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Abstract

Scheduling, inventory management and production planning:
Formulations and solution methods

Pedram Hooshangitabrizi, Ph.D.

Concordia University, 2020

This thesis presents formulations and solution methods for three types of problems

in operations management that have received major attention in the last decade and

arise in several applications. We focus on the use of mixed integer programming

theory, robust optimization, and decomposition-based methods to solve each of these

three problems.

We first study an online scheduling problem dealing with patients’ multiple re-

quests for chemotherapy treatments. We propose an adaptive and flexible scheduling

procedure capable of handling both the dynamic uncertainty arising from appoint-

ment requests that appear on waiting lists in real time and capable of dealing with

unexpected changes. The proposed scheduling procedure incorporates several circum-

stances prevalent at oncology clinics such as specific intervals between two consecutive

appointments and specific time slots and chairs. Computational experiments show

the proposed procedure achieves consistently better results for all considered objec-

tive functions compared to those of the scheduling system in use at the cancer centre

of a major metropolitan hospital in Canada.

We next present an inventory management problem that integrates perishability,

demand uncertainty, and order modification decisions. We formulate the problem

as a two-stage robust integer optimization model and develop an exact column-and-

row generation algorithm to solve it. Based on computational results, we show that

considering order modification can significantly reduce the total cost. Moreover, com-

paring the results obtained by the proposed robust model to those obtained from the

deterministic and stochastic variants, we note that their performances are similar
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in the risk-neutral setting while solutions from the robust models are significantly

superior in the risk-averse setting.

Finally, we study decomposition strategies for a class of production planning

problems with multiple items, unlimited production capacity and, inventory bounds.

Based on a new mixed integer programming formulation, we proposed a Lagrangian

relaxation for the problem. We propose a deflected subgradient method and a sta-

bilized column generation algorithm to solve the Lagrangian dual problem. Com-

putational results confirm that the proposed formulation outperforms the previously

proposed models and methods. Further analysis shows the impact of using decompo-

sition techniques in providing tighter bounds.
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Chapter 1

Introduction

Operations management practice and research have played a significant role in the

development of large scale business ideas ranging from the Walmart supply chain man-

agement to the Toyota production system [67]. Addressing challenging and realistic

problems in this area is thus a promising direction of research with the potential of

leading to the development of theoretical and application breakthroughs. Operations

management may include many concepts and applications such as production design

and customer service, warehouse location analysis, management of service operation,

inventory management, and scheduling operations strategies. This thesis addresses

three main problems in operations management: scheduling in healthcare, inventory

management for perishable products, and production planning with storage capacity.

In the first part of the thesis, we focus on a chemotherapy scheduling problem

arising at the Segal Cancer Centre in Montreal, Canada. In outpatient clinics, timely

access to health services is a very important factor for both patients and healthcare

service providers. Efficiently designing a scheduling system can optimize clinical oper-

ations, increase patient’s satisfaction, and reduce resource idle time and overall costs

[101]. We address four practical aspects of appointment scheduling systems: dynamic

uncertainty arising from appointment requests, requesting multiple appointments si-
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multaneously, patient preferences, and handling last-minute changes. These aspects

are modelled using integer programs and solved using a flexible and adaptive proce-

dure. On the other hand, computational efficiency is addressed by solving large-scale

instances using historical data provided by the cancer centre.

In the second part of the thesis, we study a perishable inventory management

problem. There are many products such as food and blood products that deterio-

rate over time and become unfit for consumption after their shelf-life. In inventory

management systems, it is thus crucial to make optimal ordering, production and

allocation decisions while reducing waste. We focus on three main aspects of perish-

able inventory systems: shelf-life, demand uncertainty, and order modification. These

are all formulated using a two-stage robust integer program with an uncertainty set

under the assumption of periodic review system. An exact algorithm tailored to the

proposed two-stage formulation is developed to solve the problem in the worst-case

scenario. Extensive computational experiments are performed to draw managerial

insights by analyzing the effect of considering different parameters and ordering poli-

cies.

Finally, in the last part of this thesis, we address a fundamental class of production

planning problems that arises when multiple items with limited storage capacity are

considered in lot-sizing problems. Limited storage capacity is considered because of

several reasons: special physical structure of products, administrative policies, and

warehouse infrastructure conditions [84]. It is important to find optimal production

periods and amount of products stored in shared space to minimize the sum of setup,

production and inventory costs. We provide an extended formulation for the multi-

item uncapacitated lot-sizing problem with inventory bounds (MULSIB) based on

a previously proposed formulation. Using the extended formulation, we are allowed

to decompose the problem into smaller subproblems. Among the publications on

MULSIBs, none is concerned with the development of exact decomposition-based
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algorithms for the MULSIB. We investigate different decomposition strategies for the

MULSIB by decomposing it into smaller and relatively easy subproblems with the

aim of finding tighter bounds.

The contributions of this thesis can be categorized as follows:

• Problem modelling.

– Addressing critical and complex aspects of patient scheduling problems.

– Addressing challenges in inventory replenishment planning using a two-

stage mixed integer programming formation.

– Introducing a way to enhance the decomposability of formulations.

• Algorithmic development.

– A flexible and an adaptive procedure that combines various mixed integer

programming models to solve offline and online scheduling problems

– A column-and-row generation algorithm to solve a two-stage robust opti-

mization model for perishable inventory management problems

– Two decomposition-based algorithms to solve the Lagrangian dual prob-

lem associated with the MULSIB: a deflected subgradient method and a

stabilized column generation algorithm.

• Managerial insights

– Sensitivity analysis of the effect of different controllable parameters on the

performance of scheduling systems

– The effect of handling last-minute changes on the quality of schedules.

– Analysis of the impact of incorporating order modifications on the perfor-

mance of inventory systems.
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– Evidence of the stable performance of solutions from robust counterparts

in both risk-averse and risk-neutral settings.

This thesis consists of four more chapters, three of which correspond to manuscripts

that have been published or submitted for revision in high impact journals in the

area of management science and operations research. Chapter 2 first presents a lit-

erature review on related problems to outpatient scheduling problems. Afterwards,

it describes a real-life problem associated with scheduling appointment requests for

chemotherapy treatments. Using two different integer programming models, a flexible

and adaptive procedure for handling appointment requests and unexpected events is

proposed. A comparison of the schedules built by the proposed scheduling procedure

to those actually used in reality is done to evaluate the proposed procedure and to

obtain managerial insights.

Chapter 3 provides a formal definition of the perishable inventory management

problem and proposes a two-stage robust formulation. It also presents a column-

and-row generation algorithm to solve the formulated robust model. Computational

experiments and sensitivity analyses are carried out to evaluate the performance of

the algorithm and to analyze the effect of different aspects and parameters.

Chapter 4 studies a fundamental problem in production planning with slight mod-

ifications by considering multiple items and inventory bounds. A reformulation of the

problem is proposed which allows us to apply decomposition-based techniques. Com-

putational experiments show the proposed formulation provides better upper bounds

than the state-of-the-art formulations and methods. Also, the proposed lower bound-

ing method provides tighter bounds than other methods. Finally, Chapter 5 provides

conclusions and future works presented in this thesis.

4



Chapter 2

Improving patient-care services at an

oncology clinic using a flexible and

adaptive scheduling procedure

P. Hooshangi-Tabrizi, I. Contreras, N. Bhuiyan, G. Batist. “Improving patient-care

services at an oncology clinic using a flexible and adaptive scheduling procedure".

published in Expert Systems with Applications, February 2020 [49].

Abstract

This paper studies an online scheduling problem dealing with patients’ multiple re-

quests for chemotherapy treatments at the cancer centre of a major metropolitan

hospital in Canada. The proposed solution to the problem is an adaptive and flexible

procedure that systematically combines two optimization models. The first model is

intended to dynamically schedule incoming appointment requests, which arrive in the

form of waiting lists, and the second model is used to reschedule already booked ap-

pointments with the goal of better allocating resources as new information becomes

available. The performance and potential impact of the proposed procedure is as-
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sessed using historical data provided by the cancer centre. Moreover, a sensitivity

analysis is carried out to draw insights that may help hospital managers to deal more

efficiently with both incoming requests and unexpected events.

2.1 Introduction

Health-care systems are continuously growing in complexity, size, and funding re-

quirements. According to a World Bank report [106], Canada’s total health expendi-

ture was approximately 10.4% of GDP in 2014, which ranks Canada among the coun-

tries with the highest ratio of total health expenditure to GDP. In order to efficiently

manage expenditures, health-care systems have started to use more sophisticated

decision-making tools to better utilize valuable and shared resources. Moreover, since

cancer is the leading cause of death in Canada and is responsible for 30% of all deaths

[20], cancer centres face an increase in demand. Given the limited capacity and cost

of inpatient care systems, which require a prolonged stay at the facility, as well as the

technological advancements of outpatient clinics, currently there is a special empha-

sis on outpatient facilities [40]. Timely access to outpatient care is a very important

factor for both patients and cancer clinics. Therefore, a well-designed scheduling

system can optimize clinical operations, increase patient’s satisfaction, and reduce re-

source idle time and overall costs [101]. Outpatient scheduling problems are common

to a wide range of settings, including the scheduling of patients for general-practice

physician appointments, chemotherapy, radiology, surgery, and hemodialysis.

This study focuses on a chemotherapy scheduling problem arising at the Segal

Cancer Centre (SCC) in Montreal, Canada. The SCC provides chemotherapy-related

services for those who suffer from cancer. Chemotherapy is a systemic treatment that

uses various drugs to kill cancer cells. In outpatient chemotherapy clinics, there is

often a sequence of stages to patient treatment. These include blood tests, consul-
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tation with an oncologist, drug preparation at the pharmacy, and infusions in the

treatment area. At each stage, several resources (nurses, oncologists, phlebotomists,

technicians, infusion chairs and beds, and examination rooms) must be shared among

patients [99]. Currently at the SCC clerks manually schedule incoming appointment

requests. Most requests arrive in the form of a waiting list that normally consists of a

set of requests for a number of patients rather than a single appointment request for a

single patient. Such requests are normally added to a waiting list after an oncologist

consultation. In some cases, a patient may also call or come in person to book or

reschedule appointments. Clerks currently book appointments from the waiting list

one at a time, on a first come first served basis. The clerks continually deal with

multiple patients, each requesting several appointments with different considerations

and limitations. Thus, it is quite challenging and time-consuming to efficiently sched-

ule all appointment requests of a list with the manual scheduling procedure currently

in use. The difficulty increases whenever unexpected events or last-minute changes

occur.

At the SCC, most appointment requests are for recurring patients. These patients

are those who have already started receiving treatment and are no longer considered

as new patients waiting to start their first treatment. The appointment requests are

received in real time, and the total number of future requests is not known beforehand.

Each appointment request is comprised of a target date, service type (type of drug

and infusion duration), primary nurse (who follows that particular patient during

treatment), preferred start time of appointments, and a clinical note that may state

a specific start time or a special type of chair. The challenge faced by the SCC

is to dynamically assign a day, start time, chair, and nurse to each appointment

request that takes into account the existing partially filled schedules of the days in

the planning horizon. The main objectives of the SCC are to minimize the number

of appointments for which floating nurses (instead of primary nurses) are assigned
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to patients, to reduce the number of non-scheduled appointments and non-preferred

appointment times, and to avoid overtime and nursing handovers. This study mainly

deals with recurring patients, and so the focus is not on minimizing access time (the

length of time between appointment request and first treatment) for new patients but

rather on ensuring that once a treatment plan is prescribed, the target date of each

treatment is respected to the extent possible. However, with the permission of the

oncologist, an individual treatment plan can deviate slightly (by one or two days) to

create a more efficient overall schedule.

Given the inherent complexity of appointment scheduling problems, most studies

have considered simplified models with rather unrealistic assumptions, such as ad-

vance knowledge of all information regarding appointment requests, the processing

of single appointments only, not assigning a nurse to a single patient during their

treatment setup, and ignoring patient preferences. To the best of our knowledge, re-

search on practical chemotherapy scheduling problems is still limited, and there have

been few attempts to find optimal or near-optimal ways of scheduling and reschedul-

ing patient appointments that take into account real aspects of the problem. The

main contribution of this study is to propose and evaluate an adaptive and flexible

scheduling procedure capable of handling both the dynamic uncertainty arising from

appointment requests that appear on waiting lists in real time and also deals with

unexpected events that may occur. The propose scheduling procedure incorporates

several circumstances prevalent at the SCC. Specifically, it takes into account multi-

ple, simultaneous appointment requests for a single patient that are accompanied by

various oncologist-prescribed clinical requirements. These requirements may include

specific intervals between two consecutive appointments (rest duration) and specific

time slots and chairs. Patients receive notice of the dates of their appointments either

at the time requested or after a number of appointment requests have been gathered

into a waiting list in order to allocate available resources more efficiently. In both cir-
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cumstances, patients are informed about their treatment start time a few days prior

to the appointment date. The prescribed target date of treatments for a recurring pa-

tient can deviate by a controllable threshold parameter, determined by the patient’s

oncologist, to improve the quality of daily schedules. Each nurse can set up only one

infusion at a time; however, a single nurse can monitor several patients simultaneously

once the infusion setup phase is complete. Furthermore, a rescheduling model is inte-

grated into the proposed scheduling procedure to accommodate last-minute changes

and optimize resource allocation after appointment requests from waiting lists have

been dealt with.

The remainder of the paper is organized as follows. Section 2.2 provides a litera-

ture review on related problems. Section 2.3 describes a real-life problem associated

with scheduling appointment requests for chemotherapy treatments. The proposed

flexible and adaptive procedure for handling appointment requests and unexpected

events using two different integer programming (IP) models is detailed in Section 2.4.

Section 2.5 presents the results of numerical experiments that evaluate the perfor-

mance of the proposed procedure. The same section reports on sensitivity analyses

that show the effects of assuming varying degrees of flexibility in the date and time

of appointments on the performance of the system, and how the proposed adaptive

procedure deals with unexpected events. Finally, Section 2.6 concludes the paper and

proposes directions for future research.

2.2 Literature review

Chemotherapy scheduling problems are receiving increased attention in the literature,

and several reviews of outpatient appointment and scheduling systems have been

published, of which the most relevant are those of Cayirli and Veral [22], Gupta and

Denton [40], Hulshof et al. [52], Lamé et al. [66], and Ahmadi-Javid et al. [2].
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Sadki et al. [92] studied the scheduling of patients for chemotherapy treatments

and oncologist consultations. The authors proposed a heuristic based on the La-

grangian relaxation method with the intention of minimizing the total weighted cost

incurred by patient wait times and makespan (completion time of all treatments). In

their study, oncologists and injection beds were considered as the major resources at

the clinic but the constraints related to nurse availability were neglected. In the area

of capacity planning for chemotherapy treatments, Saure et al. [95] and Gocgun and

Puterman [36] studied the problem of multi-appointment scheduling, formulated it

as a Markov decision process model, and proposed approximation schemes to solve

instances of real size. The goal was to tailor available treatment capacity to incoming

demand to specify the day of arriving requests. However, the model did not assign a

time slot, nurse, or chair to the appointment request.

Turkcan et al. [102] developed IP models to formulate a chemotherapy scheduling

problem that considered acuity levels of patients, aiming to achieve objectives such

as minimizing treatment delays, reducing staff overtime, and maximizing staff utiliza-

tion. The authors assumed each request was for a single appointment; however, in

most oncology centres, requests for multiple appointments with rest periods between

treatments are common. In this study, it is assumed that multiple appointments are

requested.

In a research project comparable to the present study, Hahn-Goldberg et al. [42]

developed an approach based on constraint programming to create a template for

accommodating incoming patients in an online fashion. They proposed an algorithm

to update the template if the infusion duration for a patient did not fit those of

artificial appointments already scheduled in the template. Although the researchers

considered the available capacity of resources such as nurses and chairs, in contrast

to the present study they did not specifically determine which nurse would be on

duty and monitor the patient and which chair would be assigned. Such information
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is essential when a partially filled appointment schedule is in use and it is being up-

dated frequently to achieve optimal resource allocation. Moreover, they assumed that

only one treatment would be scheduled for each incoming patient. In a similar study,

Condotta and Shakhlevich [24] proposed creating multi-level templates to accommo-

date patient requests for chemotherapy appointments. Their goal was to minimize

wait times and balance nurse workloads. Using integer linear programming models

and data generated from artificial patients, they determined the day, time slot, and

nurse of each patient; however, the template did not consider patients preferences for

appointment start times.

Liang et al. [71] and Liu et al. [72] used simulation models to analyze the schedul-

ing, staffing, and flow process stages inside an oncology clinic and to identify bottle-

necks where improvements could be made. In particular, Liang et al. [71] proposed

a mathematical model that would create a balanced schedule for both chemother-

apy treatments and consultations for a single day but not for a planning horizon.

Liang and Turkcan [70] addressed the daily scheduling of patients, taking into ac-

count nurse assignments in two different modes: functional and primary nursing care

models. They assumed different acuity levels for patients and different skill levels for

nurses; however, they did not consider chair capacity or the assignment of patients to

specific chairs or rooms when creating schedules. They also proposed multi-objective

optimization models with the objective of minimizing patient wait times, total nurse

overtime, and excessive workloads to solve the problem.

Castaing et al. [21] proposed a two-stage stochastic programming problem for

scheduling patients in an outpatient cancer centre on a daily basis (not over a plan-

ning horizon). They considered uncertainty in the duration of appointments and

developed a heuristic to solve their formulated problem in a reasonable amount of

time with a sufficient number of scenarios. Alvarado and Ntaimo [7] used mean-risk

stochastic IP models to formulate the problem of scheduling chemotherapy appoint-
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ments. They considered uncertainty in the acuity levels of patients, availability of

nurses, and treatment duration. They also assumed that patients would not neces-

sarily be assigned to their primary nurses (functional care delivery model) and that

nurse-patient assignments would be restricted only by acuity levels and new patient

setups. In the present study, the information for each treatment protocol (includ-

ing assigned chair, time, drug type and its dosage) is known, and so uncertainty

in infusion duration is not examined. Moreover, after discussions with the staff of

the SCC about the importance of receiving treatment from the same nurse at each

appointment, the primary care delivery system is taken into account in this study.

Ramos et al. [89] studied two sequential decision problems: a capacity planning

problem for assigning a date to appointment requests, and a daily patient-scheduling

problem for allocating a chair and time slot for each patient on each day. The authors

used the procedure introduced by Saure et al. [95] to deal with the first problem over

an infinite horizon and developed an IP model to solve the second problem. In their

proposed methodology, once the number of patients for a specific day was known,

different patterns of possible patient allocations to chairs were generated to produce

a daily schedule. Although using this sequential approach might help to reduce the

number of decision variables, implementation could be difficult when partially filled

appointment schedules were considered in which some appointment requests had al-

ready been accommodated. Furthermore, although the authors took nurse availabil-

ity into account, they did not distinguish between the part of infusion time when

the assigned nurse sets up patient treatment from the part during which the nurse

can monitor several patients. In the present study, two of the problems mentioned

are considered simultaneously, i.e., capacity planning (determining treatment dates)

and patient scheduling (resource allocation), and assigned nursing time is taken into

account.

Heshmat et al. [48] addressed the problem of scheduling patient appointments
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and proposed an approach, inspired by cellular manufacturing, that involved creating

clusters of patients. After clusters were formed, each nurse was first assigned to

a cluster and then to a group of chairs with the aim of achieving the minimum

makespan. By clustering patients and considering them as an input to a mathematical

programming model, the authors attempted to reduce the dimensions of the problem.

The quality of the final solution was highly dependent on the clusters. Moreover,

because of the oversimplification of the problem, many important factors such as the

optimal sequence of patients within a cluster, the care delivery system (primary or

secondary nurse) and patient preferences were not taken into account.

Recently published studies of the chemotherapy scheduling problem are those of

Garaix et al. [33] and Benzaid et al. [17]. The first study proposed a heuristic that

uses a greedy randomized adaptive search procedure algorithm to solve the problem

of scheduling patient appointments for chemotherapy treatment and consultations

by considering drug preparation times. The authors assumed that the sequence of

patients for the consultation and treatment stages were the same, which might not

be practical. Also, nursing capacity was not taken into account. The authors of

the second work examined chemotherapy appointment scheduling problem, a nurse

planning problem, and a daily nurse-patient assignment problem in a three-stage

procedure. The goal of the first stage was to determine a date and start time for

each new patient with the aim of maximizing the number of patients starting their

treatments. The second stage attempted to assign patients to nurses in a way that

the required staffing level and length of waiting list were minimized. Finally, in the

third stage, after simulating last-minute changes including cancellations and nurse

absences, the daily assignment problem was executed for the final set of patients and

nurses. It was assumed that, in order to deal with the simulated last-minute changes,

only the assignment of patients to nurses could change; however, in actual practice

(like at the SCC), the assignment of patients to chairs and even their start time might
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change within an acceptable tolerance (for instance, by up to one hour). Moreover,

the authors relaxed the limitation on nurse workload, reassigning patients to nurses

to find feasible solutions, which might be unrealistic in some worst-case scenarios for

last-minute changes.

2.3 Problem description

Let T be a set of appointment requests presented in the form of a waiting list. For

each patient p ∈ P , Tp ⊂ T is defined as the set of appointment requests for patient p.

Chemotherapy treatments are prescribed in cycles with some rest periods in between.

Let rp denote the minimum amount of time patient p ∈ P needs to wait between one

infusion and the next. The type and dosage of drugs are determined in the protocols

prescribed in regimens. A regimen is a specific plan which determines the amount

and frequency of receiving a set of cancer treatments in a cyclical manner. It is very

important for patients that appointment dates prescribed in their regimen by the

oncologist be respected; otherwise, the efficiency of the chemotherapy treatment may

be adversely affected. Appointments that deviate slightly can be acceptable, however,

if confirmed by the oncologist. An example of a regimen for lung cancer treatment is

shown in Figure 2.1.
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Cycle 1 Cycle 2 Cycle 3

Drug: Cisplatin         Drug dose (mg/m2/day):  80  day 1

Drug: Vinorelbine     Drug dose (mg/m2/day): 30  day 1, 8 , 15

Repeat every 21 days × 4cycles. 

Cycle 4
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Figure 2.1: Example of a regimen for lung cancer
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The model explicitly takes into account the use of two important types of limited

resources for chemotherapy treatments: the set of chairs and rooms used to administer

infusions, and the set of nurses who set up treatments and monitor the well-being

of patients during infusions. Other resources such as oncologists, phlebotomists, and

examination rooms are not taken into account in this study as they are not directly

related to decisions about chemotherapy appointment scheduling.

Let C be the set of standard infusion chairs and rooms and the set of drop-in

chairs that are normally used to serve walk-in patients, i.e., unscheduled or emergency

patients. Drop-in chairs are also used for other types of infusion treatments such as

hydration and transfusion. The treatment area is divided into two stations, each

comprising a set of chairs and rooms. For any given day, the scheduling clerk has

a schedule containing a set of patients already assigned to the available nurses and

their associated chairs and rooms. In practice, the SCC uses a buffer, which acts

as a virtual space when building the schedules. When the schedule is already fully

booked, the scheduling clerk can place an appointment request in the buffer in the

hope of a cancellation by another patient, which will allow the request to be moved

into the actual schedule.

Let D denote the set of days in the planning horizon. A planning horizon is

usually defined as a set of future days for each of which exists an associated partially

filled schedule of already booked appointments. We define S as the set of time slots

available each day. For patient p ∈ P and treatment t ∈ Tp, we denote as [lt, ut] ⊆ S

the interval of time slots during the day that patient p prefers to receive treatment

t, where lt and ut are the lower and upper bounds on the start time, respectively. It

is not current practice at the SCC to book appointments based on patient preference

unless there is a clinical reason for doing so. All preferred appointment times must

be confirmed by the head nurse.

We use nurse schedules to define part of the input to this outpatient scheduling
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problem. The head nurse, considering the number of nurses available during day

d ∈ D and time slot s ∈ S, determines the maximum number of patients mds that

can be treated at time slot s of day d. For instance, because of the nurses’ lunch break,

the reception desk admits no patients between 12:00 p.m. and 1:00 p.m. Nurses take

staggered lunch breaks, and nurses remaining on duty during that time monitor only

patients whose infusion has already begun. To avoid overtime, the same principle is

applied after 3:30 p.m. The clinic admits no additional patients for treatment, and

the remaining nurses monitor only patients whose treatment has already started.

It is important to schedule treatments of patient p ∈ P so that they are assigned

as often as possible to their primary nurses, denoted as np ∈ N . Primary nurses

can make patients feel more comfortable because they see a familiar face each day.

The primary nurse can also help reduce error and identify problems more quickly,

especially when the patient has a reaction to an ongoing infusion. Although the

scheduling clerk takes into account, as much as possible, the assignment of patients

to primary or even to secondary nurses (nurses who are paired with primary nurses,

c(n) ∈ N ) when making appointments, numerous conflicts arise during the manual

scheduling process, which in turn, can lead to overtime or many nursing handovers

that changes in assigned nurse during treatment.

