0.91 5765 0.89 7212 0.71 5461 0.61 5227 0.99 5953 0.87 

 
 
 

Table 4.26 The brace-to-frame 8tg elliptical band gusset connections calculations (E-W direction) 
 

St. 
Shear resistance 

 of welds 
Yielding  

of GP 
Metal base 
resistance 

Buckling 
of GP 

Block shear 
of HSS 

Net rupture 
of HSS 

Vr Tu/Vr Tr Tu/Tr Tr Tu/Tr Cr Cu/Cr Tr Tu/Tr Tr Tu/Tr 

4 3567 0.86 3080 0.998 4038 0.76 3043 0.49 3834 0.80 3255 0.94 
3 3918 0.94 3742 0.980 4657 0.79 3690 0.60 3685 0.99 3844 0.95 
2 4550 0.94 4323 0.985 5409 0.79 4266 0.70 4279 0.995 4531 0.94 
1 5886 0.88 5171 0.996 6529 0.79 5144 0.65 5409 0.95 5389 0.96 

 
 
 

As expected, the governing connection check is the block shear failure and the tensile net 

rupture. The minimum value of Cr and Tr from all these verification is kept as an indicator for 

brace-to-frame connection failure. 
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4.2 OpenSees model 

4.2.1 OpenSees framework 

Due to the highly nonlinear response of CBF when braces yield, buckle and eventually fracture, 

a non-linear time-history analysis was conducted in the OpenSees environment to compare the 

inelastic behaviour of buildings equipped with the code recommended 2tg linear clearance gusset 

plate and the proposed 8tg elliptical clearance model. In this light, a numerical 2D model with the 

option for braces to deform out-of-plane was built and described hereafter. To reduce the 

computational time, the structural system in the E-W direction was developed for a quarter of the 

building and in the N-S direction for half of the building considering the building’s symmetry, as 

shown in Figure 4.4. In addition, the effect of rigid end zones was also considered for the beam-

column and beam-column-brace connections (Figure 4.5). In this light, the considered rigid links 

were simulated using elastic beam-column elements with large stiffness.  

 

4.2.2 Model description of steel bracing member (brace, beam, column) 

All CBF members (braces, beams and columns) were modelled as non-linear force-based beam-

column elements with distributed plasticity and fiber cross-section formulation. Steel02 material 

known as Giuffre-Menegotto-Pinto with isotropic strain hardening is assigned to the nonlinear 

beam-column elements. The Giuffre-Menegotto-Pinto model is able to account for the 

accumulated plastic deformation at each point of load reversal and is based on the same concept 

and equations as the Menegotto-Pinto function where stresses are expressed as a function of 

strain. In this manner, the Baushinger effect and the residual stresses can be well accounted by 

using the Steel02 material (Lamarche and Tremblay 2008). Parameters to define Steel02 material 

were selected according to Aguero et al. (2006). Accordingly, the hysteresis loop follows the 

previous loading path for a new reloading curve, while deformations are cumulated. Thus, the 

accuracy of modelling the behaviour of brace that yields in tension and buckles in compression 

depends on the following parameters: initial out-of-straightness; the fiber discretization 

technique and numbers of fibers within the member’s cross-section; the number of elements 

across the brace length; and the number of integration points per element.  
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Figure 4.4 The OpenSees numerical model built for ¼ of the building 

 

 

Figure 4.5 OpenSees model: a) E-W direction and b) N-S direction 

 

In this light, to simulate the nonlinear behaviour of the CBF members, the cross-section of each 

element was discretized in fibers as illustrated in Figure 4.6. In total, the HSS brace cross-section 

was divided into 240 fibers, whereas, the W-shape cross-section was discretized into 120 fibers 

for beams and columns. In all cases, the web and flanges were discretized using 5 fibers along 

the thickness and 8 across with a total of 40 fibers, whereas the rounded corner of HSS section 

was divided into 20 fibers where four fibers in the circumferential direction and five in radial 

direction were used. Each brace member was discretized into 16 elements along its brace length 

with 3 integration points per element, as per Hsiao et al. (2013). By subdividing the cross-

sectional area into fibers, it was possible to record both the compressive and tensile stress and 

strain distribution by selecting fibers on opposite sides of member with adequate accuracy. A 

a) b) 
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quadratic out-of-plan imperfection of 𝐿 500⁄ was also assigned to braces to simulate and 

initiate the out-of-plane buckling of HSS braces; where 𝐿  is the effective length of brace. 

Similarly, CBF columns were made of 8 nonlinear beam-column elements with distributed 

plasticity and fiber section having 4 integration points per element and an initial out-of-plane 

imperfection of  1 1000⁄  of the effective length of column was considered. The CBF’s beams 

were discretized into 4 elements with 3 integrations points per element and no out-of-plane 

imperfection. Increasing the number of elements or integration points will increase the accuracy 

of the model; however, it can significantly increase the computational time.  

 

 

 

Figure 4.6 Discretization of fiber cross-section of (a) HSS brace cross-section and (b) W-shape 
cross-section for beams and columns 

 
 

In addition, to replicate the failure of the brace member due to low-cycle fatigue, the fatigue 

material formulated in OpenSees is wrapped to the parental Steel02 brace’s material. Input 

parameters to define the fatigue material are taken from equation 2.13. Hence, the value of strain 

at which one cycle will cause failure, 𝜀 , and the slope of Coffin-Manson curve in log-log space , 

m, were computed from the equation proposed by Tirca and Chen (2014) for a wide range of 

slenderness ratios of square HSS brace cross-sections, 50< KL/r <150. Consequently, the 

ductility coefficient m= -0.5 was considered constant for all braces, while the values of 𝜀 =

0.006
. . .

calculated for braces of MD-CBFs are shown in Table 4.27 and 

Table 4.28, for 2tg linear gusset plate and 8tg elliptical gusset plate models, respectively. It is 
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noted that the actual effective 𝐾𝐿  was measured by subtracting the diagonal length of the 

gusset plate 𝐿  from the full diagonal length of the frame. In this manner, the accuracy of the 

model is improved. 

 

Table 4.27 Parameters for low-cycle fatigue material of HSS braces with 2tg linear gusset plate 
model (MD-CBFs in E-W direction) 

 
Parameters for low-cycle fatigue material of brace 

Lb (mm) Lg KLeff rbrace KLeff/r bo/t E/Fy εo m 

6433 545 5344 56.1 95 15.00 579.7 0.112 -0.5 
6433 627 5180 66.5 78 7.69 579.7 0.141 -0.5 
6433 694 5044 76.9 66 14.74 579.7 0.082 -0.5 
6867 686 5494 75.3 73 9.69 579.7 0.116 -0.5 

 
 
 

Table 4.28 Parameters for low-cycle fatigue material of HSS braces with 8tg elliptical gusset 
plate model (MD-CBF in E-W direction) 

 
Parameters for low-cycle fatigue material of HSS brace 

Lb (mm) Lgp KLeff rbrace KLeff/r bo/t E/Fy εo m 

6433 364 5705 56.1 102 15.00 579.7 0.118 -0.5 
6433 397 5639 66.5 85 7.69 579.7 0.151 -0.5 
6433 458 5516 76.9 72 14.74 579.7 0.089 -0.5 
6867 502 5863 75.3 78 9.69 579.7 0.122 -0.5 

 

 

Moreover, in order to capture the P-Δ effect of MD-CBF system, leaning columns connected at 

each floor by means of truss elements with large stiffness (link beam) were added to the model. 

These rigid link beams also simulate the rigid diaphragm effect and assure that the beam nodes 

move horizontally together. Herein, leaning columns are referred to as gravity columns. All 

columns were assumed continuous over two storeys and pinned at both ends. Furthermore, the 

seismic mass was applied to each node of CBF columns, however the associated lumped gravity 

load was applied to all columns (including the leaning columns) and to the beams of CBFs. 

Gravity columns, link beams and all rigid link segments incorporated in the model were elastic 

beam-column elements, while brace connections and beam-column connections were modeled 
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with the Zero-Length element. To model the beam-column connections as shear-tab connections, 

one rotational spring was added in the Zero-Length element in the plan of beam bending. 

According to Liu and Astaneh (2004), the rotational spring shall have the capacity to transfer up 

to 20% of the plastic bending capacity of the beam to the rigid link ( 𝐾 =

0.20(𝐸𝐼 𝐿)⁄ ). 

 

4.2.3 Brace-to-frame connection modelling 

As previously stated in Section 2, Hsiao et al. (2012) provided an accurate simulation of brace-

to-frame connection in OpenSees. In this light, a Zero-Length element was added at both brace 

ends. It connects the brace member to a rigid link, which simulates the remaining part of the 

gusset plate. As illustrated in Figure 4.7, three rigid end zones were used, hence the rigid part of 

gusset plate has a minimal in plane deformation relative to other deformation modes of the 

frame. In addition, the rigid links were simulated using elastic beam-column elements with large 

stiffness. 

Brace connections were modelled by defining two rotational springs and one torsional spring in 

the Zero-Length element (Uriz and Mahin, 2008). Both flexural springs are made of Steel02 

material and the torsional spring is made of elastic material. The first rotational spring is 

assigned to simulate the out-of-plane deformational stiffness of the connection at the brace end. 

The rotational stiffness is computed according to Hsiao et al. (2012)and is given below.  

 

𝐾 =      (4.14) 

 

The second rotational spring was assigned to control the in-plan buckling. The stiffness of the 

rotational spring was based upon the geometry and properties of the gusset plate as shown in 

Figure 4.7 (Hsiao et al., 2012). In this manner, its in-plane flexural stiffness was assigned larger 

than that of the brace. It is noted that the post-yield stiffness of the rotational spring was 

considered as 1% of the initial rotational stiffness. 
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Figure 4.7 Consideration of rigid end zones in OpenSees for CBF models (after Hsiao et al., 

2012) 

 

Finally, the torsional spring was assigned to prevent torsion of brace and is defined using 

equation 4.15. Both rotational springs were made of Steel02 material and the torsional spring of 

Steel01 (elastic material). 

 

𝐾 = 𝑤ℎ𝑒𝑟𝑒𝐽 = 0.333𝑊 𝑡    (4.15) 

 

where G is the shear modulus taken as 77000 MPa, Lave is the average value between the L1, L2, 

L3 lengths given below, and J is the torsion constant. The parameters resulted for 2tg linear gusset 

plate modelling are given in Table 4.29 and for 8tg elliptical gusset plate in Table 4.30. 
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Table 4.29 Parameters for out-of-plane rotational spring and torsional spring simulating the 
gusset plate with 2tg model used for HSS braces to frame connections of MD-CBF (E-W) 

 
Lave. 

(mm) 
Ww 

(mm) 
tg 

(mm) 
Krot-out-of-plane 

(Nm) 
Mp  

(Nm) 
J  

(mm4) 
Ktor. 

(Nm) 
418 533 19.05 147022 11289 1227683 226187 
485 633 19.05 150362 13392 1456338 231326 
497 731 19.05 169403 15473 1682691 260620 
459 731 25.40 434450 27508 3988601 668384 

 
 

Table 4.30 Parameters for out-of-plane rotational spring and torsional spring simulating the 
gusset plate with 8tg elliptical model for HSS braces to frame connections of MD-CBF (E-W) 

 
Lave. 

(mm) 
Ww 

(mm) 
tg 

(mm) 
Krot.-out-of-plane 

(N.m) 
Mp  

(N.m) 
J  

(mm4) 
Ktor. 

(Nm) 
199 625 15.88 208979 9187 832571 321505 
245 607 19.05 284761 12841 1396483 438093 
244 706 19.05 333449 14944 1625138 512998 

249 724 22.23 531799 20869 2647671 818151 

 

 

It is noted that, when the same Whitmore width and gusset plate thickness are used for both 

clearance models, the resulted torsion constant J and plastic moment Mp remain the same as well. 

However, the difference in the parameter input is seen in 𝐾  and 𝐾 . Thus, it 

reinforces the idea that the thickness of gusset plate plays an important role in the performance of 

CBF than its geometrical shape. 

 

To capture the failure of the gusset plate, in the same Zero-Length element, which defines the 

gusset plate connection on the axial direction, a MinMax material was defined. This material 

returns zero values for the tangent stress by decoupling the brace if the strain or the deformation 

ever falls below or above certain threshold values. The minimum and the maximum threshold 

values for the strain/deformation were calculated based on the gusset plate capacity limit 

previously calculated and the axial stiffness of the gusset plate. 
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4.3 Nonlinear response of 4-storey hospital building 

A dynamic analysis is required to assess the nonlinear response of a structure. According to 

sentence 4.1.8.3.12(7) in NBCC 2010 Commentary J, the design elastic base shear Ve, must be 

divided by the product RdRo and multiplied by the importance face IE to obtain the design base 

shear, Vd. The previous ETABS Modal Response Spectrum Analysis (MRSA) was scaled in this 

manner to be on a comparable basis to the static base shear, which is determined by using the 

ESFP. In this light, the building was subjected to amplified forces and structural members were 

sized to withstand its effects. The resulting deflections and drifts were elastic due to these 

adjustments and thus needed to be multiplied by the product RdRo/IE, as specified in Sentence 

4.1.8.3.12(10), in order to obtain realistic values of anticipated deflections and drifts. Focusing 

on the importance factor IE, forces were multiplied by IE=1.5 and the resulting drifts were 

divided by IE=1.5. Hence, the drift limits recommended by the code are evaluated at the design 

spectrum (DS) level, which corresponds to IE=1. It is noted that for Site Class C, the design 

spectrum is the same with the uniform hazard spectrum (UHS). 

