
Application of Reinforcement Learning in 5G Millimetre-Wave Networks

Artmiz Golkaramnay

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Science (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

April 2020

© Artmiz Golkaramnay, 2020

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Artmiz Golkaramnay

Entitled: Application of Reinforcement Learning in 5G Millimeter-Wave Networks

and submitted in partial fulfillment of the requirements for degree of

Master of Science (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final Examining Committee:

________________________________ Chair

Dr. Wei-Ping Zhu

________________________________ Examiner

Dr. Chadi Assi

________________________________ Supervisor

Dr. Mustafa Mehmet Ali

________________________________ Supervisor

Dr. Dongyu Qiu

Approved by ___

 Dr. Y. R. Shayan, Chair

 Department of Electrical and Computer Engineering

______ 2020 __

 Dr. Amir Asif, Dean

 Faculty of Engineering and Computer Science

iii

ABSTRACT

Application of Reinforcement Learning in 5G Millimeter-Wave Networks

Artmiz Golkaramnay

The increasingly growing number of mobile communications users and smart devices have

attracted researchers and industry pioneers to the largely under-utilized spectrum in the millimeter-

wave (mmWave) frequency bands for the 5th generation of wireless networks. This could provide

hundreds of times more capacity as compared to 4G cellular networks. The main reason for

ignoring the mmWave spectrum until now, has been its vulnerability to signal blockages and

possible disconnection or interruption in service. Considering that today’s mobile users expect

high reliability and throughput connections, the mmWave signal sensitivity to blockages must be

addressed. This research proposes to predict base stations that can service a user without

disconnections, given the user’s path or destination in the network.

In modern networks, reinforcement learning has been effectively utilized to obtain optimal

decisions (or actions being taken) in small state-action spaces. Deep reinforcement learning has

been able find optimal policies in larger network spaces. In this work, similar techniques are

employed to find ways to serve the user without service disconnection or interruption. First, using

dynamic programming for a fixed user path, the exact optimal serving base stations are listed.

Then, using Q-learning, the network will learn to predict the optimal user path and serving base

stations listed, given a fixed destination for the user. Lastly, deep Q-learning is used to approximate

optimal user paths and base station lists along that path, similar to the Q-learning results, which

can also be applied to networks with more sophisticated state spaces.

iv

ACKNOWLEDGMENTS

I wish to thank everyone whose assistance was a milestone in the completion of this

project.

The time and energy my supervisors, Dr. Dongyu Qiu and Dr. Mustafa Mehmet Ali,

dedicated to me and this project have been beyond expectation. You have always been available,

willing, and dedicated. It has been a pleasure to learn from you both.

Dr. Qiu, your tenacious and knowledgeable supervision has and will continue to inspire

me. My deepest gratitude for all your teachings through each stage of this project.

Dr. Mehmet Ali, your un-bounded guidance and support, whether technical or personal,

has been a gift. My sound appreciation for all your advice.

To my parents, Mohammad Rasoul and Maryam, my sister, Ana, and my boyfriend,

Cody, thank you for your unwavering support and encouragement. Thank you for always

believing in me and being there for me. I am blessed to be loved by you all. Baba Rasoul and

Maryam, all the sacrifices you have made in life have driven me forward in life, you have always

put my needs and my education above else and I am eternally grateful to you. The examples you

set for me, as an engineer and as a member of society will continue to urge me to try harder,

everyday.

To my mentor, Dr. McQuillan, who showed me the joy of research and the beauty in

discovery, I can never thank you enough.

Last, but not least, thank you to all the faculty and staff of Concordia University, the

department of Electrical and Computer Engineering, and the School of Graduate Studies for their

respective services.

v

Table of Contents

List of Figures ... vii

List of Tables ... viii

List of Abbreviations ... ix

1 Introduction ... 1

1.1 Introduction and Motivation ... 1

1.2 Problem Statement .. 2

1.3 What is 5G and Why use mmWave? .. 3

1.4 Markov Decision Processes .. 4

1.5 Thesis Organization .. 6

2 Literature Review .. 7

2.1 Machine Learning Overview .. 7

2.1.1 Dynamic Programming ... 7

2.1.2 Machine Learning ... 8

2.1.3 Supervised Learning ... 8

2.1.4 Unsupervised Learning ... 9

2.1.5 Semi-Supervised Learning .. 10

2.1.6 Reinforcement Learning ... 10

2.1.7 Q-learning ... 12

2.1.8 Deep Q-learning .. 14

2.2 Applications of RL in Wireless Networks Literature ... 15

3 Reinforcement Learning in mmWave networks .. 20

3.1 Introduction of a Sample Network .. 20

3.2 Dynamic Programming ... 23

3.3 Q-learning ... 26

3.4 Multi-Layer Perceptron and Deep Q-Learning ... 28

4 Numerical Results.. 32

4.1 Scenario A: data rate assignment to a fictitious 5x5 network ... 32

4.1.1 Scenario A-1: Comparing Q-learning (with γ = 1.0) to DP, max immediate reward action

selection, and max data rate action selection .. 33

4.1.2 Scenario A-2: Comparing Deep Q-Learning and Q-learning (with γ = 0.9) to maximum

immediate reward action selection .. 38

4.2 Scenario B: 200 × 200 Network with Data Rate Calculation ... 40

vi

4.2.1 Scenario B-1: Comparing Q-learning performance with different number of training steps

 42

4.2.2 Scenario B-2: Comparing Q-learning to DP, maximum immediate reward action selection,

maximum data rate action selection, and random action selection ... 45

4.2.3 Scenario B-3: Comparing Deep Q-Learning and Q-learning (with γ = 0.9) to maximum

immediate reward action selection .. 46

4.3 Scenario C ... 49

4.3.1 Scenario C-1: Comparing Deep Q-Learning to Q-learning on a 150 × 150 network (with γ

= 0.9) 50

4.3.2 Scenario C-2: Deep Q-learning for a very large network (with γ = 0.9) 51

4.4 Results ... 53

5 Conclusion and Future Work ... 54

5.1 Conclusion .. 54

5.2 Future Work .. 55

References ... 57

vii

List of Figures

Figure 1.1 MDP setup showing the state-action relationship with reward [11]. 5

Figure 2.1. Typical reinforcement learning cycle [13] ... 11

Figure 3.1. Sample 150 × 150 network with 5 base stations and 6 blockages 21

Figure 3.2. Bounded snapshot of the network in Figure 3.1 ... 22

Figure 3.3. Layout of an MLP with N inputs, M hidden units, and L outputs [27] 29

Figure 4.1 Layout of a 200x200 network with 7 base stations and 36 blockages 41

Figure 4.2. User’s path from origin to destination at [195, 195], using Q-learning (with γ = 1.0

and switching cost of 2) variable number of training steps .. 43

Figure 4.3. User’s path from origin to destination at [195, 195], using Q-learning (with γ of 0.9

and switching cost of 2) variable number of training ... 44

viii

List of Tables

Table 3.1 Base station coordinates of the network in Figure 3.2 .. 22

Table 3.2. Blockage coordinates for the network in Figure 3.2 .. 23

Table 4.1. Data rates received from every BS for every possible user location 35

Table 4.2. BS list and total reward for Q-learning, for fixed path dynamic programming,

maximum immediate reward, and random action selection results using switching cost of 2 36

Table 4.3 BS list and total reward for Q-learning, fixed path dynamic programming, maximum

immediate reward, and action selection results using switching cost of 3 36

Table 4.4 BS list and total reward for Q-learning, fixed path3 max immediate reward, deep Q-

learning, and fixed path4 immediate reward results using switching cost of 2 39

Table 4.5. BS list and total reward for Q-learning, fixed path3 max immediate reward, deep Q-

learning, and fixed path4 immediate reward results using switching cost of 3 39

Table 4.6. Total reward of running QL algorithm for different training step sizes, considering γ

of 1.0 and switching cost of 2 ... 43

Table 4.7. Total reward of running QL algorithm for different training step sizes, considering γ

of 0.9 and switching cost of 2 ... 45

Table 4.8. Total rewards of QL compared to fixed-Path1 methods .. 46

Table 4.9 Total reward of DQL (with γ of 0.9) for different number of training steps compared

to MIR-FP5 and MIR-FP6 .. 47

Table 4.10 DQL discounted reward and QL discounted Q-values for all possible actions when

user’s distance to destination is 0.. 48

Table 4.11 DQL discounted reward and QL discounted Q-values for all possible actions when

user’s distance to destination is 2.. 49

Table 4.12. Program run-time and total reward of QL & DQL in 150 × 150 network with

switching cost of 2 .. 51

Table 4.13 Program run-time and total reward of QL and DQL in a 150 × 150 network with

switching cost of 3 .. 51

ix

List of Abbreviations

5G 5th Generation (of wireless networks)

AI Artificial Intelligence

ANN Artificial Neural Networks

Bps bits per second

BS Base Station

BW Band Width

DL Deep Learning

DP Dynamic Programming

DP-FP Dynamic Programming (using a) Fixed Path

DQL Deep Q-Learning

DQN Deep Q-Network

DRL Deep Reinforcement Learning

Gbps Giga bits per second

GHz Giga Hertz

LOS Line-of-Sight

LTE Long Term Evolution

MDP Markov Decision Process

MDR-FP Maximum Data Rate (using a) Fixed Path

MIMO Multiple-Input Multiple-Output

MIR-FP Maximum Immediate Reward (using a) Fixed Path

ML Machine Learning

mmWave Millimeterwave

NLOS Non-Line-of-Sight

Q-learning Quality Learning

QoS Quality of Service

RL Reinforcement Learning

SINR Signal-to-Noise-and-Interference-Ratio

SNR Signal-to-Noise-Ratio

TD Temporal Difference

𝝁Wave Microwave

1

Chapter 1

1 Introduction

1.1 Introduction and Motivation

The necessity for spectrum in the world of Internet of Things (IOT) and the overcrowded

sub-6GHz spectrum, has researchers exploring the previously unused millimeter-wave (mmWave)

spectrum [1]. For the past few years, the mmWave frequencies have been investigated for the 5th

generation (5G) wireless systems [2].

When 5G wireless networks are made available, they will have enhanced mobile broadband

with high throughput rates (10 GB/s peak throughput rate [2]), but reliability and latency could

become drawbacks. The sensitivity of mmWave signals to physical blockages, can cause

disruptions in the connection or cut the connection off entirely [3].

If there is no line-of-sight between a serving base station and the user, given that the user

is not disconnected from the network, handing the user off to another base station incurs overhead

and latency issues [3]. On the bright side, interference is less of an issue in mmWave signals as

compared to 𝜇Wave signals, because of the highly directional nature of the these signals [4].

To address the overhead and latency issues for hand-off of the user from a non-line-of-

sight (NLOS) base station to a line-of-sight (LOS) base station, this thesis research proposes to

predict the user’s path and base stations to connect to, for a given destination. By determining the

user’s path, along with information about the network’s layout, any possible physical blockages

that could render a base station NLOS can be predicted. Then, the connection could switch to

another LOS base station that can serve the user. This work defers from previous work (such as

[3]), in that the decision to switch to an LOS base station is made knowing whether there is a

blockage making the base station only temporarily NLOS. The length of time that defines a

blockage temporary is dependant on the hand-off overhead, or switching cost, which will be

discussed in later chapters.

Predicting the base stations for the user to connect to, is done using several different

methods. The following sections clarify the problem statement, introduce the 5G network under

consideration, and provide a brief explanation of the basics of Markov decision processes. The

2

later chapters will include descriptions of different machine learning algorithms, different

approaches being used in the literature, provide overviews of the methods explored in this research,

scenarios studied to provide numerical results of the methods used, and end with a discussion of

the results and suggested future work.

1.2 Problem Statement

As mentioned, the exponentially increasing number of mobile users with higher bandwidth

and lower latency demands, has called for the use of the mmWave spectrum in 5G wireless

networks.

Because mmWave signals experience more specular propagation and reduced diffraction

[4] as compared to μWave signals, they are more vulnerable to blockages [4]. While solutions are

being considered to address the sensitivity of the mmWave to blockages [3], the suggestion being

explored here is to foresee the duration and length of blockages. By knowing the layout of the

network and blockage locations, it may be possible for an LOS base station to provide service to

the user currently connected to an NLOS base station, if necessary. This way the mobile user can

be handed off to a new BS, without experiencing a possible disconnection or interruption in service

caused by an NLOS user-BS link. This, however, will expose the user’s connection to hand-off

overhead, referred to as switching cost in this research.

The problem is defined with mmWave 5G wireless network characteristics in mind, for a

single mobile user moving at walking speed. Transmitting and receiving beams are assumed to be

ideally aligned for hand-offs [4]. The network’s base stations and stationary blockages are all

assumed to be in a 2-dimensional space. The number of base stations in the network are determined

using a base station density value that is calculated based on the coverage radius of the base stations

and the size of the network. The locations of these base stations are decided randomly, constraining

them to be placed inside the network. The number of blockages in the network are calculated using

a blockage density of 0.001. They are located randomly inside the network, using a Poisson

distribution, given the size of the network. These blockages are all assumed to be in the form of a

line. Because the user’s movement speed is assumed to be constant, it is ignored in the calculations

regarding the user’s directions and steps.

It is important to point out that the objective of this research is not to find the connections

in a wireless mmWave network with the highest throughput, but in fact to find a connection that

3

provides higher throughput considering the overhead associated with user hand-off. In some cases,

this approach may translate into choosing a connection with lower throughput, but higher overall

reward.

1.3 What is 5G and Why use mmWave?

With the explosive growth of mobile wireless communication devices, the 5th generation

of cellular network, more commonly known as 5G, was introduced as a solution to meet rising

demands. In 2014, it was predicted that traffic demand would grow 1000 times over the next

decade [5]. Higher data rates (multi-Gbps) and lower latencies are two of the major requirements

for 5G, which require architectural and component design shifts from 4th generation wireless

network [6]. Even though, research in enhancing the 4th generation of wireless networks (4G), such

as Long Term Evolution (LTE) to provide higher data rates have shown some progress, they are

not long-term solutions to the continuously increasing demands of the 2020s [7]. Because spectrum

is somewhat scarce in the microwave range, it has been proposed and researched to use millimetre

wavelengths in 5G [6]. So, in order to provide higher throughput, 5G networks are expected to use

a wide frequency band, millimeter wave, with operating frequencies in the 3.5 and 28 GHz range

[8]. It is expected that a 5G network would provide a minimum of 1Gbps data rate anywhere, up

to 5 Gbps for high mobility users, and 50 Gbps for pedestrian users [7].

