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Abstract 

The Development of an Object-Recognition Task for Rats and the Evaluation of the Internal 

Validity of the Novel-Object-Preference Test 

 

Emily Cole, Ph.D. 

Concordia University, 2020 

 

Object-recognition—the ability to discriminate the familiarity of previously presented stimuli—

is assessed in laboratory rats using the delayed nonmatching-to-sample (DNMS) task and the 

novel-object-preference (NOP) test. The DNMS task provides a fairly precise measure of a rat’s 

object-recognition abilities, however, it suffers from certain drawbacks. In particular, rats require 

extensive training and it cannot be used to assess memory for objects following periods lasting 

longer than several minutes. For these reasons, most researchers have abandoned it in favour of 

the NOP test. The NOP test is easy to use, as it relies on measuring a rat’s natural tendency to 

spend more time investigating a novel object over a familiar one when both are presented in a 

familiar context. Some concerns have been raised, however, regarding the internal validity of the 

NOP test. Accordingly, the goal of the present thesis was to develop a new object-recognition 

task that addresses the known limitations of the existent tests. A secondary goal of the thesis was 

to evaluate rats’ performance on the new task to that on the NOP test as a means to validate the 

latter. The first experiment describes rats’ performance on the new task –the modified DNMS 

(mDNMS) task. Rats required significantly fewer trials to learn the nonmatching rule compared 

to conventional DNMS tasks, and their scores showed good test re-test reliability. The same rats’ 

exhibited significant novelty-preference scores on the NOP test, however their scores showed 

poor test re-test reliability and were not significantly correlated with mDNMS scores. The latter 

finding suggests that the two tasks may not tax similar underlying cognitive processes. In the 

experiment presented in Chapter 3, memory for objects was assessed following delays lasting 72 

hr, 3 weeks, and ~45 weeks on both the mDNMS task and NOP test. Rats successfully 

discriminated between novel and sample objects on the mDNMS task following all three delays, 

however, the same rats failed to exhibit significant novelty preferences following all three delays 

on the NOP test. These findings reveal that the mDNMS task can be used to assess long-term 

memory for objects, and that a failure to exhibit a novelty preference may not necessarily reflect 
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the status of object-recognition memory. Next, we assessed rats’ performance on the mDNMS 

task and NOP test following surgical lesions made to either the hippocampus (HPC) or perirhinal 

cortex (PRh)—two brain areas implicated in object-recognition memory. Neither HPC nor PRh 

lesions failed to disrupt performance on the mDNMS task, but rats with PRh lesions failed to 

display a novelty preference on the NOP test. The discrepancy in the PRh rats’ performance on 

both tasks further adds to concerns regarding the internal validity of the NOP test, such that a 

lack of novelty preference is not necessarily indicative of an object-recognition memory 

impairment. The final experiment focused on refining the mDNMS task to include an additional 

behavioural measure—latency to make a choice. We incorporated a Go/No-go procedure and 

found that latency to make a choice provided a more sensitive measure of object-recognition 

memory than choice-accuracy on the test. Collectively, these findings confirmed the utility of the 

mDNMS task as a means to gauge object-recognition memory in rats. The results also highlight 

the limitations of the NOP test, and raise concerns regarding the internal validity of it as a means 

to measure object-recognition abilities in rats.  
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Chapter 1: General Introduction 

A central feature of psychology research involves using animals as model systems for 

studying general processes, such as learning and memory. A goal of this research is to uncover 

the underlying biological mechanisms of these processes and to ultimately solve specific 

problems (e.g., develop treatments for neurodegenerative diseases). When using animals to 

examine internal constructs such as memory, researchers must make inferences about these 

constructs based on the animal’s behaviour. Accordingly, an essential feature of any research 

design is the inclusion of a suitable behavioural task—one that can accurately estimate the 

specific construct under investigation. Both the quality, and hence, validity of the research 

findings are dependent on this factor. The goal of this thesis is to develop and assess the utility of 

a new object-recognition task for rats. 

Object-recognition memory is the ability to discriminate the familiarity of previously 

encountered objects. It is a fundamental memory ability that most people engage hundreds of 

times each day –often with little or no conscious awareness, but sometimes accompanied by 

explicit recollection of one or more specific episodes on which a previous encounter occurred 

(Aggleton & Brown, 1999). 

Laboratory rodents also distinguish between objects they have previously encountered 

and ones they have not. The extent to which object-recognition memory involves similar 

cognitive processes in rodents and humans is not entirely clear. Still, numerous studies in rats 

and mice have examined how drugs, brain lesions, or other treatments affect performance on 

tests that are presumed to be effective for discriminating between animals with different object-

recognition capabilities (Brown, Warburton, & Aggleton, 2010; Warburton & Brown, 2015; 

Winters, Saksida, & Bussey, 2008). 

Two behavioral paradigms have been used to assess object recognition in rats: delayed 

nonmatching-to-sample (DNMS), using trial-unique1 stimuli, and novel-object preference 

(NOP). On the DNMS task, a sample object is briefly presented and after a retention interval, the 

sample is presented again along with a novel object. The rat receives a reward if it selects the 

novel (nonmatching) object. Different sample and novel objects are used on each trial, so reliably 

 
1 “Trial-unique” indicates that stimulus items do not recur within a test session, however, they may recur throughout 
testing but over widely distributed points in time. The term is used to distinguish from earlier delayed-response tasks 
that had recurring stimuli within a session. 
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accurate performance requires that rats can recognize the sample objects. Memory demands are 

manipulated by varying the retention interval or the number of objects to remember on each trial. 

Although the DNMS task provides a fairly precise estimate of a rat's object-recognition 

abilities, the existing DNMS procedures share some drawbacks in common. Specifically, they 

are difficult to employ and require extensive training of the rats. Consequently, most 

investigators who sought to study object-recognition in rodents abandoned the DNMS task in 

favor of the NOP test, mainly because the latter is relatively easy to employ. The NOP test takes 

advantage of a rat’s natural tendency to investigate novel objects more than familiar ones when 

both are presented in a familiar environment (Berlyne, 1950; Besheer & Bevins, 2000; Ennaceur 

& Delacour, 1988). On conventional NOP tests, a rat is placed in an arena where it is allowed to 

investigate two identical objects for a few minutes. The rat is then removed for a retention delay, 

after which it is returned to the arena, where there are now two new objects –one is identical to 

the sample and the other is novel. On the test, if the rat spends more time investigating the novel 

object compared to the sample, it is inferred that the rat recognizes the sample object.  

Despite the practical advantages of the NOP test however, some recent observations have 

raised concerns about the internal validity of it as a gauge for object-recognition abilities. 

Specifically, it is unclear to what extent the degree of novel-object preference reflects the 

persistence or accuracy of the memory for the sample object.  

The primary goal of this thesis work was to develop a new object-recognition task, one 

that would address the known limitations of the extant tasks, and could not be subjected to the 

same criticisms of that of the NOP test. We decided to develop a modified DNMS (mDNMS) 

task—one that would incorporate the advantageous features of conventional DNMS tasks, yet 

would be easier for rats to acquire and less difficult for experimenters to use. The thesis 

experiments consisted of the following: 1) the development of the mDNMS task, 2) measuring 

performance on the mDNMS task following long retention intervals ranging from days to one 

year, 3) using the mDNMS task to examine the effects of discrete lesions made to brain areas 

hypothesized to be critical for object-recognition memory, and lastly 4) the refinement of the 

mDNMS task to further improve the procedure.  

A secondary goal of the thesis was to evaluate the utility of the NOP test as a measure of 

object-recognition memory by validating it against the mDNMS task. Thus, within each 

experimental chapter, the rats were also tested on the NOP test and their scores were compared 
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to scores obtained on the mDNMS task.  

Overall, the findings reveal that the mDNMS task is an effective tool for measuring both 

short and long-term object-recognition memory, and that rats can acquire the task much faster 

than conventional DNMS tasks. Moreover, the results raise concerns regarding the manner in 

which NOP data are interpreted, namely, that novelty-preference scores should not be 

uncritically assumed to reflect the status of object-recognition memory. These findings are 

important because they demonstrate the advantages of using an alternative approach to the 

existing object-recognition tests, while also revealing major problems concerning the internal 

validity of the NOP test as a means to gauge object-recognition abilities in rats.  

The following sections describe the history and rationale for assessing object-recognition 

memory in rats, followed by a discussion on the shortcomings of the existing tasks. It begins 

with a description of brain-damaged-produced amnesia in human neuropsychological patients 

(Section 1.1). This is followed by a historical description of the progression from nonhuman 

primate models of human amnesia to more focused research on the biological basis of one facet 

of recognition memory—object-recognition memory (Section 1.2). Next, a historical account is 

provided on the development of object-recognition tasks for use with rats, followed by a 

description of the drawbacks of the extant tasks (Section 1.3). Lastly, Chapter 1 ends with the 

general rationale behind the thesis (Section 1.4). 

1.1 Studies on human amnesic patients 

 A number of behavioural tasks have been developed for use with animals in an attempt to 

characterize brain structures that are engaged in distinct forms of learning and memory. 

Recognition memory is typically studied by presenting the subject with a familiar and unfamiliar 

stimulus, and then determining whether or not the subject can detect the difference in relative 

familiarity. The development of recognition tests for animals centered on descriptions from 

reports on human amnesic patients. Therefore, prior to describing the behavioural tasks for use 

with animals it is important to first describe features of the human amnesic syndrome. Indeed, 

traditional theories of memory largely grew from these human case studies as well as later 

research using nonhuman animals in attempts to model the human amnesic syndrome. 

 Reports of amnesia following brain damage have been documented since the late 1800s. 

The description of memory loss was associated with chronic alcohol abuse, and was later coined 

Korsakoff’s syndrome. Postmortem brain tissue analysis of these patients that suffered amnesia 
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revealed damage surrounding the third ventricle and the mammillary bodies (Gudden, 1896; 

Wernicke, 1881, as cited in Andersen, Morris, Amaral, Bliss, & O’Keefe, 2007). Around the 

same time, Bekhterev (1900) described a similar condition of patients suffering from memory 

loss, who upon postmortem brain tissue analysis, were found to have bilateral damage to the 

medial temporal lobe (MTL) (as cited in Andersen et al., 2007). Thus, these early reports 

suggested that damage to the diencephalon and the MTL were associated with amnesia. These 

structures, albeit topographically separate, share afferent and efferent connections, however, for 

the purpose of this thesis I will focus exclusively on research that has examined the effects of 

damage to the MTL on recognition memory. 

1.1.1. Medial temporal lobe (MTL) amnesia  

1.1.1.1 Anatomy of the MTL 

The MTL receives highly processed information from all sensory modalities via input 

from the association cortices. The MTL is comprised of several highly interconnected structures, 

namely the hippocampus (HPC), the amygdala (AMY) and the parahippocampal gryus, which 

consists of the entorhinal (EC), perirhinal (PRh), and parahippocampal (PH; postrhinal in the rat) 

cortices. Figure 1.1 illustrates the human and nonhuman primate brain depicting the location of 

the major structures of the MTL. Briefly, the HPC consists of the CA subfields (CA1-CA3), 

dentate gyrus, and subicular complex (subiculum, presubiculum, and parasubiculum). The HPC 

is caudal to the AMY and dorsal to the EC, PRh and PH. The HPC shares reciprocal connections 

with the EC, PRh, and PH (Lavenex & Amaral, 2000). The EC is medially adjacent to the PRh, 

and both are rostral to the PH (Lavenex & Amaral, 2000). 

The PRh and PH are the first stage in the integration of information from the neocortex 

within the MTL. The PRh and PH receive projections from multiple unimodal and polymodal 

association cortices and are a major source of EC neocortical input. The PRh and PH form 

reciprocal connections, and also have direct afferent connections with the HPC. The EC, 

however, provides the majority of neocortical input to the HPC via the perforant path (Insausti, 

Amaral, & Cowan, 1987; Lavenex & Amaral, 2000; Suzuki & Amaral, 1994). The EC is also 

involved in the major output pathway that relays information back to the neocortex. Indeed, the 

EC has efferent projections to the PRh and PH, which project back to the same unimodal and 

polymodal association cortices that provided initial input to the PRh and PH (Lavenex & 

Amaral, 2000; Suzuki & Amaral, 1994).  
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Figure 1.1. Illustrations of the ventral view of a rhesus monkey brain (left) and human brain 

(right) depicting the major structures in the medial temporal lobe. The image is adapted from 

Murray, Bussey, and Saksida (2007). Note: AMY = Amygdala; HPC = Hippocampus; PRh = 

Perirhinal cortex; EC = Entorhinal cortex; PH = Parahippocampal cortex. 
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The fimbria-fornix is the major fiber bundle that connects the HPC to the diencephalon 

(thalamus and hypothalamus) via both input and output projections (Amaral, Scharfman, & 

Lavenex, 2007). The AMY, which consists of a cluster of nuclei, receives input from both 

cortical and subcortical brain structures. The AMY receives projections from both unimodal and 

polymodal sensory cortices, and shares reciprocal projections with the HPC, EC, PRh and PH. 

Lastly, the AMY has substantial efferent projections to the prefrontal cortex, thalamus, and 

hypothalamus (Freese & Amaral, 2009).  

1.1.1.2 Research from human neuropsychological patients 

Although there were some findings from amnesic patients in the early 1900s implicating 

MTL damage with memory loss, extensive investigation into MTL damage and memory 

impairments was sparked by one amnesic patient in particular. In 1953, Henry Molaison (known 

as Patient H.M. in the scientific literature) underwent bilateral medial temporal lobectomy to 

treat a severe case of epilepsy (Scoville & Milner, 1957). The surgery was successful in that it 

greatly reduced the frequency of H.M.’s seizures. However, it resulted in an unforeseen and 

profound effect on H.M.’s behaviour: He had severe anterograde amnesia (an inability to form 

new memories) and mild retrograde amnesia (an inability to recall events that occurred prior to 

the surgery), however, his remote memories were intact (e.g., memories from childhood). 

Specifically, H.M. could not consciously recall information relating to facts and autobiographical 

events, a type of memory that is now referred to as declarative (Squire, 1986) or explicit memory 

(Graf & Schacter, 1985).2 Moreover, H.M.’s short-term memory appeared normal, as he could 

retain information by rehearsing it, however, he could not hold information in memory for long 

periods of time, revealing deficits in long-term memory storage. Despite this impairment, his 

intellectual, attentional, and linguistic skills remained intact, as well as his personality (Scoville 

& Milner, 1957). Moreover, comprehensive neuropsychological tests further revealed that some 

forms of learning and memory were preserved, such as motor skill learning (procedural 

memory), classical conditioning, and perceptual priming (Cohen & Squire, 1980; Milner, Corkin, 

& Teuber, 1968; Warrington & Weiskrantz, 1968, 1974). Interestingly, H.M. had no conscious 

recollection of learning or performing these aforementioned learning and memory tests despite 

having performed them numerous times (Cohen & Squire, 1980; Milner, 2005). Thus, memory 

 
2 The descriptive term declarative refers to a “type” of memory, whereas explicit relates to the demands of the 
particular task (i.e., whether it requires intentional or conscious recollection). 
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for information that did not require deliberate recollection, or declarative knowledge, appeared to 

be spared. These types of memory are referred to as nondeclarative (Squire, 1992) or implicit 

(Graf & Schacter, 1985) memory. The neuropsychological testing conducted on patient H.M. and 

other patients with MTL damage revealed that there were multiple dissociable memory systems.  

 The extent of H.M.’s MTL lesion was based on Scoville’s post-operative drawings, 

which were only speculative at the time due to the lack of neuroimaging techniques to evaluate 

postoperative outcomes. Scoville intended to perform a bilateral resection that would extend 8 

cm from the rostral tips of the temporal lobes, with the intent to remove the uncus, AMY, HPC, 

and PH (Scoville & Milner, 1957). In addition to patient H.M., Scoville and Milner’s 

neuropsychological report described several other patients that had undergone varying degrees of 

bilateral resections of the temporal lobes. Similar to H.M., the patients that had suffered memory 

loss also sustained damage to the HPC, and the extent of HPC damage appeared to be correlated 

with the severity of the memory impairments. Consequently, it was concluded that the memory 

loss was associated with HPC damage (Milner et al., 1968; Penfield & Milner, 1958; Scoville & 

Milner, 1957). Over the next few decades, the focus was on the HPC as the major anatomical 

structure underlying MTL amnesia. In the early 1990s following improvements in in vivo 

biological research methods, magnetic resonance imaging (MRI) scans revealed that 

approximately half of patient H.M.’s HPC remained intact, while other MTL structures such as 

the PRh, EC, PH, and AMY received extensive damage (Corkin, Amaral, Gonzalez, Johnson, & 

Hyman, 1997). This was an important finding because it suggested that H.M.’s impairments, 

which included visual recognition, were not entirely the result of HPC damage. The resolution of 

the MRI scans at the time, however, were not high enough to provide detailed anatomical 

boundaries of the MTL lesion, thus only following the death of H.M. in 2008 was there 

conclusive information on the extent of the lesion (Annese et al., 2014). The postmortem 

imaging in combination with direct histological analyses of H.M.’s brain revealed that the 

resection only extended ~5 cm, not 8 cm, posterior to the temporal tips, such that portions of the 

HPC remained intact, whereas the majority of the PRh and AMY were removed, and the entirety 

of the EC was removed (Annese et al., 2014; Augustinack et al., 2014).  

1.1.2 Limitations of research on human neuropsychological patients  

There are certain limitations to studying recognition memory in human patients that have 

sustained damage to the brain. As briefly detailed above, it is difficult to conclude which brain 



 

 

8 

structure contributes to specific memory impairments. Moreover, damage is typically not 

restricted to anatomically circumscribed areas of the brain and in cases where it is, rarely is the 

damage complete. In addition to the attributes of the lesion, there is a lack of information 

regarding the patient’s memory abilities prior to the brain damage. This piece of information is 

crucial when determining whether or not the brain damage is responsible for subsequent 

impairments. Indeed, simply administering a memory test after a person has incurred brain 

damage can only provide information on whether or not an ability is impaired, not if it is 

responsible for that impairment. Consequently, nonhuman animal models provide the 

opportunity for systematic investigation of these questions. In animal studies, selective lesions 

can be made to determine whether or not specific functions remain intact and tests can be 

administered prior to the surgery.  

1.2. Development of nonhuman primate models of MTL-damaged-produced amnesia 

When researchers first studied patients with MTL-damaged-produced-amnesia in the 

1950s and 1960s, very little was understood about memory processes and the type of memory 

tasks that could be used to model MTL amnesia, as the type of learning and memory abilities that 

were impaired and spared following damage to MTL structures were not fully characterized. 

Consequently, researchers had difficulty developing appropriate behavioural tasks for animals 

that were analogous to those failed by human amnesic patients, and the first behavioural tests 

created to model brain-damaged-produced-amnesia in nonhuman animals failed (Duva, 

Kornecook, & Pinel, 1999). As studies on human amnesic patients in laboratories shed light on 

the spared and impaired memory abilities following MTL damage, it advanced the development 

of behavioural tests for nonhuman animals analogous to those failed by human amnesic patients.  

In terms of deciding which MTL structures to lesion in order to model human amnesic 

syndrome, there was a focus on HPC lesions primarily because findings from humans suggested 

there was a correlation between the extent of presumed HPC loss and severity of memory 

impairments (Duva et al., 1999; Milner et al., 1968; Scoville & Milner, 1957). Also, Scoville and 

Milner (1957) observed that patients who sustained bilateral damage to other MTL structures, 

such as the AMY, in the absence of HPC damage, did not suffer from amnesia. 

By the late 1970s researchers produced the first successful model of MTL amnesia using 

nonhuman primates, and a pivotal factor in this breakthrough was the development of one 

particular behavioural task: the trial-unique delayed nonmatching-to-sample (DNMS) task 
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(Gaffan, 1974; Mishkin, 1978; Mishkin & Delacour, 1975). Using the DNMS task, Mishkin 

(1978) showed that MTL lesions impaired nonhuman primates’ performance on the test. 

Following this discovery, which will be elaborated in the next section, the DNMS task became 

the most widely used test to assess MTL-damage-produced amnesia in animals. The following 

sections describe the task and the subsequent research examining the effects of MTL lesions on 

nonhuman primates’ performance on the DNMS task.  

1.2.1. The trial-unique delayed nonmatching-to-sample task 

 The trial-unique DNMS task (henceforth simply referred to as DNMS) requires the 

subject to make a judgment of familiarity about a recently presented object. A trial on the DNMS 

task consists of two phases: a sample and a choice phase. On the sample phase, an object (called 

the sample) is briefly presented to the subject by placing it over a food well and allowing the 

subject to displace it to retrieve a food reward. The sample is removed from view for a brief 

retention interval (e.g., 5 s), and is then presented again alongside a novel (unfamiliar) object. 

The subject receives a reward if it selects the novel object in the pair. Different sample and novel 

objects are used on each trial, so reliably accurate performance requires that the subject can 

recognize the sample objects. Several trials are conducted within a session, and a performance 

criterion (e.g., 90 correct choices in 100 trials) is implemented to confidently determine that the 

subject has mastered the nonmatching rule. Thus, the main dependent measure is the accuracy of 

responding. Nonhuman primates quickly learn the reward contingency with high accuracy 

(>90%) when the delay lasts only a few seconds. After reaching the performance criterion, the 

demands of the task are made increasingly difficult by either increasing the length of the 

retention interval or by increasing the number of items in a list to be remembered (e.g., 2, 3, 

4…).  

 The development of the DNMS task was significant because it was analogous to the 

recognition tests used with human amnesic patients. For example, on human visual recognition 

tests, the participant is presented with a list of items (e.g., words or pictures), and then the list is 

taken away. After a retention interval, the participant is presented with a list that contains a 

combination of previously presented items and new items. The participant is asked to identify the 

items that appeared on the original list (MacDougall, 1904). Correspondingly, the DNMS task 

requires that the subject distinguish between an object that was previously presented (familiar) 

and a new one (unfamiliar).  
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The DNMS is considered to assess working-memory—memory for information that is 

only needed for one trial on a task (Honig, 1985). There were several key factors that made the 

DNMS task successful compared to the nonspatial working-memory tasks devised for nonhuman 

primates in the 1950s and 1960s. The first feature was the use of a large set of stimulus objects, 

rather than a small set of recurring objects. The nonspatial delayed-response paradigms in the 

1950s and 1960s used only a small set of stimuli across trials, resulting in the stimuli becoming 

familiar after only a few trials (Correll & Scoville, 1965; Etkin & D’Amato, 1969; Mishkin & 

Weiskrantz, 1958; Scheckel, 1965; Weinstein, 1941). Thus, on each trial, the nonhuman primate 

was required to remember which of two equally familiar stimuli it had encountered more 

recently. Consequently, this makes the task a measure of recency memory (memory for the 

temporal order of stimuli), not recognition memory, which nonhuman primates have difficulty 

successfully performing when the delay lasts only a few seconds. A second feature was the 

introduction of longer retention intervals, ones that lasted more than several seconds. The 

retention intervals used on the existing tasks were not sufficiently long to observe whether or not 

an impairment existed. The longest delay used was ~10 s, which is within the limits of short-term 

memory, and is largely spared in human amnesic patients (Correll & Scoville, 1965; Mishkin, 

1954; Mishkin & Pribram, 1954). Thus, the nonhuman primates with MTL lesions in those 

studies may have been impaired on the task, but it went undetected because only short delays 

were used. This was later confirmed, when research revealed patients with brain-damaged 

produced amnesia can successfully perform delay response tasks following 10-s delays (Sidman, 

Stoddard, & Mohr, 1968). This was further confirmed when Zola-Morgan and Squire (1985) 

found that nonhuman primates with bilateral lesions to the HPC and AMY performed similar to 

controls on delayed response tasks when the delay was 8 s, but their performance significantly 

declined when the delay was increased to 15 or 30 s. 

In 1978, Mishkin published research on the first animal model of human amnesia using 

trial-unique stimuli on a DNMS task. Nonhuman primates with combined lesions to the HPC and 

AMY, but not separate lesions to each structure, were severely impaired on the test revealing a 

delay-dependent impairment. They were able to reach a performance criterion when the delay 

between the sample and test phase was short (10 s) but they were impaired relative to controls 

when the delay was increased to 30, 60, and 120 s (Mishkin, 1978). The accurate performance at 

short delays indicated that the nonhuman primates were capable of executing the rule, thus, the 
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deficit caused by the combined HPC and AMY lesion following longer delays was unlikely to be 

due to a failure to remember and apply the nonmatching rule. Instead, the results suggested that 

combined HPC and AMY lesions had no effect on short-term memory, but they prevented the 

formation of memories if the delay exceeded 30 s. The results from this study, along with those 

from other experiments at the time, led to the conclusion that the HPC and AMY equally 

contributed to the type of memory loss observed in human MTL amnesia (Mishkin & Murray, 

1994; Zola-Morgan & Squire, 1985). Moreover, these findings were convincing because the 

observed delay-dependent impairment on the test was similar to those observed in human 

patients who had suffered from MTL damage –performance was normal on visual recognition 

tests when the retention interval was a few seconds, but declined when the retention interval was 

increased to several minutes (Squire & Zola-Morgan, 1991; Zola-Morgan & Squire, 1985). 

Accordingly, the object-recognition task developed for nonhuman primates appeared to assess 

similar underlying memory processes affected by temporal lobe damage while sparing memory 

for procedural learning, which was not affected by damage to the MTL (Squire & Zola-Morgan, 

1991). This was later supported with research showing that human amnesic patients with 

bilateral MTL damage had similar performance impairments on the DNMS task used for 

nonhuman primates –their performance was normal following a 5-s delay but declined as the 

delay was increased to 15 and 60 s (Squire, Zola-Morgan, & Chen, 1988). Thus, testing 

nonhuman primates with MTL damage on object-recognition tasks provided a successful model 

of human MTL amnesia. 

1.2.2. Elucidating the role of specific MTL structures in amnesia 

Following the successful development of an animal model of MTL amnesia, there was 

still emphasis on the HPC as the primary structure associated with stimulus recognition 

impairments. Some researchers found evidence to support this hypothesis by showing that HPC 

lesions alone produced DNMS impairments in nonhuman primates following long retention 

intervals (Mahut, Zola-Morgan, & Moss, 1982; Zola-Morgan & Squire, 1986). Others, however, 

reported only mild deficits following HPC lesions (Mishkin, 1978; Mishkin & Murray, 1994). 

One variable that seemed to differ between these studies was the extent of presurgery training the 

subjects received. Nonhuman primates with extensive presugery training were only mildly 

impaired on the task, whereas those with no presurgery training were impaired on the task 

(Mahut et al., 1982; Zola-Morgan & Squire, 1986). This factor does seem to influence whether 
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or not an impairment will be observed, suggesting HPC lesions disrupt other skills contributing 

to normal performance on the task, such as learning the nonmatching rule and withholding hasty 

responses (Mumby, 2001). 

A more crucial discovery based on research conducted over the next decade revealed that 

the observed impairments in nonhuman primates on the DNMS task following combined lesions 

made to the HPC and AMY were the result of incidental damage made to the rhinal cortex (i.e., 

the EC and PRh) during the surgical removal of the HPC and AMY (Duva et al., 1999). At the 

time, it was difficult to perform HPC or AMY lesions without causing damage to the nearby 

cortex, and the role of the rhinal cortices in memory were not fully considered. Studies began to 

reveal that select rhinal cortex lesions, specifically the PRh, impaired both the acquisition of, and 

performance on, the DNMS task (Meunier, Bachevalier, Mishkin, & Murray, 1993; Mishkin & 

Murray, 1994; Murray & Mishkin, 1986; Suzuki & Amaral, 1994; Suzuki, Zola-Morgan, Squire, 

& Amaral, 1993; Zola-Morgan, Squire, Amaral, & Suzuki, 1989; Zola-Morgan, Squire, Clower, 

& Rempel, 1993). Conversely, select lesions made to the HPC and AMY without damaging 

cortical tissue did not result in impairments (Zola-Morgan, Squire, Amaral, et al., 1989). Thus, 

overtime it was becoming increasingly clear that the HPC was not critical for normal 

performance on the DNMS task, whereas the PRh appeared to play a critical role in the ability to 

recognize previously encountered stimuli.  

Since the discovery of MTL damaged-produced-amnesia, decades of neuropsychological 

research, including converging evidence from animal studies, have revealed that there are 

different “types” of memory, and in addition to the MTL supporting the formation of memories, 

there is functional diversity within MTL structures—each with specialized functions that 

appeared to subserve distinct mnemonic processes. To illustrate, research has implicated the 

HPC in playing an integral role in processing allocentric spatial and contextual information, 

whereas the PRh appears to be critical for object-recognition memory (Aggleton & Brown, 1999; 

Brown & Aggleton, 2001; Murray & Richmond, 2001; O’Keefe & Nadel, 1978). Evidently, over 

time the emphasis on developing animal models of MTL amnesia evolved to focus on 

elucidating the functional role of distinct MTL structures in specific learning and memory 

processes.  
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1.3 Object-recognition paradigms for use with rats 

While research was being conducted on nonhuman primates, attempts were being made 

to develop nonspatial memory tests for use with rats. Using rat models provides the opportunity 

for large-scale experiments, as nonhuman primate experiments are costly, which consequently 

limits both the number of experiments that can be conducted and the sample size within 

experiments. To date, rodents are the most widely used animals in experiments assessing the 

neural basis of object-recognition memory. The following section describes the two most 

common object-recognition paradigms developed for use with rats, and the findings from 

experiments that involved discrete lesions made to MTL structures. Though the two tasks are 

used to measure the same underlying ability, they are quite different from one another and 

provide qualitatively different information regarding the status of object-recognition. A 

description of the drawbacks associated with each task will be further elaborated to make clear 

the rationale for developing a new test of object-recognition for rats.  

1.3.1 DNMS paradigms 

Beginning in the mid 1980s, researchers examined object-recognition memory in 

laboratory rats using variants of the trial-unique DNMS task (Aggleton, 1985; Mumby, Pinel, & 

Wood, 1990; Rothblat & Hayes, 1987). The development of these rodent DNMS paradigms 

advanced our understanding of the contributions of distinct MTL structures to object-recognition 

memory by providing the opportunity for large-scale experiments. They also helped bridge the 

findings in nonhuman primates and humans. Similar to DNMS procedures used for nonhuman 

primates, the rodent versions also consist of a sample phase, retention interval, and a choice 

phase. Although there were a few DNMS task variants, they all assess performance based on the 

same two dependent measures: 1) the mean number of trials needed to reach a performance 

criterion and 2) the mean percent correct choices on the task.  

The first rodent DNMS task was developed by Aggleton (1985), and was conducted 

using a Y-maze apparatus (see Figure 1.2). The three arms of the Y-maze apparatus were 

separated by guillotine-like doors placed in the center of the maze. On a trial, one arm was  
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Figure 1.2. Aggleton’s Y-maze DNMS task paradigm. The top two figures depict Trial 1 (a) the 

beginning of Trial 1 and (b) the first choice. The bottom figure (c) depicts the start of Trial 2. 

The coloured portions of the Y-maze arms represent the removable goal boxes (stimulus 

objects). The dashed grey line represents the correct choice. Image adpated from Aggleton 

(1985). 
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designated the start box, while the other two were designated goal boxes. The stimulus objects 

consisted of 40-50 different pairs of goal boxes, which could be attached to the ends of the arms. 

These boxes differed in their visual and tactile properties, such that they were painted in different 

colours and patterns, and had different floor substrates (e.g., sandpaper, metal, or cloth). Each 

pair of boxes contained an identical object fastened to the floor. A hole at the back of each 

goalbox made it possible to deliver a food reward to the rat after it had made its choice. A trial 

on the task began by placing the rat in the start box and raising the guillotine-like doors to expose 

two identical ‘sample goal boxes’ (e.g. A1 and A2). The rat was rewarded with food pellets for 

entering either one (e.g., A1). Then, the rat was enclosed in this sample goal box for 20 s while 

the experimenter replaced the start box with either the copy of the sample goal box (A2) or a 

novel goal box (B1). In the latter case, the experimenter simply left the sample goal box (A2) in 

its previous location. At the end of the 20 s, the guillotine door opened and the rat made a choice 

between entering the sample or novel goal box. The rat was rewarded if it chose the novel goal 

box (B1). This goal box then served as the sample goal box on the subsequent trial, and the other 

two goal boxes were randomly replaced with a copy of the now-sample goal box (B2) and a 

novel goal box (C1). The trials proceeded in this sequential fashion. To implement longer 

retention delays, after the rat was confined to the goal box for 20s, the box was removed (with 

the rat in it) and replaced with a featureless box, which the rat was then “tipped” into, where it 

remained for the designated delay period (Aggleton, Hunt, & Rawlins, 1986, p. 136). At the end 

of the delay, the guillotine door was raised and the rat could make a choice. On trials where a rat 

made an incorrect choice, it was provided the opportunity to make a second choice. This was a 

necessary feature of the paradigm because the rat had to enter the goal box that would serve as 

the sample for the subsequent trial (Aggleton et al., 1986). 

Rats received 10 trials per day on the task and were trained using a 0-s delay until they 

reached a performance criterion of at least 80% correct choices on five consecutive days (40 

correct choices out of 50). Aggleton reported that rats required a mean number of 130 trials to 

reach the performance criterion (excluding criterion trials). After reaching criterion, rats were 

tested using a 20, 60, and 120-s delay and were found to maintain good performance: 84%, 74%, 

and 80%, respectively (Aggleton, 1985). Importantly, this study was the first to demonstrate that 

rats, like nonhuman primates, could perform well on a DNMS task.  
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The features of Aggleton’s DNMS paradigm, however, differed from nonhuman primate 

DNMS tasks in several ways, and this was hypothesized to potentially change the cognitive 

demands on the task, consequently making it more difficult to generalize findings from rats to 

nonhuman primates (Mumby et al., 1990). First, the stimulus objects were quite different from 

those used on the nonhuman primate DNMS version. In the nonhuman primate version, the 

stimuli consisted of “junk” objects in which the subject physically manipulated by displacing it 

from over a food well, not an object that was fixed to the floor. Moreover, the goal boxes in 

which these objects appeared incorporated varied spatial features that could serve as a cue to 

distinguish between stimuli. This feature makes the task not necessarily a discrete test of 

nonspatial information, like those used with nonhuman primates. Additionally, the disruption 

during the delay that came with changing the goal boxes and tipping the rat into a different box 

was likely distracting to the rats. Second, unlike conventional procedures used to test nonhuman 

primates, trials on Aggleton’s DNMS task proceeded sequentially such that the novel goal box 

on the first trial became the sample goal box on the second trial. In nonhuman primate DNMS, 

two new objects serve as the sample and novel on each trial. Lastly, the number of stimuli used 

was quite small compared to nonhuman primate DNMS tasks that use 200+ objects. As stated 

above, using small numbers of stimuli can potentially lead to the recognition task becoming a 

test of recency memory, which is much more difficult for animals to solve.  

At the same time, Rothblat and Hayes (1987) developed a rodent-based DNMS task that 

more closely matched the tasks used for nonhuman primates (see Figure 1.3). Namely, this 

consisted of the use of discrete trials and a large pool of 250 junk objects that could be positioned 

over food wells in which a rat could easily displace to retrieve a food reward. The apparatus 

consisted of an elevated rectangle-shaped platform with 2 cm high walls. There was a start area 

at one end of the platform and three recessed food wells at the other, which were connected to a 

food dispenser operated by the experimenter. At the beginning of a trial, the rat was retained in 

the start area by a guillotine door that the experimenter controlled. Once the door was raised, the 

rat could run down the platform and displace a single object (sample object) placed over the 

middle food well and retrieve a food reward. Afterwards, the experimenter picked up the rat and 

returned it to the start area where it remained throughout the retention interval. Following the 

delay, the door was opened and the rat was presented with the sample object and a novel object,  
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Figure 1.3. A schematic of one trial of the DNMS paradigm developed by Rothblat and Hayes 

(1987) for testing rats. The top image depicts the sample phase, whereby a single sample object 

(blue square) is placed over one food well. The start door is raised and the rat is rewarded for 

displacing the sample. The bottom image depicts the choice phase. The sample and a novel 

object (green triangle) are each placed over a food well; once the start door is raised the rat is 

rewarded if it displaces the novel object. Image adapted from Rothblat and Hayes (1987). 
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each over one of the lateral food wells. If the rat displaced the novel object first, it received a 

food reward. Rothblat and Hayes gave rats 12 trials per day using a 10-s delay. The rats were 

trained to reach a performance criterion of at least 75% correct choices on three consecutive days 

(27 correct choices out of 36). Rats reached a mean accuracy of 77% following an average of 

178 trials. When the delay was increased to 30 and 120 s, accuracy decreased to 70% and 63%, 

respectively (Rothblat & Hayes, 1987). Similar to nonhuman primates, there was a delay-

dependent decrease, despite the rats’ accuracy scores at respective delays being much lower.  

Although Rothblat and Hayes’s DNMS task more closely resembled the nonhuman 

primate DNMS, there were still drawbacks associated with it. Specifically, it appeared more 

difficult for rats to master, as they only reached a mean accuracy score of 77% following 178 

training trials, and their scores at the respective delays were much lower compared to scores 

obtained by nonhuman primates. Two potential factors that may have contributed to this 

diminished performance are the retention interval used during training, and handling the rat 

between the sample and choice phase. Compared to Aggleton’s DNMS version, the delay 

imposed between the sample and choice phase during task acquisition was rather long (10 s), and 

this may have made it more difficult for rats to remember the sample object. Additionally, 

handling the rat between the sample and test phase may have acted as a form of distraction 

during the retention interval—a factor shown to disrupt performance on DNMS tasks (Zola-

Morgan, Squire, & Amaral, 1989; Zola-Morgan & Squire, 1985). Another problem associated 

with Rothblat and Hayes’ version was the rather lenient performance criterion of at least 75% 

correct choices across three consecutive days. Implementing a high performance criterion is 

essential on DNMS tasks in order to confidently determine that a rat has mastered the reward 

contingency. Moreover, using a stringent criterion allows for the ability to detect even slight 

impairments in performance following some form of treatment (e.g., surgical lesion) (Mumby, 

personal communication, July 2012).  

Mumby and colleagues hypothesized that these aforementioned drawbacks limited a rat’s 

full potential performance on a DNMS task (Mumby, Pinel, & Wood, 1990). Accordingly, to 

achieve more comparable levels of accuracy with nonhuman primates on DNMS tasks using rats, 

Mumby and colleagues developed a new DNMS paradigm, one that addressed the limitations of 

the previous ones. This was achieved by incorporating the following features: 1) a strict 

performance criterion, 2) a short retention interval during task acquisition, 3) a large pool of junk 
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objects in which the rat would physically manipulate, and 4) doors to control the rat’s access to 

the sample and test phase, removing the need to handle the rat between trials. These changes 

required a modification to the training procedures and the apparatus design, which I will briefly 

describe next.  

The apparatus consisted of an elevated rectangular-shaped platform enclosed by tall (40 

cm) walls (see Figure 1.4). There were two recessed food wells located at each end of the 

platform, which were each connected to a long funnel that allowed the experimenter to deliver 

food pellets. An opening next to the food wells provided the experimenter with access to place 

objects over the food wells and to remove them. Two guillotine-like doors were located in the 

middle of the platform. The purpose of the doors was to allow the experimenter to control the 

rat’s access to different parts of the apparatus by manually raising and lowering them. 