Many types of drugs (protocols) can be prescribed for the regimen of a patient.

The treatment time for protocols ranges from 15 minutes to eight hours. It is assumed

that the length of each treatment, denoted as it, t ∈ T , is known and deterministic.

The infusion process of each requested treatment can be divided into two stages.

During the first stage, called the direct nursing phase (i′t, t ∈ T ), the assigned nurse

is completely occupied with the patient undergoing the treatment. During this stage,

the nurse is not able to set up any other patient in any other chair or room. This

dedicated nursing time can vary from 30 to 90 minutes depending on the patient’s

physical condition, the complexity of the infusion and the nurse’s experience in setting
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up a treatment. Once a nurse finishes the setup for a patient, she can monitor up

to four patients who have already started receiving their treatment. Thus, the total

treatment time is the amount of time spent on both the nursing phase and injection

process. This is one reason why, in the rotation plan, up to four chairs are assigned

to each nurse each day; however, there may be exceptions on some days for specific

clinical reasons.

After consultations, oncologist instructions are automatically transmitted elec-

tronically to the scheduling clerk. Thus, the online waiting list is continually being

lengthened; however, at particular points of time (for example, every morning or

twice a day), a number of appointment requests are selected for scheduling and a day,

start time, nurse, and chair are assigned to each. The overall goal of this study is

to develop a flexible decision-support tool that can be used to design appointment

schedules in which more patients are assigned to their primary or secondary nurses,

more patients receive appointments that correspond to their time preferences, fewer

nurses work overtime or are switched during a patient’s treatment (less nurse han-

dovers), while all clinical limitations and written instructions from oncologists are

respected. Moreover, in case of a last-minute change in the regimen of a patient or an

unexpected resource unavailability, the tool must handle the situation by reschedul-

ing a minimum number of already booked appointments in an adaptive manner. If

an already booked appointment is subject to modification, the change in start time

must conform to defined parameters.

2.4 Solution methodology

This subsection details a flexible and adaptive procedure that tackles the complexity

associated with the online scheduling of patient appointments where the number of

future incoming requests is not known. Using two IP models, the proposed procedure
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schedules appointment requests from waiting lists that are continually being updated

and reschedules already booked appointments once either new information is received

or a last-minute change occurs. In what follows, two mathematical formulations for

the scheduling and rescheduling problems are presented, and the proposed scheduling

procedure is described.

2.4.1 Scheduling appointment requests from a waiting list

This sub-section presents an IP to formulate the scheduling problem for all requests

from an incoming waiting list over a pre-defined planning horizon. The sets and

parameters used in the IP are presented in Table 2.1.

To formulate the problem, xtdcs is defined as a binary variable that takes value 1

if and only if treatment t is scheduled to start in slot s of day d on chair c. Also, yt is

introduced as a binary variable taking value 1 if and only if treatment t on the waiting

list is directed to the buffer (i.e., it is not scheduled). The goal of this proposed IP

formulation for the scheduling of appointment requests is to minimize the following

objective functions:

1. The first objective function evaluates the number of appointments on the wait-

ing list for which patients are assigned to floating nurses (other than the patient’s

primary or secondary nurse). This objective, which is a function of variable x,

can be calculated as follows:

g1(x) =
∑
t∈T

∑
d∈Dt

∑
c∈Ct

∑
s∈St

c1
tdcxtdcs,

where, c1
tdc parameter equals 1 if the nurse associated with chair c on day d is

not the patient’s primary nurse or co-nurse, 0 otherwise.

2. The second objective function determines the number of appointments for which
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Table 2.1: Sets and parameters used in the model

P Set of patients requesting appointments
D Set of days in the planning horizon (H)
S Set of slots for each day of the planning horizon
N Set of all nurses working in the clinic
C Set of all chairs available in the clinic
Tp Set of treatments prescribed in the regimen of patient p, Tp = {t1p, ...}
T Set of all treatments requested for the patients on the waiting list, T =

⋃
p∈P Tp

dt Target day of treatment t, dt ∈ D
λt Amount of flexibility (deviation) allowed for the date of treatment t
Dt Subset of days on which treatment t can be received according to λt, Dt ⊂ D, i.e.

Dt = {max(dt − λt, 1), ...,min(dt + λt, |S|)}
St A subset of slots in which treatment t can be received, St ⊂ S
Ct A subset of chairs in which treatment t can be received, Ct ⊂ C
it Number of slots required to complete treatment t (duration)
i′t Number of slots required as nursing time for treatment t
lt A lower bound on the start time of treatment t, lt ≥ 1

ut An upper bound on the start time of treatment t, ut ≤ |S| − it + 1

Scd Work hours (start and end times) of the nurse associated with chair c on day d, Scd = [scd, ecd],
Scd ⊂ S

SPt Preferred start time interval of treatment t, SPt = [lt, ut], SPt ⊂ S
np Primary nurse associated with patient p, np ∈ N
c(n) Co-nurse associated with each primary nurse, c(n) ∈ N
C1
p Set of chairs assigned to the primary nurse of patient p, C1

p ⊂ C
C2
p Set of chairs assigned to the secondary nurse (the co-nurse of the primary nurse) of patient p,

C2
p ⊂ C

p(t) Patient associated with treatment t, p(t) ∈ P
n(c, d)Nurse assigned to chair c on day d, n(c, d) ∈ N
rp Minimum number of rest days between consecutive treatments of patient p
adcs A 0-1 parameter determining the current availability of slot s of chair c on day d
mds Current maximum number of patients that can be admitted into slot s of day d
Id = {t ∈ T : d− λt ≤ dt ≤ d+ λt}
Cd
tt′ = {c ∈ C, d ∈ D : n(c, d) = np(t) = np(t′)}

patients do not receive their preferred time slot and is defined as follows:

g2(x) =
∑
t∈T

∑
d∈Dt

∑
c∈Ct

∑
s∈St

c2
tsxtdcs,

where,

c2
ts =

 1, if t ∈ Tp and s /∈ [lt, ut]

0, otherwise.

19



3. The third objective function calculates nurse overtime and can be stated as

follows:

g3(x) =
∑
t∈T

∑
d∈Dt

∑
c∈Ct

∑
s∈St

c3
tds (s+ it − 1− ecd)xtdcs,

where,

c3
tds =

 1, if s > ecd − it

0, otherwise.

Recall that Scd = [scd, ecd] is the set of time slots representing the working hours

of the nurse associated with chair c, where scd denotes the start time and ecd

represents the finish time of the nurse assigned to chair c on day d. According to

the above equation, each treatment starting in any time slot within the interval

s ∈ [ecd− it + 1, ecd− 1], will finish after the end time of the assigned nurse, i.e.

s+ it − 1 > ecd, which will cause an overtime of (s+ it − 1− ecd) units of time

to the clinic.

It is worth mentioning that, at the SCC, nursing handovers occur frequently

(i.e., a nurse hands over the responsibility of care to another nurse on finishing

her scheduled working hours). In other words, although the appointment sched-

ule are arranged so that some patients start their treatment within a nurse’s

working hours and this nurse works overtime until the infusion is completed, in

practice patients usually finish with another nurse within her predefined work-

ing hours. This is possible because appointments are booked so as to guarantee

that nurses are available to monitor (not to set up, as a setup requires a nurse’s

complete attention) the patients undergoing treatment. The use of the proposed

IP tool will minimize nurse overtime, which will indirectly minimize the number

of nurse handovers.

4. Finally the fourth objective corresponds to the number of appointment requests
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being directed to the buffer (and not scheduled) which can be defined as follows:

g4(y) =
∑
t∈T

yt.

Using the above-mentioned objectives and decision variables, the model for the

off-line scheduling procedure that accommodates appointment on the waiting list can

be formulated as follows:

minimize
∑
t∈T

∑
d∈Dt

∑
c∈Ct

∑
s∈St

(c1
tdc + c2

ts + c3
tds(s+ it − 1− ecd))xtdcs +

∑
t∈T

yt

subject to

∑
d∈Dt

∑
c∈Ct

∑
s∈St

xtdcs + yt = 1 t ∈ T (2.1)

∑
d∈Dt

∑
c∈Ct

∑
s∈St

d
(
x(t+1)dcs − xtdcs

)
≥ rp p ∈ P , (t, t+ 1) ∈ T p (2.2)

∑
t∈T

s∑
s′=max(s−it+1,1)

xtdcs′ ≤ adcs d ∈ D, c ∈ C, s ∈ S (2.3)

∑
t′∈Id\{t}

min(s+it−1,|S|)∑
s′=s

(xt′dcs′ + xtdcs − 1) ≤ 0 t ∈ T , d ∈ Dt, c ∈ Ct, s ∈ St (2.4)

∑
t′∈Id\{t}

∑
c′∈Cd

tt′\{c}

min(s+i′t−1,|S|)∑
s′=s

(xt′dc′s′ + xtdcs − 1) ≤ 0

t ∈ T , d ∈ Dt, c ∈ Ct, s ∈ St (2.5)
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∑
t∈T

∑
c∈Ct

xtdcs ≤ mds d ∈ D, s ∈ S (2.6)

∑
t∈T

∑
d∈Dt

∑
c∈Ct

∑
s∈(S\Scd∪S\St)

xtdcs = 0 (2.7)

xtdcs, yt ∈ {0, 1} t ∈ T , d ∈ Dt, c ∈ Ct, s ∈ St. (2.8)

Constraints (2.1) determine whether an appointment request should be scheduled

or directed to the buffer. If it is decided that an appointment will be scheduled, a

day, chair, and start time are assigned. These constraints consider the flexibility of λt

days, as the maximum deviation from the target day, in Dt t ∈ T . It should be noted

that appointment requests that remain in the buffer can either be scheduled along

with those on the next waiting list received, wait to be replaced with the cancelled

appointments, or be accommodated by rescheduling appointment requests for the

given day. The precedence relationships among the treatments of each patient are

taken into account in constraints (2.2). The appointments for each patient must be

at least rp days apart to allow rest periods between successive appointments.

Constraints (2.3) guarantee that a treatment can only be started if the neces-

sary number of consecutive slots (dependent on the duration of that treatment) are

available for the assigned chair. If adcs = 0, it means that chair c on day d is not

available at time slot s, and if treatment t starts at a time slot from s − it + 1 to s,

the treatment certainly will not be ongoing at slot s. Furthermore, if adcs = 1, only

one treatment can be ongoing at the available time slot. Constraints (2.4-2.5) prevent

more than one treatment using the same chair in the same time slot on the same day.

In particular, according to Constraints (2.4), once a time slot on a chair is assigned

to a treatment, the succeeding slots, as many as required for the infusion duration,

will be occupied and no other patient can be assigned to that specific slot to receive
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treatment. Similarly, according to Constraints (2.5), once a time slot is allotted to

a patient, as many succeeding time slots as required to set up the treatment will be

assigned to the nurse, who will be totally occupied in setting up that treatment and

unable to set up any other patient in any chair. Constraints (2.6) limit the number

of patients allocated to each time slot. For example, during break times, no patients

will be set up to start treatment; however, previously admitted patients will continue

to be monitored. Moreover, in order to avoid incurring overtime costs to the clinic,

no patient is set up to start treatment in the later time slots of the day. Constraint

(2.7) ensures that no nurse is assigned to set up a patient for treatment before she

is scheduled to start work or after she finishes her workday. It also makes sure that

all treatments start in time slots that are clinically justified (s ∈ St). Finally, Con-

straints (2.8) enforce the zero-one restrictions on binary variables of the above linear

IP formulation. Since minimizing total tardiness on a single machine is NP-hard [30],

and minimizing overtime in the above IP is mathematically equivalent to minimizing

the total tardiness, our outpatient scheduling problem is also NP-hard.

The weighted-sum method [75] is used to solve the above multi-objective opti-

mization problem and the analytic hierarchy process (AHP) [91] is used to determine

the coefficient of each objective function (
∑4

i=1 αi = 1, 0 ≤ αi ≤ 1). The AHP uses

a pairwise comparison of the importance of objective function extracted from the

opinions of the experts working in the SCC. According to the AHP, each objective

function is first divided by the difference of the Nadir and Utopia points such that

each one, regardless of its scale, is between 0 and 1. Table 2.2 shows the relative

importance rates given on comparing each pair of objective functions, on a scale of

1 to 9, to determine the coefficients of objective functions for the multi-objective

optimization models presented.

It is clear from Table 2.2, for instance, that the second objective function is eight

times more important than the first, and the third objective function is three times
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Table 2.2: Pairwise comparison of objectives functions

Objective functions (1) (2) (3) (4)
(1) Nurse-patient assignments 1 1/8 1/6 1/7
(2) Patient preference 8 1 1/2 1/2
(3) Total nurse overtime 6 2 1 1/3
(4) Being scheduled (Not sent to buffer) 7 2 3 1

less important than the fourth. To calculate the final weights, first the values in each

column of the pairwise comparison are summed, and then each value is divided by

the total of its column. Afterwards, the average of each row determines the relative

importance of the associated objective function [91].

2.4.2 Rescheduling of already booked appointments

This section formulates the problem of the daily rescheduling of already booked ap-

pointments as a second IP. Since rescheduling occurs on a daily basis, each patient

must have a single appointment on any particular day (d̂ ∈ D). In addition to the no-

tation introduced in Table 2.1, Ln is defined as the maximum number of patients that

can be assigned to a nurse (n ∈ N ) on a particular day. Since patients who already

have an appointment are being rescheduled, s0
t is defined as the initial time slot for

treatment t, and γt is defined as the maximum allowable number of time slots for which

treatment t ∈ Td̂ may be moved in case of change. Another controllable parameter,

f , refers to the maximum percentage of appointments for which the start time can be

changed. Moreover, I ′t is defined as the allowable amount of time by which the start

time of treatment t may change as follows: I ′t = {max(1, s0
t −γt), ...,min(s0

t +γt, |S|)}.

To formulate the rescheduling problem, the same decision variables and objective func-

tions as in the previous IP model are used taking a fixed day index (d̂) into account.

The daily rescheduling problem can be formulated as the following IP model:

minimize
∑
t∈Td̂

∑
c∈Ct

∑
s∈St

ctd̂csxtd̂cs +
∑
t∈Td̂

c′tyt
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subject to (2.3), (2.6) - (2.8)

∑
c∈Ct

∑
s∈(I′t∩St)

xtd̂cs + yt = 1 t ∈ Td̂ (2.9)

∑
t∈Td̂

∑
c∈C1

p(t)

∑
s∈St

xtd̂cs ≤ Ln n ∈ N (2.10)

∑
t∈Td̂

∑
c∈Ct

∑
s∈St\{s0t }

xtd̂cs ≤ bf × |P|c (2.11)

Constraints (2.9) are the equivalent of Constraints (2.1). Theses constraints also

consider a flexibility of γt time slots on the initially booked appointment (s1
t ) for

treatment t ∈ Td̂. Constraints (2.10) guarantee that the number of patients assigned

to each nurse, on all chairs assigned to that nurse, does not exceed the pre-defined

threshold (Ln, n ∈ N ). According to constraint (2.11), the number of rescheduled

appointments (in terms of time slot) is limited to only f% of the total number of

patients. In this IP, constraints (2.3) are used by assuming that ad̂cs = 1 ∀s ∈ S, c ∈

C. It should be noted that, since all the patients of a particular day d̂ are rescheduled,

all slots of day d̂ on all chairs are considered available. Moreover, Constraints (2.6)

- (2.8) are used given that T = Td̂, Dt = {d̂}, ∀t ∈ T . According to Sadki et al.

[92] and Condotta and Shakhlevich [24], determining the start time of chemotherapy

appointments and assigning nurses to each treatment of a patient on a particular day

is an NP-complete problem even under the most simple assumptions. Therefore, the

above formulated rescheduling problem is also NP-hard.

2.4.3 The overall flexible and adaptive scheduling procedure

The proposed procedure receives a set of appointment requests as an input that needs

to be processed on specific target days. Decisions are made sequentially as information

about the requests arrives. When a set of appointment requests in the form of a

waiting list is received, the procedure uses whatever information is available (duration
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of treatment, recommended dates, patient preferences, clinical requirements, etc.)

along with the existing partially filled appointment schedule and information about

the availability of nurses, chairs, and rooms.

In order for the proposed procedure to be adaptive (i.e., to provide appropriate

responses to unexpected events and to facilitate optimal resource allocation), an ad-

ditional module is considered, which uses the model presented for the rescheduling

problem. Several types of unexpected events can occur. For example, a nurse may

call in sick, which affects the nurse rotation plan. In such a situation, the head nurse

reschedules the patients previously assigned to the absent nurse with the aim of reduc-

ing the potential negative impact of the absence. Another example of an unexpected

event is a breakdown in the equipment of a chair. As a result, patients are reassigned

to other chairs. A further example is a change in instructions: after a consultation,

an oncologist decides to: change the drug type (and consequently the infusion dura-

tion), cancel (or postpone) one or more upcoming treatments, or request an urgent

treatment. In any of these situations, the appointment schedule is affected, and some

of the appointments have to be rescheduled with the aim of minimizing changes to

previously booked appointments.

Two reasons drive the use of the rescheduling module. The first is to allow the

proposed procedure to respond to unexpected events reactively. This reactive action

(rescheduling) can make significant improvements even when no changes to the start

time of previously booked appointments are allowed (γ = 0) because appointments

can be moved horizontally in the schedule by changing chairs or assigned nurses. The

second reason to apply a rescheduling phase to the created schedule is that more

patients can be assigned to their primary or, minimally, to their secondary nurse in

their preferred time slots. This can be achieved by running the rescheduling model

for the appointment schedule of a specific day after patients on the waiting list have

been accommodated, even if it is assumed that the number of changes to start times
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is zero. The diagram in Figure 2.2 shows how incoming requests and unexpected

events are dealt with.

Multi-appointment Scheduling Problem

Assigns date, start time, chair, nurse

Objective: Minimize # of non-preferred, random nurse-patient 

assignments and overtime, and maximize # of patients scheduled

S.t.

1- Capacity (Setup, monitoring, working hours, etc.)

2- Assignments (Rest period, target date, primary nurse, oncologist  

instructions, flexibility)

Set d=1

Has the 

schedule of 

day d been 

updated?

Yes

d <= H?

Appointment Rescheduling Problem

Improve resource allocations (time, chair, nurse) 

Objective: Minimize # of non-preferred, random nurse-patient 

assignments and overtime, and maximize # of patients scheduled

S.t.

1- Start time

2- Capacity (Setup, monitoring, working hours etc.)

3- Assignments (Primary nurse, instructions, flexibility) 

No

Output: 

An updated schedule for day d

Yes

Final Output: 

The last updated schedules

 for the entire horizon (H)
No

d:=d+1

Output: 

Updated schedules

Input:

1. The set of appointment requests

2. Degree of flexibility on target dates (λ )

3. Partially filled schedules 

Input:

1.Partial schedule of day d

2. Controlling parameters

 (L, f and γ ) 

A waiting list

 becomes available

(a) The proposed procedure to handle a list of requests

A set of unexpected events 

occur on the schedule of day d

Output: 

A new daily schedule

Appointment Rescheduling Problem

Handling the set of changes

Objective: Minimize # of non-preferred, random nurse-patient 

assignments and overtime, and maximize # of patients scheduled

S.t.

1- Start time

2- New capacity(Setup, monitoring, working hours etc.)

3- Assignments (Primary nurse, instructions, flexibility) 

Input:

1. Set of booked appointments on the day

2. Controlling parameters (L, f and γ ) 

3- Updated chair-nurse assignments

4- Updated chair availability

d̂

(b) The proposed procedure to handle last-minute changes

Figure 2.2: A diagram explaining the steps of the proposed procedure

The procedure is triggered by either an incoming waiting list or an unexpected

event. The scheduling phase of the procedure uses the set of appointment requests

in the form of a waiting list (with all the required information), the current partially

filled schedules for all days in the planning horizon (H) and a controlling parameter

27



about the flexibility of the date of each request (λt, t ∈ T ) to accommodate all the

appointment requests and determine their assigned time slots, chairs and nurses.

The flexible parameter in the scheduling phase allows treatment appointment t to be

booked λt days earlier or later than the prescribed date dt. It should be noted that

by assuming this flexibility, there still must be constraints to ensure that a sufficient

rest period is considered between consecutive treatments (Constraints (2.2) of the

first IP). After accommodating all appointment requests on the waiting list, for every

day for which there has been a request, the daily rescheduling model is executed to

improve resource allocation mentioned above as the second reason for the rescheduling

model.

After the rescheduling model is executed, appointments can still be changed; how-

ever, the number of changes is limited by the controllable parameters (f, γ). This

rescheduling is practical, given that patients are usually informed about their start

time a few days prior to the day of the appointment. Therefore, changing the start

time during the execution of the rescheduling model before confirming the appoint-

ment time does not have a negative impact on patients. If an oncologist recommends

not changing a given patient’s appointment for a clinical reason, such an instruction

can be considered in St (see Table 2.1), which denotes the set of time slots in which

treatment t can start.

Furthermore, the rescheduling phase of the proposed adaptive procedure can be

executed for a given day (d̂ ∈ D) if a last-minute change occurs or if data for that

particular day is updated. The scheduling phase is executed using two flexible param-

eters, γ and f and the set of changes occurring on day d̂ so as to deal with changes

efficiently. In these circumstances, the rescheduling model is not executed to improve

resource allocation; rather, the goal is to change the appointment schedule to handle

last-minute changes occurring on a given day, while reducing as much as possible the

negative impact of such changes on the already-existing schedule for that day.
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2.5 Computational results

This section presents the results of computational experiments carried out to assess

the performance of the proposed scheduling procedure in comparison with the current

manual scheduling procedure used. The results of the sensitivity analysis performed

to assess the impact of assuming varying flexibility parameters on the performance

of the system are also presented. The overall procedure was coded in C++ and all

mathematical models were solved with CPLEX 12.7.1 using Concert Technology and

run on an Intel Xeon CPU E5-2687W v3 processor at 3.10 GHz and 750 GB of RAM

under a Linux environment.

In order to compare the results of the proposed adaptive procedure to the schedul-

ing system actually used at the SCC, we first took snapshots of the state of that sys-

tem, once at the beginning of the planning horizon and once again at the end. The

state of the system refers to the partially filled schedules that show the start time,

the chair or room, and the nurse assigned to each patient already booked into the

system for the planning horizon being studied. The remaining availability of nurses

and chairs is also captured. By comparing these two recorded states, the number

of patients added and all the information regarding their appointment requests can

be easily extracted. The planning horizon (H) for our study was assumed to be 20

working days. There are two stations at the SCC, one with three drop-in chairs,

13 regular chairs, and two drop-in rooms and the other with 14 normal chairs and

three rooms. The number of nurses working at the clinic is 20. The clinic opens at

7:00 a.m. and finishes all treatments by 6:00 p.m. In actual practice, since more

than one scheduling clerk books patient appointments, it is hard to track the exact

number of waiting lists, telephone calls, and in-person requests that the scheduling

clerks received during the planning horizon. Therefore, the state of the system was

captured at two different points of time, 20 working days apart, and the two states

were compared to identify the exact number of appointment requests added to or
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removed from the earlier schedule.

For the purpose of evaluation, it was assumed that appointment requests were

added to the system in the form of waiting lists according to one of the following

options:

1. All requests are received in a single waiting list containing 220 patients (i.e.,

off-line).

2. Requests appear on three waiting lists, each containing 60 to 90 patients.

3. Requests appear on six waiting lists, each containing 30 to 45 patients.

4. Requests appear on 12 waiting lists, each containing 15 to 25 patients.

As mentioned, tracking the exact number of waiting lists and the information

they contained, including the combination of patients within each list and the exact

arrival time of requests, was not practical. Multiple clerks booked appointments on

any given day, and appointment requests were continually being added to the system.

Examination of the printed waiting lists revealed that each list contained a mix of

appointment requests, most with target dates within the succeeding few days and

a small number with more remote target dates. Therefore, to generate appropriate

waiting lists (i.e., that resembled the actual waiting lists), the appointment requests

were distributed among considered waiting lists within the planning horizon so that

each list contained appointment requests with target dates that were both imminent

and more distant.

Using the AHP method, the final weights of the four defined objective functions in

both IP formulations presented in sections 2.4.1 and 2.4.2 are as follows: α1 = 0.04,

α2 = 0.23, α3 = 0.26 and α4 = 0.46. Recall that α1 is the weight associated with nurse

assignments, α2 with patient preferences, α3 with total nurse overtimes (handovers)

and α4 with unscheduled appointment requests (in the buffer). Each time slot was
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assumed to be 30 minutes, and a shrinking horizon fashion was used. The maximum

percentage of appointments for which the start time could be changed (f) was set

at 20%. The number of appointments booked on drop-in chairs was set at zero and

the maximum number of patients assigned to a nurse (Ln, n ∈ N ) was set at eight.