But, mmWave signals suffer from acute pathloss due to oxygen molecules, water vapor,

and rain drops in the atmosphere and so this section of the spectrum has not been exploited until

now. However, having large antenna arrays that direct the energy beam will help with this issue

[1]. So, as mentioned, the higher data rates in 5G mmWave networks introduce trade-offs. One of

the main issues with mmWave is blockage, and another could be beam misalignment. The

blockage problem occurs when the signal cannot pass through a physical obstacle, and this affects

the signal-to-noise ratio (SNR) on the receiving end [8]. At higher frequencies, the blockage issues

such as penetration, precipitation, and foliage losses are considerable even though the actual

amounts of additional propagation losses vary depending on the material of the building, the

strength of rain, or the thickness of foliage, respectively [7]. This issue, which was not a problem

in μWave networks needs to be addressed so that mmWave networks can be taken advantage of in

5G.

4

The other issue with mmWave, beam misalignment, happens when the transmitting and

receiving beam pairs are not matching/aligned, which also affects the SNR on the receiving end

[8]. This issue is beyond the scope of this research.

1.4 Markov Decision Processes

This section introduces Markov Decision Processes (MDPs) which lay the foundation for

machine learning, discussed in later chapters.

A Markov chain, in relation to discrete stochastic processes, is defined for processes where

the outcome of any given experiment can affect the outcome of the next. In other words, knowing

the past outcomes, the future outcome of a process is predicted [9].

The following definitions are considered in relation to a Markov chain:

Set of states, S = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑛} , where the process could start in any one of these states

and would move (or transition) in order, from one state to another, with a given probability called

the transition probability.

The state transitions happen at discrete times, known as steps.

If the current state is 𝑠𝑖, then the next state is 𝑠𝑗, with probability of 𝑝𝑖𝑗. It is important to

note that 𝑝𝑖𝑗 is independent of any states before 𝑠𝑖. Also, the probability of going from one given

state to all the possible next states must add up to one. For example, if the current state is 𝑠𝑖 and

all the possible next states for 𝑠𝑖 are 𝑠𝑛, 𝑠𝑚, and 𝑠𝑗 with transition probabilities of 𝑝𝑖𝑛, 𝑝𝑖𝑚, and 𝑝𝑖𝑗

respectively, then:

 𝑝𝑖𝑛 + 𝑝𝑖𝑚 + 𝑝𝑖𝑗 = 1 (1.1)

A collection of all the transition probabilities, probability of going from any given state to

any possible next state in a process, can be represented as a matrix known as the transition

probability matrix [9].

Next, a decision process in defined before the introduction of a Markov Decision Process

(MDP). Any given sequential decision process has the following properties [10]:

1. Set of decision timesteps, this is a time frame where the decision is being considered

(each state is within a given timestep)

2. Set of states, which was discussed above

5

3. Set of available actions. In the above example with current state of 𝑠𝑖, taking actions

𝑎𝑖𝑛, 𝑎𝑖𝑚, and 𝑎𝑖𝑗 make the next respective states 𝑠𝑛, 𝑠𝑚, and 𝑠𝑗 possible.

4. Set of transition probabilities, which was discussed above, shows that from the state

𝑠𝑖, taking action 𝑎𝑖𝑛 (resulting in state 𝑠𝑛) has the transition probability of 𝑝𝑖𝑛.

5. Set of state-action immediate reward/cost. This means that for every state and action

pair, there will be an associated immediate reward (and/or cost, which for the remainder of this

thesis will only be referred to as reward). So, 𝑠𝑖, taking available action 𝑎𝑖𝑛, will have reward 𝑟𝑖𝑛.

Put differently, at a given timestep and state, the decision maker (discussed at more length

in the next paragraph) will decide on an action which will determine the next state as well as the

reward for that state-action pair. For a general sequential decision process, the available actions

and possible next states may be a result of the most recent state-action pair or all the previous states

and actions that led up to the current state.

The decision maker is tasked with choosing a series of actions (given the current state and

possible actions at every given timestep) that would maximize a set goal. In some cases, this goal

may be to maximize the overall rewards. One way to achieve this goal could be to maximize the

immediate reward at each timestep, also known as a decision rule for every timestep.

Now, a Markov Decision Process (MDP), is a sequential decision process with a certain

current-memory property. This means, as shown in Figure 1.1, that only the current state and action

of the agent will determine the next state (and possible reward and next actions) and not past states

or actions. The only effect the past states and actions have on the next state, is indirectly, through

the effect they had on the current state [10]. In Figure 1.1, the environment is referring to a

collection of states.

Figure 1.1 MDP setup showing the state-action relationship with reward [11].

6

As stated in the third chapter of [11], MDPs provide “a classical formalization of sequential

decision making, where actions influence not just immediate rewards, but also subsequent

situations, or states, and through those future rewards.”

1.5 Thesis Organization

So far, this chapter provided the motivation behind this thesis research, explained the

problem’s setting, 5G wireless network’s challenges and opportunities, and included a brief

explanation of MDPs.

The rest of this thesis is organized as follows:

• Literature Review: Chapter 2 introduces dynamic programming, the different

techniques of machine learning, and specifics about Q-learning and deep Q-learning. Next,

related work is covered, research in understanding and improving wireless mmWave networks

using machine learning methods such as reinforcement learning, and deep reinforcement

learning.

• Reinforcement learning in mmWave networks: Chapter 3 begins with a sample

network used in explaining algorithms being considered in this research. Then, the three

approaches used to improve the user’s service status, dynamic programming, Q-learning, and

deep Q-learning, are discussed in more detail. These algorithms are explained using the

example network introduced in the first section of the chapter,

• Numerical results: Chapter 4 presents results for the algorithms introduced in the

previous chapter to showcase different network scenarios.

• Conclusion and Future Work: The last chapter includes a discussion of the results

and proposed future work.

7

Chapter 2

2 Literature Review

This chapter initially provides a brief overview of different machine learning algorithms.

This is followed by an explanation of methods being explored in the literature pertaining to the

utilization of machine learning algorithms in wireless networks.

2.1 Machine Learning Overview

This section introduces the different methods used in solving the research problem. Two

general methods are considered, dynamic programming and machine learning algorithms. Both

approaches assume that the environment can be modeled as an MDP and can be used to find

solutions. Different machine learning algorithms are introduced to provide context. The algorithm

of choice in the solutions introduced to solve the research problem is reinforcement learning, and

more specifically Q-learning. That is because the problem requires a solution that is model-free

and able to find optimal policy () by experiencing the environment based on a reward system. The

definitions of model-free and optimal policy in the context of this research will be discussed in the

next section.

Deep Q-learning, a sub-category of reinforcement learning and deep learning, is introduced

at the end of this section and can be used to approximate the solution, as opposed to finding exact

solutions, for larger network sizes.

2.1.1 Dynamic Programming

Dynamic Programming (DP) can be applied to environments modeled as an MDP to find

an optimal policy for the environment. Although it may not always be easy or even possible to

have a perfect model of the environment, it is a necessity for DP algorithms. A finite MDP model

of the environment, plus the higher computational cost of a DP algorithm are why these algorithms

are not always used, or useful [11]. Therefore, this research utilizes other methods, as well as DP,

to solve the problem at hand. It may be useful to note that a finite MDP refers to an MDP with a

finite number of elements in the states, rewards, and actions of the environment [11].

8

In DP algorithms, the Bellman optimality equation is satisfied by choosing optimal value

functions that would result in optimal policies. This is done by using the Bellman equations as an

update rule for the state-value function. Computing the state-value function for any policy, π, (2.1)

𝑣𝜋(𝑠𝑡) = 𝐸𝜋[𝑟𝑒𝑤𝑎𝑟𝑑𝑡+1 + 𝛾 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+2 + 𝛾2 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+3 + ⋯ | 𝑠𝑡] (2.1)

Where 𝐸𝜋 is the expected value, given that the policy, π, is being followed. 𝛾 is the discount

factor and is explained at length in section 2.1.6. The state-value function will have a unique value

if 𝛾 < 1 or if it is possible to reach the terminal state from any state in the policy. Then, as

mentioned, using the Bellman equation on (2.1) to make the update rule would result in (2.2):

𝑣𝑘+1(𝑠𝑡) = 𝐸𝜋[𝑟𝑒𝑤𝑎𝑟𝑑𝑡+1 + 𝛾 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+2 + 𝛾2 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+3 + ⋯ | 𝑠𝑡] (2.2)

As 𝑘 → ∞ the sequence {𝑣𝑘} will converge to 𝑣𝜋 , if 𝛾 < 1 or if it is possible to reach the

terminal state from any state in the policy. This equation is called the iterative policy evaluation

[11].

2.1.2 Machine Learning

Artificial Intelligence (AI), is referred to the field of programming computers to perform

tasks that are natural and instinctive to humans, but not as easy for computers. In other words, AI

is a blanket term used to describe any automatic machine reasoning agent. Machine Learning (ML)

is a more specific area of AI more focused on pattern recognition and data deductions (learning

from provided data) through experience. Artificial Neural Networks, or ANNs, are a subclass of

ML that use what is known about the formation and operation of the human brain to perform

machine learning tasks, hence the neural network name [12].

ML algorithms are generally divided into the following categories:

supervised learning, unsupervised learning, semi-supervised learning, and reinforcement

learning [11]. These categories of ML will be discussed at more length in the following sections

of this chapter. Q-learning, a sub-class of reinforcement learning will be discussed followed by an

account of deep Q-learning.

2.1.3 Supervised Learning

The first class of ML algorithms is supervised learning algorithms. In supervised learning,

the input to the algorithm is the data as well as its expected output. The expected or target output,

which is sometimes referred to as labels, is used to assess the “correctness” of the algorithm’s

9

output. The algorithm then uses the input data to learn and find a pattern between the input and

output data. In other words, it uses the input and output variables to iteratively make predictions

and find a function that maps the two, so that it can use that function to predict the output of a new

set of inputs.

Supervised learning problems are usually categorized as classification or regression

problems. The main difference between these two categories is the end goal of the algorithm. The

main objective in classification problems is to predict the correct label and it is used for discrete

outputs. In regression problems the aim is to predict a quantity which is a continuous value [12].

An example of a classification supervised learning can be to label photos as having a “cat”

or “dog” in the images. In this example, the algorithm will be trained on enough images of different

cats and dogs (with the correct labels) that if a picture of a new cat was provided, it would be able

to categorize it as a “cat” with a higher percentage of probability than a “dog”.

An example of regression supervised learning can be predicting house prices based on an

area. It may also be possible to categorize this example as a classification problem, if the house

prices are divided into blocks, so that any house with value of: $0 to $200k would fall into

Category1 and $200k to $400k would fall into Category2 and so on.

The problem being pursued in this research is neither a classification nor a regression

problem.

2.1.4 Unsupervised Learning

The next category of ML algorithms is unsupervised learning. In unsupervised learning the

input data is provided, but no expected output data is given. The algorithm would use the provided

data and draw conclusions from that data’s distribution, structure, features, and patterns. Unlike

supervised learning, there are no provided target outputs, not even the number of classes in a

dataset. This could be because of how expensive and time consuming it may be to make labelled

datasets, or that the expectations (the relationships between the provided data) are unknown.

Unsupervised learning algorithms are naturally more complex as compared to supervised learning

algorithms, and their results may be less accurate [12].

Unsupervised learning problems can be broken down into two general groups: clustering

and association. A clustering unsupervised learning example can be to group customers by their

shopping habits. And an association unsupervised learning example could be to find relationships

10

between shoppers, so that it can be said that people buying one specific item (toast bread) tend to

buy a different item (butter) as well.

Unsupervised learning is also not a suitable approach to tackle the problem motivating this

work.

2.1.5 Semi-Supervised Learning

The third group in ML algorithms is semi-supervised learning. As is clear from the name,

semi-supervised machine learning problems are provided with large number of input data for

which only some of the data has been labelled [12]. In the “cat” and “dog” photo example from

the supervised learning section, if the photos are only partially labelled and some are just pictures

with no labels, then it can be considered a semi-supervised learning problem. Like unsupervised

learning datasets, the partial labels in the semi-supervised problems could be because of how

expensive and time consuming it would be to label or store the entire dataset.

Semi-supervised learning algorithm is not an eligible approach that can be applied to the

problem in this research, because there is no labelled data whether fully or partially labelled.

2.1.6 Reinforcement Learning

The last category, and most useful to this research, of ML algorithms is reinforcement

learning. In Reinforcement Learning (RL) algorithms the idea of a labelled dataset is no longer

useful. That is because these algorithms use a reward system to choose actions and train on the

provided data, following an explicit goal. A very popular use of reinforcement learning algorithms

is in games (video games or board games such as chess) because the reward system is already part

of the fabric of the problem. The point system in these settings provide the learning agent with

appropriate feedback to perform better over time. In these algorithms, as is mentioned in [13], the

learning agent can be an animal, a human, or a computer program and the reward could be any

measure of performance for the agent such as food, water, and money. This shows the importance

of choosing an appropriate reward system, since it is the reward that reinforces the action.

The reason for mentioning MDPs in the previous chapter will now be more evident. The

similarities between Figure 1.1 and Figure 2.1 show that an RL algorithm is based on the

fundamentals of an MDP. At a closer look it is clear that the two figures are expressing the same

message about the role of action in determining next states and reward values.

11

Figure 2.1. Typical reinforcement learning cycle [13]

In Figure 2.1, environment is referring to the collection of all the possible states of the

agent. For instance, in a game of tic-tac-toe, the environment would be all the 9 spaces on the

board, or the 64 squares on a chess board. In these algorithms, the agent will perceive the

environment’s state and choose an action based on the transition probabilities, or policy, which

can sometimes be represented as a lookup table. The agent’s action determines the next state of

the agent and its reward (both given with a certain probability, given the agent’s current state and

the chosen action) and updates the policy accordingly [13].

