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Abstract

In the recent decades, entropy has become more and more essential in statistics
and machine learning. It features in many applications involving data transmis-
sion, cryptography, signal processing, network theory, bio-informatics, and so on.
A large number of estimators for entropy have been proposed in the past ten years.
Here we focus on entropy estimation for non-negative random variables. Specifi-
cally, the use of entropy estimator based on Poisson-weights density estimator is
found to be of interest. We establish some asymptotic properties of the resulting
estimators and present a simulation study comparing these with well known esti-
mators in literature.
Keywords: information theory, entropy estimator, non-parametric density esti-
mator, asymptotic properties.

1 Introduction

Let X be a continuous random variable with the probability density function (pdf) f(x).
The entropy of the random variable X is defined as

Hy = —/_OO f(z)log f(x)dz. (1.1)



The concept of entropy, also known as differential entropy was introduced by Shannon
(1948) in information theory and consequently, it has attracted a lot of interests in
many areas of statistical applications such as data transmission, cryptography, signal
processing, network theory, bio-informatics, and so on.

Jaynes (1957a, 1957b) introduced the mazimum entropy principle for statistical in-
ference, while establishing a connection of differential entropy to the concept of ther-
modynamic entropy in statistical mechanics. Chaubey and Mudholkar (2013) provided
an entropy based rationale for maximum likelihood principle. We refer to Beirlant et
al. (2001) for an excellent review of various estimation methods of H;. The reader is
also directed to the excellent text by Cover and Thomas (1991) covering various as-
pects of entropy theory and applications. This paper concerns the estimator of entropy
Hy, that is obtained by plugging in a non-parametric estimator fo(x) for f(z) that is
based on a random sample {X7, ..., X,,} obtained from the density f(z). This estimator
was proposed by Ahmad and Lin (1989) when fn(x) is obtained by kernel smoothing.
Such an estimator is constructed implicitly for densities on the whole real line. These
methods, however, breakdown for estimating the densities over a bounded interval or
over a subset of the real line (see e.g. Karunamuni and Albert 2005). In case we have
a density supported on R*, Chaubey and Sen (1996) and Chaubey et al. (2012) pro-
posed non-parametric density estimators using Poisson weights and asymmetric kernels,
respectively. Asymmetric kernel density estimators have also been proposed and studied
by other authors, e.g. Bagai and Prakasa Rao (1996), Chen (2000) and Scaillet (2004)
among others. Bouezmarni and Scaillet (2005) have studied the consistency of such
estimators.

Eggermont and LaRiccia (1999) established best asymptotic normality of the kernel
based entropy estimator and Schwartz et al. (2005) proposed an efficient algorithm
for kernel entropy estimation using Gaussian kernel. However, since the underlying
density estimator may not be appropriate in the current setting of non-negative variables,
we would like to consider the plug-in estimator of entropy using the density estimator
from Chaubey and Sen (1996). This estimator is known to be better than asymmetric
kernel estimator as it handles the estimation of density at zero in a better manner (see
Bouezmarni and Scaillet 2005). The original Poisson weights estimator, as proposed in
Chaubey and Sen (1996) has been modified somewhat (see Chaubey et al. 2010) where
we did not truncate the Poisson distribution at a fixed index N as considered in Chaubey
and Sen (1996).

There exist quite a few entropy estimators, as seen in the paper by Beirlant et al.
(2001). However, we have not seen plug-in estimators for non-negative random variables,
a case that presents itself in many applications such as in reliability and life testing. Fur-
thermore, the Poisson based estimator is faster to compute as opposed to the asymmetric
kernel based estimator. Our purpose in this paper is to establish some asymptotic prop-
erties of the resulting entropy estimator and present a numerical study comparing it
to some standard estimators in literature. Some important papers studying asymptotic



properties of entropy estimators may be mentioned. Gyorfi and van der Meulen (1987,
1990) studied convergence properties of various entropy estimators including those based
kernel plug-in estimator; Van Es (1992) studied asymptotic properties of the so-called
“spacing” approach; Hall and Morton (1993) studied the asymptotic properties when an
empirical version of the plug-in estimator is employed; Eggermont and LaRiccia (1999)
used double exponential kernel on density estimation; and Bouzebda et al. (2013) relied
on the quantile density estimation and Brownian bridge.