During the planning horizon studied, appointment requests arrived for 220 patients

requiring a total of 339 treatments with target dates within that horizon. Up to six

appointments. might be requested for a patient. Furthermore, at the beginning of

the planning horizon, 476 appointments had already been booked on all the days of

the horizon. Therefore, 815 treatments (with a target dates within H) in total that

were given during 20 working days. This number excludes services like hydration,

transfusion, and treatments for walk-ins and emergency patients that are delivered

on drop-in chairs.

Table 2.3 provides the input parameters used in both IP models, and Table 2.4

summarizes the design of the experiments that divided patients among varying num-

bers of waiting lists, i.e. Nw = 1, 3, 6, 12.

Table 2.3: Input parameters used in the models

Parameter Value
Planning horizon (H) 20 working days
Number of requests for appointment 339
Number of booked appointments in the partial schedule 476
Number of chairs (including drop-ins) 35
Capacity of drop-in chairs and rooms 0
Number of nurses 20
Working hours of the clinic [7:00 a.m., 6:00 p.m.]
Maximum allowable percentage of appointments to reschedule (f) 20 %
Nurse capacity (Ln) 8 patients
Monitoring capacity (m) 4 patients
Weight of nurse-patient assignments (α1) 4%
Weight of patient preferences (α2) 23%
Weight of nurse overtime (handovers) (α3) 26%
Weight of unscheduled appointments in buffer (α4) 46%
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Table 2.4: Design of experiments to evaluate the proposed scheduling procedure

Experiment # of waiting lists (Nw) # of patients in each list # of requests in each list
EX1 1 220 339
EX2 3 [60, 90] [105, 118]
EX3 6 [30, 45] [44, 72]
EX4 12 [15, 25] [17, 53]

2.5.1 Evaluating the proposed scheduling procedure

In this sub-section, we provide the results of the evaluation of the proposed scheduling

procedure by comparing the appointment schedule actually used to those generated

by the experiments and the data set explained above. Table 2.5 presents the results of

the scheduling system actually used at the SCC during the planning horizon studied.

Table 2.5: Results obtained from the scheduling system used at the SCC

Objective function value
Number of assignments to primary nurses (Npri) 242
Number of assignments to secondary nurses (Nsec) 40
Number of non-preferred appointments (Nprf ) 8
Total nurse overtime (Onrs) 39 hrs
Number of assignments to drop-in chairs (ND/I) 7
Number of appointment requests directed to the buffer (Nbuf ) 0

Table 2.6 shows the results obtained from the proposed flexible and adaptive

procedure for the various experiments designed, i.e., EX1(Nw = 1), EX2(Nw = 3),

EX3(Nw = 6) and EX4(Nw = 12); different levels of flexibility, i.e., flexibility of date

(λ) and changing the start time (γ); and whether the rescheduling module is applied

to a schedule while it is being generated or not. In this table, the positive (negative)

values below the cells with % signs show the improvement (deterioration for negative

values) obtained by the proposed procedure as compared to the scheduling system

actually used at the SCC. Moreover, Ndev denotes the number of appointments that

deviated from their target date, and Nch the number of appointments that were

changed after being booked. The best value obtained for each objective function is

shown underlined and in bold.
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Table 2.6: Results obtained using the flexible and adaptive scheduling procedure

Problem
Data info Results

Experiment Rescheduling λ γ Npri Nsec Nprf Onrs (min) ND/I Nbuf Nch Ndev time(s)
1 EX1 No 0 - +33 +70 -388 +36 0 0 0 0 113
2 EX1 No 1 - +45 +63 -363 +26 0 0 0 65 1078
3 EX1 Yes 0 0 +61 +195 +25 +72 0 0 0 0 358
4 EX1 Yes 1 0 +72 +183 +25 +72 0 0 0 65 1321
5 EX1 Yes 0 30 +69 +205 +38 +79 0 0 61 0 430
6 EX1 Yes 1 30 +79 +205 +38 +74 0 0 56 65 1385
7 EX2 No 0 - +33 +78 -375 -18 0 4 0 0 23
8 EX2 No 1 - +43 +75 -400 -18 0 2 0 84 143
9 EX2 Yes 0 0 + 57 +198 +13 +72 0 2 0 0 286
10 EX2 Yes 1 0 +69 +183 +25 +67 0 1 0 87 397
11 EX2 Yes 0 30 +67 +205 +38 +72 0 1 90 0 370
12 EX2 Yes 1 30 +77 +198 +38 +72 0 0 89 85 480
13 EX3 No 0 - +31 +78 -400 -26 0 4 0 0 14
14 EX3 No 1 - +43 +60 -413 -38 0 1 0 78 83
15 EX3 Yes 0 0 +58 +195 -25 +74 0 2 0 0 322
16 EX3 Yes 1 0 +67 +175 +13 +72 0 2 0 76 390
17 EX3 Yes 0 30 +64 +238 +38 +74 0 1 90 0 420
18 EX3 Yes 1 30 +78 +195 +38 +72 0 0 96 76 483
19 EX4 No 0 - +30 +80 -400 -23 0 7 0 0 10
20 EX4 No 1 - +43 +63 -463 -26 0 0 0 82 57
21 EX4 Yes 0 0 +57 +203 -25 +72 0 2 0 0 378
22 EX4 Yes 1 0 +67 +178 0 +74 0 1 0 75 418
23 EX4 Yes 0 30 +65 +225 +25 +72 0 1 105 0 484
24 EX4 Yes 1 30 +76 +210 +25 +74 0 0 100 82 541

Table 2.6 demonstrates that, in most of the test problems, the proposed procedure

provides results that are significantly superior to the system actually used at the SCC.

As expected, the best results were obtained when assuming that all appointment

requests were known in advance (single waiting list) and executing the rescheduling

model after accommodating the appointment requests on each waiting list. This was

especially true when the flexibility in the prescribed dates was set at one day (λ = 1),

and changes of one half hour (γ = 30) to appointment start times were limited to

20% of all requests (test problem 6). The test problem with a single list of requests

was solved optimally in less than 25 minutes, which is a reasonable amount of time

to handle 378 appointments. Note that with the scheduling system currently in use

at the SCC, scheduling such a volume of appointment requests manually would take

several days.

Although it is evident that waiting longer for appointment requests to be gath-

ered and then accommodating more patients achieves better results, even considering
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12 waiting lists (which is the closest number of lists to reality) yields significant im-

provements compared to the scheduling system actually used. For instance, in the test

problem 24 of Table 2.6, the number of patients assigned to primary and secondary

nurses increased by 76% and 210% respectively. There is a significant decrease (74%)

in the total nurse overtime during the planning horizon. There was also a certain im-

provement (25%) in the number of appointment times that corresponded to patient

preferences. These results were obtained by changing 82 appointments (Ndev = 82)

out of 339 requests by only one day and by moving 100 appointments (Nch = 100)

by only 30 minutes.

As can be seen in Table 2.6, use of the rescheduling model further improves the

quality of daily schedules. The scheduling IP model dealt with partially filled sched-

ules that already contained 476 already booked appointments that had not necessarily

been booked as efficiently as they could have been. This set of booked appointments

was used as input for the proposed procedure. Once the appointment requests on

a waiting list were incorporated into partial schedules, the rescheduling model was

executed for all existing appointments (both new and previously booked) to make

sure that patients received the best possible appointment time. For test problems 3,

4, 9, 10, 15, 16, 21, and 22, the rescheduling mode further improved the schedules

even when the permitted change of start time (flexibility of time slot) was set at zero

(if γ = 0, only the chair of treatment t may change during the rescheduling process).

It should be noted that even better results can be expected if, each time that a new

waiting list is received, the scheduling model is executed on all appointment requests

(new and already booked). However, from a practical perspective, such a schedul-

ing problem is too complex to be solved. This is why a sequential approach with

scheduling and rescheduling models has been proposed to accommodate appointment

requests and to improve the quality of daily schedules.
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2.5.2 Impact of varying different controllable parameters

In this sub-section, the impact of different controllable and flexible parameters on the

procedure is analyzed to provide insights for managers. In order to conduct such an

evaluation process, experiment EX4 with Nw = 12 was used because a high frequency

of waiting lists is closer to the reality of the SCC. However, it was clear that the longer

the wait before gathering information about incoming requests, the better the results

of the scheduling procedure.

Table 2.7 summarizes the results obtained for different values of f, λ and γ. Note

that f = 0 implies that no appointment is allowed to change after being booked, and

f = 100 denoting no restriction on the number of changed appointments.

The trends revealed by this evaluation are presented in Figure 2.3. It can be

easily seen that the more flexible the prescribed dates (λ), the better the results in

terms of assigning patients to their primary and secondary nurses and giving them

their preferred appointment times. However, this improvement becomes less intense

as higher degrees of flexibility are assumed. Therefore, it can be concluded that

assuming even a small amount of flexibility on the prescribed date (a single day) can

result in significant improvements in most of the objective functions, and there is no

need for the scheduling system to deviate from patients’ prescribed dates more than

that.

Furthermore, total overtime does not seem to increase or decrease as a higher

degree of flexibility is taken into account. On the other hand, in almost all sub-figures

of Figure 2.3, the effect of adjusting the percentage of changed start times of booked

appointments is observable. As more changes of appointment start times (γ) are

permitted during the rescheduling phase of the adaptive procedure, improved results

are achieved but, similar to flexibility in dates, the rate of improvement lessens as

higher values for γ are set. Moreover, allowing the adaptive procedure the capacity to

change all appointments (if needed) rather than limiting the rate of allowable change
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Table 2.7: Results of evaluating the effect of controllable parameters on the perfor-
mance

Problem
Data info Results
f (%) λ γ (min) Npri Nsec Nprf Onrs (min) ND/I Nbuf Nch Ndev time(s)

1 0 0 - +57 +203 -25 +72 0 2 0 0 378
2 0 1 - +67 +178 0 +74 0 1 0 75 418
3 0 1 - +69 +190 -25 +74 0 2 0 81 468
4 0 3 - +71 +183 +13 +72 0 1 0 104 540

Average +66 +188 -9 +73 0 2 0 65 451
5 20 0 30 +65 +225 +25 +72 0 1 105 0 486
6 20 0 60 +72 +208 +63 +67 0 0 102 0 630
7 20 0 90 +74 +198 +75 +74 0 0 118 0 810
8 20 0 120 +74 +200 +75 +72 0 0 112 0 1020
9 20 1 30 +76 +210 +25 +74 0 0 100 82 546
10 20 1 60 +81 +180 +75 +72 0 0 105 74 684
11 20 1 90 +82 +183 +75 +77 0 0 105 81 852
12 20 1 120 +85 +178 +75 +77 0 0 108 78 1062
13 20 2 30 +77 +208 +25 +77 0 0 104 94 642
14 20 2 60 +83 +188 +75 +64 0 0 101 86 780
15 20 2 90 +88 +173 +75 +69 0 0 111 91 966
16 20 2 120 +88 +178 +75 +64 0 0 110 83 1146
17 20 3 30 +80 +203 +38 +67 0 0 103 99 690
18 20 3 60 +84 +190 +75 +74 0 0 108 105 822
19 20 3 90 +89 +183 +75 +74 0 0 104 100 1056
20 20 3 120 +88 +178 +88 +64 0 0 114 103 1200

Average +86 +184 +71 +69 0 0 108 97 980
21 100 0 30 +69 +213 +38 +72 0 1 415 0 474
22 100 0 60 +76 +203 +63 +64 0 0 488 0 606
23 100 0 90 +79 +208 +88 +72 0 0 515 0 768
24 100 0 120 +80 +200 +88 +69 0 0 529 0 954
25 100 1 30 +76 +213 +25 +74 0 0 423 80 525
26 100 1 60 +85 +195 +75 +69 0 0 460 78 684
27 100 1 90 +87 +200 +75 +67 0 0 530 79 840
28 100 1 120 +87 +205 +75 +79 0 0 532 73 1026
29 100 2 30 +81 +203 +25 +74 0 0 415 88 606
30 100 2 60 +88 +188 +75 +77 0 0 478 94 786
31 100 2 90 +90 +200 +75 +72 0 0 510 92 966
32 100 2 120 +93 +188 +75 +69 0 0 502 88 1140
33 100 3 30 +83 +200 +38 +72 0 0 420 106 660
34 100 3 60 +89 +200 +75 +74 0 0 476 98 804
35 100 3 90 +91 +205 +75 +69 0 0 500 98 942
36 100 3 120 +94 +190 +75 +72 0 0 547 106 1176

Average +90 +197 +69 +71 0 0 493 98 948

to 20% produces even better results. Thus, depending on the priorities they give to

different objectives, decision makers must consider the trade-offs when setting the

levels of controllable parameters and the degree of flexibility to obtain the desired

results.
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(a) Nurse assignments

(b) Non-preferred assignments

(c) Total nurse overtime

Figure 2.3: Sensitivity analysis of the effect of different controllable parameters on
performance
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2.5.3 Handling last-minute changes

In this sub-section, the focus is on analyzing the capacity of the adaptive procedure

to handle unexpected changes. To perform this analysis, two sources of uncertainty

were modelled: treatment modifications and last-minute nurse absences. Specifically,

it is assumed that after consultations on the day before an appointment date, the

oncologist modifies the patient’s treatment plan by adding either one hour or two

hours to the duration of the treatment with probability p1 and p2, respectively, or

cancels the treatment with probability p3. Thus, treatments remain unchanged with

probability 1 − p1 − p2 − p3. For nurse absences, each nurse is absent on a given

day with probability qn. Scenarios for last-minute changes were generated using the

procedure described in Algorithm 1. Schedules from the actual SCC system were

used, and the rescheduling model was executed for varying scenarios generated for

each day. The following values were used: γ = 0 and γ = 60 minutes, f=100%, and

based on the data collected p1 = 5%, p2 = 5%, p3 = 10%, and qn = 5%, for each

n ∈ Nd.

Table 2.8 presents the daily results of the SCC scheduling system. Recall that

Npri and Nsec denote the number of patients assigned to their primary and secondary

nurses, respectively, and Onrs shows the total nurse overtime. As can be seen in Table

2.8, on average, eight of 40 patients were assigned to their primary nurse, and two

patients to their secondary nurse. The number of non-preferred appointments was

zero, and the average total daily overtime was 78 minutes for the nine nurses on duty.

Using Algorithm 1, 50 scenarios per day were generated to evaluate the capacity

of the rescheduling model to handle unexpected changes. The average daily number

of each type of change in the generated scenarios is summarized in Table 2.9. On

average, seven patients each day had the duration of their treatment modified, four

appointments per day were cancelled, and 0.4 nurses (equivalent to eight nurses in 20

working days) were considered to be absent. It should be noted that, when a nurse is
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Algorithm 1: Procedure for generating scenarios for last-minute changes
Result: A scenario for day d with Pd patients and Nd nurses on duty

1 Initialization, retrieve the complete schedule of day d ;
2 for p=1 to Pd do
3 Generate a uniform random number u in [0,1];
4 if u < p1 then
5 set ip:=ip+1 ;
6 else
7 if u < p1 + p2 then
8 set ip:=ip+2 ;
9 else

10 if u < p1 + p2 + p3 then
11 Remove patient p from the schedule of day d ;
12 else
13 set ip:=ip ;
14 end
15 end
16 end
17 end
18 for n=1 to Nd do
19 Generate a uniform random number u in [0,1];
20 if u < qn then
21 Remove nurse n from the schedule of day d;
22 Reassign the chairs of the absent nurse to the available nurses;
23 Update the availability of the reassigned chairs
24 end
25 end

Table 2.8: Daily results of the SCC scheduling system

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average
Patient 49 47 36 24 45 46 44 45 22 42 35 47 48 27 41 48 45 41 26 43 40
Nurse 9 9 8 6 7 9 7 8 6 8 9 7 8 6 8 9 9 9 6 8 8
Npri 5 11 8 4 4 10 9 16 4 10 3 7 13 5 5 11 11 20 2 9 8
Nsec 4 1 3 1 3 3 1 1 1 1 3 1 3 0 2 3 0 2 1 3 2
Nprf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Onrs(min) 30 0 0 0 150 30 60 60 150 120 120 120 90 90 180 120 60 30 0 150 78

absent, nurse-chair assignments are updated by randomly assigning the absent nurse’s

chairs to the other nurses on duty. Then, chair availability is updated based on the

revised nurse-chair assignments.

Table 2.10 summarizes the results obtained by executing the proposed rescheduling

model on the generated last-minute changes in two cases. The left-hand side of the
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Table 2.9: Summary of changes generated by scenarios

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average
Modified 10 8 7 5 8 9 8 9 4 7 7 8 9 4 8 8 9 8 4 8 7
Canceled 5 4 3 2 4 4 4 4 2 3 3 4 4 2 4 4 4 4 2 4 4
Absent 0.4 0.3 0.5 0.2 0.4 0.4 0.3 0.4 0.2 0.3 0.5 0.4 0.3 0.3 0.4 0.6 0.4 0.3 0.2 0.3 0.4

table assumes γ = 0, which means that the start time of an appointment must not

change and that only the assigned chair and nurse can change. On the right-hand side,

it is assumed that the duration of an appointment can change by up to 60 minutes

(γ = 60).

Table 2.10: Results of resolving the last-minute changes in the generated scenarios

Day
Rescheduling with γ = 0 min Rescheduling with γ = 60 min

Npri Nsec Nprf Onrs (min) Nbuf Nch time(s) Npri Nsec Nprf Onrs (min) Nbuf Nch time(s)
1 7 6 0 28 3 0 10 12 11 0 20 0 32 18
2 14 3 0 55 1 0 9 16 5 0 27 0 26 13
3 7 4 0 13 1 0 4 10 6 0 15 0 24 5
4 3 2 0 11 0 0 1 5 2 0 4 0 16 1
5 5 4 0 59 8 0 9 9 5 0 79 5 24 27
6 5 8 0 13 1 0 7 9 9 0 4 0 29 14
7 6 8 0 19 1 0 6 9 9 0 5 0 27 12
8 8 2 0 30 6 0 8 10 4 0 79 0 30 12
9 3 2 0 24 1 0 1 4 2 0 6 0 16 1
10 9 1 0 28 7 0 8 10 3 0 69 2 27 14
11 3 6 0 9 1 0 4 7 8 0 0 0 22 7
12 8 5 0 11 5 0 10 14 5 0 24 1 29 23
13 15 3 0 26 5 0 9 21 2 0 15 0 31 17
14 4 2 0 119 1 0 3 5 2 0 109 0 19 5
15 7 3 0 47 4 0 7 10 5 0 57 1 29 23
16 12 4 0 204 1 0 9 18 7 0 140 0 31 16
17 10 6 0 124 1 0 7 15 6 0 27 0 29 11
18 11 5 0 13 2 0 5 17 6 0 2 0 28 6
19 6 1 0 10 0 0 2 7 2 0 3 0 18 3
20 9 3 0 5 2 0 7 13 5 0 5 0 29 8

Average 8 4 0 42 3 0 6 11 5 0 35 0.5 26 12

According to the results presented in Table 2.10, the proposed adaptive proce-

dure reacted efficiently to the generated changes. When γ = 0, after processing the

modifications described in Table 2.9, the procedure can rebuild the schedule with a

level of performance similar to that of the system actually used at the SCC in terms

of nurse-patient assignments and patient preference (Npri = 8, Nsec = 4 and Nprf

=0) while decreasing average nurse overtime, i.e., Onrs = 42 minutes. However, three

appointments daily were cancelled to accommodate these changes. As well, slight

modifications to already booked appointments (one hour at most) can help resolve
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unexpected changes more efficiently. In this case, the proposed procedure not only

schedules appointments for all patients (Nbuf ≈ 0) but also achieves better nurse-

patient assignments and decreases total nurse overtime. These improvements are

achieved in a reasonable amount of time and with no additional resources.

2.6 Conclusion

This paper studied a chemotherapy scheduling problem that examined several critical

and challenging issues arising in the Segal Cancer Centre (SCC) in Montreal, Canada.

The first challenge came from the fact that appointment requests arrive dynamically

(as an online waiting list that contains multiple requests and is continually updated),

and the exact number of appointments is not known in advance. Depending on the

regimen prescribed for a patient during a consultation, an oncologist may request a

series of appointments with rest periods of specific lengths between treatments and

may also request a specific set of chairs where the patient will receive treatment.

Furthermore, a patient may have preferences for the start time of treatments, and a

nurse is fully occupied with one patient during the setup phase of treatment. To tackle

these complexities, a flexible and adaptive scheduling procedure was proposed that

schedules incoming appointment requests, and reschedules these on a daily basis when

either new information regarding the request is received or an unexpected last-minute

change occurs. Both the scheduling problem and the rescheduling problem were

formulated as integer programs. Various controllable and flexible parameters such as

deviating from the dates prescribed by the oncologist by a pre-determined threshold

for each patient, changing the start time of patients already booked, and specifying

the maximum number of appointments that could be moved within the schedule were

included in the proposed procedure. These parameters allowed a sufficient degree of

flexibility in accommodating incoming requests along with last-minute changes.
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Computational experiments were carried out to evaluate the performance of the

procedure using real data gathered from the SCC. The proposed procedure achieved

consistently better results for all objective functions compared to those of the schedul-

ing system in use at the SCC. Moreover, several analyses were conducted on the

results to evaluate the effect of different levels of flexibility and also to assess the

performance of the proposed procedure in dealing with last-minute changes. Adopt-

ing the proposed procedure would allow the SCC to provide better patient care and

utilize available resources more efficiently.

An interesting extension of this study could be the design of an accurate prediction

tool that estimates the combination of patients and their characteristics in advance.

These characteristics might include the treatment plan, drug types (which determine

infusion duration), patient acuity level, required nursing skills (assigning the primary

nurse whose skills best match the acuity level of each patient), patient preferences, and

probability of no-show and cancellation. Similar to [42], forecasting the combination

of future treatments of different durations (as a result of different drug types) can

help to create an accurate template (prior to the arrival of an appointment request)

that can be used when scheduling incoming requests. The pharmacy stage could also

become a direction for future research: the types of drugs that must be prepared

on the same day as treatment, together with assumptions about uncertainty in the

duration of the drug preparation stage, could be studied.
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Chapter 3

Two-stage robust optimization for

perishable inventory problems with

order modification

P. Hooshangi-Tabrizi, H. Hashemi-Doulabi, I. Contreras, N. Bhuiyan. “Two-stage RO

for perishable inventory problems with order modification". submitted to European

Journal of Operational Research, January 2020.

Abstract

In this paper, we study an inventory management problem that integrates perisha-

bility, demand uncertainty, and order modification decisions. We focus on perishable

products with a fixed shelf-life where demands belong to an uncertainty set. We for-

mulate the problem as a two-stage robust integer optimization model that minimizes

the sum of ordering, purchasing, holding, shortage, wastage, and modification costs in

the worst-case scenario. We develop an exact column-and-row generation algorithm

to solve the problem. We perform extensive computational experiments to evaluate

the efficiency of our algorithm and to carry out various sensitivity analyses. Further-
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more, we compare solutions obtained from our two-stage robust model with those of

the deterministic model and a commensurable stochastic model in both risk neutral

and worst-case settings.

3.1 Introduction

Inventory control can be defined as a system to monitor levels of inventory contin-

uously or periodically. This system decides on optimal replenishment cycles, order

quantities and inventory allocations in order to satisfy demand. In the literature of

inventory control, most of the work assume unlimited lifespans for products. However,

in practice, there are many products that deteriorate over time and become unfit for

consumption after their shelf-life. It is thus crucial to make optimal ordering, pro-

duction and allocation decisions while reducing waste as much as possible. According

to Gooch and Abdel [37], nearly 31 billion dollars worth of food is wasted each year

in Canada. Retailers are responsible for 15% of such waste. Furthermore, the 2018

report of Canadian Blood Services showed that 13% of all platelet units processed

for transfusion were outdated ([98]). In addition to food and blood, products like

pharmaceuticals, cut flowers and some chemicals are other examples of perishables

with a limited shelf-life ([32, 103]).

Perishable inventory management (PIM) problems concern the design of inventory

plans by determining the proper times to place orders, the size of orders, and allocat-

ing products with different shelf-lives to demand. Normally in PIM problems, demand

is satisfied either by 1) the recently received order that includes the most fresh items,

2) stocks carried from previous periods, or 3) products with any age that are procured

urgently. A common objective in PIM problems is to minimize the sum of the fixed

setup cost for placing orders, purchase cost, holding cost for storing products during

a period, shortage cost in case of stock-outs, and wastage cost for products reaching
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their shelf-life. The shortage cost can be either considered as the lost sale, where

demand is not covered (in retail stores for example), or the emergency procurement

cost, where demand is finally met by outsourcing at a higher cost (in blood service

centers for example). According to the nature of perishability, inventory models can

be categorized into two main categories. In the first category, products are assumed

to have a fixed shelf-life or constant rate of deterioration ([12, 13, 23, 62]). In the

second category, the exact lifetime of perishables cannot be determined in advance

and a randomly distributed shelf-life is usually considered ([60, 61, 63, 68]). Among

the first category, there is a subclass in which although the shelf-life is fixed, we do

not know the exact lifetime in advance while making orders ([88]). In these cases, we

receive information on their exact lifetime only once the ordered items arrive. In this

category, the shelf-life is fixed but different for each product.