As mentioned before, reinforcement learning is grouped separately from supervised or

unsupervised learning. One of the challenges with supervised learning is to choose data that is

diverse enough to cover all different possible characteristics of the environment the agent is

expected to learn about. This is not an issue in reinforcement learning scenarios since the agent is

able to draw its own conclusions from the environment and learn from its own experiences. In

unsupervised learning the agent is usually looking for patterns in the provided unlabelled data, and

that is different from the reward maximizing nature of reinforcement learning [11].

The goal of any reinforcement learning algorithm would be to find the best policy that

would maximize the overall reward of the system. Maximizing the overall reward, is done by

predicting the expected cumulative future reward, maximizing (2.3):

𝐸[𝑟𝑒𝑤𝑎𝑟𝑑𝑡 + 𝛾 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+1 + 𝛾2 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+2 + ⋯] (2.3)

Where 𝑡 represents the current timestep, 𝑟𝑒𝑤𝑎𝑟𝑑𝑡 is the reward at timestep 𝑡, and 𝛾 is the

temporal discount factor or discount factor for short. Discount factor is how far into the future the

reward is being considered, and has a value in the range [0, 1]. The smaller the discount factor, the

shorter the vision of the algorithm, so 𝛾 = 0 is only considering immediate rewards and 𝛾 = 1 is

considering all the available rewards. Choosing the right value for the discount factor is considered

one of the challenges of applying reinforcement learning algorithms to different problems [13].

12

An essential feature that sets reinforcement learning apart from other machine learning

algorithms is the exploration and exploitation question. In reinforcement learning, the learning

agent will need to explore actions and find ones that would maximize reward. But it would also

require exploiting the actions it has already tried and found to be effective at achieving its goal. It

is important that the agent utilizes a mix of the two approaches in order to effectively maximize

reward on the tested and proven actions, but to also try new actions that may result in higher

rewards. Because of the stochastic nature of most problems that these algorithms are applied to, it

is also vital to repeat the actions to obtain dependable values of the expected rewards [11]. This

process is referred to as ɛ-greedy, since the ɛ variable determines the probability of taking a random

action.

2.1.7 Q-learning

Q-learning is a popular model-free reinforcement learning algorithm where the learning

agent does not need to have prior knowledge of the system model parameters such as the state-

transition and reward models. In fact, Q-function is used to approximate the values of state-action

pairs through the agent’s interactions with the environment, during training [14].

 The agent learns the action value function, 𝑄(𝑠, 𝑎) or Q-value, showed in (2.4) [13]:

𝑄(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑟𝑒𝑤𝑎𝑟𝑑𝑡 + 𝛾 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+1 + 𝛾2 × 𝑟𝑒𝑤𝑎𝑟𝑑𝑡+2 + ⋯ | 𝑠𝑡, 𝑎𝑡] (2.4)

In the calculation of the Q-value, the expected cumulative future reward is considered given

the current state, 𝑠𝑡, and action, 𝑎𝑡. While the 𝑟𝑒𝑤𝑎𝑟𝑑𝑡 is the immediate reward of the

environment’s state for this timestep, the 𝑄(𝑠, 𝑎) is the total amount of reward the agent can expect

to get in the long run, given the current state. This means that a high immediate reward would not

necessarily guarantee a higher overall reward. It is possible for a state to have high immediate

reward, but low overall reward, or vice versa [11]. Additionally, the value function considers the

expectation of all actions according to the policy, π, while the Q-function examines a given action

at a given state [14].

The recursive relationship between the Q-value of the current and next steps, (2.5), is used

to evaluate the action taken in the current step, 𝑎𝑡. This evaluation is then utilized in choosing the

best action, a, in the next state, so that the policy, or the lookup table, can be updated without

having to wait for all the future reward values.

13

𝑄(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑟𝑒𝑤𝑎𝑟𝑑𝑡 + 𝛾 × 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎)] (2.5)

In (2.5), it is shown that the current Q-value is only dependent on the value of the immediate

reward and the discounted best action in the following state [13]. In (2.6) the action-value function,

Q-value, can predict the optimal Q-value, independent of the policy [11]:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑒𝑤𝑎𝑟𝑑𝑡+1 + 𝛾 × 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (2.6)

Where α is the learning rate, also known as step-size in some literature, with a value in the

range of [0, 1]. As can be gathered from the name, α influences the rate at which learning is

happening. If learning rate is reduced over time, then the actions taken by the learning agent will

become optimal, if the exploratory moves are ignored. On the other hand, if the learning rate does

not lower to zero over time, then the learning agent can even adapt to an environment with states

that would have different actions available at different timesteps [11]. This means that if the

learning agent was trying to beat a real player, that did not always stick to the same game strategy,

it would have a better chance at foreseeing the changes, if these changes are slow enough.

Algorithm 2.1 shows a breakdown of the steps in implementing a Q-learning algorithm.

These are the same steps followed in writing the program for the Q-learning solution introduced

in the next chapter, included in [15].

Algorithm 2.1 Q-learning algorithm for estimating 𝜋 ≈ 𝜋∗ [11]

Loop for each episode:

 Initialize state

 Loop for each step in this episode:

 Choose action considering state, using policy derived from Q (could be using ɛ-greedy)

 Take action (a), observe reward (R) and next state (𝑠′)

 Update Q value 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎)]

 Update state with the next state (𝑠 ← 𝑠′)

 Until terminal state has been reached

In Algorithm 2.1, 𝜋∗ is the optimal policy. Also, each episode goes on until the terminal

state. In a video game, this is usually when the agent reaches the final state in the game, either

winning or dying in the game could be a possible end terminal state. In the solution introduced in

the next chapter, the terminal state for a user in a network is the goal set for the user at the start of

14

training. The initial state of the agent is re-initialized after the end of each episode to a certain state

in the environment, and considering that all states in the environment are expected to be able to

reach the terminal state at some point, this is acceptable.

At this point, before moving to the deep Q-learning section, it is useful to define the term

off-policy. In Q-learning algorithm, policy is updated based on the maximum reward available to

actions, regardless of the policy. Therefore, Q-learning is referred to as an off-policy temporal

difference (TD) learning algorithm [14]. TD learning is a combination of Monte-Carlo and

dynamic programming theories [11]. More in depth explanations about TD and Monte-Carlo

methods can be found in [16].

2.1.8 Deep Q-learning

Deep Q-Learning (DQL) is a cross-section between deep learning (DL) and Reinforcement

learning’s Q-learning. Deep learning refers to training networks with more hidden layers (more

than one) that are able to learn in order, meaning that simple concepts are learned in the lower

layers and more abstract concepts in the higher layers of the deep network [12]. The weighted

combination of hidden units, their non-linear activation functions, and the output units are referred

to as layers [17].

One of the advantages of considering DQL algorithms (because it is a Reinforcement

learning algorithm) is that there is no longer a need to have a finite MDP, to achieve an optimal

policy. Deep Q-Networks (DQNs) can approximate an optimal policy for environments with very

large or even infinite state spaces [11]. In [18], the authors combine an RL method, Q-learning,

with deep learning in order to obtain control policies directly from the states, actions, and rewards

of the environment. There are several issues, in no particular order, that are raised by combining

RL and Q-learning methods:

1. Delay between actions and resulting rewards (which in some cases may be

thousands of timesteps [18]) in RL algorithms

2. Deep learning algorithms assumption of independent data samples, while the input

states in RL algorithms may seem highly correlated

3. Changes in data distribution over time in RL vs. fixed underlying distribution in DL

In [18] these issued are addressed by utilizing a convolutional neural network, experience

replay memory, with stochastic gradient descent to update the weights of the neural network.

15

Experience replay memory will randomly select transitions already visited by the learning agent,

so that the correlation between the data and changes in data distribution are smoothed over.

DQL is used as the final approach in solving the research problem of this work. This

solution will approximate the optimal policy but is applicable to larger networks that dynamic

programming or Q-learning fail to solve.

Before exploring these solutions in the next chapter, it is important to investigate the work

that has already been done in relation to applying ML algorithms to wireless communication

networks, in the next section.

2.2 Applications of RL in Wireless Networks Literature

This section presents a survey of previous research in the applications of machine learning

methods in the field of communications and networks. In particular, the work on the application

of RL and deep RL in the area of wireless communication networks, 5G, has been summarized.

The order in which the articles are presented is not indicative of the importance or relevance of

their respective research to the problem being addressed in this work.

Utilizing Reinforcement learning algorithms has become very popular in the recent years.

A diverse group of problems from training agents to beat humans at games [18], resource

management in computer systems [19], speech recognition [20], to applications in wireless

network communications [21] use deep reinforcement learning (DRL) techniques to maximize

their intended goal for their respective environments. Some of the research using RL algorithms

that has motivated or guided the work in this thesis are as follows.

In recent years, because of the ever-growing mobile data usage, there has been an

exponential need for mobile network infrastructure development. As a result, network energy

consumption has grown, bringing up a need for capping or controlling the energy consumption for

various environmental and economical concerns [21]. Studies have shown that base stations (BSs)

consume 60 – 80% of the total energy consumed by a network [22], and so it seems like a

reasonable source of power usage to manage in order to lower overall network power usage. One

of the ways to manage base station energy utilization has been BS sleeping, where the BSs with

lower traffic volume are placed in a low-power sleep mode, with different duration sleep schedules

[21]. While faster or slower sleep cycles are chosen based on the network utilization, it is important

to keep in mind the quality-of-service (QoS) criteria such as delays and outages when deciding on

16

the length of the sleep cycles. In [21], a dynamic BS sleeping algorithm based on deep RL is

proposed, with action-wise experience replay to stabilize the different traffic phases (high traffic

phase vs. lower traffic phase). An adaptive reward scaling technique to rescale rewards received

from mobile networks is taken advantage of, to match the output network’s response range, so

these rewards are clipped to values in the [-1, +1] range. The main reason for using a deep Q-

learning algorithm is to approximate the action-value function instead of visiting every state-action

pair to find exact values for the action-value function, because of the higher dimensions of their

state spaces. Utilizing DQNs with experience replay and adaptive reward scaling has proven to

have more sleeping gain, time averaged per step reward, than regular Q-learning or DQN [21].

Because of the sensitivity of mmWave signals to blockages and possible disconnection and

re-connection delays, reliability and latency are the main issues with mmWave wireless networks.

In [3], uses a deep learning algorithm to predict a possible blockage accurately and hand the mobile

user to the other BS without disconnecting the session or incurring high latencies. Only two

available BSs are considered to service a mobile user, so the assumption is that if one BS is NLOS

then the other must be in LOS of the user.

Traditional network resource allocation methods rely on modeling the network

environment and user demands [23]. In the complex networks of today with random and

unpredictable user behaviours, it would be difficult to model and predict these networks accurately.

A basic networking problem, traffic engineering, which is to maximize a utility function by

forwarding the data traffic in a set of source and destination nodes, is addressed in [23] with a

model-free approach using a variation of deep reinforcement learning algorithm. The model-free

approach addresses the issue with traditional network resource allocation methods, and the DRL

algorithm is also able to deal with sophisticated state spaces (that includes throughput and delay

of each communication session). The deep deterministic policy gradient used in this work makes

it possible to apply DRL algorithm to the continuous control problem of traffic engineering. This

method significantly lowers end-to-end delay, improves network throughput, and easily adapts to

network changes as compared to other widely used network resource allocation methods [23].

Using mmWave and μWave resources together in a dual-mode framework could be a

solution to overcoming the blockage concerns in mmWave networks, while taking advantage of

the available bandwidth at both mmWave and μWave frequency bands [24]. In [24] the μWave

band, the user application selections and scheduling is set as a one-to-many matching game

17

between the μWave and user applications. Then the mmWave band utilizes a Q-learning algorithm

to find a scheduling policy while also finding the user equipment’s LOS probabilities. The two

bands are working together to improve overall user QoS in delay-sensitive applications such as

HDTV and videoconferencing. The goal is to service as many users on the mmWave band as

possible, to lighten the load on the μWave band, while keeping in mind the delay constraints of

each user’s needs. Because of the dynamic nature of the environment, the LOS probability of a

user and BS may not just be calculated and averaged. So, a Q-learning framework with changing

LOS probabilities is proposed to address the mmWave band base stations. This dual-band context-

aware scheduling approach has proven to show performance improvements compared to

proportional fair (with minimum rate requirements) and round robin schedulers [24].

Because of the exponential increase in the number of devices that stream data, traditional

routing protocols are challenged since they base their calculations on shortest path from source to

destination without considering network state parameters such each router’s remaining buffer size

[25]. To solve this issue, [25] utilizes DRL algorithms for router selection. Two methods are

proposed, categorizing all data transmission tasks into two groups: one with source routers and

destination routers (source-destination multi-task deep Q-network or SDMT-DQN) and the other

with just the destination routers (destination-only multi-task deep Q-network or DOMT-DQN).

These two methods proved to lower congestion probability and increase network throughput

compared to regular deep learning algorithm and Open Shortest Path First (OSPF) routing protocol

as the number of training steps are increased [25]. While SDMT-DQN would require more neural

networks than DOMT-DQN, both methods have significantly fewer number of neural networks

than regular deep learning. Having (only a few) greater number of neural networks will incur a

slight advantage where SDMT-DQN has a lower congestion probability and higher throughput as

compared to DOMT-DQN [25].