Designing a post-disaster building, it requires to have bigger structural members to carry the 

large base shear amplified by IE. In this light, its fundamental period is shortened compared to a 

similar building designed with IE=1. During an earthquake, the amount of energy that a building 

attracts is dependent on its period and site conditions. Hence, it is not directly related to the 

importance factor, but it is dependent on its resulting period. In other words, during an 

earthquake, the post-disaster building will be subjected to the same level of ground acceleration 

as the normal importance category building but it would attract more energy due to its shorter 

period. Under this condition, the interstorey drifts of both structures must be below the allowable 

drift limits. When a larger than expected seismic event occurs, post-disaster buildings have the 

reserve capacity to withstand the shaking because IE=1.5 was considered in design. In this study, 

the behaviour of post-disaster buildings subjected to higher than code-level earthquakes is also 

examined. 

There are no straight-forward guidelines on time-history analysis for post-disaster buildings with 

higher importance factor. On one hand, to determine the expected deformation under a code level 

earthquake, an OpenSees model was created and subjected to ground motions that are scaled to 

fit the DS for Victoria, which corresponds to IE=1. It is worth noting that CBF members were 
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designed to respond to the base shear computed with IE = 1.5. On the other hand, to verify the 

strength reserve capacity of the building, the structure was also subjected to ground motions 

scaled to fit the DS amplified by IE=1.5. It is recommended that structural members and 

connections do not fail under both scenarios. However, the structure is permitted to have 

interstorey drift larger than the allowable drift limit of 1%hs when subject to code-level ground 

motions amplified by IE=1.5. Herein, it is also proposed to limit the peak of maximum 

interstorey drift to 2.0%hs, while the Mean should be ≤1%hs for post-disaster buildings. 

 

4.3.1 Ground motion selection and scaling 

To analyze the seismic behaviour of low-rise braced frames located in high seismic zone (e.g. 

Victoria, BC), a suite of ground motions was selected and scaled in agreement with the ASCE/ SEI 

2007 procedure in order to fit the design spectrum for Victoria. 

Several historic ground motions respond to the intensity demand for Victoria. However, the most 

important factor in selecting ground motions for scaling to a target spectrum is the spectral shape 

over the period range of interest (currently 0.2T1 to 1.5T1 in ASCE/SEI 7-10). The other 

considerations are the earthquake magnitude MW, site-to-source distance r, and local site 

conditions. Selecting a pair of motions whose geometric mean spectral shape is similar to the 

target spectrum minimizes the need for scaling and modification. Magnitude and distance will 

affect strong motion duration, which may be important for buildings with components that will 

degrade under cyclic loading. If the mathematical model used for analysis cannot capture cyclic 

degradation, there is little need to consider strong motion duration in the selection process. It is 

noted that for near-fault ground motions, the two most important factors are spectral shape and 

presence of velocity pulses. Velocity pulses are present in many near-fault ground motion 

recordings, especially in the forward directivity region (Baker, 2019). However, no near-fault 

ground motions were selected in this analysis. The 10 crustal ground motions selected are given 

in Table 4.31. 
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Table 4.31 Ground motion selection and characteristics 
 

 

 

In general, there is greater record-to-record variability. Design practice as per ASCE/SEI 7-10, 

requires the use of a minimum of seven ground motions for response-history analysis. If seven 

are used for analysis, the Mean response can be used for component checking. Assuming that 

ground motions are selected with explicit consideration of spectral shape and the mathematical 

model can trace cyclic component behaviors accurately over the expected ranges of inelastic 

response, no less than seven ground motions should be used to estimate values of mean response. 

The selected records for Victoria are from moderate to large crustal earthquakes of magnitude 

varying from Mw6.6 to Mw6.9 that occurred on the west coast of North America.  The 10 records 

given in Table 4.31 were selected from the Peer Ground Motion Database website 

(www.peer.berkeley.edu) such that their shear wave velocity corresponds to Class C soil. To 

match the design spectrum for Victoria, all records were scaled according to ASCE/SEI07-10 

requirements. To scale the ground motions, the methodology proposed by Reyes and Kalkan 

(2011) was employed. As illustrated in Fig. 4.8, the mean of the 5% damped response spectra of 

the 10 scaled records matches or is above the design spectrum in any points over the interval 

[0.2T1 - 1.5T1]. In addition, the same suite of ground motions was scaled to match the design 

spectrum for Victoria after it was amplified by importance factor IE=1.5. The scale factor for 

each ground motion is summarized in Table 4.32. 

 

Event Station Vs Rhy p Rrupt Comp PHA PHV PHA PHV/PHA tD Tp Tm

No. (m/s) (km) (km) (◦) (g) (m/s) m/s2 (s)

963 Castaic, Old Ridge Route 450 44 21 90 0.57 0.52 5.59 0.09 9.08 0.26 0.54

986 LA - Brentwood VA Hospital 417 25 23 195 0.19 0.24 1.86 0.13 11.43 0.24 0.63
1006 LA - UCLA Grounds 398 25 22 90 0.28 0.22 2.75 0.08 11.30 0.22 0.34
1039 Moorpark - Fire Sta 405 36 25 180 0.29 0.20 2.84 0.07 14.22 0.26 0.47
57 Castaic, Old Ridge Route 450 29 23 291 0.27 0.26 2.63 0.10 15.35 0.20 0.48

767 Gilroy Array #3 350 36 13 0 0.56 0.36 5.49 0.07 6.37 20.00 0.37

787 Palo Alto - SLAC Lab 425 54 31 360 0.28 0.29 2.75 0.11 11.58 0.30 0.65

796 SF-Presidio 595 99 77 90 0.20 0.32 1.96 0.16 8.72 0.48 0.81
739 Anderson Dam (Downstream) 489 20 20 250 0.25 0.20 2.45 0.09 10.40 0.20 0.46

1077 St Monica 450 31 31 360 0.37 0.25 3.63 0.07 12.7 0.12 0.51
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Figure 4.8 Design spectrum and 5% damped absolute acceleration spectra of the scaled ground 
motions for: a) IE = 1.0 and b), IE = 1.5 

 
 

Table 4.32 Ground motion scaling factor to match the design level 

GM Event Mw Station S. F. for 
IE=1 

S. F. for  
IE=1.5 

57 Feb. 9, 1971 San Fernando 6.6 Castaic, Old Ridge Route 1.85 2.78 
767 Oct. 18, 1989 Loma Prieta 6.9 Gilroy Array #3 1.68 2.52 
787 Oct. 18, 1989 Loma Prieta 6.9 Palo Alto - SLAC Lab 0.98 1.47 
796 Oct. 18, 1989 Loma Prieta 6.9 SF - Presisio 1.91 2.87 
739 Oct. 18, 1989 Loma Prieta 6.9 Anderson Dam (Downstream) 1.95 2.93 
963 Jan. 17, 1994 Northridge 6.7 Castaic, Old Ridge Route 0.85 1.28 
986 Jan. 17, 1994 Northridge 6.7 LA - Brentwood VA Hospital 1.98 2.97 

1006 Jan. 17, 1994 Northridge 6.7 LA - UCLA Grounds 1.94 2.91 
1039 Jan. 17, 1994 Northridge 6.7 Moorpark - Fire Station 1.84 2.76 
1077 Jan. 17, 1994 Northridge 6.7 St Monica 1.68 2.52 
 

4.3.2 Nonlinear response of building at the design level IE=1.0 

In order to ensure that the building model in OpenSees is reliable, it is recommended to compare 

the fundamental building period of the first mode 𝑇  with the dynamic period obtained from 

ETABS. The fundamental period of the building in the E-W direction is given in Table 4.33. 
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Table 4.33 Fundamental period T1 comparison between different software models 

 
Table 4.33  

Software model 
T1,E-W 

(s) 
ETABS 0.483 

OpenSees –MD-CBF with Linear gusset plate model 0.5157 
OpenSees –MD-CBF with Elliptical gusset plate model 0.5158 

 

The obtained periods are relatively close to one another given the fact that in ETABS, 

connections are often overestimated by a full pin connection or a fixed connection. It is noted 

that for both clearance models, in OpenSees, the first mode period is nearly identical. Hence, in a 

seismic event, both structures are expected to attract the same amount of forces as one another.  

The hospital building model was subjected to 10 ground motions given in Table 4.31. Then, a 

comparative study between the two models of brace-to-frame gusset plates (e.g. 2tg linear and 8tg 

elliptical clearance) was carried out. To emphasise the differences, the selected parameters were: 

i) the interstorey drift, ii) the residual interstorey drift, iii) floor acceleration and iv) the energy 

dissipated by braces illustrated by means of hysteresis loops.  

The maximum interstorey drift was recorded for each ground motion scaled at their specific scale 

factor at code level and the results are given in Table 4.34 and 4.35 for 2tg linear and 8tg elliptical 

clearance model, respectively. 

 
Table 4.34 Distribution of interstorey drift for MD-CBF with 2tg linear clearance gusset plate 

model under 10 GMs scaled at code level considering IE=1.0 (E-W) 
 

 Distribution of interstorey drift at code level with IE=1 for MD-CBF with 2tg linear band gusset plate 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.571 0.692 0.653 0.418 0.804 0.675 0.626 0.421 0.569 0.680 
3 13.8 0.646 0.834 0.622 0.541 0.808 0.656 0.635 0.460 0.563 0.881 
2 9.4 0.345 0.549 0.404 0.448 0.414 0.381 0.393 0.389 0.478 0.494 
1 5.0 0.512 0.480 0.457 0.636 0.453 0.436 0.406 0.547 0.660 0.429 
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In all situations, the maximum interstorey drift is smaller than the allowable maximum 

interstorey drift of 1%hs for post-disaster buildings at code level. In the following table, the 

values in red represent the interstorey drifts from 8tg elliptical model that exceeds the drift 

obtained from the previous 2tg linear model. 

Table 4.35 Distribution of interstorey drift for MD-CBF with 8tg elliptical clearance gusset plate 
model under 10 GMs scaled at code level considering IE=1.0 (E-W) 

 
Distribution of interstorey drift at code level with IE=1 for MD-CBF with 8tg elliptical band gusset plate 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM  
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.570 0.697 0.653 0.405 0.806 0.670 0.635 0.415 0.571 0.684 
3 13.8 0.663 0.853 0.627 0.548 0.824 0.663 0.644 0.466 0.578 0.997 
2 9.4 0.342 0.539 0.396 0.437 0.421 0.382 0.390 0.383 0.476 0.546 
1 5.0 0.516 0.482 0.465 0.647 0.449 0.428 0.402 0.547 0.648 0.460 

 

It is apparent that the 8tg elliptical gusset plate model does not necessarily give a larger 

interstorey drifts than the 2tg linear. In order to further investigate the difference in drifts, the 

Mean, the Mean+SD and the maximum drifts of all ground motions is given in Table 4.36, where 

SD is the standard deviation. Meanwhile, the interstorey drift envelope resulted from the 

building response under the 10 scaled ground motions is depicted in Fig. 4.9 using the Mean and 

Mean+SD. 

 
Table 4.36 Distribution of Mean, Mean+SD and Max. interstorey drift of MD-CBF response (E-

W) obtained at code level considering IE=1.0 
 

Mean, Mean+SD and Max. interstorey drifts comparison at code level with IE=1 

St. 
H Mean (%hs) Mean+SD (%hs) Maximum (%hs) 

(m) 2tg linear 8tg elliptical 2tg linear 8tg elliptical 2tg linear 8tg elliptical 
4 18.2 0.611 0.611 0.739 0.736 0.804 0.806 
3 13.8 0.664 0.686 0.809 0.846 0.881 0.997 
2 9.4 0.430 0.431 0.488 0.500 0.549 0.546 
1 5.0 0.502 0.504 0.589 0.590 0.660 0.648 
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Figure 4.9 Distribution of interstorey drift across the building height: a) 2tg linear gusset plate 
model, b) 8tg elliptical gusset plate model and c) Mean and Mean+SD comparison between the 2 

models 

 

The recorded peak drift envelopes for each ground motions are almost identical for both models. 

In both cases, the largest peak interstorey drift occurred on the 3rd floor for all ground motions. 

Moreover, the drifts recorded in the case of 8tg clearance model are slightly larger than those that 

resulted for the 2tg linear gusset plate model at that specific floor. However, the difference in 

drifts is at most 2.75%, which is almost negligible. Hence, further investigation is required to 

assess the difference in performance.  

 

Figure 4.10 Time-history response of MD-CBF subjected to Loma Prieta ground motion #739 

scaled at code level considering IE=1.0 
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As shown in Fig. 4.10, the time-history series of interstorey drift is recorded at the 3rd floor under 

the #739 Loma Prieta earthquake. As depicted, the residual drift is slightly larger for the 

8tgclearance model than the 2tg model. The peak in demand occurred at t =9.38 s. The resulted 

residual interstorey drifts for both clearance models and for all ground motions are given in 

Tables 4.37 and 4.38.  

In order to capture the residual interstorey drifts in OpenSees, the duration of the ground motion 

accelerograms were increased to allow the building to behave in free vibrations until the drift 

converges. In general, adding20 to 30 seconds of zero amplitude accelerogram in time steps at 

the end of the ground motion is sufficient to converge the residual drifts. It is also noted that it is 

recommended to add 10 time steps with no excitation at the beginning of the ground motion to 

allow the gravity loads to settle prior to the earthquake simulation.  