Importantly, implementing the use of doors removed the need for the experimenter to handle the 

rat within and between trials. Similar to previous DNMS tasks, the experimenter plays an active 

role, as he/she is standing directly next to the apparatus administering each trial. A trial begins 

with the rat confined to the center of the apparatus and the experimenter raises one door. The rat 

walks down the runway and is briefly presented with an object (the sample). It displaces the 

object and receives a food reward. The rat then returns to the center area where it is given a 

retention interval that can last from several seconds to minutes. During this time, the 

experimenter places the sample next to a novel object at the opposing end of the apparatus. After 

the retention interval, the opposite door is raised and the rat is presented with a choice. If it 

displaces the novel object, it receives a reward. Different object are used on each trial, selected 

from a pool of 350 objects. 

Rats were trained on the task using a 4-s delay (the shortest interval that could be 

implemented as the experimenter set up the objects for the trial). Rats were trained to reach a 

performance criterion of at least 21 out of 25 correct choices on two consecutive sessions (at 

least 84% correct choices). After task acquisition using a short delay, training continued using 

longer retention intervals lasting seconds to minutes. The rats were trained on these longer delays 

until they re-attained the performance criterion, or reached a maximum number of 200 trials. 

Mumby and colleagues revealed that rats reached a mean accuracy of 90% following an average 

number of 235 trials at the shortest delay. Although performance dropped to 81% when the delay 

was increased to 60 s and then to 77% when increased to 120 s, performance remained  
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Figure 1.4. Illustration of the rodent DNMS paradigm developed by Mumby, Pinel, and Wood 

(1990). The left schematic depicts the location of the experimenter relative to the apparatus and 

the right schematic depicts the stages of one trial on the task: (a) The trial begins with the rat 

enclosed in the center with the two guillotine doors closed and the objects for the trial are setup 

at opposite ends (blue square and green triangle). (b) The guillotine door is raised and the rat 

approaches and displaces the sample object (blue square) and receives a reward; (c) the retention 

interval during which the experimenter places the sample next to a novel object (green triangle); 

and (d) the test whereby a rat makes a choice—if it displaces the novel, it receives a reward. 
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significantly above chance (Mumby et al., 1990). Notably, these accuracy scores were 

comparable to those achieved by nonhuman primates, and this DNMS paradigm most closely 

resembled the nonhuman primate version. It thus provided a suitable means to generalize 

findings from rats to nonhuman primates. Indeed, the paradigm developed by Mumby and 

colleagues has been used in the majority of published reports assessing DNMS performance in 

rats.   

1.3.1.2 Examining the effects of MTL lesions on rats’ DNMS performance 

There is anatomical and functional similarity between the brains of rodents and 

nonhuman primates. Rodents have brain structures that are homologous to parts of the MTL in 

primates (see Figure 1.5). The question remains, however, to what extent object-recognition 

memory involves similar cognitive processes in rodents and primates. Findings from experiments 

assessing DNMS task performance in rats following MTL lesions demonstrate that the task can 

be successfully used to detect impairments in object-recognition memory in rats. As will be 

outlined in the following section, research on rats appears to support the theories of MTL 

function developed from studies using nonhuman primates.  

The first lesion experiments in the mid 1980s focused on the HPC because at the time this 

structure was still hypothesized to play a critical role in object-recognition memory. Aggleton, 

Hunt, and Rawlins (1986) were the first to develop a rat model of MTL amnesia using their Y-

maze apparatus. In the study, rats received HPC lesions and were trained on the DNMS task. The 

results showed that compared to control rats, rats with HPC lesions successfully acquired the 

task at the same rate and reached the same level of accuracy following the maximum delay of 60 

s. Comparatively, Rothblat and Kromer (1991) reported that lesions made to the fornix3 after 

training rats on the DNMS task did not disrupt performance following a 30-s delay. Moreover, 

Mumby, Wood, and Pinel (1992) showed that rats with either separate or combined lesions of the 

HPC and AMY performed comparably to controls on the DNMS task at delays lasting up to 120 

s, and only showed a slight decline in performance following a 600-s delay. Thus, consistent 

with nonhuman primate studies, HPC lesions in rats did not appear to disrupt DNMS  

 
3 The fornix is the major efferent fiber from the HPC to subcortical structures and is considered to be integral for 
normal HPC functioning (Aggleton & Brown, 1999). Fornix transections were considered a form of HPC lesion that 
had the advantage of not damaging other structures outside the HPC—one inadvertent consequence of the aspiration 
technique that was used at the time (Gaffan, 1972). 
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Figure 1.5. Illustration of a rat brain (left) and coronal sections (right) depicting the major 

structures in the medial temporal lobe. Left image adapted from Kerr, Agster, Furtak, and 

Burwell (2007) and right images adapted from Paxinos and Watson (1998). Note: HPC = 

Hippocampus; AMY = Amygdala; PRh = Perirhinal cortex; EC = Entorhinal cortex; POR = 

Postrhinal cortex. 
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performance. Conversely, one study that used the same apparatus as Mumby and colleagues 

observed DNMS deficits in rats with HPC damage following delays lasting 60-s or longer, but 

not following shorter delays (Clark, West, Zola, & Squire, 2001). However, unlike previous 

experiments, the rats in the Clark et al. study did not receive any DNMS training prior to HPC 

lesions. Interestingly, it appeared that presurgery DNMS training influenced whether or not a 

performance deficit was observed –a similar finding in nonhuman primate DNMS studies. 

Indeed, providing extensive training using different delays prior to surgery seemingly helped rats 

master other skills (e.g., learning to avoid distraction during the delay) that are required for good 

performance at longer delays that may otherwise mask normal object-recognition abilities. 

Overall, findings from rodent DNMS studies were consistent with those being reported 

from nonhuman primates, revealing that damage to either the HPC or AMY did not produce 

DNMS deficits (Aggleton et al., 1986; Duva et al., 1997; Jackson-Smith, Kesner, & Chiba, 1993; 

Kesner, Bolland, & Dakis, 1993; Mumby, Pinel, Kornecook, Shen, & Redila, 1995; Mumby et 

al., 1996, 1992; Rothblat & Kromer, 1991; Shaw & Aggleton, 1993; Steele & Rawlins, 1993; 

Yee & Rawlins, 1994). Notably, the rodent DNMS studies helped elucidate the MTL structures 

that were critical for producing impairments on the DNMS task. This is because creating 

circumscribed lesions to the HPC without damaging surrounding rhinal cortices was much easier 

to do in rats than it was in nonhuman primates, due to the differences in the anatomical layout of 

MTL structures between the two species (Duva et al., 1999).  

Only a handful of studies have been published examining the effects of PRh damage on 

DNMS performance in rats. The first study was by Mumby and Pinel (1994), who trained rats on 

the DNMS task and then tested them using several delays ranging from 4 to 600 s. Afterwards, 

rats received rhinal cortex (EC and PRh) lesions and were tested again at the same delays. Rats’ 

scores on the 4-s delay was comparable to their pre-surgery scores, whereas their scores on 

delays of 15 s or longer had significantly declined (Mumby & Pinel, 1994). Wiig and Bilkey 

(1995) used the same DNMS paradigm, however, they administered PRh lesions or sham surgery 

prior to training rats on the DNMS task, and then assessed their performance on the task using 

delays ranging from 4 to 120 s. Compared to the sham-surgery rats, rats with PRh lesions 

required on average more trials to reach the performance criterion (but this was not statistically 

significant), and they were impaired on the task following delays lasting 30 s or longer (Wiig & 

Bilkey, 1995). The observed delay-dependent impairments in rats following PRh lesions were 
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consistent with findings from nonhuman primates, further supporting a critical role for the PRh, 

not the HPC, in object-recognition memory.  

1.3.1.3 Drawbacks of the existing DNMS paradigms for rats 

The rodent DNMS task developed by Mumby and colleagues appeared to provide a 

relatively precise measure of a rat’s object-recognition abilities, and it was a useful tool to assess 

the effects of treatments on object-recognition memory. However, there were certain drawbacks 

associated with it, which resulted in most researchers abandoning it. A required feature of the 

DNMS task is a strict performance criterion (e.g., 85% correct choices on two consecutive 

sessions, or 34 correct choices out of 40). These higher performance criteria are essential to 

confidently determine that a rat has mastered the nonmatching rule and to detect even slight 

performance deficits due to some treatment. Predictably, these performance levels are achieved 

only through extensive and time-consuming training. Most rats require several weeks of daily 

training, and hundreds of trials, to reach peak performance. The mean number of trials required 

for rats to reach the performance criterion on the different versions of DNMS paradigms is ~285 

trials (range 130-420). After the rat has acquired the task, it is typically trained using gradually 

longer retention intervals, which can take hundreds more trials. After training, rats receive 

additional sessions in which all the delays are presented in a mixed fashion. Thus, many 

investigators would consider this time requirement to be prohibitively long.  

Moreover, even at peak performance, rats do not perform accurately when the retention 

interval is more than a few minutes, and for this reason most previous studies have used 

maximum retention delays of 120-300 s. For example, the handful of studies that assessed 

normal rats’ performance following delays lasting more than a few minutes showed accuracy 

scores drop from an average of 89% using a 15-s delay to an average 59% following a 10-min 

delay (Mumby & Pinel, 1994; Mumby et al., 1990, 1992). Thus, conventional DNMS tasks 

cannot be used to study long-term memory with retention intervals of several minutes, or hours, 

or days.  

Lastly, DNMS tasks are difficult to administer and require experienced experimenters. 

The experimenter is in the room with the rat and plays an active and ongoing role in 

administering the trials (Herremans, Hijzen, & Slangen, 1995; Mumby, 1995; Mumby, 

Kornecook, Wood, & Pinel, 1995). So close to the test subjects, the experimenter must be 

mindful of making any movements and sounds that could distract the animal. Also, an 
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experimenter could unknowingly deliver cues to the rat as to which object will be rewarded on 

the choice test by, for example, making a slight body movement in anticipation of the rat making 

a correct choice on the test or leaving odour cues on the objects as a result of touching them 

between the sample and choice phase (Mumby, 2005, p. 385). Thus, due to the challenges faced 

employing the DNMS task for rats, researchers have generally abandoned it in favour of the 

novel-object-preference (NOP) test.  

1.3.2 The novel-object-preference (NOP) test 

The NOP test leverages a rat’s natural tendency to investigate novel objects more than 

familiar ones when both are presented in a familiar environment (Berlyne, 1950; Besheer & 

Bevins, 2000; Ennaceur & Delacour, 1988). Thus, this task does not require extensive periods of 

training. Conventional NOP procedures vary slightly from one laboratory to another, but all are 

generally similar (see Figure 1.6). At the beginning of a trial a rat is placed in an arena, where it 

is allowed to explore and investigate two identical sample objects for a designated amount of 

time (3 or 5 minutes) or until it accumulates a set total amount of time investigating the sample 

objects (e.g., 30 s). The latter method ensures that all rats spend equal time investigating the 

objects but it does not allow for controlling the amount of time the rat spends in the arena. The 

rat is then removed for a retention delay, after which it is returned to the arena, where there are 

now two new objects –one is identical to the sample and the other is novel. During the test, the 

amount of time the rat spends investigating the novel object is compared to the amount of time 

spent investigating the sample object, and an exploratory bias for the novel object on the test is 

taken to indicate the rat recognizes the sample object. Since it requires several minutes to 

conduct a single trial, normally only one trial is administered per day. Similarly, when collecting 

data using a particular delay, typically only a few trials are administered and in some cases only 

one trial (Gulinello et al., 2018). Consequently, a large number of rats are needed in order to 

obtain results with acceptable levels of variance.  

When Ennaceur and Delacour (1988) first described the series of experiments using this 

test, they simply referred to it as a “one-trial memory test.” Over time, it has been given several 

names, the most common being the spontaneous object recognition (SOR) task, the novel object 

recognition (NOR) test, and the novel-object-preference (NOP) test. In the present thesis, I will 

refer to the task as the novel-object-preference test because this nomenclature most accurately  
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Figure 1.6. Illustration of the NOP test design. The image on the left depicts the familiarization 

phase (with two copies of the sample object) and the image on the right depicts the test phase 

(with a third copy of the sample object and a novel object). 
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reflects the variable being measured, that is, a rat’s preference or lack thereof towards a novel 

object.4 

Additionally, when reporting NOP findings, I will describe results in terms of whether or 

not a “novel-object preference” was observed rather than “object-recognition,” as the former 

reflects the directly observable behaviour whereas the latter reflects the experimenter’s 

interpretation of the behaviour. 

Ennaceur and Delacour described the NOP test as being advantageous over the extant 

rodent DNMS tasks primarily for two reasons. First, it removed potential interpretational 

problems associated with tasks that incorporate a reference-memory component when gauging 

working-memory (i.e., learning a nonmatching rule and applying it on every trial). Specifically, 

failure to learn a reward contingency could be ruled out as a potential cause for poor 

performance on the test. Secondly, it did not require positive reinforcers (food reward), therefore, 

results could be compared to those obtained on human visual-recognition tasks that do not 

include an appetitive component. Moreover, removing the appetitive component from the 

paradigm reduced the potential confound of treatment effects that could disrupt motivational 

responses to a reinforcer.  

Through a series of experiments, Ennaceur and Delacour showed that after giving rats a 

one-time exposure to a sample object, they exhibited novel-object preferences following delays 

ranging from 1 min to 4 hr, but that this novelty preference disappeared following a 24 hr delay. 

This meant that memory for objects that were encountered either several minutes or hours earlier 

could be measured, introducing the possibility to assess long-term object-recognition memory, 

something that was unattainable with existing rodent DNMS procedures. Overall, the NOP 

paradigm made data collection more efficient and feasible compared to the DNMS, as data could 

be collected from several rats in a matter of days and did not require extensive training from an 

experienced researcher. This paradigm therefore provided an easy way to measure object-

recognition memory in rats, which did not suffer from the same drawbacks as DNMS tasks. 

It should be noted that Ennaceur and Delacour did not develop the novelty-preference 

paradigm but rather expanded on a behavioural paradigm first described by Berlyne (1950). This 

 
4 The term SOR does not seem suitable because while “object-recognition” can be inferred when a rat displays a 
novel-object preference on the test, the lack thereof does not necessarily signify a lack of “object-recognition” 
memory. Similarly, the name NOR suggests the rat recognizes the novel object on the test, when in fact, it is the 
sample object that would be recognized.   
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paradigm was originally used to measure exploratory behaviour in rats as a function of their 

curiosity and preference for novelty which was measured by introducing new objects to a 

familiar environment (Berlyne, 1950). Ennaceur and Delacour modified this procedure by 

implementing varying delays between a familiarization and test phase in order to introduce a new 

variable to measure—retention of an object. Moreover, the NOP test developed for rats was 

analogous to the human and nonhuman primate visual paired-comparison (VPC) task, which 

was first used to study visual perception (Fantz, 1956, 1958), and later used as a test of visual 

recognition in human infants (Fagan, 1970; Fantz, 1964) and nonhuman primates (Gunderson & 

Sackett, 1984). Briefly, on the familiarization phase of the VPC task, the subject is presented 

with a stimulus object to look at for a designated amount of time, and then following a delay it 

receives a test, whereby the familiar stimulus is now paired with a novel one. The dependent 

measure in this test is the amount of time the subject spends attending to or orienting towards 

each stimulus. When a subject exhibits a significant bias to look at the novel stimulus more than 

the familiar one, sample stimulus recognition is inferred. A difference between the VPC and 

NOP test is that while the VPC task can be described as a measure of visual recognition, the 

NOP test using three-dimensional objects cannot be, as rats can also rely on information from 

other sensory modalities (tactile and olfactory) when interacting with the objects. The VPC task 

is more commonly used to assess recognition abilities in infants and nonhuman primates 

(compared to human adults) due to their inability to verbally report whether or not they 

recognize previously encountered stimuli. Despite the fact that the VPC task has been developed 

for use with nonhuman primates, few studies have used it to examine the effects of MTL damage 

on visual-recognition in nonhuman primates. Those that have, typically include additional 

measures of object-recognition memory using the DNMS task (Bachevalier, Brickson, & 

Hagger, 1993; Buffalo et al., 1999; Nemanic, Alvarado, & Bachevalier, 2004; Pascalis & 

Bachevalier, 1999; Zola et al., 2000). Thus, contrary to research using rodents, the majority of 

experiments that have assessed the neural mechanisms mediating object-recognition memory in 

nonhuman primates have relied almost exclusively on the DNMS task.  

By the early 2000s, the NOP test had gained popularity in the field of neuroscience as a 

means to elucidate the neural mechanisms underlying object-recognition memory via 

experimental manipulations (e.g., lesions and pharmacological). Today, a ‘Web of Science’ 

database search of peer-reviewed articles published in the last 10 years using the terms 
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“spontaneous object recognition” or “novel object recognition” or “novel object preference” 

along with “rat” returns 1,966 peer-reviewed articles (Web of Science, May, 2019). Although the 

NOP test is currently the most widely used object-recognition test for rodents, there is no 

standard method for analyzing and reporting results. Thus, before describing the findings from 

experiments that have used the NOP test to examine the effects of discrete MTL lesions on rats’ 

object-recognition memory, it is necessary to first understand the different methods for analyzing 

NOP data.  

1.3.2.1 Analyzing and reporting NOP test results 

Unlike the DNMS task, there is no general consensus on how to measure behaviour on 

the NOP test. While the dependent measure of the test is consistently the amount of time (in 

seconds) the rat spends investigating the objects on the test, the operational definition for object 

“investigation” varies across research laboratories. Based on a review of articles published by 

authors that have cited Ennaceur and Delacour’s 1988 study on at least ten occasions, only the 

following two behavioural measures are explicitly included in the method sections: 1) the 

minimum distance the subject’s nose should be from the object, which varies between 1-4 cm 

across articles, and 2) climbing over or sitting on an object is not considered investigation (Web 

of Science, May, 2019). The majority of publications do not list ‘chewing the object’ or ‘rearing 

with at least one forepaw touching the object’ as a behavioural measure to include or exclude 

towards object investigation despite the fact that a rat will typically engage in both behaviours 

during the test. A highly cited protocol paper by Bevins and Besheer (2006) published in the 

journal Nature Protocols does however state “…any contact with mouth” constitutes object 

investigation (p.1309).5 Regardless, the lack of a stringent operational definition across research 

laboratories undoubtedly raises concerns over differences in the recorded amount of time a rat 

spends investigating objects and consequently the conclusions that will be drawn regarding the 

status of object-recognition memory. Additionally, considering only a few trials are 

administered, it limits both the sensitivity and stability of the measure.  

Similarly, there are several different methods used across research laboratories to report 

descriptive statistics for NOP data. Object investigation during each cumulative minute of the 

 
5 Whether or not “chewing” is indeed part of the operational definition and is simply not explicitly written in the 
method section in papers is concerning because the texture of an object can produce differences in levels of 
investigation for two objects when one is made of a chewable substance (e.g., plastic) and the other is not (e.g., 
glass). 
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test phase is recorded and typically data from only the first few minutes is analyzed. The 

rationale for the latter is that investigation during the beginning of the test is presumed to provide 

the most reliable measure of novelty preference, because as the test phase continues, the novel 

object becomes more familiar, reducing the differential exploration of the objects (Dix & 

Aggleton, 1999). Object investigation on the test is reported using one of the following three 

methods: 1) preference or investigation ratio (TimeNovel/(TimeNovel + TimeSample), 2) 

discrimination index or difference score (TimeNovel – TimeSample), or 3) discrimination ratio 

(TimeNovel – TimeSample)/ (TimeNovel + TimeSample). When using the latter two methods, a value of 

zero indicates equal time spent investigating the sample and novel object, whereas using the first 

method a ratio of 0.50 indicates equal time spent investigating both objects. The rationale behind 

using a ratio is that it adjusts for potential individual differences in the total amount of 

investigation time on the test.  

In terms of inferential statistics, as in the case of experimental manipulations when two or 

more groups of rats are tested, group mean scores can be analyzed using either a “within-

subjects” or a “between-subjects” method. The former entails comparing a group’s mean score to 

what would be expected by chance (e.g., a preference ratio of 0.5 or discrimination index of 0), 

where a group score that is statistically significantly above chance indicates that, on average, the 

group spent more time investigating the novel object versus the sample object. When this occurs, 

it is taken to indicate that the rats recognized the sample object, and thus object-recognition 

memory is intact. This method treats NOP scores as binary data (yes/no investigation bias). In 

contrast, the “between-subjects” method involves comparing the group mean scores to one 

another (e.g. treatment group vs. control group). When a statistically significant difference is 

observed between group scores, the group with the lower mean score is considered to have an 

object-recognition impairment—even if the group score is significantly above chance. 

Accordingly, using this method, the implication is that the magnitude of the novel-object 

preference is directly proportional to the strength of the memory for the sample object.  

The majority of research publications report both the between-subjects and within-

subjects analysis, whereas the interpretation of the results and conclusions regarding the effects 

of an experimental treatment on object-recognition are typically based solely on the between-

subjects analysis. Given that there are two methods used to interpret behaviour on the NOP test, 

it is unsurprising that different conclusions can be drawn from the same set of data. In order to 
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comprehend the interpretational problems associated with the way NOP data are analyzed, it will 

help the reader to be familiar with research findings using the NOP test. The following section 

presents results from experiments that have used the NOP test to examine the effects of lesions 

made to MTL structures on rats’ object-recognition memory. Given that there are two methods 

used to interpret NOP test scores, I will highlight which statistical method was used when 

presenting the results in order to provide context for the authors’ conclusions.  

1.3.2.2 Examining the effects of MTL lesions on rats’ NOP  

The majority of research aimed at testing the effects of HPC damage on object-

recogniton memory has relied almost exclusively on using the DNMS task, not the NOP test. Of 

the studies that have been conducted using the NOP test, they support the DNMS findings that an 

intact HPC is not critical for normal object-recogntion memory. Similar to control rats, rats with 

HPC lesions still exhibit significant novel-object-preferences on tests following delays lasting 

several minutes to 24 hr (Cohen & Stackman, 2015; Ennaceur & Aggleton, 1994, 1997; 

Ennaceur, Neave, & Aggleton, 1996, 1997; Forwood, Winters, & Bussey, 2005; Gaskin, 

Tremblay, & Mumby, 2003; Mumby, Gaskin, Glenn, Schramek, & Lehmann, 2002; Winters, 

Forwood, Cowell, Saksida, & Bussey, 2004). One group of researchers, however, reported that 

rats with HPC lesions displayed NOP deficits relative to control rats following delays lasting 

longer than 10-min, which the authors interpreted as resulting from object-recognition deficits 

(Clark, Zola, & Squire, 2000). In this case, the HPC group had average scores that were 

significantly lower relative to the control group, but their scores were significantly above chance, 

indicating that they successfully discriminated between the novel and sample object on the test 

(even after a 24-hr delay). Despite this report, most researchers that have conducted experiments 

aimed at testing the hypothesis that HPC damage impairs object-recognition memory have failed 

to find support for it. Overall, interpreting the effects of HPC damage on object-recognition 

memory using the NOP test has been fairly straightforward because rats with HPC lesions 

perform like control rats.  

Unlike research examining the role of the HPC in object-recognition memory, the 

majority of behavioural experiments assessing the effects of PRh damage on rats’ object-

recognition memory have relied almost exclusively on the NOP test, or variants of it. The 

findings from these studies have largely concluded that the PRh plays a critical role in object-

recognition memory (for a review see Brown, Barker, Aggleton, & Warburton, 2012; Murray & 
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Richmond, 2001; Winters et al., 2008). The conclusions from these studies are exclusively based 

on between-subjects analyses, which have shown that rats with PRh lesions have significantly 

lower novelty preference scores compared to control rats following delays lasting several 

minutes up to 48 hr (Aggleton, Keen, Warburton, & Bussey, 1997; Barker & Warburton, 2011; 

Bussey, Duck, Muir, & Aggleton, 2000; Bussey, Muir, & Aggleton, 1999; Ennaceur & 

Aggleton, 1997; Ennaceur et al., 1996; Liu & Bilkey, 2001; Murray & Richmond, 2001; Norman 

& Eacott, 2004; Winters & Bussey, 2005; Winters et al., 2004). 

Although these studies reveal that rats with PRh lesions exhibit lower average preference 

scores relative to control rats, the results are inconsistent in terms of whether or not these scores 

are significantly above chance. Upon closer inspection of the within-subjects analyses, some 

reveal that rats with PRh lesions fail to exhibit significant novel-object preferences on the test 

following delays lasting up to 15 minutes (Aggleton et al., 1997; Barker & Warburton, 2011; 

Ennaceur & Aggleton, 1997; Ennaceur et al., 1996; Liu & Bilkey, 2001), whereas others show 

intact novelty preferences, despite being significantly lower than those of control rats (Bussey, 

Duck, Muir, & Aggleton, 2000; Bussey et al., 1999; Ennaceur et al., 1996; Ennaceur & 

Aggleton, 1997; Norman & Eacott, 2004, 2005). In fact, rats with PRh lesions have been shown 

to exhibit significant novel-object preferences following delays lasting one hour (Barker, Bird, 

Alexander, & Warburton, 2007; Norman & Eacott, 2004) and even up to 24 hours (Winters et 

al., 2004). These findings demonstrate that rats with PRh damage can successfully discriminate 

between novel and sample objects on the test, indicating that they recognize previously 

encountered objects.  

The discordant findings make it difficult to firmly conclude whether or not PRh lesions 

disrupt rats’ object-recognition abilities. What can be concluded with more certainty from these 

findings is that PRh lesions appear to affect a rat’s spontaneous tendency to explore novel 

objects. The extent to which the latter reflects an object-recognition deficit, however, remains 

unclear. Accordingly, this raises two inherent issues surrounding the use of the NOP test as a 

gauge for object-recognition abilities: 1) to what extent does the magnitude of a novel-object 

preference reflect the persistence or accuracy of a rat’s memory for the sample object? and 2) 

what does a lack of novel-object preference signify in relation to the status of object-recognition 

memory?  
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Despite the widespread use of the NOP test as a gauge of object-recognition abilities, 

efforts to answer these two questions have been minimal. The following section details the 

research that has attempted to answer these questions, and illustrates the problems associated 

with the way NOP results are typically interpreted.  

1.3.2.3 Pitfalls of the NOP paradigm  

The underlying assumption when applying the between-subjects statistical method is that 

higher novelty preferences are indicative of superior memory for the sample object. This is 

problematic, however, because to date there is no research indicating that the magnitude of a 

rat’s novel-object preference reflects the persistence or accuracy of its memory for the sample 

object. For instance, the amount of time rats spend investigating objects during the 

familiarization phase (and presumably encoding object features) does not predict the degree of 

their novel-object preference, nor does providing rats with prolonged or repeated exposure to a 

sample object affect preference magnitude (Gaskin et al., 2010; Gervais et al., 2013, 2016; 

Gulinello et al., 2018). In one study, groups of rats were given different amounts of time to 

investigate a sample object: 5, 30, 60, 90, or 120 s, and were tested 3 hours later (Gaskin et al., 

2010). The rats in the first three groups failed to show a significant novel-object preference on 

the test and their mean scores did not significantly differ from one another. Conversely, rats that 

spent 90 or 120 s investigating objects during the familiarization phase displayed significant 

novel-object preferences, but their mean scores were not significantly different from one another. 

The lack of a linear relationship between the amount of time spent investigating sample objects 

and subsequent novelty preference scores suggests the latter may not truly represent strength in 

object-recognition memory. In a second experiment by the same researchers, rats were given 

repeated exposure to the same sample object over several trials, each time presented alongside a 

different novel object. They found that novel-object preferences did not significantly increase 

over trials, suggesting that repeated exposure to the sample object does not increase novelty 

preferences (Gaskin et al., 2010). These findings are contrary to two major assumptions that 

underlie the manner in which NOP data are usually interpreted –1) that rats are encoding 

information about the sample object's features when investigating it during the familiarization 

phase, and 2) the magnitude of the novel-object preference is a reflection of the persistence or 

accuracy of a rat's memory for the sample object. One implication of these findings is that 
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differences in the magnitude of a novelty-preference should not be uncritically taken to reflect 

differences in memory ability. 

Given the abovementioned findings, it is apparent that using the within-subjects analysis 

to interpret NOP results seems more appropriate. Indeed, when a group shows a significant bias 

to explore a novel object over a sample object, one can be confident that on average, the group 

recognized the sample object (presuming other factors have been controlled for such as 

counterbalancing objects between rats). In this respect, interpreting what a significant novelty 

preference on the test signifies is rather straightforward. However, a problem arises when trying 

to interpret what a lack of novelty-preference on the test signifies in relation to the status of 

object-recognition. A common implicit assumption is that the group, overall, has an object-

recognition memory impairment. This interpretation, however, is an example of an inverse 

fallacy: if X, then Y; if not X, then not Y. When a rat exhibits a significant novelty preference on 

the test, it can be confidently taken to indicate intact memory for the sample object, however, the 

inverse—a failure to exhibit a novelty preference on the test—does not confirm with the same 

level of certainty the status of memory for the sample object. As with any test of incidental 

learning in which an animal spontaneously explores, it is challenging to interpret what a 

behavioural response signifies in relation to some internal construct, such as memory. Indeed, a 

lack of bias to explore novel objects on the test following some treatment may reflect an object-

recognition impairment, but it could also reflect a disruption in non-mnemonic processes. For 

example, the treatment may alter or suppress a rat’s natural exploratory response towards 

familiar and unfamiliar objects (e.g., increase neophobia), or it could increase a behaviour that is 

incompatible with object exploration (e.g., thigmotaxis—staying close to the walls of an open 

field apparatus), thus reducing exploratory discrimination and obscuring intact recognition 

abilities. For this reason, caution should be exercised when inferring the meaning of null 

preferences following some form of treatment.  

The number of potential factors for why a rat fails to display a novelty preference on the 

test is confounded by the fact that the NOP test does not involve a goal, and thus the rat is not 

required to make an explicit choice response based on memory. The lack of an instrumental 

response is a shortcoming of the NOP test because it makes it difficult to rule out alternative 

explanations other than an object-recognition memory impairment as the reason a rat fails to 

exhibit a novel-object preference on the test. On the familiarization phase, the rat is likely 
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encoding information not only about the sample objects but also information on their location 

relative to spatial cues and the surrounding context.6 On the test phase, rats may rely on spatial 

and nonspatial information to successfully discriminate between the sample and novel object. 

Thus, when a rat fails to display a novel-object preference following some treatment, it could 

reflect a disruption in memory for a number of factors related to information learned during the 

familiarization phase. For example, the treatment may have disrupted memory for the sample 

object, the particular context in which the object was encountered (e.g., room and apparatus), or 

even the specific location of the sample object relative to cues within the apparatus (including 

the second copy of the sample object). This raises concerns about potential confounds that are 

introduced when trying to estimate a rat’s memory for a previously encountered object when it is 

not required to make an explicit choice between familiar and unfamiliar objects. Indeed, this may 

explain why there are inconsistent findings across NOP studies following some treatment. 

Moreover, a rat’s spontaneous investigation of a novel object can be modulated by 

internal attributes, such as stress levels, whereby higher stress levels reduce the tendency to 

approach novel objects (Gulinello et al., 2018; Hughes, 1997), or by external attributes related to 

test conditions (Berlyne, 1955; Besheer & Bevins, 2000; Blaser & Heyser, 2015; Ennaceur, 

2010; Wilkinson, Herrman, Palmatier, & Bevins, 2006). For example, object attributes such as 

size, texture, and complexity can induce different amounts of investigation (Berlyne, 1955; 

Chemero & Heyser, 2005; Ennaceur, 2010; Heyser & Chemero, 2012). Objects that can be 

climbed over and ones that have complex features elicit greater levels of exploration that do not 

decline with successive presentations compared to objects that cannot be climbed on or have 

simple features (Berlyne, 1955; Chemero & Heyser, 2005; Heyser & Chemero, 2012). Moreover, 

increasing the amount of exposure to the testing environment prior to the familiarization phase 

increases sample object investigation during the familiarization phase. The latter is thought to 

occur because other competing behaviours, such as exploring features of the apparatus, are 

reduced (Besheer & Bevins, 2000; Sheldon, 1969). These findings reveal the delicate nature of 

the testing conditions when using the NOP test and highlight the importance of standardizing test 

 
6 Indeed, there are variants of the NOP paradigm used to measure such aspects of recognition memory. For example, 
object-place memory—the ability to recognize that a familiar object is in a location where there previously was no 
object (Dix & Aggleton, 1999; Ennaceur et al., 1996; Gaskin, Gamliel, Tardif, Cole, & Mumby, 2009; Mumby, 
Gaskin, et al., 2002) and object-context memory—the ability to recognize that an object was previously encountered 
in a particular context (Dellu et al., 1997; Dix & Aggleton, 1999; Mumby, Gaskin, et al., 2002; O’Brien et al., 2006; 
Piterkin et al., 2008). 
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conditions across studies. Additionally, the number of potential factors that can influence 

behaviour on the test demonstrate how it can be difficult to conclude with certainty that a lack of 

novel-object preference reflects a failure in object-recognition memory, and not some alternative 

explanation. 

In summary, it is unclear what the magnitude of the novelty preference signifies in 

relation to the status of object-recognition memory, despite the widespread use of this measure as 

an indicator for object-recognition abilities. Moreover, because the NOP test does not require the 

rat to make an explicit choice response based on memory, it is difficult to rule out alternative 

interpretations for the observed behaviour on the test. Accordingly, the interpretational problems 

associated with the NOP test call into question the internal validity of it as a means to measure 

object-recognition memory in rats. 

1.4 Rationale and objectives of the thesis 

Although the existing DNMS tasks can provide a fairly precise estimate of a rat’s object-

recognition abilities, there are certain drawbacks associated with them. Specifically, rats require 

extensive training to learn the nonmatching rule, they are difficult for inexperienced 

experimenters to effectively employ, and rats’ scores on the test decline when using delays 

lasting more than a few minutes. Consequently, conventional DNMS tasks are labour intensive 

and cannot be used to assess long-term object-recognition memory. The NOP test on the other 

hand is easy to use, yet it suffers from inherent interpretational problems, which raise concerns 

regarding its internal validity. Given the limitations associated with both tasks, the aim of this 

thesis was to develop a new object-recognition task for rats. There were four objectives 

developed for this task to address the known limitations of the existing tasks, namely, we wanted 

to create a task that: 1) rats could master quicker than conventional DNMS tasks, 2) was simple 

for the experimenter to employ, 3) could be used to assess long-term object-recognition memory, 

and 4) provided a straightforward interpretation of behaviour as it relates to object-recognition 

memory. The interpretational problems associated with the NOP test would likely apply to any 

test of incidental learning that lacks an unambiguous instrumental behavior. Accordingly, we 

decided to develop a modified DNMS (mDNMS) task that would incorporate the advantageous 

features of conventional DNMS tasks, yet would be easier for rats to acquire and less difficult for 

experimenters to use. A secondary goal of the thesis was to compare rats’ performance on the 

new task to that on the NOP test as a means to validate the latter.  
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In the experiment described in Chapter 2, rats were trained on the mDNMS task, and then 

their performance on the task was assessed following various retention intervals. Rats required 

significantly fewer trials to learn the nonmatching rule compared to conventional DNMS tasks, 

and their scores showed good test re-test reliability. The same rats’ exhibited significant novelty-

preference scores on the NOP test, however their scores showed poor test re-test reliability and 

were not significantly correlated with mDNMS scores. The latter finding suggests that the two 

tasks may not necessarily tax similar underlying cognitive processes.  

 The experiments described in Chapter 3 assessed rats’ performance on the mDNMS task 

following long retention intervals (72 hr, 3 weeks, and ~45 weeks), while at the same time 

measuring their performance on the NOP test using the same delays. Rats successfully 

discriminated between the novel and sample objects on the mDNMS task following all three 

delays, whereas on the NOP test, rats failed to exhibit significant novel-object preferences. The 

divergent findings between rats’ performance on both tasks further add to concerns regarding the 

way NOP data are typically interpreted, such that the magnitude of the novel-object preference 

reflects the persistence or accuracy of the memory for the sample object. 

The experiment described in Chapter 4 examined the effects of separate lesions made to 

the HPC and PRh on mDNMS task performance and the NOP test following short retention 

intervals. Neither HPC nor PRh lesions failed to disrupt performance on the mDNMS task, but 

rats with PRh lesions failed to display a novelty preference on the NOP test. The discrepancy in 

the PRh rats’ performance on both tasks raises concerns regarding the internal validity of the 

NOP test, specifically, that a lack of novelty preference is not necessarily indicative of an object-

recognition memory impairment. 

The aim of the experiment in Chapter 5 was to refine the mDNMS task. We incorporated 

a Go/No-go procedure to include latency to make a choice as a behavioural measure of object-

recognition memory. The findings revealed that latency to make a choice provided a more 

sensitive measure of object-recognition memory than choice-accuracy on the test. The findings 

from this experiment demonstrate the advantages of incorporating multiple behavioural measures 

as a means to estimate object-recognition memory in rats.   
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Abstract 

Studies of object-recognition memory in lab rats began in the late 1980s, using variants of the 

trial-unique delayed nonmatching-to-sample (DNMS) task. By the end of the 20th century, most 

investigators who wanted to study object-recognition in rodents had abandoned the DNMS task 

in favor of the novel-object-preference (NOP) test, mainly because the latter test is relatively 

easy to employ, whereas conventional DNMS tasks are not. Some concerns have been raised, 

however, about the internal validity of the NOP test as a method of measuring object-recognition 

abilities. Specifically, preference scores on the NOP test may not accurately reflect the 

underlying construct—object-recognition memory. The primary goal of this experiment was to 

develop a new object-recognition task that addresses the drawbacks of the existent tasks. We 

developed a modified DNMS (mDNMS) task which included the same underlying principles of 

DNMS tasks, namely the inclusion of an instrumental response and a reward for accurate 

choices, while using a large apparatus that reduced both the involvement of the experimenter in 

administering individual trials and constraints on natural exploratory behaviour. Rats were 

trained on the mDNMS task and performance was examined using several short delays ranging 

from 100 s to 10 min. Rats successfully learned the nonmatching rule in fewer than 25 trials, and 

they made accurate choices with retention intervals of up to 10 min. A secondary goal of the 

experiment was to compare rats’ performance on the mDNMS task to scores obtained on the 

NOP test as a means to validate the latter. Presuming scores on the NOP test are an index of a 

rat’s object recognition abilities, we predicted to find a positive linear correlation between scores 

on the mDNMS task and NOP test. The results revealed that there was no correlation between 

scores on the mDNMS task and the NOP test, indicating that scores on the two tasks do no 

necessarily reflect the same underlying construct. Overall, the results from the new task provide 

support for its effectiveness as an estimate of object-recognition memory in rats. Moreover, the 

findings raise concerns regarding the use of the NOP test as a means to measure object-

recognition abilities. 
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2.1. Introduction 

Two behavioral paradigms have been used to assess object recognition—the ability to 

discriminate the familiarity of previously encountered objects—in rats: delayed nonmatching-to-

sample (DNMS), using trial-unique or pseudo-trial-unique stimuli, and novel-object preference 

(NOP). Variants of the NOP test are the most widely used, by far. Concerns have been raised, 

however, about the internal validity of the NOP test as a method of measuring object-recognition 

abilities (Gaskin et al., 2010; Gervais et al., 2013, 2016); these concerns are outlined, below. 

Although DNMS tasks have not been subjected to the same criticisms, they possess different 

shortcomings that limit their usefulness; namely, compared to the NOP test, conventional DNMS 

tasks are considerably more difficult and time-consuming to employ. 

 The limitations inherent in the NOP test and conventional DNMS tasks motivated us to 

develop a new method for assessing object-recognition memory in rats.  In order to appreciate 

the merits of the new procedure, it is important to first examine the existing methodologies for 

assessing object-recognition memory in rats, and examine their respective advantages and 

limitations. 