Q-learning algorithm can find optimal policies when the state-action space is small, but in

more realistic scenarios these state-action spaces are too large to use Q-learning algorithms

successfully. Therefore, deep Q-learning techniques with two key features are used in practical,

more complicated models. As explained in [14], these two features are experience replay and a

target Q-network. To implement experience replay, the algorithm updates the replay memory that

is initially populated with randomly generated values, with transitions of the environment

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) where 𝑡 is the timestep, and 𝑠, 𝑎, and 𝑟 are the state, action, and reward

18

respectively. The algorithm will then randomly select a number of samples (transitions) from the

replay memory, called minibatches, and train. This will allow for a diverse training on old and new

observations, as well as eliminating correlations between transitions since they are more

independently distributed [14]. The target Q-network feature is to ensure the stabilization of the

algorithm, by constantly updating the target Q-network value and slowly updating the primary Q-

network value. A deep reinforcement learning algorithm with the two mentioned features is in

Algorithm (2.2)

Algorithm 2.2 Deep Q-learning algorithm with experience replay and fixed target Q-network

[14]

Initialize replay memory

Initialize the Q-network, Q, with random weights, θ

Initialize the target Q-network, 𝑄̂, with random weights, 𝜃′

For all episodes do:

 Choose action considering state, using ɛ-greedy (with probability ɛ select a random action,

 otherwise select 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄∗(𝑠𝑡, 𝑎𝑡, 𝜃))

 Take action 𝑎𝑡: observe immediate reward 𝑟𝑡, and next state 𝑠𝑡+1

 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay memory

 Select random samples (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from replay memory

 The weights of the neural network are optimized by using stochastic gradient descent with

 respect to the network parameter θ to minimize loss:

[𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎𝑗+1
𝑄̂(𝑠𝑗+1, 𝑎𝑗+1; 𝜃′) − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃)]2

 Update 𝑄̂ = 𝑄 after every fixed number of steps

End for loop

By now, it should be clear that deep learning, and more specifically deep reinforcement

learning techniques, can be promising for solving mobile networking problems [17]. One of the

main advantages of these algorithms is that they can deduce high-level features from complex

structured data [17]. Deep learning, by definition, is able to handle large amounts of data and while

the performance of other machine learning algorithms may not improve much by increasing the

19

data size, deep neural networks could even prevent model overfitting by training on larger datasets

[17]. Also, with the development of ML dedicated toolboxes such as Tensorflow or (Py)Torch, the

need for building deep learning models from scratch has been eliminated [17].

20

Chapter 3

3 Reinforcement Learning in mmWave networks

In this chapter the algorithms used in finding an optimal policy for the problem proposed

in chapter 1, are discussed. These solutions are introduced in the order they have been developed,

which is also the order in which the complexity of the methods increase. After the introduction of

a sample network for the problem, the dynamic programming solution is covered. This solution is

only applicable if the user’s path is already known (data rates received from every BS along the

user’s path is already calculated). The goal of the program is to find an optimal list of BSs for the

user to connect to that would ensure service continuity, while the user is within the network

boundary.

Next, is the Q-learning approach. In this method, given a certain goal/destination for the

user (inside the network) the program will return an ideal path for the user to take to reach the goal,

as well an optimal list of BSs similar to the dynamic programming solution. This technique will

work for small networks (where the state-action space can be mapped to the Q-matrix).

The last method being considered is the DQL algorithm, where an exact solution to the

problem may not be found but every state-action pair does not need to be visited in order for the

approximation algorithm to predict an optimal path and BS list for the user, given a

goal/destination inside the network.

3.1 Introduction of a Sample Network

A sample network is introduced in this section to facilitate the explanations made in the

following sections of this chapter. The following network size assumptions are made for simplicity

in the examples. This does not mean that the solution only applies to a network with these

measurements.

A 150 × 150 square shaped network is assumed, with the bottom-left corner of the

network at [−60, −60] and the top-right corner at [+90, +90], as shown in Figure 3.1.

21

Figure 3.1. Sample 150 × 150 network with 5 base stations and 6 blockages

In Figure 3.1, the magenta star-shaped lines represent the boundaries of the network. Each

black circle is the location of a randomly located base station, with the coordinates of the BS

written in the same color. Even though a cell boundary may be unclear in mmWave signals because

of the sensitivity of these signals to blockages [4], a dense mmWave tier network (“A network is

dense when the infrastructure density is comparable to the blockage density” [26]) with an average

cell radius of 50 m [26] (50 units on Figure 3.1) is assumed, where the green-dashed lines show

the coverage area of each BS. The blue-solid lines are depicting blockages, assuming linear two-

dimensional blockages, with the coordinates of each end of the blockage line represented in the

same color blue. In Figure 3.2, a closer view of the network, bounded by the network’s dimensions,

can be seen.

22

Figure 3.2. Bounded snapshot of the network in Figure 3.1

The size of one step for the user in this network is expected to be 5 units (5 marks on the

x-axis or y-axis on Figure 3.2). At each step, the user can move in one of the four primary

directions: up, right, down, or left (the user cannot take diagonal steps). It is assumed that the user

can step on the BSs and through or on blockages.

When referencing a particular BS or blockage in the remainder of this chapter, Table 3.1

and Table 3.2 will provide the references, respectively.

Table 3.1 Base station coordinates of the network in Figure 3.2

BS number BS coordinates in Figure 3.2

BS0 [-25, -20]

BS1 [0, -10]

BS2 [20, -45]

BS3 [20, 30]

BS4 [55, 55]

23

Table 3.2. Blockage coordinates for the network in Figure 3.2

Blockage number Blockage coordinates in Figure 3.2

BL0 ((-40, -10), (-40, 30))

BL1 ((0, 10), (5, 10))

BL2 ((5, -5), (15, -5))

BL3 ((0, -45), (20, -40))

BL4 ((30, -10), (60, -10))

BL5 ((20, 60), (40, 80))

3.2 Dynamic Programming

This section discusses the details in implementing a dynamic programming solution to the

research problem. This solution is applicable to any network size, but it may take a very long time

for the calculations to be done on larger networks. Although this solution will result in best possible

base station (BS) connection lists, the lengthy processing times for realistic network sizes is the

reason other approaches to solving the problem were considered. Furthermore, this solution is only

applicable to 1-dimensional network spaces, which means that the user’s path is pre-determined

for this method. But it can be applied to any user path, given that data rates from each BS along

that path are known. The result of this program is a list of BSs that the user can connect to and

expect to stay connected to for the entirety of pre-determined path length, achieving the highest

possible data rates.

This solution assumes a pre-determined fixed path from source to destination (assuming

[−60, −60] to [90, 90]). So, the problem becomes finding the “best” list of base stations to connect

to, given this fixed path. To define “best” list BS, it is important to note that the BS with the highest

data rate at each given step is not necessarily going to result in the optimal BS list. It is the overall

highest reward (data rate and switching overhead) of all the steps on the path that would result in

an optimal BS list.

To clarify this, lets assume that the user is at [0, -40], in Figure 3.2, where the highest data

rate is received from BS1, 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒01 (data rate for user location 0, received from BS1). If the

user takes a step to the right, [5, -40], then BS1 will no longer be LOS, and at the value of

𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒11, will not provide the highest data rate. Assume that at [5, -40] the highest data rate

will be received from BS2, 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒12. Then, if the user were to take a step up, to [5, -35], BS2

24

will be NLOS, having data rate value of 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒22, and BS1 will provide the highest data rate

again, at 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒21. Considering the overhead associated with switching BSs, switching of BSs

twice in two steps would be justifiable only if:

𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒12 − 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒11 > 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑐𝑜𝑠𝑡 (3.1)

and

𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒21 − 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒22 > 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑐𝑜𝑠𝑡 (3.2)

There even may be a third BS that would result in the higher data rate in these three steps,

if it meant for the user to stay connected to the same BS, hence not incurring any switching

costs/penalties. To simplify the decision-making process for similar situations, a constant value is

assigned to the overheard cost of switching from one BS to another.

Therefore, “Best” list of BSs can be defined as the list of BSs that would result in the

highest Reward. And immediate Reward for all steps in a list would be defined as in (3.3):

𝑅𝑒𝑤𝑎𝑟𝑑 = ∑ 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝐵𝑆 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡
𝑎𝑙𝑙 𝑠𝑡𝑒𝑝𝑠

− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑆 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 × 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

(3.3)

In order to find the best BS list, for a series of i steps in a network with k number of BSs,

where:

𝑙 < 𝑚 < 𝑚 + 1 ≤ 𝑖 (3.4)

and 𝑏𝑠𝑖 will denote the BS that the user is connected to at step i, the following lemma is

introduced.

Lemma: if 𝐵𝑚 is the best list of BSs for all steps up to and including step m, then 𝐵𝑙 is the

best list of BSs for all the steps up to and including step l, if there are no BS switches between

steps l and m.

Proof: Assume that there is a list, 𝐵𝑙′, that would have a higher overall reward (𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙
′)

than 𝐵𝑙 (𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙
) where they have the same steps, but a different list of BS connections:

𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙
′ = ∑ 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝐵𝑆 𝑜𝑛 𝐵𝑙′ 𝑙𝑖𝑠𝑡

𝑙 𝑠𝑡𝑒𝑝𝑠

− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑆 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 × 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

(3.5)

and

25

𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙
= ∑ 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝐵𝑆 𝑜𝑛 𝐵𝑙 𝑙𝑖𝑠𝑡

𝑙 𝑠𝑡𝑒𝑝𝑠

− (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑆 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 × 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

(3.6)

Given that the reward for part of the 𝐵𝑚 list, only for all the steps between l and m

(including step m but not including step l) is known as 𝑆𝑚−𝑙:

𝑅𝑒𝑤𝑎𝑟𝑑𝑆𝑚−𝑙
= ∑ 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝐵𝑆 𝑜𝑛 𝑠𝑡𝑒𝑝𝑠 𝑙 𝑡ℎ𝑟𝑢 𝑚

(𝑚−𝑙) 𝑠𝑡𝑒𝑝𝑠

(3.7)

Then, the reward for all of 𝐵𝑚 is:

𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚
= 𝑅𝑒𝑤𝑎𝑟𝑑𝑎𝑡 𝑠𝑡𝑒𝑝 𝑚(𝑤𝑖𝑡ℎ 𝐵𝑙)

= 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙
+ 𝑅𝑒𝑤𝑎𝑟𝑑𝑆𝑚−𝑙

− 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

(3.8)

In the 𝐵𝑙′ list, there are two possibilities for the BS at step l, 𝑏𝑠𝑙′:

1. BS at step l is the same BS as the BS in step m, 𝑏𝑠𝑙′ = 𝑏𝑠𝑚, so that there is no

switching cost incurred:

𝑅𝑒𝑤𝑎𝑟𝑑𝑎𝑡 𝑠𝑡𝑒𝑝 𝑚(𝑤𝑖𝑡ℎ 𝐵𝑙
′) = 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙

′ + 𝑅𝑒𝑤𝑎𝑟𝑑𝑆𝑚−𝑙
 (3.9)

And, from comparing the right-hand side of (3.8) and (3.9), it is clear that:

𝑅𝑒𝑤𝑎𝑟𝑑𝑎𝑡 𝑠𝑡𝑒𝑝 𝑚(𝑤𝑖𝑡ℎ 𝐵𝑙
′) > 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚

 (3.10)

Equation (3.10) is contradicting the assumption that 𝐵𝑚 is the best list of BSs for all steps

up to and including m.

2. BS at step l is a different BS than the BS in step m, 𝑏𝑠𝑙′ ≠ 𝑏𝑠𝑚, so there is a

switching cost,

𝑅𝑒𝑤𝑎𝑟𝑑𝑎𝑡 𝑠𝑡𝑒𝑝 𝑚(𝑤𝑖𝑡ℎ 𝐵𝑙
′) = 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙

′ + 𝑅𝑒𝑤𝑎𝑟𝑑𝑆𝑚−𝑙
− 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.11)

And by comparing the right-hand side of (3.8) and (3.11), it can be seen that:

𝑅𝑒𝑤𝑎𝑟𝑑𝑎𝑡 𝑠𝑡𝑒𝑝 𝑚(𝑤𝑖𝑡ℎ 𝐵𝑙
′) > 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚

 (3.12)

Equation (3.12) is contradicting the assumption that 𝐵𝑚 is the best list of BSs for all steps

up to and including m.

Now that the introduced lemma is accepted, it can be used to decide on the BS for step

m+1, given that 𝐵𝑚 and 𝐵𝑙 are known.

The BS for step m+1, 𝑏𝑠𝑚+1, can be any of the k available BSs. So, there can be three

possible values for 𝑏𝑠𝑚+1:

1. 𝑏𝑠𝑚+1 is the BS with the highest data rate for the user at step m+1:

26

𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚+1
= 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚

+ 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑏𝑠𝑚+1
− 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.13)

2. 𝑏𝑠𝑚+1 is the same BS as the BS at step m, 𝑏𝑠𝑚+1 = 𝑏𝑠𝑚 (this can be considered a

special scenario of the third case):

𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚+1
= 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚

+ 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑏𝑠𝑚+1
 (3.14)

3. 𝑏𝑠𝑚+1 is the same BS as the BS at step m, 𝑏𝑠𝑚+1 = 𝑏𝑠𝑚, when they have been both

changed to a different BS than previously made 𝐵𝑚 the best list. The change in the BS list could

go back as far as step l, but because of the lemma there would be no need to change the BS list

past prior to step l (including step l). The change is assumed to have gone as far back as step a

where:

𝑙 < 𝑎 ≤ 𝑚 < 𝑚 + 1 (3.15)

So, looping over all the possible values of a, the a-dependant reward is calculated at:

𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑚+1
= 𝑅𝑒𝑤𝑎𝑟𝑑𝐵𝑙

+ (𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑠𝑏𝑠𝑙 𝑡ℎ𝑟𝑢 𝑎
+ 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑠𝑏𝑠𝑎 𝑡ℎ𝑟𝑢 𝑚+1

− 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

(3.16)

Then, the values from (3.13), (3.14) and (3.16) are compared, and the BS list with the

highest reward will be chosen as the new best BS list for 𝐵𝑚+1.

Going about finding the best BS list in this manner for all the steps thru i will result in the

highest-reward-yielding BSs for the user to connect to, given a fixed path. This dynamic

programming approach results in exact BSs list that would maximize overall reward. The code for

this program can be found in [15].

3.3 Q-learning

As mentioned in the previous section, the dynamic programming solution would find the

list of highest-reward BSs, given a fixed path. If every path from user’s starting point to its

destination are to be studied, the program would need exponentially longer running times. The

time needed to explore all of the user’s paths and possible BS lists would be even longer, in a

larger network. In an attempt to find solutions less time consuming and still as reliable, a Q-

learning algorithm solution was pursued. The Q-learning method is predicting the optimal user

path and BS list, given a destination for the user inside the network. This is done by choosing

27

actions that yield the highest overall reward, based on the γ variable, discount factor, discussed in

chapter 2.