Our goal in this paper is to first present two new entropy estimators, and then study
their asymptotic properties. The organization of the paper is as follows. The new entropy
estimators are presented in Section 2 along with their asymptotic properties. Section
3 is dedicated to a brief review on existing entropy estimators along with a simulation
study comparing our estimators with the existing ones.

2 New Entropy Estimators for Non-negative Sup-
port

One straightforward approach for entropy estimation is to estimate the underlying den-
sity function f(z) by some well-known density estimator f,(z), then plug it into (1.1)
to obtain the entropy estimator

fPn /O F(2) og f(x)dz. (2.1)
On the other hand, motivated by the representation of entropy as an expected value
Hy =~ | f(a)log f(a)ds = ~Ellog (X)) (22)

0

it follows by the strong law of large numbers that
1 ¢ as.
- E log f(X;) = Hy as n — 0. (2.3)
n
i=1

Thus we obtain a new entropy estimator if we replace f(-) by an appropriate density
estimator f,(-), as given by

. 1 — .
HYM09 = —ZN " log f(X). 2.4
f n; og fn(Xi) (2.4)

Hence, with a well-performing density estimator on hand, we may obtain a good
entropy estimator. The fixed symmetric kernel density estimator is a well-known and
popular approach for estimating the density function with an unbounded support, but



it results in a heavy bias near the boundary when dealing with densities of non-negative
random variable, as mentioned earlier. In order to alleviate this problem, we focus on the
Poisson smoothed histogram density estimator, that has the following form (see Chaubey

and Sen 2009),
o ’fZ [ (z+ 1) B F(%)}e_k(k;w (2.5)

where F,(+) is the empirical distribution function, and k := k(n) can be viewed as the
smoothing parameter. The estimator ff %is(x) can be interpreted as a random weighted
sum of Poisson probabilities. The asymptotic properties of ff °i5(x) have been studied
and its weak convergence was proven by Bouezmarni and Scaillet (2005) under the as-

sumptions hm k = oo and lim nk=2 = oo. They also obtained the weak convergence
n—o0

for the case of unbounded pdf f at # = 0. Later on, Chaubey et al. (2010) provided fur-
ther results by working out the asymptotic bias, asymptotic variance, strong consistency
and the asymptotic normality of the estimator. Particularly, under the assumptions
that k = cn” for some constant ¢ > 0 and 0 < h < 1, and f’(z) satisfies the Lipschitz
condition of order o > 0, the asymptotic bias and variance of ff %s(.) are given by

ois ['()
Bias [fp (2)] Sl (2.6)
e E[X] )
Pois ~ h
Var[f;" ()] ~ == 2m3f( z)n"?7L, (2.7)
The strong consistency of the estimator fFo'5(z),
1/, () = f(x)]] 5 0 (2.8)

is established under the conditions E[X~?] < co and f'(z) is bounded and k, = O(n").
On the other hand, the asymptotic normality of f°(z) is established under the con-
ditions E[X 2] < oo, k, = O(n*?), and f'(x) satisfies the Lipschitz order o condition.
Namely, under these conditions, for z in a compact set I C R, we have
Ap 1
n2/5(ffms(x) — f(z)) — 252

where G is a zero-mean Gaussian process with covariance function 24, where

'(z) B g, (2.9)

e = —(27rx3)’1/2f(x)5,

with § and J,s are given by
0 for = # s,

n—+00 1 for x = s.