 
Table 4.37 Distribution of residual drift along the building height for MD-CBF with 2tg linear 

gusset plate model under 10 GMs scaled at code level considering IE =1.0 
 

Distribution of residual drift at code level with IE=1for MD-CBF with 2tg linear band gusset plate 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4th 18.2 0.044 0.075 0.064 0.023 0.104 0.044 0.047 0.025 0.014 0.099 
3rd 13.8 0.022 0.153 0.063 0.012 0.071 0.046 0.054 0.007 0.009 0.131 
2nd 9.4 0.008 0.070 0.025 0.045 0.019 0.031 0.039 0.021 0.043 0.057 
GF 5.0 0.077 0.029 0.055 0.086 0.029 0.018 0.028 0.068 0.047 0.019 

 
 

Table 4.38 Distribution of residual drift along the building height for MD-CBF with  8tg elliptical 
gusset plate model under 10 GMs scaled at code level considering IE =1.0 

 
Distribution of residual drift at code level with IE=1for MD-CBF with 8tg elliptical band gusset plate 

ST 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4th 18.2 0.050 0.081 0.069 0.021 0.114 0.052 0.054 0.025 0.015 0.107 
3rd 13.8 0.026 0.171 0.068 0.019 0.078 0.057 0.063 0.011 0.013 0.125 
2nd 9.4 0.009 0.069 0.023 0.042 0.022 0.031 0.038 0.021 0.039 0.060 
GF 5.0 0.087 0.036 0.060 0.092 0.029 0.016 0.028 0.075 0.044 0.008 
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The 8tg elliptical model is prone to have larger residual drifts than the code recommended 

2tgclearance gusset plate model, as shown in red in Table 4.38. The largest difference between 

them is about 57%, which is significant, however the highest value of 0.17%hs does not exceed 

the suggested 0.5%hs residual drift limit. For comparison, the Mean, the Mean+SD and the 

Maximum residual drifts response resulted for all GMs excitations is given in Table 4.39, while 

the permanent drift envelope resulted from the building response under the 10 scaled ground 

motions are depicted in Fig. 4.11 using the Mean and Mean+SD. 

 
 

Table 4.39 Distribution of Mean, Mean+SD and Max residual drifts of MD-CBF (E-W) response 
along the building height under GMs scaled at code level considering IE=1.0 

 
Mean, Mean+SD, Max. residual interstorey drifts response at code level with IE=1 

St. 
Height Mean (%hs) Mean+SD (%hs) Maximum (%hs) 

(m) 2tg linear 8tg elliptical 2tg linear 8tg elliptical 2tg linear 8tg elliptical 
4th 18.2 0.054 0.059 0.085 0.093 0.104 0.114 
3rd 13.8 0.057 0.063 0.107 0.115 0.153 0.171 
2nd 9.4 0.036 0.035 0.055 0.054 0.070 0.069 
GF 5.0 0.046 0.048 0.071 0.077 0.086 0.092 

 

 

Figure 4.11 Residual drift response of MD-CBF with: a) 2tg linear gusset plate model and b) 8tg 
elliptical gusset plate model. c) Mean and Mean+SD comparison between the 2 models 

 

The largest residual interstorey drift does not necessarily occur at a specific floor for all ground 

motions. The first floor experiences the largest permanent drifts under the ground motion#57.The 
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2ndand 3rdfloor experience the largest permanent drifts under the ground motion#986.The 4th 

floor experiences the largest permanent drift under the ground motion #1077. However, similar 

to peak interstorey drifts, the largest average of residual drifts occurs at the 3rd floor. In general, 

the permanent drifts recorded in case of MD-CBF with 8tg clearance gusset plate model are 

larger than that resulted for the 2tg linear model. The increase in permanent drifts is at most 57%, 

which occurs at the 3rd floor under GM #986. It is noted that the overall shape of the permanent 

drift envelope does indicate that the 8tg elliptical model can better distribute the residual drifts 

over the height of the building. However, the model with 8tg shows slightly larger permanent 

drift than the model with 2tg clearance. This phenomenon is further investigated in the following 

sections. 

The maximum floor accelerations were also recorded for each ground motion scaled at their 

specific scale factor at code level and are given in Tables 4.40 and 4.41 for MD-CBF building 

with 2tg linear and 8tg elliptical clearance gusset plate model, respectively. 

Table 4.40 Distribution of floor acceleration along the height of MD-CBF with 2tggusset plate 
model resulted under 10 GMs scaled at code level considering IE=1.0 

 
Distribution of floor acceleration resulted for MD-CBF with 2tg linear clearance gusset plate under 10 

GMs scaled at code level considering IE=1 

ST 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g) 
4th 18.2 0.95 0.85 0.98 0.89 1.00 0.94 0.96 0.83 1.03 0.91 
3rd 13.8 0.87 0.75 0.77 0.71 0.95 0.65 0.96 0.70 1.19 0.95 
2nd 9.4 0.75 0.68 0.88 0.77 0.95 0.74 1.21 0.76 1.23 0.73 
GF 5.0 0.60 0.52 0.64 0.73 0.84 0.72 0.86 0.69 0.91 0.67 

 

In the following table, the values in red represent the floor accelerations from 8tg elliptical model 

that exceeds the values from the previous 2tg linear model.  
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Table 4.41 Distribution of floor acceleration for MD-CBF with8tggusset plate model resulted 
under 10 GMs scaled at code level considering IE=1.0 

 
Floor acceleration resulted for MD-CBF with 8tg elliptical band gusset plate under GMs scaled at code 

level considering IE=1 

ST 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g) 
4th 18.2 0.96 0.87 0.99 0.90 1.00 0.95 0.98 0.85 1.04 0.90 
3rd 13.8 0.87 0.75 0.79 0.70 0.97 0.66 0.96 0.71 1.20 0.95 
2nd 9.4 0.75 0.68 0.88 0.76 0.95 0.73 1.23 0.75 1.24 0.74 
GF 5.0 0.62 0.54 0.65 0.74 0.86 0.71 0.86 0.68 0.90 0.68 

 

It is apparent that the 8tg elliptical model does not necessarily show larger floor acceleration than 

the 2tg linear model. In addition, the maximum floor acceleration does not always occur on a 

specific storey for all ground motions. In order to further investigate the difference in 

acceleration, the Mean, the Mean+SD and the Maximum acceleration resulted for all ground 

motions scaled at the code level considering IE=1.0 is given in Table 4.42. Meanwhile, the Mean 

and Mean+SD of the floor acceleration envelope resulted from the building response under the 

10 scaled ground motions and a comparison between the model with 2tg and 8tg are depicted in 

Fig. 4.12. 

Table 4.42 Distribution of Mean, Mean+SD and Max. floor acceleration of MD-CBF response 
when subjected to GMs scaled at code level considering IE=1.0 

 
Mean, Mean+SD and Max. floor acceleration response of MD-CBF scaled at code level and IE=1 

St. 
Height Mean (g) Mean+SD (g) Maximum (g) 

(m) 2tg linear 8tg elliptical 2tg linear 8tg elliptical 2tg linear 8tg elliptical 
4th 18.2 0.94 0.95 0.99 1.00 1.03 1.04 
3rd 13.8 0.85 0.86 0.96 0.97 1.19 1.20 
2nd 9.4 0.87 0.87 1.10 1.11 1.23 1.24 
GF 5.0 0.72 0.72 0.85 0.86 0.91 0.90 

 

In general, the accelerations recorded for MD-CBF with 8tgclearance gusset plate model are 

larger than that of MD-CBF with 2tg linear gusset plate model. However, the difference in floor 

acceleration is at most 1.81%, which is almost negligible. The largest peak floor accelerations 

occur either at the 3rd floor or at the roof. Thus, both systems appear to behave almost identically. 
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Under the same scaled ground motion, when one model undergoes larger interstorey drifts than 

the other, it reaches those thresholds within the same time interval. In this manner, larger floor 

acceleration may be expected on that specific floor. Nonetheless, the maximum floor 

acceleration does not occur at the storey with the largest interstorey drift.  

 

Figure 4.12 Distribution of floor acceleration along the MD-CBF height with a) 2tg linear 
clearance gusset plate  model, b) 8tg elliptical clearance gusset plate model and c) Mean and 

Mean+SD comparison between the 2 models 

 

It was observed that the maximum floor acceleration and maximum interstorey drift occur at the 

same floor under 3 ground motions: GM #787, GM #1006 and GM #1077. The behaviour of all 

HSS braces subjected to ground motion GM #787 is investigated by means of hysteresis loops 

plotted in Figure 4.13. At each floor, the left brace was first to reach buckling in compression. 

On all storeys excepting the 2nd floor, the right braces experience their first yielding around the 

time step of 9.9s when the left braces buckle a second time at a similar time of 9.86s. At the 2nd 

floor, the left brace buckles first at 9.86s, which is then instantly followed by the yielding of the 

right brace at 9.93. Under GM #787, both MD-CBFs detailed with 2tg and 8tg clearance gusset 

plate models experience their first buckling and first yielding of braces at the same time. As 

strain is accumulated in the HSS braces, the difference in the hysteretic loop is further 

pronounced. At the upper 2 floors, the braces with 8tg elliptical gusset plate model undergo 

through larger axial deformation and hence, are required to dissipate a larger amount of energy to 

mitigate damages as shown in Figure 4.13. However, the opposite is true on the lower 2 floors. 
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Although, the peak drifts do occur under GM #787, the difference in the hysteretic loop is too 

small and negligible to make any valuable conclusions.  

The braces of the 3rd floor show the largest difference in axial deformation between the two 

models when subjected to GM #739 ground motion. In this light, the hysteresis loops of the 3rd 

floor braces obtained under the #739 Loma Prieta record are investigated and plotted in Figure 

4.14.  

Under both records, the left brace was the first that buckled in compression. Under the #739 

record, the left brace buckles first at t = 5.12 s, while the right brace reached buckling at the same 

time (t = 5.38 s) at which the left brace reached yielding in tension. Then, the right brace reached 

yielding in tension simultaneously with the maximum deflection in compression experienced by 

the left brace at t = 6.20 s. Similarly, the right brace experiences the maximum deflection in 

compression at t = 9.38 s. Simultaneously, at t = 9.38 s, the left brace undergoes the largest 

tensile axial deformation. 
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Figure 4.13 Hysteretic loops of braces of MD-CBF (E-W) under GM #787 scaled at code level 
considering IE=1 
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Figure 4.14 Hysteresis loops of the 3rd floor braces resulted under: a)  #739 Loma Prieta record, 
b) #1006Northridge record scaled to code level considering IE=1 

 

 

4.3.3 Nonlinear response of CBF (E-W) corresponding to design spectrum amplified by IE=1.5 

These events represent earthquakes that would be more severe than the earthquakes that are 

likely to occur (2% in 50years), and therefore, are even more unlikely to occur. As 

aforementioned, post-disaster buildings are expected to be able to perform adequately under 

larger demand than the code level earthquakes. The SFRS must be capable of withstanding the 

amplified seismic forces (IE=1.5) while demonstrating, in terms of drifts and accelerations, that it 

can keep the building operational under these increased demands.  

The maximum interstorey drifts were recorded for each ground motion scaled at their specific 

scale factor corresponding to IE=1.5 and are given in Tables 4.43 and 4.44 for 2tg linear and 8tg 

elliptical clearance model, respectively. 

The drifts are not always below the allowable drift limit of 1%hs set by the code for post-disaster 

buildings for both clearance models. The code requires that the Mean of the peak interstorey 

drifts to be below the 1%hs. According to Table 4.45, the Mean of peak interstorey drift is equal 

or less than 1%hs at all floors. Under all ground motions, the maximum interstorey drift occurs at 

the 3rd floor except for #GM787, where the peak drift is on the 1st floor. 



 

96 
 

Table 4.43 Distribution of interstorey drift recorded for MD-CBF (E-W) with 2tg linear gusset 
plate model under 10 GMs scaled at code level considering IE=1.5 

 
Distribution of interstorey drift obtained at code level amplified with IE=1.5 for MD-CBF with 2tg linear 

clearance gusset plate 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.573 0.668 0.945 0.545 1.010 0.782 0.643 0.770 0.342 0.772 
3 13.8 1.038 0.734 0.996 1.084 1.526 0.830 0.953 1.229 0.347 1.272 
2 9.4 0.476 0.692 0.408 0.468 0.562 0.451 0.369 0.587 0.471 0.574 
1 5.0 0.593 1.104 0.518 0.818 0.551 0.567 0.409 0.842 1.761 0.808 

 

Table 4.44 Distribution of interstorey drift recorded for MD-CBF (E-W) with 8tg elliptical gusset 
plate model under 10GMs scaled at code level considering IE=1.5 

 
Distribution of interstorey drift at code level with IE=1.5 for MD-CBF with 8tg elliptical band gusset plate 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 GM 787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.572 0.673 0.945 0.528 1.014 0.776 0.651 0.760 0.344 0.776 
3 13.8 1.065 0.752 1.005 1.099 1.556 0.839 0.968 1.245 0.357 1.439 
2 9.4 0.472 0.680 0.400 0.456 0.572 0.452 0.366 0.579 0.469 0.634 
1 5.0 0.598 1.109 0.527 0.833 0.546 0.557 0.406 0.841 1.728 0.867 

 

 

Table 4.45 Mean, Mean+SD and Max interstorey drift of MD-CBF response at code level 
considering IE=1.5 

 
Mean, Mean+SD and Max interstorey drifts comparison at code level with IE=1.5 

St. 
Height Mean (%hs) Mean+SD (%hs) Maximum (%hs) 

(m) 2tg linear 8tg elliptical 2tg linear 8tg elliptical 2tg linear 8tg elliptical 
4th 18.2 0.705 0.704 0.901 0.901 1.010 1.014 
3rd 13.8 1.001 1.033 1.324 1.377 1.526 1.556 
2nd 9.4 0.506 0.508 0.603 0.611 0.692 0.680 
GF 5.0 0.797 0.801 1.193 1.190 1.761 1.728 

 

The recorded peak drift envelopes are almost identical for both clearance models under all 

ground motions. The overall shape of the drift envelope plotted in Fig. 4.15 is similar withthat 

resulted when IE=1. 
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Figure 4.15 Distribution of interstorey drift: a) MD-CBF with 2tg linear gusset plate model, b) 
MD-CBF with 8tg elliptical gusset plate model and c) Mean and Mean+SD comparison between 

the 2 models 

 

As previously mentioned, these post-disaster buildings experience a peak of Mean interstorey 

drift of 1%hs, which is within the code limit when ground motions were amplified by IE=1.5. 