In this algorithm, each step of the user was dealt with as a state in an MDP and a state-

action Q-table was produced to predict the highest long-term reward BS list for a given goal.

The following definitions are considered in the design of the Q-learning algorithm.

State: The state of the system is determined by the current x-y coordinates (location at

timestep t) of the user as well as the user’s previously tagged BS. The previous tagged BS for a

user at [𝑥𝑡, 𝑦𝑡] is the BS providing service to the user at timestep t-1. The previous tagged BS for

a user at timestep 0, initial state of the user, is assumed to be the BS providing the highest data rate

to the user at timestep 0. State would be in the form of (3.17).

𝑆𝑡 = [𝑥𝑡 , 𝑦𝑡, 𝑏𝑠𝑡−1] (3.17)

The state space of the user’s locations would be all the possible integer locations in the

network.

Action: At each given location inside the network, the user has two actions to decide for:

1. Action BS: refers to the BS serving the user at timestep t. This value can be any of

the 5 BSs listed on Table 3.1.

2. Action direction: refers to the direction the user will take to reach the goal. This can

be any of the four primary directions, as long as the user will stay within the network’s borders

after taking said direction. Action’s direction value determines the user’s next timestep’s x-y

coordinates.

The combination of the two actions would result in an action space that would be in the

form of (3.18).

𝐴𝑡 = [𝑎𝑐𝑡𝑖𝑜𝑛_𝐵𝑆𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑡] (3.18)

Reward: For each action of the user there exists a reward, given the state of the user. This

reward value, (3.19), is calculated using the BS portion of the action, and the previously tagged

BS part of the state. If 𝑎𝑐𝑡𝑖𝑜𝑛_𝐵𝑆𝑡 ≠ 𝑏𝑠𝑡−1 then there will be a switch in the BS serving the user,

from 𝑏𝑠𝑡−1 to 𝑎𝑐𝑡𝑖𝑜𝑛_𝐵𝑆𝑡 , with a switching cost. This would mean that the immediate reward of

the user for timestep t will be calculated using (3.19).

𝑅𝑡 = 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝐵𝑆𝑡
− 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.19)

But, if 𝑎𝑐𝑡𝑖𝑜𝑛_𝐵𝑆𝑡 = 𝑏𝑠𝑡−1 then the same BS will continue to service the user at timestep

t, and immediate reward will be calculated using (3.20).

28

𝑅𝑡 = 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝐵𝑆𝑡
 (3.20)

The switching cost constant, the value assigned to the overhead in user hand-off, is chosen

so that the effect of the data rate in the calculation of (3.19) is not diminished. It is important to

choose a value that is not too low and can correctly represent the overhead cost associated with

user hand-off. This value should also not be too high, because considering the reward calculated

in (3.19) the learning agent will be reluctant to an action that would hand the user off from one BS

to another and receive smaller reward in return.

To motivate the Q-learning algorithm to find the shortest path to the goal, the reward value

for the goal state (i.e. location [90, 90] in Figure 3.2) is set to a large constant integer. The constant

is changed as the size of the network changes, to accommodate for the backpropagation of the

reward in (2.5), for a given discount factor.

Using (2.6), the Watkin’s Q-value update equation, and choosing a discount factor value

close to one (between 0.8 and 0.9) and learning rate of 1.0, the long-term Q-value is calculated for

every state-action pair and updated in the Q-table. The requirements for correct convergence of

the Q-learning algorithm, that every state-action pair is visited and updated, are met [11].

This Q-learning approach results in exact user’s shortest path to the goal and BSs list that

would maximize overall reward, if all the state-action pairs of the environment have been visited

by the learning agent. The code for this program can be accessed in [15].

3.4 Multi-Layer Perceptron and Deep Q-Learning

The final approach used to find a solution to the blockage problem in mmWave signals,

takes advantage of function approximators to closely estimate the optimal pattern of a solution, as

opposed to finding exact solutions. One of the short comings of Q-learning algorithms can be size

constraints, where it can not be applied to environments with large state-action spaces. This is the

reason that most research on applying ML to communications problems utilize Deep Q-learning

algorithms, a function approximator, for larger networks. For the purposes of this research, it was

deemed necessary to try function approximators for larger, more realistic networks. For example,

in the 150 × 150 network of Figure 3.2, there are 30 × 30 = 900 possible user locations (because

the user takes steps of size 5 units and
150

5
= 30). From Table 3.1, assuming 5 available BSs, and

the state definition in (3.17), there are a total of 30 × 30 × 5 = 4500 states in the network. From

29

the action definition in (3.18), 5 available BSs, and 5 directions for the user to choose from (four

primary directions of UP, RIGHT, DOWN, and LEFT and the option of no movement – STAY

only for when the user has reached its goal location), there are a total of 5 × 5 = 25 actions for

each of those states. So, the Q-table for this example would be a matrix with 𝑠𝑡𝑎𝑡𝑒𝑠 × 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 =

4500 × 25 rows and columns. This is already a very large and computationally expensive matrix,

and the size of this example network is not even realistically large. To address this, a solution with

a function approximator, more specifically Multi-Layer Perceptron (MLP), shown in Figure 3.3,

was studied.

Figure 3.3. Layout of an MLP with N inputs, M hidden units, and L outputs [27]

Evaluating larger networks are made possible by eliminating the need to populate Q-table

values directly, and instead approximating the values using a function approximator with 5 input

neurons, one hidden layer, and 1 output layer. The 5 inputs are the states and actions of the Q-

learning table, [𝑥𝑡, 𝑦𝑡, 𝑏𝑠𝑡−1, 𝑎𝑐𝑡𝑖𝑜𝑛𝐵𝑆𝑡
, 𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑡

]. These values are fed into a fully

connected neural network, with sigmoid activation function. It is important to use a non-linear

activation function at either the input or the hidden layer steps, because if a linear activation

function is used, then the MLP is just a perceptron (the simplest learning machines) [28].

In the feed-forward neural network of Figure 3.3, an MLP, inputs are multiplied by weights,

W1, added to the biases, and then passed to the sigmoid activation function. This process is shown

in (3.21):

ℎ1 = Ф(𝑥𝑏𝑤𝑏 + 𝑥1𝑤1,1 + 𝑥2𝑤2,1 + 𝑥3𝑤3,1 + ⋯ 𝑥𝑁𝑤𝑁,1 = 𝑧1) (3.21)

30

Where Ф is the activation function. The output of this is fed to the second layer’s respective

node, ℎ1in the hidden layer. A similar process with different weights, W2, and biases for the hidden

layer, results in the outputs of the neural network, 𝑦1thru 𝑦𝐿. There are two key components to an

MLP algorithm, an error measure and the update rule. Error is measured as the mean squared

difference of the target and the neural network’s output. Here, target is calculated similar to the Q-

table update rule in Algorithm 2.1, using the reward, discount factor, and Qmax values. Error, which

is referred to as loss in some of the literature, is calculated using (3.22) [18]

𝐿𝑖(𝜃𝑖) = 𝐸𝑠,𝑎[(𝑦𝑖 − 𝑄(𝑠, 𝑎, ; 𝑤𝑖))
2

] (3.22)

Where y is the target for iteration i, s is the state, a is the action, and w is the weights of the

neural network.

The update rule will update the weights of the neural network, by minimizing the error in

(3.22).

Along with using the above target definition, in this research, a variation of this algorithm

was used, with Q-table values as the target values, to assess the effectiveness of the target values

being calculated during the training of the MLP learning algorithm.

In the MLP algorithm approach, the rewards are still being calculated using (3.19) and

(3.20) explained in section 3.3. The neural network’s aim at maximizing discounted overall reward

would translate into the user taking longer route to reach the destination and collecting more

reward in the process. The point of using a much larger integer constant for the goal reward was

to motivate the learning agent to send the user towards the goal, in fewer steps. But this approach

does not seem to work as the size of the network grows. So, to assist with this contradictory reward

system (minimizing number of steps to reach goal versus collecting more reward on the way to

goal), the MLP is replaced with a DQN. A DQN, as discussed in the previous chapter, is a

combination of deep learning and RL. The deep in DQN refers to number of layers in the neural

network, the greater the number of layer, the deeper the neural network [12]. Another difference

between MLP and DQN can be the use of convolution in DQN, where an image convolution refers

to an element-wise multiplication of two matrices, followed by a sum of the elements [12]. Other

distinctions between MLPs and DQNs would be the use of batch training and separate target and

policy networks in DQNs.

So, the following measures are taken to address the contradictory reward system in MLP:

31

1. The MLP is replaced with a DQN without extra layers and convolution, with batch

training. Batch training refers to choosing batches of transitions randomly, from the replay memory

(referred to as experience replay is some literature), to train.

2. The DQN will update a fixed target network (which is used in the weight updates)

every fixed number of steps

3. Considering that the goal is set for a given training, i.e. goal is located at [90, 90] on

the network layout in Figure 3.2, no matter where the user is, only two directions of movement

would be allowed: UP and RIGHT

4. Instead of using the state and action definitions in (3.17) and (3.18), respectively ,

to define inputs, utilize a slightly different input definition of [𝑥𝑡 , 𝑦𝑡, 𝑏𝑠𝑡−1] (no actions included

in the neural network’s input) where the output of the neural network has 5 𝐵𝑆𝑠 × 2 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 =

10 neurons.

In 1, convolution is not used, because it is mostly utilized in deep learning applications for

image processing and computer vision. With the changes in 1 and 2 the DQN has been empirically

proven to converge [29]. Considering all the introduced measures, DQNs can approximate shortest

path to the goal, as well as a list of BSs to connect to, with a certain level of accuracy (as compared

to the Q-learning results), depending on the data rate values received from the serving BSs in the

network. The code for this program is accessible in [15].

32

Chapter 4

4 Numerical Results

This chapter reviews all the approaches to the research problem, introduced in the previous

chapter, and presents results of applying these approaches to different scenarios.

To recap, the research problem is defined as finding a solution for the sensitivity of

mmWave signals to blockages. Because users in mmWave networks may experience

disconnections and service interruptions, due to physical blockages in the network’s layout, it is

important to find reliable connections. For a given user, this work suggests finding solutions that

could predict an optimal user path and BSs to connect to, if the user’s destination is known.

In the following sections, each scenario will be explained, along with the expected and

obtained results. The last section of this chapter will recap the results of this research problem and

all the explored scenarios.

4.1 Scenario A: data rate assignment to a fictitious 5x5 network

In this scenario, the network is assumed to have a size of 5 × 5, with 25 user locations and

5 BSs. The point of this scenario is to demonstrate the functionality of the different algorithms, in

a special case with short and alternating blockages. To create these special cases, a list of data rates

is created, with no corresponding network.

In each subsection of scenario A, the data rates used are generate randomly using a uniform

distribution, with the following assumptions: two of the BSs with relative smaller data rates, i.e.

BS0 and BS1 in the range of [1, 3]. One BS with higher data rates, i.e. BS2 in the range of 5. And

two BSs with alternating (from one step to another) low and high data rates, i.e. BS3 and BS4

alternating in the range of 1 high in the range of 6 (highest values in the network). The data rate

generation will be explained with more detail in the following section.

This special case could not be achieved in a randomly generated network, since it is

designed to simulate the existence of a multitude of blockages in the user’s path. These blocks

would make BS3 and BS4 NLOS in alternating steps, which otherwise are LOS and provide the

highest data rates in the network. This way, it is expected that BS2 would be the ideal BS to connect

33

to, if the goal is to maximize data rates at the same time as limiting unreliable NLOS connections

and fewer BS switches.

4.1.1 Scenario A-1: Comparing Q-learning (with γ = 1.0) to DP, max

immediate reward action selection, and max data rate action selection

The dynamic programming solution assumes that the user’s path to destination is already

known, so the action only indicates the BSs for the user to connect to. In the known user path,

given the data rates received from each base station in the network, the program returns a list of

best BSs to serve the user. This list is obtained with the goal of maximizing the overall reward of

the system. The overall reward of the network is calculated using the data rates received at every

step of the user (from the serving BS), minus the switching cost overhead, in case of a switch, for

all the steps in the user’s path. Simply put, the overall reward is the sum of the rewards of every

step, considering all steps from start to destination. And the reward of every step is calculated

using 3.19 and 3.20, depending on whether there is a change in the serving BS.

In the Q-learning program, the user’s path is no longer known. It is only assumed that the

user’s destination is known but its initial position may be assumed to be anywhere inside the

network. The actions chosen in this program will provide a user path and BS connections list, that

would maximize the user’s overall discounted reward in the network. Because of the importance

of the discount factor, γ, in finding the optimal solution, two γ values of 1.0 (section 4.1.1) and 0.9

(section 4.1.2) have been considered. When 𝛾 = 1.0 (when all available rewards are being

considered) it is possible to compare the results of the BS list obtained by the Q-learning to the

dynamic programming results, if the path generated by QL is used in the dynamic programming

solution.

After using the Q-learning algorithm (with γ of 1.0 and switching cost of 2) to find the

optimal user path (Fixed Path1, FP1), this path is used to compare BS lists obtained by Q-learning

and dynamic programming (DP-FP1). These approaches are then compared to a method similar to

dynamic programming, where the goal is to maximize the immediate reward of each state. This

means that the actions chosen at every step (which BS to connect to) are only based on the

knowledge of the reward of the same step, given the user’s path. Next, they are compared to an

approach with maximum data rate at every step.

