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Abstract 

A Parameterized Design Optimization Framework for Worker-Friendly Workplaces 

in Modular Construction 

Ahmed Zaalouk 

Workers in modular construction suffer frequent exposure to ergonomic risks that lead to 

work-related musculoskeletal disorders (WMSDs). Addressing ergonomic risk factors is thus 

critical to enhance the productivity of production lines and reduce social expenses for workers’ 

recovery. Towards this goal, an ergonomic-driven workplace design approach is essential to not 

only prevent risks through design changes proactively but also accommodate medical restrictions 

for workers getting back on the job during the health recovery period. However, a lack of methods 

to identify root causes of ergonomic risks among various workplace design parameters (WDPs) 

and design optimal workplace settings for complex and multiple tasks leads to difficulties in 

adopting this twofold design approach. To address this limitation, this thesis proposes a 

parameterized workplace design optimization framework that involves four procedures: (i) 

performing design initiation to identify WDPs and accordingly create design alternatives using the 

definitive screening design (DSD) method; (ii) building interactive worker-workplace simulation 

models to acquire workers’ body posture data and assess ergonomic risks among the different 

design alternatives; (iii) developing predictive surrogate models of the tasks using DSD statistical 

analysis; and (iv) optimizing workplace settings using the genetic algorithm to minimize 

ergonomic risk scores. The proposed framework is demonstrated through a case study to design a 

drywall preparation workplace in a real modular construction plant.  
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Chapter 1: Introduction 

1.1 Background and Motivation 

Modular construction has increasingly gained attention as an efficient approach that provides 

cost and time reduction along with high quality and low environmental impact [1]. By moving 

activities from conventional (onsite) construction to an indoor environment, modular construction 

produces modules and/or panels (e.g., walls, floors, and roofs) in a factory-controlled environment, 

then transport them to sites for installation. However, despite advanced technologies and the 

potentials of modular construction strategies to improve safe practices during the factory operation, 

workers still perform labor-intensive and hazardous manual tasks with frequent exposure to 

ergonomic risks [2]. As a result, the repetitive nature of these tasks leads to increase the risk of 

work-related musculoskeletal disorders (WMSDs) that not only reduces the productivity of 

production lines but also increases social expenses for workers’ recovery [[3], [4]].  

As shown in Fig. 1, the Canadian manufacturing and construction industries had the second 

and fourth highest number of lost-time claims, which were 33,893 and 26,510 cases, respectively, 

due to numerous injuries in 2017 [5]. Moreover, statistics reveal that WMSDs account for 

approximately 47% of disabling injury claims in the construction industry in Canada [2]. In the 

United States, the rate of WMSDs in the construction was 16% higher than the rate for all industries, 

which made 20,510 cases in 2015, resulting in days away from work, inability to perform job tasks, 

and temporary or permanent disability [[6], [7]]. Thus, in order to gain full benefits from using the 

modular construction method (e.g., less time and lower cost), ergonomic precautions should be 

fully considered to ensure a safe and productive workplace that prevents ergonomic risks and 

decrease the rate of WMSDs injuries. 
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Fig. 1. 2017 Lost Time Claims in Canada, by industry [5] 

The WMSDs are a group of painful disorders of muscles, tendons, and nerves in which 

workplace design and associated ergonomic risk factors (e.g., awkward postures, repetitive 

motions, and high force) significantly contribute to developing injuries over time [8]. However, it 

becomes more critical in modular construction where the primary focus of workplace design is on 

productivity improvement rather than addressing ergonomic risk issues to mitigate WMSDs [9]. 

As an effort to reduce enormous human and economic costs of WMSDs (e.g., the risk of disability, 

increased premium rates and prolonged absence of workers), employers are encouraged by 

workers’ compensation boards (WCB) to prevent WMSDs and/or reduce their consequences by 

simultaneously adopting two strategies [10]: 

i. Designing worker-friendly workplaces that boost injury prevention. 

ii. Establishing a modified work program (MWP) to help injured workers return to work while 

recovering. 
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The integration of these strategies can be highly advantageous for both employers and 

employees due to the following benefits [[10], [11]]: 

i. Permitting employers to lower their premium rates determined by the number of accidents 

and injuries that occurred in the company. 

ii. Enabling employers to reduce worker's time away from work, which can reduce overall 

(medical and re-employment services) claim costs. 

iii. Providing a healthy option for workers’ rehabilitation that yields promising results, 

physically and psychologically. 

iv. Boosting workers' morale and loyalty while having a better recovery. 

In this respect, ergonomic-driven workplace design/modification becomes highly effective 

in determining appropriate work conditions, which can be built by adjusting workplace design 

parameters (e.g., work methods and workplace dimensions) in order to prevent workers’ exposure 

to ergonomic risks and accommodate any medical restrictions (e.g., restricted lifting, bending or 

standing) [[10]-[12]]. Accordingly, there is a need for a comprehensive ergonomic-driven 

workplace design framework to not only prevent risks through design changes proactively but also 

count for accommodating the situation after an accident occurs and assist injured workers getting 

back on the job safely at the earliest opportunity [10]. 

1.2 Problem Statement 

Implementation of this twofold approach is not fully established yet in the construction 

industry, especially modular construction, due to the lack of effective workplace design methods 

that take into consideration the following workplace design requirements: 
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i. A parameterized design process that allows manipulating several workplace design 

parameters (WDPs) in order to investigate the root causes of ergonomic risks. 

ii. Multiform of WDPs (i.e., categorical, and/or continuous types) in order to count for 

dynamic interactions between different types of WDPs and ergonomic risks. 

iii. Optimal workplace settings to minimize ergonomic risk levels for safety and productivity 

improvement. 

1.3 Objective and Scope 

The main objective of this research is to propose a workplace design method for safety 

enhancement in modular construction facilities in order to ultimately help companies to reduce 

their direct costs for ergonomic injuries.  

The scope of this study is limited to the following aspects: 

i. The evaluation of workplace designs is based on ergonomic posture assessment. 

ii. Quantified ergonomic risk scores are based on REBA and RULA ergonomic posture 

assessment tools. 

iii. The considered ergonomic risk factors in the workplace are awkward postures, repetitive 

motions, and handled force/load. 

Accordingly, to accomplish the research objective,  this study satisfies the workplace design 

requirements by proposing a parameterized workplace design framework that involves a 

comprehensive ergonomic-driven workplace design process integrating a skeletal simulation for 

workers’ body motions and ergonomic posture assessment with six sigma analysis. This approach 

determines significant WDPs, which mostly contribute to increasing the overall ergonomic risks, 
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in order to support in making better-informed design decisions for safe work methods and optimum 

workplace configurations (e.g., width, height, and length of a table). In this respect, the proposed 

framework consists of mainly four core components: 

i. Workplace design initiation. 

ii. Interactive worker-workplace simulation. 

iii. Development of predictive surrogate models. 

iv. Workplace optimization. 

To implement the proposed framework and validate its effectiveness, a drywall preparation 

workplace, which requires performing three consecutive operational tasks in a real modular 

construction plant, is designed as a case study.  
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Chapter 2: Literature Review 

2.1 Worker-friendly workplace design in modular construction 

In modular construction, ergonomic design principles (e.g., working within neutral reach 

zones at a proper height) are not fully considered while applying workplace changes and/or designs 

that are frequently required to correspond to Lean implementation (i.e., waste reduction process of 

production lines) for continuous productivity improvement [[3], [9]]. Due to this trend, workers 

may perform tasks with high physical demands at poorly-designed and/or unsuitable workplaces 

leading to awkward postures (e.g., bending and kneeling) repetitively in order to fit into given 

workplaces and carry out assigned tasks. These postures cause not only risk increases for WMSDs 

but also subsequent productivity losses due to inadequate performance of workers that is 

commonly associated with longer cycle times of tasks. In this respect, the reduction of poor 

postures using workplace design changes is essential to avoid ergonomic risks that conflict with 

the fundamental goal of Lean for boosting workplace productivity [3]. In order to support this 

direction, Wang et al. [13] have proposed two steps: (i) conducting an ergonomic risk assessment 

to detect risk factors in the workplace and their severity levels; and (ii) redesigning the workplace 

based on the results of step (i). 

In this respect, numerous studies have been conducted to design worker-friendly workplaces 

that mitigate and/or eliminate awkward postures and other ergonomic risk factors (e.g., force 

exertion) for productivity improvement. For instance, Golabchi et al. [9] introduced an automated 

biomechanical simulation approach to evaluate ergonomics considerations early in the design stage 

of workplaces before workers experience any unsafe conditions. Furthermore, in order to 

effectively model manual tasks, an integrated ergonomics framework was proposed to count for 
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durations of activities by combining posture-based ergonomic assessments with discrete event 

simulation. The main goal of this study was to concurrently incorporate safety and labor efficiency 

analysis in workplace design [[14], [15]]. Li et al. [16] considered the assessment of the physical 

demand for modular construction tasks and related ergonomic risk using three-dimensional (3D) 

skeletal modeling to provide a modified workplace or to analyze proposed workstations during the 

design phase. Afterward, the proposed framework was expanded to develop an automated posture-

based ergonomic risk assessment system for rapid workplace design in modular construction. This 

system was successfully implemented in a real modular construction task to determine the suitable 

work surface tilt angle that reduces the overall ergonomic risk [3]. 