Demand uncertainty is another important factor that arises in most real-life ap-

plications. It makes inventory decisions much more difficult, especially in the case

of perishable products. Overestimation of demand causes significantly more wastage

or outdated costs while its underestimation leads to a higher shortage cost. In the

literature, various methodologies are used to model PIM problems with demand un-

certainty. Some works propose simulation models to build easy rules for the ordering

policy of stochastic PIM problems ([45, 46, 57, 107]). Moreover, markov decision

process is another approach to formulate PIM problems ([31, 43, 44, 69]), where

approximation and heuristic algorithms are commonly used to solve the proposed

models. Stochastic programming is another prevalent approach to model PIM prob-

lems with stochastic demand ([27, 29, 39, 47, 88]). In the first-stage of stochastic

models for PIM problems, the decision maker determines the ordering periods, order

sizes, safety stock, and target levels. In the second stage, he decides on recourse ac-

tions including the allocation of on-hand inventory with different ages to demand

as well as the amount of holding, shortage and wastage. To obtain statistically
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reliable solutions, some works have solved stochastic programming models using a

sample average approximation framework (e.g., [27]). Decomposition-based integer

programming algorithms are also common techniques for solving the resulting large-

scale stochastic PIM problems ([93]). Another modeling approach is to use robust

optimization techniques to minimize the total ordering, holding, shortage, and waste

cost in the worst-case scenario ([51, 58, 94]).

The possibility of modifying an order that was initially determined at the begin-

ning of the planning horizon is another important aspect in PIM problems. This

aspect has been rarely addressed in the literature. There are several papers that have

only studied the resource flexibility and alternative sources in multi-period inventory

problems ([35, 55, 56, 85, 97, 109]). In these works, it is assumed that different

sources with various fixed/variable costs, and limited capacities are available to cover

demand. Other works consider a dual model of replenishment, one regular ordering

at the beginning of the planning horizon for each period and one optional expedited

ordering between consecutive periods in the case of shortage ([64, 110]). Usually,

the later type of order is more expensive due to its short notice for suppliers. The

possibility of modifying an order before receiving it can decrease the risk of shortage

and expensive expedited orders. Furthermore, in the presence of order modifications,

the risk of wastage can reduce as a result of the reduction in initial purchases at the

beginning of the planning horizon.

Potential applications for PIM problems with the above three features, i.e., per-

ishability with different fixed shelf-life, demand uncertainty, and order modifications,

can arise in several settings. One concrete example is the inventory management of

blood products such as platelet. The platelet units received by hospitals from blood

banks usually have different shelf-lives. This is because of different ways to produce

platelet, various blood collection intervals, and also a variety of laboratory conditions

for processing blood. Because of demand uncertainty, it is always difficult to estimate
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the exact amount of future blood demand. On the other hand, fixing an ordering

plan with a supplier such as a blood bank in advance can help the supplier to better

plan the collection and processing of the future platelet demand. Therefore, by se-

curing initial orders at the beginning and modifying the amount of these fixed orders

before receiving them, both hospitals and suppliers can benefit from cost reductions

through a well-established collaboration. Another potential application, where PIM

problems can be used, is the inventory management of fresh produce such as fruits,

vegetables, meats and dairy products in retail stores. Different harvesting intervals,

various storage conditions and warehousing policies impact their shelf-life. Because of

short and different shelf-lives of received fresh food in stores, strategies for reviewing

and replenishing theses products need to be designed properly to achieve minimum

wastage. The possibility of modifying the quantity of orders that are fixed previously

between retail stores and fresh produce suppliers can reduce the risk of food wastage

that happens because of demand overestimation.

Optimal inventory policies which are set on a particular distribution may perform

poorly against another demand distribution even if the mean and variance are equally

tuned ([18]). Moreover, in multi-period planning problems with demand uncertainty,

it is a difficult task to identify representative stochastic scenarios when the problem

is formulated as a two-stage model ([38]). Robust optimization is an appropriate

method to deal with these difficulties. Obtaining a robust solution for an inventory

management problem can even be more critical in the case of perishable products in

real-life situations. In this case, even though a significant part of information is not

easily available, robust optimization is tailored to the information at hand that leads

to computationally tractable formulations. There are many works in the literature of

inventory problems that consider demand belongs to an uncertainty set and apply a

robust optimization approach ([9, 16, 18, 86, 87, 94, 96, 100, 104]). These works are

interesting and practical in the sense that they provide stable solutions in the absence
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of probability distributions for uncertain parameters. However, they ignore several

aspects such as the possibility of modifying future orders that are made in earlier

periods, the ordering cost, and the shelf-life of products in case of perishability.

In this paper, we address these aspects in a PIM problem with 1) perishable prod-

ucts of different shelf-lives, 2) demand uncertainty, and 3) the possibility of modifying

orders that are fixed at the beginning of the planning horizon. We formulate this in-

ventory problem as a two-stage robust integer program and use a periodic review

system in which the set of ordering periods and the size of the associated orders are

fixed in the first stage. In the second stage, after the realization of uncertainty, we de-

cide on the modification of orders fixed in the first-stage, and the amount of holding,

shortage, and outdated product for each period. We refer the problem under study as

the perishable inventory management with modifications (PIMM) problem. The main

contributions of this work is to introduce a two-stage robust optimization model for a

perishable inventory problem with several features such as demand uncertainty, per-

ishable products with different fixed shelf-life, and the possibility of modifying future

orders fixed in earlier periods. We also develop an exact column-and-row generation

algorithm to solve the proposed robust optimization model. The proposed algorithm

is based on exploiting the structure of two-stage robust optimization models and the

Karush-Kuhn-Tucker (KKT) optimality conditions of linear programs. We perform

extensive computational experiments to evaluate the efficiency, robustness, and lim-

itations of the proposed column-and-row generation algorithm. We also analyze the

impact of different parameters on the performance of the algorithm and on the quality

of solutions obtained.

The rest of the paper is organized as follows. In Section 3.2 we provide a formal

definition of the problem and propose a two-stage robust formulation for it. In Section

3.3 we present a column-and-row generation algorithm to solve the PIMM problem.

Computational experiments and sensitivity analyses are carried out in Section 3.4.
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Finally, we provide conclusions and some future research directions in Section 3.5.

3.2 Problem description and formulation

We consider a periodic review inventory system where products have a fixed shelf-life

equal to M periods. This means that once the ordered products arrive, they expire

after M periods. In this case, they are considered as outdated products and must be

discarded. Let T and P represent the set of days in the planning horizon and the

set of all ordering patterns with different review intervals denoted by R, respectively.

For each p ∈ P , atp accounts for a binary parameter indicating whether or not we

place an order at period t ∈ T in the case that pattern p is chosen. We consider the

following parameters:

– c1: the fixed cost of each order,

– c2: the variable regular unit purchase cost,

– c3: the unit holding cost in each period,

– c4: the unit shortage cost or equivalently the emergency procurement,

– c5: the unit cost of an outdated product,

– c6: the unit modification cost incurred when ordering extra products.

Furthermore, we denote the minimum and maximum purchase amounts by Fmin

and Fmax, respectively. There is also a limit γ, defined as a percentage of Fmax, on

the maximum amount of extra purchases allowed to make when modifying the placed

orders.

Regarding demand uncertainty, parameters d̄t and d̂t represent the mean and

deviation of the demand in period t, respectively. At the beginning of the planning

horizon, the decision maker fixes the ordering pattern and the quantities of regular
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purchases for each period t ∈ T . We consider the possibility of adding extra units

of the product to a previously fixed order by paying the unit modification cost c6.

We must fulfill the demand of each period by a combination of regular purchases,

the available stock, the extra purchases made during the planning horizon, and an

emergency procurement. We also take into account that the ordered products have

various shelf-lives. In particular, let λm denote the percentage of arriving products

with a shelf-life ofm days, where 1 ≤ m ≤M . In this paper, we consider the following

assumptions:

• Mixing products with different ages is permitted to cover demand,

• The shelf-life of products received in the same period are deterministic but they

may be different,

• In the case order modification, there is a predetermined maximum limit for

extra purchases in each period,

• In the case of emergency procurement, there is always enough inventory in the

supplier’s side to avoid shortages via extra purchases.

We consider that demand uncertainty can be represented as:

dt(ξ) = d̄t + d̂tξt t ∈ T ,

Ξ(Γ) :=
{
ξ ∈ R|T |

∣∣∣− 1 ≤ ξt ≤ 1,
∑
t∈T

|ξt| ≤ Γ
}
,

where Ξ(Γ) is the budgeted uncertainty set with parameter Γ denoting the maximum

number of periods for which the demand can take the maximum possible value.

Regarding the first-stage decision variables, we use wp as a binary variable equal

to 1 if and only if the order pattern p ∈ P is selected. Moreover, yt is another binary

variable determining whether or not we make an order at period t ∈ T . We also use

xt as a continuous variable to denote the initial purchased quantity at period t. In
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the second stage, we define Imt (ξ) as a continuous variable representing the inventory

level of products with a shelf-life of m days at the beginning of period t in scenario

ξ. We also define continuous variables st(ξ) and ot(ξ) as the amounts of emergency

procurement (shortage) and outdated products, respectively, at the end of period

t in scenario ξ. Furthermore, we define umt (ξ) as a continuous variable equal to the

amount of the demand in period t that is fulfilled using items with m days of shelf-life

in scenario ξ. Finally, x′t(ξ) is a continuous variable denoting the quantity of extra

purchase made in the second-stage in period t under realization ξ.

Figure 3.1 shows the network of inventory balance in the PIMM problem. Any

arc between node 0 and any other node t (representing period t) implies that an order

is received at the beginning of such period. In the cases that there is no arc between

node 0 and a period node, it means that no order is received in that period. For each

node t, flow conservation conditions need to be satisfied. At each node, inputs are

the inventory from previous period (It), regular purchase (xt), extra purchase (x′t),

and emergency procurement (st). Moreover, the output of each node consists of the

outdated amount (ot), realized demand (dt), and the amount of inventory kept for

next period (It+1).
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Figure 3.1: Network of the perishable inventory management problem.

The PIMM problem can be stated as the following two-stage robust mixed integer

program (TSR-MIP):
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minimize
(∑
t∈T

(c1
tyt + c2

txt) + sup
ξ∈Ξ(Γ)

Q(w, y, x, ξ)
)

(3.1)

subject to

∑
p∈P

wp = 1 (3.2)

∑
p∈P

atpwp = yt t ∈ T (3.3)

Fminyt ≤ xt ≤ Fmaxyt t ∈ T (3.4)

w ∈ {0, 1}|P|y ∈ {0, 1}|T | (3.5)

xt ≥ 0 t ∈ T , (3.6)

where,

Q(w, y, x, ξ) = minimize
∑
t∈T

( M∑
m=1

c3
t I
m
t+1(ξ) + c4

t st(ξ) + c5
tot(ξ) + c6

tx
′
t(ξ)
)

(3.7)

subject to

x′t(ξ) ≤ γFmaxyt t ≥ 2 (3.8)

Im1 (ξ) = im + λm(x1 + x′1(ξ)) 1 ≤ m ≤M (3.9)

Imt (ξ) = Im+1
t−1 (ξ)− um+1

t−1 (ξ) + λm(xt + x′t(ξ)) t ≥ 2,m ≤M − 1 (3.10)

Im|T |+1(ξ) = Im+1
|T | (ξ)− u(m+1)

|T | (ξ) m ≤M − 1 (3.11)

IMt (ξ) = λM(xt + x′t(ξ)) t ≥ 2 (3.12)

umt (ξ) ≤ Imt (ξ) t ∈ T ,m ≥ 2 (3.13)

x′1(ξ) = 0 (3.14)

ot(ξ) = I1
t (ξ)− u1

t (ξ) t ∈ T (3.15)
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st(ξ) +
M∑
m=1

umt (ξ) = d̄t + d̂tξt t ∈ T (3.16)

x′t(ξ) ≥ 0, st(ξ) ≥ 0, ot(ξ) ≥ 0 t ∈ T (3.17)

Imt (ξ) ≥ 0 1 ≤ t ≤ |T |+ 1, 1 ≤ m ≤M (3.18)

umt (ξ) ≥ 0 t ∈ T , 1 ≤ m ≤M. (3.19)

The first term in the objective function (3.1) minimizes the sum of fixed and

variable regular ordering costs over the planning horizon. The second term represents

the second-stage cost in the worst-case scenario. Constraints (3.2)-(3.3) indicate that

only one ordering pattern must be selected and the ordering periods are determined

with respect to such pattern. Constraints (3.4) ensure that order quantities take

values between the lower and upper bounds for the regular purchases. If there is no

order placed for a specific period, the purchase quantity for that period is equal to

zero. Constraints (3.5) are the integrality conditions on w and y variables. Constraints

(3.6) imply that x variables are continuous and non-negative. From now on, we denote

as X the set of solutions associated with constraints (3.2)-(3.6).

The second-stage objective function (3.7) represents the minimization of holding,

shortage, wastage and modification costs for uncertainty scenario ξ. Constraints (3.8)

set the maximum limit on the extra purchase that can be made for each period. Con-

straints (3.9)-(3.12) are the inventory balance constraints for products with different

ages. Note that im represents the initial inventory of shelf life m at the beginning of

the planning horizon. For each age of the inventory at each period, the stock kept

from the previous period is added to the regular and extra purchases of that specific

age. Then the inventory level for that specific age in the next period is calculated by

subtracting the amount of covered demand (u) from the sum of available stock and

the extra and regular purchases. Constraints (3.13) guarantee that the amount of cov-

ered demand is less than the available stock level. Constraints (3.14) ensure that no
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modification is required in the first period of the planning horizon. Constraints (3.15)

imply that there should be no order placed at the end of the planning horizon (at the

beginning of period |T |+ 1). Constraints (3.16) and (3.17) calculate the amounts of

outdated and shortage (emergency procurement) for each time period. Constraints

(3.18) and (3.19) defines the non-negativity conditions for all second-stage variables.

Finally, we denote as Y the set of solutions associated with constraints (3.8)-(3.19).

3.3 An Exact solution algorithm for the PIMM prob-

lem

In this section, using the structure of the TSR-MIP and a property of the uncertainty

set, we first present an equivalent representation of the PIMM problem that is in the

format of a min-max problem. We then present an exact column-and-row generation

algorithm that relies on a mixed-integer linear programming reformulation of the

min-max problem.

3.3.1 Equivalent representation of the TSR-MIP

The TSR-MIP presented in the previous section has both the relatively complete

recourse and fixed recourse properties. The first property implies that for every

first-stage solution in X , there is always a feasible second-stage solution in Y , i.e.,

∀(w, y, x) ∈ X , ∀ξ ∈ Ξ(Γ), ∃(x′, I, s, o, u) ∈ Y . The second property implies that

the coefficient of the recourse variables, i.e., (x′, I, s, o, u) ∈ Y , is not uncertain. The

TSR-MIP holds this property as the uncertainty appears only in demand that is not

multiplied by any of the recourse variables. Furthermore, as the budgeted uncertainty

Ξ(Γ) is a bounded polyhedron, described by a finite number of linear constraints, it

has a finite number of extreme points. We denote as K = {ξ̄1, ξ̄2, ..., ξ̄|K|} the set of all

extreme points of Ξ(Γ). We next present the budgeted uncertainty set as the convex
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hull of its extreme points, i.e., Ξ(Γ) := Conv(K).

Lemma 3.3.1. (Horst [50], Rockafellar [90]) Assume that the uncertainty set Ξ is

given as the convex hull of a finite set, K = {ξ̄1, ξ̄2, ..., ξ̄|K|}, i.e., Ξ(Γ) := Conv(K).

The optimal value of maximize
ξ∈Ξ

Q(ξ) is equal to max
k∈{1,..,|K|}

Q(ξ̄k) if Q(ξ) is a convex

function over Ξ.

Theorem 3.3.1. The TSR-MIP is equivalent to the following problem:

(Min-Max-MIP) :

minimize
(w,y,x),

{
(x′k,Ik,sk,ok,uk)

}|K|
k=1

maximize
k∈K

∑
t∈T

(
c1
tyt + c2

txt +
M∑
m=1

c3
t I
mk
t+1 + c4

t s
k
t + c5

to
k
t + c6

tx
′k
t

)

subject to

(w, y, x) ∈ X{
(x′k, Ik, sk, ok, uk)

}|K|
k=1
∈ Y .

Proof. For every fixed (ŵ, ŷ, x̂) ∈ X and ξ ∈ Ξ, the second stage problem

(Q(ŵ, ŷ, x̂, ξ)) can be presented as follows:

minimize
∑
t∈T

( M∑
m=1

c3
t I
m
t+1(ξ) + c4

t st(ξ) + c5
tot(ξ) + c6

tx
′
t(ξ)
)

subject to

a3T
i I + a4T

i s+ a5T
i o+ a6T

i x
′ + a7T

i u = bi(ξ)− a0T
i ŵ − a1T

i ŷ − a2T
i x̂ ∀i = 1, ..., L

a
′3T
j I + a

′4T
j s+ a

′5T
j o+ a

′6T
j x′ + a

′7T
j u ≥ b′j(ξ)− a

′0T
j ŵ − a′1Tj ŷ − a′2Tj x̂ ∀j = 1, ..., L′

I, s, o, x′, u ≥ 0.

In the above model, L equality and L′ inequality constraints along with non-negativity

conditions of variables represent Y feasible space, and b(ξ) is an affine function of ξ

uncertainty parameter. Using the fixed recourse property of the TSR-MIP, we know
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that the above problem and its dual are always feasible. Therefore, we can formulate

the dual problem of the second-stage problem, i.e., Q(ŵ, ŷ, x̂, ξ), as follows:

maximize
L∑
i=1

θi

(
bi(ξ)− a0T

i ŵ − a1T
i ŷ − a2T

i x̂
)

+
L′∑
j=1

θ′j

(
b′j(ξ)− a

′0T
j ŵ − a′1Tj ŷ − a′2Tj x̂

)

subject to

L∑
i=1

θia
3
ik +

L′∑
j=1

θ′ja
′3
jk ≤ c3 ∀k ∈ K(I)

L∑
i=1

θia
4
ik +

L′∑
j=1

θ′ja
′4
jk ≤ c4 ∀k ∈ K(s)

L∑
i=1

θia
5
ik +

L′∑
j=1

θ′ja
′5
jk ≤ c5 ∀k ∈ K(o)

L∑
i=1

θia
6
ik +

L′∑
j=1

θ′ja
′6
jk ≤ c6 ∀k ∈ K(x′)

L∑
i=1

θia
7
ik +

L′∑
j=1

θ′ja
′7
jk ≤ 0 ∀k ∈ K(u)

θ′j ≥ 0 j = 1, ..., L′.

In the above dual formulation, θ ∈ RL, θ′ ∈ RL′ are dual variables associated to the

equality and inequality constraints, respectively, and K(x) denotes the number of x

variables. According to this dual formulation, since Q(ŵ, ŷ, x̂, ξ) is the maximum of

a set of affine functions, it is a convex function in terms of ξ. Therefore, we can use

the above lemma to obtain:

maximize
ξ∈Ξ

Q(ŵ, ŷ, x̂, ξ) = max
ξ̄∈K

Q(ŵ, ŷ, x̂, ξ̄).

The above equation implies that, it is enough to maximize the problem with respect

to |K| extreme points to make sure that the obtained solution is robust with re-

spect to any uncertainty parameter taken from Ξ. Therefore in the The TSR-MIP,
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if we replace sup
ξ∈Ξ(Γ)

Q(w, y, x, ξ) with max
ξ̄∈K

Q(w, y, x, ξ̄), in the equivalent formulation,

we will have as many second-stage variables as the number of extreme points, i.e.,

{(x′k, Ik, sk, ok, uk)
}|K|
k=1

. �

3.3.2 Column-and-row generation algorithm

We use a column-and-row generation (C&RG) algorithm based on the method devel-

oped by Zeng and Zhao [108]. They study a two-stage robust optimization problem

that satisfies the above-mentioned fixed and relatively complete recourse assumptions.

The idea of the C&RG algorithm is to solve the equivalent Min-Max-MIP problem

with respect to a subset of the extreme points of the uncertainty set (K′ ⊂ K) as

the total number of extreme points (|K|) can be exponential. The C&RG algorithm

starts with a subset of extreme points (K′) of the uncertainty set Ξ(Γ) in a master

problem (MP). After solving the MP, new extreme points are added iteratively to

the initial subset by solving an associated subproblem (SP). This process of alter-

nating between the MP and SP continues until either the algorithm converges to an

optimum solution or a pre-defined stopping criterion is met. The steps of our C&RG

algorithm are given in Algorithm 2. We recall that X represents the feasible space of

the first-stage variables.

Algorithm 2 is guaranteed to converge in a finite number of iterations because

our bounded uncertainty set Ξ(Γ) has a finite number of vertices. In practice, the

algorithm converges in fewer iterations than the number of all vertices in set Ξ. In

the next section, we show how to formulate the corresponding MP and SP in the

proposed C&RG algorithm to solve the Min-Max-MIP.
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Algorithm 2: Column-and-row generation algorithm
1: Set Ξ = ∅, K′ = ∅, i = 0, UB = +∞, and LB = −∞.
2: Solve MP to derive an initial first-stage solution (ŵ0, ŷ0, x̂0) ∈ X .
3: Update LB =

∑
t∈T
(
c1
t ŷ

0
t + c2

t x̂
0
t

)
.

4: Solve SP to identify the initial worst-case scenario:
ξ∗0 = argmax

ξ∈Ξ
Q(ŵ0, ŷ0, x̂0, ξ).

5: Update UB = min {UB,
∑

t∈T
(
c1
t ŷ

0
t + c2

t x̂
0
t

)
+Q(ŵ0, ŷ0, x̂0, ξ∗0)}.

6: Construct Ξ := Ξ ∪ {ξ∗0}, K′ := K′ ∪ {k(ξ∗0)} and set i = 1. If (UB−LB
LB

) ≤ ε,
stop the algorithm. Otherwise, go to Step 7.
7: Solve MP with Ξ and K′ to obtain (ŵi, ŷi, x̂i)
8: Update LB as:

LB =
∑

t∈T
(
c1
t ŷ
i
t + c2

t x̂
i
t

)
+ max

k∈K′

{∑
t∈T

(∑M
m=1(c3

t I
mk
t+1) + c4

t s
k
t + c5

tO
k
t + c6

tx
′k
t

)}
.

9: Solve SP to identify the worst-case scenario:

ξ∗i = argmax
ξ∈Ξ

Q(ŵi, ŷi, x̂i, ξ).

10: Calculate the worst-case value of the current solution and update UB:

UB = min{UB,
∑

t∈T
(
c1
t ŷ
i
t + c2

t x̂
i
t

)
+Q(ŵi, ŷi, x̂i, ξ∗i)}.

11: If (UB−LB
LB

) ≤ ε the algorithm has converged. Otherwise, Ξ := Ξ ∪ {ξ∗i)},
K′ := K′ ∪ {k(ξ∗i)}, i = i+ 1 and return to Step 7.

3.3.2.1 Master problem of the C&RG algorithm

We formulate the Master Problem (MP) of our C&RG algorithm as the following

MIP:

minimize
∑
t∈T

(
c1
tyt + c2

txt
)

+ q (3.20)

subject to

(w, y, x) ∈ X

q ≥
∑
t∈T

( M∑
m=1

(c3
t I
mk
t+1) + c4

t s
k
t + c5

to
k
t + c6

tx
′k
t

)
k ∈ K′ (3.21)
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x
′k
t ≤ γFmaxyt t ≥ 2, k ∈ K′ (3.22)

Imk1 = im + λm(x1 + x
′k
1 ) 1 ≤ m ≤M,k ∈ K′ (3.23)

Imkt = I
(m+1)k
t−1 − u(m+1)k

t−1 + λm(xt + x
′k
t ) t ≥ 2,m ≤M − 1, k ∈ K′ (3.24)

Imk|T |+1 = I
(m+1)k
|T | − u(m+1)k

|T | m ≤M − 1, k ∈ K′ (3.25)

IMk
t = λM(xt + x

′k
t ) t ≥ 2, k ∈ K′ (3.26)

Imkt ≥ umkt t ∈ T ,m ≥ 2, k ∈ K′ (3.27)

x
′k
t = 0 k ∈ K′ (3.28)

okt = I1k
t − u1k

t t ∈ T , k ∈ K′ (3.29)

skt +
M∑
m=1

umkt = d̄t + d̂tξ
k
t t ∈ T , k ∈ K′ (3.30)

x
′k
t , s

k
t , o

k
t ≥ 0 t ∈ T , k ∈ K′ (3.31)

Imkt ≥ 0 1 ≤ t ≤ |T |+ 1, 1 ≤ m ≤M,k ∈ K′ (3.32)

umkt ≥ 0 t ∈ T , 1 ≤ m ≤M,k ∈ K′. (3.33)

Constraints (3.21) represent the worst-case cost in the second stage to be min-

imized. These constraints imply the optimality cuts are iteratively generated and

added to the MP after finding a new extreme point by solving the SP. Constraints

(3.22)-(3.33) are equivalent to constraints (3.8)-(3.19), respectively.