34

Therefore, for a Fixed Path (FP1), the sum of the total rewards received is used to compare

the results of the following cases:

1. Choosing actions (BSs) that would maximize overall reward, Dynamic

Programming following Fixed Path1, DP-FP1

2. Choosing actions (BSs) with Maximum Immediate Reward following Fixed Path1,

MIR-FP1

3. Choosing actions (BSs) with Maximum Data Rate at every step following Fixed

Path1, MDR-FP1

For a fictitious dense mmWave square network with 25 possible user locations, the user

can start anywhere in the network and is expected to reach the destination at the North-East corner

of the network in the fewest possible steps. Data rates are generated randomly using a uniform

distribution for every BS in this network, and for all of the 25 possible user location, with the

following characteristics:

• The data rates received from two (of the five) base stations, 𝐵𝑆0 and 𝐵𝑆1,

were randomly generated using a uniform distribution with values between [1.0, 3.0],

• One base station, 𝐵𝑆2, with data rates in the range of [5.1, 5.5],

• And two base stations, 𝐵𝑆3 and 𝐵𝑆4 with alternating data rates of [1.1, 1.5]

and [6.1, 6.5]. For example, if for a given step, if 𝐵𝑆3’s data rate is in the range [1.1, 1.5]

then for the same step, 𝐵𝑆4’s data rate is in the range of [6.1, 6.5].

The data rates on Table 4.1, the result of the above scheme, are then used in calculating the

rewards. These rewards are then utilized in determining the optimal user path and BS list, which

yields the highest overall reward at destination.

The BS lists generated by the fixed path and Q-learning methods, using the data rates and

rewards explained above, are presented on Table 4.2 along with their respective total rewards and

sum of data rates.

35

Table 4.1. Data rates (units/step) received from every BS for every possible user location

step number BS0 BS1 BS2 BS3 BS4

0 1.1970 1.8310 5.1627 6.2192 1.3163

1 2.8510 1.2761 5.2112 1.2410 6.2378

2 1.6282 2.1514 5.2806 6.2132 1.3766

3 1.6034 1.3935 5.1615 1.2430 6.2173

4 2.3682 1.2965 5.1378 6.1091 1.1318

5 2.0503 1.1239 5.1935 1.2228 6.2401

6 2.9310 1.8799 5.2381 6.2884 1.4459

7 2.1371 2.1882 5.2846 1.4528 6.3073

8 1.8659 1.1262 5.2536 6.2370 1.2424

9 2.6793 2.0366 5.1527 1.2915 6.1798

10 1.2595 1.0604 5.1362 6.2050 1.3792

11 2.7429 2.1727 5.2562 1.1546 6.2252

12 1.1064 2.0034 5.2019 6.3212 1.4617

13 1.5033 1.0851 5.1927 1.2103 6.4932

14 2.4345 2.3173 5.1767 6.4944 1.4876

15 1.8813 2.7374 5.1083 1.2610 6.3538

16 1.0553 1.2679 5.2723 6.3503 1.4654

17 2.8534 2.9366 5.2876 1.1091 6.3435

18 1.7933 1.1399 5.2373 6.4011 1.1229

19 2.6061 1.5928 5.2995 1.2139 6.3996

20 2.9660 1.2993 5.2071 6.3860 1.3035

21 1.2693 2.1694 5.1388 1.4290 6.2668

22 2.4679 1.4715 5.2317 6.4248 1.3358

23 2.3396 2.3133 5.1658 1.3275 6.1114

24 1.7863 1.9794 5.2554 6.4296 1.1111

36

Table 4.2. BS list and total reward for Q-learning, for fixed path dynamic programming,

maximum immediate reward, and random action selection results using switching cost of 2

step number
BS list for

QL

BS list for

DP-FP1

BS list for

MIR-FP1

BS list for

MDR-FP1

0 2 2 3 3

1 2 2 4 4

2 2 2 3 3

3 2 2 4 4

4 2 2 3 3

5 2 2 4 4

6 2 2 3 3

7 2 2 4 4

8 2 2 3 3

Total Reward: 47.2207 47.2207 40.8725 40.8725

∑ data rates (units) 47.2207 47.2207 56.8725 56.8725

Table 4.2 shows the results of the different fixed-path cases (DP-FP1, MIR-FP1, MDR-

FP1) compared to Q-learning using a switching cost of 2, while Table 4.3 demonstrates the same

comparison results using a switching cost of 3. This change in switching cost is expected to affect

the total reward, in cases where there are base station switches in the BS list.

Table 4.3 BS list and total reward for Q-learning, fixed path dynamic programming, maximum

immediate reward, and action selection results using switching cost of 3

step number
BS list for

QL

BS list for

DP-FP1

BS list for

MIR-FP1

BS list for

MDR-FP1

0 2 2 3 3

1 2 2 4 4

2 2 2 3 3

3 2 2 4 4

4 2 2 3 3

5 2 2 4 4

6 2 2 3 3

7 2 2 4 4

8 2 2 3 3

Total Reward: 47.2207 47.2207 32.8725 32.8725

∑ data rates (units) 47.2207 47.2207 56.8725 56.8725

37

The total reward values in Table 4.2 and Table 4.3, show that the dynamic programming

approach results in the highest total overall reward as compared to the other three, as expected.

The list of BS numbers also indicates that the dynamic programming method results in a fewer

number of switches (no switches in this case) as compared to the other methods, which results in

its higher total reward at destination. This confirms that the design of the dynamic programming

has been successful at finding the optimal highest overall reward in relation to BS selection, given

the proof provided in the earlier chapters for the dynamic programming’s design and the

comparison in this section. On the other hand, the MIR-FP1 and MDR-FP1 methods result in a

higher sum of the data rates for this given path. As mentioned earlier, this is acceptable because

the aim of this research is to find solutions that would result in highest overall reward (considering

switching cost) and not necessarily highest throughput. The sum of the total data rates obtained in

Table 4.2 is the same as the sum of the total data rates obtained in Table 4.3, because the change

in the switching cost is not affecting the tagged BSs, and only affects the total rewards of MIR and

MDR methods. Also, the total data rates are the same as the total reward in these two tables, for Q

and DP-FP1, because of the lack of switches in their respective BS lists. Another important take-

away from these tables is that the Q-learning and dynamic programming (given the Q-learning

fixed path) solutions result in the exact same BS lists and total rewards. This is because both

algorithms focus on finding actions (BSs) that would result in maximum total reward for the user.

The difference in the total rewards of the methods that suggest BS switches of Table 4.2

and Table 4.3, MIR-FP1 and MDR-FP1, is equal to the difference in the switching costs, 3 − 2 =

1, multiplied by the number of switches in the solution. So, for example, for MIR-FP1 where there

are 8 BS switches, the difference between the total rewards of Table 4.2 and Table 4.3 for this

approach is shown in (4.5)

[𝑀𝐼𝑅 − 𝐹𝑃1(𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 2)] − [𝑀𝐼𝑅 − 𝐹𝑃1(𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 3)]

= 40.8725 − 32.8725 = 8
(4.5)

Although In this scenario it just so happens that the MIR-FP1 and MDR-FP1 methods result

in the same BS lists and total rewards, they may at times result in different BS lists and therefore

different total reward values.

38

4.1.2 Scenario A-2: Comparing Deep Q-Learning and Q-learning (with γ =

0.9) to maximum immediate reward action selection

This section studies the effect of a 0.9 discount factor on the performance of Q-learning

and deep Q-learning. The goal of these algorithms will be to maximize the discounted total reward.

Because the rewards are being discounted, this scenario can no longer be compared to the dynamic

programming approach that considers all available results in the optimal policy calculation. Action

selection with max immediate reward, which is basically 𝛾 = 0, is used to evaluate the total

rewards of the two DQL and QL algorithms. Let FP2 and FP3 denote the resulting paths of QL

and DQL, respectively. In this scenario, similar to previous sections, using FP2 and FP3 in finding

BS lists that provide the highest immediate reward at each step, MIR-FP2 and MIR-FP3

respectively.

So, the comparison cases are:

1. Choosing actions (directions and BSs) that would maximize overall reward (QL)

2. Choosing actions (BSs) that maximize immediate reward, given the optimal path

chosen in the Q-learning approach (MIR-FP2)

3. Choosing actions (directions and BSs) that would estimate a maximized overall

reward (DQL)

4. Choosing actions (BSs) that maximize immediate reward, given the optimal path

chosen in the deep Q-learning approach (MIR-FP3)

The data rates from Table 4.1, and network assumption of section 4.1 are used with a

switching cost of 2 to develop the BS lists and total reward on Table 4.4, and with a switching cost

of 3 to develop the results on Table 4.5. Table 4.4 and Table 4.5 show that Q-learning results in

the highest possible total reward as compared to the other methods. In fact, the Q-learning’s total

reward is the highest possible achievable total reward, given the destination of the user and the

39

network’s layout. Also, the total reward of the Deep Q-learning method (an approximation

approach) is higher than the total reward of MIR-FP3.

Table 4.4 BS list and total reward for Q-learning, fixed path3 max immediate reward, deep Q-

learning, and fixed path4 immediate reward results using switching cost of 2

step number
BS list for

QL

BS list for

MIR-FP2

BS list for

DQL

BS list for

MIR-FP3

0 2 3 3 3

1 2 4 2 4

2 2 3 3 3

3 2 4 2 4

4 2 3 2 3

5 2 4 2 4

6 2 3 2 3

7 2 4 2 4

8 2 3 2 3

Total

Reward:
47.2207 32.5843 39.8271 32.5000

Table 4.5. BS list and total reward for Q-learning, fixed path3 max immediate reward, deep Q-

learning, and fixed path4 immediate reward results using switching cost of 3

step number
BS list for

QL

BS list for

MIR-FP2
BS list for DQL

BS list for

MIR-FP3

0 2 3 3 3

1 2 4 2 4

2 2 3 2 3

3 2 4 2 4

4 2 3 2 3

5 2 4 2 4

6 2 3 2 3

7 2 4 2 4

8 2 3 2 3

Total

Reward:
47.2207 40.8725 46.0733 40.7954

Comparing the total deep Q-learning reward with switching cost of 2 (Table 4.4) and

switching cost of 3 (Table 4.5) shows that the higher switching cost, restricts switching and results

in higher reward. It is important to note that if the switching cost value is too high (as compared

40

to the available data rates), it could result in a network with no switches and staying connected to

a BS even if it is NLOS, which would lower the total reward.

Also, it is clear that the QL and DQL methods which have chosen different user paths, have

resulted in different MIR-FP2 and MIR-FP3 total rewards, for either switching cost. So, for all the

different possible paths to go from start to destination, the QL would result in the path that would

make base stations available to the user, that would result in the highest discounted reward. On the

other hand, the DQL approach, will approximate the optimal path and therefore approximate the

optimal BS list.

Finally, the total reward of the deep Q-learning algorithm is within acceptable range for an

approximator, within 10% of the total reward achievable by implementing Q-learning on the same

problem. In fact, from the total rewards on Table 4.5 and equation (4.6),

|𝐷𝑄𝐿𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 − 𝑄𝐿𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑|

𝐷𝐿𝑟𝑒𝑤𝑎𝑟𝑑
=

1.1474

47.2207
= 2.43% (4.6)

the DQL reward is within 2.43% of the QL reward.

Now that the performance of the DQL algorithm is within acceptable range, a discussion

of the difference in applicable network sizes and in programming running times between DQL and

QL algorithms is necessary. These topics are covered in the next scenarios.

4.2 Scenario B: 200 × 200 Network with Data Rate Calculation

The results presented in this section, scenario B, show the performance of the three

algorithms, discussed in the previous chapter, on a 200 × 200 dense mmWave network. The

number of base stations in this network is determined using a dense mmWave network definition

by [26], where the average number of LOS base stations (for an average user) is at least 1. To this

end, a random number, 7, is chosen using a uniform random variable within the range of (4.1),

2 ×
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐴𝑟𝑒𝑎

𝑏𝑎𝑠𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑙𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
= 2 ×

200 × 200

𝜋 × 502

(4.1)

Where the base station coverage is assumed to be a circle with radius of 50 units. Also, the

number and location of the blockages are chosen at random using a Poisson distribution, keeping

a blockage density of 0.001.

Figure 4.1 is the layout of this network, where the solid black circles identify the location

of the BSs and the dashed green line circles are the coverage radius of each BS. The short blue

41

lines represent the blockages and the magenta star-shaped lines outline the boarders of the network.

mmWave communications use directional beams for transmission, thus if the line connecting user

and a base station intersects with the line of a blockage then the link of the user to that base station

becomes NLOS. The use of two-dimensional instead of three-dimensional blockages such as

buildings may be a good compromise. As ignoring the height of the base stations may increase the

blockage, on the other hand ignoring the area of blockages reduces the blockage.

Also, the user is assumed to have a step size of 5 units. Therefore, there are a total of 1600

user locations in this 200 × 200 network.

Figure 4.1 Layout of a 200x200 network with 7 base stations and 36 blockages

The network layout (locations of BSs and blockages as well as blockage lengths) is used

in the data rate calculations for the 1600 possible user locations, using independent Nakagami

fading for LOS (𝑁𝐿) and NLOS (𝑁𝑁) links [26]. Each data rate is calculated using (4.2) when the

signal-to-noise-and-interference ratio (SINR) value is 𝑆𝐼𝑁𝑅 < 100,

𝑟𝑎𝑡𝑒 (𝑏𝑝𝑠) = 𝐵𝑊 × log(1 + 𝑆𝐼𝑁𝑅) (4.2)

And (4.3) when 𝑆𝐼𝑁𝑅 ≥ 100,

𝑟𝑎𝑡𝑒 (𝑏𝑝𝑠) = 𝐵𝑊 × log(1 + 100) (4.3)

42

Where 𝐵𝑊 is the bandwidth and is assumed to be 2 GHz, and SINR is calculated using

(4.4) from [26].

𝑆𝐼𝑁𝑅 =
|ℎ0|2𝑀𝑟𝑀𝑡𝐿(𝑅0)

𝜎2 + ∑ |ℎ𝑙|2𝐷𝑙𝐿(𝑅𝑙)𝑙>0

(4.4)

In (4.4):

ℎ: A normalized gamma variable dependent on whether the BS is LOS or NLOS to the user

𝑀𝑟: Main lobe gains of the mobile station

𝑀𝑡: Main lobe gains of the base station

𝐿(𝑅): Path loss gain

𝜎2: Thermal noise power

∑ |ℎ𝑙|
2𝐷𝑙𝐿(𝑅𝑙)𝑙>0 : Sum of the interferences with directivity gain variable, 𝐷𝑙

For more detail on the above variables, refer to [26].

These data rates, calculated using (4.2) and (4.3), are then used in comparing the

performance of the three approaches discussed in the previous chapter: dynamic programming, Q-

learning, and deep Q-learning.