0= lim (n~"%k,/?),  and %-{
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With these nice asymptotic properties of ff °is(.), we propose the following two en-
tropy estimators:

ﬁ]};’luginfpois — _/0v frf’ois(m) 10g ffois(x)dx7 (210)
. . Ly pos
H]]c\/[eanlongozs __ - Z log fnPozs(Xi)_ (2]_1)
n
i=1

We are able to establish the asymptotic consistency and normality of these estimators

as stated in the theorems that follow. The following theorem concerns of the asymptotic
. ‘rMeanlog— Pois
properties of H; .

Theorem 2.1. Assume the following conditions to hold:
e E[X?] < o0,
o E[(log f(X))?] < oo,

o f'(x) is bounded with [° f'(x)dx < oo, and satisfies Lipschitz order of o condition,

o f(x) is twice differentiable and [~ @) gy < 00,

0 f(2)
o k, =o(n") for some h € (1/2,1),

then

fyMeaniog—Pois _ _% izn;logf(Xi) +o(n"Y?) a.s. as n — . (2.12)
Consequently, we get

’F[J]t\/[eanlongois — Hy “% ), (2.13)

and
\/ﬁ(ﬁ]]cweanlog—Pois B Hf> 2 N(0, Varflog £(X)]). (2.14)

Proof. Writing I:chwea"log_POis as an integral with respect to the empirical distribution
function F,(z), we have

—%ZlogffOis(Xi) = —/0 log fF(x)dF, (x)
=1
— = [T s@ana) - [ (g i)~ tow ) ) aro)
0 0
1 n
= RSO0
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where -
I, = / (log fPeis () — log f(x))an(a:)
0

On the other hand, we know that —% » log f(X;) is an unbiased, strongly con-
sistent estimator for Hy by the strong law of large numbers, and is root-n asymptotic
normal by the central limit theorem if E[log f(X)?] < oo. That is

a.s.

— 0,

1 n
e - 1
=1

and .
\/ﬁ( - % > log £(X;) — Hf) B N(0, Var[log f(X))),
as n — o0o. Therefore, it is ;Illfﬁcient to prove that
I, =o(n V%) as. asn — oo.

In order to study the asymptotic behavior of I,,, we decompose it into two parts as,

L= OO(logff“s(x)—logf(rc)>d(Fn(w)—F(:c))+ / OO(mgffm'%:c)—1ogf<x>)dF<x>

= [n,l + [n,27 sSay.

e Analysis of 1,5 :

Since the function log z is continuous and differentiable for all z > 0, we can apply
the Taylor expansion centering at a to get

zZ—aQ

log z = 1 S —
08 = Rt T e

where ¢ € (0,1). By letting z = fF(2) and a = f(z), we obtain

£ Pois _ fros(a) = flx)
log fFos () — log f(x) = tfPois(z) + (1 — ) f(a)

As |[fPois(z) — f(z)|] %3 0 uniformly, it implies ¢ fF9 () + (1 — ¢) f(z) %3 f(x).
Thus,

7 (2) — (=)
flz '

log £ (x) —log f(z) “3

~—



As a result, I, 5 can be expressed as

[ (s wx;f ) i

/;° (o

= 0,

that follows, since the Poisson smooth density estimator integrates to unity.

Analysis of I, :

Using integration by part we have

Ly = (Fu(z) = F(x)) log(fPon())> h

I(
_/OOO (J;?((;’)) (()))( (1) — F(x))da.

It is well-known that by the law of the iterated logarithm, we have

|1 F — Flleo = O(n‘l/z(loglog n)1/2) a.s.

Meanwhile, Recall from Chaubey et al. (2010) that if f'(z) satisfies the Lipschitz
of order aw > 0, i.e. there exists a finite positive K such that

11 (s) = f'(t)] < K|s—t]* Vs, t € RT,

then for fixed £ € R we have

Fro8() = flr) = g f'(@) + O(k™0), (215)
which implies that
PP P e g ot
) =1+ o F(2) +O(k )=14+0(k). (2.16)



If we restrict k = o(n") for 1/2 < h < 1, then for fixed z € R we get

\/ﬁ(Fn(m) — F(x )) log (fl;)g:) >> = O((loglogn)"/?) log(1 + o(n™")).