However, to ensure its structural integrity during such events, it is recommended to limit the 

peak of Max interstorey drift to 2.0%hs and the residual drift to 0.5%hs when post-disaster 

building is subjected to ground motions scaled to the amplified design spectrum (IE=1.5).  

The maximum permanent drifts were recorded for each ground motion scaled at their specific 

scale factor corresponding to IE=1.5 and are provided in Tables 4.46 and 4.47 for 2tg linear and 

8tg elliptical clearance model, respectively. Similar to the analysis done with IE=1, the 8tg 

elliptical model is prone to have larger residual drifts than the case with 2tg clearance gusset plate 

model. The overall shape of the residual drift envelope is similar to that obtained when ground 

motions were amplified by IE=1, but the gap in the response between the two clearance model is 

widened. This may suggest that by further increasing the seismic demand, the potential 

difference in behaviour can be further investigated.  
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Table  4.46 Distribution of residual drift of MD-CBF with  2tg linear gusset plate model under 10 
GMs scaled at code level considering IE =1.5 

 
Distribution of residual interstorey drift at code level with IE=1.5 for MD-CBF with 2tg linear band gusset 

plate 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.029 0.075 0.065 0.002 0.128 0.055 0.012 0.055 0.009 0.090 
3 13.8 0.138 0.097 0.021 0.161 0.194 0.087 0.002 0.093 0.007 0.221 
2 9.4 0.033 0.124 0.019 0.024 0.061 0.040 0.004 0.009 0.088 0.046 
1 5.0 0.006 0.103 0.079 0.113 0.014 0.004 0.032 0.064 0.272 0.063 

 
 

Table 4.47 Distribution of residual drift of MD-CBF with  8tg elliptical gusset plate model under 
10 GMs scaled at code level considering IE =1.5 

 
Residual interstorey drift of MD-CBF with 8tg elliptical clearance gusset plate under GMs scaled at code 

level with IE=1.5 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.032 0.082 0.070 0.002 0.140 0.065 0.014 0.056 0.009 0.097 
3 13.8 0.165 0.108 0.023 0.250 0.212 0.107 0.003 0.145 0.010 0.213 
2 9.4 0.035 0.122 0.018 0.023 0.068 0.041 0.004 0.009 0.079 0.048 
1 5.0 0.007 0.127 0.088 0.121 0.014 0.004 0.032 0.070 0.255 0.027 

 

Table 4.48 Mean, Mean+SD and Max. residual drifts response under GMs scaled at code level 
considering IE=1.5 

 
Mean, Mean+SD, Max. residual interstorey drifts response of MD-CBF at code level with IE=1.5 

St. 
Height Mean (%hs) Mean+SD (%hs) Maximum (%hs) 

(m) 2tg linear 8tg elliptical 2tg linear 8tg elliptical 2tg linear 8tg elliptical 
4th 18.2 0.052 0.057 0.092 0.101 0.128 0.140 
3rd 13.8 0.102 0.124 0.179 0.213 0.221 0.250 
2nd 9.4 0.045 0.044 0.082 0.081 0.124 0.122 
GF 5.0 0.075 0.074 0.154 0.153 0.272 0.255 
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Figure 4.16 Residual drift response: a) MD-CBF with 2tg linear clearance gusset plate model, b) 
MD-CBF with 8tg elliptical clearance gusset plate model and c) Mean and Mean+SD comparison 

between the two models 

 

The distribution of floor acceleration along the building height was recorded for each ground 

motion scaled at their specific scale factor corresponding to IE=1.5 and is given in Tables 4.49 

and 4.50 for MD-CBF with 2tg linear and 8tg elliptical clearance models, respectively. 

 
Table 4.49 Distribution of floor acceleration along the MD-CBF building height for the case with 

2tg gusset plate model resulted under 10 GMs scaled at code level considering IE=1.5 
 

Distribution of floor acceleration resulted for MD-CBF with 2tg linear clearance gusset plate under GMs 
scaled at code level considering IE=1.5 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g) 
4 18.2 1.16 0.93 1.11 1.07 1.02 1.07 1.10 1.04 0.96 1.04 
3 13.8 0.81 0.79 1.02 0.84 1.24 0.76 0.89 0.86 0.83 0.89 
2 9.4 0.94 0.73 1.27 0.84 1.26 1.06 1.30 0.89 0.97 0.78 
1 5.0 0.84 0.68 0.96 0.72 1.04 0.88 0.95 0.80 1.04 0.71 
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Table4.50 Distribution of  floor acceleration of MD-CBF building height  with8tg gusset plate 
model resulted under 10 GMs scaled at code level considering IE=1.5 

 
Distribution of floor acceleration resulted for MD-CBF with 8tg elliptical clearance gusset plate under 

GMs scaled at code level considering IE=1.5 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g) 
4 18.2 1.17 0.95 1.13 1.08 1.02 1.08 1.12 1.06 0.97 1.03 
3 13.8 0.81 0.80 1.05 0.82 1.26 0.77 0.89 0.86 0.83 0.88 
2 9.4 0.94 0.72 1.28 0.83 1.27 1.04 1.31 0.88 0.97 0.80 
1 5.0 0.86 0.70 0.98 0.73 1.06 0.87 0.94 0.80 1.03 0.72 

 

Although the peak interstorey drift increases on average by 36% from IE=1 to IE=1.5, the peak 

floor acceleration increased on average by 15%.  

Table 4.51 Distribution of Mean, Mean+SD and Maxfloor acceleration of MD-CBF response 
when subjected to GMs scaled at code level considering IE=1.5 

 
Mean, Mean+SD and Max. floor acceleration response of MD-CBF at code level considering IE=1.5 

St. 
Height Mean (g) Mean+SD (g) Maximum (g) 

(m) 2t linear 8t elliptical 2t linear 8t elliptical 2t linear 8t elliptical 
4th 18.2 1.05 1.06 1.11 1.13 1.16 1.17 
3rd 13.8 0.89 0.90 0.97 0.98 1.24 1.26 
2nd 9.4 1.01 1.01 1.27 1.27 1.30 1.31 
GF 5.0 0.86 0.87 1.00 1.01 1.04 1.06 

 

Meanwhile, the Mean and Mean+SD of the floor acceleration envelope resulted from the 

building response under the 10 scaled ground motions and a comparison between the model with 

2tg and 8tgare depicted in Fig. 4.17. 

There are little differences in floor accelerations from one clearance model to another. However, 

it is important to note that, the marginal increase in floor acceleration due to increased seismic 

demand is smaller than the marginal increase in deformation. It seems that floor accelerations are 

not as sensitive to earthquake intensity as drifts and residual drifts are. In general, the non-

structural components are not damaged when the recorded floors acceleration areless than 1.0g.  
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Figure 4.17 Distribution of floor acceleration: a) MD-CBF with 2tg linear clearance gusset plate 
model  b) MD-CBF with 8tg elliptical clearance gusset plate model and c) Mean and Mean+SD 

comparison between the 2 models 

The hysteretic loops of all HSS braces and time-history series of interstorey drift resulted under 

GM #1006 scaled at code level considering IE=1.0 and IE=1.5 are depicted in Fig. 4.18 and Fig. 

4.19, respectively. 

The peak interstorey drift occurs at the 3rd floor under GM #1006. By means of hysteresis loop, 

the behaviour of all HSS braces subjected to ground motion GM #1006 is investigated and 

plotted in Figure 4.18. At each floor excepting the 4th floor, the left braces were first to reach 

buckling in compression. At the 3rd floor, the right brace experiences its first buckling at t= 

5.14s, while the left brace experiences its first buckling at t=7.08s. As strain is accumulated in 

the HSS braces, the difference in the hysteretic loop is further pronounced. The right brace 

undergoes its largest deformation in compression around t=9.06s when the right brace in tension 

reached its peak elongation value. Finally, at t=9.42s, the left brace buckled in compression one 

last time.  
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Figure 4.18 Hysteretic loops of HSS braces with 2tg and 8tg gusset plate model and interstorey 
drift time-history series resulted under GM #1006 scaled at code level considering IE=1.0 
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Figure 4.19 Hysteretic loops of HSS braces with 2tg and 8tg gusset plate model and interstorey 
drift time-history series resulted under GM #1006 scaled at code level considering IE=1.5 
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When gussets with 8tg elliptical clearance are provided, the rotation capacity increases and larger 

axial deformation is achieved, as well as larger energy dissipation capacity. Due to the post-

disaster building's design that limits the interstorey drift to 1%hs, the potential gain in 

performance from linear to elliptical clearance gusset plate model is reduced. In other words, by 

allowing the brace to undergo larger axial deformation, the area under the curve, which 

represents the dissipated energy becomes larger. In these scenarios, it may have been possible to 

observe a more favorable building performance when using 8tg elliptical clearance model. 

Furthermore, the importance factor of 1.5 applied to post-disaster structures increases 

significantly the forces in members and connections. Hence, thicker gusset plates are required. 

With thick gusset plates, the benefit of the 8tg elliptical clearance model is further reduced. 

Furthermore, no significant changes in the floor acceleration were observed. In this light, an 

alternative system using friction dampers in-line with diagonal braces is investigated in the next 

chapter to study the overall behaviour of the structure. 
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Chapter 5  

CASE STUDY OF HOSPITAL CBF BUILDING WITH FRICTION SLIDING BRACES 

 

In this chapter, the previous seismic force resisting system of the 4-storey hospital building was 

redesigned using friction sliding braced frames (FS-BF). Friction dampers can dissipate the 

earthquake input energy by friction, thereby reducing the earthquake forces that accumulate in 

adjacent structural members. For this reason, friction dampers are added between the brace end 

and the brace-to-frame connection to minimize structural damage and the associated cost of 

repairs. A numerical model of friction dampers behaviour is simulated and calibrated using 

OpenSees. Then, a full scale model of a hospital building equipped with FS-BFs is subjected to 

selected ground motions. Hereafter, the previously investigated MD-CBF systems with different 

gusset plate clearance band of brace-to-frame connections serve as a benchmark to evaluate the 

seismic behaviour of friction sliding braces. Some guidelines related to seismic design of 

buildings with friction dampers are presented.  

 

5.1 Design of CBF building with friction sliding braces 

To design the FS-BF system, currently, a force-based design method was proposed by Tirca 

et al. (2018). For comparison purpose, the ductility-related force modification factor Rd and the 

overstrength-related force modification factor, R0 are considered: Ro=1.0 and Rd =4.0. In case 

that the seismic force resisting system has a back-up moment resisting frame system designed to 

sustain an additional 25% base shear, then Ro=1.125 can be used in conjunction with Rd =5. 

However, additional design details are required. It is worth mentioning that the FS-BF system is 

derived from the MD-CBF with RdRo=3.9. 

As depicted in Fig. 5.1, the HSS brace is connected to a friction damper at one end and to a 

traditional gusset plate connection at the other end. The FS-BF system behaves as a traditional 

CBF until the first friction device reaches the slip force, Fslip. Employing the force-based design 

method, to determine the slip force, the equivalent static force procedure is used and the same 
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lateral force distribution associated with the inverted triangle is applied. Then, the storey shear 

force is distributed to braces and the factored axial force triggered in braces is the slip force. The 

associated HSS brace is proportioned to carry 130% Fslip in compression and tension. Because 

the member’s buckling strength is lower than its tensile strength, the HSS brace is designed such 

that: Cr≥ 130%Fslip, where Cr is the brace compression resistance. Therefore, friction devices slip 

before the HSS braces reach buckling. This means that braces behave in the elastic range while 

friction dampers dissipate energy through friction developed by the relative sliding along the 

length of a slotted hole.  For constructability, the resulted value of slip force is rounded up in 

multiples of 50 kN and the maximum slip force is recommended to be below 2000 kN for 

constructability purpose.  

 
 

Figure 5.1 Elevation view of FS-BF system (E-W direction): a) elevation, slip force and designed 
member cross-sections and b) Detail of Pall Friction damper 

 

 Meanwhile, it should be check that under the wind load, friction devices do not slip and the 

system should be proportioned to respond in the elastic range. 

As illustrated in Figure 5.1b, the middle plate of friction damper is welded to the slotted HSS 

brace, while the external channels are bolted to the gusset plate. The friction sliding occurs when 
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the middle plate slides between the two channels, which are connected with pretension bolts. In 

order to obtain the required slip length, one must assess the seismic response of the building 

through nonlinear time-history dynamic analysis under an ensemble of earthquake ground 

motions that are scaled to match the design spectrum across the periods of interest 0.2T1-1.5T1. 