4.2.1 Scenario B-1: Comparing Q-learning performance with different

number of training steps

In this section, Q-learning algorithm is used to determine the optimal user path and BS list

on the network introduced in the previous section, the network in Figure 4.1, given the user’s start

and destination points. The goal of this scenario is to show the importance of choosing the number

of training steps that would return optimal results.

The algorithm runs for a variable number of training steps, using γ = 1.0 and switching cost

of 2 (for when a BS switch occurs). The Q-learning agent is trained first with 1.5 × 106 training

steps, then with 6 × 106 training steps, and lastly with 9 × 106 training steps. Figure 4.2 shows

the steps the user will take, after each training, when it is tested on the user starting at the origin

with a destination at [195, 195]. As it can be seen in Figure 4.2, different number of training steps

result in different paths for the user, for the same start and destination pair.

43

Figure 4.2. User’s path from origin to destination at [195, 195], using Q-learning (with γ = 1.0

and switching cost of 2) variable number of training steps

The actions the QL algorithm chooses, determine the user’s direction and BS list. The

different user paths, shown in Figure 4.2, and different BS lists (list of all the BSs the user will

connect to for each step on the path) have resulted in the difference in their respective total rewards.

Shown in Table 4.6, the highest total reward (highest reward user path and BS list) corresponds to

the training that uses 9 × 106 training steps. The trainings with fewer steps, 1.5 × 106 and 6 × 106

steps, have a smaller overall reward, which is to be expected. This is because the longer the

training, the more experience the learning agent gathers from the state-action pairs in the

environment.

Table 4.6. Total reward of running QL algorithm for different training step sizes, considering γ

of 1.0 and switching cost of 2

 QL with 1.5M

training steps

QL with 6M

training steps

QL with 9M

training steps

Total Reward 283.2923 411.6053 438.1602

44

Next, the same variable training steps scenario is done with γ = 0.9. This time the training

steps are chosen to be 1.5 × 106, 9 × 106, and 12 × 106 to show that increasing the number of

training steps is only effective until the highest possible reward is achieved (however, the gain in

total reward is not that high for going from 1.5M to 9M steps in Table 4.6). After that, increasing

the number of training steps will not positively affect the total reward.

So, in order to draw this comparison, the QL agent is trained on the same network in Figure

4.1. After the training, each neural network is tested on the same user, starting at the origin and

heading to a destination at [195, 195]. This time, as shown on Figure 4.3, the trainings with 9M

and 12M training steps result in the exact same user path. Also, it can be seen on Table 4.7 that

these two trainings result in the exact same total reward values. This means that training for the

extra 3M steps did not expose the learning agent to any new experiences.

Figure 4.3. User’s path from origin to destination at [195, 195], using Q-learning (with γ of 0.9

and switching cost of 2) variable number of training

45

Table 4.7. Total reward of running QL algorithm for different training step sizes, considering γ

of 0.9 and switching cost of 2

 QL with 1.5M

training steps

QL with 9M

training steps

QL with 12M

training steps

Total Reward 412.0859 433.2178 433.2178

This scenario confirms that the number of training steps are important in the optimality of

the Q-learning results. If they are too small, because training happens on randomly selected state-

action pairs, it would mean that there are state-action pairs that the user has not yet experienced.

If they are chosen to be too high, there may not be any extra experiences for the learning agent to

benefit from.

4.2.2 Scenario B-2: Comparing Q-learning to DP, maximum immediate

reward action selection, maximum data rate action selection, and

random action selection

In this section, to compare the QL and DP results, the user paths generated by the QL

algorithm with 9M training steps and γ = 1.0 (Fixed Path4, FP4), in section 4.2.1, will be used to

compare BS lists with DP (DP-FP4). This is because, as mentioned before, the dynamic

programming approach will return an optimal BS list for a fixed-path user. The Q-learning and

dynamic programming total rewards are then compared to three other methods to ensure that they

always result in the highest overall rewards. These three methods that use the same FP4 (the

optimal path generated by the QL algorithm, FP4, is the path being followed in all the fixed path

methods) are:

1. Maximum Immediate Reward action selection using Path4 (MIR-FP4), chooses

actions (BSs) that would maximize the user’s immediate reward

2. Maximum Data Rate action selection using Path4 (MDR-FP4), chooses actions

(BSs) that provide the highest data rate at every given user step

3. Random action selection using Path4 (Random-FP4), chooses a random action (BS)

for every user step

46

Where reward is calculated using (3.19) and (3.20), depending on whether there is a BS

switch, and total reward is the sum of the rewards of all the user’s steps.

Table 4.8. Total rewards of QL compared to fixed-Path1 methods

QL with 9M

training steps

&

γ = 1.0

DP-FP4 MIR-FP4 MDR-FP4 Random-FP4

Total Reward: 438.1602 438.1602 434.5552 430.7748 -28.9333

Table 4.8 shows that the total reward of QL and DP methods are the same, for the same

path. Also, their rewards are higher than the rewards of the other fixed-path methods. In fact, with

the goal of maximizing highest total reward, Q-learning and dynamic programming are the best

solutions. They do however, each have their own drawbacks. Dynamic programming can only find

highest BS list, and the user’s path would have to be pre-determined. Q-learning will take many

steps to train, until every single state-action pair has been visited. This would render Q-learning

not effective in cases where every state-action pair is not known, or that the environment is so

large that it is not feasible to visit every state-action.

4.2.3 Scenario B-3: Comparing Deep Q-Learning and Q-learning (with γ =

0.9) to maximum immediate reward action selection

This section will demonstrate DQL’s performance on the 200 × 200 network in Figure

4.1, and compares the results with the QL results of scenario B-1. The reasons for the DQL not

accurately predicting the optimal BS list and user path for this network are discussed, along with

measures that were tried to overcome these reasons.

Because DQL is an approximation method, it is not necessary to visit every state-action

pair before an optimal solution is predicted. This is why DQL is preferred in networks with larger

state sizes. But, in order to draw parallels between the DQL and QL results, the same number of

training steps are used in the training of DQL, 1.5 × 106 and 9 × 106 training steps. Using DQL,

considering a discount factor of 0.9 and switching cost of 2, the results on Table 4.9 were obtained.

The total reward values from DQL are then compared to maximum immediate reward

results, given the same path that the DQL suggests for a user that starts at origin with a destination

47

of [195, 195]. The results of MIR with fixed paths, Fixed Path5 (FP5) for 1.5M training steps, and

Fixed Path6 (FP6) for 9M training steps, are also included on Table 4.9.

Table 4.9 Total reward of DQL (with γ of 0.9) for different number of training steps compared

to MIR-FP5 and MIR-FP6

 DQL with 1.5M

training steps
MIR-FP5

DQL with 9M

training steps
MIR-FP6

Total Reward 2.9925 48.6388 2.2473 21.0717

Table 4.9 shows that not only the total rewards acquired by DQL is not highest, in the long-

run, but with a larger number of training steps, the path suggested by DQL has actually made the

total reward for MIR to drop from 48.6388 (with FP5) to 21.0717 (with FP6). This means that the

DQN has not been able to learn from the experiences in the environment to obtain an optimal user

path and BS list, given a destination. The following are two possible reasons for this.

1. One reason that a DQN is not converging could be because of the dataset.

As one of the requirements of a Deep feedforward network to correctly approximate a

function, is for the dataset to be continuous [30]. The data rates in this scenario are not

continuous.

2. Another reason could be the activation function, sigmoid function’s,

limitations at correctly assessing values close to the edges of its range, 0 and 1. It seems

that the activation function is not sensitive to the range-edge values. The RELU activation

function was also unsuccessful, using the same data rates.

To verify the mentioned possible reasons, a constant value was added to the calculated data

rates, to ensure that they were not falling on range-edge 0. Also, to better show detailed results,

the user’s starting location was limited to the destination (so the user starts at destination and only

takes one step, distance to destination is 0). The discounted reward values for every possible action

for this step, using DQL, are then compared to discounted Q-values from QL, shown in Table 4.10.

In Table 4.10 and Table 4.11 the number of training steps for DQL and QL is set to 3 × 105 steps

and switching cost is set to 0.8. In both tables, Q-values that are calculated as 1.0 are corresponding

to actions that require no switch in the BS, and the Q-values that are calculated as 0.2 are

corresponding to actions that require a switch in the BS.

48

Table 4.10 shows that with the new data rate values, the average DQL discounted reward

values are within a 0.35% range of the QL discounted Q-value results for the actions with

switching, and within a range of 0.01% of the QL discounted Q-value results for the actions

without switching. This means that with the user starting at the destination, DQL is finding the

optimal solution.

Table 4.10 DQL discounted reward and QL discounted Q-values for all possible actions when

user’s distance to destination is 0

Action (BS) Action (direction)
DQL discounted

reward values

QL discounted Q-

values

0 UP 1.0001 1.0

1 UP 0.2057 0.2

3 UP 0.2011 0.2

4 UP 0.1853 0.2

5 UP 0.2003 0.2

6 UP 0.198 0.2

0 RIGHT 0.2043 0.2

1 RIGHT 1.0000 1.0

2 RIGHT 0.2058 0.2

3 RIGHT 0.2008 0.2

4 RIGHT 0.2033 0.2

5 RIGHT 0.1942 0.2

6 RIGHT 0.1891 0.2

Next, the user is allowed to be at a short distance from the destination, taking two steps to

reach the destination, distance to destination is 2, and the results of DQL and QL discounted Q-

values (same as discounted reward values) for these steps are compared for every action in every

state, shown in Table 4.11. This time, the average DQL discounted reward values are within a

510.1% range of the discounted Q-values of QL for actions with switching, and within a range of

33.26% for actions without switching. This shows that by adjusting the lower data rates (values

49

close to the lower end of the sigmoid function’s range), adding a constant to these data rates, DQL

still cannot find optimal solutions because the data rates are not continuous.

Table 4.11 DQL discounted reward and QL discounted Q-values for all possible actions when

user’s distance to destination is 2

Action (BS) Action (direction)
DQL discounted

reward values

QL discounted Q-

values

0 UP 1.4082 1.0

1 UP 1.2343 0.2

3 UP 1.3309 0.2

4 UP 1.2473 0.2

5 UP 1.3507 0.2

6 UP 1.0899 0.2

0 RIGHT 1.2520 0.2

1 RIGHT 1.2569 1.0

2 RIGHT 1.0680 0.2

3 RIGHT 1.3824 0.2

4 RIGHT 1.1874 0.2

5 RIGHT 1.1523 0.2

6 RIGHT 1.2349 0.2

4.3 Scenario C

This scenario’s aim is to compare the performance of Q-learning and deep Q-learning

algorithms on larger networks, with data rates that are generated randomly using a uniform

distribution, to eliminate the problem in the previous section.

Scenario C-1 will compare the results of Q-learning and deep Q-learning algorithms for a

network size that the Q-learning algorithm can reasonably return results for. Next, scenario C-2,

will demonstrate the performance of deep Q-learning for a network size that is larger than what

QL algorithm can effectively find optimal solutions for. In this case, DQL can find better than

random solutions.

50

4.3.1 Scenario C-1: Comparing Deep Q-Learning to Q-learning on a 150 ×

150 network (with γ = 0.9)

So far, it is known that the Q-learning method returns accurate results, if enough training

steps have passed. That is because if any state-action pairs are not covered during training, those

state-action pairs that have been visited cannot result in an optimal policy. On the other hand, the

DQL algorithm returns meaningful results in fewer steps. Deep Q-learning, as an approximation

method, can approximate the value of state-action pair that it has not yet visited. The accuracy of

the approximation will depend on learning parameters such as the number of hidden layers in the

DQN and the value of γ, the discount factor, and the activation function(s). The ability for DQL to

approximate states that have not been visited, helps with this approach being used in cases where

Q-learning is too costly or even impossible to perform.

But, one of the drawbacks of utilizing DQNs is the time spent running the program, if the

computations are not performed on a GPU. Another is that DQNs are ideal for continuous datasets,

and in application where the values in the datasets are not continuous this method could fail to

approximate accurately. This section focusses on drawing comparisons between the two

algorithms, and their run-times.

In a 150 × 150 dense mmWave wireless network, bounded between 𝑥 = 0 𝑎𝑛𝑑 150 and

𝑦 = 0 𝑎𝑛𝑑 150, the user starts anywhere in the network and is expected to reach the destination

at [150, 150] in the fewest possible steps. There are a total of 30 × 30 = 900 user locations in

this network, since the user takes steps of size 5 units.

The data rates are generated randomly for every one of the 5 BSs and all 900 possible user

locations in this network, without the layout of BSs and blockages. These data rates are then used

to determine the optimal user path and BS list, which yields the highest overall reward using Q-

learning and deep Q-learning algorithms.

After training both algorithms for 450K steps, the results for testing a user that starts at

origin with a destination of [150, 150] and switching costs of 2 and 3 are compared. The program

running time and total rewards for these trainings are presented on Table 4.12, for switching cost

of 2. Table 4.12 shows the run-time of the Q-learning program to be 3.9776 seconds. This is

significantly smaller than the 348.6955 seconds it takes for the deep Q-learning program to run,

for the same number of steps. Although both run-times are not remarkably long, in other words it

51

does not take days to run these programs, they are a good indicator of why Q-learning is preferred

in smaller and medium-sized networks.

Table 4.12. Program run-time and total reward of QL & DQL in 150 × 150 network with

switching cost of 2

 Q-learning Deep Q-learning

Total Reward: 328.9408 312.3125

Total Training Running Time(s): 3.9776 348.6955

Total number of training steps: 450000 450000

Also, the total reward of the DQL is 312.3125, which is 5.06% lower than the QL total

reward. This value is still within the acceptable 10% range of the QL total reward.

Next, Table 4.13, demonstrates the run-times and total rewards of QL and DQL on the

same network, for a switching cost of 3.