 Various DNMS procedures were developed in the late 1980s (e.g. Aggleton, 1985; 

Mumby, Pinel, & Wood, 1990; Rothblat & Hayes, 1987). Each variant uses a somewhat different 

apparatus, but all use 3-dimensional objects for test stimuli, and follow the same general 

procedure: On each DNMS trial, a sample object is briefly presented (usually for only a few 

seconds or less), and after a retention interval, the sample is presented again along with a novel 

object (i.e., one the rat has not previously encountered during the current session). The rat 

receives a reward if it selects the novel object. Different sample and novel objects are used on 

each trial, so reliably accurate performance requires that rats can recognize the sample objects. 

Memory demands are manipulated by varying the retention interval or the number of objects to 

remember on each trial. There are several trials per session, and a well-trained rat may be able to 

complete 20 or 25 trials in less than half an hour (if the retention interval on each trial is only a 

few seconds, and the inter-trial interval is similarly brief). If rats that receive different treatments 

consistently perform at similar levels of accuracy when memory demands are minimal, then it 

can be inferred with some confidence that different levels of accuracy under more challenging 

conditions reflect real differences in object-recognition abilities.  

Although a DNMS task can provide a fairly precise estimate of a rat's object-recognition 
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abilities, the DNMS procedures developed in the 1980s share some drawbacks in common: They 

are difficult for inexperienced investigators to employ effectively, primarily because the 

experimenter is in the room with the rat and plays an active and ongoing role in administering 

the trials (Herremans et al., 1995; Mumby, 1995; Mumby, Kornecook, et al., 1995). Even in the 

hands of a capable experimenter, most rats require hundreds of trials before they reach peak 

performance, which can require weeks of daily training. Many investigators would consider this 

time-requirement to be prohibitively long. Moreover, even after extensive training, rats can 

perform accurately only if the retention delay is no more than a few minutes, and for this reason, 

most previous studies have used maximum retention delays of 120 - 300 s (see Table 1 in 

Appendix A). Thus, conventional DNMS tasks cannot be used to study long-term memory with 

retention intervals of several minutes, or hours, or days.  

 Conventional NOP procedures vary slightly from one laboratory to another, but all are 

generally similar to those described by Ennaceur and Delacour (1988). A rat is placed in an 

arena, where it is allowed to explore and investigate two identical objects for a few minutes. The 

rat is then removed for a retention delay, after which it is returned to the arena, where there are 

now two new objects -- one is identical to the sample and the other is novel. Rats tend to spend 

more time investigating the novel object during the test, indicating that they recognize the 

sample object. With conventional procedures, rats may show a novel-object preference after 

retention intervals of up to 24 hr, and with modified procedures, after intervals of up to several 

weeks (Gaskin et al., 2003; Mumby, Glenn, Nesbitt, & Kyriazis, 2002; Mumby, Piterkin, 

Lecluse, & Lehmann, 2007; Mumby, Tremblay, Lecluse, & Lehmann, 2005). Thus, the NOP test 

has the potential to assess long-term object-recognition memory after retention intervals of 

several days. 

The NOP test exploits rats' tendency to investigate novel objects more than familiar 

objects, when those objects are encountered in a familiar environment (Berlyne, 1950; Besheer 

& Bevins, 2000). Because the novelty preference is displayed spontaneously under appropriate 

conditions, no extensive training is required for either experimenters or rats, which makes the 

NOP test a widely accessible and time-efficient procedure for generating data with the potential 

to provide insight into rats' object-recognition abilities.  

Despite the practical advantages of the NOP test, however, some recent observations 

have raised concerns about the internal validity of the NOP test as a gauge for object-recognition 
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abilities. For instance, the amount of time rats spend investigating objects during the 

familiarization phase does not predict the magnitude of their novel-object preference, nor does 

providing rats with prolonged or repeated exposure to a sample object affect preference 

magnitude (Gaskin et al., 2010; Gervais et al., 2013, 2016). These findings are contrary to two 

major assumptions that underlie the manner in which NOP data are usually interpreted -- 1) that 

rats are encoding information about the sample object's features when investigating it during the 

familiarization phase, and 2) the magnitude of the novel-object preference is a reflection of the 

persistence or accuracy of a rat's memory for the sample object. One implication is that 

differences in the magnitude of a novelty-preference should not be uncritically taken to reflect 

differences in memory ability.  

The interpretational problems associated with the NOP test would likely apply to any test 

of incidental learning that lacks an unambiguous instrumental behavior. Accordingly, we decided 

early in our plan to develop a new object-recognition test that should incorporate some 

advantageous features of conventional DNMS tasks: 1) the involvement of an instrumental 

response with which the rat makes an explicit choice between familiar and unfamiliar objects, 2) 

a reward for accurate choices, and 3) the possibility of testing individual rats on several trials per 

session, with each trial consisting of an independent test of recognition memory. A new object-

recognition task would be appealing only if it were easier for rats to learn than the DNMS tasks 

developed in the 1980s. We reasoned that the latter objective could be achieved by diminishing 

the presence and role of the experimenter in administering individual trials. What we came up 

with is essentially a modified-DNMS (mDNMS) task. There were three objectives when we 

developed this task, namely, we wanted a DNMS task that rats could master quicker than 

conventional DNMS tasks, required little human intervention when administering trials, and 

could successfully be used to assess long-term object-recognition memory in rats.  

Rats were trained on the mDNMS task and then tested using retention delays ranging 

from 100 s to 4 hr. We also tested rats on the NOP test using a 180-s delay. A second major goal 

of this study was to compare rats’ performance on the mDNMS task to scores obtained on the 

NOP test, as a means to validate the latter. Indeed, if we accept that scores on the mDNMS task 

accurately reflect rats’ recognition abilities, and this is what supports good performance on the 

task, and the NOP test is a valid measure of object-recognition abilities, then we predicted a 

positive linear correlation to exist between scores on the mDNMS task and NOP test. 
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2.2. Materials and Method 

2.2.1. Subjects  

The subjects were ten experimentally naïve male Long-Evans rats (Charles River, St. 

Constant, QC), weighing 225-275 g (~8 weeks old) at the start of the experiment. The rats were 

pair-housed in polypropylene cages (48 × 25 × 20 cm) in a colony room maintained under a 

reverse 12:12 light-dark cycle, with light onset at 8:00 p.m. The rats had continuous access to 

water and each received a daily ration of ~25 g of rat chow (Charles River Rodent Animal Diet, 

no. 5075) in the late afternoon, after behavioral testing was finished for the day. All procedures 

were approved by the Concordia University Animal Care and Use Committee, and were in 

accordance with the guidelines of the Canadian Council on Animal Care.  

2.2.2. Apparatuses 

 2.2.2.1. mDNMS task. A large multi-level environment (152 × 145 × 86 cm) was used to 

test the rats (Figure 2.1). The apparatus was a modified, freestanding steel cage rack, enclosed on 

three sides by wire mesh, with a removable, clear acrylic front panel. The apparatus had five 

levels, each covered with woodchip. The top four levels were divided into two equal halves by a 

plastic barrier wall, and the bottom level remained undivided. A loading cage (58 × 37 × 20 cm) 

was placed on the top left side of the apparatus. A rat entered the apparatus via a hole in the 

bottom of the loading cage that was placed over a passageway leading to the top level of the 

apparatus. Rats traversed the different levels via wire mesh passageways located on both sides of 

the apparatus. The design of the apparatus was such that a rat had to climb down the 

passageways on the left side of the apparatus in order to gain access to the right side, which it 

then could ascend from level to level. The top four divided levels contained plastic rectangular 

platforms (30 × 12 × 1 cm) each with a recessed food well (2 cm in depth), over which stimulus 

objects could be placed. One platform was placed on each level on the left side of the apparatus, 

and on the right side of the apparatus, two platforms were placed on each level with the food 

wells 9 cm apart. All platforms were positioned near the middle barrier wall, in line with the 

passageway that provided access to the level. The room contained dim lights (20 lx) and three 

video cameras were used to record test sessions –one was positioned in front of the apparatus and 

two were positioned on the test side. 

2.2.2.2. NOP test. The apparatus for the NOP test was an open-field arena (60 × 70 × 70 

cm), constructed of grey PVC plastic. The floor of the arena consisted of a stainless-steel tray  
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a Pre-training stage 1 b Pre-training stage 2 c Pre-training stage 3 

 

 

 

 

 

 
 d    mDNMS task   

 
Figure 2.1. Diagram of the apparatus used for mDNMS testing depicting a session on (a-c) Pre-training 
stage 1, 2, and 3, respectively, and (d) mDNMS task acquisition, training at progressively longer delays, 
and pseudo-mixed delay testing. A loading cage provided access to the apparatus, and passageways on 
both sides of the apparatus allowed rats to access the different levels. The top four levels contained plastic 
platforms with recessed food wells in which objects could be placed over. During pre-training, the rat 
descended the left side of the apparatus encountering either (a) four copies of one sample object on stage 
1, (b) two copies of two distinct sample objects on stage 2, or (c) two copies of one sample object and two 
distinct sample objects on stage 3. During (d) mDNMS task acquisition and subsequent testing, the rat 
encountered four unique sample objects as it descended the left side. For all stages (a-d) once the rat 
reached the bottom level, it traversed to the right side where it ascended each level encountering 4 
different tests. On each test a copy of the sample object was paired with a unique novel object. During 
training at progressively longer delays and pseudo-mixed delay testing, a delay was imposed by 
temporarily blocking access to the test by inserting a removable barrier into the passageway.  
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covered with woodchips. The floor was removable via a slot at the bottom of one wall to 

facilitate changing the woodchips between each trial. The testing room contained dim lights (14 

lx) and a videocamera was positioned over the arena to record the sessions for later analysis. 

2.2.2.3. Stimulus objects. A total of 285 different objects were used as stimuli for the 

mDNMS task. Objects were made of plastic, metal, glass, or glazed ceramic, and ranged in size 

from 4 to 18 cm in height, and 4 to 13 cm in width. Each object was large enough to cover the 

food well but light enough to be easily displaced by a rat. There were two copies of each 

mDNMS task object –one for the learning phase and one for the test. The objects were cleaned 

after every trial on which they were used, by wiping with a damp paper towel. At the end of each 

day the mDNMS task objects were cleaned using a diluted bleach solution (1:20 concentration 

ratio). 

A separate pool of 6 objects was used for the NOP test. Objects for the NOP test were 

made of plastic, metal, glass, or glazed ceramic, and ranged in size from 7 to 18 cm in height, 

and 5 to 13 cm in width. There were at least three copies of each object–two for the 

familiarization phase and one for the test. A small glass jar (6 cm high) was attached to the 

bottom of each object with epoxy. The objects were fixed in place by screwing the jars into 

inverted lids that were attached to the stainless-steel tray in the open field arena (positioned 27 

cm from opposing corners). The objects were cleaned after every trial on which they were used, 

by wiping with a damp paper towel. At the end of each day the NOP objects were cleaned using 

a 70% ethanol solution. 

2.2.3. Behavioral procedures 

2.2.3.1. mDNMS task. The new paradigm involves a series of training stages, each of 

which the rat had to reach a specific criterion before moving onto the next stage. There were 

three stages: 1) habituation, 2) pre-training, and 3) mDNMS task acquisition.  

2.2.3.1.1. Habituation. The rats were handled for ~10 minutes daily for one week before 

they were habituated to the apparatus. The goal of habituation was to have rats complete an 

entire circuit of the apparatus (start on the top left level and finish on the top right level), with 

relatively little hesitation. Rats received two habituation sessions per day. On the first 20 

sessions, all 10 rats were placed in the apparatus for 30 minutes with no stimulus objects present, 

and ~20 Cheerios (1.8 g, General Mills) were placed on each level near and inside the food 

wells. On the final two habituation sessions, the rats were placed in the apparatus in pairs for 5 



 

 

46 

minutes, and only 5 Cheerios were placed inside each food well. By this point, each rat was 

consistently eating Cheerios from each food well and reliably completing the entire circuit. 

During this stage and subsequent stages, the experimenter left the room after placing the rats in 

the apparatus and watched the session on a TV monitor in an adjacent room.   

2.2.3.1.2. Pre-training. Pre-training consisted of three stages; stage 1, 2, and 3 (Figure 

2.1a-c). The rats were now tested individually and they were introduced to stimulus objects. The 

purpose of the pre-training stages was to gradually familiarize the rats to the procedural aspects 

of the task (e.g., learn to displace objects from over food wells and to dig for a buried Cheerio 

placed in food wells) and to teach them that the visual/tactile object features were key to 

predicting food location. Pre-training stage 1, 2, and 3 differed in the number of distinct sample 

objects that were presented to the rat: one, two or three, respectively. The rat had to reach a 

performance criterion at each stage before advancing to the next stage.  

On each stage, a rat received one session per day, which consisted of two phases: a 

sample phase and a test phase. On the sample phase, the rat descended the left side of the 

apparatus and encountered either four copies of one sample object (stage 1, see Figure 2.1a), two 

copies of two different sample objects (stage 2, see Figure 2.1b), or three different sample 

objects –two copies of one object on the top two levels, and two distinct sample objects on the 

bottom two levels (stage 3, see Figure 2.1c). One Cheerio was placed in each food well to 

encourage the rat to approach and investigate the sample objects. On the test phase, the rat 

ascended each level on the right side of the apparatus encountering a different novel object 

paired with a copy of the sample object and one Cheerio was placed in the food well under each 

novel object. Thus, the test phase consisted of four separate ‘trials’, one for each level. On stage 

2 and 3 the sample objects on the test phase were presented in the same order that the rat had 

encountered them on the sample phase (i.e., the first sample object appeared on the first test 

level). The sample and test phase were separated by a short retention interval in which the rat 

spent traversing the bottom level of the apparatus. On the first few stage 1 sessions, the objects 

only partially covered the food well to encourage timid rats to displace objects. As sessions 

continued, the objects were gradually positioned to cover the entire food well. During stage 2, 

the Cheerios on the sample and test phase were gradually buried beneath woodchip until the food 

well was entirely filled to the top (2 cm deep) and rats were consistently digging for the Cheerio. 

Burying the Cheerio was done in an attempt to reduce the likelihood that a rat would rely on 
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olfactory cues to locate the reward. Moreover, by making the rat dig for the Cheerio we 

increased both the delay and amount of effort necessary to retrieve the Cheerio from beneath the 

novel object.  

A correct choice on a test trial was defined as the rat either displacing the novel object 

before displacing the sample object, or only displacing the novel object. An incorrect choice was 

defined as the rat only displacing the sample object, or displacing the sample object before the 

novel object. If a rat did not displace either object on a particular test, it was considered a non-

trial. For a particular rat, we began recording its accuracy on the test phase once all objects fully 

covered the food well. Different sample and novel objects were used on each session. On stage 1 

a total of 15 different object sets were used, each containing 8 copies of one sample object and 4 

unique novel objects. After 15 sessions, rats re-encountered the objects again in the same 

sequence, starting with the first object set. On stage 2 and 3 four new object sets were introduced 

–each containing four copies of two distinct sample objects and four unique novel objects. These 

objects sets were used in combination with the stage 1 sets. The location of the novel object on 

the test phase was counterbalanced in a pseudorandom order. 

After the rat completed the final test, the experimenter entered the room and removed the 

rat from the top right side of the apparatus. Between each rat, the woodchip on every level was 

redistributed to spread any potential odor cues left by a previous rat and each object platform was 

cleaned using a 70% ethanol solution. A rat advanced to the next pre-training stage once it 

reached a performance criterion of at least 80% of trials correct on five consecutive sessions (i.e., 

at least 16 correct trials out of 20 trials). A rat was given a maximum of 50 sessions at each stage 

to reach the performance criterion.  

 2.2.3.1.3. mDNMS task acquisition. During the final training stage, rats encountered four 

distinct sample objects, one on each of the divided levels of the sample phase (see Figure 2.1d). 

Thus, this stage was similar to conventional DNMS tasks in that each sample object was 

encountered only once during the sample phase and was subsequently paired with a unique novel 

object for the test phase. Similar to pre-training, a session consisted of a sample and test phase. 

On the sample phase, a rat descended the apparatus to familiarize itself with four distinct sample 

objects, encountering a different one on each level. One Cheerio was buried in the food well 

under each sample object. During the test phase, a copy of each sample object was presented 
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next to a novel object. A Cheerio was buried under the novel object on each test level. Each 

session consisted of four trials, as there were four distinct sample objects in the apparatus.  

From this point forward a new collection of object sets was used. The objects changed on 

each session, however, the same objects served as the sample objects and novel objects for all 

rats. Once a particular object was used on a session, it was not used again until all of the objects 

in each set were used. This resulted in a particular object re-occurring approximately every 20 

sessions. Moreover, an object that served as a sample the first time a rat encountered it, served as 

a novel the next time it was encountered (and vice versa). The sample and novel object on each 

trial were paired based on similarities in size, weight, and material. The location of the novel 

object on each test was counterbalanced in a pseudorandom order. A rat was required to reach a 

performance criterion of at least 80% of trials correct on five consecutive sessions (16 trials 

correct out of 20). The average delay between the sample and test phase was 30 s (s = 22.47). A 

rat was given a maximum of 50 sessions at this stage to reach the performance criterion. Rats 

received one session per day and were tested no fewer than five days per week. The dependent 

measures were mean percent correct choices and mean number of sessions required to reach the 

performance criterion. 

2.2.3.1.4. Training at progressively longer delays. Once a rat met the performance 

criterion at the 30-s delay, the delay between the sample and test phase was increased to 70 then 

90, 220, 330, 440, and then 630 s.7 To impose a longer retention delay, the passageway leading 

to the first test was blocked with a removable barrier (see Figure 2.1). Additionally, after a rat 

reached the bottom level (delay area), the passageway leading to the last sample object was 

blocked to prevent a rat from going back to the sample phase. At the end of a particular delay the 

experimenter entered the room and unblocked the passageway leading to the first test to allow 

the rat to start the test phase. For each delay, the rat was required to reach the same performance 

criterion as before (16 trials correct out of 20 trials), or it received a maximum of 30 sessions.  

2.2.3.1.5. Pseudo mixed-delay testing. The final stage of DNMS testing consisted of 

presenting sessions with different retention delays (100, 220, 330, and 630 s) in a mixed fashion. 

The goal was to compare performance across the range of retention delays used during the 

 
7 In actuality the 220, 330, and 630-s delays were ~10 s shorter on average, but to avoid confusion when comparing 
scores obtained during training to those during pseudo mixed-delay testing, we made the delay values the same. The 
increase in delays presumably occurred because the rats became accustomed to waiting for prolonged periods in the 
delay area by the end of the training stage. 
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preceding stage of training, without the confounding effects of practice (Mumby, 2005). The 

shortest retention interval that could be achieved at this stage was 100 s, in contrast to the 30-s 

delay during acquisition. It appeared that after the rats received training at longer delays, they 

became accustomed to waiting in the delay area, and no longer quickly traversed to the test 

phase. All rats received ten sessions at each delay, administered in blocks of ten such that each 

rat received ten consecutive sessions with one delay before moving onto a different delay. The 

type of delay administered first and the sequence of the delays were randomized for each rat. 

Once a rat completed the pseudo mixed-delay tests, it received ten sessions using a 4-hr delay. 

Thus, all 4-hr delay tests were conducted last for all rats. The ten sessions at each delay were 

conducted on different days during a three-week period. 

2.2.3.1.6. Probe tests. Following the 4-hr delay tests, probe tests were administered to 

confirm the rats were not relying on olfactory cues to correctly locate the food reward buried 

under the novel object on the test phase. Two types of probe tests were conducted: 1) the food 

reward was omitted on the test (No Reward) and 2) the sample object was baited on the test 

(Sample-Baited). Two sessions (eight trials) of each type of probe test were performed and 

compared to two normal test sessions conducted contemporaneously. 

2.2.3.2. NOP test. Rats received NOP testing using a 180-s delay. Prior to NOP testing, 

rats were habituated to the open field arena for ten minutes daily for two consecutive days. Two 

identical objects were present in the open field arena during habituation. These objects were not 

used on subsequent experimental trials. Twenty-four hours following the last habituation session, 

rats received their first trial. A trial consisted of a familiarization phase and a test phase. For the 

familiarization phase, a rat was placed in the open field arena and allowed to explore two 

identical sample objects for five minutes. Following a 180-s retention interval, the rat was 

returned to the arena which then contained a copy of the sample object and a novel object, and 

the rat was allowed to investigate for five minutes. Objects were counterbalanced between rats 

such that the sample objects for approximately half of the rats were used as the novel objects for 

the remaining rats. The side in which the novel object appeared on was counterbalanced between 

rats and across trials for an individual rat. Each rat received three trials with a 180-s delay and 

trials were conducted on different days during a two-week period. Different object pairs were 

used for each trial, but the same object pair was used for all rats on corresponding trials. All three 

object pairs used in this experiment had been previously screened for preference by a different 
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group of rats in a nonchoice test. The NOP tests were administered approximately four weeks 

after the mDNMS tests at the 220-s delay.  

Time spent investigating objects was scored using ODLog (Macropod software, version 

2.6.1). The rats were considered to be investigating an object if their head was 4 cm away from 

the object and oriented towards the object, or away from the object at no more than a 45º angle. 

A rat standing on its hind legs and touching the object with at least one forepaw was also 

considered to be investigating. Climbing or sitting on top of an object was not considered 

investigation. The main dependent measure was the investigation ratio. This ratio compares the 

total object investigation time to the time spent with the novel object during the test phase (Ratio 

= [Timenovel/ (Timenovel + Timesample)]. To determine whether rats’ discriminated between the 

objects, a one-sample t-test (p < .05) was used to compare mean investigation ratios to chance 

level of investigation (i.e., a ratio of 0.50). A ratio that was significantly greater than 0.50 

indicated the rat spent more time investigating the novel object. 

2.2.4. Statistical analyses 

Statistical analyses were performed using the Statistical Program for the Social Sciences 

(SPSS) software for Mac (IBM, version 22). The critical threshold for statistically significant 

results was set at p < .05. Eta-squared and Hedge’s g are reported as measures of effect size.  

2.2.4.1. mDNMS task 

 2.2.4.1.1. Test-retest reliability. The ten sessions from the 220-s delay pseudo-mixed 

delay testing were used to assess the test-retest reliability of the data. The scores on the 220-s 

delay sessions were chosen for the reliability analysis because these scores were used to compare 

performance on the NOP test, which had the same retention delay. A two-way mixed-effects, 

absolute-agreement ICC was calculated to measure the test-retest reliability of the rats’ scores on 

the 220-s delay sessions.   

2.2.4.2. NOP Test 

2.2.4.2.1. Test-retest reliability. A two-way mixed-effects, absolute-agreement ICC was 

calculated to measure the test-retest reliability of the rats’ performance on the three 180-s delay 

NOP trials.   
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2.2.4.2.2. Correlational analyses. Pearson correlation coefficients were computed to 

assess the relationship between total time spent investigating the sample objects during the 

familiarization phase and the average investigation ratios on the test. 

2.2.4.3. Comparing performance on the mDNMS task and NOP test. Pearson 

correlations were computed to assess the relationship between accuracy scores on the mDNMS 

task and investigation ratios on the NOP test.  

2.3. Results 

2.3.1. Data Screening 

Before conducting any analyses, the data were screened according to the recommended 

best practices outlined by Kline (2009). The statistical assumptions for one-sample t-tests, 

ANOVA, and correlation were verified. All scores were standardized in order to detect the 

presence of outliers. A z-score greater than 3 was used to describe an outlier (Kline, 2009). 

Standardized scores for each variable did not reveal the presence of any outliers.  

The normality of the distribution was assessed for each variable by measuring skewness 

and kurtosis. Scores were considered normally distributed with a skew less than 3 and a kurtosis 

less than 10 (Kline, 2009).The distribution of scores was also graphically assessed for normality 

using a histogram with a normal curve fitted to it. In the current sample, all variables showed 

acceptable skew and kurtosis, therefore no transformations were applied.  

Bivariate scatter plots were investigated to verify the assumptions of linearity and 

homoscedasticity. A visual inspection of the scatter plots confirmed a linear relationship between 

variables and confirmed that the homoscedasticity assumption was not violated. 

2.3.2. mDNMS Task  

One rat failed to reach the performance criterion within the allotted 50 sessions during 

mDNMS task acquisition. Thus, the results for this rat were excluded from all analyses. 

Additionally, during the pseudo-mixed delay tests some rats displayed positional biases on at 

least one of the four test levels (i.e., the rat consistently displaced objects according to their 

position on the test—right or left—and not whether it was novel). Using a chi-square test of 

goodness-of-fit it was determined that a significant preference for a particular side that the object 

appeared on a test level was indicated by a choice of that side on 9 or more of the total 10 trials 

(α = .05). Accordingly, test levels that had a ratio of at least 9 to 1 were excluded from analyses.  
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This resulted in the exclusion of the following: 1) 10 trials (1 test level) for four rats on 

the 100-s delay, 2) 20 trials (2 test levels) for one rat and 10 trials for two rats on the 220-s delay, 

3) 20 trials for one rat and 10 trials for one rat on the 300-s delay, 4) 10 trials for four rats on the 

600-s delay, and 5) 10 trials for five rats on the 4-hr delay. 

2.3.2.1. Pre-training. On stage 1, rats reached an accuracy of 92.02% following an 

average of 6.67 sessions (s = 5). On stage 2, rats reached an accuracy of 83.34% following an 

average of 6.11 sessions (s = 1.36). Lastly, on stage 3, rats reached an accuracy of 85% following 

an average of 5.89 sessions (s = 1.83).  

2.3.2.2. mDNMS task acquisition. Figure 2.2a depicts DNMS scores on the first and last 

5 sessions at each delay during acquisition. Performance during the first training session at the 

30-s delay was significantly above chance (M = 67.44%, s = 32.4%). Rats reached a mean 

accuracy of 84.48% following an average 6.11 sessions (s = 7.24) (excluding criterion sessions). 

A dependent-samples t-test revealed a statistically significant improvement in scores from the 

first to the last 5 sessions of acquisition (t(8) = -2.82, p = .01, Hedge’s g = -1.26, 95% CI [-2.28, -

0.24]). The highest level of accuracy for the rat that failed to reach the performance criterion was 

75% by Session 16.  

Each time the delay was increased, performance initially declined and then improved 

with more testing at the new delay. Figure 2.2b depicts the mean number of sessions rats 

required to reach the performance criterion at increasing delays. Not all rats reached the 

performance criterion at increasing delays. One rat failed to reach the criterion at the 70 and 220-

s delay, four rats failed to reach the criterion at the 90 and 330-s delay, and three rats failed to 

reach the criterion at the 440 and 630-s delay.  

2.3.2.3. Pseudo mixed-delay testing. Figure 2.3 depicts the mean retention curves. The 

length of the retention intervals increased from 100 to 630 s during this stage of testing, and then 

to 4-hr in a separate block of trials. The results of a repeated-measures analysis of variance 

(ANOVA) indicated that performance declined significantly with increases in the retention delay 

(F(4,32) = 2.86, p = .04, η² = 0.36). Follow up t-tests (Bonferroni corrected) revealed a significant 

difference between the 100-s and 4-hr delay (p = .01). Performance at the 4-hr delay was not 

significantly above chance (t(8) = 1.61, p = .07, Hedge’s g = .76, 95% CI [-0.20, 1.72]). 

Considering the novelty of the 4-hr delay procedure may have contributed to the near chance 

score at the 4-hr delay, a separate repeated-measures ANOVA was conducted on scores ranging   
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Figure 2.2. Mean scores (± SEM) on the (a) first and last five sessions of the DNMS acquisition 

phase and (b) mean number of sessions required to reach the performance criterion at each of the 

seven delays (excluding criterion sessions). The white numerical values on the bars represent the 

number of rats that attained the performance criterion during that delay. 
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Figure 2.3. Mean scores (± SEM) on the pseudo mixed-delay sessions.  



 

 

55 

from the 100-630-s delay. This revealed no significant difference in scores (F(3,24) = 1.49, p = 

.24, η² = 0.19), suggesting no decline in accuracy with increasing delays. 

2.3.2.4. Probe tests. One rat died prior to probe testing, thus the results reported are only 

for eight rats (Figure 2.4). We compared rats’ scores on the probe tests to scores on the normal 

tests that were administered contemporaneously. Rats’ scores were not significantly different 

from chance on the “No Reward” probe (t(7) = .27, p = .40, Hedge’s g = .14, 95% CI [-0.79, 

1.07]) and the “Sample-Baited” probe (t(7) = 1.62, p = .08, Hedge’s g = .82, 95% CI [-0.15, 

1.79]). The scores on the normal tests were also not significantly above chance (t(7) = 1.18, p = 

.14, Hedge’s g = .59, 95% CI [-0.41, 1.59]). In addition, a repeated-measures ANOVA revealed 

no significant difference between scores on the probe and normal tests (F(2, 14) = .60, p = .56, η2 = 

.09). 

2.3.2.5. Test re-test reliability mDNMS task. One-sample t-tests (one-tailed) revealed 

that accuracy scores on the 220-s delay were significantly above chance level (t(8) =  3.38, p = 

.005, Hedge’s g = 1.59, 95% CI [0.51, 2.67]). Cohen’s κ was computed to assess inter-rater 

reliability on a random selection of 40% of the trials for each rat. There was excellent agreement 

between the two raters, κ = .92, p < .001. A two-way mixed-effects, absolute-agreement ICC 

estimate revealed a good correlation, ICC = .74, 95% CI [.20, .94], p = .01. Accordingly, it is 

estimated that 26% of observed variance is due to random error. 

2.3.3. NOP Test 

Rats spent on average 85.11 seconds (s = 21.95) investigating objects during the 5-min 

familiarization phase. On the test phase, an average investigation ratio was calculated for each 

rat, based on the three NOP trials. Ratios were calculated separately for each cumulative minute 

of the 5-min test. One-sample t-tests (one-tailed) using the first 3-min of the test phase revealed 

that mean investigation ratios were significantly above chance level (t(8) = 2.22, p = .03, Hedge’s 

g = 1.16, 95% CI [0.15, 2.17]). Thus, on average, rats spent significantly more time investigating 

the novel objects than sample objects on the test. Scores remained statistically significantly 

above chance for the remainder of the test, however they were not statistically different from 

chance during either the first or first two minutes of the test. The time spent investigating objects 

on the test trials were tested for inter-rater reliability. Thirty-percent of test data were chosen at 

random for the rater to score. A two-way mixed-effects, absolute-agreement ICC estimate 

revealed an excellent correlation, ICC = .98, 95% CI [.91, .99], p < .001.  
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Figure 2.4. Mean scores (± SEM) on the probe and normal test sessions. Dashed line represents 

chance performance. 
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2.3.3.1. Test re-test reliability. A two-way mixed-effects, absolute-agreement ICC 

estimate revealed a poor correlation, ICC = .34, 95% CI [-1.06, .84], p = .23. Accordingly, it is 

estimated that 66% of observed variance is due to random error. 

2.3.3.2. Correlational analyses. There was no significant correlation between total time 

spent investigating objects during the familiarization phase and investigation ratios (r = -.49, p = 

.18, 95% CI [-.87, .27]), indicating the magnitude of the novelty preference on the test was 

unrelated to the amount of sample object investigation during the familiarization phase. 

2.3.4. Correlation between scores on the mDNMS task and NOP test  

Figure 2.5 shows the results of a correlational analysis of NOP investigation ratios and 

mDNMS task accuracy scores. There was no significant correlation between average mDNMS 

accuracy scores and average NOP investigation ratios (r = .29, p = .44, 95% CI = [-.46, .80]), 

indicating that accuracy to discriminate the familiarity of a previously encountered object on the 

mDNMS task was not significantly correlated with the magnitude of novel object preference on 

the NOP test.  

2.4. Discussion 

One goal of the present experiment was to develop a DNMS procedure that rats could 

learn more quickly than conventional DNMS tasks, while still performing accurately with 

retention intervals lasting several minutes. Rats required an average of 24 trials to reach the 

performance criterion of 84% correct choices on five consecutive sessions (criterion trials not 

included). By comparison, rats trained using the DNMS procedure described by Mumby and 

colleagues required on average 174-420 trials to reach a criterion of at least 85% of trials correct 

on two consecutive sessions (see Table 1 in Appendix A for relevant comparisons between the 

data reported here and in several previous DNMS studies) (cf. Clark, West, Zola, & Squire, 

2001; Duva et al., 1997; Kesner, Bolland, & Dakis, 1993; Kornecook, Kippin, & Pinel, 1999; 

Mumby et al., 1996; Mumby, Pinel, & Dastur, 1993; Mumby et al., 1990; Mumby, Wood, & 

Pinel, 1992; Mumby, Mana, Pinel, David, & Banks, 1995; Mumby & Pinel, 1994; Mumby, 

Pinel, Kornecook, Shen, & Redila, 1995; Wiig & Bilkey, 1995; Wood, Mumby, Pinel, & 

Phillips, 1993). Rats trained with the Y-maze DNMS task described by Aggleton required on 

average 130-190 trials to reach a criterion of at least 80% correct trials across five consecutive 

sessions (Aggleton, Hunt, & Rawlins, 1986; Aggleton, 1985). Moreover, mDNMS task 

acquisition rate was faster compared to previous studies despite 1) a longer retention delay   
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Figure 2.5. Correlation between scores obtained on the mDNMS task and scores on the NOP 

test. Scores on the two tests were not significantly correlated. 
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(30 s compared to 0 and 4 s in previous versions), and 2) the presentation of four distinct sample 

objects compared to only one sample object. Thus, rats retained more item information over a 

longer delay compared to rats in previous studies and were capable of reaching comparable 

choice accuracy levels in significantly fewer trials. It would appear that rats’ performance on the 

mDNMS task is more robust compared to conventional DNMS tasks. Even in the case of 

including the pre-training sessions in the calculation for the average number of trials needed to 

master the task, rats still nevertheless required on average 99 trials. This is still significantly 

fewer trials compared to the average number of pre-training and training trials required on 

conventional DNMS tasks (~400 trials on average). In line with our objectives, these findings 

confirm that the new mDNMS task can be mastered much quicker than conventional DNMS 

tasks, while requiring little human intervention when administering trials. 

During the final stage testing the retention function, rats scored 68%, 61%, 68%, and 

64% at delays of 100, 220, 330, and 630 s, respectively (Figure 2.3). These levels of asymptotic 

performance compare favorably with the asymptotic levels observed at similar retention delays 

on conventional DNMS tasks (see Table 1 in Appendix A). Thus, compared to conventional 

DNMS tasks, the modified DNMS task was easier for rats to learn, and they maintained a good 

level of performance at delays lasting up to 630 s. Accuracy following the 4-hr delay, however, 

was not significantly above chance levels. These results could be due to potential disruptive 

effects of the procedure used for the 4-hr delay. Unlike the procedure used for the other delays, 

during the 4-hr delay the rats were handled, returned to their cage, and transported back to the 

colony room. This manipulation may have acted as a distraction –a factor known to disrupt 

performance on DNMS tasks (Hurst & West, 2010; Zola-Morgan & Squire, 1985; Zola-Morgan, 

Squire, & Amaral, 1989a). Another explanation for the observed impairment is that the rats 

simply forgot the sample objects over the retention interval. This is plausible considering the rats 

only briefly encountered each sample object (e.g., between 4 -10 s, 90% of trials). Perhaps this 

amount of exposure to four distinct objects was not long enough for object information to be held 

over several hours. Indeed, providing more time to investigate stimulus objects on the sample 

phase does increase accuracy on DNMS tests (Alexinsky & Chapouthier, 1978; Beck & 

Kalynchuk, 1992; Nelson & Wasserman, 1978). Regardless of the reason, this finding indicated 

that we had to modify the procedure to assess object-recognition following delays lasting more 

than several minutes (the aim of the experiment presented in Chapter 3). 
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During DNMS acquisition training with progressively longer delays, whenever the delay 

was increased, there was a transient disruption of choice accuracy followed by a significant 

recovery (Figure 2.2a). This suggests that rats either gradually learned to avoid distraction for 

increasing periods of time, or they became more efficient at encoding the attributes of the sample 

objects as training progressed. In any case, this pattern shows the importance of controlling for 

the extent of prior training when comparing performance across different retention delays. 

Providing extensive training at different delays can help rats master other skills that are required 

for good performance at longer delays that may otherwise mask normal object-recognition 

abilities (Mumby, 2001).  

Several factors are likely to have contributed to making the new mDNMS task relatively 

easy for rats to learn and perform. On conventional DNMS procedures developed in the 1980s, 

the experimenter plays an interactive role in administering individual trials. The experimenter 

can inadvertently distract the rat during testing (e.g., by making sudden movements or sounds). 

Indeed, a rat that perceives the experimenter as the most interesting thing in the room will pay 

more attention to the experimenter than to the task at hand. The mDNMS task apparatus has the 

advantage that the objects can be set up before each trial, and after the rat is placed in the loading 

cage, the experimenter can quietly leave the room, allowing the rat to “self-administer” trials. 

Eliminating the presence of the experimenter lessens the potential for distraction.  

The lack of a statistically significant correlation between scores on the mDNMS task and 

NOP test reveal that the two instruments may not be measuring the same underlying construct. A 

critical feature of any research measurement includes the identification and definition of the 

variable under investigation. Construct validity refers to whether the scores reflect the particular 

construct (variable) it was designed to measure (Kline, 2009). Major threats to construct validity 

as described by Kline include: 1) scores that are unreliable and 2) operational definitions that are 

confounded by other constructs. The findings from the present experiment provide evidence for 

the mDNMS task being an accurate estimate of object-recognition abilities in rats. First, the rats’ 

scores on the mDNMS task showed good test-retest reliability, indicating that their performance 

remained stable over time. Second, using mean percent correct choices on the test as the 

operational definition provides a sound indicator of the persistence or accuracy of a rat’s memory 

for the sample object. By requiring the rat to make an instrumental response with which it makes 

an explicit choice between familiar and unfamiliar objects, and by providing a reward for 
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accurate choices it teaches the rat the successful strategy it must employ to reach the goal. 

Ultimately, this decreases the likelihood of some alternative explanation for the observed 

behaviour on the test. Moreover, by collecting dozens of trials for each individual provides a 

reliable indication of their ability to discriminate between familiar and unfamiliar objects. 

Collectively, implementing these elements into the behavioural paradigm increase the accuracy 

of estimating a rat’s ability to discriminate the familiarity of previously encountered objects on 

the test. Overall, the results from the mDNMS task provide support for it being an effective tool 

for measuring a rat’s object-recognition abilities.  

On the NOP test, rats displayed a mean investigation ratio that was significantly above 

chance, indicating that, on average, the rats’ recognized the sample object on the test. The scores, 

however, showed low test-retest reliability, indicating that rats’ novel-object preference scores 

were not consistent over time. Moreover, the amount of time rats spent investigating objects 

during the familiarization phase did not predict the magnitude of their novel-object preference on 

the test. This latter finding is contrary to the assumptions that underlie the manner in which NOP 

data are usually interpreted: 1) that rats are encoding information about the sample object's 

features when investigating it during the familiarization phase, and 2) the magnitude of the 

novel-object preference is a reflection of the persistence or accuracy of a rat's memory for the 

sample object. Overall, the results from the NOP test suggest that the amount of time a rat spends 

investigating a novel object compared to a familiar object does not provide an accurate estimate 

of a rat’s object-recognition abilities. Thus, the lack of a statistically significant correlation 

between scores on the NOP test and mDNMS task in the present experiment likely reflects low 

internal validity of the NOP test. Consequently, these findings suggest that differences in the 

magnitude of a novelty-preference on the NOP test should not be uncritically taken to reflect 

differences in memory ability. It is important to note, however, that both reliability and 

correlation estimates more closely approximate the population parameter as sample size 

increases. Thus, when the sample size is low, as was the case in the present experiment, the 

reliability estimates and correlations may deviate greatly from the population parameter. Thus, 

the reported reliability estimates and correlations should be interpreted with caution.  

