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ABSTRACT 

 

On the Correlation and sensitivity of 

building economy and energy consumption 

to design parameters  

 
Rafaela Orenga Panizza 

With the growth in the criticality of buildings’ lifecycle performance, building 

performance simulation (BPS) is becoming a more prominent step in the building design 

process.  BPS’s ability to approximate the performance of a building in the real world enables 

BPS to be used for ensuring compliance and trade-off of design parameters at a late period of 

design. The quantitative information provided by BPS, if applied at an earlier period of 

design, has the potential to assist in more impactful decisions (which are currently being 

based on rules of thumb). The problem, however, is that the lack of details set at such early 

design translates to a very large number of scenarios to be simulated, requiring extensive time 

and computational power that is not available to designers during that phase.  

To try limiting the number of scenarios to be simulated, the main goal of this study is to 

provide a deeper understanding of the impact caused by building design parameters and 

building characteristics. To accomplish that, data analyses were performed on a database of 

representative building models to investigate the sensitivity of outputs (Energy use intensity – 

EUI and net present worth of cost – NPW) to design parameters (architectural, electrical and 

mechanical systems) and the sensitivity of parameters’ impact to building models. For each 

building model, energy simulations were performed based on a one-parameter-at-a-time 

(OAT) sampling, and the costs were evaluated through developed cost models.  

The results of this study show that wall and roof insulation, window type, window-to-wall 

ratio, and lighting efficiency parameters are sensitive to the analyzed model. When analyzing 

different building groups (e.g. low- and high-rise) separately, it was found that parameters’ 

significance is correlated to building characteristics (e.g. building height). This can be 

particularly of extreme importance for limiting design alternatives at the early stage of design 

when the multiplicity of design scenarios is currently limiting the applicability of BPS in the 

early-stage decision-making for building designs. In the future, the use of more advanced data 
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analysis tools will help improve the accuracy of the observed results as well as provide an 

inclusive classification for the level of impact of various design parameters in different 

building types.  
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Chapter 1 – Introduction 

1.1) Motivation and background 

The building sector is a significant player when discussing worldwide energy use. When 

considering both the construction and operation phases, as of 2017, the industry was responsible 

for 36% of the total energy use in the world and, consequently, also responsible for 39% of the 

worldwide energy-related carbon emissions when considering upstream power generation [1].  

Buildings (ranging from industrial to office buildings), according to standards, should be 

designed for a life that ranges from 25 to 99 years [2], which means that their operating 

performance will impact the world’s energy consumption for decades to come. Buildings in 

their operation phase alone are responsible for 30% of the world’s energy use [1].  

The development of sustainable practices has begun in the building design industry back 

in 1993 with the development of LEED [3], which has been gaining popularity ever since. 

However, it was not until 2015, when the Paris Agreement [4] was signed, that the entire world 

started to prioritize such practices. In addition to the significant share of energy use that the 

building sector has been responsible for, the Paris Agreement [4] shifted the world's attention 

to the building sector for three other reasons. Firstly, the available technologies make it more 

cost-effective to reduce emissions in the building sector rather than in the industrial and 

transportation sectors (the two other major sectors in terms of energy use). Secondly, due to the 

continuing increase in energy demand in buildings caused by the increasing comfort standards 

[1], and lastly, because of the long-term impact that the building sector has. The higher the 

introduction of energy efficiency measures to the building sector today, the more savings will 

be compounded in the decades to come.  

In response to the achievement of the Paris Agreement, in 2017 and 2018, a wide range 

of building energy policies were introduced or improved across the world. One of the most 

practical and cost-effective steps taken by government policy sectors is the development and 

introduction of building energy codes to be followed by new buildings [5] [6]. These building 

codes typically set standards for the performance of a few critical elements of the buildings: 
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building envelope; lighting, heating, ventilating and air conditioning systems (HVAC); service 

water heating; and electrical power systems and motors [5].  

In Canada, the first application of a national standard for building energy performance 

occurred in 1997, with the name of Model National Code for Buildings (MNECB). Fourteen 

years later, in 2011, the code was updated with a 25% average improvement in the code’s 

performance, and a new name, National Energy Code for Buildings (NECB). The standard was 

then updated for the last time in December of 2015 to ensure higher levels of energy efficiency 

in new buildings [5]. Since the application of the MNECB (which became NECB in 2011), the 

energy use intensity (unit of energy per area of the building) of new buildings has declined over 

the years [7]. Nevertheless, this decrease has not yet offset the increase in floor area built during 

the same period [8].  

With the growth of the energy-efficient building design domain, the term building 

performance simulation (BPS) became popular among designers. BPS is a potent multi-

disciplinary analysis method. It uses numerical methods to approximate the performance of a 

building model in the real world. BPS software generally receives two main inputs: a building 

model file and a weather file. The building model file contains, but is not limited to, the building 

envelope characteristics, electrical and mechanical system details, occupancy, and operation 

schedules. The weather file contains detailed information about the weather in the location 

where the construction of the building will take place. Based on these given details, the BPS 

tool can estimate indicators of building performance, such as the energy consumption of the 

building and thermal comfort of occupants, among other outputs [9].   

There are several applications for building performance simulation tools. The most 

common uses include (i) building performance ratings, which is used to ensure code compliance 

and energy certifications; and (ii) architectural design, to be able to quantitatively inform the 

trade-offs between constructions and to estimate operational costs when designing energy-

efficient buildings [9]. In the design phase, both mentioned applications are applied during a 

late phase (after the detailed design stage) and are used to help the building sector scenario in 

terms of energy consumption [10]. 
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1.2) Problem statement 

After the detailed design phase, when designers usually use BPS as a design tool, the 

majority of building components and attributes have already been defined. Though it is still 

possible, at that point, to make changes to the model if necessary, all the components and 

attribute details selected in earlier phases were decided by the designer without the influence of 

BPS. The process of taking decisions starts from the very start of the design process and, the 

earlier they are made (during the conceptual phase, for example), more impact in building’s life 

cycle they will have [10]. And yet, knowing the importance of the decisions taken at such an 

early phase, today's design practices still rely on rules of thumb and engineering judgment for 

making those decisions.    

BPS, as previously mentioned, can simulate the performance of building design, and 

quantitatively evaluate its energy consumption performance, utility cost data, as well as 

construction cost data. Based on its capacity to analyze building designs in terms of energy and 

cost, BPS has the potential to provide designers with quantitative energy and cost information 

that can help in the decision-making of building parameters. With the ability to make more 

informed decisions, designers would then be able to optimize their designs based on energy 

performance and lifecycle costs. Consequentially being able to design more energy-efficient 

buildings. However, to have the greatest design impact, the use of BPS for decision-making 

needs to occur during the early stages of building design, when most impactful decisions are 

made.  

During such an early phase (post-conceptual phase), however, no existing cost models 

have the capability of providing cost details necessary to the decision-making for energy 

performance-related parameters. There are existing cost models that can suit both conceptual 

and detailed phases of design; however, existing limitations do not let them support the 

proposed solution of using BPS for decision-making during the early design development. 

Current cost models for the early design development phase do not take into consideration any 

energy performance-related parameters, and cost models used during the detailed design phase 

need more input details than the early phase can supply them.  
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On the energy performance side, BPS does not present substantial limitations when it 

comes to performing the simulation of early design models. The use of BPS for decision-

making of parameters, however, would require the simulation of a large number of building 

scenarios (containing all possible combinations of parameter alternatives). Since, at such an 

early stage, many parameter details are not yet finalized, and various alternatives are still being 

studied for them; the combinations of possible building parameters’ alternatives (i.e. design 

scenarios) are enormous.  

To better illustrate this problem let’s assume that, while designing a building, the 

designer would like to test four different alternatives for four different design parameters (roof 

insulation, window-to-wall ratio (WWR), overhang and HVAC system). In this example, the 

number of possible design scenarios, considering that the selections for WWR and overhangs 

are made per façade (south, north, east, and west), goes above 1 million (1,048,576 scenarios). 

The simulation of a single scenario (based on a building model of 10,821 ft2 floor area) on the 

Cloud (one worker of c3.xlarge type) takes about 1 minute and 50 seconds to be completed 

[11]. With that in mind, if one could extrapolate to find the time needed for simulating 1 million 

scenarios, the calculated time would be of great magnitude. Thus, simulating all possible 

scenarios would require very extensive time and computational power, which is not available 

during the design process.  

1.3) Objectives 

To take a step forward with using BPS during the early-stage decision-making for 

parameters of energy-efficient buildings, this research is an attempt to provide the relevant 

attributes for the development of a recommender system that will be capable of rapidly limiting 

the number of building design scenarios during early phases of design. The ultimate goal is not 

only to limit the number of design alternatives for those parameters which do not have a 

significant contribution to the energy performance; but also to limit the scenarios to those with 

better energy and cost performance than the baseline (i.e. the design that follows 

recommendations of building energy code of performance). By limiting the number of possible 

scenarios to only the relevant ones, the time and computational power needed for implementing 
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BPS to help with decision-making at this stage will decrease. This decrease would then make 

it possible and worthwhile for designers to implement BPS during early design phases.  

With that in mind, the main goal of this research is to provide a deeper look at correlation 

and dependencies within the building and design parameters. These correlations and 

dependencies can help to understand what parameters are worth investigating, depending on 

the analyzed building model, therefore limit the number of scenarios being simulated.  

To achieve this overarching goal, the Research Objectives (RO) of this study are defined 

as: 

• Research Objective #1 (RO 1): Setting the scope of the parametric analysis of this study 

by screening the energy-influential parameters through the evaluation of the sensitivity of 

building energy performance to variations of their values; 

• Research Objective #2 (RO 2): Developing a cost model, capable of estimating 

construction and operation costs of building components based on their energy 

performance related attributes. To be useful during the early design phase, such cost models 

must follow what is known as ‘semi-detailed’ or ‘parametric’ cost estimation; 

• Research Objective #3 (RO 3): Investigating how building energy and cost performances 

(possible through the developed cost models – RO 2) are sensitive to design parameters, 

and how the entire parametric behavior is sensitive to building model; 

• Research Objective #4 (RO 4): Hypothesizing the possible cause roots of such differences 

in behavior; 

• Research Objective #5 (RO 5): Testing the developed hypotheses and recommending 

important attributes to the development of a recommender system.  

1.4) Organization of the thesis 

After providing an overview of the research’s motivation, existing problems and the list 

of objectives in the current chapter, the remainder of this document is organized as follows: the 

literature review is presented in chapter 2; methods are introduced and explained in chapter 3; 

implementation is presented and hypotheses were developed in chapter 4; evaluation and 

discussion in chapter 5; and finally, concluding remarks are provided in chapter 6.  
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Chapter 2 – Literature Review 

2.1) Building performance simulation systems 

Since the scope of this research mainly entails the BPS environment, the study of the 

available performance analysis tools (of both energy and lifecycle cost) was an important step. 

This section shows this step’s findings by dividing it between construction cost assessment 

tools, lifecycle cost assessment tools, and energy simulation systems.  

(2.1.1) Construction cost assessment tools  

To begin this research work, previous works in the design cost estimation field were 

investigated. The analyzed literature shows the evolution in early design construction cost 

estimation methods that happened over the past years. Before building information modeling 

(BIM) started to be widely used 2-dimensional CAD drawings were used for cost estimation 

purposes. Until the early 2000s, commonly used methods counted on Quantity Takeoff (QT) 

model (based on the information provided by the drawing). QT models mainly include the 

number of items and materials needed for the given project as well as the defined dimensions 

[12]. This method is limited by the use of detailed information about the quantity and material 

of items used in a building when estimating cost. Other QT methods, such as constructed area 

method; quantity of work and elementary price; construction cost index and complex nature; 

estimation based on work breakdown structure [13]; and others were under a questionable linear 

relationship [14]. Another major limitation of these methods was the fact that their whole 

process was done manually, so not only errors were frequent, but it was also very time 

consuming [12]. 

Starting in the early 2000s, with the rise of artificial intelligence (AI) and machine 

learning algorithms, neural network approaches were then promising for cost estimation in the 

construction business because of its ability to deal with multiple parameters [15] [16] [14]. By 

using artificial neural networks (ANN), building cost estimates began to show great accuracy 

thanks to its ability to investigate non-linear and multilinear relationships between building cost 

parameters [14] [16]. ANN also showed promise in selecting the key building parameters to be 

investigated in the data analysis section [16]. A great downside to this method, however, is its 

dependency on a large quantity of quality data. The method requires a great selection of data 
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points to train the network algorithm, and a different selection to go through the testing phase 

[15] [16] [14].    

Later, when building information modeling started to gain strength in the market, new 

methods for calculating construction cost using BIM started to merge [17]. Thanks to BIM’s 

capacity to store information about multiple aspects of building parameters, the integration of 

BIM and cost evaluation tools can lead to more precision and both cost and time efficiencies 

during early-stage design projects [12]. One of the first examples of BIM tools for cost 

evaluation was developed as a plug-in to the 3D design tool SketchUp [17]. Within this module, 

the cost of a design alternative can be continuously updated as the designer moves forward with 

making design changes. This tool takes into consideration five major groups of elements for 

cost estimation purposes: substructure, superstructure, finishes, fitting/furnishing, and services 

[17]. Another example of BIM tools for cost estimation is the Autodesk Revit Architecture 

plug-in developed by Jalaei and Jrade (2015), this tool links the building model with “Sage 

Timberline” cost database [18]. This link can estimate construction costs by examining 

structural components of the building as it is designed in BIM. The use of a database, in this 

case, enables the components to be matched to the most relevant cost item in a cost database to 

find the building's construction cost. This tool’s product database contains a limited variety of 

components based on their physical structure, with no emphasis on their performance [18]. 

(2.1.2) Lifecycle cost assessment tools  

Along with the rise of BIM use in the market and the use of building performance 

simulation engines, a new kind of tool began to be introduced, tools that combine both 

construction and operation cost estimation for building design phases. Several working systems 

can integrate lifecycle cost assessment of building designs with design authoring tools for early 

design phases. One example was developed by Basbagill et al. (2013) at Stanford University. 

This semi-automated process evaluates the lifecycle impact of design alternatives during early 

design phases by connecting ‘DProfiler’ (design authoring tool)  to energy simulation software 

eQUESt and lifecycle impact assessment software tools, SimaPro and Athena EcoCalculator; 

and also the CostLab online facility operation database for operation and maintenance (O&M) 

costs [19]. One very helpful aspect of this system is the integration of 3D models with cost 

estimating databases such as RSMeans and Timberline [19].  
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On the conceptual phase of design, previous projects have combined low LOD (Level 

of Development) BIM models, which are available in early design phases, with lifecycle impact 

estimator tools such as SimaPro [20] [21]; independent databases [22] [23]; or lifecycle cost 

databases in combination with energy simulation software tools [24]. Tools available for such 

an early phase of design mainly focus on evaluating embodied energy or CO2 emission during 

the lifecycle. Even though it was found that parameters in the LEED’s (leadership in energy 

and environmental design) energy and atmosphere category are highly influential in the cost 

estimation process of a sustainable building [15], the analyzed literature does not show details 

concerning cost estimation of energy conservation attributes based on their performances.  

(2.1.3) Energy simulation system 

Most existing cost evaluation tools make the use of vendor proprietary software for the 

simulation of a building’s performance for calculation of lifecycle (i.e. energy consumption) 

cost. However, with the growth in demand for such tools, there has also been a growth in the 

development of validated open-source simulation engines, such as EnergyPlus [25] (for energy 

simulation); Radiance [26] (for lighting simulation); Therm [27] and Window [28] (for heat-

transfer analysis and window thermal performance modeling). The open-source aspects of these 

simulation engines have provided them with the possibility of development for a variety of 

validated open access software tools that can work around them. The EnergyPlus plug-in 

OpenSudio, for example, which was developed by the US Department of Energy – National 

Renewable Energy Laboratory (NREL) is one of the best-known examples of such tools. 

OpenStudio uses EnergyPlus for whole-building energy modeling and HVAC sizing; and 

Radiance for daylight analysis [29]. The vendor neutrality of such tools has made them ideal 

candidates for integration with other design authoring tools, and this has given rise to new cross-

platform applications (such as [30] and [31] among others).  

Apart from its open-source nature, the OpenStudio plug-in provides the ability to use 

‘measures’. Measures are programs that can access and make changes to a building model 

automatically (rather than manually). This feature has made OpenStudio an ideal tool for 

building parameter investigations that can take into consideration energy performance and 

lifecycle costs.   



10 

 

2.2) Data mining applications in the design of energy-efficient buildings  

The process of limiting the number of design scenarios relies on the analysis of BPS 

data to achieve the goal of this research. A variety of data analysis techniques have been used 

in the design of energy-efficient buildings. This section highlights the methods found in the 

literature.  