However, these methods do not satisfy the workplace design requirements described above 

fully due to the following limitations: 

i. The lack of scientific methods to manipulate numerous WDPs concurrently in order to 

identify the main roots of ergonomic risks. 

ii. The lack of a systematic approach to identify the most significant WDPs and their effects 

on ergonomic risks based on the investigation of the correlation between overall ergonomic 

risk scores and WDPs. 

iii. Perception-based workplace design depending on the users instead of optimizing the 

workplace design considering the WDPs and the ergonomic risks. 

iv. Overlooking the nature of construction works in which multiple tasks are performed at one 

single workplace, which may require different values of the same WDPs.  
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2.2 Three-dimensional (3D) visualization for ergonomic posture assessment 

Ergonomic posture assessment is mainly conducted during the workplace design and/or 

modification to assess the ergonomic risks based on workers’ motions corresponding to 

operational tasks in the workplace. To implement this assessment, various models and tools, such 

as rapid entire body assessment (REBA) [17] and rapid upper limb assessment (RULA) [18], are 

widely used based on body joint angles, muscle use, and handled force/load. In REBA and RULA, 

body segments (e.g., trunk, legs) are divided into different posture categories, which represent a 

particular portion of the range of motion, based on the angles between body joints [16]. Therefore, 

acquiring precise body posture data is significant for reliable assessment and accurate evaluation 

of workplaces. In this respect, utilizing 3D visualization to simulate human body motions in the 

proposed workplace has received attention recently due to the following benefits [[3], [9], [14], 

[16]]: 

i. Less time-consuming with a high level of accuracy in comparison to traditional manual 

observation methods. 

ii. A practical method to assess multiple design alternatives without the need for physical 

experiments. 

iii. A cost-effective option that eliminates the need for onsite devices (e.g., body motion 

sensors) to track workers’ motions. 

iv. Facilitating accurate perception and communication of the design.  

To obtain these benefits, many researchers have adopted 3D visualization for ergonomic 

posture assessment and workplace design in modular construction. For instance, Han et al. [19] 
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proposed a 3D-based physical demand assessment technique to assist the proactive detection of 

WMSDs. Golabchi et al. [9] introduced a motion-driven framework to ergonomic job analysis 

using animated 3D models of workers that imitate actual operational tasks. Based on these efforts, 

Li et al. [3] applied 3D visualization to enable ergonomic risk assessment of workers’ continuous 

movements instead of conventional approaches that analyze the risks for only a few of the static 

postures selected by ergonomic analysts. These studies have adopted Autodesk 3ds Max [20] as a 

handy 3D visualization and simulation platform due to the following features: 

i. Compatibility with various CAD systems widely used in the construction industry, which 

facilitates the acquisition of required design inputs data (e.g., workplace layouts). 

ii. Effective modeling and visualization capabilities supported by a massive 3D objects 

archive in an existing library for work-related typical components (e.g., workstations, tools, 

and equipment). 

iii. Creation of animated biped characters (i.e., human hierarchical bone structures) to simulate 

workers’ body motions in the virtual work environment. 

To take these benefits fully, the reliability of using 3ds Max for human body motion data 

acquisition has been validated by Li et al. [16]. However, previous studies to design the expected 

human motions in the proposed workplaces using 3D skeleton models have two challenges: 

i. Manual and time-consuming tasks are required to adjust the biped skeletons in accordance 

with the proposed design alternatives. 

ii. The manual adjustment of the biped skeletons may lead to variances in the body joint angles 

with low accuracy depending on the users when examining several design alternatives.  
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2.3 Six Sigma tools for parameterized workplace design 

Establishing a parameterized design that successfully achieves the workplace design 

requisites should be backed by a data-driven analysis to efficiently examine correlations between 

variables in the workplace design and ergonomic risk scores using REBA and RULA. Six Sigma 

is a robust data-driven industrial engineering technique that counts on a broad set of different tools 

(e.g., Pareto chart, 5 Whys, and Design of Experiments) to identify the root causes of inefficient 

work processes and eliminate them for better task performance. These tools could be applied 

during different phases of the workplace design to not only identify the causes leading to WMSDs 

but also improve the quality of workplaces [21]. One of the key tools in six sigma used widely in 

parameterized design studies is the design of experiments (DOE) which uses statistics to achieve 

the following objectives [[22]-[24]]: 

i. Manipulating several input factors to identify their effects on outputs of a process. 

ii. Developing surrogate models which are mathematical-based predictive models to represent 

the relation between inputs and outputs of a process. 

iii. Enabling process optimization during the improvement phases of projects.  

Due to these benefits, DOE is vastly utilized to design parameterized-based worker-friendly 

workplaces in the manufacturing industry. For instance, Rio Vilas et al. [25] presented a general 

framework for the manufacturing workstation design emphasizing the role of DOE as a methodical 

technique to achieve a parameterized optimization-based design using digital human modeling. 

Also, Cimino et al. [26] adopted DOE for proposing a practical ergonomic design of the 

workstations in a real industrial plant based on multiple design parameters. To apply this design 

methodology, Modeling & Simulation in a three-dimensional virtual environment were used. 
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Another framework for ergonomically friendly workstations design that used DOE was proposed 

by Ben-Gal and Bukchin [27] to decrease the number of design alternatives, then, determine 

optimal workplace settings using response surface methodology (RSM). 

However, these DOE-based design methods may not be fitted for workplace design in the 

modular construction sector due to the following challenges: 

i. Categorical WDPs (e.g., the quality level of products) are not considered, whereas modular 

production lines have complicated and dynamic operational tasks (e.g., alternately adopting 

different work methods to handle massive workpieces) that necessitate considering 

multiform of WDPs (i.e., categorical and/or continuous types) during the design process. 

ii. The design options are evaluated in industrial‒oriented commercial software (e.g., 

Tecnomatix‒Siemens [28]), which is suitable for the level of simplicity of the analyzed 

motions in the manufacturing industry. Furthermore, these tools rarely allow users to 

simulate customized motions that are required to develop 3D visualization of dynamic task 

procedures in modular construction. 

iii. A time-consuming process is required to implement two-levels DOE considering multiple 

tasks at one single workplace with a large number of WDPs in modular construction 

manufacturing. At this junction, it should be noted that the two-levels DOE involves a 

screening design to identify the significant WDPs among a large number of WDPs and 

response surface design that only use the significant WDPs in order to achieve workplace 

design optimization with less number of simulation runs [[29], [30]]. 

In order to overcome the limitations mentioned above, designing worker-friendly 

workplaces in modular construction requires a compatible method satisfying the following features: 
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i. Customized, dynamic, and interactive 3D body motions in accordance with different design 

alternatives (e.g., heights, lengths, and widths). 

ii. An efficient method to implement DOE technique (i.e., one-level approach with less 

number of simulation runs) corresponding to the features of modular construction. 

iii. A multi-criteria design optimization strategy for not only single-task workplaces but also 

multiple-tasks workplaces in order to enable the tradeoff between design requirements of 

all operational tasks at the workplace.
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Chapter 3: Proposed Methodology 

The proposed methodology for a parameterized workplace design optimization framework 

is illustrated in Fig. 2.  

 

Fig. 2. The proposed workplace design framework 

The required input data, which includes information about both operations and work 

environment, consists of: 

i. Workplace observation data (e.g., video recordings for workers’ motions). 

ii. Workplace context details (e.g., blueprints for adjacent workplaces). 

iii. Standard operating procedures (SOPs) that describe the sequences of repetitive manual 

tasks in workplaces. 

iv. Workers anthropometric data (e.g., height and sex). 
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v. Handled tools information (e.g., weight, and function). 

vi. Workpiece technical specification (e.g., material dimensions and types). 

In order to implement the proposed framework successfully, specific design criteria should 

be considered to ensure the practicality of the proposed workplace solutions: 

i. Ergonomic design principles (e.g., working within neutral reach zones at a proper height). 

ii. User-centered design in which the workplace design process should also focus on workers 

and their needs (e.g., the usability of designed workplaces) instead of focusing only on the 

task requirements. 

iii. Modularity and simplicity of the proposed designs. 

iv. Achievement of client objectives in terms of allocated budget and future requirements of 

the modular construction plant. 

Based on the input and criteria, the proposed methodology to design virtual prototypes of 

concerned workplaces in modular construction facilities before implementing physical models in 

practice involves mainly four sequential procedures: 

i. Performing workplace design initiation to create all possible workplace alternatives using 

the definitive screening design (DSD) method, which is one of the design of experiments 

techniques, based on workplace design parameters (WDPs) and their values. 

ii. Developing an interactive worker-workplace simulation that utilizes full-body inverse 

kinematics-based 3D visualization using a biped skeleton to produce workers’ motion data 

changed based on the different design alternatives. 

iii. Developing predictive surrogate models that mimic the behavior of the simulation using 



15 

 

 

the regression analysis of the DSD in order to identify the mathematical relationships 

between significant design parameters and REBA/RULA risk scores so that the ergonomic 

risks associated with any newly proposed design options can be predicted. 

iv. Performing design optimization in order to reach optimal workplace settings that achieve 

minimal ergonomic risks. 

Finally, the outputs of this framework are: 

i. Optimal workplace design that minimizes ergonomic risks and consequently enhances 

safety and productivity in modular construction tasks. 

ii. Significant workplace design parameters and their relation to the root causes of injuries in 

the workplace, wherefrom future action plan can be initiated to ensure safe work practices 

for injured workers returning to work. 

At this junction, it should be noted that the proposed methodology uses the DSD twice to 

not only produce the design alternatives based on the number of WDPs but also determine 

significant WDPs leading to expose workers to ergonomic risks significantly. In addition, the 

proposed framework contains two repeated process flows: 

i. Design initiation, interactive simulation, and development of the surrogate models are 

repeatedly implemented in accordance with the number of tasks assigned to the workplace 

since each operational task may involve different types and number of WDPs. 

ii. The interactive simulation is repetitively implemented to not only acquire the body motion 

data but also assess the ergonomic risk scores of design alternatives.  
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3.1 Workplace Design Initiation 

WMSDs mostly occur in workplaces as a result of interactions between various factors (e.g., 

available equipment) and human behavior (e.g., postures required to complete tasks) [14]. To 

prevent WMSDs, the workplace must be designed based on considering the task information and 

anthropometric characteristics of the workers [31]. In this respect, the proposed workplace design 

initiation has the following procedures: 

i. Collection of current working scenarios, such as different working methods (e.g., side 

cutting and front cutting), and the number of operational tasks assigned to the target 

workplace. 

ii. Identification of the WDPs, including low and high values (i.e., minimum and maximum 

values), which may lead to exposing workers to ergonomic risks. 

iii. Implementation of the initial DSD to generate the potential design alternatives based on 

the result of step (ii). 