Unlike the conventional DNMS tasks on which the reward is delivered only after the 

correct choice has been made, in the present study, the reward was placed under the novel object 

prior to the choice phase. In order to rule out the possibility that rats were locating the food 
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reward by detecting its odor, we administered probe tests. Rats’ performance on both types of 

probe tests and the normal tests was not significantly different from chance. The low scores on 

the normal tests make it difficult to interpret the probe test results. If rats were relying on 

olfactory cues, however, one would predict the accuracy of selecting an object would correspond 

to the session type, such that rats would exhibit a bias to select novel objects on normal tests and 

the sample object on the Sample-Baited probe tests. However this was not the case, and in fact, 

average scores on the Sample-Baited probe tests revealed a tendency for rats to select the novel 

object first. Additionally, relying on olfactory cues would not be expected to produce delay-

dependent changes in performance, as we observed on the pseudo mixed-delay tests between the 

100-s and 4-hr delay. Animals can anticipate features of a trial (e.g., the quantity and probability 

of a reward) and studies have shown that modifying these characteristics on the task can disrupt 

performance on the test despite intact recognition abilities (Honig & Dodd, 1986). We suspect 

that introducing these changes to the reward contingency during probe testing disrupted rats’ 

performance on both the normal tests and probe tests, resulting in a decline in accuracy scores. 

Thus, the decline in task accuracy during probe testing may have reflected the rat’s incentive to 

respond accurately, and not necessarily memory abilities or the ability to detect the odor of the 

reward. Consequently, we decided to modify the probe test procedure for the experiment in 

Chapter 3 in an attempt to reduce the disruptive effects of the probe tests.  

Scores on pseudo mixed-delay sessions were lower than on the earlier blocked-trial 

sessions, which used the same delays. We suspect this discrepancy is more likely to reflect an 

effect of the different testing procedures on performance than on memory. As mentioned above, 

during the blocked-trial sessions with progressively longer delays, there was a transient 

disruption of choice accuracy during the initial sessions with a new retention delay, followed by 

a significant recovery to asymptotic levels with continued training at the same delay. This pattern 

suggests that over several successive trials with a specific retention delay, certain aspects of 

performance become habitual, and the slight change in procedure that occurs when the delay is 

lengthened is enough to transiently disrupt them. On the pseudo mixed-delay sessions, the delay 

changes considerably and on fewer successive sessions, so the disruptive effects are magnified, 

resulting in lower overall scores during the latter stage of testing. A similar explanation has been 

previously offered to explain why pigeons’ performance on free-operant delayed matching-to-

sample is more accurate on trials with long delays than on trials with an unexpected short delay, 
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if they originally learned the task and received baseline trials with long rather than short delays 

(Honig & Dodd, 1986; Honig & Wasserman, 1981). This is contrary to what would be expected 

when measuring working memory, as one would presume accuracy should increase as the 

working memory demands decrease. These findings suggest that a prospective process (using 

past experiences to anticipate future responses), and not just memory for trial-specific 

information may be reflected in task performance (Zentall, 2010). Although the exact 

mechanisms of this process remain unclear, the findings in the present experiment provoke 

similar questions about measuring working memory in nonhuman animals; namely, whether a 

decline in task accuracy as a function of increasing delays truly reflects a loss in working 

memory capacity (Zentall, 1997). In the future, one way to accommodate for these disruptions in 

performance could be to provide more than ten sessions at each delay during pseudo mixed-delay 

testing to give the rats a longer adjustment period to each new delay and to introduce a cue at the 

beginning of the session to inform the rat of the upcoming delay length.  

Six of the nine rats displayed positional biases (e.g., persistently choosing the left object) 

on at least one of the tests during pseudo-mixed delay testing and subsequent probe tests. This 

behaviour, if not removed, can impair performance on the task. These positional biases appeared 

following training on progressively longer delays. Training at longer delays likely contributed to 

the development of this behaviour because as the delay was increased, so did the demands on 

memory, as the rat must maintain information about the objects in memory over a longer period 

of time. Consequently, a rat may resort to this response bias strategy when it fails to remember 

the sample object on the test (Mumby et al., 1990). Based on the order that the mixed-delay 

sessions were administered for individual rats, the positional biases for the majority of the rats 

were found to occur on the ten sessions immediately after the rat had received either testing at 

the 630-s delay (which it also displayed positional biases on) or training on the 630-s delay (the 

last training sessions prior to starting pseudo-mixed delay testing). Thus, this response bias 

strategy formed during sessions when the rat was maintained in the delay area for the longest 

period of time, and it persisted for several sessions after the delay became shorter. The latter 

finding reveals that rats persisted to use this strategy for several sessions even after the delay 

became shorter. Further to the point raised in the previous paragraph, in future experiments 

whereby rats are tested using retention intervals lasting more than a few minutes, it would be 

important to provide more sessions at each delay during mixed-delay testing to give rats time to 
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adjust to each new delay in order to accommodate for the disruptive effects that these changes 

have on performance.  

In summary, the findings from the present experiment demonstrate some of the 

advantages of using an alternative approach to the conventional DNMS tasks and NOP test to 

assess rats’ object-recognition memory abilities. Compared to conventional DNMS tasks, the 

mDNMS task was easier for rats to learn and their performance was comparable at similar 

retention delays. The results from the NOP test and the correlational analysis comparing the two 

measures suggest that the magnitude of a rat’s novel-object preference may not accurately reflect 

the persistence or accuracy of a rat’s memory for the sample object. These results in combination 

with previous findings (Gaskin et al., 2010; Gervais et al., 2013, 2016), raise concerns regarding 

the internal validity of NOP test as a measure of object-recognition abilities. Overall, the findings 

reveal that using an approach that requires rats to make an explicit choice response based on 

memory, and one that rewards accurate responses on the test provides a less ambiguous 

interpretation of the status of object-recognition memory in rats.  
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Abstract 

Conventional delayed nonmatching-to-sample (DNMS) tasks cannot be used to assess long-term 

memory processes because normal rats perform poorly when the retention interval is more than a 

few minutes. Conversely, normal rats have been shown to exhibit novelty-preferences on the 

novel-object preference (NOP) test following delays lasting several hours to 24 hours. Moreover, 

by modifying the familiarization phase, such that rats receive repeated, distributed exposures to 

the sample object over several consecutive days, rats can display novelty preferences lasting 

several weeks. We incorporated this procedure that promotes long-lasting memories for sample 

objects on the mDNMS task, and assessed rats’ performance following delays lasting 72 hr, 3 

weeks, and ~45 weeks. Rats successfully discriminated between the novel and sample objects on 

the mDNMS task following all three delays, as evidenced by their above-chance accuracy scores. 

The latter finding demonstrates that the mDNMS task can be used to assess memory for objects 

over long delays. The rats were also tested on the NOP test using the same delays, however, they 

failed to exhibit a significant novel-object preference following both the 72-hr and 3-week delay, 

and on the ~45-week delay they displayed a significant sample-object preference. The divergent 

findings between rats’ performance on both tasks raise concerns regarding the way NOP data are 

typically interpreted, and reveal that the magnitude of a rat’s novel-object preference does not 

necessarily provide an accurate reflection of its object-recognition abilities.  
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3.1. Introduction 

To investigate the neural processes involved in long-term storage of object information, it 

is important that an object-recognition task provide a measure of memory for objects learned at 

widely different time points. The precise mechanisms underlying the processes involved in long-

term storage of object information are unknown, as is the exact amount of time this process 

requires, but evidence suggests that it differs from short-term memory processes and requires 

memory consolidation—the neural process whereby learned information is transferred from a 

labile state to a long-lasting stable state (Squire & Alvarez, 1995). Moreover, damage made to 

the medial temporal lobes (MTL) can cause temporally-graded retrograde amnesia whereby 

memories formed long before the damage remain intact, and more recently formed memories are 

disrupted (Kim & Fanselow, 1992; Scoville & Milner, 1957; Wiig, Cooper, & Bear, 1996; Zola-

Morgan & Squire, 1990). The latter finding has led to theories proposing that the long-term 

storage of information is only initially dependent on structures within the MTL, but over time 

information becomes permanently stored in the neocortex (Alvarez & Squire, 1994; Squire, 

1992; Squire & Alvarez, 1995).     

To date, there have only been a few studies examining rats’ memory for objects spanning 

very long time intervals (e.g., days or weeks), and this is in part due to a lack of suitable tests 

available. The existing DNMS tasks are not suited to examine long-term object-recognition 

memory because normal rats perform poorly when the retention interval is more than a few 

minutes. For this reason, the majority of previous studies have used maximum retention delays of 

120 - 300 s (see Table in Appendix A). Some experiments have been conducted using retention 

intervals lasting 10 min, however, performance on the test declines to near chance accuracy 

levels (Mumby et al., 1990; Steele & Rawlins, 1989). Accordingly, the existing DNMS tasks are 

not suitable for assessing memory for objects spanning hours, days, or weeks.  

The NOP test on the other hand, can be used to assess rats’ object-recognition memory 

following delays lasting more than several hours. Indeed, normal rats have shown novel-object 

preferences on the test following delays lasting up to 48 hr (Clark et al., 2000; Winters & 

Bussey, 2005). Moreover, using a modified procedure can promote long lasting memories for the 

sample object. By adjusting the familiarization phase on the NOP test, such that rats receive 

repeated distributed exposures to the sample object over several consecutive days, rats can 

display novelty preferences after delays as long as 5 weeks (Gaskin et al., 2003; Mumby, Glenn, 
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et al., 2002; Mumby et al., 2007, 2005). This is important because in order to study the effects of 

experimental manipulations on long-term object-recognition memory, control animals must show 

intact recognition abilities at delays lasting at least a few days.  

This modified familiarization method has been used in a few experiments to examine the 

effects of damage made to different MTL structures on rats’ memory for objects encountered 

before the damage. Compared to control rats, rats with hippocampal (Broadbent, Gaskin, Squire, 

& Clark, 2010; Gaskin et al., 2003) or perirhinal cortex (Mumby, Glenn, et al., 2002) lesions fail 

to exhibit significant novel-object preferences on tests following learning-to-surgery intervals 

ranging between 24 hr and 5 weeks. These findings reveal that rats with surgical lesions failed to 

display novel-object preferences on the test, however, they do not confirm with certainty that this 

disruption reflects an effect of the treatment on object-recognition abilities. When a rat exhibits a 

novel-object preference after some experimental manipulation, it is clear that the treatment failed 

to disrupt object-recognition memory. However, when a rat fails to exhibit a novel-object 

preference after some treatment, it is difficult to confirm with the same level of certainty that the 

rat has failed to recognize the sample object. The treatment, for example, may have altered the 

behavioural expression of this novelty preference for reasons unrelated to failures in object-

recognition memory (e.g., increase neophobia). Alternatively, the treatment may have disrupted 

some other mnemonic process. Given the nature of the NOP test, whereby the rat spontaneously 

explores objects in an open field, the rat is learning information not only about the features of the 

objects, but also about their location relative to the surrounding context. Accordingly, on the test 

phase, a rat may rely on both spatial and nonspatial information to successfully discriminate 

between the sample and novel object. Consequently, when a rat fails to display a novel-object 

preference following some treatment, it could reflect a disruption in memory for the: 1) sample 

object, 2) context (e.g., testing room), or 3) specific location of the sample object relative to cues 

within the apparatus (including the second copy of the sample object). This raises concerns about 

potential confounds that are introduced when trying to estimate a rat’s memory for a previously 

encountered object when using the NOP test.  

The number of potential reasons for why a rat fails to display a novelty preference on the 

test is complicated by the fact that the NOP test does not involve a goal, and thus the rat is not 

required to make an explicit choice response based on memory. Indeed, the lack of an 

instrumental response complicates the interpretation of the behaviour because it fails to limit the 



 

 

69 

number of alternative explanations, besides an object-recognition memory impairment, for the 

observed behaviour on the test. Conversely, using a task, such as the mDNMS task, whereby the 

rat makes an unambiguous instrumental response, receives rewards for accurate choices, and 

receives dozens of trials, provides a more straightforward interpretation of behaviour in relation 

to the specific construct under investigation: object-recognition memory.  

The primary goal of the present experiment was to determine whether the mDNMS task 

can be used to assess rats’ memory for objects following long retention intervals (72 hr, 3 weeks, 

and ~45 weeks). A second goal was to test the same rats on the NOP test using the same delays 

and compare performance on both tasks. In order to assess object-recognition memory following 

long-retention intervals, we used the procedure that we previously found promotes long-lasting 

memories for sample objects on the NOP test by providing repeated exposures to various sample 

objects over several consecutive days. For the ~45-week delay, rats were familiarized to sample 

objects for both the NOP test and mDNMS task starting in periadolescence (7 weeks old) during 

an environmental enrichment program.8 The rats were placed together in an apparatus similar to 

the mDNMS task apparatus and encountered different sample objects for five hours per day over 

several weeks. Once the rats were ~50 weeks old, after they received mDNMS training, their 

memory for those sample objects was tested using both the mDNMS task and NOP test. For the 

72-hr and 3-week delay rats were familiarized to sample objects for both the mDNMS task and 

NOP test using a third apparatus—a circular-track. This apparatus allowed for the presentation of 

multiple objects concurrently for extended periods of time (Piterkin, Cole, Cossette, Gaskin, & 

Mumby, 2008). Afterwards, we tested rats’ memory for the NOP objects by presenting them in 

an open field arena and for the mDNMS objects by presenting them on the test side of the large 

multi-level mDNMS apparatus. 

To confirm that the rats accurately discriminated between objects following a less taxing 

retention interval on both the mDNMS task and NOP test, we also administered tests using a 

short delay while collecting data for each long delay. The short delay tests were conducted using 

a similar procedure as in the experiment presented in Chapter 2. 

 
8 The program entailed placing a group of rats (starting on post-natal day 28) in a large multi-level environment and 
exposing them to a variety of events over a 14-week period. For details see Section 3.2.1. 
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3.2. Materials and Method 

3.2.1. Subjects 

The subjects were 11 male Long-Evans rats (Charles River, Kingston, ON), weighing 

450-550 g at the start of mDNMS training (~22 weeks old). The rats were pair-housed in 

polypropylene cages (48 × 25 × 20 cm) in a colony room maintained under a reverse 12:12 light-

dark cycle, with light onset at 8:00 p.m. The rats had continuous access to water and each 

received a daily ration of ~25 g of rat chow (Charles River Rodent Animal Diet, no. 5075) in the 

late afternoon, after behavioral testing was finished for the day. Prior to the start of mDNMS task 

training, rats received 14 weeks of environmental enrichment starting on post-natal day 28. 

Environmental enrichment entailed placing all 11 rats in a large apparatus, similar to the one 

used on the mDNMS task, for five hr/day, five days/week. During environmental enrichment, the 

rats were familiarized to sample objects for extended periods of time for the ~45-week delay and 

were exposed to different events as part of an unrelated experiment. Specifically, rats had the 

opportunity to socialize, forage for novel foods, and on occasion encounter aversive stimuli (e.g., 

a lithium chloride injection following the ingestion of a novel food and a collar infused with cat 

odor). Following enrichment the rats were used in a series of brief unrelated experiments 

involving exposure to aversive stimuli (e.g., receiving a foot-shock in a conditioning chamber or 

being placed in a water maze). The training histories were identical for all rats in the present 

experiment. All procedures were approved by the Concordia University Animal Care and Use 

Committee, and were in accordance with the guidelines of the Canadian Council on Animal 

Care. 

3.2.2. Apparatuses 

3.2.2.1. Enrichment apparatus. The apparatus dimensions were the same as the mDNMS 

task apparatus (152 × 145 × 86 cm). The design was similar such that rats entered the 

environment via a loading cage placed on top of the apparatus, and there were five levels, the top 

four of which had divider walls. The floor substrate varied across levels and consisted of wood 

chips, sand, or wood pellets.  

3.2.2.2. mDNMS task. A large multi-level environment (152 × 145 × 86 cm) was used to 

test the rats (see Chapter 2 Figure 2.1). The apparatus was a modified, freestanding steel cage 

rack, enclosed on three sides by wire mesh, with a removable, clear acrylic front panel. The 

apparatus had five levels, each covered with woodchip. The top four levels were divided into two 
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equal halves by a plastic barrier wall, and the bottom level remained undivided. A loading cage 

(58 × 37 × 20 cm) was placed on the top left side of the apparatus. A rat entered the apparatus 

via a hole in the bottom of the loading cage that was placed over a passageway leading to the top 

level of the apparatus. Rats traversed the different levels via wire mesh passageways located on 

both sides of the apparatus. The design of the apparatus was such that a rat had to climb down 

the passageways on the left side of the apparatus in order to gain access to the right side, which it 

then could ascend from level to level. The top four divided levels contained plastic rectangular 

platforms (30 × 12 × 1 cm) each with a recessed food well (2 cm in depth), over which stimulus 

objects could be placed. One platform was placed on each level on the left side of the apparatus, 

and on the right side of the apparatus, two platforms were placed on each level with the food 

wells 9 cm apart. All platforms were positioned near the middle barrier wall, in line with the 

passageway that provided access to the level. The room contained dim lights (40 lx) and a video 

camera was positioned in front of the apparatus in order for the experimenter to watch the 

session on a TV monitor in an adjacent room. 

3.2.2.3. NOP test. The apparatus for the NOP test phase was an open-field arena (60 × 70 

× 70 cm), constructed of grey PVC plastic. The floor of the arena consisted of a stainless-steel 

tray covered with woodchips. The floor was removable via a slot at the bottom of one wall to 

facilitate changing the woodchips between each trial. The testing room contained dim lights (14 

lx) and a videocamera was positioned over the arena to record the sessions for later analysis. 

3.2.2.4. Circular-track apparatus. Figure 3.1 illustrates the apparatus used for the sample 

phase on the 72-hr and 3-week delay. The floor of the track was 30 cm wide, and formed a circle 

with an outside diameter of 270 cm. The floor of the track was covered with wood chips. The 

inside and outside walls of the track extended from the floor to a height of 40 cm, and both walls 

had a slight concave curvature. Modular divider-walls separated the track into 8 equally sized 

compartments. One compartment was used as a “start location” where the rat was placed at the 

beginning of each trial, and the remaining compartments were either used to present a single 

object (locations depicted in Figure 3.1) or empty. A rat could circulate the track in either 

direction via small doors located at the based of the divider walls. The testing room contained 

dim lights (30 lx) and a video camera was positioned above the apparatus to record the sessions 

for later analysis.  
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Figure 3.1. Circular-track apparatus depicting a trial for the familiarization phase for the 72-hr 

and 3-week delay mDNMS and NOP tests. The apparatus was divided into 8 equally-sized 

compartments with one start location compartment and seven object compartments, five of 

which were used to present objects, and two remained empty. A rat could circulate the track in 

either direction via passageways located at the based of each divider wall. 
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3.2.2.5. Stimulus objects. A total of 384 different mDNMS objects were used as stimuli 

for the mDNMS task. Objects were made of plastic, metal, glass, or glazed ceramic, and ranged 

in size from 4 to 18 cm in height, and 4 to 13 cm in width. Each object was large enough to cover 

the food well but light enough to be easily displaced by a rat. There were two copies of each 

mDNMS task object –one for the sample phase and one for the test. The objects used for the 

sample phase for the 72-hr, 3- and ~45-week delay had a small container (2.5 cm high) that was 

attached to the bottom of the object with epoxy. The objects were then fixed in place by screwing 

the containers into inverted lids that were attached to a ceramic tile (10 × 10 cm), which was then 

buried under 2.5 cm of wood chips to stabilize it. The objects were cleaned using a 70% ethanol 

solution after every trial on which they were used. At the end of each day the mDNMS task 

objects were cleaned using a diluted bleach solution (1:20 concentration ratio). 

A separate pool of 40 objects was used for the NOP test. Objects for the NOP test were 

made of plastic, metal, glass, or glazed ceramic, and ranged in size from 7 to 18 cm in height, 

and 5 to 13 cm in width. A small glass jar (6 cm high) was attached to the bottom of each object 

with epoxy. For the 180-s delay, the NOP trials were conducted in the open field arena, in which 

case there were three copies of each object—two for the familiarization phase and one for the 

test. The objects could be fixed in place by screwing the jars into inverted lids that were attached 

to the stainless-steel tray in the open field arena (positioned 27 cm from opposing corners). For 

the 72 h, 3- and ~45-week delay, there were only two copies of each NOP object –one for the 

familiarization phase and one for the sample on the test phase. The objects could be fixed in 

place by screwing the jars into inverted lids that were attached to removable platforms (10 × 10 

cm) that were placed in either the enriched environment (sample phase for the ~45-week delay) 

or the circular-track (sample phase for the 72-hr and 3-week delay).  

The test phase for each delay was conducted in the open field arena, in which case the jar 

on the bottom of each object was screwed into one of the two inverted lids that were attached to 

the stainless-steel tray in the open field arena. The objects were cleaned after every trial on 

which they were used, by wiping with a damp paper towel. At the end of each day the NOP 

objects were cleaned using a 70% ethanol solution. 

3.2.3. Chronology of experiment 

Figure 3.2 depicts a timeline for the experiment. Rats were first familiarized to objects for 

the mDNMS task and NOP test ~45-week delay. Next, they received mDNMS task training,   
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Figure 3.2. Timeline depicting the sequence and average duration of each phase of the procedure 

for both the mDNMS task and NOP test. Gray bars represent length of the phase. Shaded portion 

of the enrichment phase bar depicts the object familiarization period for the ~45-week delay. The 

gap between enrichment and mDNMS training reflects the period when the rats were used in an 

unrelated experiment. 
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followed by probe tests. Afterwards, rats received the test phase for the ~45-week delay using 

both the mDNMS task and NOP test, followed by testing using a 72-hr and 3-week delay. 

Throughout mixed-delay testing, rats also received tests on the mDNMS task using an 

80-s delay and on the NOP test using a180-s delay.  

3.2.4. Behavioral procedures  

3.2.4.1. ~45-week delay familiarization phase for the mDNMS task and NOP test. 

During the last 12 weeks of environmental enrichment, rats received the sample phase for the 

~45-week delay by exposing them to a total of 48 objects in the enriched environment. To ensure 

rats spent an approximately equal time investigating each object, the objects were staggered such 

that only four objects were placed in the environment at a time. Over the course of 10 days, rats 

were exposed to a total of eight different objects (two sets of four objects on alternating days). 

On Day 1, 3, 5, 7, and 9 rats encountered Objects 1–4 and on Day 2, 4, 6, 8, and 10 rats 

encountered Objects 5–8. On each day, rats were exposed to the set of objects for five hours. 

This procedure was repeated five times throughout the 12-week period, using different object 

sets each time. The objects were fastened to the floor on the left side of the apparatus; one on 

each of the top four levels placed in the same spot where sample objects appear on the mDNMS 

task sample phase. The level in which an object appeared was varied each day, such that an 

object appeared at least once on each level. Twenty of these objects later served as the sample 

objects on the test phase for the mDNMS task and five served as sample objects on the NOP test. 

The same objects served as the sample for all rats. The remaining 23 sample objects were not 

used.  

3.2.4.2. mDNMS task. Following the environmental enrichment period, rats were trained 

on the mDNMS task. There were three stages: 1) habituation, 2) pre-training, and 3) mDNMS 

task acquisition.  

3.2.4.2.1. Habituation. The rats were handled for ~10 minutes daily for one week before 

they were habituated to the apparatus. The goal of habituation was to have rats complete an 

entire circuit of the apparatus (start on the top left level and finish on the top right level), with 

relatively little hesitation. Rats received one habituation session per day. On the first 20 sessions, 

all 10 rats were placed in the apparatus for 30 minutes with no stimulus objects present, and ~20 

Cheerios (1.8 g, General Mills) were placed on each level near and inside the food wells. On the 

final two habituation sessions, the rats were placed in the apparatus in pairs for 5 minutes, and 
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only 5 Cheerios were placed inside each food well. By this point, each rat was consistently eating 

Cheerios from each food well and reliably completing the entire circuit. During this stage and 

subsequent stages, the experimenter left the room after placing the rats in the apparatus and 

watched the session on a TV monitor in an adjacent room.   

3.2.4.2.2. Pre-training. Pre-training consisted of three stages; stage 1, 2, and 3 (refer to 

Figure 2.1a-c). The rats were now tested individually and they were introduced to stimulus 

objects. The purpose of the pre-training stages was to gradually familiarize the rats to the 

procedural aspects of the task (e.g., learn to displace objects from over food wells and to dig for 

a buried Cheerio placed in food wells) and to teach them that the visual/tactile object features 

were key to predicting food location. Pre-training stage 1, 2, and 3 differed in the number of 

distinct sample objects that were presented to the rat: one, two or three, respectively. The rat had 

to reach a performance criterion at each stage before advancing to the next stage.  

On each stage, a rat received one session per day, which consisted of two phases: a 

sample phase and a test phase. On the sample phase, the rat descended the left side of the 

apparatus and encountered either four copies of one sample object (stage 1, see Figure 2.1a), two 

copies of two different sample objects (stage 2, see Figure 2.1b), or three different sample 

objects –two copies of one object on the top two levels, and two distinct sample objects on the 

bottom two levels (stage 3, see Figure 2.1c). One Cheerio was placed in each food well to 

encourage the rat to approach and investigate the sample objects. On the test phase, the rat 

ascended each level on the right side of the apparatus encountering a different novel object 

paired with a copy of the sample object and one Cheerio was placed in the food well under each 

novel object. Thus, the test phase consisted of four separate ‘trials’, one for each level. On stage 

2 and 3 the sample objects on the test phase were presented in the same order that the rat had 

encountered them on the sample phase (i.e., the first sample object appeared on the first test 

level). The sample and test phase were separated by a short retention interval in which the rat 

spent traversing the bottom level of the apparatus. On the first few stage 1 sessions, the objects 

only partially covered the food well to encourage timid rats to displace objects. As sessions 

continued, the objects were gradually positioned to cover the entire food well. During stage 2, 

the Cheerios on the sample and test phase were gradually buried beneath woodchip until the food 

well was entirely filled to the top (2 cm deep) and rats were consistently digging for the Cheerio. 

Burying the Cheerio was done in an attempt to reduce the likelihood that a rat would rely on 
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olfactory cues to locate the reward. Moreover, by making the rat dig for the Cheerio we 

increased both the delay and amount of effort necessary to retrieve the Cheerio from beneath the 

novel object.  

A correct choice on a test trial was defined as the rat either displacing the novel object 

before displacing the sample object, or only displacing the novel object. An incorrect choice was 

defined as the rat only displacing the sample object, or displacing the sample object before the 

novel object. If a rat did not displace either object on a particular test, it was considered a non-

trial. For a particular rat, we began recording its accuracy on the test phase once all objects fully 

covered the food well. Different sample and novel objects were used on each session. On stage 1 

a total of 15 different object sets were used, each containing 8 copies of one sample object and 4 

unique novel objects. After 15 sessions, rats re-encountered the objects again in the same 

sequence, starting with the first object set. On stage 2 and 3 four new object sets were introduced 

–each containing four copies of two distinct sample objects and four unique novel objects. These 

objects sets were used in combination with the stage 1 sets. The location of the novel object on 

the test phase was counterbalanced in a pseudorandom order. 

After the rat completed the final test, the experimenter entered the room and removed the 

rat from the top right side of the apparatus. Between each rat, the woodchip on every level was 

redistributed to spread any potential odor cues left by a previous rat and each object platform was 

cleaned using a 70% ethanol solution. A rat advanced to the next pre-training stage once it 

reached a performance criterion of at least 80% of trials correct on five consecutive sessions (i.e., 

at least 16 correct trials out of 20 trials). A rat was given a maximum of 50 sessions at each stage 

to reach the performance criterion.  

 3.2.4.2.3. mDNMS task acquisition. During the final training stage, rats encountered four 

distinct sample objects, one on each of the divided levels of the sample phase (see Figure 2.1d). 

Thus, this stage was similar to conventional DNMS tasks in that each sample object was 

encountered only once during the sample phase and was subsequently paired with a unique novel 

object for the test phase. Similar to pre-training, a session consisted of a sample and test phase. 

On the sample phase, a rat descended the apparatus to familiarize itself with four distinct sample 

objects, encountering a different one on each level. One Cheerio was buried in the food well 

under each sample object. During the test phase, a copy of each sample object was presented 
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next to a novel object. A Cheerio was buried under the novel object on each test level. Each 

session consisted of four trials, as there were four distinct sample objects in the apparatus.  

From this point forward a new collection of object sets was used. The objects changed on 

each session, however, the same objects served as the sample objects and novel objects for all 

rats. Once a particular object was used on a session, it was not used again until all of the objects 

in each set were used. This resulted in a particular object re-occurring approximately every 20 

sessions. Moreover, an object that served as a sample the first time a rat encountered it, served as 

a novel the next time it was encountered (and vice versa). The sample and novel object on each 

trial were paired based on similarities in size, weight, and material. The location of the novel 

object on each test was counterbalanced in a pseudorandom order. A rat was required to reach a 

performance criterion of at least 80% of trials correct on five consecutive sessions (16 trials 

correct out of 20). The average delay between the sample and test phase was 69 s (s = 21.87). A 

rat was given a maximum of 50 sessions at this stage to reach the performance criterion. Rats 

received one session per day and were tested no fewer than four days per week. The dependent 

measures were mean percent correct choices and mean number of sessions required to reach the 

performance criterion. 

3.2.4.3. Probe tests. Following mDNMS task acquisition we confirmed that the rats were 

not relying on olfactory cues to correctly locate the food reward buried underneath the novel 

object on the test phase. The same two types of probe tests were administered (“No Reward” and 

“Sample Baited”), except now each type of probe test was administered within normal test 

sessions, rather than simultaneously in one session like in the experiment presented in Chapter 2, 

in an attempt to reduce the disruptive effects of probe tests. All rats received 10 trials on each 

probe test, and the tests occurred on consecutive sessions. 

3.2.4.4. mDNMS and NOP mixed-delay testing 

3.2.4.4.1. mDNMS ~45-week delay test phase. Rats received 20 trials on the ~45-week 

delay, which occurred after mDNMS task acquisition. The ~45-week delay tests were 

administered in the mDNMS apparatus and were conducted concurrently with short delay trials, 

such that on each session, a rat received two tests using a ~45-week delay and two tests using a 

short delay. To administer the short delay trials, the apparatus was setup in the standard way but 

with only two sample objects on the left side of the apparatus—each randomly placed on one 

level—and two tests on the test side. The two remaining test levels were setup with objects for   
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Figure 3.3. Diagram of one mDNMS test session for the mixed-delay testing. On the left side of 

the apparatus, two levels contained sample objects for the 80-s delay and two remained empty—

representing the sample phase that the rat had already received for either the 72-hr, 3- or ~45-

week delay. The level that the sample objects for the 80-s delay appeared on was pseudo-

randomized across sessions. On the test side of the apparatus, two tests were setup for the 80-s 

delay (objects the rat had encountered within that session) and two tests were setup for either the 

72-hr, 3- or ~45-week delay, depending on the type of delay that was administered on that 

particular session. On the test phase, a sample object that the rat had encountered previously (80 

s, 72 hr, 3 weeks, or ~45 weeks earlier) was paired with a novel object. One Cheerio was placed 

under each novel object. The number of test trials on each particular delay was equally 

distributed across the test levels. 
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the ~45-week delay tests (see Figure 3.3). The short retention interval was on average 80 s (s = 

58.11). The test location was counterbalanced across sessions, such that a test for each delay 

occurred equally often on each of the four test levels. The location of the novel object was 

counterbalanced across trials such that it occurred equally often on the left and right side. The 

object sets used for the short-delays were presented in a similar fashion as in the experiment 

presented in Chapter 2, such that once a particular object was used on a session, it was not used 

again until all of the objects in each set were used. Moreover, an object that served as a sample 

the first time a rat encountered it, served as a novel the next time it was encountered (and vice 

versa). Conversely, none of the novel objects used for the ~45-week delay tests had been 

previously encountered by the rats, and thus were trial-unique.  

3.2.4.4.2. NOP ~45-week delay test phase. Rats received five NOP trials on the ~45-week 

delay, which were conducted in an open field arena. Prior to NOP testing, rats were habituated to 

the open field arena for ten minutes daily for two consecutive days. Two identical objects were 

present in the open field arena during habituation. These objects were not used on subsequent 

experimental trials. Twenty-four hours following the last habituation session, rats received their 

first test. The test procedure involved placing the rat in the open field arena with a copy of the 

sample object and a novel object for five minutes. Different object pairs were used for each trial, 

but the same object pair was used for all rats on corresponding trials. The side in which the novel 

object appeared on was counterbalanced between rats and across trials for an individual rat. The 

NOP tests were administered contemporaneously with the ~45-week delay mDNMS tests. 

Testing on both tasks never occurred on the same day for any individual rat. The type of task 

(NOP or mDNMS) that a rat started with was pseudo-counterbalanced across rats, such that 

approximately half of the rats started with a trial on the mDNMS task and the other half started 

with a NOP trial.  

Time spent investigating objects was scored using ODLog (Macropod software, version 

2.6.1). The rats were considered to be investigating an object if their head was 4 cm away from 

the object and oriented towards the object, or away from the object at no more than a 45º angle. 

A rat standing on its hind legs and touching the object with at least one forepaw was also 

considered to be investigating. Climbing or sitting on top of an object was not considered 

investigation. The main dependent measure was the investigation ratio. This ratio compares the 

total object investigation time to the time spent with the novel object during the test phase (Ratio 
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= [Timenovel/ (Timenovel + Timesample)]. To determine whether rats’ discriminated between the 

objects, a one-sample t-test (p < .05) was used to compare mean investigation ratios to chance 

level of investigation (i.e., a ratio of 0.50). A ratio that was significantly greater than 0.50 

indicated the rat spent more time investigating the novel object. 

3.2.4.4.3. Sample phase for the 72-hr and 3-week delays. Rats were familiarized to 

objects for both the mDNMS task and NOP test using the circular-track apparatus. The sample 

phase for the 72-hr and 3-week delay was administered concurrently in the circular-track 

apparatus. Over four consecutive days, rats were familiarized to ten distinct sample objects. On 

Day 1 and 3 rats encountered Objects 1–5 and on Day 2 and 4 they encountered Objects 6–10. 

On each day, a rat received three distributed 10-min trials, each separated by one hr, and the 

objects changed location in a clockwise fashion across trials. Of the ten objects, eight were 

designated mDNMS sample objects and two were designated NOP sample objects. Moreover, 

half of the respective task objects were used for the 72-hr delay and the remaining half for the 3-

week delay (i.e., four mDNMS objects and one NOP object for each delay). This procedure was 

repeated four times, using different objects each time. Thus, rats encountered a total of 50 objects 

–40 mDNMS objects (20 objects for each delay) and 10 NOP objects (5 objects for each delay). 

The objects were pseudo-counterbalanced between rats, such that the sample objects for 

approximately half of the rats were used as the novel objects for the remaining rats. All of the 

sample and novel objects used for the 72-hr and 3-week delay were trial-unique, such that a rat 

had never encountered them (with the exception of some mDNMS sample objects that had been 

used once as a novel object on the ~45-week delay tests). The operational definition for object 

investigation was the same as described in Section 3.2.4.4.2. After placing the rat in the 

apparatus, the experimenter left the room and watched the session on a TV monitor in an 

adjacent room. 

3.2.4.4.4. mDNMS 72-hr and 3-week delay test phase. Rats received 20 trials on both the 

72-hr and 3-week delay in a mixed fashion. Similarly to the ~45-week delay tests, the tests were 

administered two at a time concurrently with short-delay trials, such that on the test phase there 

were two tests setup for a 80-s delay and two tests set up for either a 72-hr or 3-week delay (see 

Figure 3.1). 

3.2.4.4.5. NOP 72-hr and 3-week delay test phase. Rats received five trials on both the 

72-hr and 3-week delay in a mixed fashion. The NOP tests were administered 
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contemporaneously with the 72-hr and 3-week delay mDNMS tests. Testing on both tasks never 

occurred on the same day for any individual rat. The type of task (NOP or mDNMS) that a rat 

started with was pseudo-counterbalanced across rats, such that approximately half of the rats 

started with a trial on the mDNMS task and the other half started with a NOP trial.  

3.2.4.4.6. NOP 180-s delay testing. Rats received five NOP trials using a 180-s delay 

throughout mixed-delay testing. While collecting data for the ~45-week delay, two 180-s delay 

NOP trials were administered and the remaining three trials were administered during testing 

using the 72-hr and 3-week delays.  

3.2.5. Statistical analyses 

Statistical analyses were performed using the Statistical Program for the Social Sciences 

(SPSS) software for Mac (IBM, version 22). The critical threshold for statistically significant 

results was set at p < .05. Eta-squared and Hedge’s g are reported as measures of effect size. 

3.3. Results 

3.3.1. Data Screening 

Before conducting any analyses, the data were screened according to the recommended 

best practices outlined by Kline (2009), and the statistical assumptions for each type of analysis 

were verified. All scores were standardized in order to detect the presence of outliers. A z-score 

greater than 3 was used to describe an outlier (Kline, 2009). Standardized scores for each 

variable did not reveal the presence of any outliers.  

The normality of the distribution was assessed for each variable by measuring skewness 

and kurtosis. Scores were considered normally distributed with a skew less than 3 and a kurtosis 

less than 10 (Kline, 2009).The distribution of scores was also graphically assessed for normality 

using a histogram with a normal curve fitted to it. In the current sample, all variables showed 

acceptable skew and kurtosis, therefore no transformations were applied.  

Bivariate scatter plots were investigated to verify the assumptions of linearity and 

homoscedasticity. A visual inspection of the scatter plots confirmed a linear relationship between 

variables and confirmed that the homoscedasticity assumption was not violated. Thus, the data 

met the assumptions for calculating Pearson correlation coefficients. 

3.3.2. mDNMS task 

During pre-training stage 1, three rats had positional biases that could not be removed 

(i.e., the rat consistently displaced objects according to their location on the test—right or left—
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and not whether it was novel or familiar). Additionally, one rat failed to reach the performance 

criterion within the allotted 50 sessions during mDNMS task acquisition. Thus, the results for 

these four rats were excluded from all analyses. Furthermore, due to human error, four trials for 

one rat and two trials for another rat were excluded from the 72-hr delay analyses, and one trial 

for two rats was excluded from the 3-week delay analyses.  

3.3.2.1. Pre-training. During stage 1, 2, and 3, rats reached an accuracy of 80.26%, 

80.83%, and 80% respectively, following an average of 15.43 (s = 10.29) sessions in stage 1, 

15.71 sessions (s = 13.96) in stage 2, and 8 sessions (s = 5.20) in stage 3.  

3.3.2.2. mDNMS task acquisition. Performance during the first training session was 

significantly above chance (M = 71.43%, s = 26.73%). Rats reached a mean accuracy of 81.43% 

following an average of 19.86 sessions (s = 14.92). A dependent-samples t-test revealed a 

statistically significant improvement in scores from the first to the last five sessions of 

acquisition (t(6) = -4.96, p = .003, Hedge’s g = -3.11, 95% CI [-4.74, -1.48]).   