This design criterion is discussed later. The cross-sections for the FS-BF system resulted from 

the equivalent static force procedure are given in Table 5.1. To design beams and columns of the 

FS-BF system, the capacity design method is applied. Thus, beams are designed to sustain the 

probable compression strength Cu computed as 1.2Cr(Ry/ϕ) where ϕ=0.9 and the probable stress 

for HSS members is RyFy = 460MPa. Herein, the probable tensile strength is limited to the value 

of probable compression strength. Columns of FS-BF system are designed to carry the loads 

associated to the load combination D+0.5L+0.25S+E where the earthquake load E is computed 

as the minimum axial force resulted from the following two cases: a) all braces reached Cu and 

b) axial factored force associated to RdR0 = 1.3. In addition, a bending moment of 0.2Mp should 

be considered. In general, the design of beams and columns follow the procedure provided for 

CBFs. 

Table 5.1 Characteristics of FS-BF system (E-W direction) resulted from the equivalent static 
force procedure 

St. 
Slip load, Fslip 1.3Fslip Cr,brace Brace sections Beam sections Column sections 

kN kN kN 
 

  
4 750 975 1013 HSS 178X178X9.5 W460x60 W310x79 
3 1250 1625 1734 HSS 203X203X13 W460x97 W310x79 
2 1550 2015 2053 HSS 203X203X16 W460x106 W360x262 
1 1850 2405 2578 HSS 254X254X13 W460x128 W360x262 

5.2 Calibration of friction dampers in OpenSees 

To perform nonlinear time-history analysis, a model is developed in OpenSees for the friction 

sliding brace.  
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5.2.1 Elastic phase and sliding phase calibrations 

The OpenSees model for the FS-BF is very similar with the model developed for the traditional 

CBF system. The difference consists in replacing the traditional gusset plate expected to bend 

out-of-plane with a friction sliding device. This consists of replacing the rotational spring used to 

replicate the out-of-plane bending of gusset plate brace connection with a translational spring 

located in the same Zero-Length element in order to simulate the frictional sliding.  

Herein, the uniaxial BoucWen material was used to simulate the smooth hysteresis behaviour of 

friction damper replicated by the translational spring displaced in the axial direction in the Zero-

Length element. The friction damper is activated when the axial force in brace reaches the slip 

force Fslip. The BoucWen material is able to simulate the high nonlinear Coulomb friction and 

has the ability to represent different hysteresis shapes. 

The OpenSees model of HSS brace in-line with friction damper device was calibrated against 

experimental tests conducted on one specimen tested in the Structure lab of Polytechnique 

University Montreal in 2014. The specimen tested was composed of a short length HSS 

203x203x9.5 brace connected to Pall friction damper designed for a slip force of 700kN and the 

slip length of 50mm.The middle plate of friction damper was welded to a slotted HSS brace. 

The other end of HSS brace was welded to a thick gusset plate connected to a reaction frame. 

The other end of full-size friction damper was bolted to a plate attached to the load cell 

connected to a dynamic actuator. The distance between the end of the HSS brace and the upper 

channel belonging to friction damper is the damper’s stroke or slip length. It is noted that friction 

devices slip when they are loaded either in tension or in compression. To assure a safety factor, 

the available slip length or stroke provided by manufacturer is 130% of the design slip length, 

which is equal to 65 mm in this case. More details regarding the experimental program, loading 

protocol, and test results on full-scale braces in-line with Pall friction dampers will be presented 

in a future publication and some info are given in Tirca et al., 2018 

The test was conducted under displacement controls. To verify if the friction damper is able to 

slide across the design slip length of 50mm, a quasi-static cyclic test was applied. The 

OpenSees model of the test setup is schematically presented in Fig. 5.2. As illustrated, the HSS 
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brace was divided into four forceBeamColumn elements with four integration points per element, 

while the rigid part of the damper was modelled as a stiff elasticBeamColumn element.  

 

 

Figure 5.2 OpenSees model of the experimental test 

 

The springs displaced in the Zero-Length elements were used to replicate the brace-to-rigid 

frame connection, the damper-to-actuator connection and to simulate the behaviour of the 

friction device. In the BoucWen material model, the following parameters were given: the ratio 

of post-yield stiffness to the initial elastic stiffness, the initial elastic stiffness k0, exponent n 

that influences the sharpness of the model in the transition zones,  and β parameters controlling 

the shape of the hysteresis cycle. Other parameters such as A0, A, ν and η control the degradation 

process in stiffness and material, respectively. In this study, the parameters were taken as A0 =1, 

 =A= ν= η= 0 while  and β parameters were considered equal and were calculated based on 

the formula:  +β= 1/(y)
n. In the previous equation, y represents the yielding displacement of 

brace member when the damper starts slipping and can be calculated by using the following 

equation: y= Fslip/k0, where Fslip is the activation slip force and k0 = kbrace = AbraceE/L. Regarding 

the sharpness parameter, a value of n =10 was selected for this study, as suggested by Morales 

(2012). Using this OpenSees model, the replicated hysteresis response against a generic 

experimental hysteresis loop is shown in Fig. 5.3. 
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Figure 5.3 Hysteresis response of the OpenSees model versus a generic test response 
(red is the OpenSees response) 

It is noted that an uniaxial ElasticPerfectlyPlastic (EPP) material was also used instead of the 

BoucWen material. Although the hysteresis behavior of EPP material does not provide a smooth 

transition between the elastic phase and sliding phase, it leads to convergence problems when 

assigned to simulate friction sliding devices of a complex structure model. 

 

5.2.2 Slip-lock phase calibration and failure 

In order to investigate the slip-lock phase of friction dampers, the same setup as the previous one 

was used and the demand exceeded the damper’s stroke, which was ± 65 mm (e.g. 50 mm x 

130% = 65 mm). The purpose of investigating the slip-lock response it was to characterize the 

slip-lock curve. This stage is known as the bearing stage because the end row of pretensioned 

bolts of friction dampers hit the end of slotted hole and the brace equipped with a friction device 

behaves as a traditional CBF brace. This may happen when the friction sliding member is loaded 

either in tension or in compression.  During the test, the force was incrementally increased until 

it reached two times the slip force. Therefore, the friction device was able to sustain two times its 

design slip force. In terms of deformation, the bearing slope was steeper in compression than that 

in tension. This is explained that during compression, the available stroke of friction damper 𝑢  

is depleted and the outer channels of friction damper may come in contact with the HSS brace 

end, hence adding more stiffness. The 𝑢  stroke is illustrated in Figure 5.4. During the bearing 

stage, the holes in the gusset plate used for bolted connections between the two channels and the 

gusset plate exhibit ovalization type of deformation. 
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Figure 5.4 Emphasized slip length of friction damper 
 

The stiffness in both compression and tension remained relatively constant. Similar to Morales's 

proposal (2012), the slip-lock phase was simulated by a series of translational springs made of 

ElasticPerfectlyPlastic Gap material defined in both oscillation directions (tension and 

compression) and added in parallel to the BoucWen material.  

 

A Hyperbolic Gap material was also tested and calibrated with the experimental data. After 

several trials and errors in the input parameters of Hyperbolic Gap material, it is possible to 

better fit the experimental curve in the bearing phase as well as the unloading and reloading 

stiffness of FDs. However, the hyperbolic gap material can only be implemented as a 

compression gap material. In this light, the ElasticPerfectlyPlastic Gap material is recommended 

for the slip-lock phase. Using this modeling approach in OpenSees, the model was calibrated 

against a generic hysteresis loop similar to the experimental tests and is depicted in Fig. 5.5. 
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Figure 5.5 Calibration of FD model in OpenSees against a generic hysteresis loop resulted from 
experimental test 

 

 

To incorporate the failure of friction damper, a MinMax material was assigned to the 

ElasticPerfectlyPlastic Gap material to decouple the device when the force in damper reached 

two times Fslip or bolts fail in shear. Failure of friction damper can be expected when the seismic 

demand exceeds the available slip length and the pretensioned bolts impact the edge of slotted 

hole driving the pretensioned bolts to behave in bearing and latter on in shear. Hence, the slip 

length is an important parameter that is able to control the seismic response of friction damper. 

On one hand, if the slip length is too small, the energy dissipation capacity of the device is 

greatly reduced and the slip-lock phase is encountered earlier. On the other hand, if the slip 

length is too large (e.g. corresponding to 2.5%hs interstorey drift), important residual 

deformations are anticipated. It is noted that friction damper devices do not possess self-

centering capability. 

 

5.3 Nonlinear response of 4-storey hospital building 

Nonlinear dynamic analyses are conducted using OpenSees. Although the brace members were 

designed to respond in the elastic range, they were simulated by using a force-based nonlinear 

beam-column elements with distributed plasticity and fiber cross-sections. The Steel02 material 
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was assigned to braces, beams and columns. Both beams and columns were simulated using the 

nonlinear beam-column elements with distributed plasticity similar to the CBF model. It is noted 

that the brace to frame connection was defined at one brace end as per the CBF model and at the 

other end as explained above in order to simulate the response of friction damper. The same 

seismic mass as per the CBF building was considered. 

The first-mode period of the 4-storey hospital building resulted from 3-D analysis using ETABS 

was 0.476s and 0.437s in the E-W and N-S direction, respectively. This value is similar to that 

resulted from the code equation 0.025hn, where hn=18.2 m is the building height. From 

OpenSees, the first-mode period resulted T1= 0.52 s. Braces of FS-CBF shown in Table 5.1 are 

slightly stiffer than those of CBF system shown in Table 4.11 and hence the resulted first mode 

period is slightly shorter. 

The hospital building model was subjected to 10 crustal ground motions typical for the Pacific 

coast of North America. The selected engineering demand parameters are: i) the interstorey drift, 

ii) the residual interstorey drift iii) floor acceleration and iv) the energy dissipated by friction 

sliding braces illustrated by means of hysteresis loops.  

 
Table 5.2 First mode period of studied structural systems 

 

Software model 
MD-CBF FS-CBF 

T1, E-W (s) T1, E-W (s) 
ETABS 0.483 0.476 

OpenSees 0.516 0.520 

 

5.3.1 Ground motion scaling 

The FS-BF hospital building was subjected to the same 10 ground motions as the CBF building. 

However, due to the slight difference in dynamic period, ground motions were slightly rescaled 

over the interval [0.2T1 - 1.5T1] as shown in Figure 5.6. The scale factor for each ground motion 

is given in Table 5.3. 
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Table 5.3 Selected crustal ground motions and scaling factor 
 

GM Event Mw Station S. F. 
(IE=1) 

S. F. 
(IE=1.5) 

57 Feb. 9, 1971 San Fernando 6.6 Castaic, Old Ridge Route 1.85 2.78 
767 Oct. 18, 1989 Loma Prieta 6.9 Gilroy Array #3 1.68 2.52 
787 Oct. 18, 1989 Loma Prieta 6.9 Palo Alto - SLAC Lab 0.98 1.47 
796 Oct. 18, 1989 Loma Prieta 6.9 SF - Presisio 1.91 2.87 
739 Oct. 18, 1989 Loma Prieta 6.9 Anderson Dam (Downstream) 1.95 2.93 
963 Jan. 17, 1994 Northridge 6.7 Castaic, Old Ridge Route 0.85 1.28 
986 Jan. 17, 1994 Northridge 6.7 LA - Brentwood VA Hospital 1.98 2.97 
1006 Jan. 17, 1994 Northridge 6.7 LA - UCLA Grounds 1.94 2.91 
1039 Jan. 17, 1994 Northridge 6.7 Moorpark - Fire Station 1.84 2.76 
1077 Jan. 17, 1994 Northridge 6.7 St Monica 1.68 2.52 

 

 

 
 
 

Figure 5.6 Design spectrum and 5% damped absolute acceleration spectra of the scaled ground 
motions for: a) IE = 1.0 and b), IE = 1.5 

 

5.3.2 Nonlinear response 

At first, the friction damper model does not include the simulation of the stick-lock phase (SL) in 

order to determine the required slip length. The friction damper was simulated by using the 

BoucWen model and the maximum interstorey drifts resulted under each scaled ground motion 

were recorded and are provided in Table 5.4. To ensure that the parameters used are appropriate, 
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the BoucWen material assigned to simulate the response of friction dampers was replaced by an 

ElasticPerfectlyPlastic (EPP) material for comparison purpose. 

 
Table 5.4 Distribution of interstorey drifts of FS-BF using BoucWen material for FDs under 

scaled ground motions 
 

 Distribution of interstorey drift at code level with IE=1 for BoucWen model without SL 
simulation 

ST 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.658 0.810 0.990 0.510 0.926 0.568 0.621 0.959 0.554 0.941 
3 13.8 0.671 0.892 0.979 0.517 0.871 0.466 0.515 0.915 0.574 0.970 
2 9.4 0.496 0.523 0.520 0.560 0.466 0.441 0.397 0.634 0.737 0.865 
1 5.0 0.522 0.553 0.789 0.588 0.594 0.649 0.367 0.719 0.970 0.978 

 

 

Table 5.5 Distribution of interstorey drifts of FS-BF using EPP model for FDs under scaled 
ground motions 

 
Distribution of interstorey drift at code level with IE=1 for ElasticPerfectlyPlastic model without 

SL simulation 

ST 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.656 0.812 0.991 0.509 0.926 0.567 0.621 0.957 0.556 0.941 
3 13.8 0.670 0.894 0.980 0.517 0.872 0.465 0.515 0.914 0.574 0.970 
2 9.4 0.498 0.523 0.521 0.560 0.467 0.441 0.396 0.633 0.737 0.863 
1 5.0 0.521 0.553 0.790 0.588 0.595 0.648 0.368 0.719 0.970 0.959 

 

It is concluded that both BoucWen and EPP models yield similar outputs in terms of interstorey 

drifts for all ground motions. Hence, both material models could be interchangeably used to 

mimic the behaviour of friction dampers. In this study, the BoucWen model is kept onwards. 