3.1.1 Working Pattern Analysis 

To identify the working scenarios and WDPs associated with their values successfully, data 

collection sheets, which can be adopted to gather useful input data in a structured format, and/or 

the fishbone diagram, which can yield a deep understanding of workplace design concerns and its 

relation with ergonomic risk factors in the place, can be used [21]. In addition, the brainstorming 

can be implemented with the concerned project team (i.e., production engineers and manager) in 

order to ensure the identification of working scenarios and WDPs from a practical perspective. In 

this respect, the WDPs encompass not only the continuous numerical factors (e.g., workpiece 

position/orientation and working surface inclination angle) but also categorical parameters, such 
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as working method and types of the modules (e.g., interior or exterior). Moreover, the required 

design space of each WDP should be defined by an acceptable range of values representing the 

minimum and maximum values, which allows workers to perform the tasks in more comfortable 

and natural postures. In practice, these values are commonly defined based on design standards 

(e.g., ISO 14738 [31]) or assumptions. As an example, illustrated in Fig. 3, a number of workplace 

design parameters with their minimum and maximum values are represented. 

 

 

Fig. 3. An example of workplace design parameters 

3.1.2 Definitive Screening Design 

Once the required information is acquired, the initial DSD is implemented by the following 

procedures: (i) calculate the number of design alternatives (NODalternatives) determined by Eq. (1) 

based on the number of WDPs (m), which involves only the continuous values; and (ii) transform 
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the numerical and categorical values of the WDPs into the coded units used mainly to develop the 

surrogate models using the DSD. It is worth to be noted that NODalternatives has one additional design 

alternative when some of the WDPs are categorical values. 

Once NODalternatives is determined, the DSD transforms the numerical values of the WDPs 

into the three levels of the coded units, which are -1 for the lowest value, 0 for the average value, 

and +1 for the maximum value. The categorical values of the WDPs are converted into two levels, 

which are -1 and +1. At this junction, it should be noted that this transformation not only efficiently 

determines the significant WDPs, which have the most substantial impact on the measure response 

(i.e., ergonomic posture risk scores), but also allows the estimate of quadratic effects in addition 

to main and interaction effects (i.e., second-order surrogate model) in a single step (i.e., one-level 

DOE) [[32]-[34]]. Fig. 4 represents the general design structure of the DSD implementation for 

(m) continuous numerical WDPs.  

 

Fig. 4. The general design structure of DSD for (m) WDPs 
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Accordingly, a certain number of feasible design alternatives is created by alternating design 

parameters along with their low-center-high values using the DSD method. These design 

alternatives are used as input in the worker-workplace interactive simulation procedure, which 

simulates workers' body motions at each design alternative and calculates REBA and RULA scores 

of the design alternatives. Several statistical packages (e.g., JMP, and Minitab) support the creation 

and analysis of the DSD method. To implement the DSD method successfully, this research work 

uses Minitab18 [35]. 

 𝑁𝑂𝐷𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 = 2(𝑚 + 1) + (−1)𝑚+1 (1) 

Where: 

• NODalternatives is the number of design alternatives. 

• m is the number of continuous numerical WDPs. 
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3.2 Interactive Worker‒Workplace Simulation 

Human body animation is a particular area of the 3D visualization process that involves 

creating 3D human skeletons (e.g., biped characters) and animates them using two different 

techniques: (i) forward kinematics (FK), which is the process of obtaining the position of biped’s 

end effector (e.g., wrist/fist) given joint angles and length of the related manipulator (e.g., shoulder 

and elbow); and (ii) inverse kinematics, which is the opposite to FK for obtaining joint angles from 

known coordinates of an end effector [36]. Traditionally, these techniques are applied using 

kinematics solvers in order to create human body motions based on hierarchical bone structures of 

the biped characters [16]. However, these solvers have the difficulty of making bone movements 

realistically since they allow for only single-joint movements instead of entire body movements 

interacting with the surrounding environment [37]. Due to this feature, manual adjustment of the 

character is usually required at each keyframe (i.e., animation time unit) of the produced 

animations, which is a time-consuming and error-prone process. 

To overcome these limitations and develop reliable character animations in games and 

animation movies, full-body inverse kinematics (Full-body IK) solvers [38], which uses a 

biomechanical model of the human body, are introduced to allow biped characters to interact 

dynamically and more realistically with the changes of the surrounding environment in 3D 

visualization. At this junction, it should be noted that 3D visualization of surrounding environment 

changes is essential to develop the full-body IK successfully. In other words, the full-body IK is 

not established without 3D visualization of the workplace changes (i.e., animation of WDPs). Once 

the animation of WDPs is built, as shown in  Fig. 5, parent-child constraints between biped’s end 

effectors and animated workplace components (e.g., workpiece, and work surface) are established 
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so that the joint angles (e.g., α, β, and θ) are changed interactively and dynamically in accordance 

with different positions of the biped’s end effectors, which are animated corresponding to the 

changes of WDPs in 3D visualization.  

 

Fig. 5. Dynamic movements with the structure of full-body IK solver 

Based on the benefits of the full-body IK solver given in Autodesk MotionBuilder [39], the 

proposed interactive worker-workplace simulation is implemented to acquire the body posture data, 

compute the body joint angles, and assess the ergonomic risks using REBA and RULA among all 

workplace design alternatives resulted in initial DSD implementation. As shown in  Fig. 6, the 

proposed interactive worker-workplace simulation has mainly six procedures: 

i. Develop a preliminary 3D workplace model and a 3D worker represented as a bipedal 

skeleton in 3ds Max based on the values of WDPs in one of the design alternatives selected 

randomly. 

ii. Build a 3D visualization of the worker’s motions at the preliminary 3D workplace model. 
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iii. Assess REBA and RULA risk scores using the body joint angles. 

iv. Animate the 3D workplace model by changing the values of WDPs in another selected 

workplace design alternative. 

v. Establish the full-body IK, which is activated by linking the biped skeleton to the animated 

workplace to simulate worker’s motions in the investigated design alternative. 

vi. Repeat steps (iii) to (v) until all the design alternatives are simulated.  

 

Fig. 6. Process flow of the interactive worker-workplace simulation 
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To produce reliable and realistic 3D body posture data, the preliminary workplace model 

should satisfy the following requirements: 

i. 3D geometric models of the workplace should be built in the real scale to reflect actual 

dimensions of the WDPs and other items, including workpieces and tools. 

ii. Basic ergonomic principles, such as the provision of sufficient clearance for legs, should 

be considered to ensure more realistic postures and avoid any undesirable contact between 

the worker’s body and workplace parts during the simulation. 

iii. The 3D workers should reflect workers' main characteristics such as height and sex, which 

can be easily adjusted using biped creation settings in 3ds Max. 

Based on these requirements, the 3D preliminary workplace model and a 3D worker are built 

in 3ds max and exported to MotionBuilder to develop the worker’s motions. In MotionBuilder, the 

first step is defining the bone structure of the biped character to imitate the hierarchical movements 

of human body structures. Following that, based on the video recordings of the workplace and the 

process suggested by Li et al. [16], 3D visualization of the worker’s motions during the operational 

task is developed based on the following information: 

i. The prime body postures adopted by the worker with the standard operating procedures 

(SOPs). 

ii. Corresponding keyframes of each prime body posture based on a time study of the motions 

and the speed of movement. To calculate the keyframes, this research study uses 30 frames 

per second, which is a common scale to convert the real-time to animation time (frame) in 

games and animation movies. 
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As illustrated in Fig. 7, the preliminary workplace model and the worker’s motions are built 

on the same animation time frame. To establish full-body IK solver into the 3D worker, WDPs in 

the preliminary workplace model are visualized by changing the values of the WDPs in another 

workplace design alternative selected by the user. The animation time frames for the 3D 

visualization of the WDPs are defined by the user before animating the worker’s motions. However, 

some of WDPs can be associated with force utilization, which is a critical factor to increase the 

REBA and RULA risk scores. These WDPs should be animated corresponding to the worker’s 

motions so that the worker’s motions using full-body IK solver are dynamically animated. At this 

junction, it should be noted that the duration of force exposure, which is the duration of animating 

the force-related WDPs, should be calculated based on the consideration of the animation time 

scale since this study assesses the ergonomic risks based on the continuous motions of the workers 

in 3D visualization instead of a few static body postures.  

For example, workpiece positions should be changed using force in accordance with the 

values (e.g., from 0 cm to 100 cm) in design alternatives. To represent the change of the workpiece 

positions in 3D visualization, the animation time frames should be calculated by Eq. (2). That is, 

the workpiece position from 0 cm to 50 cm is animated from 70 to 100 frames, which is 1second 

estimated from the time study in the videos. To examine another design alternative that moves the 

workpiece from 0 cm to 100 cm, the total number of required animation time frames is 60 frames, 

which are duration to visualize not only the workpiece positions but also relevant worker’s motions. 

Once each design alternative is visualized, the system [[3], [16]] used in this research study 

computes 41 body joint angles and assesses REBA and RULA risk scores, which are used as 

response values to develop surrogate models in the DSD analysis. 
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Fig. 7. A concept for the development of the animation keyframes 

 

 Falter =
Fpre × PValter

PVpre
 (2) 

Where: 

• Falter is the number of required keyframes. 