(2.2.1) Sensitivity analysis of building parameters 

In the field of building energy analysis, the use of sensitivity analysis for studying 

energy influential parameters is very common. The investigated literature showed a variation 

between screening, local and global methods for sensitivity analysis of parameters in the 

building energy modeling field. Screening methods have shown the capability of ranking 

parameters based on their impact on the output with a relatively low computational cost [32] 

[33] [34] [35] however, with a large number of parameters, this type of analysis becomes time-

intensive [36]. Global sensitivity analysis methods, on the other hand, can provide very 

advanced results but always will require a very costly computation effort [37] [38] [39]. The 

Morris Method, however, is an intermediate method due to its cooperation between the quality 

of results and computational cost [37] thanks to its one-parameter-at-a-time (OAT) sampling 

method (same as screening and local methods). 

Screening is known to have lower computational cost and, while widely used in the 

domain of building energy, it has shown to be successful in identifying and ranking parameters 

that affect the output, though qualitatively [40] [41] [42]. This is a very common method for 

complex situations as it performs well with the management of computational complexities 

involved in sensitivity studies that involve multiple parameters ( [34] [43] [35] [44] among 

several other examples). Screening is considered an OAT method, where parameters are 

evaluated in turn and normally being deviated to the two extreme values [40]. Similarly, the 

local method for sensitivity also uses an OAT style. In this case, however, the input-output 

relationship is assumed to be linear, which is not necessarily the case in the building energy 

analysis field. OAT methods, though they are economical (in terms of number of simulations 

needed), have their limitations (compared to global sensitivity analysis methods), a major one 

being the disregard of interactions among various parameters [41]. Global sensitivity methods, 

on the other hand, do consider the interactions between parameters. That is done by varying all 
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design parameters when analyzing the impact of a single one. This method is known to provide 

more trustworthy results at a much larger computational cost [40] [11].   

The reviewed papers have investigated a pool of different cases such as single-zoned 

rooms to office buildings, townhouses, residential buildings, etc. as well as generic buildings 

[45] [46] [33]. All of these case studies were modeled in different locations (represented by the 

weather files used for simulation) such as Hong Kong [46], Portugal [32] and Denmark [47] 

[40]. These studies that test the sensitivity of building performance to the input parameters have 

shown a large range of tested variables. It was noticed that variables related to envelope 

insulation, window sizes, and mechanical systems were chosen to be investigated in the 

majority of the analyzed literature, and they showed to be parameters of great importance in the 

building energy field.       

Regardless of the method used, the reviewed literature reports success in analyzing the 

energy influential parameters of their case studies. However, all of these studies only analyze 

one building model (mostly with numerical inputs), which makes their results “case-

dependent”.  
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Table 2.1: Sampling methods used by analyzed literature 

Authors (year) 

Sampling 

method 

Number of 

case studies Case study details 

Tavares & Martins (2007) [32] OAT 1 Townhall building 

Petersen & Svendsen (2010) [48]  OAT 1 Two-person office  

Smith et al. (2012) [43] OAT 1 House 

Nembrini et al. (2014) [49] OAT 1 5 level housing  

Dreau & Heiselberg (2014) [47] OAT 1 Office room 

Sun (2015) [35] OAT 1 N/A 

Heiselberg et al.  (2009) [40] OAT 1 7 story office building 

Corrado & Mechri (2008) [50] OAT 1 Dwelling  

Ourghi et al. (2007) [34] OAT 1 Office building 

Pushkar et al. (2005) [33] OAT 1 Office building 

Aksoy & Inalli (2006) [51] OAT 1 Intermediate floor 

Ostergard & Jensen (2015) [52] OAT 1 Office building 

Olivero et al. (2015) [53]  OAT 2 Library and office buildings 

Ostergard & Jensen (2016) [54] OAT and 

Global 

1 Residential building 

Sanchez et al. (2014) [37] OAT and 

Global 

1 Apartment building 

Attia et al. (2012) [55] Global 1 Apartment  

Mora & Tarantola (2008) [39] Global 1 N/A 

Mechri et al. (2010) [56] Global 1 Intermediate floor in a multi-

story office building 

Mostrucci et al. (2017) [57] Global 1 Residential building 

Gagnon et al. (2018) [58] Global 1 LEED silver building in 

Canada 

Hopfe & Hensen (2011) [59] Global 1 Office building 

Capozzoli et al. (2009) [38] Global 1 Intermediate floor of a multi-

story office building 

 

(2.2.2) Machine learning models for building energy prediction 

Nowadays, building performance analysis methods through simulation are known to 

have high accuracy when predicting the performance of a building. It is no secret, however, that 

performing such analyses is a very time-consuming task [60]. With the development of data 

analytics tools, researchers in the building energy field have worked on a variety of machine 

learning approaches to be applied in the building energy management field. Existing studies on 

the topic are categorized based on their objectives, the most relevant ones including energy 

consumption prediction, and economic analysis methods [61].     
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Given the objectives of this study and the reviewed data science techniques, 

classification appeared to be the more appropriate model for the present study [61] [60]. 

Classification is a supervised learning technique where the algorithm is capable of classifying 

outputs into discrete categories [62]. Amongst the existing classification methods, the most 

common algorithm tackling energy consumption and economic analysis in the building energy 

industry is decision tree [61].  

Decision tree is a logical model in the form of a flowchart that is used to segregate a set 

of data points into predefined classes given a set of attributes [63]. Though the selection of the 

used set of attributes is an important step for the use of classifiers, the analyzed literature did 

not show in-depth analyses for the proper selection of input attributes. Similar to any other 

machine learning techniques, the generation of a decision tree relies on two steps: training phase 

and classification phase. These require a very large amount of data but, according to the 

reviewed studies, generated decision trees for energy and cost prediction have shown high 

levels of accuracy [60] [61] [63] [64].  

2.3) Gaps in the literature 

Based on the topics discussed during this chapter, gaps in the literature can be classified 

under technical and research gaps. Technical gaps include the shortcomings in the existing 

lifecycle analysis field, and research gaps include the shortcomings in the parametric analysis 

field.  

 (2.3.1) Technical gaps 

Even though there was great progress in the field of energy analysis and lifecycle cost 

estimations, the objectives of most existing tools are either detailed cost estimates (which apply 

to high LOD models at the late phases of design) or conceptual cost estimates (applicable to 

schematic designs which are composed of solid forms without many details). Conceptual cost 

models are tools used to forecast what the project cost will be before the detailed information 

of the building is available [65]. At the early design development phase, when the spaces and 

basic properties are known and decisions are being made on further details of building systems, 

it is important to include the parameters that greatly impact energy consumption in the cost 

estimation process. Therefore, not enough lifecycle cost tools are available for aiding designers 

during decision making of those parameters. Existing tools that do provide this kind of 
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information are tools developed for semi-detailed cost estimation tools (require models with a 

higher level of detail). Furthermore, most of the available tools for the early design development 

phase do not consider one key element: the lifecycle cost of the energy-efficient measures. 

(2.3.2) Research gaps 

The reviewed literature has shown a variety of works done in the building energy 

analytics field. Sensitivity analysis, for instance, has been used to study many different building 

models from many different locations. The gap found in the pool of reviewed studies, however, 

includes the focus on a single building when performing the sensitivity analysis, therefore the 

sensitivity of the parameter impacts to the building type, size, volume, etc. are unknown. Also, 

due to the existing limitations on the existing cost estimators, no previous studies have focused 

on the sensitivity of economy measures to design parameters. On the machine learning side, not 

a lot of emphasis has been put into the selection of the attributes used in the dataset, even though 

that dictates how the classifier performs. 
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Chapter 3 – Methods 

This chapter focuses on the adopted methods that made the development of this study 

possible. Before moving on to the details of this research, an illustration of the high-level 

methodology is presented in Figure 3.1 to enable an understanding of the overall process of this 

work. The start point of this entire process is the input with two main parts: energy influential 

building parameters that are normally set at the early stages of design development, and 

building energy codes that exist to set a minimum standard performance for new (and 

sometimes existing) buildings. Influential parameters going through decision-making steps at 

this stage include aspects of building envelope, mechanical and electrical systems. 

 

Figure 3.1: High-level methodology of this study 
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To set the scope of this study (and complete RO1), the pool of recommended energy 

influential architectural parameters went through a screening process (“Screening parameters”). 

This process was in place to ensure that all chosen parameters had a significant enough impact 

on the building performance, which makes it worthwhile to be included in the data analysis 

section. When the greatest difficulty of running BPS for early-stage decision-making is the 

computational effort required, setting aside low-significance parameters is a crucial step. Once 

the scope of the study was set, the following steps were executed.  

Given the importance of the economic aspect of decision-making (due to its ability to 

provide quantitative information on the trade-off between construction/installation cost and 

energy savings), the step following the screening of building parameters was the evaluation of 

construction/operation costs for the influential parameters (“Cost models development”). The 

parameters that remained part of this study’s scope are the significant architectural (from 

“Screening parameters”), and the suggested mechanical and electrical systems parameters. The 

parametric construction cost models developed in this research take the energy performance of 

building design parameters as input for estimation of construction/installation costs. In addition 

to the construction cost models, the development of an operation cost model was also part of 

this study. Since this work focuses on the province of Québec, Canada, it was necessary to 

develop a cost model capable of applying appropriate rates/policies. The combination of both 

construction and operation costs will then accomplish RO2 and contribute to the development 

of a cost model that can analyze the lifecycle cost of building models during the early design 

development stage. The cost model excludes the end of lifecycle demolition costs. 

Next, with the parameters defined as this study’s scope and their respective cost models, 

a meta-level analysis (in terms of both energy and cost) was possible (“Data analysis”). This 

step of the methodology is in place to analyze what design parameters are significant enough 

(in terms of both energy and cost), and to investigate how sensitive building parameters’ 

behaviors are to the different building models (RO3). With the help of the above-mentioned 

early design development cost model, the BPS outputs (energy performance and lifecycle cost) 

and a set of data mining techniques, made the analysis of design parameters’ behavior possible. 

Then the results of this meta-level analysis enabled the development of hypotheses comprised 

of building characteristics that appear to be the cause of the variation of impact behaviors 
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throughout different building models (RO 4). Finally, also with the help of data mining 

techniques, the developed hypotheses were evaluated, and the final suggestion of important 

building aspects was made (output of this study and RO 5).        

3.1) Inputs 

(3.1.1) Energy influential parameters 

Parameters focused on by this study are the ones decided during the early design 

development phase. In consultation with an energy consulting firm, a set of design parameters 

(decided during the early stages of design) were suggested to this research as common energy 

influential parameters. Akonovia is an energy consulting firm situated in the province of 

Québec. The suggested parameters cover architectural aspects of a building; lighting; and 

HVAC systems. Architectural parameters that are taken into consideration are the following: 

building orientation; window-to-wall ratio (WWR); overhangs (OH); wall, roof, and window 

insulation; and solar heat gain coefficient (SHGC) of windows. The lighting parameter includes 

its efficiency and the HVAC parameter includes system type.  

The selected simulation engine to analyze the suggested parameters is EnergyPlus. The 

main reason for such selection is due to OpenStudio’s (EnergyPlus interface) existing ability to 

automatically manipulate building design parameters, through what they call OpenStudio 

measures. Due to the structure of the measures used for manipulating the suggested parameters, 

the appropriate inputs to be investigated for each parameter were selected. The variation of 

WWR and OH through the OpenStudio measures only allow the variation of one façade at a 

time (south, north, east or west), which turns them into eight separate parameters in this research 

(WWR South, WWR North, WWR East, WWR West, OH South, OH North, OH East, and OH 

West). Window insulation and SHGC parameters, on the other hand, are applied together 

through the selection of window glazing types. The summary of all building parameters 

investigated along with the OpenStudio measures responsible for their application and expected 

inputs can be seen in Table 3.1. 
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Table 3.1. Summary of design parameters, inputs, and implementation for creating design alternatives 

Category Parameter Inputs Implementation (OpenStudio Measure) 

Architectural Orientation Degrees of rotation clockwise (⁰) Rotate Building Relative to Current 

Orientation 

WWR (S, N, 

E, W)* 

Ratio  Set Window to Wall Ratio by Façade 

Overhang 

(S, N, E, 

W)* 

Projection factor (overhang 

depth/window height) 

Add Overhangs by Projection Factor 

R-value R-value (ft2*h*R/Btu) Set R-value of Insulation for Roofs to 

Specific Value 

Set R-value of Insulation for Exterior Wall to 

Specific Value 

U-factor & 

SHGC 

Set window type from the product 

library 

Replace Exterior Window Constructions At 

Different Orientations With Another 

Construction 

Lighting 

Power 

LPD  LPD reduction (%) Set Lighting Loads by LPD 

Reduce Lighting Power Loads by 

Percentage 

HVAC System type The type(s) to be included will be 

selected by the user  

Each system type has its measure (see Figure 

3) 

⃰ S: South, N: North, E: East, W: West 

(3.1.2) Building energy standard requirements 

In North America, there are two major standards for building energy performance: 

NECB [66] and ASHRAE 90.1 [67]. Both standards are relatively similar in terms of 

requirements for the parameters being focused on by this research. Nonetheless, the focus of 

this study was turned to ASHRAE 90.1 2007 because it is the standard that is most frequently 

used by Akonovia.  

The building energy standard sets minimum performance requirements for a variety of 

building components. These requirements vary from place to place depending on their climatic 

zone. The climate zone profile of the province of Québec varies from zones 6, 7 and 8 of 

ASHRAE 90.1 (Figure 3.2). Based on the appropriate climate zone standards and 

recommendations from Akonovia, the minimum requirements for the energy influential 

parameters being analyzed in this study are shown in Table 3.2.  
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Figure 3.2: Climate zones as set by ASHRAE 90.1 [68] 

 

Table 3.2: Baseline settings as defined by ASHRAE 90.1 2007 and the industry partner 

Parameter Standard performance 

Roof R-value 20.83 ft2·°F·h/Btu 

Ext. Wall R-Value 15.625 ft2·°F·h/Btu 

SHGC 0.45 

U-value 2.2698 W/(m2K) 

Lighting efficiency 
Depends on building (see 

Table 3.7) 

HVAC Type 
ASHRAE 90.1-2007 Sys 7 

Baseline Measure 

3.2) Initial parameter screening 

As previously mentioned, limiting the number of building scenarios during the early 

phases of design is among the main goals of this research. The first step towards achieving this 

goal is to narrow the scope of the study to parameters that impact energy performance 

https://www.alberta.ca/assets/documents/tr/tr-tdr-climate-resiliency-study-final-report-2018-04-27.pdf
https://www.alberta.ca/assets/documents/tr/tr-tdr-climate-resiliency-study-final-report-2018-04-27.pdf
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significantly. This research step was achieved by analyzing nine real-world projects (received 

from Akonovia) with the help of a screening OAT method. It must be noticed here, that while 

prioritization of design parameters’ impact on energy performance can be perceived from more 

comprehensive/ complex sensitivity analysis methods (e.g. global methods); the simplified 

technique along with the available pool of building models used in this study can sufficiently 

address the above-mentioned needs [36] [37]. 

The suggested electrical and mechanical system parameters are known to have a 

significant impact on the energy performance of a building. Differently from the architectural 

parameters, these directly impact a building’s energy consumption. Therefore, they will be set 

aside during this screening investigation. 

(3.2.1) Output generation 

When comparing the energy performance of different buildings, analysis outputs must 

be normalized to enable their comparison. The appropriate output (target) variable selected for 

the screening of parameters is the energy use intensity (EUI - kBtu/ft2-yr). EUI is the 

measurement of a building's annual energy consumption relative to its gross area [69]. To 

investigate the impact of parameters’ variation on the energy performance of buildings, energy 

simulations were performed using the EnergyPlus simulation engine, via OpenStudio software. 

The variation of parameters was automated with the help of OpenStudio measures (details on 

the measures used for each parameter can be found in Table 3.1). During this study, simulations 

of all available models were performed in their baseline form (for more details see section 

(3.1.2) Building energy standard requirements), as well as with the manipulation of selected 

parameters through an OAT sampling method [70]. 

(3.2.2) Analyzed case studies 

To cover a wide range of designs from the province of Québec, this screening process 

is taking into consideration nine (9) building models based on real-world projects designed for 

the cold climate of the province of Québec. The models were provided to this research by the 

energy consultant, Akonovia. The goal was to cover a wide range of building types (excluding 

low-rise residential buildings) with different sizes and uses. The database of building models, 

though limited, can address the needs of this research step. Information on each case study used 

for the initial screening analysis can be found in Table 3.3. 
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Table 3.3: Model details (modified from [70]) 

BUILDING 

MODEL NAME 

NUMBER 

OF FLOORS 

FLOOR 

AREA (FT2)  

RISE BUILDING TYPE(S) 

Clinique Dentaire 2 10,821.5 Low-rise Healthcare Clinic 

Poly St 10 177,607.4 High-rise School 

Capwood 18 429,725 High-rise Restaurant, Healthcare 

Clinic, Office, Residential, 

Parking 

Arch TP 8 8,355.9 High-rise Office 

Arch Vit 8 8,355.9 High-rise Office 

Arch VRF 8 8,355.9 High-rise Office 

Copie 25 8 64,013.2 High-rise Gymnasium, Dining 

Copie 27 8 64,069 High-rise Gymnasium, Dining 

Islo 5 2 72,012 Low-rise Exercise Center, Healthcare 

Clinic 

(3.2.3) Input parameters’ ranges 

When selecting input ranges to be tested (through OpenStudio measures), a set of factors 

were taken into consideration. The selected inputs were based on a combination of building 

standards, literature and common inputs found in projects from Québec (provided by 

Akonovia). In the case of parameters with inputs of a continuous nature with minimum 

performance requirements set by building codes (e.g. R-values), the lower bound range of input 

was set as so (standard requirements can be found in Table 3.2). The remaining values for 

design parameters with continuous nature (i.e. OH and WWR) were set based on the literature 

and the acceptable/ common ranges found in actual projects, respectively. The same procedure 

was performed for finding maximum values for building code parameters of continuous nature. 

For parameters with discrete nature such as orientation and window type (U-factor & SHGC), 

the market availability was taken into consideration.  

Normally, the screening method uses OAT to manipulate the parameters to their two 

extreme values [55]; however in the current study, since there are some essentially discrete 

parameters (such as window type), more than two extreme input values were tested [11]. Thus, 

for the purpose of this sensitivity analysis, probability distributions had to be defined for all 

input parameters. Both discrete and continuous nature parameters were defined with a uniform 

distribution. Discrete parameters were represented by the available alternatives of each 

parameter, and the continuous ones were represented by 5 discrete values, which were selected 

based on the previously selected ranges. All ranges of input values tested for each parameter 

can be found in Table 3.4.  
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Table 3.4: Summary of sensitivity analysis inputs 

Parameter Range of input 
Orientation (Rotation) 0°, 90°, 180°, 270° 

Ext. Wall R-Value 15.625 ~ 41.2 ft2·°F·h/Btu 

Roof R-value 20.83 ~ 66.3 ft2·°F·h/Btu 

Window Type 1 - 9 types (Table 3.5) 
WWR South 0 ~ 0.8 

WWR South 0 ~ 0.8 

WWR South 0 ~ 0.8 
WWR South 0 ~ 0.8 

Overhang North 0 ~ 1.6 

Overhang South 0 ~ 1.6 

Overhang East 0 ~ 1.6 

Overhang West 0 ~ 1.6 

 

Table 3.5: Window glazing types 

#  Glazing Thickness Gas filling 

U-value 

(W/(m2K)) SHGC  
1  Double Clear 3mm/6mm Air 3.122 0.762  

2  Double Clear 6mm/13mm Air 2.67 0.703  

3  Double Clear 6mm/13mm Argon 2.511 0.704  

4  Double Grey 3mm/6mm Air 3.122 0.614  

5  Double Grey 6mm/13mm Air 2.67 0.479  

6  Double Grey 6mm/13mm Argon 2.511 0.476  

7  Triple Clear 3mm/6mm Air 2.143 0.682  

8  Triple Clear 3mm/13mm Air 1.765 0.684  

9  Triple Clear 3mm/13mm Argon 1.624 0.685  

 

All tested parameters are analyzed one at a time since there are no co-dependencies 

between them (i.e. changing the input to one parameter will not impact other parameter’s input). 

This study, however, does not take into consideration the compound effect of co-variation of 

multiple parameters. Overhang size is applied based on the projection factor (overhang 

depth/window height) however, even though it is calculated based on the height of the existing 

windows, a modification on window size does not automatically modify the existing overhangs. 

The U-value and SHGC, on the other hand, are applied through the modification of a window 

type. Different window types bring different U-values and SHGC. These two values, however, 

are not necessarily dependent on one another [70].  

(3.2.4) Scope of study 

In each case study, inputs of the twelve parameters were deviated (within their 

appropriate ranges) in each building model (using OpenStudio measures). Each parameter was 

evaluated in every different model separately based on the percentage change in the response 

variable (EUI). The impact caused by each parameter was represented by the percentage 
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increase in EUI from the minimum to maximum output values. Each parameter was evaluated 

in each building and their averages were used to create an overall ranking of parameters [11]. 

Details of the ranking are shown in Table 3.6.   

Table 3.6: Summary of sensitivity analysis results 

 

 Percentage increase from lowest to highest energy consumption 

(distribution among nine case study projects) 

Parameter Min Max Average  St dev 

t-test (3% 

threshold) Rank 
WWR West 4.37% 32.05% 12.49% 9.63% S. 1 

WWR North 5.85% 17.39% 11.38% 3.57% S. 2 

WWR East 7.44% 16.59% 11.36% 3.88% S. 3 

Ext. Wall R-Value 1.31% 15.16% 6.98% 4.10% S. 4 

Window Type 0.24% 14.97% 5.96% 4.71% S. 5 

WWR South 0.00% 18.20% 5.67% 5.75% N.S. 6 

Roof R-value 1.44% 10.99% 5.53% 3.12% S. 7 

Orientation (Rotation) 0.23% 6.16% 2.92% 2.06% N.S. 8 

Overhang North 0.00% 5.41% 1.94% 2.52% N.S. 9 

Overhang South 0.03% 4.52% 0.84% 1.48% N.S. 10 

Overhang East 0.07% 4.09% 0.78% 1.28% N.S. 11 

Overhang West 0.04% 1.39% 0.41% 0.45% N.S. 12 

 

To investigate the statistical significance of these parameters' impact on the EUI, a t-

test was performed (an upper tailed test with 95% confidence level) on the percentage of 

increase in EUI (from minimum to maximum) as the input parameters deviate within their 

ranges. For each parameter, the percentage increase in EUI was investigated to see whether it 

is significantly greater than a threshold. Based on Beguery et al. (2015), the minimum energy 

consumption increases to be considered significant is 3% [71]. Thus, along with the rank of 

parameters, the t-test results show that not only the length of overhang in all faces is always at 

the lowest ranks of impact, but also the associated changes are insignificant at the evaluated 

threshold (Table 3.6). Based on the results of sensitivity analysis two major decisions were 

made. Both the overhang (in all the four sides) and the orientation parameters have shown a 

nonsignificant impact on energy consumption. For that reason, it was decided that the overhang 

and orientation parameters will be set aside and will not be further analyzed in this study. 

Finally, as a result of the screening process, the architectural parameters to remain as part of 

the scope of this project are the first seven ranked parameters shown in Table 3.6: WWR (all 

facades), insulation of wall and roof, and window type.    
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3.3) Construction cost models 

As shown in the high-level methodology (Figure 3.1), the next step involves the 

development of construction cost models for parameters selected to be a part of this study. The 

main contribution of these models is their ability to estimate the cost of a building’s energy 

influential components at an early stage of design (post-conceptual). The presented method 

aims to provide models that are not only easy to implement during BPS analysis, but also can 

be easily updated (since the cost of products is frequently changing).  

The models presented in this section will focus on three main areas of energy 

conservation: architectural, lighting, and HVAC. In the previous section (section 3.1), it was 

mentioned that electrical and mechanical systems are known to have a great impact on the 

energy consumption of a building in comparison to other parameters (architectural parameters). 

For that reason, lighting and HVAC systems were the first two parameters to be considered for 

the cost model development. Architectural parameters that were included in the scope of this 

project, along with lighting and HVAC systems, are windows (type and size) and insulation 

(wall and roof). Therefore, construction cost models were developed for these elements as well. 

Based on lessons learned from the reviewed literature, this study decided to use a 

database to assist with the application of cost models. The database was developed to record 

prices and/or unit costs for various building elements. Databases, apart from helping with model 

implementation, allow for updating the components without having to modify the developed 

models.  

(3.3.1) Lighting system 

In the case of the building’s lighting system, the main design parameters for energy 

simulation are lighting power density (LPD) and LPD reduction (representing the use of energy-

efficient lighting systems). LPD is a metric used to measure lighting energy use and is defined 

as watts per floor area. Thus, the purpose of this cost model was to estimate the cost, based on 

LPD and LPD reduction inputs. There are two measures responsible for setting the cost of 

lighting systems in OpenStudio. One which sets the baseline cost (conventional fluorescent 

lights) and one which changes that cost accordingly when implementing energy conservative 

lighting systems such as light-emitting diode - LED (same measures that set the desired 

performance inputs). To implement lighting installation costs to BPS, the cost database stores 
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the information required to calculate measure inputs for both conventional and LED lighting 

systems. The measure that applies the baseline lighting load (named "Set Lighting Loads by 

LPD") is responsible for setting the appropriate LPD for a building (as defined by the building 

code – see Table 3.7) based on its building type (ASHRAE 90.1 2007) and its respective cost. 

Table 3.7: Norm Power allowance for different building types according to ASHRAE (W/m2) 

Building Type ASHRAE 2007 
Automotive Facility  9.7 

Convention Centre 12.9 

Courthouse 12.9 

Dining: bar lounge/leisure 14.0 
Dining: cafeteria/fast food 15.1 

Dining: family 17.2 

Dormitory 10.8 
Exercise Centre 10.8 

Fire Station 10.8 

Gymnasium 11.8 

Health care clinic 10.8 

Hospital 12.9 
Hotel/Motel 10.8 

Library 14.0 

Manufacturing facility 14.0 
Motion picture theater 12.9 

Multi-unit residential building 7.5 

Museum 11.8 

Office 10.8 

Penitentiary 10.8 

Performing arts theatre 17.2 

Police station 10.8 
Post Office 11.8 

Religious building  14.0 

Retail area 16.1 
School/university 12.9 

Sports arena 11.8 

Storage garage 3.2 

Townhall 11.8 

Transportation facility 10.8 

Warehouse 8.6 

Workshop 15.1 

 

The main challenge here was the fact that the same level of LPD (and accordingly, LPD 

reduction) can be virtually attainable by a wide range of different lighting technologies, each 

of which is associated with a different level of initial and life cycle costs. Based on the research 

performed during this study, the cost of lighting systems can depend on factors such as 

technology (fluorescent, LED, etc.), type (troffers, surface ambient, high-bay, etc.), model, 

brand, store location, and other specifications. To keep the database complete yet consistent, 

the database is limited to the most common and available lighting technologies and types. In 

consultation with building energy consultants, a basic/common set of fluorescent lighting 
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system types (that use either T8 or T5 bulbs) was selected as the main source of lighting for 

baseline buildings. Models of each technology in the market were matched to find the closest 

equivalent model while keeping brand, store, and location consistent. 

Lighting system types considered in this model are troffers, surface ambient, and high-

bay/low-bay. To support the measure that sets lighting loads, a few tables were added to the 

database which entails frame cost data, light bulb cost, and useful life data for the baseline 

fluorescent systems. Frame and light bulb costs were extracted from the Home Depot [72] 

product database and the useful life data for the bulbs come from the manufacturer 

specifications [73] [74].  

The second aspect of building lighting is to reduce the lighting load, by using energy 

conservative lighting technologies. This is applied in OpenStudio via the measure called 

“Reduce Lighting Loads by Percentage” which is responsible for the efficiency increase from 

the previously set lighting system (baseline), as well as to add its respective cost increase. The 

increase in efficiency of lighting load in this measure is implemented as LPD reduction 

percentage, which represents the process of replacing one type of lamp for a similar one that 

consumes less energy (with the assumption that the same lighting comfort is maintained for the 

building user). The required cost model must link each percent of LPD reduction into the 

expenses associated with it. Table 3.8 shows the performance and unit cost data used in the cost 

calculations for all three previously mentioned lighting types for both fluorescent and LED 

technologies. In addition to the cost of implementing such systems, there is also another 

important positive aspect to more energy-efficient lighting systems, which is their longer 

expected life. 

Table 3.8: Summary of lighting system details (modified from [75]) 

 Lighting type Technology Watt 

Are light 

bulbs 

included? 

Bulb type 

(quantity) 

Expected 

life 

(hours) 

Unit cost 

(CAD/W) 
 Troffers Fluorescent 96 No T8 (3) 24,000 0.91 

 Surface Ambient Fluorescent 64 No T8 (2) 24,000 0.66 

 High-Bay/ Low-Bay Fluorescent 216 No T8 (4) 24,000 0.90 

 Troffers LED 59 Yes - 60,000 2.53 

 Surface Ambient LED 35 Yes - 50,000 4.83 

 High-Bay/ Low-Bay LED 112 Yes - 100,000 2.94 
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The baseline lighting cost of a building is then calculated by multiplying the unit cost 

(CAD/W) of the fluorescent light (frame plus bulb) with standard LPD (W/ft2). This cost 

(CAD/ft2) is used in the first OpenStudio measure (i.e. Set Lighting Loads). After that, the 

premium cost for adding the energy-efficient system increase is calculated by Equation 1, to be 

introduced to the simulation, through the second measure (Reduce Lighting Loads), for 

evaluating the final system’s cost. 

[1] 𝐼𝑢𝑐 = 
𝑈𝐶𝑟𝑒𝑑

𝑈𝐶𝑛
 (1 − 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛) −1  [75] 

In the equation, Iuc is the percentage increase in unit cost, UCred is the unit cost of the 

reduced design, UCn is the unit cost of standard lighting and reduction is the desired percentage 

reduction in LPD that is manually entered to the measure. 

(3.3.2) HVAC system 

When it comes to the HVAC system components, the application of associated costs to 

energy simulations works differently than all the other components. For HVAC, instead of 

introducing costs (or unit costs) as an input through the OpenStudio measure (prior to the 

simulation); they must be calculated after the simulation is completed, and based on the 

specifications (i.e. count and capacity) of different components of the system. In terms of 

varying system types, HVAC also works differently than the other components; instead of being 

able to input a variable through one or two measures, the variable inputs to a model are the 

measures themselves. Each HVAC measure represents a different type of system (e.g. rooftop 

package, water source heat pump, etc.). These measures add to the model a set of components 

that are characteristic of the selected system (details of measures and its components can be 

seen in Table 3.9); however, the quantity and capacity of each type of component will be an 

output of the energy simulation and will depend on the characteristics of the building being 

analyzed. Based on RSMeans data [76], the costs of studied systems are calculated as the 

summation of partial costs of existing components in the system. The cost of each of those 

components will vary mainly depending on their capacity. Both the unknown quantity and 

capacity of components make the costing procedure impossible to happen before the building 

simulation. Once the building simulation is finished, its output must be parsed and matched 

with the components from RSMeans.  
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Table 3.9: HVAC types and cost components 

# HVAC Type HVAC Measures 

RSMeans Cost Components 

(*not from RSMeans) 

1 Dual duct AEDG K12Dual Duct DOAS 

Variable DOAS, baseboard, 

pump, chiller, boiler 

2 Fan coil AEDG K12 HVAC Fan Coil DOAS 

Pump, chiller, boiler, heat 

exchanger, variable DOAS, 

fan coil 

3 Heat pump AEDG K12 HVAC GSHP DOAS 

Heat exchanger, pump, chiller, 

boiler, water-source heat 

pump, variable DOAS, 

geothermal system* 

4 Heat pump AEDG Office HVAC ASHP DOAS 

Heat exchanger, air-source 

heat pump, constant DOAS  

5 Fan coil AEDG Office HVAC Fan Coil DOAS 

Pump, chiller, boiler, heat 

exchanger, constant DOAS, 

fan coil 

6 

Rooftop unit with 

variable air volume 

(VAV) boxes AEDG Office HVAC VAV Chilled Water 

Heat exchanger, rooftop 

package, VAV terminals, 

pump, chiller, boiler 

7 

Rooftop unit with 

variable air volume 

(VAV) boxes AEDG Office HVAC VAV DX Coil 

Heat exchanger, rooftop 

package, VAV terminals, 

pump, boiler 

8 Heat pump AEDG Office HVAC WSHP DOAS 

Heat exchanger, boiler, pump, 

water source heat pump, 

cooling tower, constant DOAS 

 

To support the costing procedure for HVAC systems, links to the RSMeans cost 

database [76] were provided for all components used by the OpenStudio measures. All varieties 

of capacities available in the RSMeans items were targeted so that the post-processing for 

evaluating components' costs can find the cost for the closest capacity to the design output. The 

components modeled in our database are divided into 6 main groups (one table created for 

each): HVAC packages; geothermal; terminal units; fan coil; heating and cooling; and pumps 

and heat exchangers. Also, each table is further divided into the subcomponents, e.g. heating 

and cooling table encompasses chillers, boilers, cooling towers and radiant heaters of different 

types and capacities. 

(3.3.3) Architectural parameters  

Following the HVAC system are the architectural parameters, window, and insulation. 

To be able to calculate the construction cost of all parameters that were selected to be further 

analyzed, cost models will also be needed for these parameters. For the completion of a cost 

model that is capable of calculating the construction costs of all selected energy influential 
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parameters, the developed models for lighting and HVAC systems were matched with available 

cost models for windows and insulation (as reported in paper [75]).  

(3.3.4) Cost models output 

The developed conceptual cost models were applied via a cost database. The product 

database was divided into four major categories of products: window, insulation, lighting, and 

HVAC. Each of these sections has its own specific set of tables, format, and relations. The 

lighting system itself has separated two main sections, the fluorescent lighting data, and energy-

efficient lighting data. Both sections have information on three lighting types, these types are 

then compared based on their performance and unit costs to enable the calculations of the cost 

increase of energy-efficient systems. The section of HVAC components, in this database, are 

divided into the 6 categories mentioned earlier. The cost of an entire system is calculated based 

on the sum of all components existing in the given system. The Entity-Relationship (ER) 

diagram of the database is represented in Figure 3.3. 

Insulation, as a major category, supports two different types: insulation for wall and 

roof. Both types of insulation use a different material but, to calculate the unit cost to be added 

through measures, the method is the same. A regression is derived from the table of available 

products. When it comes to windows, the data is divided into window glazing, framing, as well 

as additional coefficients. To provide the appropriate measure with the unit cost of a window, 

all window parts are taken into consideration. The inter-relation between window parts and 

insulation materials can be visualized in the database ER diagram in Figure 3.3. 
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Figure 3.3: Entity Relationship diagram of the developed product database [75] 

 

This database was developed to be linked with applications running through OpenStudio 

so that they can automatically pull the cost information from the database. To keep the cost 

information up-to-dated or adding new items (as required) an admin interface was developed.  

Items taken from RSMeans are identified through their code (MasterFormat) as the key. After 
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updating (or adding new) cost information, the updated information is stored back in the 

database through the key and overrides the older version. Figure 3.4(a) provides a sample 

snapshot of the admin interface. 

 
Figure 3.4: Sample screenshots of the user interface developed for the management of the created cost database 

[75] 

In items that use non-RSMeans sources, such as lighting system components, the key to 

keeping them updated in the database is to include their source web address and the store 

location to which the price was found.  

3.4) Operation cost models 

Unlike the construction cost models, operation costs do not directly depend on building 

components. Operation cost models include utility rates of the location where the buildings are 

located. For this study, since the focus is on the province of Québec, the two pricing policies 

considered are Hydro-Québec [77] and Energir [78] for electricity gas respectively.  

(3.4.1) Electricity rates 

The main non-governmental rates set by Hydro-Québec are divided into four different 

building categories: domestic, small power, medium power, and large power. They are mainly 

divided based on their energy demand and consumption. The “domestic” category aggregates 

buildings that use energy for domestic use only (e.g. single-family houses). This group does not 

generally include establishments such as hotels, motels, etc. or hospitals, clinics, etc. The three 
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other building categories include other types of buildings, which are then separated based on 

their energy use. The "small power buildings" category includes buildings with a minimum 

power demand of 50 kilowatts. The next category, "medium power", includes buildings with 

power demands lower than 5,000 kilowatts; and "large power" covers the buildings with a 

power demand of 5,000 kilowatts or more. With the help of the industry partner, three different 

building categories were selected to be focused on in this model: domestic, small power and 

medium power.  

Electricity Rates Details 

While researching the appropriate rates for each building category, a set of electricity 

rates were found to be available. The domestic section has four subcategories (D, DP, DM, DT) 

which are mainly divided based on energy consumptions (kWh), the maximum power demand 

(kW), time of the day, the season, and the outside temperature. The selection of the residential 

building rate contract is based on a series of eligibility requirements, such as installed 

equipment and previous consumption history. 

The small power rate category, on the other hand, has only one available rate which is 

known as Rate G. This rate bases the utility bill on demand as well as total energy usage and 

fixed service charge. To be eligible for this rate, the building demand must exceed 50 kilowatts. 

The medium power category has four main rates. Two of them (M and G-9) depend on the 

previous 12 months' maximum power demand; one (GD) applies to independent energy 

producers, and lastly, an experimental rate applies to the purpose of electric vehicle charging 

(BR). The structure of these rates mainly depends on the billing demand and energy 

consumption (could be different during summer and winter periods); however, a minimum 

billing is also applied to some rates depending on the type of the electricity delivered (single-

phase or three-phase).   

At the early design stage, it is known in what category the building fits into. However, 

at this phase, normally not many details of the building model are yet set, which means that the 

required information for the eligibility of different rates may not be available. Based on 

common rates applied in Québec (according to Akonovia’s experience), three main rates were 

selected: D, G, and M. Details of the rate application and structure for charging clients can be 

found in Table 3.10.   
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Table 3.10: Electricity rate application and structure details as defined by Hydro Québec [77] 

 Application Structure 

Rate D 

Domestic Rate D applies to a contract for 

domestic use in a dwelling whose electricity 

is metered separately and whose maximum 

power demand was less than 65 kilowatts 

during the 12 consecutive monthly periods 

ending at the end of the consumption period 

in question. 

40.64¢ fixed charge for each day in the 

consumption period, plus,  

5.91¢ per kilowatt-hour for energy consumed, 

up to the product of 36 kilowatt-hours and the 

number of days in the consumption period, and 

9.12¢ per kilowatt-hour for the remaining 

consumption 

Rate G 

General Rate G applies to a small-power 

contract whose minimum billing demand is 

less than 65 kilowatts. 

Rate G does not apply to electricity 

delivered to supply a direct-current electric 

vehicle charging station rated 400 volts or 

more. 

$12.33 fixed charge, plus 

$17.49 per kilowatt of billing demand above 50 

kilowatts, plus 

9.81¢ per kilowatt-hour for the first 15,090 

kilowatt-hours, and 

7.20¢ per kilowatt-hour for the remaining 

consumption. 

The minimum monthly bill is $12.33 when 

single-phase electricity is delivered or $36.99 

when three-phase electricity is delivered 

Rate M 

General Rate M applies to a medium-power 

contract whose maximum power demand 

has been at least 50 kilowatts during a 

consumption period included in the 12 

consecutive monthly periods ending at the 

end of the consumption period in question. 

$14.46 per kilowatt of billing demand, plus 

4.99¢ per kilowatt-hour for the first 210,000 

kilowatt-hours, and 

3.70¢ per kilowatt-hour for the remaining 

consumption. 

The minimum monthly bill is $12.33 when 

single-phase electricity is delivered or $36.99 

when three-phase electricity is delivered. 

Implementation 

Comparably to the OpenStudio measures used to change building parameters in a 

model, there are also measures capable of applying tariff, but they are EnergyPlus measures. 

EnergyPlus measures are like OpenStudio measures, the only difference is that they are applied 

directly to the EnergyPlus simulation (while running it), as it needs inputs from the results of 

the simulation itself. Meanwhile, OpenStudio measures are applied directly to the model itself. 

The existing EnergyPlus tariff measure, “Tariff selection generic” (available in the BCL Library 

[79]), allows for a selection of different formats to calculate the utility rate within one measure. 

For applying Hydro-Québec policy rates, the existing rates will need to be adjusted. This can 

be done through the development of IDFs (EnergyPlus input data files) to reflect Québec rates.  

The existing Tariff selection generic measure enables the user to input the desired gas 

and electricity rates from a selection of different rate structures. These rates are organized and 

stored in the measure's 'resources' folder, and their structures are saved as EnergyPlus IDF files. 

From a technical point of view, an IDF is a type of data file that lets OpenStudio users change 
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the parameters of a measure without directly accessing the measure script (a piece of code in 

Ruby language). By the aid of these files, parameters of the measure can be assigned and 

modified without getting involved with the sophisticated Ruby measures. As depicted in Figure 

3.5, these files are composed of a set of arguments and their values. The already existing IDF 

files can be edited as needed through its text file, or by the IDF Editor (the editor that reads 

EnergyPlus Data Dictionary), which is supplied with EnergyPlus installation. This editor also 

enables the creation of new IDFs that can be added to the rates library in the measure folder and 

be used as wished when running an Open Studio simulation. To apply the electricity rates, 3 

IDF files were developed with the appropriate specifications for Hydro-Québec rates D, G and 

M (details included in the IDF files can be seen in Appendix 1).  

 
Figure 3.5: Example of an IDF snippet developed for Block Energy and Demand Charges 
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(3.4.2) Gas rates 

Like in the electricity policies section, the selection of an appropriate gas policy rate 

also depends on a set of criteria. These rates depend mostly on the type of load (‘general’; 

‘stable’; or ‘interruptible’). “General” load customers are the ones that do not consume enough 

natural gas per day to reach a stable load. “Stable” load is the definition used by Energir to 

characterize the customers whose subscribed volume is at least 333 m3/day. The last load profile 

is “interruptible”, for which the minimum volume required per day is at 3,200 m3 [78].  

Gas Rate Details 

Similar to the procedure used for electricity rates, the selected load type to be focused 

on in this research was based on the experience of Akonovia. The selected rate was the 

distribution rate D1. Rate D1 consists of a basic fee as well as a unit cost for the volume 

withdrawn. The basic fee is charged per meter device every day and its value depends on the 

annual volume withdrawn (details of the pricing for the basic fee can be found in Table 3.11). 

The second part of the gas utility rate is the price paid per unit volume, the unit cost applied in 

this section depends on the volume withdrawn per day (details of unit cost can be found in 

Table 3.12).  

Table 3.11: Distribution rate D1 - Basic fee [78] 

Volume withdrawn (m3/Year) Price (¢/Metering device/Day) 

From 0 To 10,950 51.247 

From 10,950 To 36,500 104.416 

From 36,500 To 109,500 124.546 

From 109,500 To 365,000 131.437 

From 365,000 To 1,095,000 172.393 

From 1,095,000 To 3,650,000 227.157 

 3,650,000  And over 565.045 

 

Table 3.12: Distribution rate D1 - Unit prices for the volume withdrawn [78] 

Volume withdrawn (m3/Day) Price (¢/m3)  
From 0 To 30 25.657  

From 30 To 100 17.519  

From 100 To 300 15.159  

From 300 To 1,000 11.483  

From 1,000 To 3,000 8.497  

From 3,000 To 10,000 5.969  

From 10,000 To 30,000 4.802  

From 30,000 To 100,000 3.981  

 100,000  And over 3.301  
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Implementation  

Just like the electricity rates, gas rates are also applied through the measure “Tariff 

selection generic” with the help of IDFs. The gas rate IDF can calculate the unit price for 

volume withdrawn (Table 3.12). The gas rates, however, also have a basic fee, which is 

normally applied every day, and its price depends on the building’s annual volume withdrawn. 

The problem is that this annual volume is not known until the entire building simulation is 

complete, which makes it impossible for the current versions of tariff measures to use in the 

utility rate calculations. For that reason, the basic fee section of the gas rate is calculated post-

simulation.   

When an EnergyPlus simulation is complete, an HTML file is generated. Based on the 

annual volume of natural gas withdrawn(reported by EnergyPlus); the structure of utility 

calculations (monthly instead of daily),; and assuming that the building withdraws natural gas 

every day of the year, the basic fee for the selected rate was converted to GJ/year and 

CAD/month (Table 3.13). The desired output can be found in the EnergyPlus HTML file in a 

table called “Source Energy End Use Source Summary”. An example of this output table can 

be found in Figure 3.6.  

Table 3.13: Basic fees converted into appropriate units for post-simulation utility cost estimation 

Volume withdrawn (GJ/Year) 

Price (CAD/Metering 

device/Month) 
From 0 To 414.8955 15.579 

From 414.8955 To 1382.985 31.742 

From 1382.985 To 4148.955 37.862 

From 4148.955 To 13829.85 39.957 

From 13829.85 To 41489.55 52.407 

From 41489.55 To 138298.5 69.056 

 138298.5  And over 171.774 
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Figure 3.6: Screenshot of EnergyPlus output table (Source Energy End Use Source Summary) 

3.5) Economic analysis 

To be able to analyze the lifecycle cost of a building model due to the adoption of 

energy-efficient components, while including both construction and operation costs, the net 

present worth (NPW) had to be calculated. NPW allows for the trade-off analysis between 

investment and savings. To calculate the NPW, an analysis period of 25 years was considered 

with an annual interest rate of 3%. During this period, the analyzed cash flow includes 

installation costs of considered building components, identical replacements, and utility costs. 

More details about the used economic analysis can be found in [11].  

3.6) Data analysis 

The last step of the methodology uses all the processes and components developed to 

answer the research questions of the study. Based on the parameters selected as well as the 

knowledge gained through the process of analyzing parameters’ sensitivity during the first step, 

along with the implementation of the developed cost models, a meta-level analysis of building 

parameters became possible. The expected outcome of this analysis is the set of relevant 

parameters that should be considered by the recommender system.  

(3.6.1) Model preparation 

To prepare for simulations in general, all OpenStudio model (OSM) files (i.e. building 

models) must have their complete geometry and non-geometry data. The non-geometry data 

include thermal zone breakdown; the construction and schedule sets; occupancy loads, and 
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operation schedules for lighting and electric equipment; assignment of loads to their respective 

space types; and cooling/heating thermostat schedules. 

For sensitivity analysis, models must be set to a baseline setting (mostly according to 

minimum requirements set by ANSI/ ASHRAE/ IES Standard 90.1 – see section 3.1.2). The 

baseline settings include the addition of HVAC system type ASHRAE 90.1-2007 Sys 7 

Baseline; R-values for roof and walls equal to 20.83 ft2·°F·h/Btu and 15.625 ft2·°F·h/Btu 

respectively; lighting system type as surface ambient; and window glazing type as Dbl Ref-D 

Clr 6mm/13mm. Parameters that do not have a minimum or maximum requirement, (such as 

window to wall ratio), were kept as is (in the design shipped from the architect). Lastly, the 

final step of preparation for the sensitivity analysis is loading window glazing types into the 

model library. This step is only required for windows since for new windows to be added to a 

model (when creating scenarios) they must be loaded to the OSM file before proceeding to the 

BPS process.  

(3.6.2) Parameters and input values 

Based on the pool of energy influential parameters within the scope of this study, and 

their respective cost components, the selected parameters for this analysis were chosen 

(parameters and respective inputs can be seen in Table 3.14). Similar to section 3.2, parameter 

input ranges were based on building codes, literature, and common values (for more 

information refer to section 3.2.3). For each of the parameters, the range of values was 

discretized to 5 discrete values (if they were not already of a discrete nature). The appropriate 

cost input for each selected parameter alternative was calculated based on the procedure 

explained in section 3.3. By applying the desired parameter inputs through a system that 

integrates energy simulation with the developed cost model (described in sections 3.2 and 3.3), 

the cost inputs needed are automatically applied. 

Table 3.14: Parameters and discrete inputs 

Parameter Unit Discrete inputs 
WWR n/a (ratio) 0, 0.2, 0.4, 0.6, 0.8 

Roof R-value ft2·°F·h/Btu 29.294, 39.018, 48.112, 57.206, 66.3 

External Wall R-value ft2·°F·h/Btu 29.294, 39.018, 48.112, 57.206, 66.3 

Window Type n/a (type) 1, 2, 3, 4, 5, 6, 7, 8, 9 (see Table 3.5 for types) 

Lighting Efficiency % reduction 45.3 

Lighting Type n/a (type) Troffer, High-Bay/Low-Bay 

HVAC n/a (type) 1, 2, 3, 4, 5, 6, 7, 8 (see Table 3.9 for types) 
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(3.6.3) Output generation 

Figure 3.7 shows the output generation process. The BPS process begins with the 

generation of building design scenarios for each seed model used. In this analysis, the scenarios 

were generated based on an OAT sampling method, so for each scenario, only one parameter 

was varied, while all other parameters were fixed at their baseline settings. Once the scenarios 

are generated, they all go through the energy simulation stage. Since the focus of this study is 

to provide suggestions for the development of a recommender system that bases analysis on 

both energy and cost, the selected outputs for this method were EUI and NPW. EUI because it 

represents the energy performance, and NPW because it provides the trade-off between 

investment and savings. The simulation stage alone (with the help of applied input measures) 

can generate the EUI results for each scenario, as well as the output files that provide all the 

necessary inputs for calculation of NPW of the model [11]. A software system developed by 

Nik-Bakht et al. (2020) integrates and automates the energy simulations, cost application and 

economics analysis processes [11]. That system was used to evaluate both the energy (EUI) and 

cost (NPW) aspects of each scenario.  

 
Figure 3.7: Output generation flow chart 
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(3.6.4) Output analysis 

The two main contributions of this section are the selection of the significant parameters, 

in terms of both EUI and NPW, as well as the creation of hypotheses that explain the cause root 

of parameters’ sensitivity to the building model. To achieve these, the previously generated 

output dataset must go through two analyses: evaluation of the sensitivity of building 

performance (energy and cost) to the previously selected design parameters, including lighting 

and HVAC systems (a method similar to RO1); and the sensitivity of parameters’ impact to the 

analyzed model. The process of analyzing outputs is shown in Figure 3.8. 

As seen in the flowchart, the first step (Figure 3.8 a) is to run both the EUI and NPW 

outputs through a significance test. Parameters that show to be nonsignificant in both analyses 

(EUI and NPW) are then set aside for the next step (Figure 3.8 b). Significant parameters are 

then classified (as "low impact"; "medium-low impact"; "medium-high impact"; or "high 

impact") based on their impact rankings in each case study models. That enables the 

investigation of the stability of such results in various building models (RO 3). In other words, 

the sensitivity of the findings (in terms of high/low impact parameters) to the building models 

is evaluated based on their respective models. For this purpose, those parameters that steadily 

appear in the same class are considered non-sensitive to the building model; and should be set 

aside. To then investigate the cause root of parameters’ sensitivity to the models, the entire two-

step analysis is performed by dividing the analyzed buildings into groups with different 

characteristics (e.g. low- and high-rise buildings).  
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Figure 3.8: Output analysis flowchart (a: sensitivity of building performance to the design parameters; b: 

sensitivity of parameters’ impact on the building model) 

 

Significance of Parameters 

To test the significance of the impact for each design parameter, t-tests were conducted 

(considering both energy and cost outputs separately). Each test analyzes one parameter at a 

time. The method used to perform the t-test was a single sample upper-tailed test with a 95% 

confidence level, where the null hypothesis is Ho: µ ≤ x (i.e. the true mean 'µ' of the sample is 

less than or equal to the comparison value 'x') and the alternative hypothesis is Ha: µ > x (i.e. 

the true mean 'µ' of the sample is greater than the comparison value  'x'). In this study, 'x' is the 

necessary variation in EUI that a parameter needs to cause to be considered to have a significant 

impact. Based on Beguery et al. (2015), the minimum energy consumption increase to be 

considered to have a significant impact is 3% [71]. On the cost side, however, no representative 

values were found in the literature. Thus, a set of ‘x’ values (0.5% to 10% in 0.5 intervals) were 

tested to find the appropriate threshold to be used in the analysis of NPW. The selected threshold 

must have the same level of significant parameters as the EUI t-test. This range remains within 

the conservative bound of Class 1 estimate, introduced by AACEI, and is taken as a notion of 

the desired level bound of confidence on cost estimates [80]. The null hypothesis must be 

rejected to say that the parameter has a statistically significant impact on the output. Parameters 

that show to be nonsignificant to both energy and cost performances are excluded for the 

remainder of this analysis. 
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Ranking Classification 

The remaining parameters were then ranked based on the range existing between their 

minimum and maximum values (percentage increase from the minimum to maximum). Their 

normalized ranges for each model were graphed versus their respective rankings, and that 

allowed for the proper and proportional classification between the four different levels of 

impact (the four classes introduced earlier). This classification was done through the Extended 

Swanson-Megill (ES-M) discretization method [81], which is a 3-point discretization method 

that weights the 10th, 50th, and 90th percentiles of a continuous distribution function (in this 

case ranking vs. normalized impact). The different levels of impact were quantitatively set as 

high impact (parameters found to be above 0.9 percentile), medium-high impact (parameters 

located in between 0.5 and 0.9 percentiles), medium-low impact (parameters located in between 

0.1 and 0.5 percentiles), and low impact (parameters found to be below 0.1 percentile). 

The sensitivity of parameter impact on the investigated models was evaluated based on 

the frequency distribution of impact groups for each parameter. If a parameter was always found 

to be in one impact group, that parameter is considered non-sensitive to the building model. If 

the parameter ranges between two different levels, it is considered to be slightly sensitive to the 

analyzed case. And, if they range from three or four different levels, they are considered 

sensitive and very sensitive, respectively.  

3.7) Hypothesis evaluation 

To verify the previously developed hypotheses, linear correlation analyses (through 

Pearson correlation [82]) were performed. The objective of this analysis was to see if there is 

an existing correlation between the hypothesized attributes and the impact of design parameters. 

This hypotheses investigation analysis is being done in two parts, the first part uses OAT 

sampling and the second uses Monte Carlo sampling (global method). The OAT correlation 

analysis (using OAT sampling) utilizes the output data from the previous data analysis, while 

the global correlation analysis (using Monte Carlo sampling) required the development of a 

new dataset of building scenarios.  

In Pearson correlation analysis, values ranging from 0 to ±0.2 are usually considered to 

not show any correlation; ±0.2 to ±0.4 to have weak correlation, ±0.4 to ±0.6 some correlation, 

±0.6 to ±0.8 strong correlation, and ±0.8 to ±1 are considered to have a very strong correlation. 
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In this analysis, however, the conclusion will be drawn based on three main levels of 

correlation: no correlation (0 to ±0.4), some correlation (±0.4 to ±0.6), and strong correlation 

(±0.8 to ±1).  

(5.7.1) Global sampling 

Based on the design parameters found to have a significant impact on the building 

models’ performance (EUI and NPW) as well as the ones found to be sensitive to the building 

models, a new dataset of scenarios was generated through Monte Carlo sampling [83]. Monte 

Carlo sampling method, differently from OAT, varies all analyzed parameters when creating a 

new scenario. The variation of each input parameter is based on random sampling of a uniform 

distribution. 

During this study, the scenarios for global analysis were generated through a system 

developed by [11]. In this system, the user inputs different alternatives to each design 

parameter, and the scenarios are automatically generated based on every possible combination 

of design alternatives. Since the system does not support a random scenario generation feature, 

the values inputted to the system were selected in random form.  
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Chapter 4 – Implementation 

This chapter focuses on the implementation of the methods presented in the previous 

chapter, their results, and discussion. The start of the chapter will provide details on the case 

studies analyzed, followed by the results and a discussion on the sensitivity of EUI and NPW 

to energy influential design parameters. Then, the level of sensitivity of those parameters to the 

case studies used is examined (as the original contribution of this study). And finally, several 

hypotheses are developed to explain the changes in parameters’ behaviors from one model to 

another.  

4.1) Pool of case studies 

To cover a wide range of designs, this analysis is taking into consideration 26 building 

models (a collection of both real-world projects and reference building models presented in 

ASHRAE 90.1 2013 [84]) in which 13 are low-rise and 13 are high-rise. According to Barlett 

et al. (2003), low-rise buildings are defined as buildings with 3 stories or less, and the remaining 

are defined as high-rise buildings [85]. The model files were provided by two different sources: 

the building energy consultant Akonovia, and DOE [86]. The idea is to cover a wide enough 

range of buildings while excluding low-rise residential buildings. An example of low-rise and 

high-rise buildings can be seen in Figure 4.1.  

 
Figure 4.1: Example of low- and high-rise buildings used in this study 

Models provided by Akonovia vary between single and multi-use buildings. Multi-use 

buildings are the buildings with more than one building type (Table 3.7), for example, a building 

that contains retail areas as well as dining areas. The cases present a variety of building types 

and rises. Details of all building models provided by Akonovia can be seen in Table 4.1. In the 
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table, the details of each building model’s geometry and building types are displayed. Geometry 

characteristics include the number of stories and building rise (low- or high-rise depending on 

the number of stories), as well as the measurements related to the building height, the 

summation of the entire building floor area, and finally, the roof and wall areas (surfaces where 

roof and wall insulation are added respectively). 

Table 4.1: Akonovia models details (modified from [70]) 

BUILDING 

MODEL NAME 

NUMBER 

OF 

FLOORS 

RISE HEIGHT 

(m) 

GROSS 

FLOOR 

AREA (m2) 

ROOF 

AREA 

(m2) 

EXTERIOR 

WALL 

AREA (m2) 

BUILDING TYPE(S) 

Clinique Dentaire 2 Low-rise 8.02 1005.35 537.35 634.62 Health care clinic 

Poly St 10 High-rise 40.42 16500.26 5525.22 7919.33 School/university 

Capwood 18 High-rise 57 39922.74 3127.77 9450.09 Dining: cafeteria/fast food, health care 

clinic, office, multi-unit residential 

building, storage garage 

Arch TP 8 High-rise 37.82 776.29 325.63 476.04 Office 

Arch Vit 8 High-rise 37.82 776.28 325.63 476.04 Office 

Arch VRF 8 High-rise 37.82 776.29 325.63 476.04 Office 

Copie 25 8 High-rise 49.93 5947.02 5477.19 4818.32 Gymnasium, Dining: cafeteria/fast 

food 

Copie 27 8 High-rise 49.93 5952.20 5477.19 4818.32 Gymnasium, Dining: cafeteria/fast 

food 

Islo 5 2 Low-rise 8.5 6690.13 2996.87 2034.11 Exercise center, health care clinic 

 

ASHRAE 90.1 reference buildings used by this study have been developed by the U. S. 

Department of Energy (DOE) and three of its national laboratories, in collaboration with the 

ANSI/ ASHRAE/ IES Standard 90.1. These 17 models represent about 80% of the commercial 

(and high-rise residential) floor area in the United States [86]. In this pool of models, there are 

11 low-rise and 5 high-rise buildings. Details of the investigated models can be found in Table 

4.2. 
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Table 4.2 DOE models and details 

BUILDING 

MODEL NAME 

NUMBER 

OF 

FLOORS 

RISE HEIGHT 

(m) 

GROSS 

FLOOR 

AREA (m2) 

ROOF 

AREA 

(m2) 

EXTERIOR 

WALL 

AREA (m2) 

BUILDING TYPE(S) 

Full-Service 

Restaurant 

1 Low-rise 3.05 510.97 569.50 228.54 Dining: family 

High-Rise 

Apartment 

10 High-rise 30.48 7836.55 783.64 2704.59 Multi-unit residential building 

Hospital 5 High-rise 25.62 22422.23 4353.16 6524.30 Hospital 

Large Hotel 6 High-rise 19.21 11345.31 1978.83 4580.58 Hotel/motel 

Large Office 12 High-rise 51.48 46320.32 3563.11 6953.70 Office 

Medium Office 3 Low-rise 11.88 4982.20 1660.73 1324.80 Office 

Mid-Rise 

Apartment 

4 High-rise 12.2 3134.55 783.64 1235.15 Multi-unit residential building 

Outpatient 3 Low-rise 9.15 3804.01 1373.29 1224.28 Health care clinic 

Primary School 1 Low-rise 3.96 6871.11 6871.01 1632.86 School/university 

Quick Service 

Restaurant 

1 Low-rise 3.05 232.26 258.83 159.89 Dining: cafeteria/fast food 

Retail Stand-

alone 

1 Low-rise 6.1 2319.05 2270.18 1093.10 Retail area 

Retail Strip Mall 1 Low-rise 5.18 2090.32 2090.32 1013.29 Retail area 

Secondary School 2 Low-rise 7.92 19592.03 11768.21 3879.17 School/university 

Small Hotel 4 High-rise 11.57 4013.41 1003.35 1510.42 Hotel/motel 

Small Office 1 Low-rise 3.05 510.97 598.76 221.85 Office 

Supermarket 1 Low-rise 6.1 4180.64 4145.15 1109.91 Retail area 

Warehouse 1 Low-rise 8.53 4835.14 4529.86 2411.67 Warehouse 

 

4.2) Sensitivity of EUI and NPW to input parameters 

To analyze the sensitivity of outputs (EUI and NPW) to the studied energy influential 

parameters, the range of outputs for each parameter (minimum and maximum) were considered 

separately for each model. The significance of the impact of each parameter for each output 

was statistically tested (through a t-test) to evaluate whether the selected parameters are 

significant enough to be considered in the development of a recommender system. The t-test 

was based on the percentage increase in the output (from minimum to maximum value), caused 

by each parameter in each model, over the 26 models, while using a range of significance 

threshold from 0.5% to 10% for both EUI and NPW ((3.6.4) Output analysis section). The 

purpose of testing a range of threshold values is to find the appropriate value to be used in 

testing the significance of NPW (i.e. threshold with the same level of significant parameters as 

the 3% value used for the EUI t-test) ((3.6.4) Output analysis section). Results for both EUI and 

NPW are reported in Figure 4.2.  
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Figure 4.2: Results of t-test for based on a range of thresholds (a: EUI output; b: NPW output) 

In Figure 4.2, details of t-tests’ results are shown for all analyzed thresholds. There, it 

is observable that HVAC is always the top parameter in the order of significance for both EUI 

and NPW. Following the HVAC parameter are the window to wall ratios in both EUI and NPW. 

The order of WWR parameters in terms of façade, however, appears to be different in the two 

analyses, which could be because most south side walls are larger than east and west, increasing 

the installation cost and therefore making WWR south more significant in terms of NPW. After 

WWR, window type and lighting efficiency are the parameters that follow. In the significance 

ranking based on EUI, lighting efficiency is placed higher but, when considering NPW, window 

type appears to be more significant. This slight shift is explained by a major cost increase of 

installing more efficient lighting, the installation costs overrules the energy savings. Finally, 

the last three parameters in terms of significance are roof insulation, wall insulation, and 

lighting type. They maintain their spots in both EUI and NPW rankings.   

To better analyze the behavior of both EUI and NPW in terms of significance test (t-

test), the ratio of significant parameters was analyzed against the tested threshold values (Figure 

4.3). While EUI is slightly more sensitive than NPW, due to its greater slope, their distributions 

show very similar levels of linear behavior (linear with R2 = 0.9342 for EUI and 0.9414 for 
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NPW). Thus, based on the used 3% threshold for the EUI significance test (found in the 

literature [71]), the appropriate NPW threshold (i.e. with the same level of significant 

parameters as the 3% value used for EUI) to be used in this study is 1.5%.   

 
Figure 4.3: Frequency distribution for a range of t-test thresholds 

Based on the selected thresholds to be used to analyze EUI and NPW, decisions were 

taken based on the parameters’ significance. The EUI and NPW results have shown that all 

architectural and HVAC system parameters appear to impact the output significantly (Figure 

4.2). For the lighting systems, however, only the lighting efficiency aspect was found to have a 

significant impact. The lighting type is the only parameter that shows a nonsignificant behavior. 

Due to its small impact in both EUI and NPW, it was decided that the lighting type parameter 

will not be considered for the remainder of this analysis. 

4.3) Sensitivity of parameters to case studies 

The previous section contributed to highlighting building energy influential parameters 

from two important aspects of energy consumption and cost. It also provided an overall order 

of parametric significance. Though, based on this analysis, it is not possible to say whether a 
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parameter's level of impact will remain invariant from one case to another. To be able to answer 

this question, the parameters were classified based on their level of impact. 

To begin assigning the level of impact for each parameter (in every model), both the 

percentage increase in the output and their respective rankings were considered. To divide the 

parameters based on their respective levels of impact, the 3-point discretization method (ES-

M) was used ((3.6.4) Output analysis). This method’s technique involves the division of 

continuous distributions at 0.1, 0.5 and 0.9 percentiles. In this analysis, the relationship between 

the ranking of the parameters and their normalized impact on the output (for each model) is 

being discretized (Figure 4.4). The classification of each parameter in every model depends on 

which area of the continuous distribution they were located in. In the graphs (Figure 4.4), each 

dot represents a different parameter and the impact level areas are divided between 0 to 0.1 

percentile (low-impact), 0.1 to 0.5 percentile (mid-low impact), 0.5 to 0.9 percentile (mid-high 

impact), and 0.9 to 1 percentile (high-impact).  

 
Figure 4.4: 3-point discretization procedure for parameter classification, through ES-M method, for Retail 

Standalone model (a: EUI; b: NPW) 

After classifying all the significant parameters based on their impact level, it was noted 

that, for both EUI and NPW results, the HVAC type is always in the high impact class (graph 

can be found in Appendix 2). The invariance of HVAC type significance leads to the conclusion 

that this parameter's level of impact is not sensitive to the investigated building model. For that 

reason, the remainder of this analysis will exclude the HVAC type parameter (by adding it to 

the list of very high-impact parameters in all building types). The same classification procedure 

was then repeated without the HVAC system type parameter. 
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After reclassifying the remaining parameters (into the four groups of high, mid-high, 

mid-low and low impact), the results show that no other parameter remains completely invariant 

(in terms of the level of impact) among different models. Therefore, it is then possible to analyze 

the level of impact of each parameter and evaluate their sensitivity to the building model. The 

frequency distribution of each parameter in their respective levels is represented in Figure 4.5. 

There, it was observed that all parameters show at least some level of sensitivity, due to their 

appearance in multiple levels of impact. The graph also shows that a few parameters, such as 

WWR north and roof insulation, appear in fewer impact groups from the viewpoint of NPW 

(compared to EUI). The opposite happens to wall insulation and WWR east, which leads to a 

suggestion that the sensitivity of certain parameters might differ depending on the analyzed 

output (EUI or NPW). 

The given classification results show that the impact of energy influential design 

parameters (except for HVAC system) is sensitive to the analyzed case study. This sensitivity 

suggests that different building characteristics, which are not the energy influential design 

parameters, also influence the energy and cost performance of a building. More specifically, 

different building characteristics (to be investigated in the following section) can control the 

level of impact that energy influential parameters can have on building performance.  

 
Figure 4.5: Frequency distribution of impact classes after excluding the HVAC system parameter (a: EUI; b: 

NPW) 
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4.4) Investigation of parameters’ sensitivity in different groups of buildings  

To identify which building characteristics are more strongly correlated with differences 

in behavior, the same procedure of analyses (from sections 4.2 and 4.3) was repeated within 

different subsets of data, split based on various building characteristics. The first grouping was 

splitting the models based on their rise (low- and high-rise), while the second grouping was 

dividing buildings based on their energy consumption profile (low and high heating 

consumptions).  

(4.4.1) Building rise 

As previously mentioned, low-rise buildings are defined as buildings with 3 or fewer 

stories. By dividing the analyzed cases into low- and high-rise buildings, the two samples are 

left with 13 building models in each, which forms a balanced dataset.  

Statistical Significance 

The same procedure used in previous sections for testing significance was performed 

for low- and high-rise buildings separately. Based on the investigation of thresholds 3% and 

1.5% for EUI and NPW respectively, significant parameters were identified. The analysis 

results for both EUI and NPW can be found in Table 4.3. 

Table 4.3: EUI (3% threshold) and NPW (1.5% threshold) t-test results for low- and high-rise buildings 

Parameter 

 

EUI NPW 

Low-rise High-rise Low-rise High-rise 

Wall Insulation N.S. S. N.S. N.S. 

Roof Insulation S. N.S. S. N.S. 

WWR South S. S. S. S. 

WWR North S. S. S. S. 

WWR East S. S. S. S. 

WWR West S. S. S. S. 

Window Type S. S. S. S. 

Lighting Efficiency S. S. S. S. 

HVAC S. S. S. S. 

 

By analyzing the results of significance tests, two cases of change when moving from 

low- to high-rise buildings were noticed. ‘Wall insulation’ shows a nonsignificant behavior in 

low-rise and significant in the high-rise, while ‘roof insulation’ has the opposite behavior. This 

shift in the results of these two parameters suggests that building attributes related to rise may 

contribute to the difference in the behavior of design parameters. This variation can also be 

explained by the relative size of the component (where insulation is applied) in comparison 
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with the body of the building. For example, if a building is very tall and narrow, the insulation 

added to the small roof area will have a lower impact than the insulation added to a short 

building which has a horizontal spread. The same explanation goes for other insulation 

parameters, such as wall and window.  

The NPW results, on the other hand, have only one difference between low- and high-

rise; ‘roof insulation’ is a significant parameter in the low-rise group and nonsignificant in the 

high-rise. This variation can be also explained with the same principle as the energy 

performance results. On the wall insulation, however, the parameter reacts differently when 

compared to the EUI results. It shows to be nonsignificant for both low- and high-rise buildings. 

That is probably due to the installation costs of the walls. With a relatively large surface area in 

comparison to the roof, the construction cost becomes large as well in both cases, which 

decreases the impact caused by the added insulation.  

Ranking Classification 

To evaluate the sensitivity of parameters to models within the analyzed groups, the same 

procedure used in section 4.3 was followed. The resulting frequency distributions of each 

parameter based on EUI is presented in Figure 4.6. The distributions show that, regardless of 

the building’s rise, most parameters are still very sensitive to the analyzed building model. This 

suggests that more building characteristics (than only the rise) influence the performance 

behavior of energy influential parameters; thus, other building characteristics should be 

investigated too. The graphs also show that window parameters such as window type and 

window to wall ratio (which can also influence the indoor temperature of a building) generally 

have a higher impact than wall and roof insulation. This may suggest that, even though window 

parameters are significant, they can still be impacted by the same building attributes that impact 

roof and wall insulation (i.e. the relative size of the component in comparison with the body of 

the building).  
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Figure 4.6 EUI frequency distribution for different building groups (a: low-rise; b: high-rise) 

The same analysis was carried out on NPW. The frequency distributions of each 

parameter based on NPW impact can be seen in Figure 4.7. Like the significance test, the 

distribution graph shows that wall insulation is the least sensitive parameter in both low- and 

high-rise buildings. Also like the previous test, the high-rise roof insulation parameter appears 

to be slightly sensitive. The remaining parameters, on the other hand, are either sensitive or 

very sensitive to the analyzed building models in at least one of the two building groups. This 

suggests that for NPW too, more building characteristics (than building rise) must be 

investigated to explain the behavior of energy-efficient parameters.  

 
Figure 4.7 NPW frequency distribution for different building groups (a: low-rise; b: high-rise) 
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(4.4.2) Energy consumption profile 

Buildings can be grouped based on the similarity of their energy consumption profiles 

(i.e. the similarity in fractions of energy being used in for different purposes). In this study, 

since the focus is on buildings in cold climates, the percentage of energy consumed for heating 

purposes is the main representative of the energy profile. Buildings that use a considerable 

amount of energy for other equipment (e.g. hospital's exam machines) consequently have a 

lower percentage of their energy going to heating, which normally depends on the activities 

happening in the building (building types). In this analysis, buildings are separated between 

those with more than 50% of their energy being used for heating purposes (high heating 

consumption), and buildings with 50% or less used for heating (low heating consumption). By 

dividing the model’s dataset, the samples are left with 14 building models in the high heating 

consumption group and 12 building models in the low heating consumption group.  

Statistical Significance 

Once Again, by using the same procedure previously explained, the significance test 

was performed for both low and high heating consumption sub-sets. The results of both analyses 

for EUI and NPW are found in Table 4.4. By analyzing significance test results for both low 

and high heating consumption groups, it is noticeable that three parameters have different 

behaviors within the different groups. Wall insulation, roof insulation, and window type 

parameters have a nonsignificant EUI behavior when a lower percentage of the building energy 

is used for heating purposes. All three mentioned parameters can impact the energy 

consumption of a building because of their ability to retain heat in the building. Therefore, if a 

low percentage of energy is going to heating, then, consequentially, lower will be the impact of 

parameters that also influence the heating performance.  

Table 4.4: EUI (3% threshold) and NPW (1.5% threshold) t-test for low and high heating percentage buildings 

Parameter 

 

EUI NPW 
Low heating 

consumption 

High heating 

consumption 

Low heating 

consumption 

High heating 

consumption 

Wall Insulation N.S. S. N.S. S. 

Roof Insulation N.S. S. N.S. N.S. 

WWR South S. S. S. S. 

WWR North S. S. S. S. 

WWR East S. S. S. S. 

WWR West S. S. S. S. 

Window Type N.S. S. S. S. 

Lighting Efficiency S. S. S. N.S. 

HVAC S. S. S. S. 
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The NPW analysis shows similar behavior. In the low heating consumption, both roof 

and wall insulations remain nonsignificant for the same reasons as the one discussed in the EUI 

analysis. Window type, in this case, shows to be significant, which is the case due to its 

installation costs. In the high heating consumption group, wall insulation and lighting efficiency 

appear to be nonsignificant. The wall insulation is not a surprise since it has often shown a 

nonsignificant behavior when analyzing NPW. Lighting efficiency, on the other hand, appears 

to be nonsignificant in terms of cost, because when the high percentage of energy is focused on 

heating, lower will be the percentage used for lighting, which translates into lower energy 

impact.  

Testing the significance of parameters in the two types of building profiles made it 

possible to understand a new type of building characteristics that can influence the impact 

behavior of design parameters. Though the consumption profile (percentage of energy allocated 

to each use) is not a known numeric parameter at the early stages of design, the building type 

(Table 3.7) can provide a general idea of the building’s consumption profile.  

Ranking Classification 

The same procedure used in previous sections for classifying the impacts of parameters 

was performed for low and high heating consumption buildings separately. EUI results (Figure 

4.8) show that, in the high heating consumption group, all parameters’ impact is highly sensitive 

to the analyzed case study. In the low heating percentage group, on the other hand, insulation 

parameters show much lower sensitivity. Meanwhile, the lighting efficiency parameter shows 

the opposite behavior. Similar behavior can be seen in the NPW analysis (Appendix 2).  
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Figure 4.8: EUI frequency distribution for different building groups (a: low heating; b: high heating) 

4.5) Hypotheses 

Based on the findings of previous sections, three main categories of building attributes 

that influence the significance of design parameters in controlling building energy performance 

were identified. For each category, a set of specific building characteristics is being suggested 

as important characteristics for analyzing the behavior of building parameters. The three main 

categories of attributes are building rise, proportions of horizontal and vertical external 

enclosure, and energy consumption profile. For each category, different attributes are being 

considered that are believed to represent the discussed impacts on parametric behavior. Details 

of attributes, their categories and the design parameters that they are believed to influence are 

displayed in Table 4.5.  
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Table 4.5: Summary of hypotheses 

Category Attributes Unit Affected parameters 

Building rise Number of stories N/A Wall insulation and roof insulation 

Height  m 

Proportions 

of the 

horizontal 

and vertical 

external 

enclosure  

Wall area/ Roof area N/A Wall insulation, roof insulation, and window 

type 

Number of stories/ 

Roof area 

m-2  

 

Roof insulation Height/ Roof area m-1 

Volume/ Roof area m 

Number of stories/ 

Wall area 

m-2  

 

Wall insulation and window type Height/ Wall area m-1 

Volume/ Wall area m 

South/ North/ East and 

West Wall area/ Total 

external wall area 

% 

 

WWR South / North / East and West 

 

 

South/ North/ East and 

West wall area/ 

Volume 

m-1 

 

WWR South / North / East and West 

 

 

Energy 

consumption 

profile 

Heating % % Wall insulation, roof insulation, window type, 

WWR (all facades), and lighting efficiency 

 

In the next chapter, the contribution of each of these characteristics to the impact of the 

affected parameters is investigated. 
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Chapter 5 – Evaluation and Discussion 

In this chapter, the contribution of each of the above-mentioned characteristics to the 

impact of the affected parameters is being investigated, while ignoring the correlation among 

design parameters. The first part of the chapter will provide the details of the correlation 

analyses performed based on OAT sampling. Next, the details of correlation analyses performed 

based on global sampling will be shown. Then, finally, a summary of the hypotheses 

verification along with the suggested attributes to be considered by the recommender system 

will be discussed.  

5.1) Correlation Analysis with OAT Sampling  

This section is displaying the results of correlation analyses based on scenarios 

generated through OAT sampling. Based on the attribute categories highlighted in Table 4.5, 

this section is being divided into 3 main sections: building rise; proportions of horizontal and 

vertical external enclosure; and energy consumption profile. Some graphs displaying the 

analyzed data points are shown throughout the sections, the remainder are shown in Appendix 

3. 

(5.1.1) Building Rise 

Based on the hypotheses summarized in Table 4.5, this section is investigating the 

attributes that fit into the ‘Building rise’ category. Both, the number of stories and the building 

height were analyzed in terms of EUI and NPW. To test the developed hypotheses, a linear 

correlation (Pearson) analysis was performed to investigate the relationship between the 

building attributes and the impact caused by changing roof and wall insulations (separately).  
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Figure 5.1: Correlation of EUI impact due to building height (a: roof impact; b: wall impact) *blank datapoints 

represent outliers 

In terms of EUI, roof and wall insulation impact show a strong correlation with building 

rise attributes. Roof insulation has a strong negative correlation with both ‘number of stories’ 

and ‘building height’, which means that taller buildings are less impacted by the variation of 

roof insulation R-value, in comparison to shorter buildings. On the other hand, wall insulation 

shows some positive correlation with the ‘number of stories’ and strong positive correlation 

with building height, which means that the variation of wall insulation shows a greater impact 

on taller buildings.  

 
Figure 5.2: Correlation of NPW impact due to building height (a: roof impact; b: wall impact) *blank datapoints 

represent outliers 

When it comes to NPW, some negative correlation is observed when considering the 

impact of the roof insulation onto the building rise attributes while a weak negative correlation 
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was shown with wall insulation. Though the roof insulation parameter results are very similar 

when comparing EUI to NPW, the wall insulation results show a drastic shift, it goes from 

positive to negative correlation. The negative correlation behavior found in the NPW analysis 

shows that wall insulation has a lower impact on taller buildings, which happens due to the 

large installation costs spent to have wall insulation in the entire building. Details of Pearson 

correlation values can be found in Table 5.1. The discussed findings suggest that the building 

rise details in the form of the number of stories and/ or building height do affect the impacts 

caused by the application of energy influential parameters.  

Table 5.1: Building rise attributes' Pearson correlation values for EUI and NPW impact caused by selected 

parameters (white cell: no correlation; light grey cell: some correlation; dark grey cell: strong correlation) 

Attributes Affected 

parameters 

EUI  NPW 

Number of stories Roof insulation -0.65 -0.51 

Wall insulation 0.57 -0.23 

Height Roof insulation -0.61 -0.48 

Wall insulation 0.69 -0.24 

 

(5.1.2) Proportions of the horizontal and vertical external enclosure 

The second group of building attributes investigated in this study is enclosed in the 

‘proportions of horizontal and vertical external enclosure’ category. As seen in Table 4.5, these 

attributes can influence the impact of a variety of design parameters including roof insulation, 

wall insulation, window type, and window-to-wall ratio. This section is divided into 6 

subsections. The first 5 will be covering details of correlation analysis results for each building 

attribute. Those include wall area/ roof area; roof area related attributes; wall area related 

attributes; percentage area for façades compared to overall wall area; and relative area of 

façades compared to building volume. The last subsection of this chapter provides a summary 

of the discussed results. 

Wall Area/ Roof Area 

As previously mentioned, there are 3 design parameters influenced by the ratio of the 

wall over roof area: roof insulation, wall insulation, and window type. When considering the 

EUI data, both roof insulation and window type show a strong correlation with ‘wall area/ roof 

area’, negative strong correlation with roof insulation and positive with window type. When 

looking at wall insulation, on the other hand, some positive correlation was found after setting 
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aside (as outliers) buildings with 10 stories or more, which suggests that these might need to be 

analyzed separately from the rest of the buildings.  

 

 
Figure 5.3: Correlation of EUI impact due to ratio of wall area over roof area (a: roof impact; b: wall impact) 

*blank datapoints represent outliers 

Similarly, to the previously analyzed attributes, the NPW results show less correlation 

than EUI. That can be explained by the nonlinear behavior of the building cost performance. In 

this case, the roof impact still shows a strong correlation with the ratio attribute while both wall 

insulation and window type show no correlation. Also like it was discussed in the previous 

section, the installation costs of wall components (wall insulation and window type) highly 

impact the building’s cost performance, affecting the level of correlation with the ratio between 

wall and roof areas. 

Roof Area Related Attributes 

While analyzing the size of the building component roof to investigate the influence of 

its insulation on the building’s energy performance, attributes involving its area were analyzed. 

Here, the relationship of building stories, building height, and building volume with the area of 

the roof is being investigated.  
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Figure 5.4: Correlation of EUI roof impact due its relative size (a: number of stories/ roof area; b: building height/ 

roof area) * outliers were removed, original graph can be found in Appendix 3 

When analyzing in terms of EUI, all three attributes show at least some negative 

correlation. ‘Stories/ roof area’ and ‘height/ roof area’ with some negative correlation, and 

volume over roof area with a strong negative correlation. This shows that all three are relevant 

attributes when investigating the impact of roof insulation but the attribute volume over the roof 

area appears to have a stronger correlation with the EUI impact. When looking at NPW, on the 

other hand, the correlation levels show opposite behavior, stories, and height attributes on the 

strong negative correlation range, while volume attribute shows only some negative correlation.  

Wall Area Related Attributes 

Like the roof-related attributes, the attributes related to the size of the wall were also 

investigated. In this case, however, more than the impact of just one design parameter is being 

looked at, here both the wall insulation and window type parameters are being tested.  

When looking at the EUI results for window type, it was seen that there is no linear 

correlation between window type impact and any of the investigated building rise attributes, 

and only weak negative correlation with the ‘volume/ wall area’ attribute. Wall insulation, on 

the other hand, shows some positive correlation with building stories and height attributes while 

also showing a weak positive correlation with volume-related attributes.  
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Figure 5.5: Correlation of EUI impact due to ratio of volume over wall area (a: wall impact; b: window type 

impact) *blank datapoints represent outliers 

 
Figure 5.6: Correlation of NPW impact due to ratio of volume over wall area (a: wall impact; b: window type 

impact) *blank datapoints represent outliers 

The NPW data, on the wall insulation side, shows a strong positive correlation with the 

‘volume/ wall area’ attribute, which means that the NPW impact is greater when the building 

has a greater volume compared to the external wall area. Remaining analyses show no and some 

negative correlation between wall insulation and ‘height/ wall area’ and ‘stories/ wall area’ 

respectively, and weak level of correlation between window type parameter and all three 

attributes.  
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Percentage Area for Façades Compared to Overall Wall Area 

When performing the same analysis to investigate the relationship between the impact 

of WWR for each façade and their respective ratio of the total external wall, each façade was 

analyzed separately.  

 
Figure 5.7: Correlation of EUI impact due to facade wall percentage (a: south façade; b: north façade; c: east 

facade; d: west facade) *blank datapoints represent outliers 

When analyzing the calculated correlation values for this analysis, it was observed that 

both south and north façade analyses showed a strong positive correlation in terms of EUI. 

Similarly, in terms of NPW, the south façade analysis also showed a strong positive correlation, 
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while the north façade showed only a weak correlation. The remaining facades showed very 

different behaviors. In the EUI analysis, west and east facades showed no and some positive 

correlation, respectively. And, on the NPW side, both show similar levels of negative 

correlation -0.37 on the east façade and -0.40 on the west facade. 

Percentage Area for Façades Compared to Building Volume 

A similar procedure to the previous one was used to analyze the impact of WWR, but 

in this case, using the building volume instead of the total external wall area. This analysis, 

differently from the previous subsection analysis, shows negative levels of correlation for all 

facades in terms of EUI, which suggests that when greater the façade wall, greater will be the 

WWR impact. The analyzed facades, however, show different levels of correlation. Both south 

and west facades have a weak correlation, while north and east show some and strong 

correlations, respectively. The NPW side, on the other hand, shows no correlation between 

‘façade area/ volume’ and WWR on the east and west sides, a weak positive correlation on the 

north side and weak negative correlation on the south side.  

Summary of Analysis  

Based on the investigations performed in this section, a summary table was developed 

containing all calculated Pearson correlation values for EUI and NPW impact analyses (Table 

5.2). As previously mentioned, in this study, Pearson correlation values from 0 to ±0.2 are 

translated into no correlation; ±0.2 to ±0.4 are considered to have weak correlation, ±0.4 to ±0.6 

have some correlation, ±0.6 to ±0.8 have a strong correlation, and ±0.8 to ±1 have a very strong 

correlation. 
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Table 5.2: Proportions of horizontal and vertical external enclosure attributes' Pearson correlation values for EUI 

and NPW impact caused by selected parameters (white cell: no correlation; light grey cell: some correlation; dark grey cell: 

strong correlation) 

Attributes Affected parameters EUI NPW 

Wall area/ Roof area Roof insulation -0.63 -0.61 

Wall insulation 0.52 -0.12 

Window type 0.65 -0.01 

Number of stories/ Roof area Roof insulation -0.54 -0.66 

Height/ Roof area Roof insulation -0.49 -0.61 

Volume/ Roof area Roof insulation -0.62 -0.43 

Number of stories/ Wall area Wall insulation 0.44 -0.40 

Window type 0.08 -0.36 

Height/ Wall area Wall insulation 0.54 -0.17 

Window type 0.07 -0.33 

Volume/ Wall area Wall insulation -0.35 0.63 

Window type -0.21 0.20 

Facade wall area/ Total external wall area WWR South 0.68 0.63 

WWR North 0.38 0.66 

WWR East 0.36 -0.37 

WWR West -0.12 -0.40 

Volume/ Facade wall area WWR South -0.34 -0.42 

WWR North -0.40 0.28 

WWR East -0.61 0.02 

WWR West -0.25 -0.07 

 

(5.1.3) Energy consumption profile 

Finally, the last category of building attributes investigated in this study is the ‘energy 

consumption profile’ category, which focuses on the percentage of energy being used for 

heating in a building. The following graphs are showing the relationship between the percentage 

of the building energy going to heating and the analyzed design parameters (roof insulation, 

wall insulation, WWR, window type, and lighting efficiency).  
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Figure 5.8: Correlation of EUI impact due to the portion of the building's total energy going towards heating (a: 

roof insulation; b: wall insulation) *blank datapoints represent outliers 

The analysis based on the building’s heating percentage highlights one main difference 

within the parameters. The lighting efficiency parameter has a negative correlation with heating 

percentage while all other parameters show a positive correlation for both EUI and NPW. This 

happens because, differently from the other parameters, lighting efficiency does not influence 

the indoor temperature of the building. Thus, the lower the heating percentage, greater will 

probably be the percentage of energy being used by lighting systems.  

Results of correlation analysis also show that, except for WWR south with a weak 

correlation, all parameters have at least some correlation in terms of EUI. On the NPW side, 

similar behavior is seen. In general, however, EUI results have higher correlation levels than 

the NPW results. Thus, NPW analysis shows that parameters always have at least a weak level 

of correlation with the heating percentage attribute. For better visualization of the points 

discussed in this section, the Pearson correlation values can be found in Table 5.3. 

Table 5.3: Energy consumption profile attribute's Pearson correlation values for EUI and NPW impact caused by 

selected parameters (white cell: no correlation; light grey cell: some correlation; dark grey cell: strong correlation) 

Attributes Affected parameters EUI NPW 

Heating % Roof insulation 0.49 0.26 

Wall insulation 0.82 0.26 

WWR South 0.32 0.46 

WWR North 0.63 0.50 

WWR East 0.61 0.45 

WWR West 0.53 0.43 

Window type 0.56 0.36 

Lighting efficiency -0.69 -0.39 
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5.2) Correlation Analysis with Global Sampling  

This section is displaying the results of correlation analyses based on scenarios 

generated through Monte Carlo sampling. To accomplish this global correlation analysis, the 

average output (EUI) of scenarios with the lowest and highest values for each parameter were 

considered separately. Except for the window type parameter, which is not a numerical 

parameter, all design parameters were investigated based on their impact on a one percent 

variation to the design parameter input value. In the case of window type, the two windows that 

predominantly showed minimum and maximum energy consumption were taken into 

consideration.  

Based on the attribute categories highlighted in Table 4.5, this section is divided into 

three main subsections: building rise; proportions of horizontal and vertical external enclosure; 

and energy consumption profile. Some graphs displaying the analyzed data points are shown 

throughout the sections, the remaining are shown in Appendix 4. 

(5.2.1) Building Rise 

Based on the hypotheses summarized in Table 4.5, this section is investigating the 

attributes that fit into the ‘Building rise’ category. Both, the number of stories and the building 

height were analyzed in terms of EUI. The data used for the Pearson correlation analyses were 

graphed and are being displayed in Figure 5.9. The analyzed graphs and correlation coefficients 

show that both, the number of stories and the building height show the same level of correlation 

to the insulation parameters’ impact (some positive correlation).  
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Figure 5.9: Correlation of EUI impact due to number of stories and building height (a: roof impact; b: wall 

impact) *blank datapoints represent outliers 

Table 5.4: Building rise attributes' Pearson correlation values for EUI impact caused by selected parameters (white 

cell: no correlation; light grey cell: some correlation; dark grey cell: strong correlation) 

Attributes Affected parameters EUI  

Number of stories Roof insulation 0.52 

Wall insulation 0.56 

Height Roof insulation 0.43 

Wall insulation 0.46 

 

(5.2.2) Proportions of the horizontal and vertical external enclosure 

The second group of building attributes being investigated in this study is enclosed in 

the ‘proportions of horizontal and vertical external enclosure’ category. As seen in Table 4.5, 

these attributes can influence the impact of a variety of design parameters: roof insulation, wall 

insulation, window type, and window-to-wall ratio. To cover the details of correlation analysis 

for the mentioned attributes, the first 5 subsections will be displaying correlation analysis results 

for the relevant building attributes (wall area/ roof area; roof area related attributes; wall area 

related attributes; percentage area for façades compared to overall wall area; and relative area 

of façades compared to building volume). After that, a summary and discussion of the results 

will be provided. 

Wall Area/ Roof Area 

As previously mentioned, there are 3 design parameters influenced by the ratio of the 

wall over roof area: roof insulation, wall insulation, and window type. When looking at the data 
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and correlation coefficients, both roof and wall insulations show a strong correlation with the 

‘wall area/ roof area’. Meanwhile, window type shows only weak but still positive correlation.  

Roof Area Related Attributes 

While analyzing the size of the roof component to investigate the influence of its 

insulation on the building’s energy performance, attributes involving its area were analyzed 

(the relationship between building stories, building height and building volume with the area of 

the roof). The data used in the investigation is being displayed in Figure 5.10. The results of 

this analysis show that the relationships between the number of stories and roof area, as well as 

building height and roof area, show some positive correlation to the EUI impact caused by roof 

insulation. The attribute involving building volume, on the other hand, shows only a weak 

positive correlation.  
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Figure 5.10: Correlation of EUI roof impact due its relative size (a: number of stories/ roof area; b: building 

height/ roof area; c: volume/ roof area) *blank datapoints represent outliers 

Wall Area Related Attributes 

Like the roof-related attributes, the attributes related to the size of the wall were also 

investigated. In this case, however, more than the impact of just one design parameter is being 

looked at, here both the wall insulation and window type parameters are being analyzed. There, 

along with the correlation analysis coefficient, it is observed that wall insulation and window 
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type show some and strong positive correlation, respectively. When looking at the Pearson 

correlation coefficients for these in relationship to wall insulation and window type, similar 

behavior for both parameters was found, some positive correlation with ‘building height/ wall 

area’ and strong negative correlation with ‘building volume/ wall area’.   

 
Figure 5.11: Correlation of EUI impact due to ratio of volume over wall area (a: wall impact; b: window type 

impact) *blank datapoints represent outliers 

Percentage Area for Façades Compared to Overall Wall Area 

When performing the same analysis to investigate the relationship between the impact 

of WWR for each façade and their respective ratio of the total external wall, all façades were 

analyzed separately. Details of analyzed data are being displayed in Figure 5.12. In this analysis, 

except for a strong correlation in the south façade, all façades show some correlation. The 

highlighted levels of correlation are positive in the south and north side, and negative in the east 

and west sides. 
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Figure 5.12: Correlation of EUI impact due to facade wall percentage (a: south façade; b: north façade; c: east 

facade; d: west facade) *blank datapoints represent outliers 

Percentage Area for Façades Compared to Building Volume 

A similar procedure to the previous one was used to analyze the impact of WWR, but 

in this case, using the building volume instead of the total external wall area. The correlation 

investigation shows no correlation on the east and west façades, a weak negative correlation on 

the south side, and some negative correlation on the north side. 

Summary of Analysis  

Based on the investigations performed in this section, a summary table was developed 

containing all calculated Pearson correlation values for EUI impact analyses (Table 5.5). As 
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previously mentioned, in this study, Pearson correlation values from 0 to ±0.2 are translated 

into no correlation; ±0.2 to ±0.4 are considered to have weak correlation, ±0.4 to ±0.6 have 

some correlation, ±0.6 to ±0.8 have a strong correlation, and ±0.8 to ±1 have a very strong 

correlation. 

Table 5.5: Proportions of horizontal and vertical external enclosure attributes' Pearson correlation values for EUI 

impact caused by selected parameters (white cell: no correlation; light grey cell: some correlation; dark grey cell: strong 

correlation) 

Attributes Affected parameters EUI 

Wall area/ Roof area Roof insulation 0.25 

Wall insulation 0.62 

Window type 0.37 

Number of stories/ Roof area Roof insulation 0.58 

Height/ Roof area Roof insulation 0.52 

Volume/ Roof area Roof insulation 0.40 

Number of stories/ Wall area Wall insulation 0.55 

Window type 0.67 

Height/ Wall area Wall insulation 0.47 

Window type 0.57 

Volume/ Wall area Wall insulation -0.70 

Window type -0.60 

Facade wall area/ Total 

external wall area 

WWR South 0.72 

WWR North 0.55 

WWR East -0.44 

WWR West -0.53 

Volume/ Facade wall area WWR South -0.31 

WWR North -0.54 

WWR East -0.02 

WWR West 0.03 

(5.2.3) Energy consumption profile 

Lastly, the category of building attributes being investigated in this section is the ‘energy 

consumption profile’, which focuses on the percentage of energy being used for heating in a 

building. The following graphs are showing the relationship between the percentage of the 

building energy going to heating and the analyzed design parameters (roof insulation, wall 

insulation, WWR, window type, and lighting efficiency). Figure 5.13 is displaying the data used 

in the EUI analysis. 

The analyzed data shows that parameters that are lower in the ranking of significance 

appear to have lower levels of correlation (in general and when comparing to the previous OAT 

correlation analysis). Roof insulation, wall insulation, and window type show weak or no 

correlation with the buildings’ heating percentage, which are the case due to the variation of 
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other more influential parameters. The remaining parameters, except for lighting efficiency, 

show positive correlations. 

 
Figure 5.13: Correlation of EUI impact due to the portion of the building's total energy going towards heating (a: 

WWR east; b: WWR west; c: window type; d: lighting efficiency) *blank datapoints represent outliers 

The lighting efficiency parameter, in this particular case, shows no correlation with 

heating percentage when the full dataset is analyzed. When separating it between low and high 

heating consumption profile buildings, however, correlation values show a very strong negative 

correlation (-0.83 for low heating consumption group, and -0.75 for high). Details of the 
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Pearson correlation coefficients for ‘energy consumption profile’ investigations can be seen in 

Table 5.6. 

Table 5.6: Energy consumption profile attribute's Pearson correlation values for EUI impact caused by selected 

parameters (white cell: no correlation; light grey cell: some correlation; dark grey cell: strong correlation) 

Attributes Affected 

parameters 

EUI 

Heating % Roof insulation -0.17 

Wall insulation -0.29 

WWR South 0.36 

WWR North 0.89 

WWR East 0.62 

WWR West 0.59 

Window type -0.13 

Lighting efficiency -0.03 

 

5.3) Summary of the Results and Discussion 

To finalize the verification of hypotheses developed by this study, the three categories 

of attributes are compared between the OAT and global correlation analyses for discussion. 

Based on this comparison, the parameters were classified as: parameters with the same level 

and type of impact (i.e. the same category and sign of correlation factor); parameters with the 

same type but a different level of impact; and parameters that show a different type of impact. 

An overview of parameters and respective classifications are provided in Table 5.7. 

Table 5.7: Classification of design parameters based on OAT and global correlation analyses (white cell: same level 

and type of impact; light grey cell: same type but a different level of impact; dark grey cell: different type of impact) 

Attributes Affected parameters Attributes Affected parameters 

Number of stories Roof insulation Facade wall area/ Total 

external wall area 

WWR South 

Wall insulation WWR North 

Height Roof insulation WWR East 

Wall insulation WWR West 

Wall area/ Roof area Roof insulation Volume/ Facade wall 

area 

WWR South 

Wall insulation WWR North 

Window type WWR East 

Number of stories/ Roof area Roof insulation WWR West 

Height/ Roof area Roof insulation Heating % Roof insulation 

Volume/ Roof area Roof insulation Wall insulation 

Number of stories/ Wall area Wall insulation WWR South 

Window type WWR North 

Height/ Wall area Wall insulation WWR East 

Window type WWR West 

Volume/ Wall area Wall insulation Window type 

Window type Lighting efficiency 
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Within the parameters showing the same level and type of impact throughout both OAT 

and global correlation analyses, three different conclusions can be made. There are the attributes 

that can be confidently considered important for the future of this study, the ones that should 

not be considered, and the ones that need further investigation. Due to their constant level of 

strong correlation, ‘façade wall area/ total external wall area’ is an important attribute when 

analyzing WWR south impact; and ‘heating %’ is an important attribute when analyzing WWR 

north and east impacts. On the other hand, due to their constant lack of correlation, both 

‘volume/ façade wall area’ and ‘heating %’ are nonimportant attributes when analyzing WWR 

south. The remaining design parameters in this category, due to their constant level of some 

correlation, will need further investigation. 

In the class of parameters that show the same type of impact with different levels, the 

parameters are showing a stronger level of correlation with their attributes in the OAT analysis 

and the ones with opposite behavior. The parameters showing a strong correlation in the global 

analysis are the ones being suggested by this study as important. The parameters showing some 

level of correlation in the global analysis and higher level in the OAT analysis are being 

suggested as important but further study is recommended. The remaining parameters (except 

for the ones with no correlation) needs further investigation. 

For instance, it is observed that ‘wall area/ roof area’ and ‘volume/ wall area’ are 

important attributes when analyzing the impact of wall insulation. The same happens with 

‘stories/ wall area’ and ‘volume/ wall area’ when analyzing window type impact. Along with 

these, is the correlation between lighting efficiency and ‘heating %’. Although this parameter 

showed a stronger level of correlation with ‘heating %’ during the OAT analysis, global 

analysis results also show strong correlation behavior when the data points are separated 

between low and high energy consumption buildings. Lastly, based on its strong OAT analysis 

correlation and some correlation in the global analysis, the correlation between height and wall 

insulation is also considered important (even though further investigation is recommended). 

The remaining parameters from this class are suggested to go through further investigations. 

Finally, the last group represents the parameters that have a completely different type 

of impact in the two analyses. This behavior can be observed in parameters that do not show 

any correlation in the OAT analysis, such as WWR east and west in correlation with ‘façade 
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wall area/ total external wall area’ and ‘volume/ façade wall area’ respectively. The same 

behavior is observed with parameters that have low impact compared to other parameters, such 

as roof insulation, wall insulation, and window type when in correlation with ‘heating %’. That 

is the case because the global analysis requires that all parameters be changed. Therefore, their 

impact can be overruled by the impact caused by the parameters with higher impact, which 

suggests that the relationship between the above-discussed design parameters and attributes are 

not relevant for the continuation of this study. 

The roof insulation parameter, however, when analyzed with all the other attributes 

(related to building size), shows a special behavior: at least some level of correlation in both 

analyses but with opposite sign. This shift in global analysis happens for two reasons. First, 

because the outliers for all the analyzed global datasets were the two tallest buildings (only two 

above 6 floors in the dataset). That alone largely influences the correlation values (e.g. 

correlation coefficient goes from 0.05 to 0.518 when excluding the two tallest buildings from 

the analysis between roof insulation and the number of stories) since the analyzed attributes are 

related to buildings’ proportions and height. And second, because roof insulation is one of the 

design parameters with the lowest impacts compared to other parameters (i.e. roof insulation 

shows an average of 5.53% impact while parameters such as WWR east and north show 11.36% 

and 11.38% respectively), which overrules the impact caused by the roof insulation. This 

special case, differently from the previous parameters found in this group, needs further 

research to evaluate the effect of taller buildings, and also because some correlation was 

observed during global analysis. 
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Chapter 6 – Concluding Remarks 

BPS is a widely used tool to perform quantitative analysis of building designs. It also 

has the potential to help designers when making decisions on important parameters, such as the 

ones that are decided during the early design development stage. Today, however, due to a large 

number of possible scenarios at such an early phase, BPS is not being used to its potential. In 

the efforts to decrease the number of relevant energy influential parameters and scenarios to be 

evaluated in the early stages of building design, this study is providing a deeper look at 

correlation and dependencies within building and design parameters.  

Outputs of this study include the identification of a set of less significant design 

parameters (overhang, orientation, and lighting type) that, during early stage decision-making, 

do not need to be analyzed with as many alternatives as others. It was also found during this 

study that the HVAC system type is always highly significant in terms of both EUI and NPW, 

and its level of impact does not vary when analyzing different models. The energy influential 

design parameters found to have a significant impact and be sensitive to the analyzed model 

include roof and wall insulations, window type, WWR, and lighting efficiency. 

When it comes to correlation analyses, this study focused only on design parameters 

and their impact on building performance. Correlations between the parameters themselves 

were ignored. On the one hand, this will not be considered a limitation since all analyzed 

parameters can vary independently from one another. On the other hand, however, selection of 

value for one may logically affect the selection of others, for example, larger window to wall 

ratio might call for window types of specific parameters. Moreover, the correlation between an 

input parameter and the significance of other parameters’ impact was also not considered. For 

example, larger WWR will increase the impact of window parameters on the building 

performance; the used methods, however, are unable to capture such high order correlations. 

To capture these kinds of correlations, more advanced data mining methods will be needed.  

Analyzed building attributes were based on three categories: building rise attributes; 

proportions of horizontal and vertical external enclosure attributes; and energy consumption 

profile attributes. Results of the performed correlation analyzes showed that NPW generally 

has lower levels of correlation when compared to EUI. Also, it was found that both EUI and 

NPW have 6 combinations of building attributes and parameters showing strong correlation. In 
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the future, these attributes can be used to train a recommender system that can recommend 

relevant building scenarios to be better analyzed by BPS, by taking into consideration both 

energy and cost aspects of performance.  

6.1) Contributions 

The fundamental contribution of this research was to provide a deeper look at 

correlation and dependencies within building characteristics and design parameters. To achieve 

this goal, the contributions of this project can be listed as the following: 

(1) Multi-model screening of energy influential parameters (RO 1): Previous works had been 

reported on the parametric screening of building models through BPS. None of which, 

however, had performed such investigations with multiple building models. In response to 

this gap, the present thesis identified the most relevant design parameters in terms of EUI 

based on the overall ranking of parameters’ impact, as well as the significance of the impact 

of each parameter throughout a pool of analyzed building models. These findings, 

differently from the previous works, can be used by designers and architects when 

designing new energy-efficient buildings. 

(2) Construction and operation cost models for early-stage design development (RO 2): 

Existing cost models are technically limited due to the purpose of their development, which 

does not allow them to support a decision-making process during the early design 

development phase. During this study, parametric cost models that take in energy 

influential parameters and return their respective construction and operational costs were 

developed to enable analysis at an earlier stage. The developed cost models are now a 

useful tool for anyone working with energy simulation. 

(3) Meta-level analysis of design parameters (RO 3): Based on the selected parameters and 

their cost-models, this study made it possible to investigate how building energy and cost 

performances are sensitive to design parameters; and, how the entire behavior of design 

parameters is sensitive to characteristics of the building model. This set of analyses was 

possible through OAT sampling and the results enabled a better understanding of the 

significance of parameters’ impact, as well as their sensitivity to the case study. Again, due 

to the wide range of building models analyzed in this step, findings of this study are 
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applicable to other design projects, which would then be useful to designers and architects 

when designing a new building.  

(4) Development and evaluation of hypothesis for possible cause roots for differences in 

parameters’ behavior (RO 4 and 5): Through a meta-level analysis of design parameters 

this thesis studied the behavior of parameters separately in different building groups (rather 

than to the entire dataset). Differences observed in different analyzed groups allowed for 

the development of hypotheses that try to explain the reasons why different behaviors arise 

in different building models. The evaluation of these hypotheses made it possible to 

understand relationships between design parameter impacts and building characteristics. 

This is useful when making decisions during the building design process.  

6.2) Impacts 

The main impacts of this research can be summarized at three main levels:  

(1) Design level: The deeper understanding of design parameters’ impact, as well as its 

correlation with building attributes can directly benefit building designers. This can happen 

by providing a more straightforward direction on what design parameters should be 

focused on depending on the characteristics of the building.  

(2) Building performance simulation level: Given the difficulties related to BPS at the early 

development stage (very large number of possible scenarios), the findings of this study can 

help designers limit the number of analyzed scenarios by focusing on parameters relevant 

to the building. This would significantly decrease the number of scenarios to be analyzed, 

making the analysis possible.   

(3) Decision-making level: Reviewed studies showed that analysis of building performance 

through machine learning techniques have high levels of accuracy and speed. The gap 

found in these studies, however, was the fact that no deeper look was given to the attributes 

selected to train these algorithms. With that in mind, this study is filling that gap for the 

future application of machine learning techniques. 

6.3) Limitations 

The limitations of this study are listed as follows: 
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(1) Limited number of building models being analyzed: Data mining techniques usually 

require large amounts of data. This study benefitted from a pool of building models; 

however, a larger number of models would be needed to improve the accuracy of the 

results.  

(2) Window details: Due to the structure of the OpenStudio measure responsible for changing 

window type, the parameters related to window type (e.g. U-value and SHGC) had to be 

applied in combination. Window type is limited to nine different options that bring in their 

respective values. 

(3) HVAC details: HVAC systems, apart from their system type, have many other 

characteristics (e.g. COP). In this study, however, HVAC system analysis was limited to 

the different system types. 

(4) Significance test: All significance tests used in this study are t-tests, which brings the 

assumption that all analyzed samples come from datasets that follow a normal distribution. 

(5) Generation of random scenarios: Due to the nature of the analyzed parameters and the 

structure of the system used to automatically generate the global sample analysis, the 

analyzed scenarios were based on uniform distribution and were not generated in a 

conventional way. The scenarios are created (with the help of the system described in [11]) 

by generating every possible combination of the parameter inputs. With that in mind, the 

randomized part of this dataset happened when the parameter inputs were added to the 

system. 

(6) Correlation analysis: The correlation analysis used in this study is the Pearson correlation, 

which is a measure of the strength of the linear relationship between variables. On top of 

the fact that this method is unable to identify nonlinear relationships, this measure is highly 

sensitive to outliers (although attempts were put in place to remove outliers from the data).  

(7) Global correlation analysis for NPW output: Due to existing limitations in the software 

system used to generate NPW outputs, the global correlation analysis was only performed 

based on the EUI and not NPW. 

6.4) Future works 

To move forward with this study as well as address the above-mentioned limitations, a 

list of points is being suggested as “future works”. By no means, however, the “future works” 
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are limited to the items displayed in this section. 4 potential continuations for this research are 

explained in the following paragraphs: 

(1) Expand dataset of building models: Expanding the pool of building models used in the 

analysis will help increase the accuracy of the analysis. 

(2) HVAC details: Implementing HVAC details will enable a more accurate overview of such 

systems. 

(3) Non-parametric significance tests: There is no evidence, in the existing literature, to prove 

that the maximum impact caused by each parameter alone in the entire population of 

buildings will form a normal distribution. For that reason, the conclusions made based on 

the t-test might benefit from the use of a non-parametric significance test. Non-parametric 

significance tests do not assume anything about the distribution of the population.  

(4) Non-linear correlation analysis: The existence of a large number of variables makes it more 

likely for relationships between design parameters and performance indicators to not be 

linear, especially when the cost of components is involved. To better analyze the existing 

relationship between design parameters’ impact and building attributes, non-linear 

correlation analysis methods would be of great benefit.  

(5) Global verification of hypotheses based on NPW outputs: For further evaluation of the 

hypothesized attributes in terms of NPW, a correlation analysis should be performed by 

using a global sample.  

(6) More advanced data mining methods: Other than the correlations analyzed throughout this 

study, there are other orders of correlation that can provide relevant insights to designers. 

Due to the limitations related to sensitivity analysis itself (which is unable to capture higher 

order of correlations), more advanced data mining methods should be considered in the 

future works.  

(7) Test classifiers: To develop the recommender system, a classifier method will be used. To 

decide what type of classifier should be used, multiple classifiers should be trained and 

tested to see which is most appropriate for the context proposed.  
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Appendices 

Appendix 1 

The IDF files developed for the application of utility rates (explained in sections 3.3 

and 3.4) are shown in this appendix. 

Electricity - Rate D 
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Electricity - Rate G 
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Electricity - Rate M 
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Gas - Rate D1 
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Appendix 2 

 
Frequency distribution of impact classes with HVAC parameter (a: EUI; b: NPW) 

 
 NPW frequency distribution for different building groups (a: low heating; b: high heating)  
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Appendix 3 

Graphs used in the OAT correlation analysis 

 
Correlation of EUI impact due to building stories (a: roof impact; b: wall impact) *blank datapoints represent 

outliers 

 
Correlation of NPW impact due to building stories (a: roof impact; b: wall impact) *blank datapoints represent 

outliers 
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Correlation of EUI impact due to ratio of wall area over roof area (window type) *blank datapoints represent 

outliers 

 
Correlation of NPW impact due to ratio of wall area over roof area (a: roof impact; b: wall impact; c: window 

type) *blank datapoints represent outliers 
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Correlation of EUI roof impact due its relative size (a: number of stories/ roof area; b: building height/ roof area; 

c: volume/ roof area) *blank datapoints represent outliers 
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Correlation of NPW roof impact due its relative size (a: number of stories/ roof area; b: building height/ roof area; 

c: volume/ roof area) *blank datapoints represent outliers 
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Correlation of EUI impact due to ratio of stories over wall area (a: wall impact; b: window type impact )*blank 

datapoints represent outliers 

 

 
Correlation of EUI impact due to ratio of height over wall area (a: wall impact; b: window type impact) *blank 

datapoints represent outliers 
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Correlation of EUI impact due to ratio of volume over wall area (a: wall impact; b: window type impact) *blank 

datapoints represent outliers 

 
Correlation of NPW impact due to ratio of stories over wall area (a: wall impact; b: window type impact) *blank 

datapoints represent outliers 
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Correlation of NPW impact due to ratio of height over wall area (a: wall impact; b: window type impact) *blank 

datapoints represent outliers 
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Correlation of NPW impact due to facade wall percentage (a: south façade; b: north façade; c: east facade; d: 

west facade) *blank datapoints represent outliers 
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Correlation of EUI impact due to relative area of facade compared to building volume (a: south façade; b: north 

façade; c: east facade; d: west facade) *blank datapoints represent outliers 

0

5

10

15

20

25

30

35

0 50 100 150

Im
p

ac
t 

ca
u

se
d

 b
y 

W
W

R
-S

 (
%

)

Volume/ South wall area (m)

0

5

10

15

20

25

30

35

0 50 100 150

Im
p

ac
t 

ca
u

se
d

 b
y 

W
W

R
-N

 (
%

)

Volume/ North wall area (m)

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150

Im
p

ac
t 

ca
u

se
d

 b
y 

W
W

R
-E

 (
%

)

Volume/ East wall area (m)

0

5

10

15

20

25

30

35

0 50 100 150

Im
p

ac
t 

ca
u

se
d

 b
y 

W
W

R
-W

 (
%

)

Volume/ West wall area (m)



109 

 

 
Correlation of NPW impact due to relative area of facade compared to building volume (a: south façade; b: north 

façade; c: east facade; d: west facade) *blank datapoints represent outliers 
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Correlation of EUI impact due to the portion of the building's total energy going towards heating (a: WWR east; b: 

WWR west; c: window type; d: lighting efficiency) *blank datapoints represent outliers 
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Correlation of NPW impact due to the portion of the building's total energy going towards heating (a: roof 

insulation; b: wall insulation) 

 
Correlation of NPW impact due to the portion of the building's total energy going towards heating (a: WWR south; 

b: WWR north) 
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Correlation of NPW impact due to the portion of the building's total energy going towards heating (a: WWR east; 

b: WWR west) 

 
Correlation of NPW impact due to the portion of the building's total energy going towards heating (a: window 

type; b: lighting efficiency) 
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Correlation of EUI impact due to the portion of the building's total energy going towards heating (a: roof 

insulation; b: wall insulation; c: WWR south; d: WWR north) *blank datapoints represent outliers 
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Appendix 4 

Graphs used in the global correlation analysis 

 
Correlation of EUI impact due to ratio of wall area over roof area (a: roof impact; b: wall impact; c: window type) 

*blank datapoints represent outliers 
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Correlation of EUI impact due to ratio of stories over wall area (a: wall impact; b: window type impact) *blank 

datapoints represent outliers 

 
Correlation of EUI impact due to ratio of height over wall area (a: wall impact; b: window type impact) *blank 

datapoints represent outliers 
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Correlation of EUI impact due to relative area of facade compared to building volume (a: south façade; b: north 

façade; c: east facade; d: west facade) *blank datapoints represent outliers 
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Correlation of EUI impact due to the portion of the building's total energy going towards heating (a: roof 

insulation; b: wall insulation; c: WWR south; d: WWR north) *blank datapoints represent outliers 
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