3.3.2.3. Probe tests. We compared rats’ scores on the probe tests to scores obtained on 

the normal tests that were administered concurrently (Figure 3.4). Rats’ scores were significantly 

above chance on the “No Reward” probe (t(6) = 2.76, p = .02, Hedge’s g = 1.47, 95% CI [0.27, 

2.67]), the “Sample Baited” probe (t(6) = 1.99, p = .04, Hedge’s g = 1.06, 95% CI [-.07, 2.19]), 

and the normal tests administered at the same time as the probe tests (t(6) = 2.25, p = .03, Hedge’s 

g = 1.20, 95% CI [.05, 2.35]). A One-way ANOVA revealed no significant difference between 

scores on the probe and normal tests (F(2, 18) = .89, p > .05, η2 = .09). 

3.3.2.4. mDNMS task mixed-delay testing. Due to human error, four trials for one rat and 

two trials for another rat were excluded from the 72-hr delay analyses, and one trial for two rats 

was excluded from the 3-week delay analyses. 

Rats spent on average 7.17 s (s = 1.82), 90.61 s (s = 16.51), and 99.89 s (s = 28.59) 

investigating objects during the sample phase for the 80-s, 72-hr, and 3-week delay, respectively 

(see Figure 3.5a). 

Figure 3.6a depicts rats’ performance on the mDNMS tests at each delay. Accuracy 

scores were significantly above chance at the 80-s delay (t(6) = 4.64, p = .004, Hedge’s g = 2.47, 

95% CI [1.03, 3.91]), the 72-hr delay (t(6) = 5.41, p = .002, Hedge’s g = 2.90, 95% CI [1.34, 

4.46]), the 3-week delay (t(6) = 12.88, p < .001, Hedge’s g = 6.99, 95% CI [4.0, 9.98]), and the 

~45-week delay (t(6) = 6.22, p = .001, Hedge’s g = 3.33, 95% CI [1.64, 5.02]).   
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Figure 3.4. Average scores (± SEM) on the probe and normal test trials. Dashed line represents 

chance performance.  
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Figure 3.5. Mean (± SEM) time spent investigating objects during the familiarization phase for 

both the (a) mDNMS task and (b) NOP test. 
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Figure 3.6. Average scores (± SEM) on the (a) mDNMS task and (b) NOP test across four 

delays. Dashed line represents chance performance. 
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3.3.3. NOP mixed-delay testing  

One 3-week delay trial was excluded for all rats because they showed an inherent 

preference for one object in the pair, and the last two trials of the ~45-week delay were excluded 

for all rats due to human error. Investigation ratios were calculated separately for each 

cumulative minute of the 5-min test. The investigation ratios for each delay are based on the first 

cumulative minute bin of the test whereby the group exhibited a statistically significant 

preference. Trials were excluded if a rat spent less than one second exploring either object on the 

test. This resulted in the exclusion of one trial for two rats during the 72-hr, and 3-week delay.  

Figure 3.5b depicts the average time spent investigating objects during the familiarization 

phase for the 180-s, 72-hr, and 3-week delay. Rats spent on average 61.31 s (s = 8.83), 99.70 s (s 

= 48) and 90.73 s (s = 13.47) investigating objects during the familiarization phase for the 180-s, 

72-hr and 3-week delay, respectively.  

Figure 3.6b depicts the mean investigation ratios on the test at each delay. One-sample t-

tests (one-tailed) performed on the first 3-min of the test revealed that rats had a mean 

investigation ratio significantly above chance during the 180-s delay (t(6) = 6.06, p = .001, 

Hedge’s g = 3.31, 95% CI [1.62, 5.0]). Conversely, rats did not have investigation ratios 

significantly above chance level of performance on either the 72-hr (t(6) = .79, p > .05, Hedge’s g 

=.44, 95% CI [-0.62, 1.5]) or 3-week delay (t(6) = .38, p > .05, Hedge’s g =.16, 95% CI [-0.89, 

1.21]). Lastly, based on the first minute of the test, rats had a mean investigation ratio 

significantly below chance during the ~45-week delay (t(6) = -2.03, p = .04, Hedge’s g = -1.18, 

95% CI [-2.23, -.03]), indicating a sample object preference on the test.  

3.3.3.1. NOP test correlational analyses. Pearson correlations were computed to assess 

the relationship between total time spent investigating the sample objects during the 

familiarization phase and the average investigation ratios on the test for the 180-s, 72-hr, and 3-

week delay NOP tests. There were no significant correlations (r = -.60 to -.06, p = .07 to .82), 

indicating that the magnitude of the novelty preference on the test was unrelated to the amount of 

sample investigation during the learning phase of the trial. 

3.3.4. Correlation between scores on the mDNMS task and NOP test  

Figure 3.7 shows the results of a correlational analysis of NOP investigation ratios and 

mDNMS scores. We compared average investigation ratios from the NOP trials with average   
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Figure 3.7. Scatterplots depicting the correlation between scores on the mDNMS task and NOP 

test following the (a) shortest, (b) 72-hr, (c) 3-week, and (d) ~45-week delay. Scores on the two 

tests were not significantly correlated on any of the delays. 
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percent-correct on the mDNMS task at each respective delay. There was no significant 

correlation between average NOP investigation ratios and average mDNMS scores on the short 

delay (r = .60, p = .08, 95% CI [-.28, .92]), 72-hr delay (r = .37, p = .21, 95% CI [-.53, .88]), 3-

week delay (r = .05, p = .46, 95% CI [-.73, .77]), and ~45-week delay (r = -.003, p = .50, 95% CI 

[-.75, .75]). 

3.4. Discussion 

The accuracy scores on the mDNMS task were significantly above chance following the 

72-hr, 3- and ~45-week delay, indicating that, on average, rats recognized the sample objects 

following all three retention intervals. The present results are to our knowledge, the first 

successful attempt to employ a reinforcement paradigm to assess object-recognition memory in 

rats following retention intervals lasting longer than several days. The fact that rats showed intact 

memory for objects encountered up to 45 weeks earlier is intriguing because it indicates that the 

mDNMS task can prove useful for examining questions regarding memory for objects learned at 

various time points over the course of one year. This is something that has not been feasible with 

the existing object-recognition tests. Thus, the practical significance for neurobiological studies 

of object recognition is that mechanisms of long-term memory that operate over periods of 

several days, weeks, and even up to a year can potentially be studied using the mDNMS task 

methods described in the present study.  

On the NOP test, only the mean investigation ratios on the 180-s delay were statistically 

significantly above chance. The rats’ failure to exhibit a novel-object preference on the test 

following both the 72-hr and 3-week delay tests was unexpected. The reason why rats failed to 

exhibit a novelty preference cannot be determined from the available data, thus it is unclear 

whether or not this reflects a failure to recognize the sample objects on the test. The above 

chance level accuracy scores on the mDNMS task, however, provide clear evidence that the rats 

did in fact recognize objects learned 72 hr and 3 weeks earlier. The divergent results between the 

mDNMS task and NOP test cannot be explained by differences in the familiarization procedure 

because it was identical for both tasks. Moreover, the results cannot be explained by differences 

in the amount of time the rats spent investigating the sample objects during the familiarization 

phase for both tasks in the circular-track because the rats spent a similar amount of time 

investigating the sample objects used on both tasks. Based on the mDNMS task results, we can 

affirm that this procedure of repeatedly exposing rats to the sample object over consecutive days 
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worked as a means to measure memory for objects over long delays. Collectively, the findings 

suggest that simply relying on a rat’s natural tendency to investigate unfamiliar objects over 

familiar ones may fail to provide an accurate estimate of its object-recognition abilities. 

Accordingly, one should be cautious when concluding that a lack of novelty preference signifies 

a deficit in object-recognition memory. 

The change in context between the familiarization and test phase on the NOP may 

explain why rats failed to exhibit a novelty preference on the test. On standard NOP tests using 

long retention intervals, the familiarization and test phase are administered in the same open field 

arena, and thus the same environmental context. Changing the context between learning and 

testing has been found to disrupt rats’ novel-object preferences (Dellu, Fauchey, Le Moal, & 

Simon, 1997). Previous research has shown that performance on recognition tests improves when 

the test is conducted in the same context in which the original learning occurred compared to a 

different context (Baddeley, 1975). This context-dependent memory is hypothesized to occur 

because when stimuli are encoded, the context is encoded along with them, and a configural 

representation is formed in the brain. When the test subject is returned to the same context for a 

test, the familiar environment reactivates the configural representation, which somehow 

facilitates retrieval of the representation of target stimuli (Hirsch, 1974). Thus, perhaps the rats 

failed to recognize the sample object when it was encountered in a different environmental 

context. Others have argued, however, that a failure to retrieve information from memory 

following a change in context does not make sense when you consider animals live in forever 

changing environments (Devenport, 1989). Accordingly, an alternative explanation is that the 

change in context may introduce competing behaviours, which may change performance for 

reasons unrelated to a failure in memory. For example, the rat might spend more time exploring 

features of the apparatus or the sample object, consequently reducing investigation of the novel 

object. Accordingly, this may explain why the rats in the present experiment failed to 

preferentially explore the novel object on the 72-hr and 3-week delay tests. Although these 

results fail to confirm with certainty whether or not rats recognized the sample objects, they do 

reveal the problems interpreting the status of object-recognition memory by simply relying on a 

rats’ tendency to explore familiar and unfamiliar objects. 

The significant preference to investigate the sample object on the test following the ~45-

week delay was unexpected. Based on these results we can conclude that the rats recognized the 
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sample objects because if they did not, then equal time should have been spent investigating both 

objects on the test, as both objects would have been equally unfamiliar. The objects on the ~45-

week delay, however, were not counterbalanced and the same objects were used as samples for 

all rats. Thus, it is possible that the rats had an inherent preference for the sample objects on the 

NOP test. We are confident that this was not the case, because two of the three object pairs used 

in the present experiment had been previously screened for preference by a different group of 

rats in a nonchoice test, and we found no significant inherent preference for either one of the 

objects in the pairs. Moreover, based on our observations, no object in the remaining pair 

appeared to elicit a strong inherent preference during the test. Thus, the results provide additional 

support for the argument that the magnitude of a novelty preference should not be used to gauge 

the strength or persistence in memory for the sample object (Gaskin et al., 2010). Specifically, 

interpreting the magnitude of a novel-object preference on the test as indicative of the strength in 

memory for the sample object implies that a rat with a high novelty preference has superior 

memory for an object compared to a rat that exhibits a low novelty-preference. However, by this 

logic, the rat with a low novelty preference would be exhibiting a bias to explore the sample 

object, which can equally be taken to reflect object-recognition memory. Accordingly, assuming 

that the magnitude of the novelty preference is directly proportional to the strength in memory 

for the sample object is illogical because it fails to account for low novelty preferences (i.e., 

strong sample preference) being indicative of intact object-recognition memory. 

The lack of a statistically significant correlation between scores on the mDNMS task and 

NOP test suggest that the two behavioural tasks do not tax the same underlying construct, one of 

which is object-recognition memory. The extent to which the behavioural tasks provide a 

measure of object-recognition abilities differs. On the mDNMS task the rat is presented with a 

sample object to learn, followed by a test whereby it makes a choice between displacing either 

the sample or a novel object. By training the rat to learn that it will receive a food reward when it 

displaces the unfamiliar object on the test, it provides the opportunity to instruct the rat on the 

purpose of the task. Accordingly, when a rat exhibits a tendency to displace unfamiliar objects 

over familiar objects on the test to a high criterion, then you can be more certain that it is 

engaging in this behaviour because it has learned the reward contingency and is applying it. 

Consequently, the observed behaviour on the test can more confidently be taken to reflect the 

rat’s ability to discriminate between familiar and unfamiliar objects. Conversely, using a novelty 
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preference score as an index of a rat’s object-recognition abilities does not provide to the same 

level of certainty that this behaviour reflects the accuracy of the rat’s memory for the sample 

object. Intuitively, when comparing rats’ performance across dozens of trials on the mDNMS 

task, and one rat obtains 90% correct choices and another rat gets 60% correct, it is easier to 

accept that the first rat has better recognition memory than the second rat. Conversely, on the 

NOP test when comparing a 90% novelty preference ratio in one rat to a 60% novelty preference 

ratio in another rat, it is not so easy to make the same assumption. Accordingly, it is difficult to 

confidently claim that the degree of novel-object preference that a rat exhibits provides a 

reflection of its strength in memory for the sample object. Conversely, a less ambiguous 

reflection of a rat’s object-recognition memory is one whereby the rat has been trained to make 

an explicit choice response based on memory, and is rewarded for accurate choices, such as on 

the mDNMS task. Thus, the observed scores on the mDNMS task provide a more 

straightforward estimate of a rat’s object-recognition abilities compared to scores on the NOP 

test. Accordingly, the lack of correlation between scores on both tasks, likely reflects issues 

regarding the internal validity of the NOP test as an estimate of rats’ object-recognition abilities.  

Rats performed significantly above chance on both the probe tests and normal tests, 

suggesting they were not relying on olfactory cues to successfully locate the food reward on the 

test. The scores on the normal tests and probes, however, declined relative to scores obtained on 

the criterion sessions during task acquisition. This disruption in performance may reflect the 

disruptive effects of probe tests. Administering ten consecutive probe test sessions in 

combination with regular tests likely disrupted performance on the test because the rats learned 

that the novel object was no longer consistently rewarded. Previous delayed matching-to-sample 

studies suggest that animals can anticipate trial features such as the quantity and probability of a 

reinforcer, especially when trial features remain constant over many trials (Honig & Dodd, 

1986). Consequently, changes made to features of a trial can affect an animal’s performance, 

such that task accuracy may decline despite intact recognition abilities. Thus, the decline in 

accuracy on the normal tests during probe testing may have reflected the rat’s incentive to 

respond accurately, and not necessarily memory abilities or the ability to detect the odor of the 

reward. In the future, a better design may include baiting both the sample and novel objects with 

a reward on the test but only making the reward underneath the novel object accessible, thus 

eliminating the need to conduct probe tests. 
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Overall, the results from present experiment demonstrate that the mDNMS task is a 

promising tool to assess long-term object-recognition memory in rats. Moreover, the degree of 

novelty preference on the NOP test should not be uncritically taken to reflect the strength in 

memory for the sample object, as the expression of this behaviour may vary for reasons unrelated 

to a failure in object-recognition memory. Indeed, the problem with simply relying on a rat’s 

preference to investigate a novel object over a familiar one is that it makes it difficult to rule out 

alternative explanations for when a rat fails to exhibit this preference on the test. Conversely, 

requiring a rat to perform many trials each of which involve making an explicit choice response 

between familiar and unfamiliar objects, and giving a reward for accurate choices, provides a 

less ambiguous interpretation of object-recognition memory. Indeed, there are considerably 

fewer alternative explanations, besides object-recognition memory, to explain the observed 

behaviour on the test. 
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Abstract 

The effects of hippocampal (HPC) damage on rats’ novel object preference (NOP) performance 

have been rather consistent, in that HPC lesions do not disrupt novelty preferences on the test. 

Conversely, there have been inconsistent findings regarding the effects of perirhinal cortex (PRh) 

lesions on rats’ novel-object preferences. Given the concerns that have been raised regarding the 

internal validity of the NOP test, viz. that the magnitude of the novel-object preference does not 

necessarily reflect the strength in memory for an object, it could explain the discrepant findings 

(Gaskin et al., 2010; Gervais et al., 2013, 2016; Gulinello et al., 2018). The goal of the present 

experiment was to examine the effects of PRh and HPC lesions on rats’ object-recognition 

memory using the new modified delayed nonmatching-to-sample (mDNMS) task, as it 

circumvents the interpretational problems associated with the NOP test. Rats received PRh, 

HPC, or Sham lesions and were trained on the mDNMS task using a short delay (~30 s). Both 

PRh and HPC rats acquired the task at the same rate as Sham rats, and reached a similar level of 

accuracy, indicating intact object-recognition. Thereafter, rats were tested on the NOP test using 

a 180-s delay. Rats with HPC lesions exhibited significant novel-object preferences, however, 

both the PRh and Sham rats failed to show a novelty preference. The discrepancy in both the 

PRh and Sham rats’ performance on the mDNMS task and NOP test raises concerns regarding 

the internal validity of the NOP test, in that the magnitude of a rat’s novel-object preference does 

not accurately reflect the persistence or accuracy of a rat’s memory for the sample object. 
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4.1. Introduction 

 The hippocampus (HPC) and perirhinal cortex (PRh) are two medial temporal lobe 

(MTL) structures implicated in object-recognition memory. Early attempts to model human MTL 

amnesia in animals primarily focused on damaging the HPC because correlational findings from 

human amnesic patients suggested the extent of HPC damage was associated with the degree of 

memory impairment (Milner et al., 1968; Scoville & Milner, 1957). The first successful animal 

model of amnesia involved the use of the delayed nonmatching-to-sample (DNMS) task using 

trial unique stimuli. On a DNMS trial the animal is briefly presented with a sample object and 

receives a reward for displacing it from over a food well. After a retention interval, the sample is 

now presented alongside a novel object. This time, the animal receives a reward if it selects the 

novel object. Different sample and novel objects are used on each trial, so reliably accurate 

performance requires that the animal recognize the sample object. Early findings from nonhuman 

primate models supported the idea that the HPC played an important role in object-recognition 

memory because damage to it produced DNMS impairments (Gaffan, 1974; Helen Mahut, Zola-

Morgan, & Moss, 1982; Mishkin, 1978; Murray & Mishkin, 1984; Zola-Morgan & Squire, 1985, 

1986; Zola-Morgan, Squire, & Amaral, 1989a). However, other studies conducted around the 

same time revealed that HPC damage did not impair DNMS performance in either nonhuman 

primates (Murray & Mishkin, 1986; Zola-Morgan, Squire, Amaral, et al., 1989) or rats (see 

Mumby, 2001 for a review). For example, Aggleton, Hunt, and Rawlins (1986) showed that rats 

with HPC lesions successfully acquired the DNMS task at the same rate as control rats and 

reached a similar mean accuracy score on the task following the maximum delay of 60 s. 

Comparatively, Mumby, Wood, and Pinel (1992) found that rats with either separate or 

combined lesions of the HPC and amygdala performed comparable to controls on the DNMS 

task at delays lasting up to 120 s, and only showed a slight decline in performance following a 

600-s delay. Over time, it was revealed that the observed DNMS impairments in nonhuman 

primates was likely the result of incidental damage made to the rhinal cortices (PRh and 

entorhinal cortex), as severe DNMS deficits were observed in nonhuman primates following 

damage made to either the PRh (Meunier, Bachevalier, Mishkin, & Murray, 1993; Zola-Morgan, 

Squire, Clower, & Rempel, 1993) or rhinal cortices (Gaffan & Murray, 1992; Meunier, 

Bachevalier, Mishkin, & Murray, 1993; Mishkin & Murray, 1994; Murray & Mishkin, 1986; 

Suzuki, Zola-Morgan, Squire, & Amaral, 1993; Zola-Morgan et al., 1989).  
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Only a few studies have been published on the effects of either rhinal cortex or PRh 

damage on rats’ DNMS performance (Barnes, Floresco, Kornecook, & Pinel, 2000; Mumby & 

Pinel, 1994; Wiig & Bilkey, 1995), but they are consistent with findings from nonhuman 

primates. For example, Mumby and Pinel (1994) first trained rats on the DNMS using delays 

ranging from 4 to 600 s. Afterwards, rats received rhinal cortex lesions and were retested. The 

rats’ post-surgery scores on the 4-s delay were comparable to their pre-surgery scores, however, 

their scores on delays lasting 15 s or longer had significantly declined. Using a similar DNMS 

paradigm, Wiig and Bilkey (1995) administered lesions restricted to the PRh prior to training 

rats on the DNMS task. Compared to sham-operated rats, PRh lesion rats required more trials on 

average to reach the performance criterion (362 vs. 174), but this difference was not statistically 

significant. When the rats were tested using different delays ranging from 4 to 120 s, rats with 

PRh lesions had scores that were significantly lower than the Sham rats following delays lasting 

30 s or longer (Wiig & Bilkey, 1995). Accordingly, the findings from DNMS tasks suggested 

that an intact rhinal cortex or specifically PRh, is important for normal object-recognition 

memory. 

Beginning in the early 1990s, researchers began using the novel object preference (NOP) 

test to examine the effects of discete lesions made to either the HPC or PRh on object-

recognition. Before describing the findings, it is important to first understand the different ways 

that NOP results are interpreted. On the NOP test, a novelty-preference score (e.g., investigation 

ratio) is calculated based on the amount of time the rat spends investigating the novel object 

compared to the sample object. When two or more groups of rats are tested (i.e., a treatment and 

control group), the investigation ratio can be statistically analyzed using two different methods: a 

“within-subjects” analysis to compare a group’s average score to what would be expected by 

chance level of performance or a “between-subjects” analysis to compare the average score of 

each group to one another. Using the former method, object-recognition memory is inferred 

when a group score is statistically significantly above chance. This indicates that on average, the 

group spent more time investigating the novel object compared to the sample, indicating they 

recognized the sample object. By comparison, using the between-subjects method, when there is 

a statistically significant difference between groups, the group with the lower mean score is 

presumed to have an object-recognition impairment. Furthermore, this inference is made 

regardless of whether or not the lower mean score is significantly above chance.  
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When inferring the status of memory based on the relative degree of novel-object 

preference, it suggests that high preference scores are indicative of superior memory for the 

sample object. This interpretation, however, is problematic because to date there is no evidence 

to suggest that the degree of novel-object preference reflects the strength in memory for the 

sample object (Gaskin et al., 2010; Gervais et al., 2013, 2016; Gulinello et al., 2018). For 

example, the amount of time rats spend investigating the sample object during the familiarization 

phase does not predict the degree of their novel-object preference. Moreover, providing rats with 

extended exposure to a sample object does not influence their degree of novelty preference 

(Gaskin et al., 2010; Gervais et al., 2013, 2016). Both of these findings are counter to two major 

assumptions that underlie the way in which NOP data are typically interpreted: 1) that rats are 

encoding the sample object features when investigating it during the familiarization phase, and 2) 

that the magnitude of the novelty preference reflects the strength in memory for the sample 

object. Accordingly, interpreting differences in the magnitude of novelty preference scores as a 

reflection of differences in object-recognition abilities should be avoided. Although researchers 

using the between-subjects analysis typically include a within-subjects test in the results section, 

oftentimes the interpretation of results is based solely on the between-subjects analysis. 

Evidently, interpreting the effects of some treatment can yield different conclusions depending 

on the type of comparison used (within vs. between).   

The effects of HPC damage on rats’ object-recognition memory using the NOP test have 

been fairly consistent. Similar to control rats, rats with HPC lesions still exhibit significant 

novel-object-preferences on tests following delays lasting several minutes to 24 hr (see Cohen & 

Stackman, 2015 for a review; Ennaceur & Aggleton, 1994; Ennaceur et al., 1996; Ennaceur & 

Aggleton, 1997; Forwood, Winters, & Bussey, 2005; Gaskin, Tremblay, & Mumby, 2003; 

Mumby, Gaskin, Glenn, Schramek, & Lehmann, 2002; Winters et al., 2004). One group of 

researchers reported that HPC lesions produced NOP deficits following delays lasting longer 

than 10-min, which the authors interpreted as an object-recognition impairment (Clark et al., 

2000). In this case, the HPC group had average scores that were significantly lower relative to 

the control group, however, their scores were statistically significantly above chance, clearly 

indicating that they successfully discriminated between novel and sample objects on the test, 

even after a 24-hr delay. Despite this report, most researchers that have conducted experiments 

aimed at testing the hypothesis that HPC damage impairs object-recognition memory have failed 
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to find support for it (see Mumby, 2001 for a review). Overall, interpreting the effects of HPC 

lesions on object-recognition memory using the standard NOP test has been rather 

straightforward because HPC rats maintain significant novelty preferences, which clearly 

indicates intact object-recogniton memory. These findings taken together with those from DNMS 

studies suggest that the HPC does not play a critical role in object-recognition memory. There is 

evidence, however, to suggest that an intact HPC is critical for the ability to remember the 

specific location of familiar objects within a particular context (O’Brien, Lehmann, Lecluse, & 

Mumby, 2006; Piterkin et al., 2008).  

The majority of behavioural experiments assessing the effects of PRh damage on rats’ 

object-recognition memory have relied on using the NOP test, not the DNMS task. Determining 

the effects of PRh lesions on rats’ object-recognition memory using the NOP test has not been 

straightforward, and this stems from problems interpreting behaviour on the test. PRh lesions 

have been reported to produce object-recognition impairments because rats with PRh lesions 

exhibit significantly lower novel-object preferences compared to control rats, despite the scores 

being significantly above chance (cf. Bussey, Duck, Muir, & Aggleton, 2000; Bussey, Muir, & 

Aggleton, 1999; Clark, Zola, & Squire, 2000; Norman & Eacott, 2004; Winters, Forwood, 

Cowell, Saksida, & Bussey, 2004). However, interpreting these results using the within-subjects 

comparison would lead one to conclude that PRh lesions failed to disrupt object-recognition 

memory given the observed bias to investigate the novel object. Accordingly, depending on the 

method used to interpret NOP data, the conclusions drawn can be rather different.  

Nonetheless, upon closer inspection of the within-subjects results from several studies, 

there are discrepancies in terms of whether or not PRh lesions consistently abolish novel-object 

preferences. For example, some studies have shown that rats with PRh lesions, or combined 

postrhinal lesions, fail to exhibit statistically significant novelty preferences on the test 

(Aggleton, Keen, Warburton, & Bussey, 1997; Barker & Warburton, 2011; Ennaceur, Neave, & 

Aggleton, 1996; Ennaceur & Aggleton, 1997; Liu & Bilkey, 2001). Ennaceur and colleagues 

(1996) found that rats with PRh lesions exhibited a statistically significant novelty preference 

following a 1-min delay but not a 15-min delay. This finding was later replicated using a 

different group of rats (Ennaceur & Aggleton, 1997). Conversely, other studies revealed that rats 

with PRh lesions can exhibit significant novelty preferences following delays lasting up to and 

including 15 min (Bussey, Duck, Muir, & Aggleton, 2000; Bussey et al., 1999; Ennaceur et al., 
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1996; Ennaceur & Aggleton, 1997; Norman & Eacott, 2004, 2005). In fact, depending on the 

type of object or the test minute bin that is analyzed, rats with PRh lesions can exhibit significant 

novel-object preferences following delays lasting one hour (Norman & Eacott, 2004), two hours 

(Barker, Bird, Alexander, & Warburton, 2007) and even up to 24 hours (Winters et al., 2004). 

These findings reveal that rats with PRh damage do in fact successfully discriminate between 

novel and sample objects on the test, indicating intact object-recognition.   

The discrepant findings cannot be explained by differences in lesion size nor 

methodological procedures, as they are similar across experiments (some of the inconsistent 

results even occurred within the same study). The discrepancies likely stem from the 

interpretational problems associated with any test of incidental learning in which an animal 

incidentally explores. Indeed, a lack of bias to explore a novel object on the test following some 

form of treatment can reflect an object-recognition impairment, but it can also reflect some other 

factor. For example, a treatment may alter the behavioural expression of this novelty preference 

for reasons unrelated to failures in object-recognition memory. For example, a treatment may 

affect a rat’s stress response, which can alter the extent of spontaneous investigation of a novel 

object. Indeed, higher stress levels reduce a rat’s tendency to approach novel objects (Gulinello 

et al., 2018; Hughes, 1997). Alternatively, the tendency to investigate novel objects may decline 

due to an increase in competing behaviours. For example, a treatment may disrupt a rat’s spatial 

memory while maintaining intact object-recognition memory. Rats’ tendency to investigate 

novel objects changes a function of environment familiarity (Besheer & Bevins, 2000; Sheldon, 

1969). Consequently, novel object investigation may decline due to an increase in exploring 

features of the apparatus or the sample object. Determining potential reasons for why a rat fails 

to display a novelty preference on the test is confounded by the fact that the NOP test does not 

involve a goal, and thus the rat is not required to make an explicit choice response based on 

memory. Indeed, the lack of an instrumental response complicates the interpretation of the 

behaviour because it fails to limit the number of alternative explanations besides an object-

recognition memory impairment for the observed behaviour on the test. Overall, the effects of 

PRh lesions on rats’ novel-object preference have been rather inconsistent, making it difficult to 

confirm whether or not PRh lesions disrupt object-recognition memory in rats. 

Considering both the HPC and PRh have been implicated in object-recognition memory, 

it was important that we determine the effects of HPC and PRh lesions on rats’ performance on 
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the new modified delayed nonmatching-to-sample (mDNMS) task. Additionally, given the 

inconsistent findings on the effects of PRh lesions using the NOP test, we also decided to 

administer NOP tests and to compare their performance to that on the mDNMS task. Rats 

received either PRh or HPC lesions and were trained on the mDNMS task using a short retention 

interval (~30 s). Afterwards, the rats were tested on a standard NOP test using a 180-s retention 

interval. Based on previous findings, we predicted HPC rats would perform similarly to control 

rats on the mDNMS task and would exhibit significant novelty preference on the NOP test. In 

terms of the effects of PRh lesions on mDNMS performance, we predicted PRh rats would 

require significantly more trials to reach the performance criterion and would have significantly 

lower scores compared to control rats. Given the inconsistent findings on the effects of PRh 

lesions on rats’ novel-object-preference, we were unsure as to whether or not PRh lesions would 

disrupt novel-object preference on the NOP test. 

4.2. Materials and Method 

4.2.1. Subjects  

The subjects were 14 male Long-Evans rats (Charles River, St. Constant, QC), weighing 

500-575 g (~28 weeks old) at the start of the experiment. The rats were housed in polypropylene 

cages (48 × 25 × 20 cm) in a colony room under a reverse 12:12 light-dark cycle, with light onset 

at 8:00 p.m. The rats had continuous access to water and each received a daily ration of ~25 g of 

rat chow (Charles River Rodent Animal Diet, no. 5075) in the late afternoon, after behavioral 

testing was finished for the day. Prior to surgery, rats were pair-housed, and following surgery 

they were individually housed. Prior to this experiment, nine of the rats were briefly used in a 

separate study, which involved administering a brief puff of air to the face after approaching a 

stimulus object. The object was not used in the present experiment, and each of the nine rats was 

distributed equally into each group. All procedures were approved by the Concordia University 

Animal Care and Use Committee, and were in accordance with the guidelines of the Canadian 

Council on Animal Care.  

4.2.2. Surgery  

Hippocampal surgical lesions (HPC group, n = 5) and perirhinal cortex lesions (PRh 

group, n = 5) were performed while the rats were anesthetized with isoflurane gas (0.8 l/min 

oxygen at 14.7 psia at 21º, Janssen, Toronto, ON). The rats were secured in a stereotaxic frame 

and a midline scalp incision was made to expose the skull. The lesions were made by injecting 
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N-methyl-D-aspartic acid (NMDA; Sigma Chem. Co., St. Louis, MO) at 5 sites bilaterally for 

the HPC (AP -3.1, -4.1, -5.0, -5.3, -6.0; ML ±1.5, ±2.8, ±3.0, ±5.2, ±5.0; DV -3.6, -4.0, -4.5, -

7.0, -7.3), and 4 sites bilaterally for the PRh (AP -3.3, -4.3, -5.3, -6.8; ML ± 4.8; DV -9.35, -9.35, 

-9.35, -9.2) based on (Paxinos & Watson, 1998). A 26-gauge injection cannula connected to PE-

20 tubing was attached to a 10 µl Hamilton syringe mounted on a micro-injection pump (KD 

Scientific). The HPC lesions were made by infusing NMDA (5.1 mM solution, dissolved in 0.1 

M phosphate buffered saline, final pH = 7.3) at a flow rate of 0.15 µl/min until a total volume of 

0.4 µl was reached at each site. The PRh lesions were made by infusing 0.25 µl NMDA at each 

injection site using a flow rate of 0.1µl/min, and the infusion cannulas were lowered from the 

dorsal surface using a 20° angle to the vertical plane for the first three sites and a 22° angle for 

the final site. For both lesion types, the injection cannula remained in place for an additional 2.5 

minutes before being slowly retracted. Following the surgery, the incision was closed using 

wound clips and a topical antibiotic (Hibitane, Wyeth Animal Health, Guelph, ON) was applied 

to the incision area. Each rat in the HPC group received an injection of diazepam (10mg/kg, IP; 

Hoffmann-La Roche, Mississauga, ON) as a prophylaxis against seizures. The control rats (Sham 

group, n = 4) received similar treatment, except no damage was made to the skull or brain. All 

rats received Penicillin G Procaine (0.2 ml, SC; Vétoquinol N.–A Inc., Lavaltrie, QC) and 

Ketoprofen (5 mg/kg, sc; Merial Canada, Baie d’Urfé, QC) post-surgery. Rats were given a 2-

week recovery period prior to continuing behavioural testing. Rats were provided ad lib food 

during the first 10 days following surgery. For the remaining four days, rats were fed 25g of food 

at their usual mealtime. 

4.2.3. Apparatuses 

4.2.3.1. mDNMS task. A large multi-level environment (152 × 145 × 86 cm) was used to 

test the rats (Figure 4.1). The apparatus was a modified, freestanding steel cage rack, enclosed on 

three sides by wire mesh, with a removable, clear acrylic front panel. The apparatus had five 

levels, each covered with woodchip. The top four levels were divided into two equal halves by a 

plastic barrier wall, and the bottom level remained undivided. A loading cage (58 × 37 × 20 cm) 

was placed on the top left side of the apparatus. A rat entered the apparatus via a hole in the 

bottom of the loading cage that was placed over a passageway leading to the top level of the  
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a Training stage 1 b Training stage 2 c Training stage 3 

 

 

 

 

 

 
 d    mDNMS task   

 
Figure 4.1. Diagram of the apparatus used for mDNMS testing depicting a session on (a-c) training stage 1, 2, and 3, 
respectively, and (d) mDNMS task acquisition. A loading cage provided access to the apparatus, and passageways 
on both sides of the apparatus allowed rats to access the different levels. The top four levels contained plastic 
platforms with recessed food wells in which objects could be placed over. During training, the rat descended the left 
side of the apparatus encountering either (a) four copies of one sample object on stage 1, (b) two copies of two 
distinct sample objects on stage 2, or (c) two copies of one sample object and two distinct sample objects on stage 3. 
During (d) mDNMS task acquisition, the rat encountered four unique sample objects as it descended the left side. 
For all stages (a-d) once the rat reached the bottom level, it traversed to the right side where it ascended each level 
encountering 4 different tests. On each test a copy of the sample object was paired with a unique novel object.  
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apparatus. Rats traversed the different levels via wire mesh passageways located on both sides of 

the apparatus. The design of the apparatus was such that a rat had to climb down the 

passageways on the left side of the apparatus in order to gain access to the right side, which it 

then could ascend from level to level. The top four divided levels contained plastic rectangular 

platforms (30 × 12 × 1 cm) each with a recessed food well (2 cm in depth), over which stimulus 

objects could be placed. One platform was placed on each level on the left side of the apparatus, 

and on the right side of the apparatus, two platforms were placed on each level with the food 

wells 9 cm apart. All platforms were positioned near the middle barrier wall, in line with the 

passageway that provided access to the level. The room contained dim lights (40 lx) and one 

video camera was positioned in front of the apparatus to record test sessions. 

4.2.3.2. NOP test. The apparatus for the NOP test was an open-field arena (60 × 70 × 70 

cm), constructed of grey PVC plastic. The floor of the arena consisted of a stainless-steel tray 

covered with woodchips. The floor was removable via a slot at the bottom of one wall to 

facilitate changing the woodchips between each trial. The testing room contained dim lights (14 

lx) and a videocamera was positioned over the arena to record the sessions for later analysis. 

4.2.3.3. Stimulus objects. A total of 320 different objects were used as stimuli for the 

mDNMS task. Objects were made of plastic, metal, glass, or glazed ceramic, and ranged in size 

from 4 to 18 cm in height, and 4 to 13 cm in width. Each object was large enough to cover the 

food well but light enough to be easily displaced by a rat. There were two copies of each 

mDNMS task object –one for the learning phase and one for the test. The objects were cleaned 

after every trial on which they were used, by wiping with a damp paper towel. At the end of each 

day the mDNMS task objects were cleaned using a diluted bleach solution (1:20 concentration 

ratio). 

A separate pool of 6 objects was used for the NOP test. Objects for the NOP test were 

made of plastic, metal, glass, or glazed ceramic, and ranged in size from 7 to 18 cm in height, 

and 5 to 13 cm in width. There were at least three copies of each object–two for the 

familiarization phase and one for the test. A small glass jar (6 cm high) was attached to the 

bottom of each object with epoxy. The objects were fixed in place by screwing the jars into 

inverted lids that were attached to the stainless-steel tray in the open field arena (positioned 27 

cm from opposing corners). The objects were cleaned after every trial on which they were used, 



 

 

105 

by wiping with a damp paper towel. At the end of each day the NOP objects were cleaned using 

a 70% ethanol solution. 

4.2.4. Behavioural procedures 

4.2.4.1. mDNMS task.  

4.2.4.1.1. Pre-surgery habituation. The rats were handled for ~10 minutes daily for one 

week before they were habituated to the apparatus. Rats received one 30-min habituation session 

five days per week. All rats were placed in the apparatus with no stimulus objects present, and 

~20 Cheerios (1.8 g, General Mills) were placed on each level near and inside the food wells. 

Once each rat was consistently eating Cheerios from each food well and reliably completing the 

entire circuit in less than ten minutes they moved onto the pre-surgery training. Rats required an 

average of 8 habituation sessions (min. = 6 and max. = 12). 

4.2.4.1.2. Pre-surgery training. The rats were now tested individually and they were 

introduced to stimulus objects. The goal of this stage was to train rats to displace objects from 

over food wells and to dig for a buried Cheerio. A rat received one session per day that consisted 

of two phases: a sample phase and a choice phase. On the sample phase, the rat descended the 

left side of the apparatus and encountered four copies of one sample object. One Cheerio was 

placed in each food well to encourage the rat to approach and investigate the sample objects. On 

the choice phase, the rat ascended each level on the right side of the apparatus encountering a 

different novel object paired with a copy of the sample object and one Cheerio was placed in the 

food well under each novel object. On the first few sessions, the objects only partially covered 

the food well to encourage timid rats to displace objects. As sessions continued, the objects were 

gradually positioned to cover the entire food well. Once the objects covered the food wells, the 

Cheerios on the sample and choice phase were gradually buried beneath woodchip until the food 

well was entirely filled to the top (2 cm deep). On this stage, rats were not required to reach a 

performance criterion, rather they were simply trained until they consistently displaced objects 

and dug for buried Cheerios on two consecutive sessions, after which they received surgery. Rats 

required on average 20.29 (s = 3.31) training sessions at this stage. 

4.2.4.1.3. Post-surgery training. Following recovery from surgery, the rats received the 

standard three stages of pre-training: stage 1, 2, and 3 (referred to as ‘training’ in the present 

experiment). Training stage 1, 2, and 3 differed in the number of distinct sample objects that 

were presented to the rat: one, two or three, respectively (see Figure 4.1a-c). Throughout the 
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behavioural testing, the experimenters testing the rats were blind to the surgical treatment for 

each rat. During training and subsequent stages, the experimenter left the room after placing the 

rats in the apparatus and watched the session on a TV monitor in an adjacent room. 