3.3.2.2 Subproblem of the C&RG algorithm

To generate an optimality cut, we need to solve the following problem for a given

first-stage solution (ŵ, ŷ, x̂) obtained from the MP:

maximize
ξ∈Ξ

minimize
(x′,I,o,s,u)∈Y

Q(ŵ, ŷ, x̂, ξ).

In order to reformulate this problem as a MIP, we write the KKT conditions for

the inner minimization problem that results in a single maximization problem with
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the following structure:

maximize
ξ∈Ξ

Q(ŵ, ŷ, x̂)

subject to

(x′, I, o, s, u) ∈ Y

θ ∈ D(Y)

(bj(ξ)− a0T
j ŵ + a1T

j ŷ − a2T
j x̂+ a3T

j I − a4T
j s− a5T

j o− a6T
j x

′ − a7T
j u)θj = 0

j = 1, ..., (L+ L′),

where (x′, I, o, s, u) ∈ Y denotes the primal feasibility conditions, θ ∈ D(Y) represents

the dual feasibility conditions, and L+L′ constraints imply the KKT complementary

slackness conditions for both of the equality and inequality constraints of the second-

stage problem in the TSR-MIP. The extended version of this model is as follows:

maximize
ξ,x′,I,o,s,u,θ

∑
t∈T

(
c1
t ŷt + c2

t x̂t +
M∑
m=1

c3
t I
m
t+1 + c4

t st + c5
tot + c6

tx
′
t)

(3.34)

subject to

x′t ≤ γFmaxŷt t ≥ 2 (3.35)

Im1 = im + λm(x̂1 + x′1) 1 ≤ m ≤M (3.36)

Imt = Im+1
t−1 − um+1

t−1 + λm(x̂t + x′t) t ≥ 2,m ≤M − 1 (3.37)

Im|T |+1 = Im+1
|T | − u

m+1
|T | m ≤M − 1 (3.38)

IMt = λM(x̂t + x′t) t ≥ 2 (3.39)

Imt ≥ Um
t t ∈ T ,m ≥ 2 (3.40)
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x′1 = 0 (3.41)

ot = I1
t − u1

t t ∈ T (3.42)

st +
M∑
m=1

umt = d̄t + d̂t(ξt) t ∈ T (3.43)

x′t ≥ 0, st ≥ 0, ot ≥ 0 t ∈ T (3.44)

Imt ≥ 0 1 ≤ t ≤ |T |+ 1, 1 ≤ m ≤M (3.45)

umt ≥ 0 t ∈ T , 1 ≤ m ≤M (3.46)

θ1
t −

M−1∑
m=1

λmθ
3
tm − λMθ5

t + θ10
t = c6

t t ≥ 2 (3.47)

−
M∑
m=1

λmθ
2
m + θ7 + θ10

1 = 0 (3.48)

θ9
t + θ11

t = c4
t t ∈ T (3.49)

θ8
t + θ12

t = c5
t t ∈ T (3.50)

θ3
(t+1)(m−1) − θ6

tm + θ9
t + θ14

tm = 0 1 ≤ t ≤ |T | − 1,m ≥ 2 (3.51)

θ4
(m−1) − θ6

|T |m + θ9
|T | + θ14

|T |m = 0 m ≥ 2 (3.52)

θ8
t + θ9

t + θ14
t1 = 0 t ∈ T (3.53)

θ2
m − θ3

2(m−1) + θ6
1m + θ13

1m = 0 m ≥ 2 (3.54)

θ2
1 − θ8

1 + θ13
11 = 0 (3.55)

θ3
|T |m − θ4

(m−1) + θ6
|T |m + θ13

|T |m = c3
|T | 2 ≤ m ≤M − 1 (3.56)

θ3
|T |1 − θ8

|T | + θ13
|T |1 = c3

|T | (3.57)

− θ3
|T |(M−1) + θ5

|T |−1 + θ6
(|T |−1)M + θ13

(|T |−1)M = c3
|T |−1 (3.58)

− θ4
(M−1) + θ5

|T | + θ6
|T |M + θ13

|T |M = c3
|T | (3.59)

θ4
m + θ13

(|T |+1)m = c3
|T |+1 m ≤M − 1 (3.60)

θ3
t1 − θ8

t + θ13
t1 = c3

t 2 ≤ t ≤ |T | − 1 (3.61)

− θ3
(t+1)(M−1) + θ5

t + θ6
tM + θ13

tM = c3
t 2 ≤ t ≤ |T | − 2 (3.62)
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θ3
tm − θ3

(t+1)(m−1) + θ6
tm + θ13

tm = c3
t 2 ≤ t ≤ |T | − 1, 2 ≤ m ≤M − 1 (3.63)

θ1
t ≤ 0 t ≥ 2 (3.64)

θ6
tm ≥ 0 t ∈ T ,m ≥ 2 (3.65)

θ10
t , θ

11
t , θ

12
t ≥ 0 t ∈ T (3.66)

θ13
tm ≥ 0 1 ≤ t ≤ |T |+ 1, 1 ≤ m ≤M (3.67)

θ14
tm ≥ 0 t ∈ T , 1 ≤ m ≤M (3.68)

(γFmaxŷt − x′t)× θ1
t = 0 t ≥ 2 (3.69)

(Imt − umt )× θ6
tm = 0 t ∈ T ,m ≥ 2 (3.70)

θ10
t × x′t = 0 t ∈ T (3.71)

θ11
t × st = 0 t ∈ T (3.72)

θ12
t × ot = 0 t ∈ T (3.73)

θ13
tm × Imt = 0 1 ≤ t ≤ |T |+ 1, 1 ≤ m ≤M (3.74)

θ14
tm × umt = 0 t ∈ T , 1 ≤ m ≤M (3.75)

ξt = ξ+
t − ξ−t t ∈ T (3.76)

0 ≤ ξ+
t , ξ

−
t ≤ 1 t ∈ T (3.77)∑

t∈T

(ξ+
t + ξ−t ) ≤ Γ. (3.78)

In this model, constraints (3.35)-(3.46) represent the primal feasible space Y . Con-

straints (3.47)-(3.68) indicate the associated dual feasible space D(Y). Constraints

(3.69)-(3.75) are the corresponding KKT complementary slackness conditions. Vari-

ables θ1, ..., θ14 are variables of D(Y) that are associated with the constraints of Y

feasible space. Finally, constraints (3.76)-(3.78) shows the linear representation of

the budgeted uncertainty set. In other words, these constraints ensure that demand

uncertainty relates to a budgeted uncertainty set where the budget of uncertainty

is equal to Γ. The nonlinear constraints (3.69)-(3.75) of the above formulation can
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be reformulated by introducing binary variables and sufficiently large coefficients. In

particular, we can linearize constraints (3.69) using the following constraints:

θ1
t ≤Mzt t ∈ T (3.69-1)

(γFmaxŷt − x′t) ≤M(1− zt) t ∈ T (3.69-2)

z ∈ {0, 1}|T |. (3.69-3)

We follow a similar approach to linearize constraints (3.70)-(3.75).

3.4 Computational results and discussions

In this section, we carry out extensive numerical experiments to evaluate our robust

algorithm and to provide various sensitivity analyses. In Section 3.4.1, we present

computational results to assess the efficiency of the proposed C&RG algorithm. Sec-

tion 3.4.2 studies the effect of order modification on the performance of the algorithm

for different combinations of input parameters. In Section 3.4.3, we analyze the effect

of considering the possibility of receiving items with different shelf-lives on optimal

solutions. In Section 3.4.4, we study the effect of the budget and level of uncertainty

on the obtained objective values. Finally in Section 3.4.5, we compare the proposed

robust formulation with a commensurable two-stage stochastic model in both worst-

case and risk-neutral settings.

All computational experiments were performed in C++ using Concert Technology

of IBM CPLEX 12.9.0 on an Intel Xeon CPU E5-2687W v3 processor at 3.10 GHz

and 750 GB of RAM in Linux. We dealt with constraints (3.69)-(3.75) by exploiting

the capability of CPLEX in directly handling implications using IloIfThen logical

constraints instead of using Big M . We create test problems based on the data set

of Gunpinar and Centeno [39] and Zhou et al. [110] for a blood (platelet) inventory
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management problem. The average daily demands (d̄t) are 24, 16, 32, 16, 24, 0,

and 8 from Monday to Sunday, respectively and the deviations are assumed to be

25% of the mean values (d̂t = σd̄t and σ = 0.25). As stated in Zhou et al. [110],

excluding testing, transportation, and arrangement times, platelets have a maximum

of three days of shelf-life. Initial inventories are generated between zero and 10 units.

Furthermore, we set γ = 20%, δ = 25%, and λ = (0, 0, 1). The optimality gap is set

to 0.005% for all 564 experiments. Table 3.1 summarizes the parameters used for the

experiments.

Table 3.1 Input parameters used in the algorithm

Parameter Value
Number of Days (|T |) 7,14,21,28
Shelf-life time (M) up to 3 days
Number of patterns (P ) 20
Fixed ordering cost (c1) 225 $
Regular purchase cost (c2) per unit 538 $
Holding cost per unit and per time(c3) 1.25 $
Shortage cost per unit (c4) 1500 $
Outdating cost per unit (c5) 150 $
Modification cost per unit (c6) (1+δ)× 538 $
Percent of extra purchase cost(δ) 25%
Maximum purchase (Fmax) 70 units
Maximum percent for modifications (γ) 20%
Budget of demand uncertainty (Γ) 0.25× |T |

3.4.1 Computational performance of the column-and-row gen-

eration algorithm

We solve four sets of test problems each including 10 instances with the planning

horizon of one, two, three and four weeks. Table 3.2 shows the results of the proposed

algorithm for various test instances. In this table, for each instance with different

settings of modifications (γ, δ), we present different cost values along with the number

of iterations and time to find the optimal solution. Recall that γ is a limit on the

extra purchases that is stated as a percentage of the maximum purchase capacity. For

example, γ = 0.5 means that the extra purchase in each period can be at most 50% of
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Fmax. Moreover, δ is the additional cost incurred for each unit of extra purchases. We

solve the instances within a time limit of 18000 seconds (five hours) and report the

best obtained upper bound. We also set a time limit of 3600 seconds (one hour) for

solving every SP associated to the C&RG algorithm. We observe that, our proposed

algorithm optimally solves all weekly and bi-weekly instances very quickly. It also

solves the third set of instances in less than two hours on average. However, some

instances of the four-week planning could not be solved optimally within the limit

but the average gap for those instances is less than 1% that is reasonable and shows

that our algorithm is reliable for large instances. According to “Extra purchase ($)”

column of Table 3.2, the role of modification becomes more significant as the planning

horizon increases. This is because of the fact that we fix the initial purchases for the

all periods at the beginning. Therefore, the longer the planning horizon is, the more

we may need to modify the orders, particularly for later periods.

3.4.2 Impact of modification on optimal solutions

In this set of experiments, we carry out an analysis to further evaluate the value of

order modification. We create various test instances for different planning horizons

(|T | = 7, 14, 21, and 28) and different combinations for the fixed ordering cost and

purchase capacity (c1, Fmax). We conduct these experiments in two modes: with

and without modifications. For the mode with modifications, we set γ = 50% and

δ = 25%. As one can see in Table 3.2, a large portion of the total cost is related to

the fixed purchase cost that appears in regular (c2x), extra (c6x = c2x + δc2x) and

emergency purchases (c4S). Therefore, in order to have a better viewpoint about the

actual effect of modifications in performance, we subtract the fixed purchase cost from

all three mentioned procurement costs and then compare the computational results

with and without modifications. This new setting helps us understand what percent

of the variable cost can be reduced by modification. We have regular purchase cost
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Table 3.2 Results obtained by the C&RG algorithm for various (γ, σ)

Data Info. Column-and-row generation algorithm
|T | Number γ σ Total cost ($) Regular purchase ($) Inventory ($) Extra purchase($) Shortage($) Wastage($) Iteration. Time (s) Gap (%)
7 1 0 - 62031 59854 157 0 1120 0 4 0.2 0.0

2 0.1 0.25 61515 59446 147 0 1020 0 5 0.3 0.0
3 0.2 0.25 61515 59446 156 1012 0 0 5 0.4 0.0
4 0.5 0.25 61515 59446 156 1012 0 0 5 0.5 0.0
5 0.5 0.2 61480 59419 156 1004 0 0 5 0.6 0.0
6 0.5 0.15 61414 58557 228 1952 0 0 5 0.7 0.0
7 0.5 0.1 61333 58519 228 1909 0 0 3 0.7 0.0
8 0.5 0.05 61249 58454 228 1891 0 0 3 0.5 0.0
9 0.5 0.01 61177 58398 228 1876 0 0 3 0.6 0.0
10 1 0.01 61177 58398 228 1876 0 0 3 0.6 0.0
Average 61441 58994 191 1253 214 0 4 0.5 0.0

14 1 0 - 142090 133965 408 0 5513 402 8 12 0.0
2 0.1 0.25 135932 126760 366 4707 2298 0 8 23 0.0
3 0.2 0.25 135926 126751 379 6995 0 0 6 14 0.0
4 0.5 0.25 135925 126757 375 6991 0 0 8 21 0.0
5 0.5 0.2 135647 126750 382 6714 0 0 8 21 0.0
6 0.5 0.15 135368 126742 382 6443 0 0 8 25 0.0
7 0.5 0.1 135088 126734 416 5905 0 231 8 27 0.0
8 0.5 0.05 134721 122226 505 10400 0 239 8 8 0.0
9 0.5 0.01 134316 122213 517 10236 0 0 8 11 0.0
10 1 0.01 134316 122213 517 10236 0 0 5 13 0.0
Average 135933 126111 425 6863 781 87 8 18 0.0

21 1 0 - 224363 198634 598 0 22431 0 11 1522 0.0
2 0.1 0.25 210944 191612 594 16037 0 0 10 12684 0.0
3 0.2 0.25 210355 193922 586 13146 0 0 8 3914 0.0
4 0.5 0.25 210363 193931 639 13092 0 0 11 10510 0.0
5 0.5 0.2 209837 193903 594 12639 0 0 13 9566 0.0
6 0.5 0.15 209320 193872 638 12108 0 0 11 7713 0.0
7 0.5 0.1 208795 193840 638 11616 0 0 15 10072 0.0
8 0.5 0.05 208100 187625 795 17655 0 0 10 98 0.0
9 0.5 0.01 207428 187609 795 16998 0 0 10 75 0.0
10 1 0.01 207428 187621 781 16526 0 473 9 69 0.0
Average 210693 192257 666 12982 2243 47 11 5622 0.0

28 1 0 0 307363 283633 905 0 18318 3811 9 limit 1.0
2 0.1 0.25 289066 261025 864 19422 4154 0 6 limit 1.5
3 0.2 0.25 289159 265221 871 18986 0 481 6 limit 1.9
4 0.5 0.25 288928 260794 871 23663 0 0 7 limit 1.4
5 0.5 0.2 290000 263416 855 21654 0 474 6 limit 2.3
6 0.5 0.15 285998 261871 879 19344 0 302 7 limit 1.0
7 0.5 0.1 282616 259631 802 18582 0 0 21 17950 0.0
8 0.5 0.05 281478 253057 1072 24648 0 0 15 1247 0.0
9 0.5 0.01 280549 253037 1059 23277 0 475 11 482 0.0
10 1 0.01 280539 253029 1052 23047 0 709 16 1889 0.0
Average 287570 261471 923 19262 2247 625 10 12962 0.9

c′2 = c2 − c2 = 0, shortage cost c′4 = c4 − c2 and modification cost c′6 = c6 − c2. The

reason for revising shortage and modification cost is that a part of these expenses is

related to the regular purchase cost, regardless of the realized uncertainty, and must

be paid to the suppliers.

Table 3.3 shows the results of this analysis. In this table, ∆ =
Obj∗1−Obj∗2

Obj∗1
× 100

is defined as the relative percentage deviation between the objective functions of

two cases, where Obj∗1 and Obj∗2 are the optimal values in the case of without and

with modifications, respectively. In other words, ∆ represents the percentage of

improvement as a result of considering modifications. Similar to previous sections, all

instance are solved within a time limit of 18000 seconds and 3600 seconds for solving
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each SP associated to the C&RG algorithm. According to this table, on average,

order modification improves the worst-case total cost by 16%, 31%, 33%, and 34%

for instances with |T | = 7, 14, 21, and 28 days, respectively. Furthermore, the

results with modifications outperform those of the case with no modification in terms

of the obtained gap, the number of iterations and required time to find optimal or

near-optimal solutions. Therefore, finding the initial purchase amount of each period

and then modifying it seemed easier for the algorithm rather than finding the exact

amount of purchases from the beginning.

Figure 3.2 depicts the improvement obtained by order modification for different

combinations of cost and capacity parameters. In order to be fair, we do not compute

the improvement for instances with a gap above 5%. We can see in Figures 3.2 (a) and

3.2 (b) that allowing order modification makes more improvements as the planning

horizon increases. From Figure 3.2 (a), we note that the fixed ordering cost can play a

major role in determining the effect of modification in the performance. As the fixed

ordering cost increase, the amount of improvements made by modifications decreases

because at higher values of c1, the ordering cost will take a significant portion of the

total cost. Furthermore according to Figure 3.2 (b), the purchase capacity is slightly

affecting the amount of improvement only at lower values of capacity in the bi-weekly

planning.

3.4.3 Impact of shelf-life on optimal solutions

In this section, we assess the effect of perishable item’s shelf-life on the quality of the

obtained solution. We assume the possibility of receiving ordered items with different

shelf-lives. For instance, (λ1 = 0, λ2 = 0, λ3 = 1) denotes that all the received items

have the shelf-life of three days, while (λ1 = 0, λ2 = 0.5, λ3 = 0.5) implies that 50%

of items have the shelf-life of three days and the other 50% will be outdated in two

days. Table 3.4 shows the results obtained with different shelf-lives. According to
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Table 3.3 Results obtained by the C&RG algorithm for various (c1, Fmax) with and without
modifications

Data Info. Without modification (γ = 0) With modification (γ = 0.5, σ = 0.25)
∆(%)

|T | Number c1 Fmax # or orders Total cost ($) Iteration Time (s) Gap (%) # or orders Total cost ($) Iteration Time (s) Gap (%)
7 1 500 40 4 3233 3.0 0.5 0.0 4 2748 2 0.3 0.0 15

2 500 60 4 3223 5.0 0.5 0.0 4 2741 3 0.3 0.0 15
3 500 80 4 3223 5.0 0.6 0.0 4 2741 3 0.3 0.0 15
4 500 200 4 3223 5.0 0.8 0.0 4 2741 3 0.3 0.0 15
5 500 500 4 3223 5.0 0.9 0.0 4 2741 3 0.5 0.0 15
6 10 70 4 1263 3.0 0.2 0.0 6 778 3 1.2 0.0 38
7 100 70 4 1623 4.0 0.2 0.0 4 1141 3 0.2 0.0 30
8 500 70 4 3223 5.0 0.3 0.0 4 2741 3 0.2 0.0 15
9 5000 70 3 17288 4.0 0.4 0.0 3 16350 2 0.2 0.0 5
10 100000 70 3 302288 4.0 0.4 0.0 3 301350 2 0.3 0.0 0.3

Average 4 34181 4 1 0.0 4 33607 3 0.4 0.0 16
14 1 500 40 12 11742 10 10317 0.0 8 6960 5 13 0.0 41

2 500 60 8 9802 8 21 0.0 6 6672 7 3 0.0 32
3 500 80 8 9802 8 21 0.0 6 6667 7 8 0.0 32
4 500 200 8 9802 8 22 0.0 6 6667 8 10 0.0 32
5 500 500 8 9802 8 24 0.0 6 6667 8 10 0.0 32
6 10 70 12 5862 8 11075 0.0 12 2991 3 10826 0.0 49
7 100 70 8 6602 8 5 0.0 8 3731 3 7 0.0 43
8 500 70 8 9802 8 6 0.0 6 6667 8 1 0.0 32
9 5000 70 6 38170 12 4 0.0 6 33667 7 2 0.0 12
10 100000 70 6 608170 10 8 0.0 6 603676 7 3 0.0 0.7

Average 8 71956 9 2150 0.0 7 68437 6 1088 0.0 31
21 1 500 40 18 23145 6 limit 17.8 12 11166 9 2577 0.0 -

2 500 60 12 17374 10 344 0 9 10488 8 37 0.0 40
3 500 80 12 17374 10 246 0 9 10484 14 72 0.0 40
4 500 200 12 17374 10 254 0 9 10484 12 98 0.0 40
5 500 500 12 17374 10 262 0 9 10484 12 103 0.0 40
6 10 70 18 13750 5 limit 137.4 18 5209 5 17850 0.0 -
7 100 70 12 12574 10 174 0 12 6329 6 1507 0.0 50
8 500 70 12 17374 10 225 0 9 10484 12 16 0.0 40
9 5000 70 9 60062 20 13 0 9 50984 13 79 0.0 15
10 100000 70 9 915082 21 57 0 9 905990 9 39 0.0 1

Average 13 111148 11 3758 15.5 11 103210 10 2253 0.0 33
28 1 500 40 24 29680 6 limit 32.5 16 15393 7 limit 0.1 -

2 500 60 16 25321 13 limit 9.6 12 14305 14 209 0 -
3 500 80 16 24740 15 limit 4.7 12 14297 23 6358 0 42
4 500 200 16 24740 14 limit 4.7 12 14297 19 6805 0 42
5 500 500 16 24740 14 limit 4.7 12 14297 19 4812 0 42
6 10 70 24 25909 2 limit 482.4 24 7488 5 limit 0.9 -
7 100 70 16 17925 16 limit 4 16 8936 7 limit 0.2 50
8 500 70 16 24740 14 limit 4.7 12 14297 23 6310 0 42
9 5000 70 12 80880 32 114 0 12 68297 20 3849 0 16
10 100000 70 12 1220893 26 363 0 12 1208308 12 2783 0 1

Average 17 149957 15 14448 54.7 14 137992 15 8513 0.1 34

the table, although the proposed algorithm solves all instances optimally, for some

combinations of shelf-life, the problem is more difficult as it takes more time to find

the optimal solution (e.g. instance number # 10). Moreover, when the received items

are likely to be outdated earlier, the amount of extra purchases increases to reduce

the risk of shortage.

Figure 3.3 shows the effect of different shelf-lives on the total cost. From this

figure, we can notice that as the probability of receiving orders with lowest shelf-life

(λ1) increases, the total cost increases. This happens because of the fact that the

risk of wastage is more and we need more extra and emergency purchases when the

received items are likely to be outdated soon. However, the total cost might not be
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Figure 3.2: Effect of considering modifications on performance.

affected by different shelf-lives (as in instance # 1 to 8) when the portion of aged

items in received orders is not remarkable. In these cases, there is a range for shelf-life

for which the obtained performance is almost the same. This is because the ordering

pattern and purchase amounts do not change with slight changes in the combination

of shelf-life probabilities. When there is a big jump in the total cost, it implies that the

first-stage solutions, including the periods to make orders and the amount of orders,

have totally changed and the current combination of shelf-life has had a significant

impact on the first-stage decisions.
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Table 3.4 Results obtained from different combinations for shelf-life

Data Info. Results obtained with T = 14, γ = 0.2, δ = 0.25, Fmax = 70, c1 = 225

Number λ1 λ2 λ3 Total cost ($) Regular purchase ($) Inventory ($) Extra purchase($) Shortage($) Wastage($) Iteration. Time (s) Gap (%)
1 0 0 1 135926 126751 379 6995 0 0 6 15 0.00
2 0 0.1 0.9 135925 126757 375 6991 0 0 8 709 0.00
3 0 0.2 0.8 135928 126757 375 6997 0 0 7 904 0.00
4 0 0.3 0.7 135925 126757 379 6987 0 0 8 6192 0.00
5 0 0.4 0.6 135925 126757 379 6987 0 0 8 6809 0.00
6 0 0.5 0.5 135925 126757 379 6987 0 0 8 4570 0.00
7 0 0.6 0.4 135925 126757 379 6987 0 0 9 15149 0.00
8 0 0.7 0.3 135955 126648 397 7109 0 0 10 9090 0.00
9 0 0.8 0.2 136834 124130 343 5162 5398 0 6 1790 0.00
10 0 0.9 0.1 137483 123853 303 10626 0 0 9 17606 0.00
11 0 1 0 137481 122274 366 12345 0 245 7 97 0.00
12 0.1 0.9 0 137480 122277 365 12588 0 0 7 19 0.00
13 0.2 0.8 0 137480 122277 364 12343 0 245 6 19 0.00
14 0.3 0.7 0 137480 122277 365 12588 0 0 6 19 0.00
15 0.4 0.6 0 137863 122277 297 12588 0 0 5 37 0.00
16 0.5 0.5 0 137863 122277 289 12349 0 246 6 37 0.00
17 0.6 0.4 0 137863 122277 289 12349 0 246 5 29 0.00
18 0.7 0.3 0 137863 122277 297 12343 0 245 6 23 0.00
19 0.8 0.2 0 137863 122277 289 12349 0 246 6 26 0.00
20 0.9 0.1 0 137863 122277 289 12349 0 246 6 25 0.00
21 1 0 0 137864 122272 297 12349 0 245 4 23 0.00

Average 0.26 0.48 0.26 136986 124141 343 9922 257 94 7 3104 0.00

135500

136000

136500

137000

137500

138000

138500

W
o

sr
t 

to
ta

l 
c
o

st
 (

$
)

Shelf-life combination (λ1, λ2, λ3)

Figure 3.3: Effect of different shelf-lives.