By L’Hopital’s rule, we get

( log log n) 572 logn

: 1/2 T
71112%)(10g10gn) log(1+n™") ilil{l)Zh =

3/2 1/2

2( log log n) + 3( log log n)
m
n—0 nh
. 3(10g logn)l/2 + %(loglogn)
= lim
n—0 hnhlogn

~1/2

Thus, we obtain

which means that

- v ()

On the other hand, since ||fF#(x) — f(x)|| £ 0 uniformly, we can bound the

second term of I,,; as
[ Gs-5)
s |-

< ||F - F||oo/0 e

By differentiating on both sides of (2.15) and dividing by f(x), we get

PR - P 1)
@ % ) O

5,
*z

8




So, if k = o(n") where 1/2 < h < 1 and [/~ ff(( ))

/OOO @;8 - J}ég ) (Fu(w) - F())da

< O (nil/Q(ln In n)1/2)0(n*1/2

= o(n V2.

Therefore, I,,; = o(n~/?) a.s. Putting everything together, we get
. 4 1 <
H]]cwe“"logfpm = Z log f(X;) + o(n~Y?) almost surely.

This completes the proof of the theorem. O

Next we establish asymptotic properties of the plug-in estimator H f fugin=Pots pirst,
we establish its asymptotic consistency as given in the following theorem.

Theorem 2.2. Assume the following conditions:
e E[X %] < oo,
o f'(x) is bounded, satisfies Lipschitz order of o condition,
o [7f'(x)log f(z)dx < oo,
o k, =o(n") for some 0 < h <1,

then, R ‘ ,
|Hflugm—Pms . Hf| (Ef 0. (217)

Proof. We have

ﬁPlugin—PoiS

d 00
- /0 f00 () log £ da
== /0 ) (ff ") = flw) + f(x)> log £ (x)dx
- /0°° (ffm@) — f(z)) log Fon (@) da — /OOO f(z)(log fPois (1) — log f(x))dx + H;
== Un =l (2.18)

where U, := [ (fP?*(x) — f(x)) log f**(x)dx. From the proof of the Theorem 2.1, we
already have



For analysing U,,, we can decompose it as
U, = /0 (fres(x) = f(x)) (log fr**(v)—log f(x))dz+ /0 (/o (x)= f(2)) log f(x)de.

Since under the assumptions in the theorem, || fFois(z) — f(z)]] © 0 uniformly, we get
freis(z)/ f(x) “¥ 1 uniformly. Thus, by the dominant convergence theorem (DCT), the
first term of U,, becomes

/0 T (FPo() — £(@)) (log fPO () — log f(2))da

- /ooo (£ (@) = f(w)) log (fi"(i;g@)dx

a.s.

0.

And for the second term of U, recall that if f/(x) satisfies the Lipschitz of order o > 0,
i.e. there exists a finite positive K such that

1f'(s) = f()| < K|s —t]* Vst €RT,
then for fixed x € R we have
o 1, e
Froo @) — fa) = 5 f(x) + 002,

Thus, we get
| @) = f@) g ftarde = o [ @) log fwde + 0 ) = o),
given that k = o(n") and [° f'(x)log f(x)dx < oo. Therefore,
\ﬁfl“gmfpm — Hy| < |Up| + L2 =3 0.
This establishes the strong-consistency of H f fugin—Pots O

H f fugin=Fois ' we present the following theorem.

For the asymptotic normality of
Theorem 2.3. If these conditions hold
o E[X?] < o0,

o f'(x) is bounded, satisfies Lipschitz order of a condition,

10



o [ f(x)log f(z)dx < oo,
o [Fax732f(x)(log f(x))2da: < 00,

2/5

e k, =cn*° for a constant ¢ > 0,

then, we have
n2/5 (ﬁ}]cjlugin—Pois . Hf) 2)./\/” (219)

where N is a normal random variable with mean - fo f(x)log f(x)dx

and variance "5 ‘/27r Jo a7 f () (log f(x))?dw.