Table 4.13 Program run-time and total reward of QL and DQL in a 150 × 150 network with

switching cost of 3

 Q-learning Deep Q-learning

Total Reward: 338.9446 309.6918

Total Training Running Time: 4.0077 335.1640

Total number of training steps: 450000 450000

In this scenario, both programs run within the same time frame that they ran for the

switching cost of 2 scenario. And although these times are still also not remarkable long (not hours

or days long), DQL takes more than 80 × longer than QL to train on the same number of steps.

And results in total reward that is 8.63% of the QL total reward.

4.3.2 Scenario C-2: Deep Q-learning for a very large network (with γ = 0.9)

In this section, a network with large state space is used to demonstrate the performance of

DQL when QL is ineffective.

52

As mentioned in earlier sections, the number of BSs in a network are determined by the

size of the network as well as the BSs’ coverage area. So, assuming a circular cell with radius of

50 𝑚 and a 1500 × 1500 𝑚2 network, and using (4.7)

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐴𝑟𝑒𝑎

𝐵𝑆 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 = 𝜋𝑟2
=

1500 × 1500

𝜋(50)2
= 286 (4.7)

There will need to be at least 286 BSs to cover the entire area. For simplicity, it is assumed

that there are 300 BSs in the network, without the real layout of BSs and blockages on the network.

And, with a user step size of 5, this is a network with 300 × 300 possible user locations. So, this

network will have 300 × 300 × 300 = 27 × 106 states and 300 × 2 = 600 actions. The number

of actions corresponds to the number of BSs in the network, for every direction the user can move

in. As stated earlier, the user can move in two directions: UP or RIGHT.

For this network, using Q-learning would require a matrix with 27 × 106 rows and 600

columns. Populating a matrix of this size, which would result in a memory error, is computationally

expensive and is referred to as the curse of dimensionality [29]. Therefore, DQL that does not

require the population of such a large matrix, is used as an alternative approach.

DQL is an approximation method, therefore every state-action does not need to be visited

for the program to return optimal user path and BS lists. Using switching cost of 2, discount factor

of 0.9, 20 hidden layers, and only 100 × 103 training steps, the algorithm is expected to predict a

user path and BS list that would return high discounted rewards. During testing, the user starts at

origin and reaches the destination at [1495, 1495] within the minimum number of steps, 599 steps,

which results in a total reward of 4045.15.

Because QL and DP cannot be used to evaluate the results of the DQL, the random action

selection method was used to show that DQL will perform better than if each step’s action was

chosen at random. For the same 599 steps that it takes the user to go from origin to destination in

the DQL solution, a random action is chosen at every step, and the rewards obtained from all the

steps are added for a total reward of -1194.0. This value is acceptable because in random action

selection method, the user will connect to any BS in its path, without regard to the data rate

received from that BS or the cost of switching to another serving BS. It is clear that the total reward

of the DQL method, 4045.15 is higher than the total reward of choosing actions at random, -1194.0.

53

The above results show that because the reward values are not continuous, DQL cannot

find optimal solutions to the problem. But they may find better-than-random results, when it is too

expensive to apply QL to the problem, in a fraction of the number of training steps it would take

to run QL.

4.4 Results

The scenarios in the previous sections of this chapter were all designed to demonstrate the

characteristics of the solutions to the research question.

The outcomes of these scenarios reveal that given a fixed path for the user, the dynamic

programming approach results in the highest total reward. It is also exhibited that given a fixed

destination; the Q-learning algorithm will result in the highest total reward, identical to the results

obtained by dynamic programming (using the same path provided by the Q-learning algorithm).

After training, during testing of the algorithms, if the Q-learning and deep Q-learning algorithms

are given the same starting and destination points for the user inside the network an optimal path

and BS list will be returned.

Next it is shown that the run-time for the DQL training program is longer than QL’s training

run-time, but fewer number of training steps are required to obtain acceptable results. The results

of the DQL are within an acceptable 10% range of the exact solution, QL. Also, for large networks

where QL cannot be used, DQL can provide BS lists and user paths that are better than randomly

choosing BSs for the same user path.

For smaller networks, Q-learning has been successful at predicting temporary blockages,

by learning the layout of the network through a reward system. Suggesting user paths and BSs to

connect to, in that path, determined by maximizing overall discounted reward, ensures a reliable

and low-overhead connection for the user. For larger networks, even though deep Q-learning may

not approximate optimal solutions, it has been more successful than a random selection of actions.

54

Chapter 5

5 Conclusion and Future Work

5.1 Conclusion

The growing need for spectrum in the world of IOT and the demand for reliable and high

throughput mobile connections has motivated researchers and industry pioneers to explore the

previously unused mmWave spectrum for 5G wireless systems. 5G wireless networks will have

enhanced mobile broadband with high throughput rates, but reliability and latency could become

drawbacks. The sensitivity of mmWave signals to physical blockages, can cause disruptions in the

connection or cut the connection off entirely. Because of the highly directional nature of these

signals, a direct LOS between the user and the serving BS is necessary. If this link becomes NLOS,

given that the user is still connected to the network, user hand-off to another base station will incur

overheard and latency issues.

To address the blockage issue in 5G mmWave wireless networks, the research problem

studied solutions to predict all blockages in a network and assess if a hand-off is cost-efficient.

This means that if the blockage is considered temporary, given the cost of switching the user from

the current BS to another BS, then it may be beneficial to the overall reward of the user if the

current BS continues to serve the user. The decision to consider a blockage temporary or not, will

also be based on the data rate received from the serving BS, as well as all other available BSs in

the user’s current location.

To address the research problem, the following approaches were studied:

1. Dynamic Programming, which only provides the optimal BS list,

2. Q-learning, which provides the optimal path and BS list, but is only used for smaller

networks,

3. Deep Q-learning, which approximates the optimal path and BS list of the user and

can be applied to larger state-action spaces.

The first approach, dynamic programming, can predict the optimal BSs to connect to, given

that the user’s path is already known. The BSs considered optimal are chosen with the definition

of a temporary blockage in mind. In the case of an NLOS link, the data rates received from the BS

55

currently serving the user are compared to the data rates received from all other available BSs in

the network, and considering the cost of a hand-off, an optimal BS is chosen for that step. A list

of BSs is considered optimal, once the user has reached its destination and all the rewards have

been calculated with the goal of maximizing the overall reward.

Approaches 2 and 3, dependent on the size of the network and the trend of the data rate

values, can be utilized in finding optimal path and BS connections for a given destination in the

network. In these approaches the goal is to maximize the discounted total reward, which is a

combination of the data rates and BS hand-off overhear, referred to as switching cost.

For more sophisticated state spaces, DQL, approach 3, has been shown to perform better

than random action selection. The total reward obtained by DQL is higher than the total reward

value of choosing each step’s action at random, given a fixed destination inside the network.

The reward system used in these approaches is defined to teach the learning agent the long-

term impact of the blockages in the network. The learning agent will gain experience by visiting

different state-action pairs inside the network and learn to find optimal solutions given that

experience.

Dynamic programming, can provide the optimal BS lists and predict a blockage’s effect

length on the user, given the user’s path. Q-learning can predict a blockage’s effect and choose a

path for the user accordingly. It will also provide an optimal BS list for this path, given the user’s

fixed destination. Deep Q-learning can approximate the optimal user path and BS list, but the

accuracy of the results obtained by this method depends highly on the continuity of the values in

the dataset provided to the learning agent. Using a dataset with randomly generated values from a

uniform distribution, this approach can provide results better than choosing actions at random.

5.2 Future Work

From the work on this research, the user’s path and ideal BS connections can be predicted,

given the user’s destination inside the network. This information can be used in future research to

provide a framework for BS sleep patterns. Considering that 60 - 80% of network power

consumption is for base station usage [22], this could prove to be an effective way to save network

energy usage.

56

In the current solutions provided, it is assumed that the mobile user is walking, and a speed

is not considered in the user’s movements. In future work, the user’s speed could be considered as

a parameter, allowing the user to be moving at variable velocity.

Another similar variation of the problem to be considered could be with multiple users in

the same network, in a 3-dimensional environment so that the BSs, blockages, and even the users

could be at variable heights.

57

References

[1] S. Niknam, B. Natarajan and R. Barazideh, "Interference Analysis for Finite-Area 5G

mmWave Networks Considering Blockage Effect," IEEE Access, vol. 6, pp. 23470-23479,

2018.

[2] G. R. M. a. T. S. Rappaport, "Millimeter-Wave Base Station Diversity for 5G Coordinated

Multipoint (CoMP) Applications," IEEE Transactions on Wireless Communications, vol.

18, no. 7, pp. 3395-3410, July 2019.

[3] A. &. B. I. &. A. S. Alkhateeb, "Machine Learning for Reliable mmWave System:

Blockage Prediction and Proactive Handoff," in Global Conference on Signal and

Information Processing (GlobalSIP), Anaheim, 2018.

[4] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong and J. C.

Zhang, "What will 5G be?," IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS, vol. 32, no. 6, pp. 1065 - 1082, 2014.

[5] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. T. Sukhavasi,

C. Patel and S. Geirhofer, "Network densification: the dominant theme for wireless

evolution into 5G," IEEE Communications Magazine, vol. 52, no. 2, pp. 82-89, February

2014.

[6] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta and P. Popovski, "Five disruptive

technology directions for 5G," IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80,

February 2014.

[7] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun and F. Aryanfar,

"Millimeter-wave beamforming as an enabling technology for 5G cellular communications:

theoretical feasibility and prototype results," IEEE Communications Magazine, vol. 52, no.

2, pp. 106-113, February 2014.

[8] W. Na, B. Bae, S. Cho and N. Kim, "DL-TCP: Deep Learning-Based Transmission Control

Protocol for Disaster 5G mmWave Networks," IEEE Access, vol. 7, pp. 145134-145144,

2019.

58

[9] C. M. G. a. J. Snell, Introduction to Probability, second revised ed., Providence, RI:

American Mathematical Society / The CHANCE Project, 2006.

[10] M. L. Puterman, Markov Decision Processes Discrete Stochastic Dynamic Programming,

Hoboken, New Jersey: John Wiley and Sons, 2005.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning An Introduction, 2 ed., Cambridge,

MA: The MIT Press, 2018.

[12] A. Rosebrock, Deep Learning for Computer Vision with Python, 1st ed., vol. 1, Columbia,

SC: PyImageSearch, 2017.

[13] K. Doya, "Reinforcement learning: Computational theory and biological mechanisms,"

HFSP, vol. 1, no. 1, pp. 30-40, 2007.

[14] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang and D. I. Kim,

"Applications of Deep Reinforcement Learning in Communications and Networking: A

Survey," IEEE Communications Surveys and Tutorials, vol. 21, no. 4, pp. 3133-3174,

2019.

[15] A. Golkaramnay, "RLformmWave," GitHub, March 2020. [Online]. Available:

https://github.com/Artmiz/RLformmWave/releases/tag/v1.0. [Accessed March 2020].

[16] R. S. Sutton and A. G. Barto, "Temporal-Difference Learning," in Reinforcement Learning

An Introduction, Cambridge, The MIT Press, 2018, pp. 119-140.

[17] C. Zhang, P. Patras and H. Haddadi, "Deep Learning in Mobile and Wireless Networking:

A Survey," IEEE Communications Surveys and Tutorials, vol. 21, no. 3, pp. 2224-2287,

2019.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M.

Riedmiller, "Playing Atari with Deep Reinforcement Learning," DeepMind Technologies,

2013.

[19] H. Mao, M. Alizadeh, I. Menache and S. Kandula, "Resource Management with Deep

Reinforcement Learning," in HotNets '16: Proceedings of the 15th ACM Workshop on Hot

Topics in Networks, Atlanta, 2016.

[20] T. Rajapakshe, R. Rana, S. Latif, S. Khalifa and B. W. Schuller, "Pre-training in Deep

Reinforcement Learning for Automatic Speech Recognition," ArXiv, 2019.

59

[21] J. Liu, B. Krishnamachari, S. Zhou and Z. Niu, "DeepNap: Data-Driven Base Station

Sleeping Operations through Deep Reinforcement Learning," IEEE Internet of Things

Journal, vol. 5, no. 6, pp. 4273-4282, 2018.

[22] M. A. Marsan, L. Chiaraviglio, D. Ciullo and M. Meo, "Optimal Energy Savings in

Cellular Access Networks," in IEEE International Conference on Communications

Workshops, Dresden, 2009.

[23] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu and D. Yang, "Experience-driven

Networking: A Deep Reinforcement Learning based Approach," in IEEE Conference on

Computer Communications, Honolulu, 2018.

[24] O. Semiari, W. Saad and M. Bennis, "Joint Millimeter Wave and Mircowave Resources

Allocation in Cellular Networks with Dual-Mode Base Stations," IEEE Transactions on

Wireless Communications, vol. 16, no. 7, pp. 4802-4816, 2017.

[25] R. Ding, Y. Xu, F. Gao, X. Shen and W. Wu, "Deep Reinforcement Learning for Router

Selection in Network with Heavy Traffic," IEEE Access, vol. 7, pp. 37109-37120, 2019.

[26] T. Bai and R. W. Heath, "Coverage and Rate Analysis for Millimeter-Wave Cellular

Networks," IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 1100-

1114, 2015.

[27] M. Patacchiola, "Dissecting Reinforcement Learning-Part.8," Github, 28 December 2018.

[Online]. Available: https://mpatacchiola.github.io/blog/2018/12/28/dissecting-

reinforcement-learning-8.html. [Accessed 03 February 2020].

[28] M. Minsky and S. A. Papert, Perceptrons: An Introduction to Computational Geometry,

The MIT Press, 1988.

[29] R. Atallah, C. Assi and M. Khabbaz, "Deep Reinforcement Learning-based Scheduling for

Roadside Communication Networks," in 15th International Symposium on Modeling and

Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Paris, 2017.

[30] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge: The MIT Press,

2016.

60

[31] J. Kim, J. Park, S. Kim, S.-L. Kim, K. W. Sung and K. S. Kim, "Millimeter-Wave

Interference Avoidance via Building-Aware Associations," IEEE Access, vol. 16, p. IEEE

Access, 2018.

[32] W. Fischer and K. Meier-Hellstern, "The Markov-modulated Poisson process (MMPP)

cookbook," Performance Evaluation, vol. 18, no. 2, pp. 149-171, 1993.