Under all ground motions, the peak interstorey drift was below the allowable maximum 

interstorey drift of 1%hs for post-disaster buildings. FS-BF should be designed not to experience 

the bearing stage under code level seismic events. The slip length must be increased until this 

requirement is met for all scaled ground motions. During the slip phase, the period of the 

building increases due to the decrease in the overall stiffness of the SFRS. In Figure 5.6, the 
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scaled acceleration response spectrum of ground motion #787 is well above the code design 

spectrum at T1 and increases abruptly after that, while other records tend to decrease as the 

period elongates. This may have contributed to the increase in drift demand. The response under 

GM #796 is further investigated in a later section. 

The distribution of interstorey drift among floors is illustrated in Fig. 5.7. As aforementioned, 

both models were considered to simulate friction dampers without the consideration of slip-lock 

phase. As resulted, the average of interstorey drifts under the 10 ground motions is lower than 

1.0%hs, which is the code limit for post-disaster buildings and is represented by solid black line. 

 

 

Figure 5.7 Distribution of interstorey drift over building height for FS-BF (E-W direction): a) 

BW model b) EPP model 

By establishing the maximum interstorey drift from nonlinear dynamic analyses without 

considering the slip-lock phase, the required damper’s stroke is obtained for each ground motion 

and is shown in Table 5.6. 
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Table 5.6 Damper displacement demand simulated with BoucWen material under GMs 
 

Damper displacement demand at code level with IE=1 for BoucWen model without SL simulation 

St. 
GM 
739 

GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 
4 17 21 28 12 25 14 15 26 13 25 
3 15 22 26 10 22 9 10 23 12 25 
2 10 10 10 12 9 8 6 14 17 22 
1 10 13 20 13 14 16 5 17 26 27 

 

There are no strict guidelines for sizing the design slip length, 𝑢 , of friction damper devices. 

One can consider the average of all ground motion as well as the 84% percentile or the 

maximum demand. As depicted in Table 5.6, at the top floor, the maximum demand is 28 mm 

and 130% x 28mm = 36 mm. At the bottom floor, the maximum demand is 27 mm and 130% x 

7mm = 35 mm. In Table 5.7, the average slip lengths resulted from Table 5.6, as well as the 

Mean+SD and the Max. Values, are provided. Although, the current code requires using the 

mean to evaluate the seismic response of a building that is subjected to at least 7 ground motions 

(AISC), in this case study, it is recommended to use the Max. value to establish the damper’s 

stroke. As depicted in Table 5.7, the maximum demanded slip length at each floor is lower than 

the associated elongation corresponding to 1%hs. Herein, the axial elongation of brace associated 

to 1%hs is computed as: 1%hs x cos(α), where α is the angle between the brace and the 

horizontal line (e.g. α =46.880 at typical floor and α=46.770 at ground floor). The stroke is 

computed as 1.3uslip + dbolt, where dbolt is the diameter of pretensioned bolts of friction damper. 

Table 5.7 Possible slip length resulted underground motions scaled to comply with IE=1 
 

Slip length (SL) resulted under ground motions scaled to comply with IE=1 

St. 
Mean Mean+SD Max. 

Selected slip 
length (uslip) 

1.3 
uslip 

1%hs 
Axial elongation of sliding 
brace (1%hs)xcos(α) 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) 
4 20 26 28 28 36 44 31 
3 17 24 26 26 34 44 31 
2 12 17 22 22 29 44 31 
1 16 23 27 27 35 50 34 
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In this study, it is proposed to select the design slip length, uslip, based on the maximum value 

between the Max. slip length and the slip length associated with interstorey drift of 1%hs for 

post-disaster buildings. This will ensure that the FD-BF does not go in the slip-lock phase under 

severe earthquakes scaled to the code level. Local damages are mitigated by avoiding the pre-

tensioned bolts to come in contact with the edge of the slotted hole. The selected slip length, uslip, 

is then increased by 130% to obtain the damper’s stroke. For constructability, the peak among 

floors was selected and is shown in Table 5.8. 

Table 5.8 Proposed slip length for friction dampers associated with IE=1 
 

St. 
Max. slip 

length 

Axial elongation of 
sliding brace associated 

with (1%hs) x cos(α) 

1.3 x Max of Max slip 
& axial elong. of 

sliding brace 

Proposed slip 
length (1.3uslip) 

(mm) (mm) (mm) (mm) 
4 28 31 41 45 
3 26 31 41 45 
2 22 31 41 45 
1 27 34 45 45 

 

 

To analyse the time-history series of interstorey drift obtained at all floors, the responses to GM 

#1006, GM #739 and GM #796 were selected for investigations. In Fig. 5.8 is depicted the scaled 

ground motion #1006, which has a duration of 60s. Ten seconds were added with zero 

displacement to observe the response to free vibrations. As depicted, during the first 10 seconds, 

the building deflects in the first mode shape. After that, the structure oscillates on one side, while 

the upper two floors are exposed to higher residual interstorey drift than the bottom two floors. 

This behaviour may be explained by the fact that columns are continuous over two storeys. The 

column tiert of the upper two floors is pin-connect to the bottom column tier. This behaviour is 

observed in most situations. For example, in Figs. 5.9 and 5.10 are depicted the time-history 

series of interstorey drifts of all floors when the FS-BF is subjected to GM #739 and GM #796, 

respectively. Their behaviour is very similar. Thus, to reduce the residual interstorey drift, one 

solution could be to maintain columns continuous over the structure height. 
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Figure 5.8 Time history response of FD-BF: a) scaled accelerogram of GM # 1006 and b) 
interstorey drift at each floor of hospital building 

 

Figure 5.9 Time history response of FD-BF: a) scaled accelerogram of GM #739 and b) 
interstorey drift at each floor of hospital building 

a) 

b) 

a) 

b) 
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Under low frequency ground motions such as GM #739, dampers of all floors tend to activate at 

similar time and practically at the beginning of the record. It is apparent that the ground motion's 

characteristic such as frequency play an important role in FD-BF behavior. The amount of load 

reversal is smaller during these seismic events, hence reducing the slip-stick behavior seen in FD 

when the friction coefficient varies from static to dynamic and vise-versa. This, in turn, reduces 

the vibrations within the system that may lead to premature failure due to excessive wear and 

tear. The interstorey drifts under GM # 796 are then investigated due to the excessive 

displacements seen in Table 5.4. 

 
Figure 5.10 Time history response of FD-BF: a) scaled accelerogram of GM #796 and b) 

interstorey drift at each floor of hospital building 

 

a) 

b) 
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According to Table 5.4, the maximum peak interstorey drift occurred at 1st floor under ground 

motion #796. As shown in Figure 5.11, the peak drifts and the maximum ground motion 

accelerations do not occur at the same time. FS-BFs without self-centering systems, such as 

moment-resisting frames, have no means to realign itself to its initial position. Due to this 

characteristic, the drifts are cumulated when the ground motion acts in a predominant direction. 

When GM #796 reached the time step corresponding to Tp (main period of accelerogram), all 

friction devices yield to their available slip length. After t = 6.82s, the ground floor and second 

floor oscillate on one side with large residual interstorey drift while the upper floors oscillate on 

the other side but exhibit lower residual interstorey drift of about 0.25%hs. Herein, the simulation 

of friction dampers with ElasticPerfectlyPlastic material is disregarded as it yields the same 

results as that using the BoucWen material for friction damper simulation. 

The residual drifts associated with IE=1 are plotted in Table 5.9. 

 
Table 5.9 Residual interstorey drift of FS-BF with FDs simulated with BoucWen material at IE=1 

 
Distribution of residual interstorey drift at code level with IE=1 for FDs with BoucWen material 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.240 0.502 0.733 0.051 0.561 0.007 0.104 0.545 0.278 0.634 
3 13.8 0.184 0.536 0.669 0.008 0.517 0.127 0.127 0.548 0.188 0.622 
2 9.4 0.102 0.170 0.206 0.088 0.023 0.052 0.000 0.308 0.452 0.491 
1 5.0 0.069 0.171 0.215 0.057 0.129 0.082 0.021 0.361 0.403 0.587 

 

When the demand in damper displacement is lower than the available slip length of friction 

dampers, the residual interstorey drifts resulted when the bearing phase is simulated by means of 

a series of translational springs made of EPP Gap material, which is added in parallel to the 

BoucWen material, is the same as that without the addition of EPP Gap material. The 

distribution of residual interstorey drift across the building height is illustrated in Fig. 5.12. As 

depicted, the peak of Mean residual drift is below 0.5%hs, which means that the building is 

reparable after an earthquake event of an intensity that meets the code demand. In the case of FS-

BF, the Mean+SD residual interstorey drift is about 0.5%hs underscaled ground motions 

complying with IE=1.0. This suggests that a back-up system with some self-centering features is 
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definitely required to decrease the residual drifts below 0.5%hs and to avoid the case when the 

building cannot be retrofitted after a severe earthquake event. 

The maximum floor acceleration resulted for the FS-BF, equipped with friction dampers 

simulated with BoucWen material, were also recorded for each ground motion scaled at code 

level (IE=1). The values of floor acceleration demand resulted under each scaled GM are 

provided in Table 5.10 and the distribution of floor acceleration among floors is depicted in Fig. 

5.13. As resulted, the floor acceleration across the building height shows uniform distribution at 

expected earthquake levels (IE=1.0). 

 
Figure 5.11 Distribution of residual interstorey drift along the height of FS-BF building (E-W) 

 
 

 
Figure 5.12 Distribution of floor acceleration along the height of FS-BF building (E-W) 
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Table 5.10 Distribution of floor acceleration of FS-BF equipped with friction dampers simulated 
with BoucWen material at IE=1 (E-W direction). 

Distribution of floor acceleration of FS-BF under GMs scaled at code level with IE=1 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g) 
4 18.2 0.608 0.602 0.585 0.554 0.600 0.628 0.577 0.562 0.380 0.637 
3 13.8 0.617 0.469 0.620 0.510 0.692 0.653 0.844 0.557 0.506 0.651 
2 9.4 0.792 0.581 0.634 0.605 0.629 0.643 0.685 0.801 0.549 0.588 
1 5.0 0.826 0.542 0.483 0.472 0.790 0.789 0.640 0.620 0.442 0.493 

 

The hysteresis response of the left and right damper per floor and the associated interstorey drift 

resulted under the scaled GM #1006 to match the design spectrum associated to IE =1.0 is 

depicted in Figure 5.14. The peak interstorey drift occurred at the 4thfloor. At each floor, 

excepting the 4th, the left and right dampers slide simultaneously. At 4th floor, the left damper 

slides first at the time step equal to 6s, while the right damper starts sliding at 6.36s.  

Furthermore, due to the additional safety measures required for post-disaster buildings, the 

effects of IE=1.5 amplified forces are examined. As aforementioned, the dynamic analysis 

procedures are given in NBCC 2010. According to Sentence 4.1.8.12(7), the design elastic base 

shear Ved, which does not take into account either the inelastic response or the importance of the 

structure must be divided by the product RdRo and multiplied by the importance factor IEto 

obtain the design base shear, Vd. In this manner, the post-disaster buildings are deemed to be 

able to withstand the amplified force related to an importance factor, IE=1.5.In addition, 

according to Sentence 4.1.8.12(10), the resulted elastic interstorey drifts need to be multiplied by 

the product RdRo/IE to obtain realistic values of anticipated deflections and drifts. In other words, 

this clause allows the designer to evaluate the deformations and drifts of a structure at expected 

code level earthquakes and not at the amplified seismic records associated to IE = 1.5. 
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Figure 5.13 Hysteretic loops of friction damper and interstorey drift time-history series resulted 

under GM #1006 scaled at code level considering IE=1.0 
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In order to assess the strength resistance of a post-disaster building, the ground motion 

accelerograms were rescaled to include the effect of IE, as shown in Table 5.3. In this light, 

similar to the dynamic analysis procedure described in NBCC 2010, the building is checked 

against higher scale factors applied to ground motions that are associated with code level 

earthquake events amplified by IE=1.5. In this light, the distribution of interstorey drifts along the 

building height obtained under the code level with IE=1.5 is recorded for a model without slip-

lock conditions and is shown in Table 5.11. In Table 5.12 it is shown the Mean, Mean+SD and 

Max. values of interstorey drifts provided in Table 5.11 and the associated damper displacement 

is shown in Table 5.13. 