Proof. From the proof of the previous theorem, we have

~ Pl in— Poi
Hf ugin 018 _ Hf — Un + ]’n’2,

where [, o 220 identically, and

= [ () - (o) o (£ J;(g Dot [ (022 - 5(0) tow fa) o

Recall that if f’'(z) satisfies the Lipschitz of order a > 0, i.e. there exists a finite positive
K such that
If'(s) = f'(t)] < K|s —t|* Vs, t € RT,

then for fixed € R we have
. 1, e
[ (@) — f(z) = o) (z) + O(k~'=).

Consider the quantity n?/°U,, then, under the assumption that k = ¢n®® for a constant
c > 0, we first get

o [ () = ) o ({g s = o),

due the dominant convergence theorem and the fact that

lim n*°en=2/%log(1 + en™2/°) = lim clog(1 + en=2/%) = 0.

n—oo n—oo
As a result, the limiting distribution of n?/® (f[ f fugin=Potis _ pr ¢) follows the same as the

limiting distribution of n®/3 [ (£l (x) — f(x)) log f(x)dx

11



Recall that, if E[X 2] < oo, k, = en?/®, ¢ > 0, and f'(z) satisfies the Lipschitz order
a condition, then for z in a compact set I C RT,

2 (f ) = 1)) = @) B 6,

where G is the Gaussian process with covariance function ~+28,,, where 2 =
@«/im“mf(x), 0zs = 0 for x # s and 0,5 = 1 for z = s.

On the other hand, consider Y (¢) as a Gaussian process with mean m(t) and covari-

ance function 7(t,t') and ¢(t) as a non-random measurable function, then by rewriting
the integral as a Riemann sum, it is obvious that

t
[ et S—A;IBOZY

follows a Gaussian distribution with mean fo m(s)g(s)ds and variance
fo fo )g(s')dsds’. Thus, by letting t — oo we get

/0 T Y (9)g()dt = Np,0?),

p= [ s and ot / | s a0 s

As a result, we obtain

n2/5 (ﬁflugin—Pois . Hf) _ /"O n2/5 (ﬁ]:ois(l,) _ f(m)) logf(x)dx + 0(1) £> /\/’7
0

where ANV is a Normal random variable with mean

lm /0°°n2/5(f50“<x>—f< >)1ogf — 5 | @

and the variance

where

lim Var UOO 2/5(fp"“(:r)—f( )) log f(z)d ]

\/; / Y2 () (log () d

For N to be well-defined, we need the following conditions

/OO f'(z)log f(z)dr < oo and /00 x_3/2f(x)(log f(x))2d$ < 00,
0 0

as assumed in the theorem. This completes the proof of the theorem. O

12



Remark 2.1. The asymptotic results established here using the Poisson weight smooth-
ing estimator of the density function follows very closely to those established in Hall and
Morton (1993), though under some stringent smoothness conditions. Such results may
also be established using alternative asymmetric kernel density estimators such as those
proposed in Chaubey et al. (2012), Chen (2000), Cheng and Parzen (1997) and oth-
ers. However, Poisson weights based entropy estimator, especially ﬁ}wea"logfpm may
be computationally preferable over others. This is important as there may not exist an
uniformly best estimator, as demonstrated through numerical studies in the next section.

3 Comparison of Estimators: A Simulation Study

In this section, we present a simulation study on our proposed estimators and some other
existing entropy estimators which are given in the sub-section below.