• Fpre is the number of keyframes for the WDP in the previous alternative. 

• PVpre is the parameter value in the previous alternative. 

• PValter is the parameter value in the examined design alternative.  
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3.3 Development of predictive surrogate models 

3.3.1 Statistical Regression Analysis 

To develop the predictive surrogate models, statistical regression analysis of the definitive 

screening design (DSD) method is conducted to: 

i. Identify significant WDPs, which mostly contribute to increasing overall REBA or RULA 

risk scores using analysis of variance (ANOVA). 

ii. Quantify interactive relations between overall REBA or RULA scores and the significant 

WDPs by fitting a full quadratic model using the stepwise regression method. 

The DSD uses the stepwise regression technique [32] to not only identify the significant 

WDPs but also develop the mathematical predictive models, also called as the surrogate models in 

this thesis. The significant WDPs, which are used as parameters in the models, are determined in 

this study when the p-value computed by analysis of variance (ANOVA) is less than 0.05. At this 

junction, it should be noted that the DSD considers not only one single WDP itself but also the 

combination of the WDPs (i.e., interaction effects) as one parameter in the surrogate models. 

Following the normal theory linear model, the proposed surrogate model generated by the DSD is 

shown in Eq. (3).  

 ER=β0+ β1P1+ β2P2+⋯+ βiPi+∑ βikPiPk+∑ βiiP
2

i (3) 

Where: 

• ER denotes the ergonomic risk score (i.e., REBA, or RULA overall score). 

• β0 is a constant. 
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• βi is the corresponding regression coefficients that describe main effects of each 

significant design parameter. 

• βik is the coefficients for active interaction effects between different WDPs. 

•  βii is the coefficients for any estimated quadratic effects. 

• Pi is a design parameter notation. 

• PiPk and P2
i are the interaction and quadratic terms, respectively.   

Since the surrogate model is developed based on the three levels of the coded units (-1, 0, 

and +1), the actual values of the WDPs between the minimum and maximum values of the WDPs 

should be transformed to the coded values between -1 and +1 to predict the risk scores efficiently 

and effectively using the surrogate model. In this respect, the coded values of the numerical WDPs 

(pі) are computed by Eq. (4). However, the coded values of the categorical values of the WDPs are 

determined by users as -1 or +1. Fig. 8 illustrates an example to calculate the coded value of a table 

height based on Eq. (4). 

 𝑝𝑖 =
(𝑃𝑖 − 𝑃𝑖,0)

𝛥𝑃𝑖
 (4) 

Where: 

• Pі is the actual value of the іth design parameter to predict the ergonomic risk score. 

• Pі,0 is the average value of the іth design parameter. 

• ΔPі is the step change value for that parameter.  
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Fig. 8. An example of calculating coded values of WDPs 

3.3.2 Accuracy Metrics 

To use the developed surrogate models as objective functions in the optimization model, the 

proposed models are evaluated to determine how well they fit the response values (i.e., REBA or 

RULA scores corresponding to each examined design alternative). The goodness of models’ fit 

and the prediction ability is determined using the following accuracy metrics:  

i. Root mean square error (RMSE) [33], which represents how far the actual response values 

fall from the predicted values. 

ii. R-squared (R2) [30], which indicates how close the predicted response values to the fitted 

regression curve or line. 

iii. Adjusted R-squared (R2
adj) [30], which compares different models involving a various 

number of WDPs. 
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iv. Predicted R-squared (R2
pred) [33], which is a cross-validation method used to determine 

how well the surrogate model predicts risk scores for new design alternatives. The R2
pred is 

mainly used to determine whether or not the surrogate model is overfitted. The detailed 

information and calculation are described by Frost [40]. 

In addition to these metrics, the ability of the model to predict risk scores for new design 

alternatives, which are not included in developing the proposed surrogate models, is verified by 

the percentage of the prediction error satisfying Eq. (5). Furthermore, a residual analysis is 

conducted to determine whether the model meets the assumptions of the analysis (e.g., residuals 

are normally distributed). 

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =

|𝐸𝑅 − 𝐸�̂�|

𝐸𝑅
% (5) 

Where: 

• ER is the actual response value (i.e., risk score value) in the 3D simulation. 

• 𝑬�̂� is the response value predicted from the surrogate model.  
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3.4 Workplace optimization 

In modular construction, a multi-criteria workplace optimization strategy is required to 

consider not only single-task workplaces but also multiple-tasks workplaces based on various 

values of the WDPs. In this respect, the proposed framework integrates three versions of a genetic 

algorithm (GA): 

i. A basic GA for single-objective optimization (i.e., one task workplace) [41]. 

ii. Non-dominated sorting GA, also called as NSGA-II [42], which is a modified version of 

GA for multi-objective optimization (i.e., two tasks workplace). 

iii. Many-objective NSGA-II called as NSGA-III [[43]-[45]] to optimize workplace design for 

three or more tasks. 

The optimization objective of this study is to minimize REBA or RULA risk scores of any 

operational task, and the decision variables are the significant WDPs. Since the WDPs involve 

categorical and continuous values, a mixed-variable optimization problem is formulated in which 

categorical WDPs take a discrete value +1 or -1, and continuous WDPs take any value from +1 to 

-1. Accordingly, the developed surrogate models are used as fitness functions in the GA in order 

to explore: 

i. Single optimal solution in the case of a single-task workplace. 

ii. Set of Pareto optimal solutions for multi/many-tasks workplaces. As a result of the Pareto 

optimal solutions, the pseudo-weight vector method [46] is used to establish a tradeoff-

based workplace design. 

GA is an evolutionary algorithm that is commonly used in several domains, including 
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construction, to reach optimal solutions for design engineering problems. GA adopts the concept 

of natural selection, using bio-inspired operators such as selection, crossover, and mutation. These 

operators help to generate a collection of solution candidates (individuals), which shape one single 

population that evolves towards the improved solution based on a fitness function evaluation. The 

primary role of the fitness function is to assign scores for individuals in order to select fittest ones 

for participation in the reproduction process (i.e., forming the next generation). However, the 

selection criterion of GA has some limitations when multi/many-objectives are optimized 

simultaneously. GA does not support the non-domination rank of individuals, which is a critical 

selection process to help in finding near the actual Pareto-optimal front with a good spread of 

solutions. 

To overcome this limitation, NSGA-II and NSGA-III, which follow the general outlines of 

GA, use a modified selection process that enhances the computational performance and provides 

the following features: (i) individuals are selected frontwise using non-dominated sorting; and (ii) 

elitism selection method is adopted in which an already found Pareto-optimal solutions are 

included in the next generation in order to protect them from being deleted. Although NSGA-II is 

commonly used for many-objective optimization, NSGA-III is recommended to manipulate 

multiple dimensions in the objective space since it provides a balanced Pareto-optimal front with 

respect to each objective using a set of reference directions.  

The primary process flow of workplace optimization is represented in Fig. 9. An initial 

population (Pt) that includes a number of design alternatives is randomly generated by assigning 

different values for each of the WDPs based on their types and permissible design space. The 

REBA or RULA score of each design alternative (individual) in this population is calculated by 
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the fitness function corresponding to each task in the workplace. Then, the next offspring 

population (Qt) is produced by three sequential steps, which are selection, crossover, and mutation.  

In the selection, design alternatives that have the lowest risk scores are selected based on the 

tournament selection method, which helps to achieve faster convergence. These design alternatives 

are used to carry out the crossover by combining design alternatives into one or several new 

alternatives. The simulated binary crossover (SBX) [47], which is a single point crossover operator 

using binary notations for real values, is utilized. The crossover provides different design 

alternatives that inherit some characteristics from the selected individuals. However, GA can have 

difficulty to identify the optimal workplace design solution(s) since the design alternatives may 

tend to stagnate around local minima. To overcome this challenge, the mutation process is 

performed to ensure the diversity of the design solutions within the population. The mutation 

occurs by looping through all WDPs of the alternatives to select some of WDPs randomly to 

replace them with a new value. 

Depending on the number of operational tasks in the workplace, a single or multi-objective 

optimization process is determined. When the number of tasks is one, the generated population 

(Qt) becomes the population of the next generation (Gen+1), and the reproduction process is 

repeated for a certain number of iterations in order to achieve an optimal solution for the single-

task workplace. Otherwise, multi/many-tasks optimization is commenced in order to reach a set of 

Pareto optimal solutions. First, parents (Pt) and the offspring population (Qt) are combined to form 

an intermediate population (Rt), which is then ranked to identify the non-dominated sorting fronts. 

As a result of this selection method, there will be a situation where a front needs to be split 

because not all solutions will be selected. In the case of optimizing a two-tasks workplace, 
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solutions are selected based on crowding distance [42]; otherwise, the reference direction selection 

method [45] is used. Accordingly, the parent population (Pt+1) is formulated, and the process 

continues until it reaches the number of generations (G) defined by the user in order to identify 

optimal Pareto solutions. 

Lastly, based on the risk score corresponding to each task, a tradeoff process is implemented 

in order to select a single preferred design solution from the obtained set of Pareto solutions. The 

pseudo-weight vector method is applied in order to calculate weights for each solution, which are 

the relative distance of the risk score from its maximum value in each fitness function. These 

weights are compared with the user-preferred weights, which considers more weight on higher risk 

tasks in order to prioritize its design requirements for final design selection. The solution which 

has a pseudo-weight closer to the user-preferred weight is selected [46]. The Python code of the 

workplace design optimization following the framework developed at Michigan State University 

[48]. 



34 

 

 

 

Fig. 9. process flow of workplace optimization 
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Chapter 4: Case Study 

The proposed framework is implemented to a production line that produces commercial and 

residential building components such as walls and floors with light gauge steels (LGS) in 

Edmonton, Canada. As illustrated in Fig. 10, the factory has mainly three workstations, which are 

assembly station to prepare the LGS, framing station to produce wall and floor frames, and 

sheathing station to attach the drywall sheets into the frames. According to the lean principle, the 

sheathing station is a bottleneck on the production line since it has a time-consuming and labor-

intensive sub-station, called as a drywall preparation station, including the following tasks: 

i. The marking task (MT) to mark drywall sheets according to dimensions in shop drawings. 

ii. The cutting task (CT) to cut drywall sheets to the required sizes and layouts. 

iii. The sanding task (ST) to smooth edges of cut pieces.  

Furthermore, as shown in  Fig. 11. , there is no specific workplace assigned to accomplish 

these tasks even though these tasks are repeatedly required to supply pre-cut pieces to the sheathing 

station. Instead, a drywall material bundle on a base trolley is used as a workplace. Due to this 

work environment, workers suffer frequent exposure to ergonomic risks, which may lead to 

increase the risk of work-related musculoskeletal disorders (WMSDs) that not only reduces the 

productivity of the production line but also increases social expenses for workers’ recovery. To 

overcome these problems, this research study focuses on designing the optimal workplace for the 

drywall preparation station. 
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Fig. 10. Factory layout and target workplace 

 

Fig. 11. Existing drywall preparation station 



37 

 

 

To start, data collection sheets are utilized for the working pattern analysis in order to gather 

information about the operational tasks. An example of a CT data collection sheet is represented 

in  Fig. 12. Based on the observation of several videos of the targeted workplace and site visit, the 

following working scenarios are accordingly identified: 

i. Various body characteristics of workers are identified in the same workplace during 

different shifts. 

ii. Workers tend to adopt bending and kneeling postures frequently to fit the changeable work 

surface height. 

iii. The workpiece (WP) positions are randomly changed depending on workers. 

iv. The worker stands without keeping a convenient distance from the workplace, which 

creates pressure points on the body. 

v. Two work methods (front and side) with different body postures in MT and CT are 

alternately used. 

vi. Workers in CT use two different cutting tools (utility knife itself or utility knife with a 

measuring tape). 

vii. The side work methods in MT and CT lead to various bending postures since the worker 

needs to adjust his body to reach the cutting positions. 

viii. The worker in ST pulls the WP outside the workplace to strip the cut part and sand the edge 

of the final cut piece by one‒ or two‒hands. 

Based on these scenarios, the WDPs of each task, which may lead to exposing workers to 

ergonomic risk factors, are identified to examine their effects on REBA and RULA scores. The 
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values of the WDPs, including work surface height, WP position, and worker standing distance, 

are determined based on the ergonomic design standards and codes given in OSH Answers Fact 

Sheets by CCOHS [49] and ISO 14738 [31]. According to the human height data [50], average 

heights for Southeast Asian (1640 mm) and North American (1770 mm) are considered as min-

max values for worker’s height based on considering nationality of actual workers in the industrial 

partner plant. The WDPs related to the operating conditions are determined based on the results of 

the site visit and video observations. For example, in the depth of the removed piece, the minimum 

value is determined based on the shop drawings, and the maximum value is the half size of the 

drywall sheet. The dimension of the drywall is determined by 2438.4 mm x 1219.2 mm, which are 

mainly used by the collaborative partner. As a result, this information is represented in Fig. 13. 

 

Fig. 12. An example of a CT data collection sheet 
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Fig. 13. The WDPs and their values for the three tasks 
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According to the procedure of the proposed methodology, the values of the WDPs are 

transformed into three levels (-1, 0, and +1) for continuous numerical values and two levels (-1 

and +1) for categorical values in order to generate the potential design alternatives by initial DSD. 

As a result, fourteen design alternatives for MT and ST, and eighteen alternatives for CT are 

generated since six, and seven WDPs are identified, respectively. 

Moreover, a time study of the workers’ motions in accordance with the standard operating 

procedures (SOPs) is conducted to identify: (i) the prime body postures adopted by the worker for 

the different tasks; (ii) corresponding keyframes of each prime body posture. As an example, part 

of the time study results is represented in Fig. 14, Fig. 15, and Fig. 16. Considering different work 

methods of each task, these results are later used as an input to the proposed interactive worker-

workplace simulation in order to develop 3D visualization of worker’s motions at the preliminary 

workplace models. Different work methods of the tasks and corresponding 3D visualizations are 

illustrated in Fig. 17, Fig. 18, and Fig. 19. 

 

Fig. 14. Time study of the marking task 
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Fig. 15. Time study of the cutting task 

 

Fig. 16. Time study of the sanding task 
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Task Task Posture 3D Visualization 

MT 

  

Front marking 

  

Side marking 

Fig. 17. Work methods and 3D Visualization of the marking task 

Task Task Posture 3D Visualization 

CT 

  

Front cutting 

  

Side cutting 

Fig. 18. Work methods and 3D Visualization of the cutting task 
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Task Task Posture 3D Visualization 

CT 

  

One-hand sanding 

  

Two-hands sanding 

Fig. 19. Work methods and 3D Visualization of the sanding task 

Based on the values of the WDPs at each of the design alternatives, the proposed interactive 

worker-workplace simulation models are developed to not only compute workers' body joint 

angles but also assess REBA and RULA risk scores. At this junction, it should be noted that REBA 

and RULA require mainly three types of information, which are the body joint angles acquired 

from the interactive worker-workplace simulation models, force scores estimated based on the 

weight of the WP (31.9 Kg), and the number of task repetitions determined from the video and site 

observation. For example, to develop the interactive worker-workplace simulation for MT, as 

shown in Fig. 20, design alternative 13 is selected to build a preliminary workplace model in a 3D 

environment. Then, the 3D visualization of the worker’s motions at the 3D preliminary workplace 

model is developed. Using the system [3], the RULA and REBA scores are computed based on 

the body joint angles. 
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To simulate worker’s motions at alternative 6, as shown in Fig. 20, the values of WDPs in 

the preliminary model are animated by changing the values of WDPs according to the values in 

alternative 6. All the changes in WDPs’ values are animated within 100 frames defined by the 

researcher except for the WP position required the force. In addition, 3D visualization of the WP 

position is built from 100 frames to 190 frames since the WP position is moved from 0 mm to 325 

mm. It should be noted that the initial 3D visualization of the WP position to move the WP from 

0 mm to 162.5 mm is built from 0 to 45 frames (1.5 seconds) estimated based on the time study. 

To produce the worker’s motions corresponding to the 3D visualization of the WDPs, full-body 

IK is activated by linking the biped skeleton to the animated workplace models. The 3D 

visualization of the worker’s motions is used to compute the REBA and RULA scores for 

alternative 6, which are 8.59 and 6.77, respectively. These processes are repeated to compute the 

REBA and RULA scores of all design alternatives illustrated in Table 1, Table 2, and Table 3 for 

MT, CT, and ST, respectively.  

 

Fig. 20. Interactive simulation model for alternative 6 - MT 



45 

 

 

Table 1. Overall REBA/RULA scores of all alternatives for the marking task 

Design 

alternatives 

    

A B C D E F Overall REBA 

Score 

Overall RULA 

Score 

1 -1 +1 +1 +1 +1 +1 6.22 6.03 

5.40 

6.15 

6.28 

5.97 

6.77 

5.80 

4.17 

5.86 

5.78 

6.42 

4.12 

5.71 

6.09 

2 +1 -1 -1 -1 -1 -1 7.18 

3 +1 0 +1 -1 -1 +1 7.95 

4 -1 0 -1 +1 +1 -1 5.84 

5 +1 +1 0 +1 -1 -1 6.24 

6 -1 -1 0 -1 +1 +1 8.59 

7 +1 -1 +1 0 +1 -1 7.42 

8 -1 +1 -1 0 -1 +1 4.26 

9 +1 -1 -1 +1 0 +1 6.53 

10 -1 +1 +1 -1 0 -1 7.10 

11 +1 +1 -1 -1 +1 0 8.87 

12 -1 -1 +1 +1 -1 0 4.65 

13 -1 0 0 0 0 0 5.09 

14 +1 0 0 0 0 0 7.11 
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Table 2. Overall REBA/RULA scores of all alternatives for the cutting task 

Design 

alternatives 

     

A B C D E F G Overall REBA 

Score 

Overall RULA 

Score 

1 -1 +1 +1 +1 +1 +1 +1 7.66 5.93 

5.57 

6.43 

4.65 

6.83 

4.13 

6.19 

5.62 

6.02 

6.28 

5.89 

5.33 

6.03 

6.35 

2 +1 -1 -1 -1 -1 -1 -1 8.24 

3 +1 0 +1 -1 +1 -1 -1 10.50 

4 -1 0 -1 +1 -1 +1 +1 6.15 

5 +1 -1 0 -1 +1 +1 +1 10.94 

6 -1 +1 0 +1 -1 -1 -1 5.70 

7 +1 +1 +1 0 -1 +1 -1 9.40 

8 -1 -1 -1 0 +1 -1 +1 6.97 

9 +1 -1 -1 +1 0 +1 -1 7.33 

10 -1 +1 +1 -1 0 -1 +1 8.92 

11 +1 +1 -1 -1 -1 0 +1 8.46 

12 -1 -1 +1 +1 +1 0 -1 6.13 

13 +1 +1 -1 +1 +1 -1 -1 7.29 

14 -1 -1 +1 -1 -1 +1 +1 10.19 

15 +1 -1 +1 +1 -1 -1 +1 7.14 5.19 

16 -1 +1 -1 -1 +1 +1 -1 10.35 6.34 

17 -1 0 0 0 0 0 -1 7.04 5.24 

18 +1 0 0 0 0 0 +1 8.66 6.28 
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Table 3. Overall REBA/RULA scores of all alternatives for the sanding task 

Design 

alternatives 

    

A B C D H F Overall REBA 

Score 

Overall RULA 

Score 

1 -1 +1 +1 +1 +1 +1 8.06 6.74 

6.28 

6.74 

6.23 

6.51 

6.26 

6.69 

6.60 

6.13 

6.67 

6.59 

6.72 

6.38 

6.52 

2 +1 -1 -1 -1 -1 -1 8.67 

3 +1 0 +1 -1 -1 +1 10.12 

4 -1 0 -1 +1 +1 -1 7.98 

5 +1 +1 0 +1 -1 -1 7.86 

6 -1 -1 0 -1 +1 +1 9.06 

7 +1 -1 +1 0 +1 -1 8.64 

8 -1 +1 -1 0 -1 +1 8.78 

9 +1 -1 -1 +1 0 +1 8.05 

10 -1 +1 +1 -1 0 -1 9.62 

11 +1 +1 -1 -1 +1 0 9.14 

12 -1 -1 +1 +1 -1 0 8.57 

13 -1 0 0 0 0 0 8.38 

14 +1 0 0 0 0 0 8.44 

Once REBA and RULA scores of all design alternatives are computed, the statistical analysis 

of the DSD is implemented to identify significant WDPs, which influence REBA and RULA 

scores significantly, and use them to develop the surrogate models using the forward selection 

stepwise regression method [[30], [32]] for each operational task. For example, as represented in 
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Fig. 21 and Fig. 22, in the case of using REBA for MT, four main effects of WDPs are statistically 

significant, which are work surface height (D), WP position (E), work method (A), and depth of 

removed piece (C) since the p-values are less than 0.05. The D2 and C2 are also significant, which 

indicates that the relationship between these design parameters and REBA scores is not linear. In 

RULA, the most substantial effect is E, whereas worker height (B) has the smallest significant 

effect. Although worker standing distance (F) is not a significant parameter in the statistical 

analysis, it has an interaction effect with B, which means that the effect of F on the RULA score 

is determined by B. The results of the statistical analysis of MT is represented in Table 4 and Table 

5. Also, the significant WDPs of the three tasks are summarized in Table 6.  

Although the p-values of the WDPs in the models are less than 0.05 and R2 in the models 

are greater than 91.00%, the proposed models may be overfitted and/or overspecified in terms of 

the number of WDPs. To address these problems, as represented in Table 7.  this research has 

evaluated the models by R2(adj) and R2(pred), which range from 87.00% to 97.71% and 80.39% 

and 93.53%, respectively. The predicted R2 values are in reasonable agreement with the adjusted 

R2 values, which indicates that the proposed surrogate models can predict REBA and RULA scores 

well for new design alternatives. However, comparing to other models, the RULA surrogate model 

for the ST has the lowest values in the three types of R2 since it involves only WDPs associated 

with force. In other words, these force-related WDPs suppress the effects of other WDPs on RULA 

scores, leading to reduce the accuracy of the prediction, since maximum force scores are 

considered during the ST resulting almost maximum RULA risk scores for all design alternatives. 

To further verify the prediction ability of the developed surrogate models, several design 

alternatives are simulated. As represented in Table 8, the prediction error between REBA / RULA 



49 

 

 

risk scores in the simulation and the corresponding anticipated values from the models is less than 

10%, which is acceptable in order to use these models as fitness functions in the GA. Moreover, 

the visual interpretation of the residual analysis shows no serious outliers or major errors in the 

probability normal distribution trend. Fig. 23 shows an example of the residual analysis of ST. 

 

Fig. 21. Significant WDPs using REBA in MT 

 

Fig. 22. Significant WDPs using RULA in MT 
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Table 4. Statistical analysis of MT - REBA surrogate models 

Analysis of Variance       

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 24.3028 4.05046 60.04 0.000 

  Linear 4 21.1550 5.28876 78.39 0.000 

    Work method 1 6.2811 6.28110 93.10 0.000 

    Depth of removed piece 1 0.4060 0.40595 6.02 0.044 

    Work surface height 1 7.4930 7.49296 111.06 0.000 

    WP position 1 6.3131 6.31313 93.57 0.000 

  Square 2 3.1477 1.57387 23.33 0.001 

    Depth of removed piece*Depth of removed piece 1 0.6037 0.60369 8.95 0.020 

    Work surface height*Work surface height 1 3.0787 3.07874 45.63 0.000 

Error 7 0.4723 0.06747       

Total 13 24.7750          

Coded Coefficients      

Term Coef SE Coef T-Value P-Value VIF 

Constant 6.218 0.153 40.69 0.000    

Work method 0.7005 0.0726 9.65 0.000 1.09 

Depth of removed piece 0.2046 0.0834 2.45 0.044 1.03 

Work surface height -0.8790 0.0834 -10.54 0.000 1.03 

WP position 0.8069 0.0834 9.67 0.000 1.03 

Depth of removed piece*Depth of removed piece -0.482 0.161 -2.99 0.020 1.10 

Work surface height*Work surface height 1.088 0.161 6.76 0.000 1.10 
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Table 5. Statistical analysis of MT - RULA surrogate models 

Analysis of Variance      

Source DF Adj SS Adj MS F-Value P-Value 

Model 8 7.37306 0.92163 66.62 0.000 

  Linear 5 4.53852 0.90770 65.61 0.000 

    Work method 1 0.98970 0.98970 71.54 0.000 

    Worker height 1 0.09347 0.09347 6.76 0.048 

    Work surface height 1 0.27837 0.27837 20.12 0.006 

    WP position 1 3.55253 3.55253 256.78 0.000 

    Worker standing distance 1 0.01012 0.01012 0.73 0.431 

  Square 1 0.14401 0.14401 10.41 0.023 

    Worker height*Worker height 1 0.14401 0.14401 10.41 0.023 

  2-Way Interactions 2 2.32258 1.16129 83.94 0.000 

    Work method*WP position 1 1.22167 1.22167 88.30 0.000 

    Worker height*Worker standing distance 1 0.57632 0.57632 41.66 0.001 

Error 5 0.06917 0.01383       

Total 13 7.44224          

Coded Coefficients      

Term Coef SE Coef T-Value P-Value VIF 

Constant 5.8711 0.0622 94.43 0.000    

Work method 0.2825 0.0334 8.46 0.000 1.13 

Worker height 0.0982 0.0378 2.60 0.048 1.03 

Work surface height -0.1695 0.0378 -4.49 0.006 1.03 

WP position 0.6056 0.0378 16.02 0.000 1.03 

Worker standing distance 0.0323 0.0378 0.86 0.431 1.03 

Worker height*Worker height -0.2337 0.0725 -3.23 0.023 1.08 

Work method*WP position -0.3791 0.0403 -9.40 0.000 1.14 

Worker height*Worker standing distance -0.2762 0.0428 -6.45 0.001 1.06 
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Table 6. The significant WDPs of MT, CT, and ST 

Task 

REBA RULA 

Significant WDPs Most 

effect 

Smallest 

effect 

Significant WDPs Most 

effect 

Smallest 

effect 

MT D, E, A, D2, C2, C D C E, AE, A, BF, D, 

B2, B 

E B 

CT D, F, A, C, E, F2, CE D CE D, E, A, F, AD, C, 

G, DE, AG 

D AG 

ST D, HF, C, D2, F, H D H C, B, BC, C2 C C2 

Table 7. The developed surrogate models of MT, CT, and ST 

 Tas

k 

Surrogate model RMSE R2 R2(adj) R2(pred) 

R

E

B

A 

MT 

REBAMarking = 6.218 + 0.7005A + 0.2046C −

0.8790D + 0.8069E − 0.482C2 + 1.088D2  

0.267 98.09% 96.46% 90.65% 

CT 

REBACutting = 7.698 + 0.4988A + .4385C −

1.3725D + .3976E + .5886F + 0.608F2 −

0.249CE  

0.351 97.21% 95.26% 90.92% 

ST 

REBASanding = 8.3966 + 0.2397C − 0.6078D −

0.1124H + 0.1296F + 0.3844D2 − 0.3306HF  

0.097 98.77% 97.71% 93.53% 

R

U

L

A 

MT 

RULAMarking =

5.8711 +  0.2825 A +  0.0982 B −

 0.1695 D +  0.6056 E +  0.0323 F −  0.2337 B2 −

0.3791 AE −  0.2762 BF  

0.117 99.07% 97.58% 91.17% 

CT 

RULACutting = 5.8081 + 0.3039A + 0.1440C −

0.4029D + 0.3775E + 0.2509F + 0.0837G +

0.2080AD − 0.0794AG + 0.1018DE  

0.113 98.70% 97.24% 92.97% 

ST 

RULASanding = 6.4156 + 0.1022B + 0.1744C +

0.1231C2 − 0.0973BC  

0.076 91.00% 87.00% 80.39% 
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Table 8. Verification results of the surrogate models for MT, CT, and ST 

 WDPs 

[Amarking, Acutting, 

Asanding, B, C, D, E, 

F, G, H] 

REBA RULA 

 
Simulation 

(ER) 

Model 

Prediction 

(𝐸�̂�) 

Prediction 

Error 

% 

Simulation 

(ER) 

Model 

Prediction 

(𝐸�̂�) 

Prediction 

Error 

% 

MT 

[Frontmarking, N/A, 

N/A, 1640, 152.4, 

1260, 162.5, 50.0, 

N/A, N/A] 

4.90 5.04 2.86% 4.65 4.93 6.02% 

[Frontmarking, N/A, 

N/A, 1640, 152.4, 

900, 325, 50.0, 

N/A, N/A] 

7.03 7.60 8.11% 6.01 6.25 3.99% 

[Frontmarking, N/A, 

N/A, 1770, 152.4, 

1260, 0.0, 200.0, 

N/A, N/A] 

4.57 4.23 7.44% 3.89 4.06 4.37% 

CT 

[N/A, Frontcutting, 

N/A, 1770, 152.4, 

1130.81, 0.0, 0.0, 

utility knife, N/A] 

5.96 5.75 3.52% 4.14 4.37 5.56% 

[N/A, Sidecutting, 

N/A, 1640, 152.4, 

1130.81, 0.0, 0.0, 

utility knife, N/A] 

7.13 6.74 5.47% 4.80 5.25 9.38% 

[N/A, Sidecutting, 

N/A, 1640, 152.4, 

1130.81, 0.0, 0.0, 

utility knife & 

Tape, N/A] 

7.48 6.74 9.89% 5.81 5.26 9.47% 

ST 

[N/A, N/A, One-

handsanding, 1640, 

152.4, 1130.81, 

N/A, 0.0, N/A, 

50.0] 

7.89 7.67 2.79% 6.44 6.16 4.35% 

[N/A, N/A, One-

handsanding, 1705, 

152.4, 1130.81, 

N/A, 0.0, N/A, 

50.0] 

8.10 7.67 5.31% 6.41 6.36 0.78% 

[N/A, N/A, Two-

handssanding, 1640, 

152.4, 1130.81, 

N/A, 0.0, N/A, 

50.0] 

8.31 7.67 7.70% 6.15 6.16 0.16% 
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Fig. 23. An example of the of the residual analysis - ST 
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Although this thesis focuses mainly on designing the optimal workplace to prevent occurring 

ergonomic risks for the drywall preparation, lean principles (e.g., balance of the production line) 

also recommend that some of the tasks may be moved to other workstations for better productivity 

and safety. In this respect, the design optimization is carried out to define optimal values of WDPs 

based on the combination of the tasks: 

i. MT, CT, and ST for the separated single-task workplace. 

ii. Two-tasks workplace for MT and CT. Pareto front solutions are shown in Fig. 24. 

iii. Two-tasks workplace for CT and ST. Pareto front solutions are shown in Fig. 25. 

iv. Three-tasks at one single workplace. Pareto front solutions are shown in Fig. 26 

In addition, the user-preferred weights are assigned to the tasks based on consulting with the 

factory manager and workers. In this case, the ST has the highest weights since it is the most time-

consuming and difficult task among the three tasks. Table 9 represents the results of the design 

optimization based on the REBA risk scores, which are the main focus in this case study since it 

requires the entire body postures to complete the assigned tasks successfully instead of the upper 

body postures, which require RULA for ergonomic assessment. 

As one of the examples, the WDPs for the three-tasks workplace are optimized by NSGAIII 

which runs for 200 times based on a few parameters which are population size (92), number of 

generations (1,200), number of reference direction partitions (12), crossover (probability=0.1, 

eta=20.0), and mutation rate (probability=1, eta=3.0). The values of these parameters are 

determined by a large number of experiments. REBA scores of the Pareto optimal solutions range 

from 3.98 to 4.17 for MT, 4.67 to 4.96 for CT, and 7.57 to 7.75 for ST.  
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Table 9. Optimal solutions and tradeoff weights of three tasks for workplace settings 

  [WMT, WCT, WST] 
Optimal WDPs 

[Amarking, Acutting, C, D, 

E, F, H] 

REBA scores 

Scenarios 
Solut

ion 

User- 

preferred  

weight 

Pseudo 

 weight 
MT CT ST 

MT 1 N/A N/A 
[Frontmarking, N/A, 152.4, 1150.9, 0.

0, N/A, N/A] 
3.84 N/A N/A 

CT 2 N/A N/A 
[N/A, Frontcutting, 152.4, 1260, 

0.0, 52.523, N/A] 
N/A 4.59 N/A 

ST 3 N/A N/A 
[N/A, N/A, 152.4, 1223.64, 

N/A, 0.0, 50.0] 
N/A N/A 7.56 

 

MT−CT 

4 [0.5, 0.5] 
[0.492, 0.50

7] 

[Frontmarking, Frontcutting, 152.4, 121

9.94, 0.0, 51.581, N/A] 
3.99 4.90 N/A 

5 [0.2, 0.8] 
[0.198, 0.80

1] 

[Frontmarking, Frontcutting, 152.4, 124

7.52, 0.0, 51.595, N/A] 
4.14 4.69 N/A 

6 [0.3, 0.7] 
[0.309, 0.69

0] 

[Frontmarking, Frontcutting, 152.4, 123

8.60, 0.0, 51.595, N/A] 
4.09 4.76 N/A 

 

7 [0.1, 0.9] 
[0.106, 0.89

3] 

[Frontmarking, Frontcutting, 152.4,

 1253.81, 0.0, 51.595, N/A] 
4.19 4.64 N/A 

CT−ST 8 [0.5, 0.5] 
[0.501, 0.49

8] 

[N/A, Frontcutting, 152.4, 

1259.977, 0.0, 9.711, 50.0] 
N/A 4.70 7.63 

 

9 [0.2, 0.8] 
[0.206, 0.79

3] 

[N/A, Frontcutting, 152.4, 

1237.467, 0.0, 0.0, 50.0] 
N/A 4.93 7.57 

10 [0.3, 0.7] 
[0.311, 0.68

8] 

[N/A, Frontcutting, 152.4, 

1248.025, 0.0, 0.0, 50.0] 
N/A 4.85 7.58 

11 [0.1, 0.9] 
[0.098, 0.90

1] 

[N/A, Frontcutting, 152.4, 

1228.738, 0.0, 0.0, 50.0] 
N/A 4.99 7.56 

MT−CT− 

ST 

12 
[0.35, 0.35, 

0.3] 

[0.337, 0.32

9, 0.332] 

[Frontmarking, Frontcutting, 152.4, 

1217.795, 0.0, 23.633, 50.0] 
3.98 4.96 7.67 

13 
[0.1, 0.6, 0.

3] 

[0.102, 0.65

6, 0.241] 

[Frontmarking, Frontcutting, 152.4, 

1251.869, 0.0, 38.992, 50.0] 
4.17 4.67 7.75 

14 
[0.1, 0.1, 0.

8] 

[0.116, 0.37

8, 0.504] 

[Frontmarking, Frontcutting, 152.4,  

1247.161, 0.0, 0.0, 50.0] 
4.14 4.85 7.57 
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Fig. 24. Pareto optimal solutions for MT and CT 

 

Fig. 25. Pareto optimal solutions for CT and ST 
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Fig. 26. Pareto optimal solutions for MT, CT, and ST 

Since the collaborative partner prefers three-tasks workplace due to the congested production 

line, the solution 14 is selected as a workplace setting for the drywall preparation. In this respect, 

the proposed workplace should be designed by the following information: 

i. Workers need to complete marking and cutting tasks at the front. 

ii. The depth of the removed piece is 152.4 mm, which is the maximum recommended value 

for all tasks. That is, the higher depth values are the main cause to position the workers on 

the side bending, increasing the risk scores. 

iii. The work surface height is 1247.16 mm. 

iv. The best position of the WP for MT and CT is at the edge of the workstation. 

v. The worker should stand where the front of his feet is in parallel to the edge of the table 

during the task operation, as illustrated in Fig. 13 (i.e., F = 0 mm). 
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vi. The sanding task should be operated by pulling the WP to 50 mm extra pull distance from 

the 152.4mm depth of the removed piece so that the worker can sand the cutting edges of 

the WP with minimum ergonomic risks.  

To validate the expected performance of the selected alternative, the solution 14 is modeled 

for the three tasks using the interactive simulation. Fig. 27 represents REBA risk scores for the 

simulation and the corresponding anticipated values from the optimization model. The prediction 

errors are 1.66%, 4.15%, and 2.45% for MT, CT, and ST, respectively, which indicate the 

reliability of the optimization model for the selected optimal solution. 

 

 

REBA 

3D Visualization 
Optimal WDPs 

[Amarking, Acutting, C, D, 

E, F, H] 

Simulation 

(ER) 

Model 

Prediction 

(𝐸�̂�) 

Prediction 

Error 

% 

[Frontmarking, Frontcutting, 

152.4,  

1247.16, 0.0, 0.0, 50.0] 

MT 4.21 4.14 1.66% 

 

CT 5.06 4.85 4.15% 

 

ST 7.76 7.57 2.45% 

 

Fig. 27. Validation results of the solution 14 for MT, CT, and ST 
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Based on current available space and tools in practice, REBA scores are predicted among 

the combination of tasks. However, without considering single or multiple tasks workplaces, the 

ST still has high-risk scores in all of the solutions since it is mandatory to move the heavy WP to 

outside of the proposed surface table for sanding completion. This result is obvious evidence that 

this task requires machinery support (e.g., vacuum lifter) to reduce the ergonomic risk scores. At 

this junction, it should be noted that this thesis does not consider the machinery in the workplace 

design due to the requirement of the industrial partner. 

In addition, the proposed design approach provides a guide to developing a future action 

plan to not only mitigate the impact of ergonomic risk factors in the workplace but also correspond 

to return to work program in WCB [10] based on the result of analyzing significant WDPs and 

their effects. For instance, injured workers should not be assigned to perform the ST, which leads 

workers to adopt awkward postures while using force increasing ergonomic risks during the entire 

task duration. In other words, the MT is the most suitable for them since it is associated with 

minimal risk among the three tasks. 
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Chapter 5: Future Works 

The proposed framework is subject to some limitations and requires further development. 

The current design framework considers only ergonomic risk levels as a single metric for 

workplace design optimization based on identifying workplace design parameters (WDPs), 

leading to expose workers to ergonomic risk factors. However, other factors such as fatigue levels 

and biomechanical risk may influence the productivity and safety conditions of the production 

lines. This issue could be addressed by proposing effective methods to integrate other performance 

metrics based on identifying related WDPs.  

Another limitation of the current proposed framework is that categorical WDPs use two 

levels (-1 and +1) instead of three levels (-1, 0, and +1) used for numerical WDPs. However, the 

diverse nature of the tasks in modular production lines may require more than two level-based 

categorical WDPs in order to model and investigate all possible design alternatives accurately. In 

this respect, further efforts to incorporate multi-levels categorical WDPs during the design process 

are required to develop the flexibility and extensibility of the proposed design framework.  

Currently, works are underway to evaluate physical prototypes of the proposed design in the 

case study based on lab experiments in order to assess the enhancement of workers’ performance 

considering different weights on the workplace tasks. 

Future research also includes the automation of the proposed method in order to provide a 

rapid optimization-based workplace design system in modular construction. Besides, coordination 

actions may be required to reflect the recommended depth of the removed piece in the shop 

drawings in order to reduce risk scores. Moreover, the cost reduction based on the improvement 

of safety in the production lines could be investigated by developing an evaluation model.  
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Chapter 6: Conclusion 

Modular construction is an attractive approach to achieve better productivity and low cost 

with high quality in the construction industry. Comparing to the manufacturing industry, which 

uses advanced technologies and machinery, the modular construction still adopts labor-intensive 

and hazardous manual tasks in production lines leading to expose workers frequently to ergonomic 

risks. To mitigate the ergonomic risks, optimal worker-friendly workplace design is critical to 

maximizing the benefits of modular construction. However, scientific and/or efficient methods are 

not fully introduced yet into the modular construction sector. Corresponding to this requirement, 

this thesis proposes a parameterized design optimization framework to develop worker-friendly 

workplaces with minimal ergonomic risks in the modular construction workplaces. The proposed 

framework consists of mainly four components: (i) workplace design initiation component to 

define workplace design parameters (WDPs) and create design alternatives; (ii) interactive skeletal 

simulation component to produce worker’s body postures efficiently corresponding to the changes 

of the workplace parameters; (iii) statistical analysis component using definitive screening design 

method to develop the surrogate models to predict the risk scores in various workplace design 

alternatives; and (iv) multi-criteria optimization component that considers not only single-task 

workplaces but also multi/many-tasks workplaces to achieve optimal design solutions. A case 

study of designing a drywall preparation workplace in a real modular construction plant is 

presented. As a result, the proposed design framework offers the following benefits: (i) a cost-

effective and less time-consuming approach to assess multiple workplace design alternatives using 

the proposed interactive worker-workplace simulation model without the need to physically 

imitate the operational tasks at each design alternative; (ii) efficient and practical method that 
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extends the applicability of the ergonomic design in modular construction based on a scientific 

approach to design optimal workplaces considering the minimal ergonomic risks; and (iii) a step 

towards mitigating enormous human and economic costs of ergonomic risk factors in the 

workplace by identifying root causes of ergonomic risks among various WDPs that helps to outline 

a practical action plan to ensure safety improvements.  
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Appendix 

Appendix 1: Statistical analysis of CT - REBA surrogate models 

Analysis of Variance       

Source DF Adj SS Adj MS F-Value P-Value 

Model 7 43.0000 6.1429 49.78 0.000 

  Linear 5 40.5017 8.1003 65.64 0.000 

    Work method 1 4.1949 4.1949 33.99 0.000 

    Depth of removed piece 1 2.6471 2.6471 21.45 0.001 

    Work surface height 1 25.9315 25.9315 210.14 0.000 

    WP position 1 2.1758 2.1758 17.63 0.002 

    Worker standing distance 1 4.7702 4.7702 38.66 0.000 

  Square 1 1.0258 1.0258 8.31 0.016 

    Worker standing distance*Worker standing distance 1 1.0258 1.0258 8.31 0.016 

  2-Way Interactions 1 0.6644 0.6644 5.38 0.043 

    Depth of removed piece*WP position 1 0.6644 0.6644 5.38 0.043 

Error 10 1.2340 0.1234       

Total 17 44.2340          

Coded Coefficients      

Term Coef SE Coef T-Value P-Value VIF 

Constant 7.698 0.184 41.92 0.000    

Work method 0.4988 0.0856 5.83 0.000 1.07 

Depth of removed piece 0.4385 0.0947 4.63 0.001 1.02 

Work surface height -1.3725 0.0947 -14.50 0.000 1.02 

WP position 0.3976 0.0947 4.20 0.002 1.02 

Worker standing distance 0.5886 0.0947 6.22 0.000 1.02 

Worker standing distance*Worker standing distance 0.608 0.211 2.88 0.016 1.12 

Depth of removed piece*WP position -0.249 0.107 -2.32 0.043 1.12 
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Appendix 2: Statistical analysis of CT - RULA surrogate models 

Analysis of Variance      

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 7.7881 0.86535 67.61 0.000 

  Linear 6 6.8174 1.13624 88.78 0.000 

    Work method 1 1.5348 1.53479 119.92 0.000 

    Depth of removed piece 1 0.2818 0.28185 22.02 0.002 

    Work surface height 1 2.1880 2.18803 170.96 0.000 

    WP position 1 1.9214 1.92144 150.13 0.000 

    Worker standing distance 1 0.8557 0.85572 66.86 0.000 

    Cutting Tool 1 0.1163 0.11631 9.09 0.017 

  2-Way Interactions 3 0.9707 0.32356 25.28 0.000 

    Work method*Work surface height 1 0.5833 0.58329 45.57 0.000 

    Work method*Cutting Tool 1 0.1014 0.10137 7.92 0.023 

    Work surface height*WP position 1 0.1148 0.11482 8.97 0.017 

Error 8 0.1024 0.01280       

Total 17 7.8905          

Coded Coefficients      

Term Coef SE Coef T-Value P-Value VIF 

Constant 5.8081 0.0271 214.13 0.000    

Work method 0.3039 0.0278 10.95 0.000 1.08 

Depth of removed piece 0.1440 0.0307 4.69 0.002 1.03 

Work surface height -0.4029 0.0308 -13.08 0.000 1.04 

WP position 0.3775 0.0308 12.25 0.000 1.04 

Worker standing distance 0.2509 0.0307 8.18 0.000 1.03 

Cutting Tool 0.0837 0.0278 3.01 0.017 1.08 

Work method*Work surface height 0.2080 0.0308 6.75 0.000 1.02 

Work method*Cutting Tool -0.0794 0.0282 -2.81 0.023 1.11 

Work surface height*WP position 0.1018 0.0340 3.00 0.017 1.08 
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Appendix 3: Statistical analysis of ST - REBA surrogate models 

Analysis of Variance      

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 5.35067 0.89178 93.30 0.000 

  Linear 4 4.56256 1.14064 119.34 0.000 

    Depth of removed piece 1 0.57458 0.57458 60.12 0.000 

    Work surface height 1 3.69369 3.69369 386.46 0.000 

    WP extra pull distance 1 0.12640 0.12640 13.22 0.008 

    Worker standing distance 1 0.16788 0.16788 17.57 0.004 

  Square 1 0.34831 0.34831 36.44 0.001 

    Work surface height*Work surface height 1 0.34831 0.34831 36.44 0.001 

  2-Way Interactions 1 0.72122 0.72122 75.46 0.000 

    WP extra pull distance*Worker standing distance 1 0.72122 0.72122 75.46 0.000 

Error 7 0.06691 0.00956       

Total 13 5.41758          

Coded Coefficients      

Term Coef SE Coef T-Value P-Value VIF 

Constant 8.3966 0.0525 160.07 0.000    

Depth of removed piece 0.2397 0.0309 7.75 0.000 1.00 

Work surface height -0.6078 0.0309 -19.66 0.000 1.00 

WP extra pull distance -0.1124 0.0309 -3.64 0.008 1.00 

Worker standing distance 0.1296 0.0309 4.19 0.004 1.00 

Work surface height*Work surface height 0.3844 0.0637 6.04 0.001 1.21 

WP extra pull distance*Worker standing distance -0.3306 0.0381 -8.69 0.000 1.21 
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Appendix 4: Statistical analysis of ST - RULA surrogate models 

Analysis of Variance      

Source DF Adj SS Adj MS F-Value P-Value 

Model 4 0.52752 0.131880 22.76 0.000 

  Linear 2 0.40853 0.204264 35.25 0.000 

    Worker height 1 0.10439 0.104389 18.01 0.002 

    Depth of removed piece 1 0.30414 0.304138 52.48 0.000 

  Square 1 0.04331 0.043309 7.47 0.023 

    Depth of removed piece*Depth of removed piece 1 0.04331 0.043309 7.47 0.023 

  2-Way Interactions 1 0.07568 0.075684 13.06 0.006 

    Worker height*Depth of removed piece 1 0.07568 0.075684 13.06 0.006 

Error 9 0.05215 0.005795       

Total 13 0.57967          

Coded Coefficients      

Term Coef SE Coef T-Value P-Value VIF 

Constant 6.4156 0.0381 168.56 0.000    

Worker height 0.1022 0.0241 4.24 0.002 1.00 

Depth of removed piece 0.1744 0.0241 7.24 0.000 1.00 

Depth of removed piece*Depth of removed piece 0.1231 0.0450 2.73 0.023 1.00 

Worker height*Depth of removed piece -0.0973 0.0269 -3.61 0.006 1.00 
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Appendix 5: Residual analysis of MT 
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Appendix 6: Residual analysis of CT 
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Appendix 7: Standardized effects of significant WDPs - CT 
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Appendix 8: Standardized effects of significant WDPs - ST 

 

 