3.4.4 Impact of budget of uncertainty on optimal solutions

In our approach, decision-makers can select the level of conservatism of the robust

model by choosing a proper value of the budget of uncertainty parameter (Γ). More-

over, considering different levels of uncertainty (deviation from the mean values) could

result in choosing different budget of uncertainty for decision-makers. We study the

effect of budgets (α parameter in Γ = α|T |) and levels of uncertainty (σ parame-

ters) on the quality of the obtained solutions and on the performance of the proposed
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C&RG algorithm. We use instances with the planning horizon of 21 days and set

γ = 0.2, δ = 0.25, c1 = 225 and Fmax = 70. Table 3.5 and Figure 3.4 present the

results of this analysis. In the table, the nominal cost is the objective function of the

deterministic model. We observe that, in the majority of instances, as the level of

uncertainty (σ) increases from 0.25 to 0.75, the solution time increases. At each level

of uncertainty, by increasing the budget of uncertainty, the algorithm leads to greater

optimal solution values. However, the marginal increase of the optimal cost decreases

as the budget of uncertainty grows. At all three levels of uncertainty (σ=0.25, 0.5,

and 0.75), the additional protection obtained by using a higher budget becomes null

after α = 0.85. This can be explained by the fact that we plan for |T | = 21 days

and according to the used data set, d̄t = 0 for t=6, 13, and 20. Therefore, there is

no uncertainty in the demand of theses three days (d̂t = σd̄t = 0) and as a result, the

budget of uncertainty considered for them has no impact on the total cost.

Table 3.5 Effect of budget of uncertainty on the performance of the algorithm

Data info σ=0.25 σ=0.50 σ=0.75
Number α Total cost Iteration Time(s) % Gap Total cost Iteration Time(s) % Gap Total cost Iteration Time(s) % Gap

1 0.00 187817 1 0 0.0 187817 1 0 0.0 187817 1 0 0.0
2 0.05 192930 5 111 0.0 198132 4 975 0.0 203534 4 2770 0.0
3 0.10 197855 7 351 0.0 208423 7 4643 0.0 220042 6 8501 0.0
4 0.15 202713 9 1935 0.0 218230 8 10353 0.0 234883 8 17416 0.0
5 0.20 206541 8 3906 0.0 227001 9 17958 0.0 252421 7 limit 2.8
6 0.25 210355 8 3802 0.0 235235 9 limit 0.2 259269 5 limit 1.5
7 0.30 213961 13 17409 0.0 244842 10 limit 1.1 272303 6 limit 0.8
8 0.35 217286 15 17594 0.0 251483 10 limit 1.1 282188 10 limit 0.1
9 0.40 220593 15 17913 0.0 258705 10 limit 1.1 295668 7 limit 1.8
10 0.45 223855 12 17190 0.0 262776 9 16388 0.0 300644 9 limit 0.2
11 0.50 227406 13 limit 0.4 268166 12 17796 0.0 310285 9 limit 0.5
12 0.55 228499 15 17830 0.0 272243 13 17062 0.0 316131 8 limit 0.4
13 0.60 231085 17 limit 0.3 275171 11 17546 0.0 324051 8 limit 1.5
14 0.65 233496 17 limit 0.3 278778 14 10994 0.0 328845 8 limit 1.1
15 0.70 235223 17 11116 0.0 282435 15 5357 0.0 335160 10 limit 1.3
16 0.75 237568 14 2520 0.0 287043 15 4077 0.0 336628 10 3054 0.0
17 0.80 238752 19 5997 0.0 289407 12 2959 0.0 340060 6 1727 0.0
18 0.85 239930 17 3451 0.0 291759 12 3303 0.0 343593 10 2301 0.0
19 0.90 240814 5 269 0.0 294020 15 1551 0.0 346983 4 976 0.0
20 0.95 240814 5 89 0.0 294020 12 1440 0.0 346983 6 805 0.0
21 1.00 240814 5 91 0.0 294020 11 803 0.0 346983 7 1583 0.0

Average 0.50 222300 11 8459 0.05 258081 10 9828 0.17 294499 7 11320 0.57
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Figure 3.4: Effect of uncertainty budget.

3.4.5 Value of robustness: Robust vs. Stochastic vs. Deter-

ministic

In the final analysis, we compare the solutions obtained from the deterministic model

(with mean demand values), a two-stage stochastic variant of the PIMM problem,

and our proposed robust approach on instances with the planning horizon of 14

days. In order to make this evaluation as fairly as possible, we define dt(ω) as

independent random variables that follow a uniform distribution over the interval

dt(ω) ∼ U [d̄t − σ × d̄t, d̄t + σ × d̄t], where σ defines the uncertainty level as the per-

centage of deviation from mean values. The two-stage stochastic programming model

for the PIMM problem with stochastic demands can be stated as follows:

minimize
∑
t∈T

(
c1
tyt + c2

txt
)

+ Eω
[ M∑
m=1

(
c3
t I
m
t+1(ω)

)
+ c4

t st(ω) + c5
tot(ω) + c6

tx
′
t(ω)

]

subject to

(w, y, x) ∈ X

(x′, I, s, o, u) ∈ Y(ω), ω ∈ Ω.
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In the above model, Ω denotes the set of all generated demand scenarios for the

second-stage problem and Y(ω) denotes the feasible space of the second-stage model

for each scenario in Ω. Recall that X represent the feasible space of the first-stage

model. To obtain optimal first-stage solutions for the above two-stage stochastic

model, we use a sample average approximation (SAA) algorithm that is similar to

the four-step SAA algorithm presented in [26]. We set the SAA algorithm with 20

different samples of size 500 generated from the mentioned uniform distribution to

estimate a lower bound, and we use a sample size of 15000 scenarios to estimate an

upper bound.

In the first step of this analysis, we compare the solutions obtained from the three

mentioned models in 30 settings with different values of the level and budget of un-

certainty (σ, α). In each setting, we use the SP of the proposed C&RG algorithm to

evaluate the worst-case performance of the solutions from the deterministic, stochas-

tic and robust models. Table 3.6 and Figure 3.5 present the results of the worst-case

performance of the solutions from different models in different settings. Recall that

nominal costs are associated with the evaluation of the objective function using the

mean value of uncertain demand (the objective function of the deterministic model).

As we can see, our proposed robust approach significantly outperforms the deter-

ministic and stochastic models. For Γ=1, 3, and 7, our proposed robust approach

finds solutions that are 30%, 39%, and 42% less expensive that those of the stochas-

tic model on average. It should be noted that compared to the stochastic model,

the deterministic model provides better worst-case performance at smaller values of

the uncertainty level (deviation σ). However, the stochastic model outperforms the

deterministic model when the uncertainty level is higher. The robust model always

outperforms two other models. We can also observe that as the uncertainty level

increases, the superiority of our robust model becomes more sensible.

In the second part of our comparison, using a sample of 15000 randomly generated

73



Table 3.6 % Increase from nominal cost in worst-case settings

Data info Γ = 1 (α = 0.1) Γ = 3 (α = 0.25) Γ = 7 (α = 0.50)

Number σ Deterministic Stochastic Robust Deterministic Stochastic Robust Deterministic Stochastic Robust
1 10 1.8 2.5 1.7 4.9 5.5 4.4 9.7 11.1 8.6
2 20 3.5 4.8 3.2 9.7 10.9 8.8 20.9 21.3 17.0
3 30 5.3 7.1 4.8 17.0 16.4 13.5 36.1 35.4 25.6
4 40 7.1 9.4 6.5 25.8 26.1 18.1 51.3 54.1 34.4
5 50 10.2 11.5 8.2 34.7 35.5 22.9 69.7 70.6 43.2
6 60 14.1 13.3 10.0 43.5 45.3 28.2 89.3 87.6 52.3
7 70 18.0 15.1 11.8 52.3 55.1 32.9 108.9 109.2 62.4
8 80 21.9 18.6 13.5 61.1 64.9 37.6 128.5 130.7 70.3
9 90 25.9 22.5 15.3 70.0 74.7 42.6 148.1 152.3 82.2
10 100 29.8 26.4 17.1 79.5 84.5 48.7 168.4 173.9 95.0
Average 15.1 14.3 10.0 43.7 45.9 28.1 91.3 92.8 53.6
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Figure 3.5: Solution performance in worst-case setting.

scenarios, we assess the average-case performance of the first-stage solutions obtained

by our robust optimization (Γ = 1), the deterministic and stochastic programming

models. Table 3.7 provides the expected cost, standard deviation and the relative

percentage deviation from nominal cost for the solutions of those models. Moreover,

Figure 3.6 illustrates the results of this comparison. In this figure we observe that,

the best performance is obtained for the solutions of the stochastic model and the

worst performance is for those of the deterministic model. The proposed robust model
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significantly outperforms the deterministic model in risk-neutral settings while it is

only slightly worse than the stochastic model. However, on average, the standard

deviation of the robust model is almost 70% less than that of the stochastic model

which makes the results of our robust model more reliable.

Table 3.7 Solution performance in a risk-neutral setting

Data info Deterministic Stochastic Robust
Number σ Exp. Cost S.D. % Increase Exp. Cost S.D. % Increase Exp. Cost S.D. % Increase

1 0.1 125316 28.2 2.4 123480 38.4 0.9 124592 2.9 1.8
2 0.2 128167 51.5 4.8 124453 71.3 1.7 125749 13.9 2.8
3 0.3 131488 78.6 7.5 125667 117.8 2.7 127370 26.1 4.1
4 0.4 134542 103.5 10.0 126927 148.6 3.8 129049 38.3 5.5
5 0.5 138970 139.7 13.6 129128 175.6 5.6 131414 54.9 7.4
6 0.6 142018 164.6 16.1 130113 227.1 6.4 133074 67.4 8.8
7 0.7 146115 198.0 19.4 131497 269.5 7.5 135277 82.5 10.6
8 0.8 151103 238.7 23.5 133400 330.8 9.0 137839 99.6 12.7
9 0.9 155580 275.3 27.2 135484 353.4 10.8 140160 117.7 14.6
10 1 162579 332.4 32.9 138758 454.6 13.4 144081 144.8 17.8
Average 141587.8 161.1 15.7 129890.7 218.7 6.2 132860.5 64.8 8.6
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Figure 3.6: Solution performance in a risk-neutral setting.

3.5 Conclusions

We studied a perishable inventory management problem considering demand uncer-

tainty with the possibility of modifying previously placed orders. We formulated the

problem as a two-stage robust optimization model with a budget of uncertainty to
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control the level of conservatism. To solve the formulated problem, we developed an

exact robust algorithm based on the column-and-row generation method. Our ex-

tensive computational analysis demonstrated that the proposed robust approach was

capable of solving different test instances optimally in a reasonable amount of time.

We showed that considering order modification could significantly reduce the total

cost. Furthermore, although considering various shelf-lives might add some degree

of complexity to the problem, it would make the model more realistic and flexible

enough to help in reducing the total cost. We carried out various sensitivity analyses

on different parameters to provide important insights for decision-makers in choosing

the right value of each parameter. We also showed that our robust algorithm had

an acceptable performance in risk-neutral settings, while it provided the best perfor-

mance in worst-case settings as compared to the deterministic and stochastic variants

of the problem.

For future work, it would be interesting to consider multiple types of items that

can be substituted with each other if needed. Another research direction is to extend

this work to the case of multiple demand classes where one class only accepts fresh

items while the other may accept items of any lifetime. It is also interesting to

consider problems with the possibility of using the expired items in the primary or a

secondary market after re-processing items at the end of their shelf-life.
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Chapter 4

Decomposition strategies for

multi-item uncapacitated lot-sizing

problems with inventory bounds

P. Hooshangi-Tabrizi, I. Contreras. “Decomposition strategies for multi-item uncapac-

itated lot-sizing problems with inventory bounds". to be submitted to TBD, March

2020.

Abstract

We study the multi-item uncapacitated lot-sizing problem with inventory bounds. We

present a new formulation based on two sets of variables to determine the production

and inventory intervals for each item. Based on the new formulation, we propose

a Lagrangian relaxation to obtain tight lower bounds. Exploiting the structure of

the problem, we decompose the associated Lagrangian function into smaller prob-

lems that can be solved efficiently. In order to solve the Lagrangian dual problem,

we propose a deflected subgradient method and a stabilized column generation algo-

rithm. In both algorithms, we solve a series of multi-choice knapsack problems, to
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evaluate the Lagrangian function or to solve the pricing subproblem, with existing ad

hoc algorithms. Computational experiments are performed to evaluate the proposed

formulation and algorithms on a set of benchmark instances.

4.1 Introduction

Single-item uncapacitated lot-sizing problem (ULS) is a fundamental production plan-

ning problem that deals with the planning of a single item production to meet demand

over a discretized planning horizon. The goal is to find when and how much to produce

the item with the aim of minimizing the sum of setup (order placement), production

and inventory costs. Although the ULS is too restrictive in terms of applicability,

it is still important to be addressed as it can be occurring after relaxing complex

production planning models [84].

Due to a variety of reasons, such as warehouse infrastructure conditions, volu-

minous products and administrative policies, the quantity of items to be stored at

the end of each period may be subject to an inventory bound (IB) [5]. In this case,

although items may be produced unrestrictedly, they cannot be stored in unlimited

quantities from one period to the next [73]. IBs are even more relevant when deal-

ing with multi-item production environments, where multiple types of products are

produced and stored in a shared storage space.

The single-item lot-sizing problem with inventory bounds (ULS-IB) was initially

studied by Love [73]. Pochet andWolsey [83] and Barany et al. [14] perform polyhedral

studies to identify the complete characterization of the convex hull of integer solutions.

Atamtürk and Küçükyavuz [10] identifies several classes of facet-defining inequalities

for the ULS-IB with linear and fixed inventory costs. Polynomial time dynamic

programming algorithms are developed in [11, 105] to solve the ULS-IB. In [28], an

extended formulation describing the convex hull of the solution space is presented.
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The ULS-IB with backlogging and lost sales is addressed in [53, 54]. Furthermore,

Hwang and van den Heuvel [53] and Phouratsamay et al. [81] propose polynomial and

pseudo-polynomial algorithms for the ULS-IB considering different cost structures.

More general production planning problems that take IBs into account are studied in

[78], [84] [6], [77], [3], and [41].

Akbalik et al. [4, 5] study the multi-item lot-sizing problem with inventory bounds

(MULSIB) and prove its NP-hardness, even when the Wagner-Within cost structure

is considered. According to the Wagner-Within structure, producing and storing one

unit of item in a period cost more than producing it in the subsequent period. Melo

and Ribeiro [76] present three formulations for the MULSIB using the facility lo-

cation, shortest path, and (l,S)-inequality approaches. The authors also propose a

relax-and-fix matheuristic to find integer solutions. To the best of our knowledge,

Acevedo-Ojeda [1] is the only work presenting a decomposition-based approximate

algorithm for the MULSIB. It is a column generation algorithm of a Dantzig-Wolfe re-

formulation of an extended mixed-integer programming (MIP) formulation. Although

the results obtained in Acevedo-Ojeda [1] are promising in terms of strengthening the

linear programming (LP) relaxation bounds of the based formulation, the proposed

algorithm can only solve small-size instances.

The main contribution of this paper is to present and computationally compare

decomposition strategies for solving the MULSIB. In particular, we introduce an ex-

tended MIP formulation of the integer programming (IP) formulation given in [1].

The extended formulation, in contrast to the IP of [1], allow us to decompose the

MULSIB by periods when using well-known decomposition algorithms. We present a

Lagrangian relaxation that can provide tighter lower bounds than the LP relaxation

of the extended MIP. The proposed Lagrangian function can be decomposed into

a series of so-called multi-choice knapsack problems (MCKPs), one MCKP for each

each period. We use an state-of-the-art exact algorithm to solve the MCKPs. In or-
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der to solve the associated Lagrangian dual problem (LDP), we develop two solution

algorithms: i) a subgradient optimization algorithm that approximately solves the

LDP, and ii) a column generation algorithm that solves an equivalent Dantzig-Wolfe

reformulation of the extended MIP in which the convexified constraints correspond to

the relaxed constraints of the proposed LR. In both algorithms, we use stabilization

techniques to accelerate their convergence. Finally, we report the results of exten-

sive computational experiments to evaluate the relative performance of the proposed

formulation and decomposition algorithms on a set of benchmark instances.

The reminder of this paper is organized as follows. In Section 4.2, we formally

define the MULSIB and present three existing mathematical programming formula-

tions and our new extended MIP formulation. Section 4.4 presents the details of the

proposed solution algorithms for the MULSIB. Section 4.5 provides computational

results and Section 4.6 concludes this paper.

4.2 Problem description and formulations

LetM be a set of items and T a finite set of time periods. We define dit as the demand

of period t ∈ T that must be satisfied for item i ∈ M . We assume that all of the

demand of each period is immediately satisfied at the beginning of the period and

backlogging is not allowed. Any units of items that are produced at the beginning

of a period, but not used immediately, must be stored as an inventory in a shared

storage space. For each period t ∈ [1, ..., |T |−1], the quantity of all stored items from

one period to the next is restricted by the inventory bound ut. We assume that any

stored item consumes only one unit of storage capacity. Let pit and qit be the variable

and fixed production costs for item i in period t, respectively. We also define hit as

the unit holding cost of item i in period t. In other words, hit is incurred for each

unit of item i in stock between period t and t+ 1. We also assume that all demands
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are positive and there are no initial and final inventory stocks. The MULSIB consists

of determining the optimal lot size of each item i ∈ M at each period t ∈ T with

the objective of minimizing the total setup, production and inventory costs, in such

a way that the IBs are respected at each period.

The MULSIB was initially formulated in [5] as follows. For each i ∈M and t ∈ T ,

we define continuous variables xit equal to the amount of item i produced in period

t. Moreover, we define binary variables yit that take value 1 if and only if there is

production of item i in period t. Finally, we define continuous variables sit equal to the

amount of item i in stock at the end of period t. The MI-ULS-IB can be formulated

as the following MIP [5]:

(CF) minimize
∑
i∈M

∑
t∈T

(pitx
i
t + hits

i
t + qity

i
t) (4.1)

subject to sit−1 + xit = dit + sit i ∈M, t ∈ T (4.2)

xit ≤Myit i ∈M, t ∈ T (4.3)∑
i∈M

sit ≤ ut t ≤ |T | − 1 (4.4)

xit, s
i
t ≥ 0 i ∈M, t ∈ T (4.5)

yit ∈ {0, 1} i ∈M, t ∈ T. (4.6)

The objective function (4.1) minimizes the sum of variable production, holding,

and fixed production costs. Constraints (4.2) are the inventory balance equation.

Constraints (4.3) enforce the fixed setup variable to take value 1 (yit = 1) whenever

there is production of item i in time period t, i.e. xit > 0. Constraints (4.4) limit the

total inventory of items at the end of period t by the storage capacity ut. Finally,

constraint (4.5) and (4.6) denote the non-negativity and integrality conditions.
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4.2.1 Facility location formulation

The MULSIB can be reformulated using the facility location approach in lot-sizing

problems [65, 76]. In the facility location formulation (FLF), for each i ∈ M , t ∈ T ,

and l ≥ t, xitl is defined as a continuous variable determining the fraction of demand

dil produced in time period t to meed the demand of period t. The MULSIB can be

formulated as the following MIP [76]:

(FLF) minimize
∑
i∈M

∑
t∈T

(

|T |∑
l=t

citlx
i
tl + qity

i
t) (4.7)

subject to
t∑

k=1

xikt = 1 i ∈M, t ∈ T (4.8)

xikt ≤ yik i ∈M, t ∈ T, k ≤ t (4.9)

∑
i∈M

t∑
k=1

|T |∑
l=t+1

dilx
i
kl ≤ ut t ≤ |T | − 1 (4.10)

xitl ≥ 0 i ∈M, t ∈ T, l ≥ t (4.11)

yit ∈ {0, 1} i ∈M, t ∈ T, (4.12)

where citl = dil(p
i
t +

∑l−1
k=t h

i
k). The objective function (4.7) minimizes the sum of

all related production and holding costs. Constraints (4.8) guarantee that all of the

demand of item i in period t is satisfied by productions form period k = 1 to period

k = t. Constraints (4.9) are the setup enforcing equations and constraints (4.10) are

bounding the level of inventory in each period. Finally, constraints (4.11) and (4.12)

are the non-negativity and integrality conditions, respectively.

4.2.2 Cumulative-demand reformulation

The MULSIB can be further reformulated based on accumulating demands in pro-

duction intervals. In the cumulative-demand formulation (CDF), for each i ∈ M ,
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t ∈ T , l ≥ t, witl is defined as a binary variable taking value 1 if and only if item i in

period t is produced to cover all demand from t to l. Figure 4.1 depicts a solution of

the CDF with |M | = 4 and |T | = 10. For instance, w1
13 = 1 represents the production

of the cumulative demand from periods t1 to t3 for item i1 in period 1. This implies

that an inventory equal to dt2 is stored for one period, and an inventory equal to dt3

is stored for two periods. Another example, w3
44 = 1 shows that the demand of item

i3 is produced in period t4 and no stock of this item is stored at the end of period t4.
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Figure 4.1: A solution of (CDF) for an instance with |M | =4, |T | =10

The MULSIB can be formulated as the following IP [1]:

(CDF) minimize
∑
i∈M

∑
t∈T

|T |∑
l=t

c
′i
tlw

i
tl (4.13)

subject to
t∑

k=1

|T |∑
l=t

wikl = 1 i ∈M, t ∈ T (4.14)

∑
i∈M

t∑
k=1

|T |∑
l=t+1

Di
tlw

i
kl ≤ ut t ≤ |T | − 1 (4.15)

witl ∈ {0, 1} i ∈M, t ∈ T, l ≥ t, (4.16)

where for each i ∈M , t ≤ |T | − 1, l ≥ t, Di
tl =

∑l
k=t+1 d

i
k, and for each i ∈M , t ∈ T ,
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l ≥ t, c′itl is defined as:

c
′i
tl =

 qit + pitd
i
t, if l = t,

qit + pit(d
i
t +Di

tl) +
∑l−1

k=t h
i
kD

i
kl, if l ≥ t+ 1.

The objective function (4.13) minimizes the sum of setup, production, and holding

costs. Constraints (4.14) ensure that the demand of each period is covered by only one

production interval form period k to period l when k ∈ [1, ..., t], and l ∈ [t, ..., |T |].

Constraints (4.15) limit the total inventory amount at the end of period t by the

inventory bound ut and constraints (4.16) are the integrality conditions.

4.3 An Extended formulation for the MULSIB

In this section we present a new formulation specially designed to exploit the under-

lying structure of the MULSIB. In particular, in Section 4.4 we will show that the

well-known MCKP appears as a subproblem for the MULSIB when decomposing the

problem per period. We note that all formulations introduced in Section 4.2 suffer

from the lack of decomposability by periods. This is because both the x and w vari-

ables appear multiple times in the IB constraints. This issue can be addressed by

adding a new set of variables to determine the inventory levels at each period with-

out having to keep the information of when the items have been produced. In the

proposed extended MIP formulation, in addition to the production interval variables

witl, for each i ∈M , t ∈ T , and l ≥ t we define additional binary variables zitl equal to

1 if and only if there is an inventory of item i to cover all demand from period t until

period l. We highlight that, contrary to witl variables, the interval variables zitl do not

keep the information on when the inventory has been produced. Figure 4.2 shows

the relation between witl and associated zitl variables for an instance with wi14 = 1.

Since the cumulative demand from period t1 to period t4 of item i is produced at
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the beginning of period t1, the variables zi14, zi24, zi34, and zi44 encode the associated

inventory levels of item i to cover the demand of the successive periods up to t4.
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14
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24
1iz =

34
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44
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Figure 4.2: The relation between production (w) and inventory (z) variables in (EF)

Using these new set of variables, the MULSIB can be formulated as follows:

(EF) minimize α
∑
i∈M

∑
t∈T

|T |∑
l=t

citlw
i
tl + (1− α)

∑
i∈M

∑
t∈T

|T |∑
l=t

c
′′i
tl z

i
tl (4.17)

subject to (4.14)
|T |∑
l=t

zitl = 1 i ∈M, t ∈ T (4.18)

∑
i∈M

|T |∑
l=t+1

Di
tlz

i
tl ≤ ut t ≤ |T | − 1 (4.19)

t∑
k=1

wikl = zitl i ∈M, t ∈ T, l ≥ t (4.20)

zi(t−1)l + witl = zitl i ∈M, t ≥ 2, l ≥ t (4.21)

zitl ∈ {0, 1} i ∈M, t ∈ T, l ≥ t, (4.22)

0 ≤ witl ≤ 1 i ∈M, t ∈ T, l ≥ t, (4.23)

where we define c′′itl for i ∈M , t ∈ T , and l ≥ t as:
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c
′′i
tl =



qit + pidit + qit+1, if t = 1 and l = t,

qit + pidit + hitD
i
tl, if t = 1 and l > t

pidit + qil+1, if t > 1 and l = t and l 6= |T |,

pidit, if t > 1 and l = t and l = |T |,

pidit + hitD
i
tl, if t > 1 and l > t,

0, otherwise.

The objective function (4.17) minimizes the sum of setup, production, and holding

costs. The parameter α ∈ [0, 1] determines the proportion of the cost incurred by

the production interval variables w. This parameter is used to include a portion of

the cost information in both w and z variables. This is particularly useful later while

decomposing EF into independent subproblems.

Constraints (4.18) choose only one inventory interval for each item in each period.

Constraints (4.19) are the inventory bound constraint and constraints (4.20)–(4.21)

are the linking constraints between sets of production (w) and inventory (z) interval

variables. In particular, constraints (4.20) denote that the inventory available in

period t, equal to the cumulative demand from periods t to l, must be produced in

one of the previous periods, i.e., [1, ..., t]. Moreover, constraints (4.21) imply that

the inventory interval of item i from period t to period l (zitl = 1) is either produced

in period t, i.e. witl = 1, or it was part of the inventory interval at the beginning of

period t−1, i.e, zi(t−1)l = 1. Finally, constraints (4.22) are the integrality conditions on

inventory interval variables and constraints (4.23) are the non-negativity conditions

on production interval variables.

An interesting property of EF is that, although zitl variables provide redundant

information in presence of production interval variables witl, they allow the MULSIB to

be decomposed period-by-period. This property will be exploited later in developing

decomposition algorithms to obtain strong lower bounds on solutions of the MULSIB.
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4.4 Lagrangian relaxation

Lagrangian relaxation (LR) is a well-known method for solving combinatorial opti-

mization problems. The idea of LR is to relax the complicating constraints while

maintaining "relatively easy" constraints. This method penalizes the violation of

the relaxed constraints in the objective function. In other words, LR exploits the

subproblem tractability to obtain lower bounds on the value of the original problem

[25]. In the case of model (EF), if we relax constraints (4.14), (4.20) and (4.21) in

a Lagrangian fashion, penalizing their violations with multiplier vectors π1, π2, and

π3 of appropriate dimension, we obtain the Lagrangian function for the MULSIB as

follows:

L(π) = minimize α
∑
i∈M

∑
t∈T

|T |∑
l=t

citlw
i
tl + (1− α)

∑
i∈M

∑
t∈T

|T |∑
l=t

c
′′i
tl z

i
tl+ (4.24)

∑
i∈M

∑
t∈T

π1i
t (1−

t∑
k=1

|T |∑
l=t

wikl)+

∑
i∈M

∑
t∈T

|T |∑
l=t

π2i
tl (z

i
tl −

t∑
k=1

wikl)+

∑
i∈M

|T |∑
t=2

|T |∑
l=t

π3i
tl (z

i
tl − zi(t−1)l − witl)

subject to (4.18), (4.19), (4.22), (4.23).

Note that L(π) is separable into two subproblems: (1) a problem in the space of

the z variables, and (2) a problem in the space of w variables. The first subproblem

can be expressed as:
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Lz(π) = minimize (1− α)
∑
i∈M

∑
t∈T

|T |∑
l=t

c
′′i
tl z

i
tl+ (4.25)

∑
i∈M

∑
t∈T

|T |∑
l=t

π2i
tl z

i
tl +

∑
i∈M

|T |∑
t=2

|T |∑
l=t

π3i
tl (z

i
tl − zi(t−1)l)

subject to (4.18), (4.19), (4.22).

The second subproblem can be expressed as:

Lw(π) =
∑
i∈M

∑
t∈T

π1i
t + minimize α

∑
i∈M

∑
t∈T

|T |∑
l=t

citlw
i
tl+ (4.26)

∑
i∈M

∑
t∈T

t∑
k=1

|T |∑
l=t

−π1i
t w

i
kl+

∑
i∈M

∑
t∈T

|T |∑
l=t

−π2i
tl (

t∑
k=1

wikl)+

∑
i∈M

|T |∑
t=2

|T |∑
l=t

−π3i
tl (w

i
tl)

subject to (4.23).

4.4.1 Solution to Lagrangian subproblems

The subproblem Lz(π) can be further decomposed into |T | independent problems

(Ltz(π)), one for each period t ∈ T , of the form:

Ltz(π)|t=1 = minimize
∑
i∈M

( |T |∑
l=t

(
(1− α)c

′′i
tl + π2i

tl

)
zitl −

|T |∑
l=t+1

π3i
(t+1)lz

i
tl

)
(4.27)

Ltz(π)|1<t<|T | = minimize
∑
i∈M

( |T |∑
l=t

(
(1− α)c

′′i
tl + π2i

tl

)
zitl −

|T |∑
l=t+1

π3i
(t+1)lz

i
tl +

|T |∑
l=t

π3i
tl z

i
tl

)

Ltz(π)|t=|T | = minimize
∑
i∈M

( |T |∑
l=t

(
(1− α)c

′′i
tl + π2i

tl

)
zitl +

|T |∑
l=t

π3i
tl z

i
tl

)
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subject to (4.18), (4.19), (4.22) fixed at t.

Note that each of the above subproblems is a MCKP and can be efficiently solved

to optimality with the exact algorithm developed by Pisinger [82]. In the definition of

the MCKP, all coefficients are assumed to be positive and integer. In our implemen-

tation, we deal with all negative coefficients by adding a sufficiently large constant to

all items in the MCKP. Furthermore, non-integer coefficients are handled by rounding

values after multiplying by another sufficiently large factor.

Furthermore, the subproblem Lw(π) can be formulated as follows:

Lw(π) =
∑
i∈M

∑
t∈T

π1i
t + min

e∈Ew

∑
t∈T

|T |∑
l=t

f itlw
ei
tl , (4.28)

where f itl is the coefficient of variable witl after rearranging the elements in (4.25) and

Ew is the set of all extreme point associated with constraints (4.23). Note that this

subproblem can be easily solved as follows:

w∗itl =

 1, if f itl ≤ 0

0, otherwise.

Therefore, we obtain the following result.

Proposition 1. L(π) =
∑

t∈T L
t
z(π) + Lw(π).

Maximizing L(π) leads to the best dual bound that can be obtained form the

Lagrangian relaxation as follows:

(LDP) zD = maximize
π∈Rm

L(π).

Now in the following subsection, we present two algorithms to solve the associated

LDP with the MULSIB.
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4.4.2 Solving the Lagrangian dual via subgradient algorithm

We now apply subgradient optimization to solve the LDP associated with the MUS-

LIB. Classical subgradient algorithms are known to suffer from slow convergence when

solving the LDP. In order to avoid this convergence issue, we propose a deflected sub-

gradient algorithm (DSA) based on the methods developed by [19, 25]. The idea

behind this method is to consider the combination of the movement direction in the

previous iteration (dk−1) and the subgradient of the current iteration (sk) to obtain

the current direction, dk = sk + θkdk−1, whereas the classical subgradient method

uses only the subgradient vector to find the direction, dk = sk. The effectiveness of

DSAs relies on the choice of the deflection parameter θk. We use the following rule

proposed by [19] to find the deflection parameter:

θk =

 −
skdk−1

||dk−1|| , if skdk−1 < 0

0, otherwise.

For a given vector (π), let z∗ and w∗ denote the optimal solution to Lz(π) and Lw(π),

respectively. Then subgradient vectors of L(π) are given by :

s1i
t (πk) = 1−

t∑
k=1

n∑
l=t

w∗kitl i ∈M, t ∈ T (4.29)

s1i
tl (π

k) = z∗kitl −
t∑

k=1

w∗kitl i ∈M, t ∈ T, l ≥ t (4.30)

s2i
tl (π

k) = z∗kitl − w∗kitl − z∗ki(t−1)l i ∈M, t ≥ 2, l ≥ t. (4.31)

The proposed DSA is depicted in Algorithm 3.
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Algorithm 3: Deflected subgradient algorithm
Input: Parameters β, ε, kmax and UB (upper bound on the optimal solution
value)
0: Initialize ZD = −∞, d0 = 0; k = 1; πk = 0;
1: For t ∈ T , solve PP t(πk) and Ltw(πk) to find optimal value vt(πk), z∗k, and w∗k

2: Evaluate the Lagrangian function L(πk) =
∑

t∈T v
t(πk)

3: If an improved lower bound is obtained, i.e., L(πk) > ZD, update the bound
ZD = L(πk)

4: Evaluate subgradient vectors as (4.29)-(4.31)
5: Convert the subgradient vectors into a single vector s = vec(s1, s2, s3);
6: If skdk−1 < 0, θk = −β skdk−1

||dk−1|| . Otherwise, θk = 0.
7: Obtain the direction dk = sk + θkdk−1.
8: Calculate the step length tk = UB−ZD

||dk|| .
9: Update dual multipliers πk+1 = πk + tkdk.

10: If (UB−ZD

ZD
) ≤ ε, terminate the algorithm. Otherwise, set k = k + 1 and return

to Step 1.

4.4.3 Solving the Lagrangian dual via column generation

The LDP can be reformulated as a max-min problem as follows:

zD = max
π∈Rm

min
w,z

{
α
∑
i∈M

∑
t∈T

|T |∑
l=t

citlw
i
tl + (1− α)

∑
i∈M

∑
t∈T

|T |∑
l=t

c
′′i
tl z

i
tl+ (4.32)

∑
i∈M

∑
t∈T

π1i
t (1−

t∑
k=1

|T |∑
l=t

wikl) +
∑
i∈M

∑
t∈T

|T |∑
l=t

π2i
tl (z

i
tl −

t∑
k=1

wikl)+

∑
i∈M

|T |∑
t=2

|T |∑
l=t

π3i
tl (z

i
tl − zi(t−1)l − witl) : (4.18), (4.19), (4.22), (4.23)

}

= max
π∈Rm

min
e∈Ew,e′∈Ez

{
α
∑
i∈M

∑
t∈T

|T |∑
l=t

citlw
ei
tl + (1− α)

∑
i∈M

∑
t∈T

|T |∑
l=t

c
′′i
tl z

e′i
tl +

∑
i∈M

∑
t∈T

π1i
t (1−

t∑
k=1

|T |∑
l=t

weikl) +
∑
i∈M

∑
t∈T

|T |∑
l=t

π2i
tl (z

e′i
tl −

t∑
k=1

weikl)+

∑
i∈M

|T |∑
t=2

|T |∑
l=t

π3i
tl (z

e′i
tl − ze

′i
(t−1)l − weitl )

}
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= max
π∈Rm

η (4.33)

subject to η ≤ α
∑
i∈M

∑
t∈T

|T |∑
l=t

citlw
ei
tl + (1− α)

∑
i∈M

∑
t∈T

|T |∑
l=t

c
′′i
tl z

ei
tl +

∑
i∈M

∑
t∈T

π1i
t (1−

t∑
k=1

|T |∑
l=t

weikl)+

∑
i∈M

∑
t∈T

|T |∑
l=t

π2i
tl (z

ei
tl −

t∑
k=1

weikl)+

∑
i∈M

|T |∑
t=2

|T |∑
l=t

π3i
tl (z

ei
tl − zei(t−1)l − weitl ) e ∈ Ew, e′ ∈ Ez, (4.34)

where the variable η is introduced to represent a lower bound on L(π). Moreover, Ew

is the set of extreme point associated with constraints (4.23) and Ez is the set of all

extreme points obtained by convexifying constraints (4.18), (4.19), (4.22). Observe

that we have thus represented the LDP as a linear program with an exponential num-

ber of constraints. It is well-known that the above reformulated LDP is equivalent

to the dual of a Dantzig-Wolfe reformulation (DW) in which the set of convexified

constraints correspond to the remaining constraints in the L(π) [34]. The idea behind

the DW is to convexify a set of "relatively easy" constraints and keep other compli-

cating constraints to better describe the integer convex hull implicitly and to provide

a tighter bound than the LP relaxation of the original problem. By convexifying con-

straints, the original variables are replaced by a convex combination of the extreme

points of a subspace (E).

The linear relaxation of the equivalent DW of (4.33)–(4.34) can be solved by col-

umn generation based methods. A column generation algorithm divides the original

linear space of the DW into two or more inter-related problems: a restricted master

problem (RMP), which contains a small subset of variables, and one or several pric-

ing problems (PPs). In other words, solving the RMP is equivalent to solving the

DW directly with a set of variables equal to zero. The PPs are repeatedly solved to
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identify additional variables to be added to the RMP if needed. The RMP associated

with the DW of (EF) can be formulated as follows:

(RMP) minimize
∑
i∈M

∑
t∈T

|T |∑
l=t

αcitlw
i
tl +

∑
i∈M

∑
t∈T

|T |∑
l=t

∑
e∈Et

(1− α)c
′′i
tl a

i
etlλ

t
e (4.35)

subject to (4.14)∑
e∈Et

λte = 1 t ∈ T (4.36)

t∑
k=1

wikl =
∑
e∈Et

aietlλ
t
e i ∈M, t ∈ T, l ≥ t (4.37)

∑
e∈E(t−1)

aie(t−1)lλ
(t−1)
e + witl =

∑
e∈Et

aietlλ
t
e i ∈M, t ≥ 2, l ≥ t (4.38)

λtc ≥ 0 t ∈ T, e ∈ Ez
t . (4.39)

In the above RMP, constraints (4.36) are convexity constraints and (4.37)-(4.38)

are the reformulation of constraints (4.20)-(4.21), respectively. These reformulated

constraints are based on a subset of extreme points of the space created through

convexifying constraints (4.18), (4.19), and (4.22). In other words, Et
z, t ∈ T is the

subset of feasible inventory intervals for the subproblem of the MULSIB associated

with period t. For t ∈ T , the PP is formulated exactly as the MCKP presented in

Section 4.4.1, i.e. (Ltz(π)) or (4.18), (4.19), (4.22), (4.27). Figure 4.3 illustrates an

example of how feasible inventory intervals can be structured using the subproblem

(Ltz(π)).
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Figure 4.3: Feasible inventory intervals for t = 1
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We define π̂1i
t , v̂t, π̂2i

tl , and π̂3i
tl as the optimal dual solution associated with con-

straints (4.14), (4.36), (4.37), and (4.38), respectively. After solving each PP, the

column λtq with associated non-zeros, i.e., inventory intervals obtained by problem

(Ltz), are added to (RMP) if its reduced cost is negative, or Ltz − v̂t > 0. Using

the block diagonal structure of PPs, we can obtain a valid lower bound after solving

(RMP) and associated PPs, (Ltz) t ∈ T , as follows [8, 74]:

v(RMP ) ≥
∑
i∈M

∑
t∈T

π̂1i
t +

|T |∑
t=1

Ltz(π).

At each iteration of the column generation algorithm, the objective value of (RMP),

v(RMP ), provides an upper bound and LB(π) =
∑

i∈M
∑

t∈T π̂
1i
t +

∑|T |
t=1 L

t
z(π) pro-

vides a valid lower bound.

4.4.3.1 Stabilizing the column generation algorithm using In-Out sepa-

ration strategy

Stabilization techniques are devised to reduce the convergence issues of column gener-

ation algorithms. These issues include dual oscillations (referred to as “bang-bang”),

the tailing-off effect (removing only a marginal volume of the dual space), and the

degeneracy caused by alternative optimal solutions of (RMP) [8, 80]. We propose a

stabilized column generation algorithm (SCG) to accelerate the convergence rate. We

use an In-Out separation strategy based on the stabilization technique proposed by

[15] and [79]. The idea of this method is to keep the dual variables associated with

(RMP), πRMP , in the proximity of an incumbent dual solution, denoted by π̄, that is

used as a stability center rather than solving the PP with πRMP solutions, i.e., α′ = 1

[59]. An implementation of the proposed SCG is shown in Algorithm 4.
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Algorithm 4: Stabilized In-Out column generation algorithm
Input: Parameters α0 = 0.1, ε, and UB (the value of best knows solutions)
0: Initialize the core stabilization point, π̄ = 0.
Using the core point, for t ∈ T , solve (Ltz(π̄)) to calculate the valid lower bound

LB(π̄) =
∑

i∈M
∑

t∈T π̄
1i
t +

∑|T |
t=1 L

t
z(π̄)).

1: Initialize (RMP) with artificial variables to ensure the feasibility
2: Solve (RMP) to obtain the value ZRMP and optimal dual solution πRMP .
3: If ZRMP > UB, α′ = α0 UB−LB(π̄)

ZRMP−LB(π̄)
. Otherwise, α′ = α0.

4: Find a separation point (in the dual space) as follows:

πST = α′πRMP + (1− α′)π̄.

5: For t ∈ T , solve (Ltz(πST )) to obtain the column with minimum reduced cost λ.
6: If an improved valid lower bound is obtained, i.e., LB(πST ) > LB(π̄), update π̄
and L as:

π̄ = πST , LB(π̄) = LB(πST ).

7: If (ZRMP−LB(π̄)
LB(π̄)

) ≤ ε, terminate the algorithm. Otherwise, go to the next step.
8: If column λ has a negative reduced cost with respect to πRMP , add it to
(RMP) and return to Step 2. Otherwise, return to Step 3.

4.5 Computational experiments

In this section, we present extensive computational experiments to compare the results

obtained from the proposed formulation and solution algorithms. All experiments

were implemented in C using Callable Library of IBM CPLEX 12.10.0 on an Intel

Xeon CPU E5-2687W v3 processor at 3.10 GHz and 750GB of RAM in Linux. After

some tuning, we set β = 1.62 for the DSA. The parameter β is halved every 700

consecutive iterations without improvement in the lower bound and it is reset to the

initial value as soon as it gets below 0.001. During the tuning phase, we also noticed

that the DSA started with a good convergence rate but the convergence became slow

later on. In order to prevent slow convergence, after 1000 iterations, we switch the

deflected SA into a non-deflected SA. In both stabilized SCG and DSA algorithms,

we set ε = 0.001. Moreover, in (EF) we set α = 0.5.

95



In order to evaluate the performance of the proposed formulation (EF), we used

the same 60 instances used by [76]. These instances only consider fixed production

costs and take different capacities into account. In the first 30 instances, the number

of items are set to |M | = {15, 30, 45}, the number of time periods is |T | = 50, and

the inventory bounds are set to ut = {500, 1000, 1500}. In the other 30 instances,

tighter inventory bounds, ut = {375, 500, 1125}, are taken into account. The demand

parameters dit are integer values between zero and 25, and fixed setup costs qit are

integer values between 25 and 150.

Furthermore, in order to assess the performance of the DSA as compared to the

SCG, we used an adaptation of the same instances with shorter planning horizons

(|T | = 12) with tighter capacities ut = {250, 350, 500}. Finally, using the best-known

solutions obtained from all methods (newly and previously developed methods), we

compared the quality of bounds obtained by different methods on the initially used

60 large-sized instances.

4.5.1 Formulations

In this section, we carry on numerical experiments to evaluate the performance of the

proposed formulation (EF) as compared to the previously developed formulations.

i.e., (CDF), (FLF), and the best method in the literature for the MULSIB proposed by

Melo and Ribeiro [76]. Tables 4.1 and 4.2 summarise the result of these comparisons.

The first two columns of each table denote the used instances identifying the number

of items and number of time periods. For each formulation, we present the obtained

gap = UB−LB
LB

×100, upper bound (UB), deviation gap = UB−Best
Best

×100, and running

time. We also present the best achieved upper bound (Best) in the last column. We

set a time limit of 3600 seconds (one hour) for solving each formulation. In order to

have a fair comparison, we implemented the (FLF) and (CDF) formulations proposed

by [76] and [1], respectively, and performed the experiments with our solver.
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Table 4.1 Comparing the results obtained by different formulations and the best-known solutions.

Data Info. Cumulative-demand formulation Extended formulation Facility location formulation [76]’s algorithm
Best

Number Instance Gap (%)UB (%)Dev (%)Time (s)Gap (%)UB (%)Dev (%)Time (s)Gap (%)UB (%)Dev (%)Time (s)Gap (%)UB (%)Dev (%)Time (s)

1 15_50_500 3.04 9628 0.0 3600 3.28 9635 0.1 3600 4.43 9722 1.0 3600 3.2 9628 0.0 600 9,628
2 15_50_500 3.34 10992 0.4 3600 3.15 10948 0.0 3600 3.9 11018 0.6 3600 3.6 11,017 0.6 600 10,948
3 15_50_500 3.27 9811 0.4 3600 2.99 9771 0.0 3600 4.29 9883 1.1 3600 3.3 9814 0.4 600 9,771
4 15_50_500 2.97 10159 0.1 3600 3.04 10153 0.0 3600 3.97 10230 0.8 3600 3.3 10,186 0.3 600 10,153
5 15_50_500 4.36 9181 1.0 3600 3.46 9088 0.0 3600 5.01 9206 1.3 3600 3.7 9119 0.3 600 9,088
6 15_50_500 4.04 11551 0.8 3600 3.76 11522 0.6 3600 4.51 11578 1.1 3600 3.1 11,457 0.0 600 11,457
7 15_50_500 3.21 9370 0.2 3600 3.32 9350 0.0 3600 3.52 9367 0.2 3600 3.4 9384 0.4 600 9,350
8 15_50_500 3.47 8771 0.7 3600 3.61 8762 0.6 3600 4.34 8812 1.2 3600 2.8 8707 0.0 600 8,707
9 15_50_500 2.75 9527 0.0 3600 3.11 9523 0.0 3600 3.69 9574 0.5 3600 3.5 9597 0.8 600 9,523
10 15_50_500 3.26 9982 0.3 3600 3.3 9964 0.1 3600 4.15 10014 0.6 3600 3.3 9,954 0.0 600 9,954

11 30_50_1000 1.53 18149 0.1 3600 1.45 18126 0.0 3600 2.13 18239 0.6 3600 1.6 18,145 0.1 600 18,126
12 30_50_1000 1.45 16655 0.1 3600 1.37 16633 0.0 3600 1.72 16677 0.3 3600 1.5 16,649 0.1 600 16,633
13 30_50_1000 1.66 19943 0.1 3600 1.63 19924 0.0 3600 1.97 19981 0.3 3600 1.8 19,949 0.1 600 19,924
14 30_50_1000 1.52 18390 0.0 3600 1.58 18390 0.0 3600 2.09 18470 0.4 3600 1.8 18,434 0.2 600 18,390
15 30_50_1000 1.73 19318 0.2 3600 1.58 19273 0.0 3600 2.36 19418 0.8 3600 1.8 19,323 0.3 600 19,273
16 30_50_1000 1.5 18294 0.1 3600 1.48 18280 0.0 3600 1.99 18364 0.5 3600 1.7 18,311 0.2 600 18,280
17 30_50_1000 1.46 19943 0.1 3600 1.68 19972 0.2 3600 1.99 20025 0.5 3600 1.5 19,933 0.0 600 19,933
18 30_50_1000 1.67 16734 0.2 3600 1.59 16705 0.0 3600 2.29 16811 0.6 3600 2 16,765 0.4 600 16,705
19 30_50_1000 1.54 17951 0.1 3600 1.58 17938 0.0 3600 2.06 18021 0.5 3600 1.8 17,977 0.2 600 17,938
20 30_50_1000 1.55 18525 0.2 3600 1.46 18493 0.0 3600 2.12 18605 0.6 3600 2 18,590 0.5 600 18,493

21 45_50_1500 1.04 28468 0.0 3600 1.1 28468 0.0 3600 1.29 28518 0.2 3600 1.3 28,522 0.2 600 28,468
22 45_50_1500 1.34 28723 0.3 3600 1.04 28631 0.0 3600 1.59 28777 0.5 3600 1.2 28,666 0.1 600 28,631
23 45_50_1500 0.96 28254 0.1 3600 0.89 28229 0.0 3600 1.17 28300 0.3 3600 1.4 28,386 0.6 600 28,229
24 45_50_1500 0.88 25797 0.0 3600 1 25823 0.1 3600 1.56 25954 0.6 3600 1.5 25,960 0.6 600 25,797
25 45_50_1500 1.2 30612 0.0 3600 1.24 30616 0.0 3600 1.82 30786 0.6 3600 1.4 30,651 0.1 600 30,612
26 45_50_1500 1.11 26521 0.2 3600 0.99 26477 0.0 3600 1.29 26554 0.3 3600 1.3 26,548 0.3 600 26,477
27 45_50_1500 1.28 26773 0.3 3600 1 26691 0.0 3600 1.24 26745 0.2 3600 1.4 26,799 0.4 600 26,691
28 45_50_1500 1.23 30212 0.1 3600 1.11 30170 0.0 3600 1.49 30279 0.4 3600 1.4 30,266 0.3 600 30,170
29 45_50_1500 1.01 28998 0.0 3600 1.01 28988 0.0 3600 1.5 29126 0.5 3600 1.5 29,140 0.5 600 28,988
30 45_50_1500 1 28057 0.0 3600 0.98 28043 0.0 3600 1.32 28129 0.3 3600 1.4 28,164 0.4 600 28,043

Average 2.01 0.2 1.96 0.06 2.56 0.57 2.15 0.28
# of best solutions 5 23 0 3

According to the results of Table 4.1, (EF) outperforms other formulations by

obtaining the best solution for 23 out of 30 instances. The formulation (CDF) has

found five best solutions, while three best solutions are reported by the best method

developed by [76]. Also, the best average gap and best average deviation have been

achieved by (EF). Moreover, the results of Table 4.2 show that (EF) outperforms the

other methods even when tighter bounds are considered for the same set of instances.

The number of best solutions achieved by (CDF), (EF), (FLF), and [76]’ method are

zero, 21, zero, and nine, respectively. In terms of average gap and average deviation,

(EF) achieves the best ones among all other methods.
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Table 4.2 Results of different formulations and the best-known solutions on the instances with
tighter capacities.

Data Info. Cumulative-demand formulation Extended formulation Facility location formulation [76]’s algorithm
Best

Number Instance Gap (%)UB (%)Dev (%)Time (s)Gap (%)UB (%)Dev (%)Time (s)Gap (%)UB (%)Dev (%)Time (s)Gap (%)UB (%)Dev (%)Time (s)

31 15_50_375 3.64 13395 0.6 3600 3.3 13321 0.0 3600 3.44 13328 0.1 3600 3.2 13,319 0.0 600 13,319
32 15_50_375 3.18 10523 0.8 3600 2.68 10451 0.1 3600 2.63 10441 0.0 3600 2.8 10,469 0.3 600 10,441
33 15_50_375 2.93 10183 0.6 3600 2.73 10124 0.0 3600 2.87 10140 0.2 3600 2.6 10,127 0.0 600 10,124
34 15_50_375 3.76 12272 1.0 3600 2.94 12160 0.1 3600 3.33 12191 0.3 3600 2.9 12,152 0.0 600 12,152
35 15_50_375 2.98 10629 0.1 3600 3 10615 0.0 3600 3.64 10665 0.5 3600 2.9 10,616 0.0 600 10,615
36 15_50_375 3.44 9372 0.7 3600 3.1 9311 0.0 3600 3.85 9377 0.7 3600 3.2 9336 0.3 600 9,311
37 15_50_375 3.07 12007 0.7 3600 2.53 11923 0.0 3600 2.84 11948 0.2 3600 2.5 11,929 0.1 600 11,923
38 15_50_375 3.18 14503 0.6 3600 2.77 14418 0.0 3600 2.94 14424 0.0 3600 2.8 14,422 0.0 600 14,418
39 15_50_375 3.25 13858 0.3 3600 3.11 13816 0.0 3600 4.58 14012 1.4 3600 2.9 13,814 0.0 600 13,814
40 15_50_375 3.69 13202 1.0 3600 3.29 13131 0.4 3600 3.21 13110 0.3 3600 2.8 13,075 0.0 600 13,075

41 30_50_500 1.55 24404 0.3 3600 1.27 24327 0.0 3600 1.7 24420 0.4 3600 1.3 24,325 0.0 600 24,325
42 30_50_500 1.62 21998 0.3 3600 1.34 21927 0.0 3600 1.85 22032 0.5 3600 1.5 21,967 0.2 600 21,927
43 30_50_500 1.76 26160 0.5 3600 1.28 26033 0.0 3600 1.62 26099 0.3 3600 1.3 26,035 0.0 600 26,033
44 30_50_500 1.82 23684 0.2 3600 1.68 23635 0.0 3600 1.94 23692 0.3 3600 1.7 23,628 0.0 600 23,628
45 30_50_500 2.02 21480 0.8 3600 1.33 21320 0.0 3600 2.04 21466 0.7 3600 1.5 21,355 0.2 600 21,320
46 30_50_500 1.5 25351 0.2 3600 1.32 25299 0.0 3600 1.9 25433 0.6 3600 1.3 25,292 0.0 600 25,292
47 30_50_500 1.92 27868 0.5 3600 1.56 27762 0.1 3600 2.43 27982 0.9 3600 1.5 27,738 0.0 600 27,738
48 30_50_500 1.85 23465 0.6 3600 1.33 23327 0.0 3600 1.74 23410 0.4 3600 1.7 23,402 0.3 600 23,327
49 30_50_500 1.7 23204 0.4 3600 1.44 23135 0.1 3600 1.76 23193 0.4 3600 1.3 23,109 0.0 600 23,109
50 30_50_500 1.5 21032 0.4 3600 1.15 20951 0.0 3600 1.78 21072 0.6 3600 1.5 21,011 0.3 600 20,951

51 45_50_1125 1.68 35196 0.7 3600 1.03 34959 0.0 3600 1.42 35087 0.4 3600 1.2 35,026 0.2 600 34,959
52 45_50_1125 1.14 38410 0.2 3600 0.92 38317 0.0 3600 1.03 38346 0.1 3600 1.1 38,364 0.1 600 38,317
53 45_50_1125 0.96 32759 0.2 3600 0.83 32704 0.0 3600 1.37 32876 0.5 3600 1.4 32,855 0.5 600 32,704
54 45_50_1125 1.21 36092 0.4 3600 0.83 35946 0.0 3600 1.28 36102 0.4 3600 1.2 36,084 0.4 600 35,946
55 45_50_1125 1.28 32064 0.6 3600 0.75 31883 0.0 3600 1.39 32083 0.6 3600 1.3 32,068 0.6 600 31,883
56 45_50_1125 1.17 34254 0.3 3600 0.92 34159 0.0 3600 1.21 34249 0.3 3600 1.3 34,271 0.3 600 34,159
57 45_50_1125 1.12 34195 0.3 3600 0.83 34090 0.0 3600 0.99 34135 0.1 3600 0.9 34,110 0.1 600 34,090
58 45_50_1125 1.18 39176 0.2 3600 1.04 39105 0.0 3600 1.21 39170 0.2 3600 1.1 39,131 0.1 600 39,105
59 45_50_1125 1.1 32526 0.1 3600 0.99 32483 0.0 3600 1.56 32654 0.5 3600 1.2 32,540 0.2 600 32,483
60 45_50_1125 1.32 36164 0.3 3600 1.05 36051 0.0 3600 1.31 36142 0.3 3600 1.1 36,060 0.0 600 36,051

Average 2.08 0.46 1.74 0.03 2.16 0.40 1.83 0.13
# of best solutions 0 21 0 9

4.5.2 Column generation vs subgradient optimization

This section compares the quality of lower bounds obtained by Cplex using (EF), the

proposed SCG, and DSA. We used, in Table 4.3, 30 adapted instances to find the best

bound of Cplex (in one hour), the SCG (within the time limit), the DSA (within time

limits of 20, 60, and 80 seconds), and the LP relaxation model. For each method,

using the best achieved upper bound by Cplex, we present the gap, the percentage of

the LP gap closed (G-closed), lower bound, and running time.

From Table 4.3, both the SCG and DSA improved the gap as compared to the

bound obtained from LP relaxation in all instances; however, the running times of

LP relaxation are shorter. Therefore, although the SCG and DSA take longer, they

provide tighter bounds. Furthermore, in larger instances (particularly 21-27, 29, and
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Table 4.3 Comparing the quality of lower bounds obtained by different methods on smaller
instances

Instance
Cplex (EF ) Stabilized column generation Deflected subgradient LP relaxation

Gap (%)G-closed (%) UB LB Time (s)Gap (%)G-closed (%) LB Time (s)Gap (%)G-closed (%) LB Time (s)Gap (%) LB (%) Time (s)

15_12_250_01 0.00 100 4167 4167.0 34 1.38 39 4110.20 16 1.21 46 4117.09 20 2.26 4075.00 0.08
15_12_250_02 0.00 100 4678 4678.0 2426 2.30 26 4572.70 20 2.15 31 4579.35 20 3.10 4537.26 0.07
15_12_250_03 0.00 100 4213 4213.0 99 1.72 34 4141.90 23 1.63 37 4145.38 20 2.61 4105.87 0.07
15_12_250_04 0.00 100 4514 4514.0 157 1.31 33 4455.70 15 1.15 41 4462.60 20 1.97 4426.96 0.07
15_12_250_05 0.00 100 3951 3951.0 2 0.85 46 3917.70 19 0.64 60 3925.89 20 1.58 3889.56 0.07
15_12_250_06 0.00 100 5062 5062.0 77 1.40 26 4992.20 20 1.24 34 4999.91 20 1.88 4968.44 0.07
15_12_250_07 0.00 100 3948 3948.0 21 1.54 32 3888.20 24 1.38 39 3894.30 20 2.25 3860.94 0.08
15_12_250_08 0.00 100 3866 3866.0 122 1.61 25 3804.60 19 1.43 33 3811.36 20 2.15 3784.54 0.07
15_12_250_09 0.00 100 4114 4114.0 15 1.43 26 4055.80 16 1.27 35 4062.42 20 1.94 4035.76 0.07
15_12_250_10 0.00 100 4407 4407.0 327 1.94 28 4323.00 21 1.92 29 4324.09 20 2.69 4291.67 0.07

30_12_350_01 0.00 100 9502 9502.0 251 0.25 63 9477.90 236 0.32 54 9471.99 60 0.69 9437.29 0.14
30_12_350_02 0.00 100 8844 8844.0 1783 0.19 77 8827.50 167 0.41 49 8807.95 60 0.80 8773.42 0.15
30_12_350_03 0.25 72 1089410867.3 limit 0.41 54 10849.60 134 0.54 40 10835.84 60 0.89 10797.63 0.15
30_12_350_04 0.08 91 9944 9935.8 limit 0.17 81 9926.90 117 0.44 50 9900.21 60 0.89 9856.21 0.15
30_12_350_05 0.00 100 9947 9947.0 352 0.36 57 9911.80 218 0.38 54 9909.63 60 0.82 9865.93 0.15
30_12_350_06 0.15 82 9826 9811.0 limit 0.25 70 9801.50 188 0.47 44 9780.35 60 0.84 9744.59 0.15
30_12_350_07 0.00 100 10708 10708 1148 0.31 68 10674.40 160 0.36 63 10669.44 60 0.98 10604.29 0.16
30_12_350_08 0.00 100 8921 8921.0 34 0.14 76 8908.50 172 0.17 70 8905.79 60 0.57 8870.08 0.15
30_12_350_09 0.31 62 9474 9445.1 limit 0.32 60 9443.40 175 0.52 36 9425.19 60 0.81 9397.55 0.16
30_12_350_10 0.00 100 9872 9872.0 2786 0.26 67 9846.70 138 0.41 48 9832.02 60 0.78 9795.21 0.15

45_12_500_01 0.00 100 15491 15491 2040 0.04 86 15484.10 1001 0.14 58 15469.35 80 0.33 15440.11 0.23
45_12_500_02 0.21 58 16076 16041.5 limit 0.11 79 16058.70 711 0.29 42 16028.73 80 0.50 15995.33 0.24
45_12_500_03 0.14 69 15784 15761.5 limit 0.09 80 15769.80 1199 0.17 62 15756.84 80 0.46 15712.49 0.24
45_12_500_04 0.15 70 14299 14277.0 limit 0.01 99 14298.00 1025 0.23 55 14266.88 80 0.50 14228.41 0.25
45_12_500_05 0.16 65 16990 16962.1 limit 0.05 89 16981.40 767 0.29 36 16940.41 80 0.45 16913.18 0.25
45_12_500_06 0.21 57 14353 14323.3 limit 0.12 75 14335.40 1013 0.25 50 14317.68 80 0.49 14282.95 0.23
45_12_500_07 0.28 51 14602 14561.3 limit 0.14 75 14580.90 1154 0.32 43 14554.99 80 0.57 14519.08 0.22
45_12_500_08 0.00 100 1656416564.0 735 0.09 72 16548.40 960 0.17 49 16535.91 80 0.33 16508.97 0.25
45_12_500_09 0.18 63 16088 16059.8 limit 0.01 97 16086.00 645 0.29 39 16040.77 80 0.48 16010.71 0.23
45_12_500_10 0.25 50 15076 15038.8 limit 0.02 95 15072.40 800 0.26 47 15036.19 80 0.50 15000.83 0.25

Average 0.08 86 0.63 61 0.68 46 1.17
# of best lower bounds 22 8 0 0

30), the SCG achieves better lower bounds than Cplex (even after running for one

hour) within much shorter running times. For the instances 21-30, on average, the

SCG closes 85 % of the integrality gap, while the mean closed gap obtained by Cplex

for the instances with 45 items is 68 %. In all instance, although the SCG finds better

bounds than the DSA, both algorithms obtain mean gaps very close together (0.63

and 0.68) but the running times for the DSA are significantly shorter.

4.5.3 Comparing lower bounds on larger instances

This section assesses the quality of lower bounds obtained by LP relaxation, Cplex,

the DSA, and the best bound obtained by [76]. It should be noted, although the SCG

provided promising results for the adapted instances in Section 4.5.2, for the original

instances with |T | = 50, it was not able to improve LP-bounds within reasonable
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amounts of time; however, the DSA was successful in providing tighter bounds in

significantly shorter running times. Therefore in this section, for original instances

used in Section 4.5.1, we evaluate only the bounds obtained by the DSA. Tables

4.4 and 4.5 summarize the results of this assessment. In each table, we present the

integrality gap and running time for LP relaxation. We also preset the percentage

of the integrality gap closed by Cplex using (EF), the DSA and [76]’ algorithm. We

should note that the best known solutions obtained in tables 4.2 and 4.3 are used to

find initial upper bounds in the DSA.

Table 4.4 Comparing the quality of lower bounds obtained by different methods.

Data Info. LP relaxation Cplex (EF ) Deflected subgradient [76]’s algorithm
Number Instance gap (%)Time (s) G-closed (%)Time (s) G-closed (%)Time (s) G-closed (%)Time (s)

1 15_50_500 3.99 7 20 3600 18 600 20 600
2 15_50_500 3.68 10 14 3600 16 600 20 600
3 15_50_500 3.70 10 19 3600 20 600 23 600
4 15_50_500 3.60 9 15 3600 16 600 18 600
5 15_50_500 4.34 9 20 3600 20 600 23 600
6 15_50_500 3.87 8 18 3600 16 600 20 600
7 15_50_500 3.82 10 13 3600 11 600 21 600
8 15_50_500 3.58 10 17 3600 20 600 22 600
9 15_50_500 3.67 9 15 3600 9 600 26 600
10 15_50_500 4.02 9 21 3600 20 600 18 600

11 30_50_1000 1.58 30 8 3600 22 750 5 600
12 30_50_1000 1.56 28 12 3600 26 750 10 600
13 30_50_1000 1.77 30 8 3600 15 750 5 600
14 30_50_1000 1.79 28 12 3600 23 750 13 600
15 30_50_1000 1.69 27 7 3600 18 750 9 600
16 30_50_1000 1.64 27 10 3600 21 750 7 600
17 30_50_1000 1.59 33 7 3600 19 750 6 600
18 30_50_1000 1.75 27 9 3600 21 750 6 600
19 30_50_1000 1.68 30 6 3600 19 750 6 600
20 30_50_1000 1.60 25 9 3600 20 750 9 600

21 45_50_1500 1.16 51 5 3600 19 900 4 600
22 45_50_1500 1.11 48 7 3600 20 900 3 600
23 45_50_1500 0.96 41 7 3600 24 900 12 600
24 45_50_1500 0.98 48 8 3600 30 900 12 600
25 45_50_1500 1.30 50 6 3600 10 900 2 600
26 45_50_1500 1.04 53 5 3600 21 900 1 600
27 45_50_1500 1.06 45 6 3600 20 900 7 600
28 45_50_1500 1.17 47 5 3600 17 900 8 600
29 45_50_1500 1.06 47 4 3600 20 900 8 600
30 45_50_1500 1.05 47 7 3600 22 900 8 600

Average 11 19 12
# of best lower bounds 2 20 8
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Table 4.5 The quality of lower bounds obtained by different methods on the instances with tighter
capacities.

Data Info. LP relaxation Cplex (EF ) Deflected subgradient [76]’s algorithm
Number Instance gap (%)Time (s) G-closed (%)Time (s) G-closed (%)Time (s) G-closed (%)Time (s)

31 15_50_375 3.95 10 17 3600 18 600 19 600
32 15_50_375 3.18 9 19 3600 23 600 21 600
33 15_50_375 3.39 9 19 3600 22 600 24 600
34 15_50_375 3.49 10 18 3600 18 600 17 600
35 15_50_375 3.53 8 15 3600 19 600 18 600
36 15_50_375 3.72 9 17 3600 18 600 21 600
37 15_50_375 3.04 11 17 3600 19 600 19 600
38 15_50_375 3.40 7 19 3600 17 600 19 600
39 15_50_375 3.60 9 14 3600 18 600 20 600
40 15_50_375 3.33 10 14 3600 16 600 16 600

41 30_50_500 1.40 30 10 3600 19 750 7 600
42 30_50_500 1.48 28 9 3600 20 750 11 600
43 30_50_500 1.46 29 13 3600 20 750 12 600
44 30_50_500 1.80 29 8 3600 17 750 6 600
45 30_50_500 1.45 29 9 3600 18 750 8 600
46 30_50_500 1.43 29 10 3600 19 750 9 600
47 30_50_500 1.62 29 9 3600 16 750 7 600
48 30_50_500 1.50 29 11 3600 19 750 8 600
49 30_50_500 1.49 29 11 3600 15 750 13 600
50 30_50_500 1.32 29 13 3600 25 750 8 600

51 45_50_1125 1.09 44 6 3600 18 900 8 600
52 45_50_1125 1.01 43 9 3600 21 900 3 600
53 45_50_1125 0.88 46 5 3600 21 900 0 600
54 45_50_1125 0.88 41 6 3600 19 900 8 600
55 45_50_1125 0.81 37 8 3600 25 900 12 600
56 45_50_1125 1.00 42 8 3600 19 900 3 600
57 45_50_1125 0.89 46 7 3600 21 900 5 600
58 45_50_1125 1.09 42 4 3600 13 900 5 600
59 45_50_1125 1.08 38 8 3600 20 900 5 600
60 45_50_1125 1.11 42 5 3600 14 900 3 600

Average 11 19 11
# of best lower bounds 1 24 5

As can be observed from Table 4.4, the DSA has found better lower bounds

in 20 out of 30 instances, while Cplex (EF) has obtained best bounds for only two

instances and the [76]’s algorithm has reported better lower bounds in eight instances.

It should be noted that the results of the DSA have been achieved in significantly

shorter amounts of time than Cplex. Furthermore, on average, the DSA has closed

the integrality gap almost twice as much as other two methods. Moreover, Table 4.5

shows that, the DSA was able to obtain the best bound in 24 instances, while Cplex,

even after one hour, could find the best lower bound for only one instance. Also,
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the best algorithm of [76] obtained better bounds in only five instances. The average

closed gap for the DSA is the highest among all methods. Therefore in general, the

results obtained by the proposed DSA outperform the results of other methods.

4.6 Conclusions

We studied the multi-item uncapacitated lot-sizing problem with inventory bounds

and proposed a new formulation based on production and inventory interval variables.

The new formulation allowed us to decompose the problem into smaller subproblems

that can be solved efficiently. We proposed a Lagrangian relaxation approach to

handle complicating constraints of the proposed formulation. In order to solve the

associated Lagrangian dual problem, we proposed two methods based on subgradi-

ent optimization and column generation. In both methods, we used stabilization

techniques to accelerate the convergence of the algorithms and to reduce the dual

oscillation effects.

Computational results confirm that the proposed formulation outperforms the

previously proposed models and methods. In almost 75 % of the used instances, our

formulation achieved better integer solutions. Moreover, we have shown that in a set

of adapted instances with a shorter planning horizon, the stabilized column generation

algorithm outperforms Cplex and the deflected subgradient algorithm on the instances

with larger number of items and both of the proposed algorithms achieved better

lower bounds than those of the linear programming relaxation approach. Although

the stabilized column generation algorithm provided promising results for adapted

instances, even with stabilization techniques, it was too slow to converge for original

instances. Furthermore, we showed that our proposed deflected subgradient algorithm

obtained the best lower bound in 70 % of the original instances and, on average, it

closed the integrality gap almost twice as much as the other developed methods.
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As an interesting direction of research for future work, one can develop a branch

and cut algorithm to solve the problem that exploits non-dominated cuts describing

the convex hull. It is also interesting to investigate decomposition-based algorithms

for the problem with both production and inventory capacities.
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Chapter 5

Conclusions

This thesis studied three important problems in operations management:

• Online multi-appointment patient scheduling.

• Inventory management of perishable products.

• Multi-item uncapacitated lot-sizing with inventory bounds.

In Chapter 2, we addressed several critical and challenging issues arising in scheduling

patients for chemotherapy treatments. These include dynamically arriving appoint-

ment requests, primary-care delivery, patient preferences, fully occupation of nurses

in setup phase, and unexpected last-minute changes. To tackle these complexities,

a flexible and adaptive scheduling procedure was proposed that schedules incoming

appointment requests, and reschedules these on a daily basis when either new infor-

mation regarding the request is received or an unexpected last-minute change occurs.

Two mixed integer programming models are used in the proposed procedure. Based

on the obtained computational results, we showed adopting the proposed procedure

would allow oncology clinics to provide better patient care and utilize available re-

source more efficiently.
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In Chapter 3, we addressed three aspects of perishable inventory systems: per-

ishability, demand uncertainty, and order modification of previously placed orders.

We formulated the problem as a two-stage robust optimization model with a bud-

get of uncertainty to control the level of conservatism. We solved the problem via

an exact robust algorithm based on the column-and-row generation method. Com-

putational analysis demonstrated the capability of the proposed robust approach in

solving different test instances. We showed that considering order modification could

significantly reduce the total cost. We also carried out different sensitivity analyses

to provide managerial insights. Our robust algorithm had an acceptable performance

in risk-neutral settings and it provided the best performance in risk-averse settings

as compared to the deterministic and stochastic variants of the problem.

Finally, Chapter 4 presented a new formulation and two decomposition-based

algorithms to solve the multi-item uncapacitated lot-sizing problem. The new formu-

lation was based on both production and inventory interval variables and it allowed

us to decompose the problem into smaller and relatively tractable subproblems. We

proposed a Lagrangian relaxation approach to handle complicating constraints and

we solved it by subgradient and column generation algorithms. We used stabiliza-

tion techniques to accelerate the convergence of the algorithms. Using benchmark

instances, the proposed formulation showed to be significantly better than previously

developed formulations. We also showed the proposed decomposition-based algorithm

is superior in closing optimality gaps and finding tighter bounds.

We believe that there are several topics that are yet to be addressed in the context

of each presented problem. The integration of the procedure presented in Chapter

2 with an accurate prediction tool, that estimates the combination of patients and

their characteristics in advance, could be an interesting research avenue for this topic.

Furthermore, from the modelling perspective, the problem can be extended by con-

sidering uncertain drug preparation times. For the problem studied in Chapter 3, it

105



would be interesting to consider multiple types of items and the substitution assump-

tion for items. Considering multiple demand classes and the possibility of reusing the

expired items in the primary or a secondary market can open new lines of research.

Finally, investigating other decomposition-based algorithms for the extended versions

of the problem presented in Chapter 4 can be a promising research direction.
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