At each stage, a rat received one session per day, which consisted of two phases: a 

sample phase and a test phase. On the sample phase, the rat descended the left side of the 

apparatus and encountered either four copies of one sample object (stage 1, which was identical 

to pre-surgery training), two copies of two different sample objects (stage 2), or three different 

sample objects –two copies of one object on the top two levels, and two distinct sample objects 

on the bottom two levels (stage 3). The objects completely covered the food wells, and one 

Cheerio was buried in woodchip in each food well. On the test phase, the rat ascended each level 

on the right side of the apparatus encountering a different novel object paired with a copy of the 

sample object and one Cheerio was buried in woodchip under each novel object. Thus, the test 

phase consisted of four separate ‘trials’, one for each level. On stage 2 and 3 the sample objects 

on the test phase were presented in the same order that the rat had encountered them on the 

sample phase (i.e., the first sample object appeared on the first test level). The sample and test 

phase were separated by a short retention interval in which the rat spent traversing the bottom 

level of the apparatus. On training stage 1 the mean delay (in seconds) for the Sham, HPC, and 

PRh group was 70 (s = 17.47), 61 (s = 49.4), and 34 (s = 12.76), respectively. On training stage 2 

the average delay for the Sham, HPC, and PRh group was 33 (s = 16.92), 23 (s = 13.21), and 28 

(s = 20.08), respectively. Lastly, on training stage 3 the average delay for the Sham, HPC, and 

PRh group was 28 (s = 23.27), 28 (s = 22.74), and 22 (s = 7.20), respectively. On all stages, a rat 

had to reach a performance criterion of 80% of trials correct on five consecutive sessions (16 

trials correct out of 20) before advancing to the next stage.  

A correct choice on a test trial was defined as the rat either displacing the novel object 

before displacing the sample object, or only displacing the novel object. An incorrect choice was 

defined as the rat only displacing the sample object, or displacing the sample object before the 

novel object. If a rat did not displace either object on a particular test, it was considered a non-

trial. Different sample and novel objects were used on each session. On stage 1 a total of 15 

different object sets were used, each containing 8 copies of one sample object and 4 unique novel 

objects. After 15 sessions, rats re-encountered the objects again in the same sequence, starting 

with the first object set. On stage 2 and 3 four new object sets were introduced –each containing 
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four copies of two distinct sample objects and four unique novel objects. These objects sets were 

used in combination with the stage 1 sets. The location of the novel object on the test phase was 

counterbalanced in a pseudorandom order. 

After the rat completed the final test, the experimenter entered the room and removed the 

rat from the top right side of the apparatus. Between each rat, the woodchip on every level was 

redistributed to spread any potential odor cues left by a previous rat, and each object and plastic 

platform was cleaned using a 70% ethanol solution. A rat advanced to the next training stage 

once it reached a performance criterion of at least 80% of trials correct on five consecutive 

sessions (i.e., at least 16 correct trials out of 20 trials), or until it received a maximum of 50 

sessions. 

 4.2.4.1.4. mDNMS task acquisition. During the final training stage, rats encountered four 

distinct sample objects, one on each of the divided levels of the sample phase (see Figure 4.1d). 

Thus, this stage was similar to conventional DNMS tasks in that each sample object was 

encountered only once during the sample phase and was subsequently paired with a unique novel 

object for the test phase. Similar to training, a session consisted of a sample and test phase. On 

the sample phase, a rat descended the apparatus to familiarize itself with four distinct sample 

objects, encountering a different one on each level. One Cheerio was buried in the food well 

under each sample object. During the test phase, a copy of each sample object was presented 

next to a novel object. A Cheerio was buried under the novel object on each test level. Each 

session consisted of four trials (as there were four distinct sample objects in the apparatus).  

From this point forward a new collection of object sets was used. The objects changed on 

each session, however, the same objects served as the sample objects and novel objects for all 

rats. Once a particular object was used on a session, it was not used again until all of the objects 

in each set were used. This resulted in a particular object re-occurring approximately every 24 

sessions. Moreover, an object that served as a sample the first time a rat encountered it, served as 

a novel the next time it was encountered (and vice versa). The sample and novel object on each 

trial were paired based on similarities in size, weight, and material. The location of the novel 

object on each test was counterbalanced in a pseudorandom order. A rat was required to reach a 

performance criterion of at least 80% of trials correct on five consecutive sessions (16 trials 

correct out of 20). The average delay between the sample and test phase for the Sham, HPC, and 

PRh group was 28 (s = 8.09), 26 (s = 17.62), and 21 (s = 8.35), respectively. On the final 
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criterion sessions, the average delay for the Sham, HPC, and PRh group was 34 (s = 19.69), 23 (s 

= 14.91), and 26 (s = 16.39), respectively. A rat was given a maximum of 60 sessions at this 

stage to reach the performance criterion. Rats received one session per day and were tested no 

fewer than five days per week. The dependent measures were mean percent correct choices and 

mean number of sessions required to reach the performance criterion. 

4.2.4.1.5. Probe tests. Following testing, probe tests were administered to confirm the 

rats were not relying on olfactory cues to correctly locate the food reward buried under the novel 

object on the test phase. Two types of probe tests were conducted: 1) the food reward was 

omitted on the test (No Reward) and 2) the sample object was baited on the test (Sample-Baited). 

Two sessions (eight trials) of each type of probe test were performed and compared to two 

normal test sessions conducted contemporaneously. Probe tests were conducted over a 2-week 

period. 

4.2.4.2. NOP test. After probe tests, the rats received NOP testing. Prior to NOP testing, 

rats were habituated to the open field arena for ten minutes daily for two consecutive days. Two 

identical objects were present in the open field arena during habituation. These objects were not 

used on subsequent experimental trials. Twenty-four hours following the last habituation session, 

rats received their first trial. A trial consisted of a familiarization phase and a test phase. For the 

familiarization phase, a rat was placed in the open field arena and allowed to explore two 

identical sample objects for five minutes. Following a 180-s retention interval, the rat was 

returned to the arena which then contained a copy of the sample object and a novel object, and 

the rat was allowed to investigate for five minutes. Objects were counterbalanced between rats 

such that the sample objects for approximately half of the rats were used as the novel objects for 

the remaining rats. The side in which the novel object appeared on was counterbalanced between 

rats and across trials for an individual rat. Each rat received three trials with a 180-s delay and 

trials were conducted on different days during a two-week period. Different object pairs were 

used for each trial, but the same object pair was used for all rats on corresponding trials. All three 

object pairs used in this experiment had been previously screened for preference by a different 

group of rats in a nonchoice test.  

The rats were considered to be investigating an object if their head was 4 cm away from 

the object and oriented towards the object, or away from the object at no more than a 45º angle. 

A rat standing on its hind legs and touching the object with at least one forepaw was also 
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considered to be investigating. Climbing or sitting on top of an object was not considered 

investigation. The main dependent measure was the investigation ratio. This ratio compares the 

total object investigation time to the time spent with the novel object during the test phase (Ratio 

= [Timenovel/ (Timenovel + Timesample)]. To determine whether rats’ discriminated between the 

objects, a one-sample t-test (p < .05) was used to compare mean investigation ratios to chance 

level of investigation (i.e., a ratio of 0.50). A ratio that was significantly greater than 0.50 

indicated the rat spent more time investigating the novel object.  

4.2.5. Histological Procedures  

After behavioral testing was complete, the rats received a lethal dose of sodium 

pentobarbital (100 mg/kg, ip). They were transcardially perfused with 0.9% saline solution, 

followed by 4% paraformaldehyde in 0.1 M phosphate buffer. The brains were excised and 

stored in a 4% paraformaldehyde/30% sucrose solution for at least 48 h until sectioning. The 

brains were sectioned at 40 µm through the HPC formation and PRh cortex using a cryostat 

microtome and every sixth section was mounted on glass microscope slides and stained using 

cresyl violet. A Cavalieri principle method was used to estimate the percentage of hippocampal 

and perirhinal cortex tissue that remained (Schmitz & Hof, 2005). Images of brain sections were 

taken using a Leica DMR-HC microscope mounted with a Hitachi 3CCD camera (model # HV-

C20). Images were captured at 1.25× magnification and analyzed using ImageJ software (NIH). 

A total of 5 sections per rat (every third brain section) were sampled. The brain sections for the 

HPC group corresponded approximately to the following planes relative to bregma: -2.3, -3.3, -

4.3, -5.3, and -6.3 mm, and for the PRh group they corresponded approximately to the following 

planes relative to bregma: -3.3, -4.3, -5.3, -6.0, and -6.8 mm. A point grid with an area per point 

of 0.2 mm2 for the HPC counts, and a 0.1 mm2 for the PRh counts, was randomly placed over 

each respective image and the total number of points in contact with HPC and PRh tissue was 

counted separately. To calculate the total estimated volume of spared HPC and PRh tissue in 

each rat, the sum of the number of points per section was multiplied by the area associated with 

each point, the section thickness, and the section sampling fraction. This value was turned into a 

percentage by dividing the estimated spared tissue volume by the average HPC or PRh volume 

of the Sham group, then multiplying by 100. 
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4.2.6. Statistical Analyses 

Statistical analyses were performed using the Statistical Program for the Social Sciences 

(SPSS) software for Mac (IBM, version 22). The critical threshold for statistically significant 

results was set at p < .05. Eta-squared and Hedge’s g are reported as measures of effect size. The 

95% confidence intervals (CI) reported are calculated for the respective effect sizes. 

4.3. Results 

4.3.1. Data Screening 

Before conducting any analyses, the data were screened according to the recommended 

best practices outlined by Kline (2009), and the statistical assumptions for each type of analysis 

were verified. All scores were standardized in order to detect the presence of outliers. A z-score 

greater than 3 was used to describe an outlier (Kline, 2009). Standardized scores for each 

variable did not reveal the presence of any outliers.  

The normality of the distribution was assessed for each variable by measuring skewness 

and kurtosis. Scores were considered normally distributed with a skew less than 3 and a kurtosis 

less than 10 (Kline, 2009).The distribution of scores was also graphically assessed for normality 

using a histogram with a normal curve fitted to it. In the current sample, all variables showed 

acceptable skew and kurtosis, therefore no transformations were applied.  

4.3.2. Histology and lesion quantification  

Figure 4.2 depicts the largest and smallest HPC lesion (Figure 4.2a) and PRh lesion 

(Figure 4.2b). The NMDA infusions produced extensive cell loss in all principle subfields of the 

HPC and dentate gyrus (DG). The lesions were estimated to have removed 66.71% of the HPC 

(SEM = 2.56%; range: 60.08–73.00%). Damage to the dorsal HPC, including the DG, was 

complete in all but two cases. For those two rats, there was approximately 83% damage made to 

the dorsal HPC. There was also extensive damage to the ventral HPC, but this was more variable 

between hemispheres and animals. There was sparing of cells in the most posterior part of the 

subiculum in all rats. The injection cannulae caused minor damage to the posterior parietal 

cortex.  

The PRh boundaries were defined according to (Burwell, 2001). The NMDA produced 

almost complete bilateral lesions in each PRh rat. The lesions were estimated to have removed 

78.47% of the PRh (SEM = 2.40%; range: 70.28–84.90%). All PRh rats sustained minor bilateral 

damage to the anterior portion of the lateral entorhinal cortex. There was moderate bilateral   
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Figure 4.2. Coronal sections at three planes relative to bregma (in millimeters) depicting the 

extent of the smallest (black) and largest (gray) (a) HPC lesion and (b) PRh lesion. Drawings 

were adapted from Paxinos and Watson (1998). 
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damage to anterior portions of temporal association cortex (area TE) and auditory association 

cortex in all rats. One PRh rat sustained minor unilateral damage to the anterior portion of the 

postrhinal cortex, and another rat sustained minor unilateral damage to the ventral CA1 subfield. 

4.3.3. Behavioural results 

4.3.3.1. mDNMS task 

4.3.3.1.1. Post-surgery training stage 1. All rats, except for one PRh rat, reached the 

performance criterion within the allotted 50 sessions. Thus, the data for this rat were excluded 

from the analyses. Figure 4.3a depicts the mean percent correct choices on the first and last five 

sessions for each group. A One-way ANOVA revealed no significant difference between groups 

on the mean percent correct choices on the last five sessions, (F(2,12) = .43, p = .66, η2 = .08). 

Figure 4.3d depicts the mean number of sessions each group required to reach the performance 

criterion (excluding criterion sessions). A One-way ANOVA revealed no significant group 

difference (F(2,12) = 3.06, p = .09, η2 = .38).  

4.3.3.1.2. Post-surgery training stage 2. Figure 4.3b depicts the mean percent correct 

choices on the first and last five sessions for each group. One HPC rat failed to reach the 

performance criterion within 50 sessions, and the data for this rat were excluded from the 

analyses. A Levene’s test for equality of variances was found to be violated for the mean percent 

correct choices on this stage, thus a nonparametric test was performed. A Kruskal-Wallis H test 

revealed that there was no significant difference in mean percent correct choices on the last five 

sessions, χ2 (2) = 2.67, p = .26. Figure 4.3e depicts the mean number of sessions each group 

required to reach the performance criterion (excluding criterion sessions). A One-way ANOVA 

revealed no significant group difference (F(2,12) = 1.59, p = .25, η2 = .24).  

4.3.3.1.3. Post-surgery training stage 3. Figure 4.3c depicts the mean percent correct 

choices on the first and last five sessions for each group. A Kruskal-Wallis H test revealed that 

there was no significant difference in mean percent correct choices on the last five sessions, χ2 

(2) = 1.25, p = .54. Figure 4.3f depicts the mean number of sessions each group required to reach 

the performance criterion (excluding criterion sessions). A Kruskal-Wallis H test revealed that 

there was no significant difference in mean number of sessions required to reach criterion, χ2 (2) 

= 1.85, p > .05.  
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Figure 4.3. (a-c) Average scores (± SEM) on the first and last five sessions and (d-f) mean (± 

SEM) number of sessions required to reach the performance criterion for each group on training 

stage 1, 2, and 3, respectively.  
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  4.3.3.1.4. Acquisition of mDNMS task. Figure 4.4a depicts the mean percent correct 

choices on the first and last five sessions for each group. All rats acquired the nonmatching rule, 

except for one HPC rat, and the data for this rat were excluded from the analyses. The closest 

this rat came to reaching the performance criterion was 75% on five consecutive sessions by 

Session 48. A Kruskal-Wallis H test revealed that there was no significant difference in mean 

percent correct choices on the last five sessions, χ2 (2) = 1.08, p = .58. Figure 4.4b depicts the 

mean number of sessions each group required to reach the performance criterion (excluding 

criterion sessions). A One-way ANOVA revealed no significant difference in mean number of 

sessions to reach criterion (F(2,12) = 0.54, p = .60, η2 = .10). 

4.3.3.1.5. Probe tests. One PRh rat became ill and was euthanized prior to the probe tests, 

so the results for the PRh group are based on four rats. Moreover, the one HPC rat that did not 

reach criterion was excluded from the probe test analyses. 

Figure 4.5 depicts the results from the probe tests. We compared each group’s scores on 

the probe tests to chance level of performance using a one-sample t-test (one-tailed). Rats in the 

HPC group had scores that were significantly different from chance on the “No Reward” probe 

(t(3) = 3.06, p = .03, Hedge’s g = 2.09, 95% CI [0.31, 4.01]). However, the HPC group scores 

were not significantly different from chance on the “Sample-Baited” probe (t(3) = -1.42, p = .13, 

Hedge’s g = -0.96, 95% CI [-2.45, 0.53]) or the normal tests (t(3) = 1.00, p = .20, Hedge’s g = 

0.94, 95% CI [-0.76, 2.12]). Rats in the PRh group did not have scores significantly different 

from chance on the “No Reward” probe (t(3) = .71, p = .27, Hedge’s g = 0.5, 95% CI [-0.91, 

1.92]) or the “Sample-Baited” probe (t(3) = 0.00, p = .50, Hedge’s g = 0.0, 95% CI [-1.39, 1.39]). 

Moreover, the PRh rats’ scores on the normal tests were also not significantly greater than 

chance (t(3) = .78, p = .25, Hedge’s g = 0.55, 95% CI [-0.89, 1.94]). The Sham group had scores 

that were significantly above chance on the “No Reward” probe (t(3) = 3.57, p = .02, Hedge’s g = 

2.52, 95% CI [0.53, 4.50]), the “Sample-Baited” probe (t(3) = 7.00, p = .003, Hedge’s g = 4.98, 

95% CI [1.84, 8.12]), and on the normal tests (t(3) = 3.00, p = .03, Hedge’s g = 2.15, 95% CI 

[0.31, 3.99]). 

Separate one-way ANOVAs were performed to determine if there was a significant 

difference in scores between the probe tests and normal tests for each group of rats. There was a 

significant difference between scores on the probe tests and normal tests for the HPC group 

(F(2,11) = 4.53, p = .04, η2 = .50). Post hoc comparisons (Bonferroni corrected) revealed a  
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Figure 4.4. (a) Average scores (± SEM) for each group on the first and last five sessions of the 

mDNMS acquisition and (b) mean number of sessions required to reach the performance 

criterion. 
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Figure 4.5. Average scores (± SEM) on the probe and normal test trials for each group. Dashed 

line represents chance performance. 
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significant difference between the “No Reward” and “Sample-Baited” probe scores (p = .04), 

however, scores on the probe tests did not significantly differ from those on the normal tests. 

There was no significant difference between the probe test scores and normal test scores for the 

PRh group (F(2, 11) = .11, p = .90, η2 = .02) or for the Sham group (F(2,11) = .62, p = .56, η2 = .12). 

4.3.3.2. NOP test. Figure 4.6a depicts the total time spent investigating objects during the 

5-min familiarization phase for each group. A One-way ANOVA revealed no significant 

difference between groups (F(2,12) = 2.17, p > .05, η2 = .30). Figure 4.6b depicts the mean 

investigation ratios on the test, which are based on the first 3 cumulative minutes. One-sample t-

tests (one-tailed) revealed that the HPC group had a mean investigation ratio significantly above 

chance level of performance (t(4) = 2.77, p = .03, Hedge’s g = 1.74, 95% CI [0.04, 3.44]). 

Conversely, both the PRh group and Sham group had investigation ratios that were not 

significantly different from chance level of performance (t(3) = -.54, p > .05, Hedge’s g =.35, 

95% CI [-1.75, 1.05]) and (t(3) = .52, p > .05, Hedge’s g =.38, 95% CI [-1.02, 1.79]), 

respectively. Both the Sham and PRh group never had investigation ratios significantly above 

chance, whereas the HPC group continued to have scores significantly above chance in the first 

4- and 5-cumulative minutes of the test. 

4.3.3.3. Correlations. A Pearson correlation was performed to determine whether there 

was a relationship between the extent of HPC or PRh damage and the mean percent correct 

choice during the five criterion sessions on the mDNMS acquisition stage. For the HPC rats, the 

correlation coefficient was not statistically significant (r = -0.51, p = .38, 95% CI [-.68, .96]), nor 

was it statistically significant for the PRh rats, (r = -0.85, p = .07, 95% CI [-.13, .99]). Moreover, 

a Pearson correlation was performed to determine whether there was a relationship between the 

extent of HPC or PRh damage and mean number of sessions required to reach the performance 

criterion. The correlation coefficient was not statistically significant for either the HPC group (r 

= -.05, p = .94, 95% CI [-.90, .87]) or the PRh group (r = -.10, p = .87, 95% CI [-.90, .86]). 

4.4. Discussion 

Rats with PRh lesions, and all but one HPC rat, successfully reached the performance 

criterion on the mDNMS task. Compared to Sham rats, the PRh and HPC groups reached a 

similar level of accuracy on the test and required a similar number of sessions to reach the   
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Figure 4.6. (a) Average (± SEM) time spent investigating objects during the familiarization 

phase of the three NOP trials. (b) Mean (± SEM) investigation ratios during the first 3 min on the 

NOP test for each group. Asterisk denotes a group mean that is significantly above chance level 

(one- sample t-test, p < .05). 
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performance criterion. The HPC rat that failed to reach criterion came close, reaching an 

accuracy of 75% on five consecutive sessions. Thus, overall, rats with either HPC or PRh lesions 

were capable of retaining information for four sample objects over a short retention interval on 

the mDNMS task.  

Consistent with previous DNMS findings, HPC rats acquired the mDNMS task at the 

same rate as control rats (Aggleton et al., 1986; Clark et al., 2001; Mumby, Pinel, Kornecook, 

Shen, & Redila, 1995; Shaw & Aggleton, 1993). Although the HPC rats’ scores during mDNMS 

acquisition were not significantly different from Sham rats, there was one HPC rat that failed to 

reach criterion within 60 sessions. The reason why this rat failed to reach the criterion cannot be 

determined from the available data. However, previous research has shown that DNMS 

performance deficits can be more severe when rats with HPC lesions do not receive pre-surgery 

training (for a review see Mumby, 2001). This suggests that an intact HPC is important for 

acquiring other skills that are important for successful performance on the task (e.g., avoiding 

distractions during the delay or withholding hasty responding). An advantage of providing rats 

with extensive DNMS training prior to surgery is that it can help rule out other potential reasons 

for impaired performance. Accordingly, to further examine this question, an important next step 

would be to first train rats on all stages of the mDNMS task and then administer HPC lesions. 

Regardless, four out of five HPC rats successfully reached the performance criterion, and did so 

following a similar number of trials compared to the Sham group. It is important to note that the 

rats in the present experiment received some pre-surgery training on procedural aspects of the 

task. The extent to which this pre-surgery training facilitated the acquisition of the task is 

unclear. Accordingly, to compare mDNMS task acquisition to that on conventional DNMS tasks, 

it would be important to conduct an experiment whereby no pre-surgery training is administered. 

In any case, the present findings reveal that overall, rats with HPC lesions successfully 

discriminated between familiar and unfamiliar objects on the mDNMS task. 

The mDNMS results for the PRh group were not in-line with the hypothesis that the PRh 

plays a critical role in object-recognition memory. Based on this hypothesis, we predicted that 

rats with PRh lesions would require significantly more trials to reach criterion compared to Sham 

rats. There was no significant difference, however. Previous rodent DNMS studies found that 

rats with PRh lesions performed significantly worse than control rats following delays lasting 15 

s or longer (Mumby & Pinel, 1994; Wiig & Bilkey, 1995). Moreover, Wiig and Bilkey (1995) 
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found that PRh rats required more trials to reach the performance criterion on the DNMS 

compared to Sham rats. Comparatively, the PRh rats in the present experiment successfully 

reached the performance criterion despite using a longer retention interval (26 vs. 4 s) and the 

presentation of four distinct sample objects rather than one sample object. Thus, PRh rats in the 

present experiment were capable of retaining more item information over a longer delay relative 

to previous studies. Consequently, rats’ performance on the mDNMS task appears to be more 

robust compared to conventional DNMS tasks. However, as previously stated, rats were 

provided with some pre-surgery training, therefore it is possible that such training may have 

facilitated the acquisition of certain skills necessary for normal performance on the task.  

One PRh rat did fail to reach the performance criterion within the allotted number of 

sessions during training stage 1, despite the initial pre-surgery training. However, by training 

stage 2 this rat successfully reached the criterion and continued to do so on subsequent stages, 

revealing it was capable of learning the nonmatching rule and discriminating between sample 

and novel objects. Overall, the mDNMS results indicate that the rats with PRh lesions were 

capable of recognizing sample objects following a brief retention interval of around 3 minutes.9 

Rats with HPC lesions exhibited significant novel-object preferences on the NOP test, 

indicating they recognized the sample objects on the test. Thus, consistent with previous 

findings, the HPC does not appear to play a critical role in the ability to detect the familiarity of a 

previously encountered object (see Cohen & Stackman, 2015 for a review; Ennaceur & 

Aggleton, 1994; Ennaceur et al., 1996; Ennaceur & Aggleton, 1997; Forwood, Winters, & 

Bussey, 2005; Gaskin, Tremblay, & Mumby, 2003; Mumby, Gaskin, Glenn, Schramek, & 

Lehmann, 2002; Winters et al., 2004). Conversely, both the PRh and Sham group failed to 

display a novel-object preference on the test. The NOP results for the PRh group are consistent 

with the notion that PRh damage produces object-recognition impairments, however, this does 

not explain the same PRh rats’ successful performance on the mDNMS task. The inconsistencies 

in results on the two tests are a reflection of the internal-validity problem with the NOP test, 

especially when a failure to discriminate is taken as evidence of a failure to recognize objects. 

Accordingly, we propose that object-recognition abilities were largely spared in rats with PRh 

lesions, and their failure to show a novelty preference on the NOP test is due to some other 

 
9 In fact, the average delay length between the moment a rat stopped investigating one sample object on the sample 
phase and the corresponding test trial for that sample object on the mDNMS task was ~180 s. 
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unidentified behavioural, cognitive, or motivational impairment. Indeed, there are a few reasons 

to question whether this lack of a novel-object preference in the PRh group reflects an object-

recognition deficit. First, the same rats showed intact memory for four sample objects on the 

mDNMS task following a similar delay. It seems unlikely that a PRh lesion would disrupt the 

ability to remember one sample object over a 180-s delay on the NOP test without causing an 

impairment in the ability to remember four objects over a similar delay. Moreover, the fact that 

the control rats also failed to exhibit a novel-object preference demonstrates that one should be 

cautious interpreting a lack of novel-object preference as indicative of an object-recognition 

memory impairment. Indeed, the NOP test has been described as being advantageous over 

DNMS paradigms when interpreting treatment effects because it reduces interpretational 

problems that may arise unintentionally due to: 1) reference-memory impairments, such as 

failing to learn the nonmatching rule and 2) disruptions in non-mnemonic processes, such as 

motivational responses to a reinforcer (i.e., food reward) (Antunes & Biala, 2012; Clark & 

Martin, 2005; Clark & Squire, 2010; Cohen & Stackman, 2015; Ennaceur & Delacour, 1988; 

Hughes, 2007; Silvers, Harrod, Mactutus, & Booze, 2007; Winters, Saksida, & Bussey, 2008). 

However, a factor that is overlooked is the possibility that a treatment may affect non-mnemonic 

processes related to the behavioural expression of this novelty preference. Indeed, the number of 

potential reasons for why a rat fails to display a novel-object preference on the test is confounded 

by the fact that the NOP test does not involve a goal, and thus the rat is not required to make an 

explicit choice response based on memory. Alternatively, it is possible that the PRh and Sham 

group NOP results reflect low sample sizes, as typically a larger sample is required when using 

the NOP test due to the variability in object investigation. However, the lack of statistical 

significance on the test does not appear to be due to high levels of variability, as the variability 

between scores in both the PRh and Sham groups was considerably low (see Figure 4.6b). 

Regardless, the results from the present study reveal that interpreting the effects of a treatment on 

object-recognition using the NOP test is not straightforward, and one should exert caution when 

proposing reasons for null preferences on the test. 

A reconciliation of the divergent effects of PRh lesions on rats’ performance on the 

mDNMS task and NOP test may lie in differences in how object representations are encoded or 

retrieved during appetitively-motivated tasks, such as the DNMS task, and incidental learning 

tasks, such as the NOP test. Nonhuman primates with HPC damage, for example, have failed to 
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exhibit novelty preferences on the visual paired comparison (VPC) task (an analogue of the 

rodent NOP test) despite attaining high accuracy scores on the DNMS task (Nemanic et al., 

2004; Pascalis & Bachevalier, 1999). The authors interpreted the lack of novelty preference on 

the VPC task as an object-recognition memory impairment, which led them to conclude that the 

way in which a stimulus is encoded (either actively or passively) potentially requires different 

brain regions (Nemanic et al., 2004). Consequently, damage to a particular brain area can disrupt 

memory for objects on one task but not the other. While this interpretation may explain the 

results for the PRh rats in the present experiment, it fails to explain why we also observed the 

same divergent results between tasks for the Sham group. Moreover, it fails to explain why PRh 

lesions do not consistently disrupt novel-object preference in rats.  

A more likely explanation for the divergent effects of PRh lesions on rats’ performance 

on both tasks is that both tasks do measure the ability to detect the familiarity of a previously 

encountered object, yet they differ in their precision to do so. On DNMS tasks, rats are trained to 

learn a nonmatching rule, thus with continued testing, on the sample phase the rat presumably 

actively memorizes features of the sample object in order to successfully select a future response 

to retrieve a food reward (nonmatch-to-sample). Displacing the object from over the food well 

and learning that the object features (size, texture, and shape) are integral for successful 

performance on the test, may make it such that the rat focuses more on encoding stimulus 

features. Conversely, on the NOP test, the rat incidentally explores objects in an environment. 

On the familiarization phase the rat is encoding information not only about the sample objects 

but also their location relative to spatial cues and the surrounding context. On the test rats may 

rely on spatial and nonspatial information to successfully discriminate between the sample and 

novel object. Thus, when a rat fails to display a novel-object preference following some 

treatment, it could reflect a disruption in memory for a number of factors related to information 

learned during the familiarization phase. For example, the treatment may have disrupted memory 

for the sample object, the particular context in which the object was encountered (e.g., room and 

apparatus), or even the specific location of the sample object relative to cues within the apparatus 

(including the second copy of the sample object). This raises concerns about potential confounds 

that are introduced when trying to measure a rat’s ability to detect the familiarity of a previously 

encountered object when it is not required to make an explicit choice-response based on memory 
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for the sample object. Indeed, this may explain the inconsistent findings across NOP studies 

following some treatment.  

Interestingly, rats with PRh lesions fail to display novelty preferences on the object-in-

place variant of the NOP test (Barker et al., 2007; Bussey et al., 2000; Liu & Bilkey, 2001). On 

the object-in-place task, a rat is familiarization to four distinct sample objects—one in each 

corner of a square open-field arena. Then, on the test, two of the objects swap places. Intact 

object-in-place memory is inferred when a rat spends more time investigating the two objects 

that switched places relative to the two that remained in the same place. Considering normal rats 

detect this change, it suggests that while a rat is in the open field, it acquires information about a 

particular object and its location relative to spatial cues, which include the other objects in the 

open field. With that in mind, given that rats with PRh lesions fail to spend more time 

investigating the objects that swap compared to those that remain in place, it is not implausible to 

consider that a lack of novelty preference on the standard NOP test may reflect a similar 

disruption in a rat’s ability to detect changes made to the spatial cues surrounding the sample 

object (i.e., replacing the second sample object with a new cue). Depending on what a particular 

rat attends to during the familiarization phase, this could explain why there are discrepant 

findings on the effects of PRh lesions using the NOP test. In any event, these inconsistent 

findings highlight the advantages of designing a task that incorporates the use of an instrumental 

response with which the rat is required to make an explicit choice between familiar and 

unfamiliar objects, and one that includes rewards for accurate choices. 

Other researchers have reported that under certain experimental conditions, rats with PRh 

lesions are capable of both detecting the familiarity of an object and displaying a bias to 

investigate novel objects more than familiar ones (Albasser et al., 2011, 2015; Olarte-Sánchez, 

Amin, Warburton, & Aggleton, 2015). When PRh lesion rats were presented with object pairs 

using the standard NOP test method –one novel and one familiar (“novel + familiar”)— they 

failed to show an investigatory bias towards the novel object. Interestingly, when the same rats 

were given several consecutive tests that contained either a pair of novel objects (“novel + 

novel”) or a pair of familiar objects (“familiar + familiar”), they spent more time investigating 

the novel-object pairs compared to the familiar-object pairs. The difference in time spent 

investigating familiar and novel object pairs suggests that the PRh rats recognized the familiar 

stimuli. Overall, the authors concluded that PRh lesions might disrupt rats’ ability to discriminate 
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which particular object is novel or familiar when both objects are presented simultaneously 

(Olarte-Sánchez et al., 2015). This hypothesis is in line with the notion that rats rely on both 

spatial and nonspatial information to successfully discriminate between the novel and sample 

object on the NOP test, and that the PRh may play a role in the ability to detect the specific 

location of an object relative to local cues. The divergent results between the object-pair 

presentation conditions for the PRh rats could be explained based on changes to the spatial 

information between the learning and test phase. On trials in which a pair of familiar objects was 

presented to the rats, both the spatial and nonspatial information between the learning and test 

phase remained the same. However, on the trials in which a novel and familiar object were 

presented simultaneously, the spatial information changed between the learning and test phase 

(i.e., the spatial relation between the sample and novel object was new). Further experiments are 

required to determine if the PRh plays a critical role in the ability to remember the specific 

location in which an object was previously encountered.  

The results from the probe tests revealed that Sham rats’ had scores that were 

significantly above chance on both types of probe test and normal tests. Moreover, there was no 

significant difference in the Sham rats’ performance on the probe tests and normal tests. This 

indicates that they were not relying on olfactory cues to correctly locate the food reward buried 

underneath the novel object during testing. Conversely, PRh rats’ scores on both types of probe 

tests and the normal tests were not significantly different from chance. The low scores on the 

normal tests make it difficult to interpret the probe test results. The fact that PRh rats did not 

show a bias to displace the novel objects first on the normal tests, or the sample objects first on 

the “Sample-Baited” probes suggests they were not relying on olfactory cues to correctly locate 

the food reward. In the experiment presented in Chapter 2, we reported that when administering 

probe tests, it modifies the characteristics on the task, which consequently, can disrupt 

performance on the test despite intact recognition abilities (Honig & Dodd, 1986). We suspect 

that introducing these changes to the reward contingency during probe testing disrupted PRh 

rats’ performance on both the normal tests and probe tests. Accordingly, the decline in task 

accuracy during probe testing may have reflected the rat’s incentive to respond accurately, and 

not necessarily memory abilities or the ability to detect the odor of the reward. The HPC rats’ 

scores on the normal tests were not significantly different from chance. However, their scores on 

the “No Reward” probe tests were significantly above chance, indicating that they accurately 
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selected the novel object first when no food reward was present. This latter finding suggests that 

HPC rats were not relying on olfactory cues to correctly locate the food reward buried beneath 

the novel object during previous testing. The HPC rats’ scores on the “Sample-Baited” probes 

were not significantly different from chance, although there was a slight trend for the HPC rats to 

select sample objects first on the “Sample-Baited” probe tests. Upon closer inspection of their 

scores on each test trial within the “Sample-Baited” probe sessions, it revealed a tendency for the 

HPC rats to displace the novel object first on test trial 1 (mean accuracy score was 75%), and the 

sample object first on test trial 2, 3, and 4 (mean accuracy scores were 25%, 38%, and 38%, 

respectively). Thus, on the “Sample-Baited” probe sessions, it appeared as though the HPC rats 

quickly applied the new information that was learned on test trial 1 to the subsequent tests within 

that session (i.e., the sample is now rewarded). Thus, the HPC rats’ performance on the “Sample-

Baited” probe tests does not appear to demonstrate the use of olfactory cues to correctly locate 

the food reward, rather it appears to reflect the ability to apply new information learned on one 

trial to the subsequent trials. Overall, the probe tests results suggest that rats were not relying on 

olfactory cues to successfully locate the food reward buried beneath the novel object on the test. 

However, administering probe tests can disrupt normal performance on a task, and the probe 

tests administered in this experiment appeared to especially be disruptive to PRh rats’ 

performance.  

The extent of damage made to the PRh cannot explain the lack of impairment on the 

mDNMS task, as the majority of the PRh was removed bilaterally in all of the rats. Moreover, it 

is difficult to argue that the PRh lesions were not complete enough to disrupt performance as the 

size of the lesion was similar to those in previous experiments that found impaired object-

recognition abilities after PRh lesions in rats (Mumby & Pinel, 1994; Wiig & Bilkey, 1995). The 

PRh rats in the present experiment, however, received moderate damage to area Te2, which has 

strong reciprocal connections with the PRh and provides visual information to it (Burwell & 

Amaral, 1998). This unintentional damage to area Te2 may explain the lack of novel-object 

preference on the NOP test. Previous research using the NOP test has shown that rats with 

combined lesions to the PRh and area Te2 fail to exhibit a novel-object preference following a 

15-min delay (Aggleton et al., 1997). However, this effect does not appear to reflect the damage 

made to area Te2 because excitotoxic lesions restricted to area Te2 have failed to disrupt novel-

object preferences following delays lasting 5 min (Weng-Thim Ho et al., 2011). Thus, it seems 
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unlikely that the resulting NOP deficit reflects damage to area Te2, however, we cannot rule out 

the possibility that the unintentional damage contributed to the lack of novel-object preference. 

We can confirm, based on the mDNMS task results, that both perceptual and object-recognition 

abilities remained intact in rats with PRh lesions.  

In summary, rats with either HPC or PRh lesions successfully acquired the mDNMS task 

and reached accuracy scores that were comparable to Sham rats. Thus, rats with either HPC or 

PRh lesions were capable of retaining information for four sample objects over a short retention 

interval. The reason why rats in the PRh and Sham group failed to show a novel-object 

preference on the NOP test cannot be determined from the available data. However, the 

successful performance on the mDNMS task for both groups suggests that the lack of a novel-

object preference on the NOP test did not reflect an object-recognition memory impairment. In 

the present experiment, memory for objects was assessed only following short retention 

intervals. Accordingly, an important next step is determining the effects of PRh lesions on rats’ 

ability to perform the mDNMS task following retention intervals lasting longer than several 

minutes. This would be essential in order to confirm the robustness of the mDNMS task 

compared to conventional DNMS tasks. Collectively, the findings from the present experiment 

reveal that it is difficult to make firm conclusions about the status of object-recognition memory 

using the NOP test, and what is needed, is a task that provides less ambiguous interpretations of 

a rat’s behaviour on the test, one such as the mDNMS task. 
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Abstract 

The modified delayed nonmatching-to-sample (mDNMS) task has advantages over existing 

object-recognition tests in that it is easier to train rats on compared to conventional DNMS 

procedures, and interpreting recognition abilities on it is less ambiguous than on the novel-

object-preference (NOP) test. Despite these improvements, there are still features of the 

mDNMS task that can be improved on. Accordingly, the goal of this experiment was to refine 

the mDNMS task. We decided to incorporate a Go/No-go procedure that had the added benefit of 

introducing an additional dependent measure to assess object-recognition memory in rats: 

latency to displace objects. Rats received sessions whereby they were trained to approach and 

displace an unfamiliar object (sample) from over a food well to obtain a food reward (sample 

phase). Then on a choice phase, rats received trials in which either a copy of the sample object or 

a novel object was presented. On trials in which a novel object was presented (“Go” trial), the rat 

received a reward for approaching and displacing it. Conversely, on trials in which a sample 

object was presented (“No-go” trial) the rat was not rewarded for displacing it and was trained to 

withhold responding. We measured both latency to displace objects and response accuracy (a 

correct choice was defined as either displacing a novel object or not displacing the sample). Rats 

required an average 54 sessions to reach a performance criterion of at least 80% correct choices 

on five consecutive sessions (16 correct choices out of 20). Moreover, rats displayed 

significantly longer latencies to displace objects on No-go trials compared to Go-trials on five 

consecutive sessions following an average of 36 sessions. Both results indicate that the rats 

acquired the reward contingency (a novel object predicts food). After rats acquired the Go/No-go 

DNMS task, we tested them on the NOP test to determine if scores on both tasks were 

significantly correlated. We found no significant correlation, indicating that performance on the 

Go/No-go DNMS task did not predict novelty-preference scores. The findings from this 

experiment highlight the benefits of incorporating multiple dependent measures to assess object-

recognition memory. Moreover, compared to the NOP test, the features of the Go/No-go DNMS 

task allow for a more straightforward interpretation of behaviour in relation to object-recognition 

memory.  
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5.1. Introduction 

 Animals can exhibit performance impairments on memory tests for reasons that are 

unrelated to mnemonic functions. Interpreting the cause for a performance deficit can be a 

challenge if potential extraneous variables are not controlled for. Accordingly, a key feature of a 

robust research design is the reduction or elimination of measurement error. We recently 

developed a modified delayed nonmatching-to-sample (mDNMS) task that is an improvement on 

conventional DNMS tasks in that rats require significantly fewer trials to reach the performance 

criterion and it can be used to assess long-term object-recognition memory (Cole, Simundic, 

Mossa, & Mumby, 2019). Moreover, compared to the novel-object-preference (NOP) test it 

provides a less ambiguous measure of the status of object-recognition memory. Specifically, it 

incorporates the use of an instrumental response with which the rat makes an explicit choice 

between familiar and unfamiliar objects, and rats are provided with a reward for accurate 

choices. Despite these improvements, there may yet be opportunity to further improve the 

procedure. Accordingly, the aim of the present experiment was to modify certain features of the 

mDNMS task that have the potential to interfere with accurate performance on the test.  