3.1 Entropy estimators
3.1.1 Van Es entropy estimator (Van Es, 1992)

This entropy is motivated by an approach called “spacing”, initiated by Vasicek (1976).
By the change of variable p = F'(x), the entropy can be expressed in the form

Hy=— [ syos onte = (o {Lr )y

To estimate Hy, the distribution [ is replaced by the empirical distribution F;,, and the
differential operator is replaced by the difference operator. As a result, the derivative of
F~1(p) is estimated by 5~ (X(itm) — X(i—my) for (i = 1)/n < p <i/n, i =m+1,m+
2,...,n —m, where X;’s are the order statistics and m is a positive integer smaller
than n/2. When p < m/n or p > (n — m)/n, one-sided differences are used. That is,
(X(i+m) — X(l)) and (X(n) — X(i_m)> are in place of (X(i+m) — X(i—m)) respectively. All
together this leads to the following estimator of entropy

P 1 & n
HVaszcek — 1 Xz m) — X i—m . 3.1
| n;:l og{Qm( (irm) = X >)} (3.1)

Since ﬁ}/amek was shown to produce a large bias. Van Es (1992) modified and improved
the performance of ﬁ}/mc‘fk by his estimator that is given as

. R n+1 "1
VanFEs __
HYmes = ; log { ——(Xirm) —X(i))} +j;n 5 +log(m) —log(n—+1). (3.2)

Van Es (1992) established, under certain conditions, the strong consistency and asymp-
totic normality of HJY“”ES.

13



3.1.2 Entropy estimator by means of quantile density estimation

Bouzebda et al. (2013) presented an estimator of entropy based on smooth estimator of
quantile density function. Their idea again starts with the expression of the entropy

Hf=/Ollog{%F‘l(p)}dpz/Ollog{%Q(p)}dpz/OllogQ(p)dp,

where Q(p) := inf{t : F(t) > p} for 0 < p < 1 is the quantile function and ¢(p) :=
dQ(p)/dp = 1/f(Q(p)) is the quantile density function. Then a new entropy estimator
can be obtained by substituting ¢(-) by its appropriate estimator §,(+).

1
Hy = / log ¢y (p)dp.
0

Bouzebda et al. (2013) were motivated by the work of Cheng and Parzen (1997), which
introduced a kernel type estimator of ¢(-).

a." (p) = —QCP =% / Qn(t) Kn(p, t)dpin (1),

where Qn() is the empirical quantile function, K, (p,x) is the sequence density kernel
functions defined on (0, 1) x [0, 1], and p, () is a sequence of o-finite measure on [0, 1]. In
this paper, we use one special form of G5 (p), which coincides to the method of Bernstein
polynomial. First, the quantile function @(-) is estimated by Bernstein polynomial of

degree m.
A 1
= n\ .7 ) 717
> (g Jimp pe

where b(i, m,p) = P[Y =], and Y follows the binomial(m, p) distribution, and m is a
function of n such that m — oo as n — oo. Then the estimator of ¢(-) can be obtained
by differentiating Q,,(-)

() = dQ” )30 Qu( £ )otimp) |, (33)

=0

Therefore, the entropy estimator by means of quantile density estimation is of the form

1
H}?uanmle = /log(jn(p)dp. (3.4)
0

Bouzebda et al. (2013) studied and obtained the strong asymptotic consistency and
asymptotic normality for their estimator.

14



3.1.3 Entropy estimator by means of asymmetric kernel density estimation

Lastly, to compare the performance of our entropy estimators with the one using asym-
metric kernel density estimation, we also run simulation on these two estimators using
Gamma kernel estimators as given in Chen (2000).

frptinGam _ _ /0 76 () log fEm () d, (3.5)

]:I]]cweanlog—Gam _ Z IOg fgam(Xl.)7 (36)

where fnG @M () is the asymmetric kernel density estimator with the Gamma kernel defined

as
n

n g;/
A 1 . exp(—X;/b)
Gam _ Gam
fn (37) - n E Km/b+1b E : b$/b+1r $/b+ ) (37)

=1

15



3.2 Simulation results

The simulation is performed on selected densities which are
e Standard Exponential(1) with true Hy = 1.
e Uniform(0,1) with true Hy = 0.
e Weibull(2,2) with true H; ~ 1.2886.
e Gamma(2,2) with true H; ~ 0.8841.