Table 5.11 Distribution ofinterstorey drift at code level with IE=1.5 when braces are simulated 
using BoucWen material without Slip Lock simulation 

 
 Distribution of interstorey drift at code level with IE=1.5 for BoucWen model without Slip Lock (SL) 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 1.039 0.860 1.659 0.962 1.022 1.031 0.924 1.669 0.828 1.453 
3 13.8 1.284 0.926 1.652 1.273 0.808 0.685 0.716 1.515 0.886 1.558 
2 9.4 0.659 1.029 0.706 1.043 1.226 0.577 0.428 0.848 0.966 1.003 
1 5.0 0.854 1.307 0.901 1.426 1.437 0.893 0.471 1.264 1.377 1.359 

 

Table 5.12 Distribution of Mean,Mean+SD and Max. interstorey drift response at code level 
considering IE=1.5 

 
Mean, Mean+SD and Max. interstorey drifts comparison at code level with IE=1.5 

St. 
H Mean  Mean+SD  Maximum  

(m) (%hs) (%hs) (%hs) 
4 18.2 1.15 1.45 1.67 
3 13.8 1.13 1.48 1.65 
2 9.4 0.85 1.09 1.23 
1 5.0 1.13 1.44 1.44 

 

As resulted from Table 5.12, the Mean is 15% larger than the code limit of 1.0%hs. The slip 

length demand recorded in each damper under each ground motion is shown in Table 5.13 and 

the Mean, Mean+SD, and the Max. value of slip length are provided in Table 5.14. 
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Table 5.13 Distribution of damper slip length demand at code level with IE=1.5 for FDs 
simulated with BoucWen material without SL simulation 

 
Damper slip length demand at code level with IE=1.5 for BoucWen model without SL simulation 

S
T 

GM 
739 

GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 
4 28 23 47 27 28 29 28 46 19 41 
3 34 23 44 34 20 16 19 41 19 42 
2 15 26 16 27 32 12 9 21 21 26 
1 23 38 24 41 41 24 9 35 33 40 

 
 

Table 5.14 Proposed slip length for friction dampers associated with IE=1.5 
 

Slip length (SL) to be considered with IE=1.5 

St. 
Mean Mean+SD Max. 

Selected slip 
length (uslip) 

1.3x 
uslip 

Axial elongation 
of sliding brace 
(1%hs) x cos(α) 

Axial elongation 
of sliding brace  
(2%hs) x cos(α) 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) 
4 32 41 47 47 61 31 62 
3 29 40 44 44 57 31 62 
2 21 28 32 32 42 31 62 
1 31 41 41 41 53 34 68 

 

Although the Mean interstorey drift is slightly above 1%hs, which may be deemed acceptable, it 

is recommended to select the slip length demand based on the maximum demand multiplied by 

130%. As is shown in Table 5.14, it is recommended to round up the peak of 1.3uslip to nearest 5 

mm, which leads to 65 mm for the damper’s stroke demand, which is approximately associated 

to 2%hs interstorey drift. 

Once the available slip length is established, the slip-lock phase can be added to the friction 

damper model. As mentioned in Section 5.2.1, the bearing phase is simulated with a series of 

translational springs made an ElasticPerfectlyPlastic gap material, which is placed in parallel 

with the BoucWen material in the Zero-Length element. Due to the lack of experimental data on 

the bearing phase of FD devices, the tangent stiffness obtained from the aforementioned test is 

used as a constant in this model for all dampers. The new model is then re-subjected to the same 

10 scaled ground motions and the distribution of interstorey drift among floors and the demand 
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of dampers slip length associated with IE = 1.5 is plotted in Figure 5.14. In addition, the 

distribution of residual interstorey drift and floor acceleration is depicted in Figures 5.15 and 

5.16, respectively. The residual interstorey drift obtained under each scaled ground motions is 

provided in Table 5.15 and the recorded floor acceleration values are given in Table 5.16. 

 

 
Figure 5.14 Distribution of interstorey drift and damper’s slip length demand across the building 

height under GMs scaled to comply with IE=1.5 

 

Table 5.15 Distribution of residual interstorey drift of FS-BF with FDs simulated with BoucWen 
material resulted under GMs scaled to comply with IE=1.5 

 
Distribution of residual drift at code level with IE=1.5 for BoucWen model 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.529 0.469 1.115 0.686 0.053 0.128 0.123 0.410 0.309 1.027 
3 13.8 0.500 0.584 1.099 0.803 0.036 0.124 0.137 0.391 0.456 1.043 
2 9.4 0.117 0.635 0.328 0.566 0.037 0.032 0.033 0.505 0.280 0.136 
1 5.0 0.217 0.533 0.286 0.679 0.052 0.021 0.089 0.541 0.379 0.207 

 
 

The residual drifts of FS-BF are much larger than those recorded for the MD-CBF models. The 

comparison between the 2 systems, MD-CBF and FS-CBF, is discussed in the next section. 
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Figure 5.15 Distribution of residual interstorey drift along the height of FS-BF building under 
GMs scaled to comply with IE =1.5 

 

 
Table 5.16 Distribution of floor acceleration along the height of FS-BF building equipped with 

FDs simulated with BoucWen material under GMs scaled to comply with  IE=1.5 (E-W). 
 

Distribution of floor acceleration at code level with IE=1.5 for BoucWen model 

St. 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g) 
4 18.2 0.693 0.651 0.664 0.658 0.669 0.798 0.644 0.745 0.502 0.773 
3 13.8 1.046 0.565 0.993 0.680 0.832 1.260 0.747 0.795 0.647 0.875 
2 9.4 0.864 0.674 0.807 0.769 1.147 1.212 0.894 0.941 0.841 0.826 
1 5.0 0.869 0.584 0.848 0.647 0.893 0.968 0.736 0.793 0.730 0.764 

 

In general, the addition of friction dampers reduced the floor acceleration of each storey 

compared to the MD-CBF systems. In addition, the floor acceleration does not vary significantly 

between different ground motions. 

Analysing the FDs response, failure of friction dampers is expected when the seismic demand 

exceeds the available slip length and the pretensioned bolts impact the edge of slotted hole 

driving the pretensioned bolts to behave either in bearing or in shear. Hence, the length of slotted 

hole is an important parameter, which is able to control the seismic response of friction dampers. 
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Figure 5.16 Distribution of floor acceleration along the height of FS-BF building under GMs 
scaled to comply with IE =1.5 

 

On the one hand, if the length of slotted hole is too small, the energy dissipation capacity of the 

device is greatly reduced and the slip-lock phase is encountered earlier. On the other hand, if the 

slip length is too large (e.g. corresponding to 2.5%hs interstorey drift), important residual 

deformations are anticipated. The summary of the friction damper properties used hereon is 

shown in the Table 5.17. Considering the slip length recommendation of 65 mm, hysteretic loops 

of friction dampers and interstorey drift time-history series resulted under GM #1006 scaled at 

code level considering IE=1.5 are provided in Figure 5.17. In case that slip length remained 

unchanged as provided in Table 5.8 (slip length of 45 mm), the amplified ground motion GM 

#1006 drives friction dampers into the bearing phase as illustrated in Figure 5.18 

 
Table 5.17 Slip force and slip length of FS-BF hospital building 

Storey 
Slip load, Fslip 1.3Fslip Cr of brace Slip length, ∆s 

kN kN kN mm 
4 750 975 1013 65 
3 1250 1625 1734 65 
2 1550 2015 2053 65 
1 1900 2470 2578 65 

 



 

130 
 

 
Figure 5.17 Hysteretic loops of friction damper and interstorey drift time-history series resulted 

under GM #1006 scaled at code level considering IE=1.5 (slip length = 65 mm) 
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Figure 5.18 Hysteretic loops of friction damper and interstorey drift time-history series resulted 
under GM #1006 scaled at code level considering IE=1.5 (slip length = 45 mm) 
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5.4 Comparison between MD-CBF and FS-BF seismic response 

The peak interstorey drifts of FD-CBF are greater than those recorded from the MD-CBFs. To 

emphasize the difference, the Mean and the Mean+SD of residual drifts are given in Table 5.18 

and Table 5.19 for IE=1 and IE=1.5, respectively.  

Table 5.18 Comparison of interstorey drift distribution along the height of FS-BF and MD-CBF 
buildings under GMs scaled to match the design spectrum associated to IE=1 

 
 Distribution of  interstorey drifts comparison at code level with IE=1 

St. 
H Mean (%hs) Mean+SD (%hs) 

(m) 2tg linear 8tg elliptical BW-EPPGap 2tg linear 8tg elliptical BW-EPPGap 
4 18.2 0.611 0.611 0.754 0.739 0.736 0.944 
3 13.8 0.664 0.686 0.737 0.809 0.846 0.945 
2 9.4 0.430 0.431 0.564 0.488 0.500 0.708 
1 5.0 0.502 0.504 0.673 0.589 0.590 0.868 

 

Table 5.19 Comparison of interstorey drift distribution along the height of FS-BF and MD-CBF 
buildings under GMs scaled to match the design spectrum associated to IE=1.5 

 
Distribution of interstorey drifts comparison at code level with IE=1.5 

St. 
H Mean (%hs) Mean+SD (%hs) 

(m) 2tg linear 8tg elliptical BW-EPPGap 2tg linear 8tg elliptical BW-EPPGap 
4 18.2 0.705 0.704 1.094 0.901 0.901 1.337 
3 13.8 1.001 1.033 1.052 1.324 1.377 1.341 
2 9.4 0.506 0.508 0.835 0.603 0.611 1.065 
1 5.0 0.797 0.801 1.041 1.193 1.190 1.300 

 

From Tables 5.18 and 5.19 it results that the Mean drifts of the upper 2 floors are increased by 

approximately 15% when dampers are installed in-line with braces. Similarly, the Mean drifts on 

the bottom 2 floors increase by roughly 30%. Despite the increase in deformations, the 

interstorey drifts remain below or around the code limit of 1%hs. In this manner, the FS-BF 

provides more uniformly distributed demand across the building height by engaging all friction 

damper devices into energy dissipation at the expense of having additional deformations. The 

distribution of interstorey drift of both systems subjected to GMs scaled to design spectrum with 
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IE=1 and the response comparison is shown in Figure 5.19. A similar figure when the demand is 

associated to IE = 1.5 is illustrated in Figure 5.20. 

 
Figure 5.19 Distribution of interstorey drift along the building height under GMs scaled to 

comply with IE =1: a) BW & EPPGap material b) 2tg linear model c) Comparison 
 

 
Figure 5.20 Distribution of interstorey drift along the building height under GMs scaled to 

comply with IE =1.5: a) BW & EPPGap material b) 2tg linear model c) Comparison 
 

The Mean and the Mean+SD of residual interstorey drifts are given in Table 5.20 and Table 5.21 

for IE=1 and IE=1.5, respectively. The associated residual interstorey drift distribution along the 

building height for IE=1 and IE=1.5 are illustrated in Figures 5.21 and 5.22, respectively. 
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Table 5.20 Comparison of residual interstorey drift distribution along the height of  FS-BF and 
MD-CBF buildings under GMs scaled to match the design spectrum associated to IE=1 

 
Distribution of residual drifts comparison at code level with IE=1 

ST 
H Mean (%hs) Mean+SD (%hs) 

(m) 2tg linear 8tg elliptical BW-EPP 2tg linear 8tg elliptical BW-EPP 
4 18.2 0.054 0.059 0.365 0.085 0.093 0.627 
3 13.8 0.057 0.063 0.353 0.107 0.115 0.599 
2 9.4 0.036 0.035 0.189 0.055 0.054 0.364 
1 5.0 0.046 0.048 0.210 0.071 0.077 0.394 

 

Table 5.21 Comparison of  residual interstorey drift distribution along the height of  FS-BF and 
MD-CBF buildings under GMs scaled to match the design spectrum associated to IE=1.5 

 
Distribution of residual drifts comparison at code level with IE=1.5 

St. 
H Mean(%hs) Mean+SD (%hs) 

(m) 2tg linear 8tg elliptical BW-EPP 2tg linear 8tg elliptical BW-EPP 
4 18.2 0.052 0.057 0.485 0.092 0.101 0.852 
3 13.8 0.102 0.124 0.517 0.179 0.213 0.890 
2 9.4 0.045 0.044 0.267 0.082 0.081 0.500 
1 5.0 0.075 0.074 0.300 0.154 0.153 0.527 

 

The residual interstorey drift envelope resulted from the building response for the 2tg linear MD-

CBF model is more uniformly distributed across the building height and yet it has residual drift 

values that are almost negligible compared to those of the FD-BF model. In the case of FD-BFs, 

the residual drift patterns are highly dependent on the ground motion. This is shown by the large 

gap between the Mean and the Mean+SD curve showed in the above Figures. Although, the 

Mean residual drifts are well below the 0.5%hs recommended limit, the Mean+SD values clearly 

violate this instruction. Hence, as predicted, a backup system with self-centering properties such 

as a moment-resisting frame (MRF) should be used in parallel with FD-BFs to reduce the 

residual drift. 
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Figure 5.21 Distribution of residual interstorey drift along the building height under GMs scaled 
to comply with IE =1.0:  a) BW & EPPGap material b) 2tg linear c) comparison 

 

 

Figure 5.22 Distribution of residual interstorey drift along the building height under GMs scaled 
to comply with IE =1.5:  a) BW & EPPGap b) 2tg linear c) comparison 

 

In the following Tables 5.22 and 5.23, it is shown the Mean and the Mean+SD of floor 

acceleration resulted under GMs scaled to comply with IE=1 and IE=1.5, respectively. The 

associated floor acceleration values distribution pattern along the building height is illustrated in 

Figures 5.23 and 5.24, respectively. 
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Table 5.22 Comparison of floor acceleration distribution along the height of FD-BF and MD-
CBF buildings under GMs scaled to match the design spectrum associated to IE=1.0 

 
Distribution of floor acceleration comparison at code level with IE=1 

St. 
H Mean (%hs) Mean+SD (%hs) 

(m) 2tg linear 8tg elliptical BW-EPPGap 2tg linear 8tg elliptical BW-EPPGap 
4 18.2 0.936 0.945 0.573 0.992 0.999 0.646 
3 13.8 0.852 0.856 0.612 0.957 0.967 0.722 
2 9.4 0.871 0.871 0.651 1.095 1.105 0.736 
1 5.0 0.718 0.723 0.610 0.852 0.857 0.757 

 

Table 5.23 Comparison of floor acceleration distribution along the height of FD-BF and MD-
CBF buildings under GMs scaled to match the design spectrum associated to IE=1.5 

 
 Distribution of floor acceleration comparison at code level with IE=1.5 

St. 
H  Mean (%hs) Mean+SD (%hs) 

(m) 2tg linear 8tg elliptical BW-EPPGap 2tg linear 8tg elliptical BW-EPPGap 
4 18.2 1.051 1.062 0.680 1.111 1.126 0.762 
3 13.8 0.892 0.897 0.844 0.965 0.979 1.053 
2 9.4 1.005 1.005 0.897 1.268 1.272 1.063 
1 5.0 0.863 0.869 0.783 1.003 1.012 0.899 

 

 

 

Figure 5.23 Distribution of floor acceleration along the building height under GMs scaled to 
comply with IE =1.0:  a) BW & EPPGap material b) 2tg linear c) both models. 
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Figure 5.24 Distribution of floor acceleration along the building height under GMs scaled to 
comply with IE =1.5:  a) BW & EPPGap material b) 2tg linear c) both models. 

 

In general, the accelerations recorded at floors of MD-CBFs are larger than those resulted for the 

FD-BF. Moreover, the distribution of the floor acceleration envelope is more favorable when 

friction dampers are installed. The ability to select the desired slip load with respect to the 

demand is an additional benefit of friction dampers. By an iterative design process, the structure 

can be opted to engage all friction dampers at all floors to yield simultaneously or in a preferred 

sequence to further improve the distribution of drift and acceleration envelops. The benefit of 

reducing the floor acceleration of a building by using a FS-BF system instead of a MD-CBF 

system comes at the expense of increased residual drifts. The designer must first assess, which of 

these parameters is more critical to the function of the building and then to optimize the design. 
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5.5 FS-BF with Continuous Columns 

In the previous case, columns of FS-BF were continuous over two storeys. Herein, it is proposed 

to mitigate the residual interstorey drifts by making the FS-BF’s columns continuous across the 

building height. If the results are not satisfied, a back-up moment-resisting frames designed to 

carry 25% of base shear could be added in parallel to the FS-BF system. The effects of using FS-

BFs with continuous columns are presented by using data resulted from the nonlinear time-

history analyses. The seismic response is expressed in terms of interstorey drift, residual 

interstorey drift and floor acceleration. Considering the same 10 GMs scaled to comply with IE 

=1, the distribution of peak interstorey drift is given in Table 5.24 and is depicted in Figure 

5.25a, while a comparison of drifts between the FS-BF without continuous columns and with 

continuous columns (FS-BFCC) is shown in Figure 5.25c. 

 

Table 5.24 Distribution of peak interstorey drifts of FS-BFCC under GMs scaled for at IE=1 
 

Distribution of interstorey drift at code level with IE=1 for BoucWen model with continuous column 

ST 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.689 0.748 0.992 0.527 0.914 0.577 0.700 0.998 0.592 1.069 
3 13.8 0.578 0.700 0.821 0.501 0.712 0.399 0.453 0.708 0.689 0.740 
2 9.4 0.526 0.619 0.592 0.577 0.538 0.436 0.405 0.500 1.061 0.731 
1 5.0 0.511 0.615 0.803 0.593 0.628 0.647 0.361 0.737 1.547 1.084 

 

The overall shape of the interstorey drift envelope is different between the FS-BF with 

continuous columns (FS-BFCC) and the FS-BF with columns continuous over 2 storeys (FS-BF). 

The difference in interstorey drifts at the 2nd and 3rd floor is reduced in the case of FS-BFCC 

systems. Furthermore, the Mean+SD interstorey drift is slightly less in the case of FS-BFCC when 

compared with that of FS-BF. The maximum residual interstorey drifts obtained under the 10 

scaled GMs are shown for FS-BFCC in Table 5.25 and the residual interstorey drift is illustrated 

in Figure 5.26. As depicted, the residual interstorey drift is substantially reduced (e.g. Mean+SD 

residual interstorey drift < 0.5hs) when FS-BFCC is used. 
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Figure 5.25 Distribution of interstorey drift along the building height under GMs scaled to 
comply with IE =1.0: a) FS-BFCC b) FS-BF c) Comparison of FS-BFCC & FS-BF response 

 

Table 5.25 Distribution of residual interstorey drifts of FS-BFCC under GMs scaled for IE=1 
 

Distribution of residual interstorey drift at code level with IE=1 for BoucWen model with continuous 
column 

ST 
H GM 

739 
GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(m) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) (%hs) 
4 18.2 0.198 0.419 0.732 0.071 0.521 0.013 0.111 0.383 0.219 0.632 
3 13.8 0.088 0.338 0.500 0.033 0.328 0.055 0.065 0.151 0.176 0.224 
2 9.4 0.048 0.265 0.281 0.088 0.060 0.018 0.007 0.139 0.508 0.261 
1 5.0 0.039 0.246 0.258 0.060 0.108 0.094 0.015 0.269 0.510 0.501 

 

Figure 5.26 Distribution of residual interstorey drift along the building height under GMs scaled 
to comply with IE =1.0: a) FS-BFCC b) FS-BF c) Comparison of FS-BFCC & FS-BF response 
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From Figure 5.26 is concluded that significant improvements of residual interstorey drifts are 

obtained when continuous columns are used. By providing continuous columns over the building 

height, the FS-BFCC system is less prone to exhibit soft-storey like behavior. Distribution of floor 

acceleration resulted under the 10 scaled GMs are given in Table 5.26 and the peak floor 

acceleration envelopes are depicted in Figure 5.27a. A comparison of Mean and Mean+SD floor 

acceleration resulted for FS-BFCC and FS-BF is presented in Figure 5.27c. As depicted, no 

reduction in floor acceleration is noted. 

Table 5.26 Distribution of floor accelerations of FS-BFCC under GMs scaled for IE=1 
 

Distribution of floor acceleration at code level with IE=1 for BoucWen model with continuous 
column 

ST 
GM 
739 

GM 
986 

GM 
1006 

GM 
57 

GM 
1077 

GM 
1039 

GM 
767 

GM 
963 

GM 
796 

GM 
787 

(g) (g) (g) (g) (g) (g) (g) (g) (g) (g) 
4 0.615 0.602 0.597 0.550 0.606 0.626 0.588 0.566 0.622 0.646 
3 0.620 0.462 0.651 0.516 0.712 0.629 0.841 0.558 0.816 0.569 
2 0.828 0.566 0.655 0.543 0.752 0.635 0.699 0.800 0.965 0.573 
1 0.803 0.527 0.490 0.445 0.820 0.775 0.605 0.579 0.757 0.473 

 

Figure 5.27 Distribution of floor acceleration along the building height under GMs scaled to 
comply with IE =1.0: a) FS-BFCC b) FS-BF c) Comparison of FS-BFCC & FS-BF response 
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Chapter 6  

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusions 

In this study, the seismic performances of a 4-storey hospital building equipped with MD-CBFs 

with improved connection detailing and FS-BFs are evaluated against the current code provisions 

using nonlinear dynamic analysis. The following findings are reported and some guidelines 

related to seismic design of post-disaster buildings are proposed. 

 There are no straightforward guidelines on conducting nonlinear time-history analysis for 

post-disaster buildings. It is understood that in the preliminary design, the base shear used 

to design the SFRS is increased by the earthquake importance factor IE=1.5. Hence, the 

SFRS system possesses higher strength. Moreover, when linear elastic analysis is used by 

means of the Modal Response Spectrum, the deflection should be amplified by the ratio 

RdR0/IE. However, when nonlinear dynamic analyses are conducted by means of time-

history analysis, it is not specified if ground motions are scaled to match the design 

spectrum over the period of interest using IE =1.0 or are scaled to match the design 

spectrum amplified by IE = 1.5. To investigate the seismic response of the prototype 

hospital building, two cases are considered for scaling GMs: (i) to fit the design spectrum 

amplified with IE=1 over the period of interest and (ii) to fit the design spectrum 

amplified with IE=1.5. Structural members and connections should not fail under both 

scenarios. When more than 7 ground motions are used, the peak of mean interstorey drift 

should be below the 1%hs, which is the code limit and the peak of mean residual 

interstorey drift should be less than 0.5%hs. 

 In general, the governing failure modes for gusset plates are block shear failure and net 

rupture. If the computed gusset plate thickness, t ,  does not meet all the requirements, 

it is recommended to increase the weld length L  rather than the thickness of gusset 

plate t . As previously mentioned, thinner brace-to-frame connections tend to perform 
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better. Furthermore, by increasing the weld length, thinner weld leg width, 𝐷  may also 

be achieved; which is beneficial for both cost and on-site constructability.  

 In the case where block shear failure of HSS brace governs the design, it may be 

advantageous to start the design by assuming the weld length to be equal to two times the 

width of the attached brace (𝐿 = 2𝑤) and to determine the required weld leg width 𝐷  

accordingly. In this manner, the framing system is less prone to shear lag effects and 

promotes thinner gusset plates.  

 When gussets with 8tg elliptical clearance are provided, the rotation capacity increases 

and larger axial deformation is achieved, as well as larger energy dissipation capacity. 

However, there were no significant changes in the overall behaviour of the building 

system. Due to the building's post-disaster design requirements that limits the interstorey 

drift to 1%hs, the potential gain in performance from linear to elliptical clearance model 

is reduced. In other words, by restricting the brace to undergo larger axial deformation, 

the amount of energy dissipated by the brace becomes smaller. Furthermore, the 

importance factor of 1.5 applied to post-disaster structures increases significantly the 

forces in members and connections. Hence, thicker gusset plates are required. With thick 

gusset plates, the benefit of the 8tg elliptical clearance model is further reduced. 

Nevertheless, the 8tg elliptical clearance band does have a more desirable distribution of 

stresses at the interface of brace-to-frame connections, which minimizes the likelihood of 

tear. 

 During the initial design phase, the overall height HT and width WT of gusset plates are 

often too large. By increasing the weld leg width Dw, shorter weld length Lw are achieved, 

which in turn produces a more compact gusset plate connection. Furthermore, the larger 

the gusset plate connection, the shorter the effective brace length become. Stocky braces 

tend to have less rotational capacity, hence should be avoided. 

 In the case of FS-BF, it is proposed to select the design slip length, uslip, based on the 

maximum value between the peak of Maximum slip length and the slip length associated 

with interstorey drift of 1%hs for post-disaster buildings. The selected slip length, uslip, is 

then increased by 130% to obtain the damper’s stroke, 1.3uslip, which for the case study is 
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45 mm. This will ensure that the FD-BF do not go in the slip-lock phase under ground 

motions scaled to match the design spectrum associated to IE =1. However, when the 

demand is associated to ground motions scaled to design spectrum amplified by IE = 1.5, 

the damper’s stroke requirement is 65 mm. To assure sufficient stroke length is provided 

for friction dampers employed in post-disaster buildings, it is recommended to establish 

the stroke parameter from the results obtained under GMs amplified by IE =1.5. 

 Comparing the seismic response of MD-CBF with that of FS-BF, it resulted that larger 

residual interstorey drift was obtained for FS-BF subjected to crustal ground motions and 

larger floor acceleration for the MD-CBF. Caution should be used when selecting the FS-

BF system, which is prone to residual interstorey drift. To improve the response of FS-BF 

in terms of residual drift, the case with continuous columns was proposed. Thus, for low-

rise buildings, it is recommended to use FS-BF with continuous columns. When the 

results are still not satisfactory, a Dual system composed of FS-BF and 25% MRF system 

is recommended. It is worth mentioning that the 25% MRF should be designed to carry 

an additional 25% base shear. 

 Under severe ground motions, friction dampers could go into the bearing stage, while 

high axial forces are transferred to the columns of braced frame. It is worth mentioning 

that friction dampers may not fail when forces reach 2Fslip in bearing. To avoid column 

failures a second fuse should be added to the system. 

 

6.2 Recommendation for Future work 

The following work is proposed to further the research of friction dampers installed in-line with 

braced frames: 

 Conduct experimental testing on friction dampers to assess the failure mechanism. Both 

the initial stiffness ki and the bearing stiffness coefficient kb should be measured to obtain 

the hysteresis backbone curve. 

 Braces of FS-BF are designed to carry 1.3 times the design slip force. If friction dampers 

can withstand up to 2Fslip, the attached brace are likely to buckle out-of-plane under 
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severe compressive forces. Once the brace buckles, the friction damper may be 

misaligned with respect to the brace and will no longer be able to dissipate the energy 

through friction sliding. An investigation on the maximum rotation leading to 

misalignment of brace with friction damper is recommended. 

 Investigate the response of FS-BF systems with continuous columns for buildings with 

different height and occupancy types. 

 Investigate the seismic response of Dual system formed by FS-BF and 25% MRF in order 

to reduce the residual interstorey drift. 

 Analyse the building response under subduction type ground motions that are 

characterized by long duration and several loading/ unloading cycles 
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