 One drawback associated with DNMS tasks is that rats can develop positional biases on 

the test (i.e., consistently displacing an object based on its spatial location—left or right—and 

not whether it is novel). This behaviour is disruptive and if not caught, interferes with accurate 

performance on the test (cf. Kalynchuk & Beck, 1992; Krechevsky, 1932; Mumby, 2005; 

Mumby, Pinel, & Wood, 1990; Rothblat & Hayes, 1987). These positional biases can form either 

early on during DNMS training, prior to when the rat learns the reward contingency (Rothblat & 

Hayes, 1987) or following the introduction of longer retention intervals (Mumby et al., 1990). In 

the latter instance, it may reflect a strategy that a rat resorts to when it fails to remember the 

sample object due to the increase in demands on memory (Mumby et al., 1990). In both cases, 

additional training is typically provided in an attempt to remove these positional biases. The 

standard approach involves rewarding the non-preferred side more than the preferred side (e.g., 

using a ratio of 9:1) until the behaviour ceases. If the experimenter is unable to remove these 

biases, then the rat is removed from the experiment. Indeed, several rats were excluded from the 

Cole et al. (2019) experiment because they developed positional biases on the test. Whether 

positional biases are formed early on in training or after introducing long retention intervals, they 

are disruptive and ultimately can lead to the exclusion of rats or trials from the experiment. Thus, 
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a major objective in the present experiment was to modify the mDNMS task to prevent the 

formation of positional biases. 

 Moreover, although the rats required significantly fewer trials to reach a strict 

performance criterion on the mDNMS task compared to conventional DNMS tasks, accuracy 

scores on the shortest delay declined significantly between the five criterion sessions during 

training and subsequent mixed-delay testing. Mean accuracy scores on the five criterion sessions 

in the experiments from Chapter 2 and 3 were 84% and 81%, respectively. Thereafter, scores on 

the shortest delay during mixed-delay testing dropped to 68% and 65%, respectively. This is a 

problem because a key requirement for any DNMS task is that normal rats maintain high 

accuracies on the test, as it increases the ability to detect even slight impairments in performance 

following some form of treatment (e.g., surgical lesion). As described in Chapter 2, we suspected 

that the discrepancy in scores between training and testing likely reflected an effect of the 

different testing procedures on performance more so than on memory. Alternatively, it could 

reflect the increase in the length of the minimum delay used during training and testing (e.g., the 

delay increased from 30 to 100 s). Thus, the decline in accuracy may reflect an increase in the 

demands on memory as the delay length became longer. Neither of the aforementioned 

explanations, however, can account for the observed decline in performance in the experiment 

presented in Chapter 3. In that experiment there was no significant increase in the minimum 

delay length between training and testing (69 to 82 s) nor were there abrupt changes to the delay 

length inside the apparatus.  

 We posited that the reduced accuracy on the test might reflect the low cost to making an 

error on the test. Unlike conventional DNMS tasks, on the mDNMS task the rat has the 

opportunity to obtain a food reward after making an initial error, as the food reward is placed 

underneath the novel object prior to the start of the trial. On conventional DNMS tasks, during 

the choice phase the subject receives a reward only if it displaces the correct stimulus (novel 

object) and inhibits responding to the incorrect stimulus (sample object). For example, when the 

subject displaces the sample object on the test, the experimenter withholds the food reward and 

abruptly ends the trial by removing both objects from the apparatus. Providing the opportunity to 

make a second choice on the mDNMS task may have facilitated acquisition of the nonmatching 

rule, however, doing so for extended periods of testing may have been detrimental for 

performance. Theoretically, allowing the rat to make a second choice on each trial would 
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increase task-acquisition rate because it provides more opportunities for the rat to learn that the 

novel object predicts a food reward and the sample object does not (instead of the rat only 

learning one part of the reward contingency on each trial). However, over time there may have 

been a reduction in demand to make accurate first choices on the test as the rat learned it did not 

require much time and/or energy to displace the novel object after an initial incorrect response. 

Although we increased both the delay and amount of effort necessary to retrieve the buried 

Cheerio from beneath the novel object, it may not have rendered enough of a cost to deter rats 

from displacing the sample object before the novel. This feature of the task may explain the 

observed decline in accuracy as testing continued, despite the rats requiring significantly fewer 

trials to reach the performance criterion compared to conventional DNMS tasks (however, see 

Appendix B for an alternative explanation). 

 In order to refine the mDNMS paradigm to minimize the abovementioned issues, the 

following changes were required: 1) removing the potential for positional biases to form, and 2) 

increasing the cost for making an error. In making the adjustments, we thought it was essential 

that the rats continued to “self-administer” trials. First, removing the experimenter from playing 

an active role in administering individual trials removes other extraneous factors that could 

influence a rat’s performance on the test (e.g., distraction due to the presence of the experimenter 

or the experimenter unintentionally giving cues to the rat as to which object will be rewarded on 

the choice test). Second, having rats travel at their own pace around a large environment 

reflected a more ecologically valid paradigm compared to conventional DNMS apparatuses. 

Indeed, the design of the apparatus more closely mimicked how a rat naturally forages in the 

wild –visiting new locations and avoiding previously visited ones (Barnett, 2005). Accordingly, 

one way to implement the changes while using the same apparatus would be to increase the 

distance between the sample and novel objects on the test. By placing only one object (either a 

sample or novel) on each test level of the apparatus, the objects would no longer be positioned 

next to each other thus, removing the potential for positional biases to form. Additionally, by 

increasing the distance between the sample and novel objects, a rat could no longer displace a 

sample object and then quickly retrieve the reward from beneath an adjacent novel object. By 

increasing the distance required to visit each object on the test, it would increase the cost for 

making an error (i.e., displacing the sample object). Theoretically, this should reduce a rat’s 
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tendency to displace sample objects on the test, and consequently result in higher accuracy 

scores on the test. 

 In implementing these changes, we essentially developed a Go/No-go DNMS procedure 

to measure object-recognition memory. Rats were trained to approach and displace an unfamiliar 

object (the sample) from over a food well to obtain a food reward. Then, rats received a choice 

phase whereby they were presented with copies of the sample object on two test levels and novel 

objects on the remaining two levels. On trials in which the novel object was presented (“Go” 

trial), the rat received a reward for approaching and displacing it. On trials in which sample 

objects were presented (“No-go” trial) rats were not rewarded and were trained to withhold 

responding (do not displace the object). Notably, the new procedure made it possible to use two 

dependent measures as an index of object-recognition memory: percent correct choices and 

latency to displace an object. A correct choice was defined as either displacing a novel object or 

not displacing a sample object. Thus, a rat could display two different types of behaviours, each 

of which could be used to determine whether the rat successfully discriminated between a 

familiar and unfamiliar object. 

 A secondary goal of this experiment was to determine whether performance on the 

Go/No-go DNMS task predicted novel-object preference scores on the NOP test. If novel-object 

preference scores provide an accurate estimate of a rat’s object-recognition abilities, then we 

predicted to find a positive linear correlation to exist between scores on the Go/No-go DNMS 

and NOP test. Accordingly, after rats acquired the Go/No-go DNMS task we tested them on the 

NOP test. 

5.2. Materials and Method 

5.2.1. Subjects 

The subjects were ten male Long-Evans rats (Charles River, Kingston, ON), 450-550 g at 

the start of mDNMS training (~21 weeks old). The rats were pair-housed in polypropylene cages 

(48 × 25 × 20 cm) in a colony room maintained under a reverse 12:12 light-dark cycle, with light 

onset at 8:00 p.m. The rats had continuous access to water and each received a daily ration of 

~25 g of rat chow (Charles River Rodent Animal Diet, no. 5075) in the late afternoon, after 

behavioral testing was finished for the day. Prior to the start of the experiment, the rats received 

14 weeks of environmental enrichment starting on post-natal day 28. Environmental enrichment 

entailed placing all 10 rats in a large apparatus, similar to the one used in the present experiment, 



 

 

133 

for five hr/day, five days/week. During environmental enrichment, the rats were exposed to 

different events as part of an unrelated experiment (e.g., forage for novel foods, and on occasion 

encounter aversive stimuli (cat collar infused with cat odour and a lithium chloride injection 

following the ingestion of a novel food). Moreover, the rats encountered stimulus objects, but 

none of which were used in the present experiment. Following enrichment the rats were used in a 

series of brief unrelated experiments involving exposure to aversive stimuli (e.g., receiving a 

foot-shock in a conditioning chamber or being placed in a water maze). The training histories 

were identical for all rats in the present experiment. All procedures were approved by the 

Concordia University Animal Care and Use Committee, and were in accordance with the 

guidelines of the Canadian Council on Animal Care. 

5.2.2. Apparatuses 

 5.2.2.1. Go/No-go DNMS task. The same large multi-level apparatus (152 × 145 × 86 

cm) that was used for mDNMS testing was used in the present experiment (Figure 5.1). The 

apparatus was a modified, freestanding steel cage rack, enclosed on three sides by wire mesh, 

with a removable, clear acrylic front panel. The apparatus had five levels, each covered with 

woodchip. The top four levels were divided into two equal halves by a plastic barrier wall, and 

the bottom level remained undivided. A loading cage (58 × 37 × 20 cm) was placed on the top 

left side of the apparatus. A rat entered the apparatus via a hole in the bottom of the loading cage 

that was placed over a passageway leading to the top level of the apparatus. Rats traversed the 

different levels via wire mesh passageways located on both sides of the apparatus. The design of 

the apparatus was such that a rat had to climb down the passageways on the left side of the 

apparatus in order to gain access to the right side, which it then could ascend from level to level. 

The top four divided levels each contained one plastic rectangular platform (30 × 12 × 1 cm) 

each with a recessed food well (2 cm in depth), over which stimulus objects could be placed. 

Each platform was positioned near the middle barrier wall, equal distance from the exterior walls 

of the apparatus, and at a distance of 57 cm from the passageway. The bottom, fifth level 

contained no platforms or objects and served as the retention interval area during testing. The 

room contained dim lights (40 lx) and a video camera was positioned in front of the apparatus to 

record the session for later analysis.  
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a b c 

Training Stage 1 Training Stage 2 Go/No-go Testing 

 

   
Figure 5.1. Diagrams of the apparatus used for Go/No-go DNMS depicting a session during (a) 

Training Stage 1 (b) Training Stage 2 and (c) Go/No-go Testing. A loading cage provided access 

to the apparatus, and passageways on both sides of the apparatus allowed rats to access the 

different levels. The top four divided levels each contained one plastic platform with recessed 

food wells in which an object could be placed over. On the sample phase when the rat descended 

the left side of the apparatus on a training session it encountered either (a) four copies of one 

sample object on stage 1 or (b) two copies of two distinct sample objects on stage 2. On (c) 

Go/No-go testing the rat encountered two unique sample objects. For all stages, once the rat 

reached the bottom level, it traversed to the right side where it ascended each level encountering 

4 different test trials. On two trials a copy of the sample object was presented (No-go trial) and 

on two trials a unique novel object was presented (Go trial). 
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5.2.2.2. NOP test. The apparatus for the NOP test was an open-field arena (60 × 70 × 70 

cm), constructed of grey PVC plastic. The floor of the arena consisted of a stainless-steel tray 

covered with woodchips. The floor was removable via a slot at the bottom of one wall to 

facilitate changing the woodchips between each trial. The testing room contained dim lights (14 

lx) and a videocamera was positioned over the arena to record the sessions for later analysis. 

5.2.2.3. Stimulus objects. A total of 282 different objects were used as stimuli for the 

Go/No-go task. Objects were made of plastic, metal, glass, or glazed ceramic, and ranged in size 

from 4 to 18 cm in height, and 4 to 13 cm in width. Each object was large enough to cover the 

food well but light enough to be easily displaced by a rat. There were at least two copies of each 

object –one for the learning phase and one for the test. The objects were cleaned using a 70% 

ethanol solution after every trial on which they were used, as well as at the end of each day.  

A separate pool of 10 objects was used for the NOP test. Objects for the NOP test were 

made of plastic, glass, or glazed ceramic, and ranged in size from 7 to 18 cm in height, and 5 to 

13 cm in width. There were at least three copies of each object–two for the familiarization phase 

and one for the test. A small glass jar (6 cm high) was attached to the bottom of each object with 

epoxy. The objects were fixed in place by screwing the jars into inverted lids that were attached 

to the stainless-steel tray in the open field arena (positioned 27 cm from opposing corners). The 

objects were cleaned after every trial on which they were used, by wiping with a damp paper 

towel. At the end of each day the NOP objects were cleaned using a 70% ethanol solution. 

5.2.3. Procedures 

 5.2.3.1. Go/No-go DNMS task. The paradigm included a series of training stages. For 

each stage, rats received one session per day, no fewer than five days per week. There were three 

stages: 1) habituation and shaping, 2) Go/No-go training, and 3) Go/No-go DNMS. 

 5.2.3.1.1. Habituation and shaping. On the first seven sessions of habituation all ten rats 

were placed in the apparatus together for 30 minutes with no stimulus objects present, and ~20 

Cheerios (1.8 g, General Mills) were placed on each level to encourage the rats to navigate the 

environment. The goal of habituation was to have rats complete an entire circuit of the apparatus 

(start on the top left level and finish on the top right level), with relatively little hesitation. Once 

the rats were visiting every level within 10 minutes, they were then placed in the environment in 

pairs (i.e., cage mates) for an average of five sessions. During this stage of habituation and 

shaping, the rats were introduced to the plastic platforms that contained food wells. One plastic 
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platform was placed on each level of the apparatus (except the bottom level), and Cheerios were 

placed inside the food wells. Once a pair of rats was visiting each apparatus level consistently 

and eating the majority of the Cheerios within 10 minutes, they began to encounter objects. At 

this point, the rats were placed in the apparatus individually and were gradually familiarized to 

the procedural aspects of the task, namely to learn to displace objects from over the food wells 

and to dig for a single Cheerio (~93 mg) buried beneath woodchip (2 cm deep). Burying the 

Cheerio was done in an attempt to reduce the likelihood that a rat would rely on olfactory cues to 

locate the reward. Throughout this shaping procedure, the same object, and multiple copies of it, 

was used. This object was not used in subsequent training or testing. On the first few shaping 

sessions, the objects only partially covered the food well to encourage timid rats to displace 

objects. As sessions continued, the objects were gradually positioned to cover the entire food 

well. On the shaping phase rats required on average 24 sessions (s = 2.75) until they were 

consistently displacing objects and digging for the Cheerio, at which point they moved onto the 

training stage.  

5.2.3.1.2. Go/No-go training stage 1. The purpose of the training stage was to teach the 

rats the reward contingency. A session consisted of two phases: a sample phase and a test phase. 

On the sample phase, the rat descended the left side of the apparatus and encountered four 

identical copies of one sample object (see Figure 5.1a). One Cheerio was buried beneath each 

sample object to encourage the rat to approach and investigate it. On the test phase, the rat 

ascended the right side of the apparatus and received four separate ‘trials’, one on each level. On 

two of the trials a copy of the sample object was presented and on the other two trials a novel 

object was presented. On a trial in which a novel object was presented, two Cheerios were buried 

beneath it, whereas on a trial with a sample object, no Cheerios were buried beneath it. 

Accordingly, on the test, the rat learned that encountering a novel object provided a food reward 

(Go trial), whereas encountering a sample object did not result in reinforcement (No-go trial). 

The location of the novel and sample objects on the test were counterbalanced across sessions in 

a pseudorandom order. 

The sample and test phase was separated by a short delay in which the rat spent 

traversing the bottom level of the apparatus. The average time required to traverse the bottom 

level (the delay) during this stage was 25 s (s = 10.28). Different sample and novel objects were 

used on each session. On stage 1 a total of 16 different object sets were used, each containing 6 
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copies of one sample object and 4 unique novel objects. After 16 sessions, rats re-encountered 

the same object sets in the same sequence starting with the first object set. The first time a rat 

encountered an object set, the first two novel objects were used on the test, and on the second 

encounter, the other two novel objects were used.  

Between each rat, all of the plastic platforms and objects were cleaned using a 70% 

ethanol solution. The woodchip on each level was redistributed in an attempt to reduce olfactory 

cues left by the previous rat.  

The dependent measures were response accuracy (mean percent correct choices) and 

response latency (mean latency to displace an object). A correct choice was defined as a rat 

either displacing a novel object from over a food well or not displacing a sample object. An 

incorrect choice was defined as either a rat displacing a sample object or not displacing a novel 

object. Latency to displace an object was defined as the time (in seconds) between the moment 

the rat’s four paws touched the test level to the moment the food well was exposed. If a rat did 

not displace an object from over a food well, it received a latency score of 10 seconds for that 

trial.10 Latency to displace an object was scored using ODLog (Macropod software, version 

2.6.1).  

On the first few sessions, the objects only partially covered the food well to encourage 

timid rats to displace objects. By approximately the fourth session, the objects were positioned to 

cover the entire food well. For a particular rat, both response accuracy and latency on the test 

phase began to be recorded only once all of the objects fully covered the food well.  

Two performance criterions were established—one for each dependent measure. The 

performance criterion that a rat had to reach for response accuracy was at least 80% correct 

choices on five consecutive sessions (16 correct trials out of 20). Criterion performance for 

response latency was considered to be attained when the mean latency to displace objects on No-

go trials was statistically significantly longer than on Go trials on five consecutive sessions. A rat 

 
10 The score of 10 s was based on non-displacement times from previous Go/No-go tasks using objects (Cho & 
Kesner, 1995; Ragozzino, Detrick, & Kesner, 2002). Typically, when a rat does not displace an object the 
experimenter keeps the rat in the apparatus until the end of the trial, and then it receives the maximum trial time 
limit as its latency score (e.g., 10 s). In the present experiment, this method was not practical because the rat (not the 
experimenter) controlled the duration on the trial, and on non-displacement trials the rat tended to quickly leave the 
test level. This resulted in latencies that were similar to those on Go trials (when a rat would displace the object). 
Thus, we imposed a set time for non-displacement trials in order to distinguish them from Go trials. 
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was trained on this stage until it reached both performance criteria or received a maximum of 80 

sessions.  

5.2.3.1.3. Go/No-go training stage 2. This stage was the same as training stage 1, except 

now the rat encountered two copies of two different sample objects on the sample phase (see 

Figure 5.1b). On the test phase, the rat ascended the right side of the apparatus and encountered a 

third copy of each sample object and two different novel objects. For a particular session, the 

sample objects on the test phase were presented in the same sequence that the rat had 

encountered them on the sample phase.  

On this stage, eight new object sets were introduced –each containing three copies of two 

distinct sample objects and four unique novel objects. The new object sets were used in addition 

to the ones used during stage 1, except now the stage 1 object sets were combined on a session to 

expose the rat to two distinct sample objects (e.g., on a session a rat encountered half of object 

set 1 and half of object set 2). A rat was trained on this stage until it reached both performance 

criteria or until it reached a maximum of 30 sessions. The mean retention interval between the 

sample and test phase was 25 s (s = 12.32). 

 5.2.3.1.4. Go/No-go DNMS task. A new pool of 154 objects was used during this stage of 

testing, and the previous object sets were no longer used. This stage was the same as training 

stage 2, except now a rat encountered only one copy of two distinct sample objects as it 

descended the left side of the apparatus (the other two sample levels remained empty). 

Accordingly, this stage was similar to conventional DNMS tasks in that each sample object was 

encountered only once during the sample phase. On the test side, as the rat ascended each level it 

encountered either a copy of a sample object (No-go trial) or a distinct novel object (Go trial) 

(see Figure 5.1c). Similar to the training stages, two Cheerios were buried beneath each novel 

object and no cheerios were buried beneath either sample object. On each session, a rat received 

four trials—two No-go trials and two Go trials. The location of the novel and sample objects on 

the test phase were counterbalanced in a pseudorandom order. Different objects were used on 

each session, and the same object served as the sample and novel for each rat. During this stage 

of testing, the objects were trial-unique such that they never recurred on any session, unlike the 

objects that were used during training.  

A rat was tested until it reached both performance criteria or received a maximum 30 

sessions. Rats that failed to reach the response accuracy performance criterion during training 
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stages were simply tested until they reached the response latency performance criterion.11 The 

mean delay between the sample and test phase was 25 s (s = 8.23). 

5.2.3.1.5. Probe tests. Following Go/No-go DNMS testing, probe tests were administered 

to confirm the rats were not relying on olfactory cues to correctly locate the food reward buried 

under the novel object on the test phase. Two types of probe tests were conducted: 1) the food 

reward was omitted on the Go trials (Go probe) and 2) the sample object was baited on the No-

go trials (No-go probe). The probe tests were conducted concurrently with normal tests, such that 

on one session, two trials were set up as probe tests (one for each respective type) and two trials 

were normal tests (i.e., novel object baited and sample object not baited). A total of eight probe 

tests were administered—four of each type. Latency to displace the object was used as the 

dependent measure and probe test scores were compared to those obtained on the normal tests. 

The mean delay between the sample and test phase during probe testing was 21 s (s = 11.98). 

5.2.3.2. NOP test. Rats received NOP testing using a 180-s delay. Prior to NOP testing, 

rats were habituated to the open field arena for ten minutes daily for two consecutive days. Two 

identical objects were present in the open field arena during habituation. These objects were not 

used on subsequent experimental trials. Twenty-four hours following the last habituation session, 

rats received their first trial. A trial consisted of a familiarization phase and a test phase. For the 

familiarization phase, a rat was placed in the open field arena and allowed to explore two 

identical sample objects for five minutes. Following a 180-s retention interval, the rat was 

returned to the arena which then contained a copy of the sample object and a novel object, and 

the rat was allowed to investigate for five minutes. Objects were counterbalanced between rats 

such that the sample objects for approximately half of the rats were used as the novel objects for 

the remaining rats. The side in which the novel object appeared on was counterbalanced between 

rats and across trials for an individual rat. Each rat received five trials with a 180-s delay and 

trials were conducted on different days over a four-week period after rats received Go/No-go 

DNMS testing. Different object pairs were used for each trial, but the same object pair was used 

for all rats on corresponding trials. All five object pairs used in this experiment had been 

previously screened for preference by a different group of rats in a nonchoice test.  

 
11 We noticed that with continued testing, some rats had difficulty refraining from displacing objects on the No-go 
trials, despite exhibiting longer latencies to displace objects on these trials relative to Go trials. Accordingly, we 
chose to use the performance criterion for response latency rather than response accuracy, as it appeared to be a 
more sensitive measure of object-recognition abilities. This is further discussed in the Discussion section. 
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Time spent investigating objects was scored using ODLog (Macropod software, version 

2.6.1). The rats were considered to be investigating an object if their head was 4 cm away from 

the object and oriented towards the object, or away from the object at no more than a 45º angle. 

A rat standing on its hind legs and touching the object with at least one forepaw was also 

considered to be investigating. Climbing or sitting on top of an object was not considered 

investigation. The main dependent measure was the investigation ratio. This ratio compares the 

total object investigation time to the time spent with the novel object during the test phase (Ratio 

= [Timenovel/ (Timenovel + Timesample)]. To determine whether rats’ discriminated between the 

objects, a one-sample t-test (p < .05) was used to compare mean investigation ratios to chance 

level of investigation (i.e., a ratio of 0.50). A ratio that was significantly greater than 0.50 

indicated the rat spent more time investigating the novel object.  

5.2.3.3. Correlational analyses. To determine whether performance on both tasks 

underlie the same construct, we performed a Pearson correlation comparing scores obtained on 

the Go/No-go DNMS to those obtained on the NOP test. Presuming an increase in latency to 

displace objects on No-go trials relative to Go trials reflects a rat’s ability to successfully 

discriminate between familiar and unfamiliar objects, then the latencies can be converted to 

scores that reflect this ability to discriminate. Accordingly, mean latency scores on the Go/No-go 

task were converted to Discrimination Ratios [(LatencyNo-go-LatencyGo)/(LatencyNo-

go+LatencyGo)]. A ratio of zero indicates no difference between the latency to displace sample 

and novel objects, whereas a ratio above a value of one would signify the rat had a longer latency 

on No-go trials than on Go trials. We compared the discrimination ratios on the last five sessions 

of the Go/No-go DNMS to investigation ratio scores on the five NOP tests. 

5.2.4. Statistical Analyses 

Statistical analyses were performed using the Statistical Program for the Social Sciences 

(SPSS) software for Mac (IBM, version 22). The critical threshold for statistically significant 

results was set at p < .05. Eta-squared and Hedge’s g are reported as measures of effect size. The 

95% confidence intervals (CI) reported are calculated for the respective effect sizes.  

5.3. Results 

5.3.1. Data Screening 

Before conducting any analyses, the data were screened according to the recommended 

best practices outlined by Kline (2009). The statistical assumptions for one-sample t-tests, 
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ANOVA, and correlation were verified. All scores were standardized in order to detect the 

presence of outliers. A z-score greater than 3 was used to describe an outlier (Kline, 2009). 

Standardized scores for each variable did not reveal the presence of any outliers. Scores on one 

trial for two rats during the Go/No-go testing phase met the criteria for extreme scores and were 

excluded from analyses. 

The normality of the distribution was assessed for each variable by measuring skewness 

and kurtosis. Scores were considered normally distributed with a skew less than 3 and a kurtosis 

less than 10 (Kline, 2009).The distribution of scores was also graphically assessed for normality 

using a histogram with a normal curve fitted to it. In the current sample, all variables showed 

acceptable skew and kurtosis, therefore no transformations were applied.  

Bivariate scatter plots were investigated to verify the assumptions of linearity and 

homoscedasticity. A visual inspection of the scatter plots confirmed a linear relationship between 

variables and confirmed that the homoscedasticity assumption was not violated. 

5.3.2. Go/No-go DNMS Task 

Scores from the response accuracy were tested for inter-rater reliability. Cohen’s κ was 

computed to assess inter-rater reliability on a random selection of 30% of the trials for each rat. 

There was excellent agreement between the two raters, κ = .98, p < .001. Moreover, the latency 

to displace an object on the test trials was tested for inter-rater reliability. Thirty percent of test 

data were chosen at random for the rater to score. A two-way mixed-effects, absolute-agreement 

ICC estimate revealed an excellent correlation, ICC = .92, 95% CI [.87, .94], p < .001. 

5.3.2.1. Training stage 1.  

5.3.2.1.1. Response accuracy. Figure 5.2a depicts the mean accuracy scores on the first 

and last five sessions. The mean score on the first five sessions was 50% (s = 0). As training 

continued, rats obtained a mean score of 80.5% (s = 1.58%) following an average 54 sessions (s 

= 13.92), excluding the criterion sessions. A dependent-samples t-test revealed a statistically 

significant improvement in scores from the first to the last five sessions of training (t(9) = -61.00, 

p < .001,  Hedge’s g = -27.3, 95% CI [-36.26, -18.34]).  

5.3.2.1.2. Response latency. Figure 5.2b depicts the mean latencies to displace objects (in 

seconds) on the first five sessions compared to the five sessions whereby rats had significantly 

longer latencies on No-go trials compared to Go trials. A dependent samples t-test revealed a 

statistically significant difference in latencies to displace objects on the first five sessions  
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Figure 5.2. Mean accuracy score (± SEM) on the first and last five sessions during (a) training 

stage 1 and (c) training stage 2. Mean latency to displace objects (± SEM) on Go and No-go 

trials during the first and last five sessions during (b) training stage 1, (d) training stage 2, and (e) 

Go/No-go DNMS.   
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(t(9) = -3.34, p = .01,  Hedge’s g = -1.32, 95% CI [-2.29, -0.34]), with faster latencies to displace 

objects on No-go trials (M = 3.47, s = 1.36) compared to Go trials (M = 5.64, s = 1.89). This 

pattern reversed following an average 36 sessions (s = 10.08) (excluding criterion sessions), 

whereby rats reached five consecutive sessions with significantly longer latencies on No-go trials 

compared to Go trials (t(9) = 10.81, p < .001,  Hedge’s g = 3.95, 95% CI [2.39, 5.51]). The mean 

latency on No-go trials was 6.71 (s = 1.16) and on Go trials was 3.27 (s = 0.44). 

5.3.2.2. Training stage 2. One rat became ill during this stage of testing and was 

euthanized. Thus, the results reported for training stage 2 and subsequent stages are based on 

nine rats, unless otherwise stated. 

5.3.2.2.1. Response accuracy. Three of the nine rats failed to reach the performance 

criterion within the allotted 30 sessions. Accordingly, data for all three rats were excluded from 

the statistical analysis. The mean accuracy score during the first five sessions was statistically 

significantly above chance (M = 67.5%, s = 6.89%). Rats reached a mean score of 80% (s = 0%) 

following an average 5.17 sessions (s = 2.4), excluding the criterion sessions (see Figure 5.2c). A 

dependent-samples t-test revealed a statistically significant improvement in scores from the first 

to the last five sessions of training (t(5) = -4.44, p = .01,  Hedge’s g = -2.56, 95% CI [1.28, 3.85]). 

The highest level of accuracy for the rats that failed to reach the performance criterion was 75%, 

which was reached by Session 15 for one rat and Session 18 for the remaining two rats.   

5.3.2.2.2. Response latency. The data for all nine rats were included in the analysis on 

latency to displace objects (Figure 5.2d). A dependent samples t-test conducted on the first five 

sessions revealed that rats maintained a tendency to take significantly longer to displace objects 

on No-go trials (M = 5.80, s = 1.09) compared to Go trials (M = 3.05, s = 0.43) (t(8) = 8.32, p < 

.001,  Hedge’s g = 3.32, 95% CI [1.84, 4.79]). As testing continued, all nine rats exhibited 

statistically significantly longer latencies to displace objects on No-go trials compared to Go 

trials on five consecutive sessions (t(8) = 11.55, p < .001,  Hedge’s g = 4.34, 95% CI [2.58, 

6.11]). Notably, this was achieved following an average 1.11 sessions (s = 1.96). The mean 

latency on No-go trials was 6.26 (s = 0.97) and on Go trials it was 2.95 (s = 0.47). 

5.3.2.3. Go/No-go DNMS.  

5.3.2.3.1. Response accuracy. The majority of rats had difficulty refraining from 

displacing the sample object on No-go trials. Only three of the nine rats reached the performance 

criterion within 30 sessions. The three rats reached a mean accuracy of 81.67% (s = 2.89%) 
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following an average 5 sessions (s = 4.36). The six rats that failed to reach criterion only 

withheld responding on an average of 16% of the No-go trials (s = 11%; min = 0% and max. 

32%). The highest level of accuracy for rats that failed to reach the performance criterion was 

75% for two rats, which was reached by Session 5 and 21, and 65% for three rats which was 

reached by Session 6, 8, and 18. Lastly, one rat never withheld responding and displaced the 

object on every No-go trial. 

5.3.2.3.2. Response latency. All nine rats successfully reached five consecutive sessions 

whereby they had mean latencies that were significantly longer on No-go trials compared to Go 

trials (see Figure 5.2e). This was achieved by an average 2 sessions (s = 3.12). A dependent 

samples t-test conducted on the last five sessions revealed a statistically significant difference in 

latencies to displace objects (t(8) = 8.41, p < .001,  Hedge’s g = 3.71, 95% CI [2.13, 5.29]), with 

longer latencies to displace objects on No-go trials (M = 6.76, s = 1.39) compared to Go trials (M 

= 2.97, s = 0.37).  

5.3.2.4. Probe tests. Mean latency to displace objects during probe testing is plotted in 

Figure 5.3. A two-way repeated measures ANOVA revealed a significant main effect of Test 

Condition (F(1,8) = 10.21, p = .01, partial η2 = .56), a significant main effect of Object Type (F(1,8) 

= 9.5, p = .02, partial η2 = .54), and no significant interaction (F(1,8) = 0.79, p = .40, partial η2 = 

.09). A follow-up t-test (Bonferroni-corrected) revealed that the latency to displace sample 

objects was statistically longer compared to novel objects (p = .01).  

5.3.3. NOP Tests 

Rats spent on average 57.63 s (s = 11.77) investigating objects during the 5-min 

familiarization phase. On the test phase, an average investigation ratio was calculated for each 

rat, based on the five NOP trials using the first two minutes of the test. Trials were excluded if a 

rat spent less than one second exploring either object on the test. This resulted in the exclusion of 

one trial for two rats. One-sample t-tests (one-tailed) revealed that mean investigation ratios were 

statistically significantly above chance level (t(8) = 3.50, p < .01,  Hedge’s g = 1.77, 95% CI 

[0.51, 3.03]). Scores remained statistically significantly above chance for all cumulative minute 

bins of the test phase. The time spent investigating objects on the test trials were tested for inter-

rater reliability. Thirty percent of test data were chosen at random for the rater to score. A two-

way mixed-effects, absolute-agreement ICC estimate revealed an excellent correlation, ICC = 

.99, 95% CI [.98, .99], p < .001.   
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Figure 5.3. Mean latency (± SEM) to displace objects on Go and No-go trials on probe and 

normal tests. 
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5.3.3.1. Correlations. Pearson correlations were conducted on the total time investigating 

sample objects during the familiarization phase and subsequent mean investigation ratios. There 

was no significant correlation (r = .24, p = .54, 95% CI [-.50, .78]). 

5.3.4. Correlation between scores on the Go/No-go DNMS and NOP test 

 Figure 5.4 shows the results of a correlational analysis of Go/No-go DNMS 

discrimination ratios and NOP investigation ratios. There was no significant correlation between 

average Go/No-go DNMS discrimination ratios and average NOP investigation ratios (r = -.08, p 

= .83, 95% CI [-.61, .70]), indicating that performance on the Go/No-go DNMS was not 

significantly correlated with the magnitude of novelty preference on the NOP test.  

5.4. Discussion 

During training stage 1 all rats reached the performance criterion of 80% correct choices 

on five consecutive sessions following an average 54 sessions (excluding criterion sessions). In 

terms of latency to displace objects, all rats exhibited significantly longer mean latencies on No-

go trials compared to Go trials following an average 36 sessions. Both results suggest that rats 

acquired the reward contingency, and successfully discriminated between familiar and unfamiliar 

objects on the test. As the demands of the task were made more difficult with the introduction of 

an additional sample object during the sample phase, rats maintained significantly longer 

latencies to displace objects on No-go trials compared to Go trials. We noticed, however, that 

with continued testing, the majority of rats failed to refrain from displacing objects on No-go 

trials. This finding was unexpected, as we had predicted that rats would be less likely to displace 

a sample object on the test after increasing the cost for making an error. The latter finding 

suggests that in the present paradigm, using latency to displace objects on the test provides a 

more sensitive estimate of object-recognition memory compared to using percent correct 

choices. Moreover, compared to response accuracy, latency to displace objects remained stable 

over continued testing, as evidenced by the significant difference in latencies within the first few 

sessions on training stage 2 and the Go/No-go DNMS stage. 

 We can be confident that the rats were not relying on olfactory cues to successfully locate 

the food reward, as the results from the probe tests revealed no significant difference between 

latencies to displace objects on the probe and normal tests. Thus, rats still exhibited significantly 

longer latencies to displace sample objects compared to novel objects on both types of probe 

tests.  
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Figure 5.4. Scatterplot of scores of individual rats obtained on the Go/No-go DNMS task and on 

the NOP test. Scores on the two tests were not significantly correlated. 
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As training continued during stage 2, it became clear that rats had difficulty inhibiting 

their response to displace the sample object once in close proximity to it. Consequently, if we 

only relied on mean percent correct choices as an index of object-recognition memory, we would 

have recorded these responses as errors and concluded that the majority of the rats failed to either 

acquire the reward contingency or discriminate between familiar and unfamiliar objects on the 

test. However, measuring their latency to displace an object made it clear that the rats had 

learned the reward contingency and successfully discriminated between objects on the test as 

exhibited by their longer latencies on No-go trials compared to Go trials. This finding highlights 

the importance of developing a behavioural paradigm that can accurately measure the construct 

under investigation and incorporates appropriate operational definitions for the variable of 

interest. Indeed, including multiple dependent measures to assess memory has been shown to be 

useful on other rodent behavioural tests. For example, on radial arm maze tasks designed to 

assess spatial memory, a rat collects a food reward that is located at the end of several extended 

arms. A correct choice is typically defined as the rat entering a maze arm one time (one baited 

with food), and an error is defined as the rat re-entering a previously visited arm (one that is no 

longer baited with food). In one study, researchers decided to also include the latency to reach 

the end of the maze arm as one of the dependent variables. On trials in which rats made an 

“error” the researchers found that rats exhibited significantly longer latencies to reach the end of 

the arm compared to the first visit (Brown & Cook, 1986). This finding suggested that rats 

remembered the previously visited arm, and that relying solely on choice accuracy did not 

provide the most accurate estimate of recognition memory (Brown & Cook, 1986). Accordingly, 

relying on multiple behavioural measures is useful because it can reveal information about the 

status of memory that may otherwise go undetected. 

It is not necessarily possible to eliminate all potential confounds that may interfere with 

accurate measures of a variable, but through careful observation of behaviour one can become 

cognizant of potential confounds and attempt to reduce them accordingly. Previous research has 

shown that using “first choice” as a measure of accurate memory on a discrimination test does 

not necessarily reflect the true status of memory (Carr & Wilkie, 1997; Deibel & Thorpe, 2013; 

Means, Pia, Ginn, Pence, & Watson, 2000; Mistlberger, De Groot, Bossert, & Marchant, 1996; 

Wilkie, Willson, & Carr, 1999). Put differently, “errors” on a task do not necessarily reflect a 

failure in memory. In a time-place discrimination task, rats were trained to retrieve a food reward 
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by pressing one lever during a morning session and a different lever during an afternoon session. 

The researchers measured the first lever press at the start of each session as a means to determine 

whether rats could use time-of-day cues to correctly locate the food reward. They found that at 

the start of each session the rats pressed equally on both levers, which the researchers initially 

took to indicate that the rats failed to discriminate which lever provided food at which time of 

day (Wilkie et al., 1999). However, when the researchers provided rats with a brief period to 

‘patrol’ the apparatus prior to the start of each session, their lever response accuracies on the test 

were significantly above chance. This finding revealed that the rats could, in fact, accurately 

discriminate which lever provided food at each respective time of day. The tendency for the rats 

to randomly press levers at the beginning of a session appeared to be a byproduct of exploring 

the environment, and not a reflection of their memory for time of day information (Wilkie et al., 

1999). Thus, by making careful observations it can reveal potential confounds in a task design, 

which can allow for modifications to the procedure to provide a more straightforward 

interpretation of the behaviour as it relates to the construct under investigation. 

Rats displaced the sample objects on the test despite recognizing them and despite having 

learned that displacing those objects would not be rewarded. This was evidenced by their longer 

latencies to displace sample objects than novel objects associated with food reward. Moreover, 

we observed that rats would sometimes displace an object on a No-go trial and not dig in the 

food well. This suggests that upon displacing the object the rat did not expect to find a food 

reward. Thus, in the present paradigm ‘displacing an object’ does not appear to provide an 

accurate reflection of a rat’s ability to discriminate the familiarity of a previously encountered 

object. The tendency to displace sample objects on the test may reflect an exploration of the 

features in the environment. The findings from this experiment, in addition to previous research 

revealing that ‘first choice’ may not accurately reflect the status of memory, raises questions 

regarding the observed accuracy scores we previously reported using the mDNMS task (Cole et 

al., 2019). To what extent was displacing a sample object first on the test a reflection of the rat’s 

memory for the sample object and to what extent was it exploration of the environment? 

Unfortunately, based on the available data, this question cannot be answered. However, what is 

clear based on the present findings is the importance of modifying a procedure to eliminate 

potential confounds and including multiple behavioural measures to study an underlying 

construct. 
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The lack of a significant correlation between scores on both tasks, suggest the two tasks 

are not measuring the same underlying cognitive processes, one of which is object-recognition 

memory. The latency scores on the Go/No-go DNMS were converted to discrimination ratios in 

order to provide an indirect measure of the associative strength of memory for the sample object. 

There are several reasons why we are confident that the Go/No-go DNMS provides a measure of 

a rat’s object-recognition memory. First, by requiring the rat to make an instrumental response 

with which it makes an explicit choice between familiar and unfamiliar objects, and by providing 

a reward for accurate responses, it teaches the rat the successful strategy it must employ to reach 

the goal. Consequently, this increases the likelihood that the behaviour on the test reflects what 

you think it does, which is object-recognition memory. Secondly, by teaching the rat the 

successful strategy to employ, it reduces the number of alternative explanations for the observed 

behaviour on the test, which allows for a more straightforward interpretation of the observed 

behaviour. Thirdly, by collecting several trials within a session for each individual, it provides a 

reliable indication of their ability to discriminate between a familiar and unfamiliar object. 

Lastly, by conducting probe tests, we ruled out the possibility that rats were relying on olfactory 

cues to locate the food reward. Thus, there is no other plausible means for why a rat would 

exhibit longer latencies on No-go trials compared to Go trials, other than the fact that the rat 

must recognize the sample object. Altogether, the discrimination ratios can be confidently taken 

as an index of a rat’s memory for the sample object. Conversely, on the NOP test, interpreting 

what the magnitude of a novel-object preference signifies in relation to the persistence or 

accuracy of the rat’s memory for the sample object is not as straightforward, especially when a 

rat fails to exhibit a novelty preference. On the NOP test, there are several reasons why a rat 

might not exhibit a novelty preference. The rat may not recognize the sample object, or it does 

recognize the sample, but does not prefer to explore the novel object. A rat’s spontaneous 

investigation of a novel object can be modulated by internal attributes, such as stress levels, 

whereby higher stress levels reduce the tendency to approach novel objects (Gulinello et al., 

2018; Hughes, 1997), or by external attributes related to test conditions (Berlyne, 1955; Besheer 

& Bevins, 2000; Blaser & Heyser, 2015; Ennaceur, 2010; Wilkinson, Herrman, Palmatier, & 

Bevins, 2006). For example, object attributes such as size, texture, and complexity can induce 

different amounts of investigation (Berlyne, 1955; Chemero & Heyser, 2005; Ennaceur, 2010; 

Heyser & Chemero, 2012). Objects that can be climbed over and ones that have complex 
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features elicit greater levels of exploration that do not decline with successive presentations 

compared to objects that cannot be climbed on or have simple features (Berlyne, 1955; Chemero 

& Heyser, 2005; Heyser & Chemero, 2012). Moreover, increasing the amount of exposure to the 

testing environment prior to the familiarization phase increases sample object investigation 

during the familiarization phase. The latter is thought to occur because other competing 

behaviours, such as exploring features of the apparatus, are reduced (Besheer & Bevins, 2000; 

Sheldon, 1969). These findings reveal the delicate nature of the testing conditions when using the 

NOP test and the number of potential factors that can influence behaviour on the test. 

Accordingly, this demonstrates how it can be difficult to conclude with certainty that the 

preference score reflects the extent to which the rat recognizes the sample object, and not some 

alternative factor influencing behaviour on the test. Moreover, given the number of variables that 

can influence a rat’s preference to explore objects on the test, when a rat fails to show a novelty 

preference on the test, it is difficult to determine what this means in relation to the status of 

object-recognition memory. The number of reasons why a rat fails to exhibit a novel-object 

preference on the test is complicated by the fact that the NOP test does not involve a goal, and 

thus rats are not required to make an explicit choice response based on their memory for the 

sample object. On the basis of this task analysis, one can infer that the Go/No-go DNMS is 

providing a measure of object-recognition, whereas behaviour on the NOP test may reflect a 

number of alternative explanations besides object-recognition memory. Accordingly, the lack of 

a significant correlation between scores on the two tasks suggests that the magnitude of a rat’s 

preference to explore novel objects is not related to its ability to discriminate between familiar 

and unfamiliar objects on the Go/No-go DNMS task.  

It is important to note that the lack of correlation between scores on both tasks may 

reflect differences between the procedures used for each task. For example, the delay used on 

both tasks was different (e.g., 25 vs. 180 s). Thus, it could be argued that the memory demands 

on the NOP test were more taxing than on the Go/No-go DNMS task, which could explain 

differences in the scores on both tasks. Moreover, there were differences in the task 

characteristics, which have been previously hypothesized to affect correlational analyses. The 

authors of a previous study failed to find a strong correlation between measures of both working- 

and reference-memory when comparing spatial memory performance using the radial arm maze 

and holeboard (van Luijtelaar, van der Staay, & Kerbusch, 1989). The authors posited that the 
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low correlation between scores on each task might reflect differences in terms of the spatial cues 

that the rats relied on (intra- vs. extra-maze cues) and the operational definition for a “choice,” 

specifically the ease with which to make a choice (e.g., running down a maze arm vs. simply 

poking the nose into a hole in the floor). Thus, although both tasks are said to provide measures 

of spatial working- and reference-memory, they fail to correlate due to differences in the 

demands of the task. In the present experiment, the cues that a rat could rely on to successfully 

perform both tasks was the same: the features of the objects. On the Go/No-go DNMS task you 

can be confident that performance on the test reflects the ability to discriminate the familiarity of 

a previously encountered object. Rats are trained to learn that the features of the object are 

integral for successful performance on the task (i.e., retrieving a food reward). Presumably, then 

on the sample phase the rat should focus more on actively learning (encoding) the features of the 

sample object in order to successfully select a future response to retrieve the food reward. 

Conversely, on the NOP test, the rat is simply placed into an arena that contains two objects and 

is provided an opportunity to explore the environment. Given this is a test of incidental learning, 

which lacks an unambiguous instrumental behaviour, other factors can guide behaviour on the 

test that may not relate simply to the rats ability to discriminate between familiar and unfamiliar 

objects (as described above). Moreover, on the familiarization phase the rat is presumably 

encoding information not only about the sample objects but also their location relative to each 

other and their surrounding context. Consequently, on the test a rat might rely on spatial and 

nonspatial information to successfully discriminate between the sample and novel object. Thus, 

compared to the Go/No-go DNMS task, on the NOP test there are more potential variables 

influencing behaviour on the test, besides object-recognition memory. 

Additionally, in the present experiment, the operational definition used for object-

recognition on both tasks was quite different, which can explain the lack of correlation. Indeed, a 

major threat to construct validity—whether scores on a task reflect the specific construct it was 

designed to measure—is when the operational definition is confounded by other constructs 

(Kline, 2009). That is why it is important to design a task whereby alternative explanations for 

the observed behaviour can be easily ruled out. In terms of the NOP test, relying on the amount 

of time spent investigating the novel object relative to the sample as an estimate of the 

persistence or accuracy of memory for the sample likely reflects other behavioural responses 

besides object-recognition memory (as described above). This is a drawback of the NOP test, as 
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one cannot tease apart the extent to which the behavioural response reflects object-recognition 

abilities and some alternative factor. Thus, it is likely that behaviour on the NOP test does not 

necessarily reflect only object-recognition memory. Conversely, on the Go/No-go DNMS task, 

using latency to displace an object provides a more sound measure. By training the rat to make 

an explicit choice response between familiar and unfamiliar objects and by rewarding accurate 

choices, it reduces the number of these unsolicited behavioural responses that may obscure the 

expression of object-recognition memory. Consequently, the observed behaviour on the test is 

more likely to reflect what the task was designed to measure—object-recognition memory.  

The present findings revealed that performance on the Go/No-go DNMS task remained 

consistent over time. An important next step would be to determine whether the Go/No-go 

DNMS can be used to assess memory for objects spanning longer periods of time (e.g., several 

minutes or hours). The Go/No-go DNMS task consists of several advantageous features, namely: 

1) the involvement of an instrumental response with which the rat makes an explicit choice 

between familiar and unfamiliar objects, 2) a reward for accurate choices, and 3) the possibility 

of testing individual rats on several trials per session. Moreover, unlike the existing DNMS tasks, 

the Go/No-go DNMS eliminates the potential for rats to develop positional biases and allows for 

the inclusion of multiple dependent measures to assess object-recognition memory. Collectively, 

these features provide a less ambiguous interpretation of behaviour in relation to object-

recognition memory compared to the NOP test.  
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Chapter 6: General Discussion 

The primary goal of the experiments in this thesis was to develop a new and improved 

object-recognition memory task for rats—one that addressed the known limitations of 

conventional DNMS tasks and the NOP test. The drawbacks associated with the existing DNMS 

tasks are that they require extensively training rats, are difficult for inexperienced experimenters 

to effectively employ, and rats’ accuracy scores decline when tested on delays lasting more than 

a few minutes. Consequently, conventional DNMS tasks are labour intensive and cannot be used 

to assess long-term object-recognition memory in rats. The limitations of the NOP test are that it 

is not possible to discern what a lack of novelty preference on the test signifies in relation to 

memory, and it is not clear to what extent the magnitude of novelty preference on the test reflects 

the strength in memory for the sample object. Accordingly, the NOP test does not provide a 

straightforward estimate of a rat’s object-recognition abilities. To address the drawbacks of the 

existing tasks, there were four objectives in mind when we created the mDNMS task, namely we 

wanted a task that: 1) rats could master quicker than conventional DNMS tasks, 2) was simple 

for the experimenter to employ, 3) could be used to assess long-term object-recognition memory, 

and 4) provided a straightforward interpretation of behaviour as it relates to object-recognition 

memory.  

The following section (Section 6.1) provides a summary of whether or not the objectives 

of this goal were achieved. Next, a discussion on the refinements made to the paradigm is 

provided (Section 6.2). A secondary goal of this thesis was to compare performance on the 

mDNMS task to that of the NOP test as a means to validate the latter. Section 6.3 includes a 

summary of the findings in relation to this objective. Thereafter a discussion on the divergent 

findings between performance on the NOP test and mDNMS task is provided (Section 6.4), 

followed by a discussion on the theoretical implications of the findings (Section 6.5). Next, the 

limitations of the mDNMS and Go/No-go DNMS task are addressed (Section 6.6) followed by 

future directions (Section 6.7) and conclusions (6.8).  

6. 1. Does the mDNMS task address the drawbacks associated with existing tasks? 

The following section summarizes whether or not the mDNMS task addresses the 

drawbacks of the existing tasks and successfully meets the objectives that were outlined at the 

beginning of the thesis. 
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6.1.1. Addressing objective #1: Extent of required training 

Across the studies that have used the DNMS procedure developed by Mumby and 

colleagues, the average number of trials rats required to reach the performance criterion (34 

correct choices out of 40) ranged between 174-420 trials. By comparison, rats in the experiment 

described in Chapter 2 required an average of 24 trials to reach the criterion of at least 16 correct 

choices out of 20 on five consecutive sessions. Comparatively, rats in the experiments described 

in Chapter 3 and Chapter 4 (Sham-operated rats) required more trials to reach criterion (an 

average of 79 trials). Nevertheless, they required significantly fewer trials compared to previous 

DNMS studies. Notably, the mDNMS task acquisition rate was faster compared to previous 

studies despite using a longer retention delay and presenting four distinct sample objects 

compared to one sample object. Thus, rats retained more item information over a longer delay 

compared to rats in previous studies and were capable of reaching comparable choice accuracy 

levels in significantly fewer trials. It would appear that rats’ performance on the mDNMS task is 

more robust compared to conventional DNMS tasks.  

Several factors are likely to have contributed to making the new mDNMS task relatively 

easy for rats to learn and perform, and for experimenters to administer in a consistent manner. 

On conventional DNMS procedures developed in the 1980s, the experimenter plays an 

interactive role in administering individual trials. Rats probably perceive humans as large, noisy, 

smelly potential predators, and a rat that perceives the experimenter as the most interesting thing 

in the room will pay more attention to the experimenter than to the task at hand. A rat, especially 

a timid one, can startle easily if the experimenter makes sudden, quick movements or noises (i.e., 

sign of a potential threat, such as a predator). The mDNMS task apparatus has the advantage that 

the objects can be set up before each trial, and after the rat is placed in the loading cage, the 

experimenter can quietly leave the room, allowing the rat to “self-administer” trials. Eliminating 

the presence of the experimenter lessens the potential for distraction. 

The pre-training procedure also likely contributed to the above-chance level of initial 

performance. On conventional DNMS tasks, pre-training typically consists of administering 

object-discrimination problems, which entails repeatedly presenting the same two distinct objects 

to the rat where selection of one of the objects is rewarded and selection of the other is not 

(Kesner et al., 1993; Mumby et al., 1990). This teaches the rat both the instrumental-response 

requirements of the task (i.e., displace objects for food) and that the visual/tactile object features 
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are key to predicting food location. The pre-training procedure in the present study incorporated 

these task characteristics in addition to teaching the rat that displacing the sample object on the 

test phase would not provide a reward. Presenting multiple copies of the same sample object 

within sessions increased the opportunity of the rat to learn this feature, which may have further 

facilitated task acquisition 

The pre-training procedure varied considerably between the mDNMS task and 

conventional DNMS. By excluding the number of pre-training sessions in the calculation for the 

number of trials to reach criterion, it could be argued that it obscures the findings. Accordingly, 

including the pre-training sessions in the calculation for the average number of trials needed to 

master the task, it was revealed that rats required on average 178 trials in the experiments 

described in Chapter 2, 3, and 4, respectively. Comparatively, the average number of pre-training 

and training trials rats required on the DNMS task developed by Mumby et al. is ~400 trials (see 

Table in Appendix A). Thus, in line with our objective, these findings confirm that the new 

mDNMS task can be mastered in considerably fewer trials compared to conventional DNMS 

tasks.  

6.1.2. Addressing objective #2: Simple for the experimenter to employ  

Given the active role that the experimenter plays in conventional DNMS tasks, the 

experimenter must be trained on how to effectively administer trials without influencing the rat’s 

behaviour on the test. The most difficult aspect of DNMS testing for someone inexperienced 

with the behaviour of laboratory rats is learning how not to distract the rat with certain 

movements and sounds while administering the test (as described above). The mDNMS task 

apparatus has the advantage that the objects can be set up before each trial, and after the rat is 

placed in the loading cage, the experimenter can quietly leave the room. This aspect also reduces 

the potential for experimenter bias, such as the experimenter unintentionally giving cues to the 

rat as to which object will be rewarded on the choice test. Accordingly, compared to 

conventional DNMS tasks, it is much easier and faster to train several experimenters on how to 

effectively administer a test session on the mDNMS task. Moreover, on conventional DNMS 

tasks the experimenter stands for hours each day administering trials—a feature that most 

individuals who have used it would agree is rather unpleasant. Conversely, when using the 

mDNMS task, the experimenter has the opportunity to sit and observe the rat on a TV monitor in 

an adjacent room. Thus, compared to conventional DNMS tasks, the mDNMS procedure is less 
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labour intensive and less complicated to effectively employ for someone who is inexperienced 

with the behaviour of laboratory rats.  

6.1.3. Addressing objective #3: Testing long-term memory 

 The existing DNMS paradigms cannot be used to study long-term memory for objects 

because rats cannot perform accurately once the delay exceeds more than a few minutes. Rats in 

the experiment described in Chapter 2 maintained good performance as the retention interval 

between the sample and test phase was increased. Accuracy scores declined as the retention 

interval was increased to 630 s but they remained significantly above chance. These levels of 

asymptotic performance compare favorably with the asymptotic levels observed at similar 

retention delays on conventional DNMS tasks (see the Table in Appendix A). Performance 

following the 4 hr delay, however, was poor. Accordingly, by modifying the sample phase 

procedure such that rats received several distributed sample object exposures, we observed that 

rats could successfully discriminate between familiar and unfamiliar objects on the mDNMS task 

following delays lasting 72 hr, 3 weeks, and ~45 weeks (Chapter 3). Accordingly, we 

demonstrated that modifying the mDNMS sample phase procedure allowed for assessing rats’ 

memory for objects following long retention intervals.  

6.1.4. Addressing objective #4: Straightforward interpretation of behaviour 

There were two aspects of the mDNMS task that can be analyzed to determine whether or 

not it provides a clear estimate of object-recognition memory: 1) the extent to which the 

observed behaviour on the test reflects the construct under investigation and 2) the ease with 

which to rule out interpretational ambiguity. These two aspects are discussed below. 

6.1.4.1. mDNMS scores reflect object-recognition abilities. The mDNMS task has good 

face validity in terms of the theoretical definition of object-recognition memory—the ability to 

discriminate the familiarity of a previously encountered object. Subjectively, the task meets this 

goal as it entails presenting a rat with a sample object to learn, followed by a test whereby the rat 

makes a choice between displacing either the sample or a novel object. By training the rat to 

learn that it will receive a food reward when it displaces the unfamiliar object on the test, it 

provides the opportunity to instruct the rat on the purpose of the task. When a rat exhibits a 

tendency to displace unfamiliar objects over familiar objects on the test to a high criterion, then 

you can be more certain that it is engaging in this behaviour because it has learned the reward 

contingency and is applying it. Consequently, the observed behaviour on the test can more 
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confidently be taken to reflect the rat’s ability to discriminate between familiar and unfamiliar 

objects.  

The operational definition of object-recognition memory on the mDNMS task—percent 

correct choices on the test—adds to its construct validity. Compared to studying memory in 

human adults, studying memory in nonhuman animals is more difficult because you can only 

rely on observable (nonverbal) behaviour. The subject must produce a response that indicates 

with confidence which stimulus was previously encountered and which stimulus was not. This 

feat is made far easier by training the subject (giving instructions) to produce an explicit choice 

response with which one can infer that the behaviour reflects memory for the previously 

encountered object. By reinforcing the rat’s behaviour to displace an unfamiliar object when it is 

presented next to a familiar one (or when presented alone, as in the case with the Go/No-go 

DNMS) and by setting a strict performance criterion whereby the rat is required to reach a high 

level accuracy, it increases the confidence that when this behaviour is observed on the test it 

reflects the rat’s ability to recognize the sample object. Additionally, by collecting many of these 

discrete tests from each individual rat across sessions, it provides more certainty that the 

observed behaviour is a true reflection of the rat’s underlying object-recognition abilities, as it 

reveals the consistency of the behaviour while maximizing the sensitivity of the measure. 

Intuitively, across 100 trials, if one rat gets 90% correct and another rat gets 65% correct, it 

seems easier to accept that the first rat has better recognition than the second rat. Conversely, on 

the NOP test when comparing a 90% novelty preference ratio in one rat to a 65% novelty 

preference ratio in another rat, it is not as easy to make the same assumption. Accordingly, a rat’s 

performance on the mDNMS task, compared to the NOP test, can more confidently be 

interpreted as reflecting object-recognition abilities because it incorporates: 1) an unambiguous 

instrumental response with which the rat makes an explicit choice between familiar and 

unfamiliar objects, 2) a reward for accurate choices, and 3) the possibility of testing individual 

rats on several trials per session, with each trial consisting of an independent test of recognition 

memory. Also, under these conditions it helps narrow down the number of alternative 

explanations for the observed behaviour on the test compared to the NOP test where no 

instructions are provided. Altogether, this increases the level of confidence one has in the 

interpretation of the behaviour and increases the likelihood that the behaviour provides an 

accurate estimate of the internal construct.  
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The significant improvement in scores on the first five sessions compared to the final five 

criterion sessions during mDNMS task acquisition in each experiment presented in this thesis 

indicates with confidence that the rats acquired the nonmatching rule and revealed that they 

successfully discriminated between familiar and unfamiliar objects. Moreover, rats’ scores on the 

mDNMS task following the 180-s delay were reliable, indicating that their ability to discriminate 

between familiar and unfamiliar objects on the test remained consistent over time (Chapter 2). A 

key feature when determining the construct validity of a task is that the scores are reliable. 

Moreover, the overall results from the probe tests allow us to confidently rule out the possibility 

that rats successfully solved the task by relying on olfactory cues.  

Lastly, after refining the mDNMS task to include a Go/No-go procedure, rats exhibited 

significantly longer latencies to displace sample objects compared to novel objects, indicating 

that they acquired the reward contingency and successfully discriminated between the familiar 

and unfamiliar objects on the test. Moreover, on the Go/No-go DNMS task, using latency to 

displace an object from over a food well, compared to choice accuracy (displacing only the novel 

object), provided a more sensitive measure of object-recognition memory.  

6.1.4.2. Ruling out interpretational ambiguity. On the NOP test, it is difficult (perhaps 

impossible) to determine what a lack of novelty preference signifies in relation to memory. An 

essential aim when developing a behavioural task is the ease with which to rule out alternative 

explanations when interpreting behaviour. Like any behavioural task, there can be challenges 

when interpreting the basis for performance deficits on a DNMS task. Performance deficits can 

reflect an object-recognition impairment or some alternative factor. For example, one concern 

that has been raised when using DNMS tasks surrounds potential confounds that are introduced 

due to the appetively-motivating aspect of the task (Ameen-Ali, Easton, & Eacott, 2015; 

Ennaceur, 2010; Ennaceur & Delacour, 1988). When a rat receives a treatment and is 

subsequently impaired on the task, it has been argued that it is difficult to determine whether the 

treatment has disrupted the memory for the objects or the motivation for the food reward. 

Although a treatment can affect a rat’s motivation for food, there are certain observations that 

can be made to exclude motivational factors as a potential confound. For example, measuring the 

latency to displace objects and the speed at which the food reward is consumed in both the 

control and treatment group can help rule out potential motivational differences. If there are no 

significant differences on these measures between the control and treatment group, then it is 
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reasonable to presume the treatment has not affected a rat’s motivation for the food reward. 

Accordingly, being able to rule out alternative explanations for the observed behaviour on the 

test is an advantage of the mDNMS task over the NOP test.  

Another concern with using appetitively-motivated tasks is the tendency to restrict rats’ 

daily food intake to maintain them at a body weight of 85-90% of the weight of matched free-

feeding rats. This amount of food restriction can make rats hyperactive, which can produce hasty 

responding that interferes with accuracy on the test. This, however, need not be a concern 

because typically rats only require food restriction during preliminary stages of training when 

they are acquiring the procedural aspects of the task. After training, the amount of daily food can 

be increased such that the rats are maintained at a body weight of 95-100% of the weight of free-

feeding rats. Including these design measures during testing can help rule out other potential 

reasons for performance deficits. 

Another feature of DNMS tasks is that rats must first learn a response reward association 

(i.e., the nonmatching rule) and apply it on every trial. When a rat exhibits a DNMS deficit on 

the test after receiving some form of treatment, it may be unclear as to whether the treatment has 

produced an object-recognition impairment or disrupted the ability to acquire or apply the reward 

contingency. One way to avoid the problem of rats failing to acquire the rule is to provide 

extensive training on the procedural aspects of the task prior to administering a treatment. 

Following treatment, if the rat readily approaches objects, displaces them, and consumes the 

reward then it clearly remembers the procedural aspects of the task. To confirm that a treatment 

did not disrupt the ability to apply the reward contingency, a comparison can be made between 

the control and treatment group’s performance following both short and long retention intervals. 

If accuracy on the task for both groups is not significantly different following the shortest 

retention interval (when memory load demands are low), then it is clear that rats in the treatment 

group are capable of both recognizing objects and applying the nonmatching rule. A subsequent 

decline in the treatment group’s performance as the retention interval increases would then likely 

reflect the increase in memory load demands rather than an inability to remember the 

nonmatching rule. In sum, DNMS deficits may not necessarily reflect object-recognition 

impairments, however, there are certain observations that can be made and additional measures 

that can be included in order to elucidate the cause for the deficit. Nevertheless, maintaining that 

the one-trial NOP test yields a more straightforward interpretation of treatment effects on 
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performance because it removes the interpretational problems associated with learning a rule or 

motivational factors fails to acknowledge that a treatment can also affect a rat’s natural 

exploratory response towards familiar and unfamiliar objects.  

Collectively, these findings reveal that interpreting scores in relation to the status of object-

recognition memory is more straightforward on the mDNMS task and Go/No-go DNMS task 

compared to the NOP test. Accordingly, we conclude that these two paradigms provide a useful 

tool to measure object-recognition memory in rats that avoids the interpretational problems 

associated with the NOP test.  

6.2. Refinements made to the mDNMS task  

 While testing rats on the mDNMS task, we noticed that there were certain aspects of the 

task that could be improved on in order to facilitate the interpretation of behaviour as it relates to 

object-recognition memory (Objective #4). The following section outlines refinements made to 

the task.  

6.2.1. Reducing the potential for positional response biases 

 The positional biases interfered with estimating rats’ object-recognition abilities. It is not 

uncommon for animals to display positional biases on tests of memory, both at the beginning of 

training and following training using longer retention intervals (Andrade, Alwarshetty, Sudha, & 

Chandra, 2001; Cumming & Berryman, 1961; Kangas, Berry, & Branch, 2011; Kangas & 

Branch, 2008; Mumby et al., 1990; Rothblat & Hayes, 1987). When these positional biases form 

early on, they are hypothesized to reflect systematic attempts to solve the demands of the task 

(Krechevsky, 1932). Indeed, prior to learning the reward contingency, a rat may try different 

strategies to successfully acquire the food reward, and one such strategy may involve always 

selecting the object on the right. The positional biases disappear as the rat learns a new strategy 

to successfully retrieve the food reward (i.e., selecting the novel object). In the present thesis 

these positional biases were also observed during training using longer retention intervals 

(Chapter 2). When this positional bias appears on trials using longer retention intervals, the rat 

may be employing this strategy to minimize the demands on memory and decrease the need to 

store trial specific information over longer retention interval periods. Moreover, the positional 

bias was transiently displayed on shorter retention intervals that followed sessions using a longer 

retention interval. This suggests that only after an initial experience with a long delay, this 

strategy develops (as the rat would not have a priori information on the length of the upcoming 
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delay). This would mean rats do well on the first trial with a longer delay compared to 

subsequent trials. Conversely, if it reflects decay followed by the adoption of this strategy, then 

performance should be worse on the first trial and gradually improve. We observed that the 

tendency to employ positional biases continued into the sessions that immediately followed ones 

with longer delays, suggesting that the change to a new delay took time for the rats to adjust to. 

Removing this habitual behaviour can be difficult, and as evidenced by the rats forming 

positional biases in the experiments described in Chapter 2 and 3, it can be disruptive to 

performance. Refining the mDNMS task such that the sample and novel object were no longer 

positioned next to each other consequently removed the potential for these biases to be formed in 

the first place (Chapter 5). 

6.2.2. Using multiple behaviours to gauge memory 

On the mDNMS task performance declined between the criterion sessions during training 

and subsequent testing on the shortest delay (Chapter 2 and 3). We postulated that the decline in 

performance might reflect the low cost of making an error (i.e., displacing a sample object) on 

the test. Indeed, a rat could displace the sample object and then quickly displace the novel object. 

By placing the sample and novel objects on separate levels in the apparatus, it not only reduced 

the likelihood that positional biases would form, it also increased the cost of making an error on 

the test (Chapter 5). Consequently, this modification allowed for the introduction of a new 

dependent variable to gauge object-recognition: latency to displace objects on the test. The 

findings from the Go/No-go DNMS task revealed that rats had significantly longer latencies to 

displace sample objects compared to novel objects. Moreover, the rats’ latency to displace 

objects remained consistent between the final criterion sessions during training stage 1 (Figure 

5.2c) and subsequent testing (Figure 5.3). Conversely, measuring choice accuracy (displacing 

only the novel object) revealed that performance declined between training and testing, as rats’ 

tendency to displace sample objects increased during the final stage of testing. Indeed, only three 

of the nine rats reached the performance criterion within 30 sessions. What we can confirm from 

these results is that a decline in choice accuracy over time appeared to reflect a change in the 

rats’ performance, but not their ability to recognize objects, as they continued to show longer 

latencies to displace sample objects. These findings reveal that when using the Go/No-go 

paradigm, measuring latency to displace an object provides a more sensitive measure of object-

recognition memory than choice accuracy. Moreover, they highlight the advantage of including 
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an additional behavioural measure to assess object-recognition memory, as relying on only one 

behavioural measure can mask object-recognition abilities. Lastly, the findings raise an 

important issue, namely that “errors” on the test may not necessarily reflect poor memory for the 

sample object—an issue that will be further addressed below in Section 6.5.2. 

6.2.3. Using large object sets 

On the mDNMS task performance declined between the criterion sessions during training 

and subsequent testing on the shortest delay (Chapter 2 and 3). We posited that the decline in 

performance might reflect the use of recurring objects on the task (Appendix B). When new 

objects were introduced on the test for a group of rats that had received extended testing using 

the standard object set, rats’ accuracy scores improved on average by 15%. This finding revealed 

that the observed decline in performance in Chapter 2 and 3 may have reflected the use of 

recurring objects on the task, suggesting that rats had difficulty discriminating between the 

sample object on the current trial and one encounter several sessions earlier. Based on the 

findings from the experiment presented in Appendix B, it is unclear why using recurring objects 

disrupted performance. Using recurring objects may have produced proactive interference on the 

test or perhaps it caused the objects to become increasingly familiar over time, thus making it 

difficult for rats to discriminate between two equally familiar objects on the test. In any case, 

when administering many trials on the mDNMS task it is important to use a large object sets as 

rats’ memory for objects after brief encounters over widely distributed points in time persists for 

long periods.  

Overall, the findings from the experiments described in this thesis reveal that the following 

features make the mDNMS task a more precise measure of object-recognition memory compared 

to the existing tasks: 1) using an instrumental response with which the rat makes an explicit 

choice between familiar and unfamiliar objects, 2) a reward for accurate choices, 3) the 

possibility of testing individual rats on several trials per session, 4) removing the experimenter 

from administering individual trials, 5) reducing the potential for positional response biases, 6) 

using multiple behaviours to gauge memory, and 7) using a large object set.  

6.3 Validating the NOP test as a measure of object-recognition memory 

An assumption on the NOP test is that the magnitude of the novel-object preference is 

directly proportional to the strength of the memory for the sample object. Accordingly, an 

additional goal of this thesis was to compare accuracy scores on the mDNMS task and Go/No-go 
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DNMS task to preference scores obtained on the NOP test in an attempt to determine whether 

preference scores on the NOP test accurately reflect object-recognition abilities. The following 

section describes the results from this thesis in relation to this objective. 

6.3.1. Do NOP scores accurately reflect the status of object-recognition memory? 

Rats’ score on the mDNMS task following the 220-s delay were reliable, indicating that 

their ability to discriminate which one of two objects had been previously encountered on that 

trial remained consistent over time (Chapter 2). Conversely, rats’ scores on the NOP test using 

the same delay were not reliable, indicating that their novel-object preference was not consistent 

across trials. The subsequent correlational analysis performed on the scores from both tasks 

revealed no significant positive linear correlation. If we accept that the scores on the mDNMS 

task are an accurate estimation of a rat’s object-recognition abilities, and this is what reflects 

good performance on the task, then the lack of correlation between performances on the two 

tasks suggests that the magnitude of a rat’s novelty preference is not an accurate estimation of its 

object-recognition abilities. Accordingly, this suggests that both tasks may not tax the same 

underlying memory processes. It is important to note, however, that correlation estimates more 

closely approximate the population parameter as sample size increases. Thus, when the sample 

size is low, as was the case in the experiments, correlations can deviate greatly from the 

population parameter. Thus, the reported correlations should be interpreted with caution. 

After training rats to associate a food reward with a novel object and no food reward with a 

familiar object, rats exhibited significantly shorter latencies to displace novel objects compared 

to familiar objects on the test (Chapter 5). This indicates that the rats learned the reward 

contingency and applied it on the test, revealing that they successfully discriminated between 

objects on the test, clearly indicating that they recognized the sample objects. The discrimination 

ratios that were calculated based on the latencies to displace objects on the test did not correlate 

with rats’ investigation ratio scores on the NOP test. Accordingly, these findings reveal that the 

magnitude of a rat’s novelty preference does not correlate with its ability to discriminate between 

familiar and unfamiliar objects on the Go/No-go DNMS task.    

6.3.2. Does a failure to exhibit a novel-object preference reflect an object-recognition 

impairment? 

Similarly, a failure to exhibit a novelty preference did not appear to reflect the status of 

object-recognition memory. The divergent results on the mDNMS task and NOP test in the 
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experiments presented in Chapter 3 and 4 further add doubt that the NOP test accurately 

measures object-recognition memory. Rats successfully discriminated between objects on the 

mDNMS task following the 72-hr, 3- and ~45-week delay, yet the same rats failed to exhibit a 

significant novel-object preference following the 72-hr and 3-week delay on the NOP test 

(Chapter 3). The lack of a novelty-preference following the 72-hr and 3-week delay does not 

appear to be due to an inability to recognize objects, because the same rats successfully 

discriminated between objects on the mDNMS task, which was conducted contemporaneously. 

Thus, we posit that recognition abilities were intact and that the rats’ failure to show a novelty 

preference on the test was due to some alternative explanation. Determining whether the rats 

failed to exhibit significant novelty preferences on the test following the 72-hr and 3-week delay 

reflects an inability to recognize the sample objects or some other factor is unknown based on the 

available data. But, what can be determined from the available data is that on the mDNMS task, 

the results confirm that the rats did recognize the objects encountered either 72-hr or 3-weeks 

earlier.  

In the experiment presented in Chapter 4, rats in the HPC, PRh, and SHAM group acquired 

the mDNMS task at the same rate and obtained similar accuracy scores on the test. On the NOP 

test, however, only rats with HPC lesions exhibited a significant novel-object preference. The 

fact that PRh and SHAM rats successfully discriminated between sample and novel objects on 

the mDNMS task suggests that the lack of novel-object preference on the NOP test does not 

reflect an object-recognition memory impairment. Instead the treatment may have affected some 

process related to the behavioural expression of this novelty preference, and not necessarily 

object-recognition memory per se. Taken together these findings reveal that a failure to 

discriminate between objects on the NOP test should not be uncritically taken as evidence of a 

failure to recognize objects. Researchers need to be mindful of the limitations of the paradigm, 

and when reporting results, explicitly acknowledge the non-interpretability of null results. 

Collectively, the data from this thesis suggest that 1) the magnitude of the novelty 

preference is not related to the accuracy of the memory for the sample object, and 2) a lack of 

novelty preference on the test is not evidence of a failure to recognize objects. Accordingly, we 

posit that the inconsistencies in the findings on the mDNMS task and NOP test are a reflection of 

the internal validity problems with the NOP test, and that relying on novel-object preference, as a 

gauge of object-recognition abilities, will not provide an accurate estimation of the status of 
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object-recognition memory in rats. Accordingly, the findings reveal that the two tasks may not 

tax the same underlying construct, viz., object-recognition memory. 

6.4. Explaining the divergent results on the mDNMS task and NOP test 

The divergent results between rats’ performance on the NOP test and the mDNMS task 

and Go/No-go DNMS task may reflect a difference in the extent to which the tasks tax the same 

underlying memory process. The following section describes potential alternative mechanisms 

that may underlie behaviour on the NOP test. In addition, it describes research findings from 

studies that have used human participants and have raised similar questions pertaining to the 

validity of novelty preference paradigms as measures of visual recognition memory. 

6.4.1. Performance on the NOP test may reflect implicit memory processes 

On the NOP test, an increase in novel object investigation may reflect incidental, implicit 

memory to a greater degree than explicit memory processes. Implicit or nondeclarative memory 

is characterized as retention for habits, learned motor skills (procedural memory), and priming, 

whereas, explicit or declarative memory is the retention of information pertaining to 

facts/general knowledge (referred to as semantic memory) and autobiographical events (referred 

to as episodic memory) (Graf & Schacter, 1985; Squire, 1992). Indeed, some researchers posit 

that novelty preferences reflect implicit memory (Besheer & Bevins, 2000; Desimone & Duncan, 

1995; Snyder, Blank, & Marsolek, 2008). Besheer and Bevins (2000) proposed that the NOP test 

potentially measures response habituation. Habituation is the decrease in responding that occurs 

as a result of repeated stimulation (Thompson & Spencer, 1966). On the familiarization phase the 

rat encounters the sample object and investigation towards it decreases as the phase continues. 

On the test phase, the rat re-encounters the sample object and there is a reduction in the tendency 

to investigate it as reflected by a preference to investigate the novel object (i.e., response 

habituation). Conversely, when a rat fails to exhibit a novel-object preference on the test as a 

result of an increase in sample object investigation, it can reflect a recovery of the habituated 

response following a period of absence from the sample object which occurs during the delay 

phase (i.e., response dishabituation). Accordingly, a lack of novelty preference may reflect 

response dishabituation, despite intact recognition. Because the behavioural measure used on the 

NOP test can reflect either recognition or habituation processes, when there is a lack of novelty 

preference after some form of treatment, it makes it difficult to interpret which of the two 

underlying processes a treatment may have exerted its effect on. Alternatively, on DNMS tasks, 
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the behavioral measure consists of a rat making an explicit choice response based on recognition 

of the sample object, and thus, interpreting performance is not confounded by the potential for 

response habituation.  

 When using varying delay intervals on the NOP test (e.g., lasting minutes to hours), and 

when a rat then exhibits a novelty preference following the shortest delay but not following 

longer delays, it is presumed this failure to preferentially investigate the novel reflects the 

forgetting of the sample object (Ennaceur, Cavoy, Costa, & Delacour, 1989; Puma & Bizot, 

1998; Puma, Deschaux, Molimard, & Bizot, 1999). There could, however, be alternative 

explanations for these findings, such as the rat simply regains interest in the sample object after 

not encountering it for long periods of time and has not necessarily forgotten it. This increase in 

sample object investigation on the test may reflect stimulus satiation (Glanzer, 1953, 1958). 

When an animal encounters a stimulus, a quantity of satiation for that stimulus develops, 

resulting in a reduction in the animal’s tendency to respond to that stimulus when it re-

encounters it. When the stimulus is no longer present, the quantity of satiation dissipates. This 

concept can explain recovery in interest in the stimulus following the absence of it. On the basis 

of this, novelty preference can be high following a very brief delay between the sample and test 

phase, whereas after a longer delay, the reintroduction of the stimulus (sample object) produces 

an increase in responding to it. Accordingly, this would decrease investigation towards the novel 

stimulus, consequently resulting in a null preference. 

Evidence from experimental approaches other than those relying on behavioural 

measures also lend support to the idea that performance on the NOP test may reflect implicit 

memory processes. Experiments assessing the role of the perirhinal cortex (PRh) in object-

recognition memory using immunohistochemical methods that analyze the activation of 

immediate early genes (IEGs), such as c-fos, have been used as indirect measures of neuronal 

activity. Indeed, measuring the levels of Fos, the protein product of c-fos, has revealed that there 

is increased Fos-immunoreactivity (IR) in the PRh following visual presentations of novel 

stimuli, and a decrease in Fos-IR following presentations of familiar stimuli (Albasser, Poirier, & 

Aggleton, 2010; Zhu, Brown, McCabe, & Aggleton, 1995; Zhu, Brown, & Aggleton, 1995; