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Abstract

New Multimodal Biometric Systems with Feature-Level and

Score-Level Fusions

Waziha Kabir, Ph.D.
Concordia University, 2020

In recent years, biometric-based authentication systems have become very impor-
tant in view of their ability to prevent identity theft by identifying an individual with
high accuracy and reliability. Multimodal biometric systems have now drawn some
attention in view of their ability to provide a performance superior to that provided
by the corresponding unimodal biometric systems by utilizing more than one biomet-
ric modality. The existing multimodal biometric systems fuse multiple modalities at
a single level, such as sensor, feature, score, rank or decision, and no study to fuse
the modalities at more than one level that may lead to a further improvement in the
performance of multimodal biometric systems, has been hitherto undertaken. In this
thesis, multimodal biometric systems, wherein fusions of the modalities are carried
out at more than one level, are investigated.

In order to improve the performance of multimodal biometric systems over uni-
modal biometric systems, normalization and weighting of scores from multiple match-
ers are essential tasks. In view of this, in the first part of the thesis, a number of
normalization and weighting techniques under the score level fusion are investigated.
Unlike the existing normalization techniques that are based only on the genuine scores,
four new techniques based on both the genuine and impostor scores, are proposed.
Two weighting techniques that are based on confidence of the scores, are proposed.
Extensive experiments are conducted to evaluate the performance of the multimodal

biometric system under the score-level fusion (MBS-SL) using the proposed normal-
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ization and weighting techniques.

The focus of the second part of this thesis is on the development of multimodal
biometric systems, wherein fusions of the modalities are carried out at multiple levels.
Specifically, two multimodal biometric systems, in which three modalities are used
for their fusion both at the feature level and the score level, are proposed. In the first
multimodal biometric system, referred to as the multimodal biometric system with
feature level and score level (MBS-FSL) fusions, the features of the three modalities
are encoded using the binary hash encoding technique. Unlike the existing techniques
for feature level fusion that use unencoded features, this encoding technique allows
the neighbourhood feature information to be taken into account. The score-level
fusion is carried out on the score obtained from the feature-level fusion and the score
from the matching module of the modality that has the lowest equal error rate.

In the proposed MBS-FSL, the border values of raw features could not partic-
ipate in the encoding in view 4-connected neighbors not being available. In order
to take both the border and non-border information as well as the neighbourhood
information into consideration, a second multimodal biometric system, referred to as
the multimodal biometric system with modified feature level and score level (MBS-
MFSL) fusions, is proposed, wherein both the raw and encoded features are taken
into account. In this system, the feature-level fusion is carried out in a manner similar
to that for the MBS-FSL system. The score-level fusion is then carried out between
the score obtained from the feature-level fusion, the score from the matching module
of the modality that was not utilized in the feature-level fusion, and the scores from
individual modalities by using their raw features.

Extensive experiments are performed to evaluate the performance of the two pro-
posed multimodal biometric systems. The results of these experiments demonstrate
that both of the proposed multimodal biometric systems provide performance supe-
rior to that provided by the existing multimodal biometric systems in which fusion

of modalities is carried out at a single level, namely, the score level. Experimental
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results also show that, in view of both the border and neighbourhood feature informa-
tion being considered in the proposed MBS-MFSL system, it provides a performance
superior to that provided by MBS-FSL system.

The investigation undertaken in this thesis is aimed at advancing the present
knowledge in the field of human biometric identification by considering, for the first
time, the fusion of the modalities at two levels, namely, the feature and score levels,
and it is hoped that the findings of this study would pave the way for further re-
search in the development of new multimodal biometric systems employing fusion of

modalities at multiple levels.
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Chapter 1

Introduction

1.1 General

Accurate human recognition is an important task for designing a reliable identity
management system in the context of several applications, such as performing online
financial transactions, forensic investigations, granting access to nuclear facilities, or
boarding a commercial flight [2]. Biometrics is defined as the physiological and/or be-
havioural attributes of an individual, and is considered as the most reliable identifier
for authentication of a person in recent years. Various applications of a biometric-
based authentication system, such as airport security, online banking, education, e-
voting, healthcare, gaming, have been implemented successfully using different traits,
such as face, fingerprint, iris and/or heart rate. Typically, a biometric-based authen-
tication system uses a single biometric information and such a system is known as
unimodal biometric system [3]. Although most of the biometric systems are unimodal,
since they are cost-effective, they sometimes fail to provide the desired recognition
accuracy due to the following reasons. (1) Poor-quality data: Low quality of a bio-
metric image is one of the limitations for a unimodal system, since it may degrade the
recognition rate. For example, capturing a fingerprint image of moist, greasy or dirty

finger will result in a poor-quality biometric image, or an elderly person has inferior



quality of ridges in comparison with that of a younger person. As a result, the person
may not be recognized by the unimodal system. (2) Intra-class variation: In this
case, a single individual may be identified as more than one different individuals due
to changes in the environmental conditions while capturing the biometric data. For
example, a facial recognition system may not recognize a person who has face images
captured from different directions. (3) Inter-class similarity: In this case, two indi-
viduals can be identified as one individual, since features extracted from those two
individuals may not be distinguishable. For example, a facial recognition system may
identify monozygotic twins as the same (i.e., a single) person. (4) Non-universality:
Unimodal biometric systems are not universal, since they sometimes cannot cover the
entire population. For example, an iris-based biometric system cannot enrol a blind
person or an illiterate person cannot be enrolled in a signature-based biometric sys-
tem. (5) Spoof attacks: A unimodal biometric system suffers from spoofing attacks,
since it is easy to counterfeit a single source of biometric information. (6) Changes of
biometric traits: Some biometric traits change over time, and as a result the person
may not be recognized by the unimodal system. For example, a cancer patient loses
his fingerprint ridges due to having drugs for a long period of time. As a result, the
person may not be recognized by the unimodal system over time.

In order to obtain the desired recognition accuracy as well as to further improve
the security of a biometric-based authentication system, one can employ multiple bio-
metric information. Such a system is known as a multimodal biometric system [1].
A multimodal biometric system offers several benefits such as: (a) the consolidation
of multiple biometric information, which could possibly increase the overall recogni-
tion rate, (b) improving the population coverage, since multiple biometric traits are
utilized, and (c) less susceptibility to spoof attacks, since it is not easy to attack
multiple biometrics at the same time. In recent years, multimodal biometric systems
have received much attention in view of these benefits.

In a multimodal biometric system, it is possible to have multiple information under



five scenarios in which the first four scenarios are based on a single biometric trait
(e.g., fingerprint), while the fifth scenario is based on multiple biometric traits (e.g.,
fingerprint and face). These five scenarios are described as follows. 1) Multi-sensor:
in this scenario, different images are acquired from a single biometric trait by using
multiple sensors. For example, two different fingerprint images of the same finger
are captured by using an optical sensor and a capacitive sensor. 2) Multi-instance:
in this scenario, different images are acquired from a single biometric trait by using
multiple instances. For example, ten different fingerprint images of ten different
fingers of a person. This scenario does not necessarily require multiple sensors. 3)
Multi-snapshot: in this scenario, different images are obtained from a single biometric
trait by using multiple snapshots. For example, two different fingerprint images from
two different regions, such as top and bottom of the same finger, are captured with a
small sized sensor. This scenario also does not necessarily require multiple sensors. 4)
Multi-algorithm: in this scenario, different feature images are obtained from a single
biometric trait by using multiple algorithms. For example- two different fingerprint
feature images of the same finger are obtained by using a texture-based algorithm
and a minutiae-based algorithm. This scenario does not necessarily require multiple
sensors. 5) Multi-trait: in this scenario, different images are obtained from different
biometric traits. For example- fingerprint and face images. In order to make the
final decision to identify a person, multiple information obtained under the above
mentioned scenarios, are required to be fused. Therefore, it is essential to develop a
suitable fusion technique to investigate as to which of the multiple information are
needed to be fused and how they are to be fused in multimodal biometric systems.
Fusion of multiple information in a multimodal biometric system can be done at
five levels, namely, sensor, decision, rank, feature or score level. Sensor-level has too
much redundant information that can degrade the performance of a multimodal bio-
metric system. In the decision-level fusion, the information is too abstract and is not

sufficient to improve the performance of a multimodal biometric system. Therefore,



these two levels of fusion have not drawn much interest of researchers. Rank-level
fusion has also not drawn much attention, since it cannot be used for the purpose of
verification of a person. Feature-level fusion has drawn much attention for improv-
ing the performance of a multimodal biometric system, since the feature set contains
information about the raw biometric data that is richer than the matching score or
the final decision does. Score-level fusion has also drawn much attention, since it
is easy to access and easy to combine the matching scores as well as the amount of
information for fusion is more suitable for improving the performance of a multimodal
biometric system.

In score-level fusion, multiple scores obtained from multiple matching modules
give rise to three different issues in a multimodal biometric system [4]. First, these
scores from different matching modules may be non-homogeneous in the sense that one
matching module may measure similarity, while another may measure dissimilarity
scores. Second, the matching scores may be on different numerical scales, e.g., one
matching module may have the range of [0.15, 0.9], while another matching module
may have the range of [-200, 200]. Third, the matching scores may be following
different statistical distributions, e.g., one matching module may provide Gaussian,
while another one may provide Weibull distribution. Normalization of scores can take
care of these issues. Therefore, developing a suitable normalization technique is of
crucial importance in a multimodal biometric system.

In score-level fusion, the overall performance of a multimodal biometric system
can be affected by the performance of multiple matching modules, since one matching
module may provide a higher error rate than that provided by another [5]. As a result,
the overall recognition accuracy of a multimodal biometric system may not be higher
than that of the unimodal biometric systems using one of the biometric sources from
the former system. Therefore, estimation of weights of multiple matching modules in
order to improve the recognition rate of multimodal biometric systems is an essential

task.



1.2 A Brief Literature Review on Fusion, Normal-
ization, and Weighting Techniques for Multi-
modal Biometric Systems

Many techniques of fusion, normalization, and weighting have been recently proposed
for multimodal biometric systems.

It has been shown in the literature that techniques for fusion play an impor-
tant role for improving the recognition rate of a multimodal biometric system [6-98].
There exist several fusion techniques for consolidating multiple biometric sources at
sensor [6-8], rank [9-25], decision [26-33], feature [34-68], or score [69-98] level. In
sensor-level fusion, multiple biometric sources are fused before extracting the features
from them. There are a few techniques that have been proposed for this level of fu-
sion based on texture, depth, or mosaicking method [8]. The sensor-level fusion is not
popular for multimodal biometric systems, since it requires additional cost or time to
develop new feature extraction and matching algorithms for the fused biometric data.
In a rank-level fusion, ranking lists obtained from the individual matching modules
are consolidated to form a fused ranking list for final decision. A few rank-level fu-
sion techniques have been developed based on fuzzy logic [16], logistic regression [19],
Markov chain, the highest rank methods, or Borda count method [25]. Rank-level
fusion has not drawn much attention, since this level of fusion can only be applied
for the purpose of identification. Multiple decisions are consolidated in order to make
a final decision for identifying an individual under decision-level fusion. Some work
based on ”AND” /”OR”, voting methods, Bayesian decision, Dempster-Shafer theory
of evidence [1], hyperbolic functions [28], and posterior probability [29] has been done
for decision-level fusion. This level of fusion has not drawn much attention of the
researchers, since the information at the decision-level fusion is not sufficient for im-

proving the recognition rate of the multimodal biometric system. In a feature-level



fusion, features extracted from multiple biometric sources are consolidated to create
a fused feature set. Many feature-level fusion techniques based on multi-resolution
Log-Gabor filter [34], discriminant correlation analysis [39], shapes extracted from
features [50], particle swarm optimization [51], and transformation of features [67]
have been proposed. Since features contain richer information about a biometric
data, feature-level fusion has drawn much attention of the researchers. However, in
the existing feature-level fusion techniques, it is required to find a relationship be-
tween multiple feature sets, normalize the feature values if their ranges are different,
and/or reduce the dimension of the fused feature set. In the score-level fusion, the
scores obtained from the multiple matching modules are consolidated to obtain a
fused score set. Many score-level fusion techniques based on arithmetic operations,
such as addition, subtraction, maximum, minimum, or median [1] have been de-
veloped. Score-level fusion has also drawn much attention of the researchers, since
scores are easy to combine and most of the vendors allow to access the scores, and
the recognition rate of a multimodal biometric system can be improved significantly
under the score-level fusion. However, the score-level fusion techniques fail to im-
prove the recognition rate of a multimodal biometric system in cases where scores
are non-homogeneous, have different statistical distributions or have different numer-
ical scales [1]. In view of the advantages of the feature-level and score-level fusions
over the other levels of fusion and in order to improve the recognition accuracy over
that of the existing schemes, there is a need to investigate new fusion schemes for a
multimodal biometric system involving these two levels of fusion.

It is known that the recognition accuracy of a multimodal biometric system is
highly dependent on normalization of the scores obtained from multiple matching
modules [99]. Many normalization techniques have been developed for normalizing
scores in a multimodal biometric system [4, 99-111]. In the min-max (MM) normal-
ization technique [4], the minimum and maximum values of the raw matching scores

are utilized to transform multiple scores into a common range of [0, 1]. Although the



MM technique is the most commonly used normalization technique due to its sim-
plicity and good performance in a multimodal biometric system, it is highly sensitive
to outliers. In order to overcome the limitation of MM, a new normalization tech-
nique has been developed based on median and median absolute deviation (MAD)
which are insensitive to outliers [4]. However, this technique cannot transform the
raw matching scores obtained from individual biometric systems of a multimodal bio-
metric system into a common numerical range. Decimal scaling (DS) normalization
technique [4] has been developed to normalize scores based on a logarithmic scale. The
limitation of the DS normalization technique is that it requires raw matching scores
to be on a logarithmic scale. The z-score (ZS) normalization technique [4] utilizes
the average and standard deviation to normalize the raw matching scores. However,
it does not guarantee a common numerical range of normalized scores obtained for
individual biometric systems of a multimodal biometric system. Some normalization
techniques, such as TanH [4], have been developed based only on the genuine scores
of the matching scores for normalizing the scores. However, the TanH normalization
technique requires the estimation of some parameters using Hampel influence func-
tion [112]. And, it does not consider the impostor scores of the matching scores for
normalizing the raw scores. Most recently, normalization techniques based on thresh-
old values have been developed [109, 110]. For example, the performance anchored
min-max (PAN-MM) normalization technique utilizes the threshold values based on
the errors of the individual biometric matching modules to normalize the scores [110].
However, these techniques require a prior knowledge of the errors of each of the in-
dividual biometric matching modules of a multimodal biometric system. It is to be
noted that the error in recognition results from the scores common to both the genuine
and impostor scores [101]. In the existing normalization techniques, the scores that
are common to both the genuine and impostor score sets have not been taken into
consideration. Therefore, it is worth taking into account the information provided by

these common score values for developing new normalization techniques that could



possibly improve the overall recognition accuracy of a multimodal biometric system.

It is known that the recognition accuracy of a multimodal biometric system is
highly dependent on the weights assigned to the various matching modules [101, 113—
119]. There exist several weighting techniques for estimating the weights of the mul-
tiple matching modules of a multimodal biometric system [101, 113-119]. The equal
error rate weighting (EERW) technique is one of the most popular techniques in
which the errors of the corresponding individual unimodal systems are considered to
estimate the weights of multiple matching modules [101]. However, EERW fails to
improve the recognition rate in the case, where there is significant difference between
the highest and lowest errors provided by the various matching modules. Most of
the weighting techniques such as D-prime weighting (DPW) and Fisher discriminant
ratio weighting (FDRW) techniques, have been developed based on the genuine and
impostor scores, in which the separability of the genuine and impostor score distri-
butions are considered [101, 118]. However, in these techniques, the common values
between the genuine and impostor scores that may reduce the recognition accuracy
of a multimodal biometric system are not taken into consideration. In the existing
weighting techniques, the reliability of the individual matching scores is not considered
in order to estimate the weights of the matching modules. Therefore, the reliability
of the matching scores can be utilized for developing new weighting techniques for

improving the recognition accuracy of multimodal biometric systems.

1.3 Objectives and Organization of the Thesis

The objective of this thesis is to study techniques for feature-level and score-level
fusions, and apply these techniques in multimodal biometric systems for reducing
the error rate and improving the overall recognition accuracy. For this purpose,
in this thesis, we focus on developing new fusion techniques by integrating feature-

level and score-level fusions for the first time to the best of our knowledge. As



mentioned earlier in this chapter, normalization and weighting play an important
role for improving the accuracy of a multimodal biometric system under the score-
level fusion. Hence, we first develop new normalization and weighting techniques.
These normalization and weighting techniques are then employed to the existing and
the proposed fusion schemes in order to show their effectiveness in improving the
performance of multimodal biometric systems.

In Chapter 2, a brief review of multimodal biometric systems is presented. Various
levels of fusion for multimodal biometric systems are discussed. Most commonly used
fusion rules, namely, simple-sum and weighted-sum fusion rules, for combining multi-
ple matching scores at score-level fusion are also discussed. The standard metrics for
evaluating the performance of a biometric system are introduced. Finally, the design
of two multi-biometric databases using unimodal biometric databases for evaluating
the performance of a multimodal biometric system for this thesis is presented.

In Chapter 3, methods for constructing matching scores for each of the samples of
an individual of a unimodal biometric database is discussed. The procedure to sepa-
rate the genuine and impostor scores from the matching scores is also discussed. Four
normalization techniques based on these scores for a multimodal biometric system
under score-level fusion are proposed. The performance of the multimodal biometric
system under the score-level fusion (MBS-SL) is investigated utilizing the proposed
normalization techniques and compared to that using the existing normalization tech-
niques in terms of equal error rate, genuine acceptance rate, receiver operating char-
acteristics, and detection error tradeoff curve.

In Chapter 4, two weighting techniques are proposed for a multimodal biometric
system under score-level fusion. In order to assign appropriate weights for the match-
ing scores using the proposed weighting techniques that are based on the matching
scores without any distinction or with distinction of their being genuine or impostor,
are presented. The performance of the MBS-SL using the proposed weighting tech-

niques is compared to that using the existing weighting techniques in terms of equal



error rate, genuine acceptance rate, receiver operating characteristics, and detection
error tradeoff curve. Finally, this experiment is repeated by incorporating the various
proposed and existing normalization techniques.

In Chapter 5, a new multimodal biometric system, referred to as the multimodal
biometric system with feature level and score level (MBS-FSL) fusions, based on in-
corporating both the feature-level and score-level fusions is proposed. In this system,
we first encode the features of individual modalities, and based on these encoded
features, we then determine the modalities that should be used for the feature-level
fusion. Next, for the feature-level fusion, a technique to fuse the encoded features of
the selected modalities is devised. A score-level fusion is then carried out to fuse the
score obtained from the feature-level fusion and that from the modality that was not
utilized in the feature-level fusion. The performance, in terms of the various met-
rics, provided by this multimodal biometric system, MBS-FSL, is then compared to
that provided by the existing MBS-SL, under different normalization and weighting
techniques.

In Chapter 6, another multimodal biometric system, referred to as the multimodal
biometric system with modified feature level and score level (MBS-MFSL) fusions, is
developed for further improving the recognition accuracy. This system is implemented
in two stages. In the first stage of this system, the feature-level fusion is carried out
in a manner similar to that of MBS-FSL system, described in the previous chapter.
In the second stage, a score-level fusion is carried out to fuse the score obtained
from the feature-level fusion, the score from the modality that was not utilized in
the feature-level fusion, and the scores from individual modalities by using their
raw features. The performance provided by this multimodal biometric system, MBS-
MFSL, is then compared to that provided by MBS-FSL, proposed in Chapter 5, under
various normalization and weighting techniques in terms of the various metrics.

Finally, some concluding remarks followed by scope for further research are pre-

sented in Chapter 7.
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Chapter 2

Background Material

In security applications, biometric has become the most reliable and efficient identifier
for authentication of a person. An optimal biometric system aims to satisfy some
properties such as permanence, universality, collectivity, acceptability, distinctiveness
and security [3]. Unimodal biometric systems are not optimal, since there is no single
biometric trait that has all of the above mentioned properties. In order to design
an optimal authentication system, multimodal biometric systems are introduced in
which multiple biometric sources of information are integrated.

In this chapter, first, multiple biometric sources of information and levels of fusion
for multimodal biometric systems are discussed. Then, fusion rules and performance
evaluation metrics that are commonly utilized in multimodal biometric systems are
described. Finally, databases used in this thesis for evaluating the performance of

multimodal biometric systems are discussed in detail.

2.1 Multimodal Biometric Systems

Multimodal biometric systems consolidate multiple sources of biometric information.
Therefore, there are several issues for implementing a multimodal biometric system,

such as availability of sources of information, selection of biometric traits, techniques
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for fusion, cost, processing time, and so on. In order to improve the recognition
accuracy of a multimodal biometric system, sources of information and techniques
for fusion are considered as the two main factors [25]. These two factors are discussed

below in detail.

2.1.1 Sources of information for multimodal biometric sys-

tems

A multimodal biometric system may have five categories of sources of information as
shown in Fig. 2.1. They are described as below.

Multiple sensors-single biometric trait: Under this category, multiple im-
ages of a single biometric trait captured using different sensors are used for authen-
tication. For example, a multimodal biometric system may utilize fingerprint images
captured using optical and capacitance sensors for identifying a person as shown in
Fig. 2.1.

Multiple instances-single biometric trait: Under this category, an individ-
ual can be identified using multiple instances of a single biometric trait. For example,
a multimodal biometric system can identify a person using his/her left and right
palmprint images as shown in Fig. 2.1.

Multiple snapshots-single biometric trait: Under this category, multiple
snapshots of an individual are used for authentication. For example, palmprint images
with multiple rotations can be utilized to identify a person in a multimodal biometric
system as shown in Fig. 2.1.

Multiple algorithms-single biometric trait: Under this category, an individ-
ual is identified using multiple algorithms for a single biometric trait. For example, a
multimodal biometric system may use minutiae and texture based fingerprint match-
ing modules to identify a person as shown in Fig. 2.1.

Multiple biometric traits: Under this category, multiple traits are used for

person authentication. For example, a multimodal biometric system may use finger-
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Figure 2.1: Sources of information in a multimodal biometric system

print and earprint for identifying a person as shown in Fig. 2.1.

2.1.2 Levels of fusion for multimodal biometric systems

Fusion is the main key in multimodal biometric systems, since it relies on the evidence
from multiple sources of biometric information. In [120], authors categorized fusion
methods into two main categories: pre-classification fusion and post-classification fu-
sion. Pre-classification fusion is done before matching at sensor or feature level. Post-
classification fusion is done after matching at score, rank or decision level. Fig. 2.2
shows these five levels of fusion for a multimodal biometric system using two sources

of information.
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Sensor-level fusion: Biometric information obtained from different acquisition
modules are consolidated under sensor-level fusion. The fused image obtained under
sensor-level fusion is then passed through feature extraction and matching modules
in order to make a final decision for identifying a person. Under this category, a
multimodal biometric system requires one feature extraction module, one matching
module, one decision module, and multiple sensors as can be seen from Box-1 of
Fig. 2.2.

Feature-level fusion: Features obtained from multiple feature extractors are
consolidated under this level of fusion. The fused feature set obtained under feature-
level fusion is then passed through a matching module in order to make a final decision
for identifying a person. As can be seen from Box-2 of Fig. 2.2, a multimodal biometric
system requires one matching module, one decision module, and multiple feature
extraction modules under feature-level fusion.

Score-level fusion: Scores obtained from multiple matching modules are con-
solidated under this level of fusion. The fused score set obtained under score-level
fusion is then passed through a decision module in order to make a final decision
for identifying a person. It can be seen from Box-3 of Fig. 2.2, a multimodal bio-
metric system requires one decision module, and multiple matching modules under
score-level fusion.

Rank-level fusion: In this case, ranks are assigned to scores obtained from
multiple matching modules in order to form ranking lists. These ranking lists are
then consolidated in order to obtain a fused ranking list under rank-level fusion. The
fused ranking list obtained under this fusion level is then passed through a decision
module in order to make a final decision for identifying a person. Under rank-level fu-
sion, a multimodal biometric system requires one decision module, multiple matching
modules, and multiple ranking modules as can be seen from Box-4 of Fig. 2.2.

Decision-level fusion: Decisions obtained from multiple decision modules are

consolidated under this level of fusion. The fused decision obtained under decision-
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level fusion is the final decision for identifying a person. As can be seen from Box-5
of Fig. 2.2, a multimodal biometric system requires multiple decision modules under

decision-level fusion.

2.2 Fusion Rules

In general, the matching scores obtained from multiple matching modules in a mul-
timodal biometric system are combined using simple or weighted summation fusion

rules. These rules are discussed below.

2.2.1 Simple sum rule-based fusion

The simple-sum (SS) fusion rule utilizes arithmetic summation to combine the match-
ing scores obtained from multiple matching modules. The weights of multiple match-
ing modules are not required to be estimated under SS fusion rule. The fused score
s f;’f] using the matching scores S;Jq(k,‘) for the k (k = 1,2, ...m) modalities under SS

fusion rule is computed as

shiak) =Y s (k) (2.1)

where p corresponds to the p** sample of the " person, ¢ corresponds to the ¢**

sample of the j* person, (i,j =1,2,..., M), and (p,q = 1,2, ..., N).

2.2.2 Weighted sum rule-based fusion

The weighted sum (WS) fusion rule utilizes the raw matching scores and the estimated
weights of multiple matching modules to compute the fused score. The fused score

s f;';i] for the k (k = 1,2, ...m) modalities under WS fusion rule is computed as

sfyn(k) =Y w(k)syh(k) (2.2)

k=1

m
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where w(k) is the estimated weight for the modality k.

2.3 Metrics for Performance Evaluation of Bio-
metric Systems

In a biometric system, the matching module provides a score value that is used by
the decision module to identify an individual person. Based on a threshold value,
a person is identified as a ”genuine” or ”impostor” if his score is higher or lower,
respectively, than the selected threshold value. Therefore, the decision module in a
biometric system may provide four possible outcomes based on the score and threshold
values for a person: 1) the score value is higher than the threshold for a genuine
individual and the person is identified as a genuine, 2) the score value is lower than
the threshold for an impostor individual and the person is identified as an impostor,
3) the score value is higher than the threshold for an impostor individual and the
person is identified as a genuine, or 4) the score value is lower than the threshold
for a genuine individual and the person is identified as an impostor. The following
error rates are established based on the above mentioned four possible decisions for
identifying an individual [3].

1) Genuine accept rate (GAR) is computed as the ratio of the number of genuine
people accepted as genuine ones to the total number of enrolled people for a predefined
threshold [1].

2) False accept rate (FAR) is computed as the ratio of the number of impostor
people accepted as genuine ones to the total number of enrolled people for a predefined
threshold [1].

3) False reject rate (FRR) is computed as the ratio of the number of genuine people
rejected as impostor ones to the total number of enrolled people for a predefined
threshold [1].

4) Equal error rate (EER) is the point where FAR and FRR have the same
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value [1]. The lower the EER value, the better is the biometric system.

In order to represent the recognition accuracy of a biometric system, GAR, FAR
and FRR are used to plot different curves. The most commonly used curves are
the receiver operating characteristic (ROC) and detection error tradeoff (DET) for
evaluating the performance of a biometric system [1]. ROC curves are plotted in
terms of GAR as a function of FAR. DET curves are plotted in terms of FRR as a
function of FAR. Higher the value of GAR and lower the value of FRR, the better is
the performance of a biometric system. Example ROC and DET curves are shown in
Fig. 2.3. It can be seen from Fig. 2.3 (a) that ROC curve provides a higher value of
GAR for a higher value of FAR. Fig. 2.3 (b) shows that DET curve provides a lower
value of FRR for a higher value of FAR.

Genuine Acceptance Rate (GAR)
False Rejection Rate (FRR)

04l SN FEN— - S—  S— ]

0.2

00 0i2 0i Dib‘ 0i8 ‘ ' ‘ '
' % ' ' L 0020512 5 10 20 40 60 A0 90
False Acceptance Rate (FAR) False Acceptance Rate (FAR)

(a) (b)

Figure 2.3: Example (a) Receiver Operating Characteristic (ROC) curve in terms of
GAR as a function of FAR, and (b) Detection Error Tradeoff (DET) curve in terms
of FRR as a function of FAR
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2.4 Databases

Selection of a modality for a biometric system is an important task. Biometric modal-
ities have varying amounts of the characteristics, such as universality, distinctiveness,
collectability, and acceptability. Table 2.1 lists different modalities with the amount
of their characteristics classified as high (H), medium (M) or low (L). Therefore, in
the design of a biometric system one needs to choose a modality or modalities having
these characteristics in the amounts as high as possible.

In some cases, there may be a situation in which the features of a given single
modality of two different persons are correlated. However, the features of the same
two individuals are likely to have lower probability to be correlated if more than two
modalities are used. For example, the face features of monozygotic twins are generally
correlated, whereas their fingerprint features may not be as correlated. Therefore, the
use of more than one modality in a multimodal biometric system should increase the
identification accuracy of the individuals.

We use three different modalities in order to show the improvement in the perfor-
mance of a multimodal biometric system using the proposed normalization, weighting
and fusion schemes of this thesis. In order to select three modalities, we first sort
those biometric traits that have only high and medium amounts of the characteristics
from Table 2.1. This sorting results in 4 biometric traits, namely, earprint, fingerprint,
hand geometry and palmprint. It is to be noted that only the earprint amongst these
4 biometric traits is not from the same part of a human body. In addition, earprint
can be easily captured from a distance without the full cooperation of the person.
Thus, we consider earprint as one of the three modalities in this thesis. Next, we
select two traits from fingerprint, hand geometry and palmprint, based on the total
number of H amount of the characteristics. This sorting results in 2 traits, namely,
fingerprint and palmprint, that have three H’s whereas hand geometry has only one

H. Therefore, we finally select earprint, fingerprint, and palmprint as the three modal-
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Table 2.1: The characteristics of the various biometric identifiers with the amount
High (H), Medium (M), or Low (L) [1]

> § g 2 g ey é
Biometric identifier z g g = E g =

= = = Z S o g

518 € |8 |8 |2 |8
DNA H H H L H L L
Ear M M H M M H M
Face H L M H L H H
Facial thermogram H H L H M H L
Fingerprint M H H M H M M
Gait M L L H L H M
Hand geometry M M M H M M M
Hand vein M M M M M M L
Iris H H H M H L L
Keystroke L L L M L M M
Odor H H H L L M L
Palmprint M H H M H M M
Retina H H M L H L L
Signature L L L H L H H
Voice M L L M L H H

ities in this thesis for evaluating the performance of a multimodal biometric system
using the proposed normalization, weighting and fusion schemes.

The images of fingerprint, palmprint and earprint are obtained from four databases,
namely, FVC2002-DB1-A fingerprint database [121], COEP and IITD palmprint
databases [122-124] and AMI earprint database [125], respectively. These databases

are described below.
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2.4.1 FVC2002-DB1-A fingerprint database

This database was created for Second International Competition for Fingerprint Ver-
ification Competition (FVC) Algorithms. It contains fingerprints of 100 subjects and
8 samples per subject. In total, there are 800 gray-level images acquired through an
optical sensor. The size and resolution of the images are 388 x 374 and 500 dpi, re-
spectively. Fig. 2.4 shows some examples of fingerprint images from this database for
a subject with six samples as follows: full fingerprint image in Fig. 2.4 (a), fingerprint
images with partial top in Fig. 2.4 (b), with partial top and bottom in Fig. 2.4 (c), with
rotation and scar in Fig. 2.4 (d), with pore and without core features in Fig. 2.4 (e),

and partial fingerprint image with pore features in Fig. 2.4 (f).

Figure 2.4: Example images from FVC2002-DB1-A fingerprint database for one sub-
ject with 6 samples

2.4.2 COEP palmprint database

This database contains palmprint images of 168 subjects in RGB-levels. Each subject
has 8 samples of palmprints. The images are captured with a digital camera. The
resolution of the images is 1600 x 1200 pixels. Fig. 2.5 shows some examples of

palmprint images for a subject with six samples from this database.
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Figure 2.5: Example images from COEP palmprint database for one subject with 6
samples

2.4.3 IITD palmprint database

This database contains the hand images those are collected from the students and
staffs of IIT Delhi, New Delhi, India. Images of this database are captured in an indoor
environment with the employment of fluorescent illumination around the camera lens.
It contains palmprint images of left and right hands of 235 users, with seven images
from each subject with the variation of hand poses. The resolution of these palmprint
images is 800x600 pixels. Fig. 2.6 shows some examples of palmprint images from
this database for a subject with six samples: the first sample is without any rotation
of the palm of the person as shown in Fig. 2.6 (a), the second, fifth and sixth samples
are captured by rotating the palm of the person to the left direction as shown in
Figs. 2.6 (b), (e) and (f), and the third and fourth samples are captured by rotating
the palm of the person to the right direction as shown in Figs. 2.6 (c¢) and (d).

£
b
(@)

Figure 2.6: Example of images from II'TD palmprint database for one subject with 6
samples with the variation of hand poses
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2.4.4 AMI earprint database

This database contains ear images collected from students, teachers, and staff of
the Computer Science department at Universidad de Las Palmas de Gran Canaria
(ULPGC), Las Palmas, Spain. Images of this database are captured in an indoor
environment. It contains earprint images of 100 subjects with 7 samples per subject
in RGB-level. These 7 samples are as follows: right side profile of the person 1) facing
forward, 2) looking up, 3) looking down, 4) looking left, 5) looking right, 6) zoomed
earprint of the person facing forward, and 7) the left side profile of the person facing
forward. The resolution of these earprint images is 492 x 702 pixels. Fig. 2.7 shows
some examples of earprint images from this database for a subject with six samples:
image of left ear that is named as 'back ear’ in Fig. 2.7(a), and images of right ear of
the person looking down that is named as 'down ear’ in Fig. 2.7(b), facing forward
that is named as ’front ear’ in Fig. 2.7(c), looking left that is named as ’left ear’ in
Fig. 2.7(d), looking right that is named as 'right ear’ in Fig. 2.7(e), and looking up
that is named as 'up ear’ in Fig. 2.7(f).

Figure 2.7: Example images from AMI earprint database for one subject with 6
samples (a) back ear , (b) down ear, (c) front ear, (d) left ear, (e) right ear, and (f)
up ear
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2.4.5 Merged datasets of fingerprint, palmprint and earprint

Since we aim to evaluate the performance of a multimodal biometric system using
the proposed normalization, weighting and fusion schemes of this thesis considering
fingerprint, palmprint and earprint, it is necessary to have a dataset that contains
features and scores of these three modalities. But, to the best of our knowledge, there
is no such public-domain dataset that provides the features and matching scores of
fingerprint, palmprint and earprint of the same individual. Therefore, we form two
chimeric datasets in which the subjects are virtual, and refer these datasets as virtual
multi-biometric dataset-1 (VMD-1) and virtual multi-biometric dataset-2 (VMD-2).
We select 25 subjects and 6 samples per individual from FVC2002-DB1-A, COEP and
AMI databases to build VMD-1. We select 25 subjects and 6 samples per individual
from FVC2002-DB1-A, IITD and AMI databases to build VMD-2. Therefore, there
are 150 images for each of the modalities in each virtual multi-biometric datasets.
Since the palmprint images of the II'TD database used to create the dataset VMD-
2 have more variations of hand poses and less resolution than that of the COEP
database used in the dataset VMD-1, the dataset VMD-2 is more challenging than
the dataset VMD-1.

2.5 Summary

In this chapter, the two main factors, sources of information and levels of fusion
for multimodal biometric systems are discussed with examples and block diagrams.
Then, the simple-sum and weighted-sum rule-based fusions that are most commonly
used for multimodal biometric systems are discussed. Various error rates and curves
for evaluating the performance of a biometric system are also discussed. Finally, uni-
biometric databases followed by the construction of multi-biometric datasets used
for evaluating the performance of multimodal biometric systems by employing the

proposed normalization, weighting and fusion schemes in this thesis are discussed in
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detail.
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Chapter 3

Normalization Techniques for a
Multimodal Biometric System
under Score Level Fusion

3.1 Introduction

In score-level fusion, the fused score set is obtained by consolidating multiple scores
from different matching modules using the simple-sum (SS) rule in a multimodal
biometric system. These multiple scores from different matching modules may be
non-homogeneous in the sense that one matching module may provide scores based
on similarities between features, while another may provide scores based on dissim-
ilarities between features. The multiple scores may be on different numerical scales,
e.g., one matching module may provide score with the range of [0.58, 0.98], whereas
another may provide score with the range of [-300, 300]. These multiple scores may
also have different statistical distributions, e.g., one matching module may provide
scores that follow Gaussian distribution while another one logarithmic distribution.
The above mentioned three issues of score-level fusion can be solved by normaliz-
ing the multiple scores from different matching modules in order to improve the
recognition rate of a multimodal biometric system. A general block diagram of a
multimodal biometric system using two matching modules with the normalization of

scores at the score-level fusion is shown in Fig. 3.1. This figure shows that scores
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Figure 3.1: Score-level fusion for a multimodal biometric system using two matching
modules with normalization of scores

from the two matching modules are normalized before applying simple arithmetic
summation in score-level fusion for making a final decision. Many normalization
techniques have been proposed for improving the recognition rate of a multimodal
biometric system for the score-level fusion [4, 99-111]. Some of these [4, 99-105]
have been developed based on the matching scores that are obtained from a matching
module, such as min-max (MM) [4] and two-quadrics (QQ) [101]. The advantage of
such normalization techniques is that they are simple. Limitations of these matching
score-based normalization techniques are that they are sensitive to outliers, or require
matching scores to be on a logarithmic scale, or cannot transform matching scores
into a common range. A few normalization techniques [4, 106] have been developed
based on the genuine scores, such as TanH [4] and reduction of high-scores effect
(RHE) [106]. The advantage of such normalization techniques is that they are not
sensitive to outliers. However, normalization techniques based on the genuine scores
require Hampel influence function for estimating parameters. Some of the normal-
ization techniques [107-111] have been developed based on threshold values, such
as threshold alignment and range compression (TARC) [109] and performance an-
chored min-max (PAN-MM) [110]. The advantage of such normalization techniques
is that they provide better recognition rate as compared with that provided by the
first two categories of normalization techniques for a multimodal biometric system.

Limitations of these techniques are that they require equal error rates (EER), false
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acceptance rates (FAR) or false rejection rates (FRR) of each unimodal biometric
system in a multimodal biometric system. From the above discussion, it can be con-
cluded that the existing normalization techniques have not made use of the impostor
scores. Therefore, we investigate new normalization techniques that utilize not only
the genuine scores, but also the impostor scores for improving the recognition rate of
a multimodal biometric system at the score-level fusion.

In view of the requirement of genuine and impostor scores for implementing new
normalization techniques at the score-level fusion for a multimodal biometric system,
in this chapter, we first propose a method to separate these scores from the matching
scores. Next, we propose various normalization techniques, using these genuine and
impostor scores, for a multimodal biometric system [126-129]. The performance
of the multimodal biometric system under the score-level fusion (MBS-SL) is then
investigated utilizing the proposed normalization techniques and compared to that

using the existing normalization techniques.

3.2 Separation of Genuine and Impostor Scores
from Matching Scores

Information from the matching scores is an essential requirement for the score-level
fusion in a multimodal biometric system. The matching scores can be divided into
two types, namely, genuine and impostor scores. In this section, we develop a method
to separate the genuine and impostor scores. First, the features of an image of an
individual is compared with the other images of the individual, as well as with all
the images of all the other individuals in order to construct the matching scores
for a given modality £ used in a multimodal biometric system. This comparison
produces the matching scores denoted by s;f;,{](k), p#q when i=j, where p corresponds
to the p sample of the i*" person, ¢ corresponds to the ¢** sample of the j** person,

(1,7 =1,2,..., M), and (p,q = 1,2,...,N). Thus, S;Jq(/{?) is undefined when p=q and

28



i=j.
A genuine score is defined as the matching score obtained by comparing the fea-
tures of an image of an individual with the other images of the same individual.

Therefore, the genuine score set, G(k), for the k' modality is obtained as follows

G(k) = {s}1(k)} where p # q (3.1)

An impostor score is defined as the matching score obtained by comparing the
features of an image of an individual with all the images of all the other individuals.

Therefore, the impostor score set, I(k), for the k* modality is obtained as follows

I(k) = {s}7(k)} where i # j (3.2)

The matching scores are obtained by comparing the features of an image with
the features of all other images in the dataset including the features of the image
itself. Therefore, such a comparison occurs two times for each individual image in
the dataset. The genuine and impostor scores can be separated easily by arranging
the matching scores in a particular way. Such an arrangement is shown in Table 3.1
with an example in which we consider the matching scores for modality & (say, the

fingerprint) of 3 individuals (i, j = 1,2, 3) each having 2 samples (p,q = 1,2).

Table 3.1: Matching scores of 3 persons each having 2 samples for the fingerprint
modality (7,7 =1,2,3;p,q =1,2)

1,1 1,2 1,2 1,3 13
- S12 S11 S12  S11 S12

1,1 1,2 1,2 1,3 1,3

Sa2.1 - Sa1 S22  S21 Sa2p

2,1 2.1 2,2 23 2,3

S(k) — S11 0 S12 - S12 S11 Si2
2,1 2,1 2,2 2,3 2,3

So1 S22 S211 - S91 S22

3,1 3,1 3,2 3,2 3,3

S11 S12 S11 S1.2 S1,2
3,1 3,1 3,2 3,2 3
So1 S22 So1  Soo  S2

The matching score can be represented as a partitioned matrix for this example
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as follows.

Sl,l Sl,2 Sl,3
S(k) = | (ST S22 5§23 (3.3)
(51,3)T (52,3)T 53,3

where _ -
1,1
— s
1,1 __ 1,2
SHt = i1 (3.4)
9
S21 —
_ 2s ]
—  Si1,2
§¥r=1 (3.5)
9
S21 —
_ 5
e (3.6)
- 3,3 ’
b
S21 —
[ Gh2 gl2 i
1,1 S1,2
Sh? = S 3.7
1,2 1,2 (3.7)
| S2,1 S22 |
[ JRETRE i
1,1 S1,2
St = o 3.8
1,3 1,3 (38)
S2.1 S22
and _ _
G238 (23
1,1 S1,2
23 = S 3.9
28 23 (3.9)
S2.1 S22

The elements of the transpose matrices, (S'?)7, (S"*)7, (S**)” are not included in
. . . .. 1,1 22

the impostor scores, because of their symmetrical nature. Similarly, sy, sy and

3.3 included i h . . Sl’l 82,2 d S3,3 :

sy are not included in the genuine scores, since : an are symmetric.

Therefore, the genuine score set is G(k) = {512, 533, 512} and the impostor score

. 12 12 13 13 13 13 23 23 23
set is [ (k) = {311a312a321a322a311a312a321a322a311a312a 217322} for the fingerprint

modality for this example.
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3.3 Proposed Normalization Techniques

A score value that aligns the score distributions, named as anchor value, was intro-
duced in [110]. In this work, the authors considered the score threshold value at
the equal error rate (EER) as the anchor value. Therefore, their proposed method
requires the score threshold value and EER of individual biometric systems for nor-
malizing the scores. The MM normalization technique [4] transforms the matching
scores into the common range of [0,1]. The authors in [110] have extended the range
of the MM normalization technique by anchoring the middle point of the score range

at TH gpr(k) to obtain the normalized scores as

spiq (k) —min{G(k),I(k)} o i
59 (k) = ST H pn (W) —min{GR), (D)’ if 0 (k) < THggr(k)

L 553 (k)—THpggr(k) Y
0.5+ oG Iy Thewrt: o Spa(k) > THeer(k)

(3.10)

where T'H ggr(k) is the threshold value at the EER for the modality k. The first part
of (3.10) provides a value of zero for 537 (k) = min{G(k), I(k)}, and a value of 0.5
for 537 (k) = THppr(k), whereas the second part of (3.10) provides a value of 0.5 for
syt (k) = THpgr(k), and a value of 1.5 for s37 (k) = max{G(k),I(k)}. Therefore,
the normalization technique presented in [110] using (3.10) transforms the matching
scores into the common range of [0,1.5].

In our proposed normalization techniques, the anchor values are computed based
on the matching scores, genuine and impostor scores as described in Sec. 3.2. There-
fore, our proposed normalization techniques do not require score threshold value and

EER of individual biometric systems for normalizing the scores. Our proposed nor-

malization techniques are discussed below in detail.
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3.3.1 Improved Anchored Min-max Normalization Technique

In this technique [126, 127], a new score set, Sg(k), is constructed by selecting only
those values of G(k) and I(k) that occur more than once, and refer it as repeated
score set as shown in Fig. 3.2. Now, the mean and standard deviation of Sg(k)
are computed. The mean and standard deviation provide the information about the
average and variation of the repeated scores of G(k) and I(k). Next, an anchor value
is obtained by considering the summation of the mean and the standard deviation of
Sgr(k). Finally, the normalized score is computed with this anchor value. The steps to
compute the final fused score using the above mentioned anchor value are as follows.

(a) Select the score values that occur more than once in G(k) and I(k), construct
a score set with those score values denoted by Sg(k) = {Sg1, Sgr2,....}. An example
of matching scores with numerical values for modality k (say, the fingerprint) of 3
individuals (i.e., i,7 = 1,2,3) each having 2 samples (i.e., p,¢ = 1,2) is given in
Table 3.2. Based on this example, the genuine score set is G/(k) = {100, 100, 100},
and the impostor score set is I(k) = {40, 30, 44, 33, 20, 10, 25, 15, 40, 30, 20, 11}
for the fingerprint modality for this example. And, the repeated score set Sg(k) is
Sr(k) = {100, 40, 30, 20}.

(b) Compute the average and standard deviation of the set, Sg(k), and denoted

by Sgavg(k) and Sgea(k), respectively,

Skavg(k) = mean(Sgr(k)), Srsta(k) = std(Sg(k)) (3.11)

(¢) The anchor value for the modality % is then computed as follows

Ak) = SRavg(k) + Srsta(k) (3.12)

(d) The above anchor value is then utilized as an operating point in (3.10) for
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Figure 3.2: Score-level fusion for a multimodal biometric system using two match-
ing modules with the proposed improved anchored min-max (IAMM) normalization
technique

Table 3.2: Values of matching scores of 3 persons each having 2 samples for the
fingerprint modality (i,7 = 1,2,3;p,q = 1,2)

- 100 40 30 20 10

100 - 4 33 25 15
40 44 - 100 40 30
30 33 100 - 20 11
20 25 40 20 - 100

10 15 30 11 100 -

normalizing the scores as

sy (k) —min{G(k),I(k)} .y
5 (k) = 2(A(R) —min{G(k),[(R)}) if spy(k) < A(k)

b sl (k) —A(k) e i
0.5+ s ro-am o spalk) > Ak)

(3.13)

where §;]q(k:) is the normalized scores for the modality &k, and p # ¢, if i = j. It
is to be noted that the normalized scores obtained using the above steps with the
anchor value in (3.12) is referred to as the improved anchored min-mazx (IAMM)
normalization technique [126, 127].

The final fused score set of the multimodal biometric system is obtained using the
SS rule at the score-level fusion. Then, this fused score is passed through the decision
module for identifying an individual as shown in Fig. 3.2.

In general, the genuine and impostor scores have some common values in a mul-

33



timodal biometric system. Therefore, there is an overlap region (OLR) between the
genuine and impostor scores as shown in Fig. 3.3. The region of the genuine and
impostor scores can be divided into three parts, such as A, B and C. The matching
scores in parts A and C are clearly impostor and genuine scores, respectively, and
these scores are shown as the non-overlap scores in Fig. 3.3. The matching score
values in part B are common between the genuine and impostor scores, and these
scores are shown as the overlap scores in Fig. 3.3. The overlap scores indicate that
these values exist in both the genuine and impostor score sets. The recognition errors
arise due to this overlap region of the genuine and impostor scores [101]. Therefore,
the recognition accuracy of a multimodal biometric system can be improved by con-
sidering the information contained in the overlap scores of the genuine and impostor
sets. In view of this, we consider two choices for the anchor values, and refer to them
as the overlap extrema-based anchor (OEBA) and mean-to-overlap extrema-based an-
chor (MOEBA) values, which are obtained from the genuine and impostor scores.
In order to obtain these anchor values, four parameters of the genuine and impostor
scores, namely, min(G(k)), u(G(k)), max(I(k)) and p(I(k)), which are the minimum
and mean values of the genuine scores, and maximum and mean values of the impos-
tor scores, respectively, are utilized. We assume that a biometric source with high
performance produces genuine scores that have a wide mean-to-max range and a wide

mean-to-min impostor score range.

3.3.2 Overlap Extrema-Based Anchored Min-max Normal-

ization Technique

In this technique [128], the anchor value is computed from the overlap region of the
genuine and impostor scores. A low performance biometric system has a wide overlap
area between the genuine and impostor scores. The lowest correct score values in
the genuine and impostor sets are represented, respectively, by their minimum and

maximum values. In order to obtain the anchor value taking the overlap region, more
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Figure 3.3: Genuine and impostor scores of a biometric system with overlap and
non-overlap regions

precisely, overlap extremas into consideration, we compute the difference between the
maximum of the impostor scores and the minimum of the genuine scores. Finally, the
normalized score is computed with this anchor value. The steps to compute the final
fused score using the above mentioned anchor value are as follows.

(a) First, separate the genuine G(k) and impostor (k) scores from the matching
scores for the modality k, as shown in Fig. 3.4, using the method described in Sec. 3.2.

(b) Compute the width of the OLR by taking the difference between the maximum
of the impostor scores and the minimum of the genuine scores. The overlap extrema-
based anchor (OEBA) value for the modality k, denoted by A(k), in a multimodal

biometric system is formulated as

A(k) = maz(1(k)) — min(G(k)) (3.14)

(c) The above anchor value is then utilized as an operating point in (3.10) for
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normalizing the scores as

s (k)=min{G(k),1(k)} Y
54 (k) = 2(17141(1(k)7min{G(k),I(k)})’ if spy(k) < A(k)

P4 s (k) —A(k) .y
0.5 + oG A spm(k) > A(k)

(3.15)

where E;Jq(k) is the normalized scores for the modality &, and p # ¢, if i = j.

It is to be noted that the normalized scores obtained using the above steps with
the anchor value A(k) in (3.15) is referred to as the overlap extrema-based anchored
min-max (OEBAMM) normalization technique [128].

The final fused score set of the multimodal biometric system is obtained using the
SS rule at the score-level fusion. Then, this fused score is passed through the decision

module for identifying an individual as shown in Fig. 3.4.

Matching > OEBAMM Normalization Technique
Module 1 s(1)

Separate

Score Level .
Genuine Compute Compl'lte " Decision Accept/
and Anchor Score Normalized Fusion Module Reiect

N Value Based on Scores based (Simple Sum) ejec

Matching S(2) Sfores Overlap Scores on Anchor

Module 2

Figure 3.4: Score-level fusion for a multimodal biometric system using two matching
modules with the proposed overlap extrema-based anchored min-max (OEBAMM)
normalization technique

3.3.3 Mean-to-Overlap Extrema-Based Anchored Min-max

Normalization Technique

In this case [128], the anchor value is computed considering the overlap scores and
its neighbors in both the genuine and impostor scores. The region between the mean
of the imposter scores and its maximum value, as well as that between the mean of
the genuine scores and its minimum value are considered for computing the anchor

value. Finally, the normalized score is computed with this anchor value. The steps to
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compute the final fused score using the above mentioned anchor value are as follows.

(a) First, separate the genuine G(k) and impostor (k) scores from the matching
scores for the modality k, as shown in Fig. 3.5, using the method described in Sec. 3.2.

(b) Compute the two differences as follows: i) the difference between the maximum
and mean values of the impostor scores, and ii) the difference between the mean and
minimum values of the genuine scores. The overlap extrema-based anchor (OEBA)
value for the modality k, denoted by A(k), in a multimodal biometric system is then

computed by taking the summation of these two differences as

A(k) = {mazx(I(k)) — u(I(k))} + {p(G (k) — min(G(k))} (3.16)

(c) The above anchor value is then utilized as an operating point in (3.10) for

normalizing the scores as

sp% (k)—min{G (k),I(k)} AN
549 (k) = 2{X(k)—min{c;(k),1(k)})’ if spy(k) < A(k)

b syl (k) —A(k) o i
0.5 + s - sp(k) > A(k)

(3.17)

where E;Jq(k) is the normalized scores for the modality k, and p # ¢, if i = j.

It is to be noted that the normalized scores obtained using the above steps with
the anchor value A(k) in (3.17) is referred to as the mean-to-overlap extrema-based
anchored min-max (MOEBAMM) normalization technique [128].

The final fused score set of the multimodal biometric system is obtained using the
SS rule at the score-level fusion. Then, this fused score is passed through the decision

module for identifying an individual as shown in Fig. 3.5.

3.3.4 Overlap Extrema-Variation-Based Anchored Min-max

Normalization Technique

It is known that the lowest correct score values in the genuine and impostor score sets

are represented by the minimum and maximum values of the corresponding sets [113].
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Figure 3.5: Score-level fusion for a multimodal biometric system using two match-

ing modules with the proposed mean-to-overlap extrema-based anchored min-max
(MOEBAMM) normalization technique

The variations of the genuine and impostor scores can be represented by the standard
deviations in their corresponding sets. In this case [129], the anchor value is computed
from the extrema and the standard deviations of the genuine and impostor score
sets. It is assumed that a biometric source with high performance produces a small
overlap area between the genuine and impostor scores, and the value of the standard
deviations of these scores are smaller than the value of min(G(k)). Based on this
assumption, the ratio of the width of the overlap area and the difference between the
standard deviations of the impostor and genuine scores would provide a smaller value
than min(G(k)) for a high performance biometric source. This ratio is considered as
the anchor value for normalizing the scores. The steps to compute the final fused
score using the above mentioned anchor value are as follows.

(a) First, separate the genuine G(k) and impostor (k) scores from the matching
scores for the modality k, as shown in Fig. 3.6, using the method described in Sec. 3.2.

(b) Compute the two differences as follows: i) the difference between the maximum
value of the impostor scores and minimum value of the genuine scores, and ii) the
difference between the standard deviations of the impostor and genuine scores. The
overlap extrema-variation-based anchor (OEVBA) value for modality k, denoted by

A(k), in a multimodal biometric system is then computed by taking the ratio of these
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two differences as

mazx(I(k)) — min(G(k))

Alk) = std(1(k)) — std(G(k))

(3.18)

(c) The above anchor value is then utilized as an operating point in (3.10) for

normalizing the scores as

s (k) —min{G(k),I(k)} Cpoilg
5 (k) = Qf,f(k)—min{q(k),f(k)})’ if spa(k) < A(k)

(3.19)
ba syl (k) —A(k) o i
0.5 + s —am sp(k) > A(k)

where §;Jq(k) is the normalized scores for the modality k, and p # ¢, if i = .

It is to be noted that the normalized scores obtained using the above steps with
the anchor value A(k) in (3.19) is referred to as the overlap extrema-variation-based
anchored min-max (OEVBAMM) normalization technique [129].

The final fused score set of the multimodal biometric system is obtained using the
SS rule at the score-level fusion. Then, this fused score is passed through the decision

module for identifying an individual as shown in Fig. 3.6.

Matching R OEVBAMM Normalization Technique
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Figure 3.6: Score-level fusion for a multimodal biometric system using two match-
ing modules with the proposed overlap extrema-variation-based anchored min-max
(OEVBAMM) normalization technique

3.4 Experimental Results

The performance of the multimodal biometric system under the score-level fusion

(MBS-SL) is evaluated by conducting experiments on the virtual multi-biometric
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datasets, namely, VMD-1 and VMD-2 discussed in Section 2.4.5. Then, a performance
comparison is carried out between the unimodal biometric systems and MBS-SL using
the proposed and existing normalization techniques. The values of equal error rate
(EER) and GAR @0.5% FAR are used to provide quantitative evaluations of the
unimodal biometric systems and of MBS-SL. Features and matching scores of the
three modalities of the datasets are obtained by employing the techniques of feature
extraction and matching as presented in [130-132].

Experiment 1: In this experiment, we study the performance of MBS-SL using
the simple-sum (SS) rule without any normalization technique on the dataset VMD-1.
Table 3.3 depicts EER(%) and GAR @0.5% FAR provided by the unimodal biometric
systems and MBS-SL with no normalization. It is seen from this table that MBS-SL
without normalization using the SS rule provides comparable or lower values of EER
than that provided by the PP and EP unimodal biometric systems, respectively, but
provides an EER value higher than that provided by the FP unimodal biometric
system. It is also seen from this table that MBS-SL without normalization using the
SS rule provides a higher value of GAR @0.5% FAR than that provided by the EP
unimodal biometric system, but provides a GAR value lower than that provided by
the FP and PP unimodal biometric systems. Therefore, it can be concluded that the
FP unimodal biometric system is a better choice than MBS-SL without normalization

technique using the SS rule.

Table 3.3: EER(%) and GAR @0.5% FAR provided by individual biometric systems
and MBS-SL on the dataset VMD-1. (FP-Fingerprint, PP-Palmprint, EP-Earprint)

Unimodal biometric systems MBS-SL

FP PP EP S5 Rule
EER(%) 3.47  6.64 45.01 6.67
GAR @0.5% FAR 89.33 88.53 8.27 81.6

Ezperiment 2: We now repeat Experiment 1 on the dataset VMD-2. Table 3.4
depicts the results of this experiment. It is seen from this table that MBS-SL without
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normalization using the SS rule provides comparable or lower values of EER than that
provided by the PP and EP unimodal biometric systems, respectively, but it provides
an EER value higher than that provided by the FP unimodal biometric system. It
is also seen from this table that MBS-SL without normalization using the SS rule
provides a higher value of GAR @0.5% FAR than that provided by the PP and EP
unimodal biometric systems, but provides a GAR value lower than that provided
by the FP unimodal biometric system. Therefore, it can be concluded that the FP
unimodal biometric system is a better choice than MBS-SL without normalization

technique using the SS rule.

Table 3.4: EER(%) and GAR @0.5% FAR provided by individual biometric systems
and MBS-SL on the dataset VMD-2. (FP-Fingerprint, PP-Palmprint, EP-Earprint)

Unimodal biometric systems MBS-SL

FP PP EP SS Rule
EER(%) 347  5.28 45.01 5.07
GAR @0.5% FAR 89.33 39.73 8.27 40.53

It is clear from these two experiments that there is no advantage of using MBS-SL
over a unimodal biometric system, if no normalization is carried out.

Experiment 3: In this experiment, we study the performance of MBS-SL using

Table 3.5: EER(%) and GAR @0.5% FAR provided by MBS-SL using the proposed
and existing normalization techniques under the SS rule on the dataset VMD-1

MM  Z-score PAN-MM TanH TAMM OEBAMM MOEBAMM OEVBAMM

(proposed) (proposed)  (proposed) (proposed)

EER(%) 1.86 2.33 4.26 4.53 0.56 1.13 0.78 6.67

GAR @0.5% FAR 96.53  96.8 93.07 80.27 98.93 97.07 99.2 88.53
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the proposed and existing normalization techniques on the dataset VMD-1. Table 3.5
depicts EER(%) and GAR @0.5% FAR provided by MBS-SL using the proposed
and existing normalization techniques under the SS rule. It is seen from Tables 3.3
and 3.5 that MBS-SL using any of the proposed normalization techniques (except
for OEVBAMM) provides an EER value lower and a GAR @0.5% FAR value higher
than that provided by any of the unimodal biometric systems. It is also seen from
Table 3.5 that MBS-SL using the proposed IAMM normalization technique provides
the lowest EER value of 0.56% and the second highest GAR value of 98.93% @0.5%
FAR, whereas the proposed MOEBAMM normalization technique provides the second
lowest EER value of 0.78% and the highest GAR value of 99.2% @0.5% FAR.

Fxperiment 4: We now repeat Experiment 3 on the dataset VMD-2. Table 3.6
depicts the results of this experiment. It is seen from Tables 3.4 and 3.6 that MBS-SL
using any of the proposed normalization techniques (except for OEVBAMM) provides
an EER value lower and a GAR @0.5% FAR value higher than that provided by any
of the unimodal biometric systems. It is seen from Table 3.6 that MBS-SL using
the proposed IAMM normalization technique provides the lowest EER value of 1.6%,
and the highest GAR value of 96.53% @0.5% FAR. Therefore, the proposed IAMM
normalization technique is the best choice for MBS-SL in terms of EER and GAR
@0.5% FAR.

Table 3.6: EER(%) and GAR @0.5% FAR provided by MBS-SL using the proposed
and existing normalization techniques under the SS rule on the dataset VMD-2

MM Z-score PAN-MM TanH TAMM OEBAMM MOEBAMM OEVBAMM

(proposed) (proposed)  (proposed) (proposed)
EER(%) 347 2,66 6.89 6.2 1.6 3.19 2.72 5.6
GAR @0.5% FAR 87.2 95.73 41.87 76 96.53 91.73 94.4 72.27

We now further evaluate ROC and DET curves.
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ROC and DET curves:
Figs. 3.7 and 3.8, respectively, show the ROC and DET curves of MBS-SL with the
IAMM normalization technique on the datasets VMD-1 and VMD-2, and MBS-SL
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Figure 3.7: The best ROC curves of MBS-SL on the datasets VMD-1 and VMD-2
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Figure 3.8: The best DET curves of MBS-SL on the datasets VMD-1 and VMD-2
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with the MOEBAMM normalization technique on the dataset VMD-1. It is seen from
these figures that MBS-SL with the IAMM normalization technique on the dataset
VMD-1 provides GAR values higher and FRR values lower than MBS-SL with the
MOEBAMM normalization technique. Since the dataset VMD-2 is more challenging
dataset than the dataset VMD-1 as mentioned in Section 2.4.5, MBS-SL with the
[AMM normalization technique provides a better performance on the latter dataset
than that provided on the former.

The above finding in conjunction with the results already obtained based on Ex-
periments 1 to 4 regarding EER and GAR @0.5% FAR, it can be concluded that
the TAMM normalization technique is the best choice for MBS-SL irrespective of the

dataset employed.

3.5 Summary

In this chapter, four new normalization techniques, namely, improved anchored min-
max (IAMM), overlap extrema-based anchored min-max (OEBAMM), mean-to-overlap
extrema-based anchored min-max (MOEBAMM) and overlap extrema-variation-based
anchored min-max (OEVBAMM), have been developed based on the genuine and
impostor scores. The performance of the multimodal biometric system under the
score-level fusion (MBS-SL) with the simple-sum (SS) rule using the proposed nor-
malization techniques has been studied in detail by conducting several experiments,
and comparing the results with that using the existing normalization methods. The
results have shown that a unimodal biometric system is a better choice than MBS-SL
without normalization technique using the SS rule. Results have also shown that
MBS-SL using the proposed TAMM normalization technique is the best choice in
terms of EER, GAR @0.5% FAR, ROC curves and DET curves, irrespective of which
dataset is considered.

In the next chapter, we will develop new weighting techniques for score level fusion,
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and evaluate the performance of a multimodal biometric system using these weighting
techniques in conjunction with various normalization techniques including the ones

developed in this chapter.
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Chapter 4

Confidence-based Weighting
Techniques for a Multimodal
Biometric System under Score
Level Fusion

4.1 Introduction

The error rates of different matching modules may not be the same in a multimodal
biometric system. The recognition rate of such a multimodal system deteriorates due
to the highest equal error rate (EER) or the lowest genuine acceptance rate (GAR)
provided by a matching module under the simple-sum rule at the score-level (SL)
fusion, as seen from the results of Chapter 3. It has been shown that for the SL
fusion, the performance of a multimodal biometric system (MBS) can be improved
over that of the simple-sum rule by using a sum of weighted scores from the various
matching modules, and this has been referred to as the weighted-sum (WS) rule [114].
The main objective of a weighting technique is to assign appropriate weights for the
scores of the various matching modules. A general block diagram of a multimodal
biometric system with two matching modules using the estimated weights for the
matching scores of the individual matching modules at the SL fusion is shown in

Fig. 4.1. Many weighting techniques have been proposed for improving the recognition
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Figure 4.1: Score-level fusion for a multimodal biometric system using two matching
modules with the estimation of their weights

rate of a multimodal biometric system [101, 113-119, 133]. These techniques have
been developed based on the genuine and impostor scores or the equal error rate of
individual matching modules. We now investigate new weighting techniques in order
to improve the performance of a score level fusion [128, 134].

The first weighting technique uses the matching scores without any distinction
of their being genuine or impostor, whereas the second one utilizes the scores with
this distinction. The performance of the multimodal biometric system under the

score-level fusion is compared to that using the existing weighting techniques.

4.2 Proposed Confidence-based Weighting Tech-
niques

In this section, we first define reliability and confidence factors, and use these in
proposing our weighting techniques. The reliability for the matching scores of a
modality £ is defined as

(4.1)

p.q

where p # g when i = j, and the parameter v(k) depends on the mean of the matching

scores, or on the extremum and mean values of the genuine and impostor scores.
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These scores are arranged in a particular way and this is illustrated through an
example. Consider 3 individuals (i, j = 1,2, 3) each having 2 samples (p,q = 1,2) for
modality k. This arrangement is given in Table 4.1 and is the same as that used for

arranging the matching scores in Chapter 3 (see Table 3.1)

Table 4.1: Reliability of matching scores of 3 persons each having 2 samples for the
fingerprint modality (i,7 =1,2,3;p,q = 1,2)

1,1 1,2 1,2 1,3 1,3
- R1,2 R1,1 R1,2 R1,1 R1,2

1,1 1,2 1,2 1,3 1,3

Rz,1 - Rz,1 R2,2 Rz,1 R2,2

2.1 2,1 2,2 2.3 2,3

R1,1 R1,2 - R1,2 R1,1 R1,2

R(k) ; 2,1 2,1 2,2 2,3 2,3
Ry Ry, Ry - Ry7 Ry

2,1 2,2 2,1 2,1 2,2

3.1 3,1 3,2 3,2 3,3

R1,1 R1,2 R1,1 R1,2 - R1,2

3,1 3,1 3,2 3,2 3,3
R2,1 R2,2 Rz,1 R2,2 R2,1 -

The confidence factor is defined as

o RYI(k
C(k) = Zvigpa Tlya(F) (4.2)
nR
where p # ¢ when i = j, and ng is the total number of elements in », . R (k).
The weight for the matching scores of a modality k is computed as
k
wik) = ) (43)

2 k1 C(F)
where m is the total number of modalities. It is to be noted that, for the modality k&,
higher the reliability, larger is the confidence factor, since the denominator of (4.2) is
constant for all values of k. It is also to be noted that, for the modality k, higher the
confidence factor, larger is the weight assigned to that modality, since the denominator
of (4.3) is constant for all values of k.
Now, we discuss the proposed confidence-based weighting techniques using equa-

tions (4.2) and (4.3).
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4.2.1 Confidence Based Weighting Technique using the Mean

Value of the Scores

In this section, we propose a weighting technique based on the matching scores with-
out any distinction of their being genuine or impostor [134]. The general block dia-
gram of the proposed weighting technique for the fusion of two modalities is shown

in Fig. 4.2.

CBW-1 Weighting Technique

Matching . Compute (1) Jwil)
Module 1 (M1) S(1) "| Confidence Based » Compute y Scc;re .Level Decision Accept/
) on Average of Weights w(2) usion )
Matching 52) . Scoregs _’C(Z) & ) (Weighted Sum) Module Reject
Module 2 (M2) v .
A

Figure 4.2: Score-level fusion for a multimodal biometric system using two matching
modules with the proposed confidence-based weighting technique 1 (CBW-1)

First, the matching scores are obtained by utilizing the method described in Sec-
tion 3.2. Then, the parameter v(k) in (4.1) is chosen to be the average of the matching

scores,

_ ZWJM 5;’,];1 (k)

Mg

v(k) (4.4)

where p # ¢ when i = j, and n is the total number of elements in > ., . S;Jq(k‘)
Next, the reliability for the matching scores of a modality & is obtained using (4.1).
Then, the confidence factor and the weight for the matching scores of the modality &
are computed using (4.2) and (4.3), respectively. We refer to this proposed weighting
technique as confidence-based weighting technique 1 (CBW-1).
The final score set for SL fusion of the multimodal biometric system is obtained

using the WS rule. Then, this fused score is utilized by the decision module to identify

the individual, as shown in Fig. 4.2.
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To illustrate how the proposed CBW-1 weighting technique assigns appropriate
weights to the individual matching scores, the following example is considered. Sup-
pose the matching scores for modality 1 and modality 2 are as listed in Tables 4.2
and 4.3, respectively. The parameters v(1) and v(2) for the two modalities are ob-
tained using (4.4) as 17.33 and 15.33, respectively. The reliabilities for the matching
scores of the two modalities are obtained using (4.1), and these values are listed in
Tables 4.4 and 4.5. The confidence factors C'(1) and C(2) and the weights w(1)
and w(2) for the matching scores for the two modalities are computed using (4.2)

and (4.3), respectively, and these values are listed in Table 4.6. It is seen from this

Table 4.2: Matching scores of 3 persons each having 2 samples for modality 1 (i, =
1,2,3;p,q=1,2)

1,1 1,2 1,2 1,3 1,3
- S12 ST Sia S11 Sih - 50 30 20 10 5
1,1 1,2 1,2 1,3 1,3
2,1 2,1 2,2 2,3 2,3
S(1) = =
2,1 2,1 2,2 2,3 2,3
Sy1  S3y 831 - S5 857 20 20 30 - 10 5
3,1 3,1 3,2 3,2 3.3
3,1 3,1 3,2 3,2 3,3

Table 4.3: Matching scores of 3 persons each having 2 samples for modality 2 (i, j =
1,2,3;p.q=12)

1,1 12 12 13 13
- S12 ST S12 S11 0 S12 - 50 20 15 10 5
1,1 L2 12 13 13
821 - Sy1 SS9y SS9l 50 - 20 15 10 5
21 21 2,2 23 23
ST Si2 - 812 Si1 Sin 20 20 - 30 10 5
S(2) = =
21 21 2,2 23 23
Sy1  S3y 831 - 551 857 15 15 30 - 10 5
31 31 32 32 3,3
ST ST2 S11 STa - Sie 10 10 10 10 - 20
3,1 3,1 3,2 3,2 3,3
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Table 4.4: Reliability of matching scores of 3 persons each having 2 samples for
modality 1 (¢,7 = 1,2,3;p,q = 1,2) using the proposed CBW-1 weighting technique

- Ryy Ry Ry Ry Ry - 1.89 0.73 0.16 0.42 0.71

Ryy - Ryl Rys Ry Ry; 189 - 0.73 0.16 042 0.71

RYT R™ - RY? R™ R 073 073 - 0.73 0.42 0.71
R(l): ) ) ) ) ) —

Ry} Ryy Ry? - Ry Ryy 016 016 0.73 - 042 0.71

Ry Ryy RYT RYS - Ry, 042 042 042 042 - 0.16

Ry) Ry, Ry! Ry5 RyT - 0.71 0.71 0.71 0.71 0.16 -

)

Table 4.5: Reliability of matching scores of 3 persons each having 2 samples for
modality 2 (i,7 = 1,2,3;p,q = 1,2) using the proposed CBW-1 weighting technique

- Ry, Ryi Ry RyY Ry; - 227 0.31 0.02 0.35 0.67

Ryy - Ry! Rys Ry7 Ry 227 - 0.31 0.02 0.35 0.67

Rl R}y - RY R R¥ 031 031 - 096 0.35 0.67
R(2):> ) ) ) ) ) —

Ry) Ry, Ry} - Ry} Ry; 002 0.02 096 - 0.35 0.67

Ry Ry RYT RYS - Ry 035 035 035 035 - 0.31

Ry) Ry, Ry? R3S RyT - 0.67 0.67 0.67 0.67 0.31 -

Table 4.6: Confidence factors and estimated weights using the proposed CBW-1

weighting technique

Confidence factor C(1)=0.61

Confidence factor C(2)=0.55

Estimated weight w(1)=0.52

Estimated weight w(2)=0.47

table that the confidence factor for modality 2 is higher than that for modality 1, and

hence, the estimated weight is larger for

the proposed weighting technique assigns

the former than that for the latter. Thus,

a weight to the matching scores of modality

2 higher than that assigned to the matching scores of modality 1.
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4.2.2 Confidence Based Weighting Technique using the Ex-
tremum and Mean Values of Genuine and Impostor

Scores

In this section, we propose a weighting technique based on the matching scores with
distinction of their being genuine or impostor [128]. We reproduce Fig. 3.3 of Chapter
3 as Fig. 4.3 for the sake of convenience. Unlike the existing weighting techniques in
which only the averages of the genuine and impostor scores are utilized [101, 116, 118],
we utilize the non-overlap scores as shown in Fig. 4.3 for estimating the weights. The
general block diagram of the proposed weighting technique is shown in Fig. 4.4 for
the fusion of two modalities. First, the genuine and impostor scores are obtained by
utilizing the method described in Section 3.2. Next, we assume that the difference
between the maximum and mean values for the genuine scores is small with a similar
assumption for the difference between the mean and minimum values for the impostor
scores, for any modality k. Based on this assumption, we define the parameter v(k)

in (4.1) to be

v(k) = {max(G(k)) — p(G(k))} + {u(I (k) — min(I(k))} (4.5)

where max(G(k)), u(G(k)), min(I(k)) and p(I(k)) are the maximum and mean val-
ues of the genuine scores, and minimum and mean values of the impostor scores,
respectively.

It should be noted that the parameter v(k) excludes the non-overlap scores that
are close to the overlap region and emphasizes those that are far removed. The reason
behind this is that the impostor scores that are close to the overlap region have values
higher than p(I(k)) and the genuine scores that are close to the overlap region have
values lower than p(G(k)).

Next, the reliability for the matching scores of a modality & is obtained using (4.1).
Then, the confidence factor and the weight for the matching scores of the modality &
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Figure 4.3: Genuine and impostor scores of a biometric system with overlap and
non-overlap regions reproduced from Chapter 3

CBW-2 Weighting Technique

1
Matching Separate |G(1),(1)) Compute |c(1) ~ i) Score Level
Module 1 (M1) | s(1) Genuine "1 Confidence Compute Fusion Decision — Accept/
and Based on Weights . Module Reject
- G(2),1(2 c(2
Matching S@) - Impostor 2) (l Non-overlap —>( ) > L LT

Module 2 (M2) Scores Scores wi2)

Figure 4.4: Score-level fusion for a multimodal biometric system using two matching
modules with the proposed confidence-based weighting technique 2 (CBW-2)

are computed using (4.2) and (4.3), respectively. We refer to this proposed weighting
technique as confidence-based weighting technique 2 (CBW-2).

The final score set for SL fusion of the multimodal biometric system is obtained
using the WS rule. Then, this fused score is utilized by the decision module to identify
the individual, as shown in Fig. 4.4.

To illustrate how the proposed CBW-2 weighting technique assigns appropriate
weights to the individual matching scores, the same matching scores for modality 1
and modality 2 that are listed in Tables 4.2 and 4.3, respectively, are considered.
The genuine scores G(1) = {50, 30,20} and G(2) = {50, 30,20}, and impostor scores
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Table 4.7: Reliability of matching scores of 3 persons each having 2 samples for
modality 1 (¢,7 = 1,2,3;p,q = 1,2) using the proposed CBW-2 weighting technique

- Ry, Ryi Ryj RyY Ry - 1.0 0.2 0.2 0.6 0.8
Ryy - Ry} Rys Ry Ry; 1.0 - 02 02 06 08
R(1) — Ri% Riz% -22 RS Ri’z Rié _ 0202 - 0206 08
Ry} Ry, RyT - Ry Ry 020202 - 06 08
RMy RPy RYT RYS - R 06 06 06 06 - 0.2
Ry Ry, Ry Ry Ry, - 0.8 0.8 0.8 0.8 0.2 -

Table 4.8: Reliability of matching scores of 3 persons each having 2 samples for
modality 2 (7,5 = 1,2,3;p,q = 1,2) using the proposed CBW-2 weighting technique

- Rpy Ryy Ryy Ry Ry ~ 12 0.1 0.3 0.6 0.8
RV - RV RY2 R R 12 - 01 03 06 08
R(2) — Rz% Ri% g RY; Rz;z Rié _ 0101 - 030608
R¥ RZY R2? - R R 030303 - 06 08
RPy Ryy RYT Ry - Ry 06 06 06 06 - 0.1
Ry} Ry, Ry? Ry5 Ryy - 0.8 0.8 0.8 0.8 0.1 -

I(1) = {30, 20, 30, 20, 10, 5, 10, 5, 10, 5, 10,5} and 1(2) = {20, 15, 20, 15, 10, 5, 10, 5, 10,
5,10,5} for the two modalities are obtained by utilizing the method described in Sec-
tion 3.2. From these scores we obtain maz(G(1))=50, (G (1))=33.33, (1(1))=13.33,
min(I(1))=5 for modality 1, and max(G(2))=50, u(G(2))=33.33, n(1(2))=10.83,
min(1(2))=5 for modality 2. Next, the parameters (1) and v(2) for the two modal-
ities are computed using (4.5) as 25 and 22.5, respectively. The reliabilities for the
matching scores of the two modalities are obtained using (4.1), and these values are
listed in Tables 4.7 and 4.8. The confidence factors C'(1) and C(2) and the weights
w(1) and w(2) for the matching scores for the two modalities are computed using (4.2)
and (4.3), respectively, and these values are listed in Table 4.9. It is seen from this

table that the confidence factor for modality 2 is higher than that for modality 1, and
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Table 4.9: Confidence factors and estimated weights using the proposed CBW-2
weighting technique

Confidence factor C(1)=0.52 | Confidence factor C(2)=0.53
Estimated weight w(1)=0.495 | Estimated weight w(2)=0.505

hence, the estimated weight is larger for the former than that for the latter. Thus,
the proposed weighting technique assigns a weight to the matching scores of modality

2 higher than that assigned to the matching scores of modality 1.

4.3 Experimental Results

The performance of the multimodal biometric system under the score-level fusion
(MBS-SL) is evaluated by conducting experiments on the virtual multi-biometric
datasets, namely, VMD-1 and VMD-2, as discussed in Section 2.4.5. Then, a perfor-
mance comparison is carried out between MBS-SL using the proposed and existing
weighting techniques. Next, the performance of MBS-SL using various normalization
and weighting techniques is evaluated by conducting experiments on both VMD-1 and
VMD-2. The values of EER and GAR @0.5% FAR are used to provide quantitative
evaluations of MBS-SL.

Experiment 1: In this experiment, we study the performance of MBS-SL on the
dataset VMD-1 using the two proposed weighting techniques, CBW-1 and CBW-2, as
well as with the existing weighting techniques, but with no normalization. Table 4.10
depicts EER(%) and GAR @0.5% FAR provided by MBS-SL for the various weighting
techniques. It is seen from this table that MBS-SL using the proposed CBW-2 weight-
ing technique provides an EER value lower than that provided by MBS-SL using the
existing weighting techniques. It is also seen that MBS-SL using the proposed CBW-2
and EERW provide a GAR @0.5% FAR value higher than that provided using the

25



Table 4.10: EER(%) and GAR @0.5% FAR provided by MBS-SL using the proposed
and existing weighting techniques on the dataset VMD-1

EERW DPW FDRW  CBW-1 CBW-2
(proposed)  (proposed)
BEER(%) 6.13 640  6.66 6.62 5.86
GAR @0.5% FAR 89.87 89.33 88.8 82.4 89.87

remaining weighting techniques. It is seen from Tables 4.10 and 3.3 that there is no
advantage to be gained by using MBS-SL by simply employing a weighting technique
without normalization over using unimodal biometric systems, since the lowest EER
and the highest GAR @0.5% FAR are provided by the fingerprint unimodal biometric
system in the present case.

Ezxperiment 2: We now repeat Experiment 1 on the dataset VMD-2. Table 4.11
depicts the results of this experiment. It is seen from this table that MBS-SL using
either of the proposed weighting techniques provides EER and GAR @0.5% FAR val-
ues lower and higher, respectively, than that provided by MBS-SL using the existing
weighting techniques. It is seen from Tables 4.11 and 3.4 that there is no advantage
to be gained by using MBS-SL by simply employing a weighting technique without
normalization over using unimodal biometric systems, since the lowest EER and the
highest GAR @0.5% FAR are provided by the fingerprint unimodal biometric system
in the present case.

It is clear from these two experiments that there is no advantage of using MBS-SL

Table 4.11: EER(%) and GAR @0.5% FAR provided by MBS-SL using the proposed
and existing weighting techniques on the dataset VMD-2

EERW DPW FDRW  CBW-1 CBW-2
(proposed) (proposed)
EER(%) 5.27 5.28 0.27 5.07 5.07
GAR @0.5% FAR 39.73 39.73  39.73 40.53 40.8
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over a unimodal biometric system, if no normalization is carried out.

Ezperiment 3: In this experiment, we study the performance of MBS-SL on the
dataset VMD-1 using the various normalization and weighting techniques. Tables 4.12
and 4.13 depict EER(%) and GAR @0.5% FAR, respectively, provided by MBS-SL
for the various normalization and weighting techniques. In these tables, individual
columns correspond to EERs and GARs @0.5% FARs provided by MBS-SL using a
given weighting technique for the various normalization techniques. The lowest EER
and the highest GAR @0.5% FAR are indicated in boldface. It is seen from these
tables that there are seven cases where MBS-SL provides the lowest EER value of
0.54% and the highest GAR value of 99.48% @0.5% FAR. These seven cases provide
an EER value lower than and a GAR @0.5% FAR value higher than that provided

Table 4.12: EER(%) provided by MBS-SL using the various weighting and normal-
ization techniques on the dataset VMD-1

EERW DPW FDRW  CBW-1 CBW-2
(proposed) (proposed)

MM 0.54 1.34 2.66 0.79 0.54

Z-score 2.93 0.86 0.54 2.93 2.67

PAN-MM 0.8 1.89 2.93 1.63 1.31

TanH 2.67 1.33 1.07 3.2 1.91

[AMM 0.54 0.54 0.54 0.56 0.54
(proposed)

OEBAMM 0.56 0.54 1.33 1.33 0.54
(proposed)

MOEBAMM | 0.56 0.54 1.34 1.07 0.54
(proposed)

OEVBAMM | 0.54 3.41 4.53 1.6 1.06
(proposed)
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Table 4.13: GAR @0.5% FAR provided by MBS-SL using the various weighting and
normalization techniques on the dataset VMD-1

EERW DPW FDRW  CBW-1 CBW-2
(proposed) (proposed)
MM 99.47 984 94.93 98.67 99.47
Z-score 94.13 96.8 99.2 94.13 95.47
PAN-MM 98.93 9253  90.93 96.53 97.6
TanH 93.87 97.6 97.6 92.27 97.93
[AMM 98.93 99.2 99.2 98.93 98.93
(proposed)
OEBAMM 99.2  99.47 98.67 97.6 99.47
(proposed)
MOEBAMM | 99.2  99.47 98.67 97.33 99.47
(proposed)
OEVBAMM | 99.47 94.67 92.8 97.07 98.4
(proposed)

by any of the unimodal biometric systems, as seen from Tables 4.12, 4.13 and 3.3.
Ezxperiment 4: We now repeat Experiment 3 on the dataset VMD-2. Tables 4.14
and 4.15 depict the results of this experiment. It is seen from Table 4.14 that MBS-SL
using the proposed OEBAMM normalization technique and the CBW-2 weighting
technique provides the lowest EER value of 1.12% and the highest GAR value of
97.33% @0.5% FAR. It is also seen from Tables 4.14, 4.15 and 3.4 that MBS-SL
using the proposed OEBAMM normalization technique with the proposed CBW-2
weighting technique provides an EER value lower than and a GAR @0.5% FAR value
higher than that provided by any of the unimodal biometric systems. By combining
the results of EER and GAR @0.5% FAR of Tables 4.14 and 4.15, it is clear that the
proposed OEBAMM normalization technique with the proposed CBW-2 weighting
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Table 4.14: EER(%) provided by MBS-SL using the various weighting and normal-
ization techniques on the dataset VMD-2

EERW DPW FDRW  CBW-1 CBW-2
(proposed)  (proposed)

MM 1.33 1.33 1.33 2.39 1.33

Z-score 2.93 2.93 29 2.93 2.98

PAN-MM 1.33 1.35 1.33 2.67 1.29

TanH 293 2,69  2.67 3.68 3.197

[AMM 3.46 1.33 1.33 2.46 1.35
(proposed)

OEBAMM 2.13 1.87 1.87 2.67 1.12
(proposed)

MOEBAMM | 2.42 1.33 1.38 2.93 1.33
(proposed)

OEVBAMM 1.33 1.64 1.87 2.87 1.92
(proposed)

Table 4.15: GAR @0.5% FAR provided by MBS-SL using the various weighting and
normalization techniques on the dataset VMD-2

EERW DPW FDRW  CBW-1 CBW-2
(proposed)  (proposed)
MM 96.53  96.3 96.27 94.93 95.47
Z-score 9333  95.2 95.2 92.8 91.2
PAN-MM 97.33 97.33  96.53 95.47 96
TanH 91.2  91.73  90.93 90.93 91.47
TAMM 91.2  96.53  96.3 95.2 96.8
(proposed)
OEBAMM 95.47 96 95.73 94.67 97.33
(proposed)
MOEBAMM | 9547  96.8 96.27 94.93 97.07
(proposed)
OEVBAMM | 96.8 93.6 93.07 91.73 96.53
(proposed)
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technique is the best choice for MBS-SL in terms of EER and GAR @0.5% FAR.

From the above analysis of the results of Experiments 3 and 4, it is clear that the
OEBAMM normalization technique with the CBW-2 weighting technique is the best
choice for MBS-SL in terms of EER and GAR @0.5% FAR, irrespective of the dataset
employed. We now further evaluate this case in terms of ROC and DET curves.

ROC and DET curves:

Figs. 4.5 and 4.6, respectively, show the ROC and DET curves of MBS-SL us-
ing the OEBAMM normalization technique and the CBW-2 weighting technique on
the datasets VMD-1 and VMD-2. It is seen from these figures that MBS-SL using
the OEBAMM normalization technique and the CBW-2 weighting technique on the
dataset VMD-1 provides GAR values higher and FRR values lower than that provided
on the dataset VMD-2. The reason for this could be attributed to the fact that the
dataset VMD-2 is more challenging dataset than the dataset VMD-1 as mentioned in
Section 2.4.5.

The processing time per image required by MBS-SL using the OEBAMM nor-
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Figure 4.6: The best DET curves of MBS-SL on the datasets VMD-1 and VMD-2

malization technique with the CBW-2 weighting technique has been found to be 11.2
seconds using MATLAB 2014 in the environment of Windows PC platform with a 2.93
GHz Intel(R) Core(TM) i7 CPU and 8 GB RAM. It is to be noted that the process-
ing time includes the time taken for feature extraction, feature encoding, matching,

normalization and weighting of scores.

4.4 Summary

In this chapter, two weighting techniques, namely, confidence-based weighting 1
(CBW-1) technique and confidence-based weighting 2 (CBW-2) technique have been
developed. The performance of the multimodal biometric system under the score-
level fusion (MBS-SL) using the proposed weighting techniques have been studied in
detail by conducting several experiments, and comparing the results with that using
the existing weighting methods. The performance of MBS-SL using the proposed

normalization and weighting techniques are compared to that using the existing nor-
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malization and weighting techniques. Experimental results have shown that MBS-SL
using the proposed overlap extrema-based anchored min-max (OEBAMM) normal-
ization technique with the proposed CBW-2 weighting technique is the best choice in
terms of EER, GAR @0.5% FAR, ROC curves and DET curves, irrespective of the
dataset. In Chapter 5, we develop a new fusion scheme, which consists of feature and
score level fusions, and evaluate the performance of a multimodal biometric system
using the various normalization and weighting techniques with the proposed fusion

scheme.
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Chapter 5

A Multimodal Biometric System
with Fusions of Modalities at

Feature and Score Levels

5.1 Introduction

In feature-level fusion, feature sets obtained from multiple feature extraction mod-
ules are fused, and this fused feature set is passed through the matching and/or
ranking, and decision modules for identifying a person. Feature-level fusion is ex-
pected to provide better recognition rate, since features contain richer information
about the biometric data than the matching scores or the decision of a matching
module. Considerable work has been done in feature-level fusion based on concatena-
tion of features [34-49, 51-67, 129|, shapes of features [50], or encoded features [68].
In the existing feature-level fusion schemes [34-68, 129], the matching scores are ob-
tained from matching modules by performing feature-by-feature comparison. These
schemes cannot consider the neighbourhood information of a feature value at a given
position to obtain the matching scores. Even though fusion at a single level such as

the score-level or feature-level or rank-level has been discussed in the literature, there
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has been no study on multimodal fusion using more than one level. For this to be
accomplished, information concerning at least three modalities would be required.
In this chapter, we propose a new multimodal biometric system [135], in which
three modalities are fused both at the feature level and the score level. This is carried
out by first performing a feature level fusion using the features of two of the modalities,
followed by a score level fusion of the score obtained from the feature level fusion with
the score of the remaining modality. A performance evaluation is conducted on this
two-level multimodal biometric system under different normalization and weighting

techniques.

5.2 Proposed Two-Level Fusion Scheme

In this section, we propose a multimodal biometric system in which by considering
three different modalities, fusion is carried out at two distinct levels, namely, feature
and score levels. We first take EERs of the individual biometric systems into consid-
eration in order to find out as to which of the two modalities should be used for the
feature-level fusion, and choose those two modalities for which the EER is not the
least. The idea behind choosing such two modalities is that they need to be improved
the most in order to enhance the recognition capacity through their feature-level fu-
sion. We fuse the encoded features rather than the raw ones of these two modalities.
The reason behind using encoded values of features is to reduce the processing time
for the matching modules to identify a person as well as to utilize useful information
from each of these two modalities. Finally, we fuse at the score-level the score ob-
tained from the feature-level fusion with that of the modality for which the EER is
the lowest under the weighted sum rule to improve the overall recognition rate of the
multimodal biometric system.

A block diagram of the proposed fusion scheme is shown in Fig. 5.1. Let the
biometric and feature images for the modality k& (k = 1,2,3) be denoted by X(k),
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Figure 5.1: Schematic of the proposed two-level scheme (MBS-FSL)

s(a)

and F(k), respectively. The feature image F(k) is now encoded by using a binary
hash table encoding technique presented in [131] based on 4-connected neighbors of
a feature value at a given position (x,y). Let the maximum feature value in F(k) be
denoted by 7. Then, the total number of bits required to assign a hash code for any
feature value f,, (k) at the position (z,y) of F(k) is equal to 1. For the feature value
Juy(k), the hash function assigns it to the A™ bin as

oty = 4 7 AT I (5.1)

0, otherwise
where hgyz (k) being the encoded form of f,,(k), and A is the bin position. Fig. 5.2
shows an example of (a) the feature image F(k) for a palmprint, (b) two feature
values in f,, (k) at the positions (23,21) and (23,22), i.e., fog21 and foz20, and (c)
the corresponding hash table, where it is assumed that n = 8, and thus, 8 bits are
required to encode f,, in this example. Assuming the feature value fs39; = 8, bins 1
to 7 are encoded as 0 and bin 8 as 1 for fos9;1. Further, if the feature value fa399 is

assumed to be 4, then bin 4 is encoded as 1 and the rest of the bins as 0 for fa392.
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Figure 5.2: Binary hash table encoding: (a) the feature image, F(k) for a palm-
print, (b) feature matrix F (k) with feature values fo32; and fos 20 specified, and (c)
corresponding hash table with the hash codes specified for fa391 and fa390

We utilize the genuine score, G(k) and the impostor score, (k) for the modality
k in order to select the matching module that provides the lowest EER in comparison
with others in a multimodal biometric system using the comparator (see Fig. 5.1).
The region of the genuine and impostor scores can be divided into four parts [128],
as shown in Fig.5.3. In order to compute the threshold value for the modality k, two
parameters of the genuine and impostor scores, namely, min(/(k)), and max(G(k)),
which are the minimum value of the impostor scores, and the maximum value of the

genuine scores, respectively, are utilized. The threshold value is computed for the
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Figure 5.3: Genuine and impostor scores of a biometric system with falsely rejected
genuine (FRG(k)) and falsely accepted impostor (FAI(k)) based on the threshold
value Th(k)

modality k as follows.

Th(k) = [min(I1(k)) : step_size : max(G(k))] (5.2)

where
max(G(k)) — min(I(k))
G

¢ being an empirical parameter. Next, we count the number of rejected genuine

step_size = (5.3)

scores accepted falsely as impostor scores for which G(k)<Th(k), and accepted im-
postor scores accepted falsely as genuine scores for which I(k)>Th(k), and refer to
them, respectively, as falsely rejected genuine (FRG(k)) and falsely accepted impostor
(FAI(k)) scores for the modality k, as shown in Fig. 5.3. The parameter ¢ controls
the step size for the variable Th(k) that is utilized to compute the number of falsely
rejected genuine and falsely accepted impostor scores. The higher the value of (, the
smaller is the step size for Th(k). By running several experiments, it has been found

that ¢ = 103 is the best value for the step size.
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Now, the false acceptance rate (FAR), false rejection rate (FRR) and EER for the

modality k& are computed as follows

FRG(k)

FAR(k) = Tongth(GUFT) (5.4)
FAI(k)
FRR(K) = 1o ) (5.5)

EER(E) = FAR(K) ; FRR(k) 56)

The EER of the matching module that provides the lowest value is given by
EERppest = Tm(EER(k)) (5.7)

We assume, without loss of generality, that it is matching module 3 that provides
the lowest EER. Based on this assumption, we perform a feature level fusion of the
encoded features obtained from the modalities 1 and 2. It is to be noted that the
encoded features hyyy (k) for the modality k are binary numbers in which "1’ provides
more information about the feature than '0’ does. Therefore, this fusion can be done
using the logical operators, such as XOR, AND, and OR in order to obtain the fused
encoded feature. We utilize the logical OR operator for the fusion, since it considers
encoded feature value of "1’ at the position (z,y, \) available from the modality 1 or

2. The fused encoded feature, hyy(1,2) can be computed as [129]

haya(152) = hayr(1) © hayx(2) (5.8)

at the position (z,y,\), and the sign @ indicates the logical OR operation. Next,
the matching score S(4) corresponding to this fused feature is obtained using the
matching module 4 (see Fig. 5.1).

Now, the matching score S(4) so obtained and the score S(3) from the matching
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module 3 are normalized and fused by the weighted sum rule at the score level fusion.
Since the proposed fusion scheme is based on two levels of fusion, namely, feature-level
and score-level, the fusion scheme is referred to as the multimodal biometric system
with feature and score level (MBS-FSL) fusions. The final fused score Spgy, is given
by

4

SFSL = Zw(t)SN<t) (59)

t=3
where w(t) represents the weight attached to the score from matching module ¢ and

Sn(t) denotes the normalized value of S(t).

5.3 Experimental Results

The performance of the proposed two-level multimodal biometric system (MBS-FSL)
using the various normalization and weighting techniques is evaluated by conducting
experiments on the multi-biometric datasets, namely, VMD-1 and VMD-2, discussed
in Section 2.4.5.

Experiment 1: In this experiment, we study the performance of MBS-FSL on
the dataset VMD-1. Tables 5.1 and 5.2 depict EER (%) and GAR @0.5% FAR, respec-
tively, provided by MBS-FSL for the various normalization and weighting techniques.
In these tables, individual columns correspond to EERs and GARs @0.5% FARs pro-
vided by MBS-FSL using a given weighting technique for the various normalization
techniques. The lowest EER and the highest GAR @0.5% FAR are indicated in bold-
face. It is seen from Tables 5.1, 5.2 and 3.3 that, irrespective of the normalization or
weighting technique used, MBS-FSL provides an EER value lower and a GAR value
@0.5% FAR higher than that provided by any of the unimodal biometric systems.
It is seen from Tables 5.1 and 5.2 that MBS-FSL using the proposed OEVBAMM
normalization technique and the proposed CBW-2 weighting technique provides the
lowest EER value of 0.47%, and the highest GAR value of 99.73% @0.5% FAR. There-
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Table 5.1: EER(%) provided by MBS-FSL with various weighting and normalization
techniques on the dataset VMD-1

EERW DPW FDRW  CBW-1 CBW-2
(proposed)  (proposed)

MM 3.15 1.07 1.34 2.39 0.83

Z-score 3.47 3.2 3.2 3.2 2.93

PAN-MM 3.2 1.08 1.39 2.39 0.8

TanH 3.2 1.86 2.12 2.66 1.34

[AMM 3.2 2.13 2.39 2.93 1.08
(proposed)

OEBAMM 3.2 2.4 2.67 2.94 1.33
(proposed)

MOEBAMM | 3.2 2.67 287 2.96 1.89
(proposed)

OEVBAMM 2.67 1.03 0.8 1.11 0.47
(proposed)

Table 5.2: GAR @0.5% FAR provided by MBS-FSL with various weighting and
normalization techniques on the dataset VMD-1

EERW DPW FDRW  CBW-1 CBW-2
(proposed)  (proposed)
MM 92.8  96.53 96.27 96 98.67
Z-score 90.13  92.53 92.53 91.2 93.33
PAN-MM 92.8  96.53  96.53 95.47 98.67
TanH 92.27 9547 95.2 94.4 97.6
TAMM 92.53 96 95.47 93.87 96.53
(proposed)
OEBAMM 92 96 95.2 93.87 96.27
(proposed)
MOEBAMM | 91.47  95.2 94.4 93.07 96
(proposed)
OEVBAMM | 94.93 98.67 98.67 96.53 99.73
(proposed)
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fore, the CBW-2 weighting technique with the OEVBAMM normalization technique
is the best choice for MBS-FSL in terms of EER and GAR @0.5% FAR.
Experiment 2: We now repeat Experiment 1 on the dataset VMD-2. Tables 5.3
and 5.4 depict the results of this experiment. It is seen Tables 5.3, 5.4 and 3.4 that,
irrespective of the normalization or weighting technique used, MBS-FSL provides an
EER value lower and a GAR value @0.5% FAR higher than that provided by any of
the unimodal biometric systems. It is seen from Table 5.3 that MBS-FSL using the
proposed OEVBAMM normalization method and the proposed CBW-2 weighting
technique provides the lowest EER value of 1.07%. It is seen from Table 5.4 that
MBS-FSL provides the highest GAR value of 97.6% @0.5% FAR for three cases.

Table 5.3: EER(%) provided by MBS-FSL with various weighting and normalization
techniques on the dataset VMD-2

EERW DPW FDRW  CBW-1 CBW-2
(proposed) (proposed)

MM 2.88 2.13 1.63 2.93 1.54

Z-score 3.47 3.21 3.2 3.2 2.93

PAN-MM 2.93 2.13 1.85 2.93 1.09

TanH 2.67 2.66 2.67 2.93 2.39

[AMM 2.93 2.66 2.13 2.94 1.39
(proposed)

OEBAMM 2.94 2.71 2.47 2.93 1.83
(proposed)

MOEBAMM | 2.93 2.93 2.94 3.21 2.13
(proposed)

OEVBAMM 2.14 1.33 1.09 2.64 1.07
(proposed)
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Table 5.4: GAR @0.5% FAR provided by MBS-FSL with various weighting and
normalization techniques on the dataset VMD-2

EERW DPW FDRW  CBW-1 CBW-2
(proposed)  (proposed)

MM 94.13 96 96.53 93.33 95.47

Z-score 90.4  90.93 91.47 90.13 92.53

PAN-MM 94.13 9547  96.53 92.8 97.6

TanH 90.93 91.2 91.47 90.93 91.47

[AMM 9253 9493 95.73 92.27 96.8
(proposed)

OEBAMM 92.27 94.13 94.93 91.73 96.53
(proposed)

MOEBAMM | 91.73 93.33  93.87 90.93 95.73
(proposed)

OEVBAMM | 95.73 9733 97.6 94.93 97.6
(proposed)

It is clear from these two experiments that MBS-FSL using the CBW-2 weighting
technique with the OEVBAMM normalization technique is the best choice not only
in terms of EER, but also in terms of GAR @0.5% FAR, irrespective of which dataset
is employed. We now further evaluate this case in terms of ROC and DET curves.

ROC and DET curves:

Figs. 5.4 and 5.5, respectively, show the ROC and DET curves of MBS-FSL using
the OEVBAMM normalization technique and the CBW-2 weighting technique on the
datasets VMD-1 and VMD-2. It is seen from these figures that MBS-FSL using
the OEVBAMM normalization technique and the CBW-2 weighting technique on the
dataset VMD-1 provides GAR values higher and FRR values lower than that provided
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on the dataset VMD-2. As pointed out in Chapter 4, this inferior performance on
the dataset VMD-2 is due to its challenging nature.
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5.4 Comparison with MBS-SL Results

In this section, a performance comparison is presented between the best choices for
MBS-SL and MBS-FSL on the datasets VMD-1 and VMD-2.

Tables 5.5 and 5.6 depict EER(%) and GAR @0.5% FAR provided by MBS-SL and
MBS-FSL using the above mentioned choices on the datasets VMD-1 and VMD-2,
respectively. It is seen from these tables that MBS-FSL using the OEVBAMM nor-
malization technique and the CBW-2 weighting technique provides the lowest EER
value and the highest GAR value, irrespective of which dataset is employed. There-
fore, MBS-FSL using the OEVBAMM normalization technique is a better choice
than MBS-SL using the OEBAMM normalization technique with the CBW-2 weight-
ing technique in terms of EER and GAR value @0.5% FAR, irrespective of the dataset

employed.

Table 5.5: The best results provided and the processing time (in seconds) required
by MBS-SL and MBS-FSL on the dataset VMD-1

EER GAR @0.5% FAR Processing time
MBS-SL+CBW-2+OEBAMM 0.54 99.47 11.2
MBS-FSL+CBW-2+OEVBAMM | 0.47 99.73 1.1

Table 5.6: The best results provided and the processing time (in seconds) required
by MBS-SL and MBS-FSL on the dataset VMD-2

EER GAR @0.5% FAR Processing time
MBS-SL+CBW-2+OEBAMM 1.12 97.33 11.2
MBS-FSL+CBW-2+OEVBAMM | 1.07 97.6 1.1
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The processing time per image required by MBS-FSL using the OEVBAMM nor-
malization technique along with MBS-SL using the OEBAMM normalization tech-
nique with the CBW-2 weighting technique is given in Tables 5.5 and 5.6 for the
datasets VMD-1 and VMD-2, respectively. It is seen from these tables that MBS-
FSL using the OEVBAMM normalization technique requires a processing time of
1.1 seconds per image, which is ten times lower than that required by MBS-SL us-
ing the OEBAMM normalization technique with the CBW-2 weighting technique,
irrespective of which dataset is employed.

The above finding in conjunction with the results already obtained based on Sec-
tion 5.3 regarding EER and GAR @0.5% FAR, it can be concluded that MBS-FSL
using the CBW-2 weighting technique with the OEVBAMM normalization technique
is the best choice not only in terms of EER and GAR @0.5% FAR, but also in terms

of processing time, irrespective of which dataset is employed.

5.5 Summary

In this chapter, a new multimodal biometric system, MBS-FSL, in which three modal-
ities are fused at the feature and score levels has been developed. In MBS-FSL, the
two modalities with the lowest matching scores are first fused at the feature-level,
followed by the normalization and fusion of the score obtained from the feature level
fusion and the score of the remaining modality using the weighted sum rule for fusion
at the score level. The performance of MBS-FSL using the various normalization and
weighting techniques are evaluated on the datasets VMD-1 and VMD-2. Experimen-
tal results have shown that MBS-FSL using the proposed overlap extrema-variation-
based anchored min-max (OEVBAMM) normalization technique with the proposed
confidence-based weighting technique 2 (CBW-2) is the best choice in terms of EER,
GAR @0.5% FAR, ROC curves, DET curves and processing time, irrespective of the

dataset. In Chapter 6, we develop another two-level fusion scheme, in which features
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with and without being encoded are utilized to fuse three modalities at the feature
and score levels, and evaluate the performance of a multimodal biometric system
using the various normalization and weighting techniques with the proposed fusion

scheme.

76



Chapter 6

A Multimodal Biometric System
with Modified Fusions of
Modalities at Feature and Score

Levels

6.1 Introduction

Raw feature-based multimodal biometric systems [34-68, 129] make use of feature
values in order to obtain the matching scores by using feature-by-feature comparison.
However, in such systems, the neighbourhood information of a feature value at a
given position cannot be taken into account. In the previous chapter, a multimodal
biometric system with feature and score level fusions (MBS-FSL) has been proposed,
wherein the raw features are encoded before the feature level fusion. In MBS-FSL,
the encoded values of the raw features were obtained by using the binary hash table
encoding technique presented in [131] based on 4-connected neighbors of a feature
at a given position, which allowed the neighbourhood information to be included.

However, in MBS-FSL, the border values of the raw features could not be encoded in

7



view of the fact that the feature values of all 4-connected neighbours are not available;
this was not the case when raw features were utilized for the feature level fusion. In
view of the above discussion, one can expect the recognition accuracy of a multimodal
biometric system to be further improved by carrying out fusion by taking into account
the encoded features as well as the raw features, which will allow the border pixels
to be taken into account as well.

In this chapter, we propose a new multimodal biometric system [136], in which
three modalities are fused, wherein both the neighbourhood and border feature in-
formation are used. This is done by carrying out fusions taking into account the
encoded features as well as the raw features. The performance of this multimodal

biometric system is evaluated under different normalization and weighting techniques

and compared with that of MBS-FSL of Chapter 5.

6.2 Proposed Modified Two-Level Fusion Scheme

In this section, we propose a new multimodal biometric system in which fusion is
carried out at two distinct levels, namely, feature and score levels by taking into
consideration both the encoded and raw features. A block diagram of the proposed
fusion scheme for three modalities is shown in Fig. 6.1.

In order to perform the feature level fusion, we first encode the raw features and
obtain the matching scores from the corresponding matching modules. Next, we
utilize the comparator discussed in Section 5.2 in order to find out as to which of
the two modalities should be used for the feature-level fusion, and choose those two
modalities for which the EER is not the least. We then fuse the encoded features
of these two modalities. In order to perform the score level fusion, we first obtain
the matching scores from the matching modules by utilizing the corresponding raw
features. The score obtained from the feature-level fusion, the score of the modality

that was not used for the feature level fusion, and the scores from the three modalities
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Figure 6.1: Schematic of the proposed modified two-level scheme (MBS-MFSL)

obtained from the matching modules by using their raw features are now fused at the

score level under the weighted sum rule.

Let the biometric and feature images for the modality k& (k = 1,2,3) be denoted

by X(k), and F(k), respectively. The proposed fusion scheme can be divided into two
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stages and they are discussed below.

Stage 1: Feature-level fusion:

In this stage, the feature image F (k) is first encoded by using a binary hash table
encoding technique presented in [131] based on 4-connected neighbors of a feature
value at a given position (x,y), which allows the neighbourhood information to be
included. Based on the scores obtained from these encoded features, the modalities
for which the EER is not the least are chosen by employing the comparator, whose
functionality was discussed in Section 5.2, for the feature level fusion. Next, the
encoded features of these two modalities, say hgyn(1) and hgy\(2) are combined us-
ing (5.8) to obtain the fused encoded feature h,y(1,2). The matching score S(4) is
then obtained by passing h,yx(1,2) through the matching module 4 (see Fig. 6.1).
Thus, the outputs of Stage 1 are the score of the modality that is not used in the
feature level fusion S(3) and the score from the feature level fusion S(4). These scores
are marked as scores from encoded features in Fig. 6.1.

Stage 2: Score-level fusion:

In this stage, the matching scores S(5), S(6) and S(7) corresponding to their raw
features are obtained using feature-by-feature comparison from the matching modules
5, 6 and 7, respectively (see Fig. 6.1), which allow the border pixels to be included.
These scores are marked as scores from raw features in Fig. 6.1. Next, these scores
and the scores from Stage 1 are normalized and fused by the weighted sum rule at

the score-level fusion. The final fused score Sy;pgy, is given by

1=3
where w(l) represents the weight attached to the score from matching module [ and
Sn(l) denotes the normalized value of S(1). Then, this fused score Sy rsy, is passed
through the decision module for identifying an individual as shown in Fig. 6.1.
This fusion scheme is referred to as the multimodal biometric system with modified

feature and score level (MBS-MFSL) fusions.
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6.3 Experimental Results

The performance of the proposed new two-level multimodal biometric system, MBS-
MFSL, using the various normalization and weighting techniques is evaluated by
conducting experiments on the multi-biometric datasets, VMD-1 and VMD-2.
Experiment 1: In this experiment, we study the performance of MBS-MFSL on
the dataset VMD-1. Tables 6.1 and 6.2 depict EER(%) and GAR @0.5% FAR, re-
spectively, provided by MBS-MFSL for the various normalization and weighting tech-
niques. In these tables, individual columns correspond to EERs and GARs @0.5%
FARs provided by MBS-MFSL using a given weighting technique for the various

Table 6.1: EER(%) provided by MBS-MFSL with various weighting and normaliza-
tion techniques on the dataset VMD-1

EERW DPW FDRW  CBW-1 CBW-2
(proposed) (proposed)

MM 1.01 0.27 0.48 0.82 0.06

Z-score 3.2 2.94 2.39 3.19 0.47

PAN-MM 0.27 0.31 0.74 0.22 0.03

TanH 3.2 1.33 1.1 2.73 1.37

IAMM 0.57 047 047 0.56 0.48
(proposed)

OEBAMM 2.37 0.26 0.27 1.88 0.32
(proposed)

MOEBAMM | 2.63 0.28 0.29 2.4 0.51
(proposed)

OEVBAMM 0.28 0.49 0.54 0.49 0.24
(proposed)
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Table 6.2: GAR @0.5% FAR provided by MBS-MFSL with various weighting and
normalization techniques on the dataset VMD-1

EERW DPW FDRW  CBW-1 CBW-2
(proposed) (proposed)

MM 97.07 100 99.73 98.13 100

Z-score 9227  95.2 96 92.53 99.73

PAN-MM 100 100 98.4 100 100

TanH 92.8  96.53  96.8 94.93 96.53

[AMM 98.93 99.73  99.73 99.2 99.73
(proposed)

OEBAMM 96 100 100 96.53 100
(proposed)

MOEBAMM 96 100 100 96 99.73
(proposed)

OEVBAMM 100 99.73 9947 99.73 100
(proposed)

normalization techniques. The lowest EER and the highest GAR @0.5% FAR are
indicated in boldface. It is seen from Tables 6.1, 6.2 and 3.3 that, irrespective of the
normalization or weighting technique used, MBS-MFSL provides an EER value lower
and a GAR value @0.5% FAR higher than that provided by any of the unimodal bio-
metric systems. It is seen from Tables 6.1 and 6.2 that there is only one combination,
namely, the PAN-MM normalization technique with the CBW-2 weighting technique,
which provides simultaneously both the lowest EER value of 0.03% and the highest
GAR value of 100% @0.5% FAR. Therefore, MBS-MFSL using the CBW-2 weight-
ing technique with the PAN-MM normalization technique is the best choice for the
dataset VMD-1 in terms of both EER and GAR @0.5% FAR.
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Experiment 2: We now repeat Experiment 1 on the dataset VMD-2. Tables 6.3
and 6.4 depict the results of this experiment. It is seen from Tables 6.1, 6.2 and 3.4
that, irrespective of the normalization or weighting technique used, MBS-MFSL pro-
vides an EER value lower and a GAR value @0.5% FAR higher than that provided
by any of the unimodal biometric systems. It is seen from Tables 6.3 and 6.4 that
there is only one combination, namely, the OEVBAMM normalization technique with
the CBW-2 weighting technique, which provides simultaneously both the lowest EER
value of 1.07% and the highest GAR value of 97.87% @0.5% FAR. Therefore, MBS-
MFSL using the CBW-2 weighting technique with the OEVBAMM normalization
technique is the best choice for the dataset VMD-2 in terms of both EER and GAR
@0.5% FAR.

Table 6.3: EER(%) provided by MBS-MFSL with various weighting and normaliza-
tion techniques on the dataset VMD-2

EERW DPW FDRW  CBW-1 CBW-2
(proposed) (proposed)

MM 1.91 1.32 1.07 243 1.85

Z-score 2.93 2.93 2.94 3.21 2.67

PAN-MM 2.12 1.33 1.09 2.67 1.92

TanH 2.93 2.67 2.67 3.18 2.67

TAMM 293 293 293 3.20 2.93
(proposed)

OEBAMM 2.88 1.87 1.89 2.66 1.08
(proposed)

MOEBAMM | 2.94 2.16 2.13 2.93 2.92
(proposed)

OEVBAMM 1.33 1.07 1.09 1.89 1.07
(proposed)
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Table 6.4: GAR @0.5% FAR provided by MBS-MFSL with various weighting and
normalization techniques on the dataset VMD-2

EERW DPW FDRW  CBW-1 CBW-2
(proposed)  (proposed)
MM 96 97.6 97.07 95.47 96

Z-score 91.73 9333  93.6 91.47 94.67

PAN-MM 96.27  97.33 97.6 94.67 96.53

TanH 91.2  91.73 9147 92 91.73

[AMM 92 93.33  93.33 91.2 93.33
(proposed)

OEBAMM 94.67 96 96.27 93.87 97.33
(proposed)

MOEBAMM | 93.87 95.73 9547 93.07 94.13
(proposed)

OEVBAMM 97.6  97.33 96 95.73 97.87
(proposed)

6.4 Comparison with MBS-FSL Results

In this section, a performance comparison between the best choices for MBS-FSL and
MBS-MFSL on the datasets VMD-1 and VMD-2 is presented. For this purpose, we
first evaluate these cases in terms of ROC and DET curves.

Figs. 6.2 and 6.3, respectively, show the ROC and DET curves for the best choices
of MBS-FSL and MBS-MFSL on the dataset VMD-1. It is seen from these figures
that MBS-MFSL using the PAN-MM normalization and CBW-2 weights provides
GAR values higher and FRR values lower than that provided by MBS-FSL using the
OEVBAMM normalization and CBW-2 weights for the dataset VMD-1.
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Figs. 6.4 and 6.5, respectively, show ROC and DET curves for the best choices
of MBS-FSL and MBS-MFSL on the dataset VMD-2. It is seen from these figures
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that MBS-FSL using the OEVBAMM normalization and CBW-2 weights provides
GAR values and FRR values almost similar to that provided by MBS-MFSL using
the OEVBAMM normalization and CBW-2 weights for the dataset VMD-2.
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Tables 6.5 and 6.6 depict EER(%) and GAR @0.5% FAR provided by MBS-FSL
and MBS-MFSL using the above mentioned choices on the datasets VMD-1 and
VMD-2, respectively. It is seen from these tables that MBS-MFSL using the PAN-
MM normalization and CBW-2 weights provides an EER value lower than and a GAR
value higher than that provided by MBS-FSL using the OEVBAMM normalization
and CBW-2 weights for the dataset VMD-1. However, MBS-FSL. and MBS-MFSL
with the OEVBAMM normalization and CBW-2 weights provide the same EER, with
the latter providing a slightly higher GAR than that provided by the former for the
dataset VMD-2.

The processing times per image required by the best choices for MBS-FSL and
MBS-MFSL on the datasets VMD-1 and VMD-2 are also given in Tables 6.5 and 6.6,
respectively. It is seen from these tables that MBS-MFSL requires a processing time of
12.3 seconds per image, which is eleven times higher than that required by MBS-FSL,

irrespective of which dataset is employed.

Table 6.5: The best results provided and the processing time (in seconds) required
by MBS-FSL and MBS-MFSL on the dataset VMD-1

EER GAR @0.5% FAR Processing time
MBS-FSL+CBW-2+OEVBAMM | 0.47 99.73 1.1
MBS-MFSL+CBW-2+PAN-MM | 0.03 100 12.3

Table 6.6: The best results provided and the processing time (in seconds) required
by MBS-FSL and MBS-MFSL on the dataset VMD-2

EER GAR @0.5% FAR Processing time
MBS-FSL+CBW-24+OEVBAMM | 1.07 97.6 1.1
MBS-MFSL+CBW-2+OEVBAMM | 1.07 97.87 12.3
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The above findings regarding EER and GAR @0.5% FAR, it can be concluded
that MBS-MFSL using the PAN-MM normalization with CBW-2 weights is a better
choice than MBS-MFSL using the OEVBAMM normalization with CBW-2 weights at
the cost of an increased processing time for the dataset VMD-1. However, MBS-FSL
using the OEVBAMM normalization with CBW-2 weights is a better choice than
MBS-MFSL using the OEVBAMM normalization with CBW-2 weighting technique
with a slightly lower value of GAR @0.5% FAR, but with a substantially reduced
processing time for the dataset VMD-2.

6.5 Summary

In this chapter, a new multimodal biometric system, MBS-MFSL, in which three
modalities are fused at the feature and score levels that takes both the raw and
encoded features into account, has been developed. In MBS-MFSL, the two modalities
with the lowest matching scores are first fused at the feature-level, followed by the
normalization and fusion of the score obtained from the feature level fusion, the
score of the modality that was not used in the feature level fusion, and the scores
obtained from the matching modules by using the raw features at the score level. The
performance of MBS-MFSL using the various normalization and weighting techniques
have been evaluated on the datasets VMD-1 and VMD-2. Experimental results have
shown that MBS-MFSL using the PAN-MM normalization technique with the CBW-
2 weighting technique is the best choice for the dataset VMD-1 at an increased cost of
processing time, whereas MBS-FSL using the OEVBAMM normalization technique
with the CBW-2 weighting technique is the best choice for the dataset VMD-2 with

a slightly lower GAR @0.5% FAR, but with a substantially lower processing time.
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Chapter 7

Conclusion

7.1 Concluding Remarks

Accurate and reliable person identification is an important task in many real-life
applications such as in criminal investigations, and border and access control. In
recent years, biometric-based authentication systems have been successfully deployed
in such applications in view of their ability to identify a person with high accuracy
and reliability. Most of the biometric-based authentication systems are unimodal in
that they utilize only one biometric modality to identify a person. However, such
a unimodal biometric system may fail or wrongly identify a person in the case of
the noisy input data, or changes in the biometric trait over time, or because of
the inter-class similarity or intra-class dissimilarity. In an effort to address these
limitations, multimodal biometric systems have been developed, in which fusion of
multiple modalities is carried out at a given level, such as sensor, feature, score,
rank or decision. There are only a few techniques that have been developed for the
sensor level fusion, since an additional cost or time is required to develop new feature
extraction and matching algorithms to fuse the data obtained from multiple sensors.
Rank level fusion has not drawn much attention, since this level of fusion can only be

applied for the purpose of identification. Decision level fusion has not drawn much
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attention, since the information at this level is not sufficiently adequate to improve the
performance of a multimodal biometric system. Many techniques for the feature level
fusion have been developed, since features contain richer information about biometric
data, and therefore, lead to an improved performance of a multimodal biometric
system. Many techniques for the score level fusion have also been developed, since
it is easy to combine scores, and it can improve the performance of a multimodal
biometric system over that of unimodal biometric systems. However, there does not
seem to exist any study for the fusion of modalities at multiple levels in multimodal
biometric systems, despite the progress made in achieving performance improvement
by such systems when modalities are fused at a single level. This thesis, for the first
time, has investigated the problem of developing multimodal biometric systems by
considering fusions of the modalities both at the feature level and the score level.

It has been observed that when the scores of the individual modalities are fused
without normalization or weighting, the performance of the resulting multimodal bio-
metric systems cannot be improved over that of the corresponding unimodal systems.
Therefore, in order to benefit from multimodal biometric systems in providing an
improved performance, it is imperative to have suitable normalization and weight-
ing techniques for the fusion of the modalities. Hence, to start with, this thesis has
developed a number of normalization and weighting techniques for the score level
fusion in multimodal biometric systems. Four normalization techniques, referred to
as improved anchored min-max (IAMM), overlap extrema-based anchored min-max
(OEBAMM), mean-to-overlap extrema-based anchored min-max (MOEBAMM), and
overlap extrema-variation-based anchored min-max (OEVBAMM) have been devel-
oped. These techniques have been developed based on the genuine and impostor
scores. Two weighting techniques, referred to as confidence-based weighting technique
1 (CBW-1) and confidence-based weighting technique 2 (CBW-2) have been devel-
oped. The first one has been developed based on the mean value of the scores, whereas

the second one developed based on the extremum and mean values of genuine and

90



impostor scores. Extensive experiments have been conducted on two multi-biometric
datasets in order to evaluate the performance of the multimodal biometric system
under the score-level fusion (MBS-SL) using various normalization and weighting
techniques including those developed in this thesis. It has been shown that if no nor-
malization or no weighting technique is used for MBS-SL, this multimodal biometric
system cannot provide a performance superior to that provided by a unimodal biomet-
ric system. It has also been shown that MBS-SL using the OEBAMM normalization
technique and the CBW-2 weighting technique is a better choice than MBS-SL using
the existing weighting and normalization techniques or the corresponding unimodal
biometric systems, in terms of equal error rate, genuine acceptance rate, receiver
operating characteristics and detection error tradeoff curves.

The focus of the second part of this thesis has been on the development of multi-
modal biometric systems, wherein fusions of the modalities are carried out at multiple
levels. Specifically, two multimodal biometric systems, in which three modalities are
used for their fusion at the feature level as well as at the score level, have been de-
veloped. In the first multimodal biometric system, referred to as the multimodal
biometric system with feature level and score level (MBS-FSL) fusions [129, 135], the
features of three modalities are encoded using the binary hash encoding technique.
Unlike the existing techniques for feature level fusion, this encoding technique allows
the neighbourhood feature information to be taken into account. Among the three
modalities, the features of the two modalities that do not have the lowest equal error
rate are made to participate in the feature level fusion. The score-level fusion of the
score obtained from the feature-level fusion and the score from the matching module
of the modality that was not utilized in the feature-level fusion, i.e., the modality
with the lowest equal error rate, is then carried out. Extensive experimentation have
shown that, irrespective of the normalization or weighting technique used, MBS-FSL
is a better choice than that of any of the corresponding unimodal biometric systems.

More importantly, the results have also shown that MBS-FSL using the OEVBAMM
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normalization technique with the CBW-2 weighting technique is a better choice than
MBS-SL, not only in terms of the various metrics but also in terms of the processing
time.

In the proposed MBS-FSL multimodal biometric system, the encoded features,
which allow the neighbourhood information to be taken into account, are used. How-
ever, the border values of the raw features could not be encoded in view of the fact
that for the border pixels the feature values of 4-connected neighbours were not avail-
able to be used, and as such, the border features are not taken into consideration
for the feature level fusion. Hence, a second multimodal biometric system, referred
to as the multimodal biometric system with modified feature level and score level
(MBS-MFSL) fusions [136] is developed. In this system, both the raw features that
include both the border and non-border information and the hash encoded features
that include the neighbourhood information are taken into consideration. In this sys-
tem, the feature-level fusion is carried out in a manner similar to that of MBS-FSL
system. The score-level fusion is then carried out between the score obtained from
the feature-level fusion, the score from the matching module of the modality that
was not utilized in the feature-level fusion, and the scores from individual modalities
by using their raw features. Extensive experimentations have shown that, irrespec-
tive of the normalization or weighting technique used, MBS-MFSL is a better choice
than any of the unimodal biometric systems. But more importantly, the results have
shown that MBS-MFSL using the existing anchored min-max (PAN-MM) normal-
ization technique with the CBW-2 weighting technique is the best choice for one of
the two datasets used at an increased cost of the processing time, whereas MBS-FSL
using the OEVBAMM normalization technique with the CBW-2 weighting technique
is the best choice for the other dataset with a slightly lower performance, but with a
substantially lower processing time.

It is concluded that the performance of either of the two multimodal biometric

systems proposed in this thesis is superior to any of the unimodal biometric systems
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or to the multimodal biometric system in which fusion of modalities are carried out
only at the score level.

As a final note, it needs to be pointed that the investigation undertaken in this
study has attempted to move the state-of-the art ahead in human biometric identifi-
cation and authentication by introducing the notion of fusion of biometric modalities
at multiple levels and its findings have paved the way for further innovations in the

development of new multimodal biometric systems.

7.2 Scope for Future Work

The multimodal biometric systems proposed in this thesis have been developed using
three modalities and fused at two levels, feature level and score level. There are a
number of additional studies that can be undertaken based on the ideas developed in
this thesis. Some of the possible studies that can be pursued are as follows:

e A study can be undertaken to investigate how the proposed multimodal bio-
metric systems can be adopted to fuse only two modalities or extended to more than
three modalities.

e New multimodal biometric systems can be investigated to take the advantages of
feature level or score level along with any of the other levels of fusion. For example, a
multimodal biometric system can be studied to investigate as to how to fuse multiple
modalities at the sensor and feature levels, or at the sensor and score levels.

e Studies can be undertaken to investigate multi-level multimodal biometric sys-
tems to fuse multiple modalities at more than two levels, such as fusions at sensor,
feature and score levels.

e An investigation can be conducted to explore the possibilities of fusing multiple
modalities at a given single level in multiple stages.

e Subject to the availability of large multimodal biometric databases in future,

a study can be undertaken to investigate the performance of multimodal biometric
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systems in which fusion of modalities can be carried out at single or multiple levels
by developing and employing techniques of machine learning or artificial intelligence.

e Statistical approaches can also be investigated for their suitability to separate
the genuine and impostor scores from the matching scores, which can then be used

in the proposed multimodal biometric systems.
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