The simulation study is organized as follows. For each density, 500 replicated data are
generated for different sample sizes: 10, 20, 40, 80, 160, 320, 640 and 1000. To obtain
the entropy estimators, we need to assign value to smoothing parameters. Particularly,
the choice of m in Van Es estimators is set to |y/n + 0.5]; the bandwidth selection
b= sn~2/% is used in fnG“m() where s is the sample standard deviation; the choice of the
polynomial degree m in the quantile density estimator ¢(-) is fixed to m = n/logn; and
lastly for our estimators, we applied the smoothing parameter k = n%° + 1. To compare
the performance between estimators, for each density and each estimator, we compute
the point estimate and its MSE shown in the parentheses. The simulation results are
shown in the Table 1 to Table 4. Each row in the table corresponds to one sample size,
and the bold value in that row indicates the best estimator with the smallest MSE for
that sample size. Furthermore, for better visual comparison, we convert the tables into
graphs in which we present the graphs of true entropy along with entropy estimator and
the mean squared error (MSE) of each estimator. Note that, deal to the round-up in
R software, the integrand f(z)log f(x) may produce non-finite value for large value of
x, so this results in a problem when computing plugin entropy estimators. However,
since the contribution of the right tail of the integrand to the entropy is insignificant
for sufficiently large x, we obtain the approximately true value of entropy by cutting off
the negligible right tail of the integration. That is, instead of integrating over the entire
support of f(z)log f(z), we integrate up to a certain value at which the right tail is
negligible. By observing the simulation results below, we have some important remarks.

Remark 3.1. There does not exist the uniquely best entropy estimator in all cases.

It is clear from the simulation results that, depending on the density and the sample
size, the best entropy estimator switches from one to another. However, in most cases
the MSE of H}‘/le“”log ~Ps ig the smallest comparing to that of others estimators from
small to large sample size.
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Table 1: Simulation results for Exp(1). The point estimate and MSE (in parentheses) are computed for each estimator.
The bold value is the best estimator with the smallest MSE.

Table 2: Simulation results for Uniform(0,1). The point estimate and MSE (in parentheses) are computed for each
estimator. The bold value is the best estimator with the smallest MSE.

Table 3: Simulation results for Weibull(2,2). The point estimate and MSE (in parentheses) are computed for each
estimator. The bold value is the best estimator with the smallest MSE.

Table 4: Simulation results for Gamma(2,2). The point estimate and MSE (in parentheses) are computed for each
estimator. The bold value is the best estimator with the smallest MSE.
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Figure 1: Plot of the true entropy (black) and entropy estimators: Van Es estimator (blue), Gamma plugin (purple),
Gamma mean of log (grey), Poisson plug-in (orange), Poisson mean of log (red), quantile (green) for different sample sizes.

Figure 2: Plot of MSE of entropy estimators: Van Es estimator (blue), Gamma plugin (purple), Gamma mean of log
(grey), Poisson plug-in (orange), Poisson mean of log (red), quantile (green) for different sample sizes.
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Remark 3.2. In The case of Uniform(0,1), The Van Es estimator outperforms all other
estimators for sufficiently large sample size.

The Uniform(0,1) is also the only case in which our estimators have a poor performance
while the Van Es estimator gets very close to the true one. This makes sense because
the Van Es estimator is built on the principle of approximating differential operator by a
difference operator of distribution function, and the uniform distribution has a constant
rate on its support.

Remark 3.3. The rate of convergence of the estimator [:I?ua"me seems to be faster than
other estimators.

Although for a small sample size, f[?““"tile estimator does not show up to be a good
estimator, and it is not recommended. As the sample size increases, it becomes one
of the best potential choices for entropy estimator due to its consistently fast rate of
convergence to the true entropy.
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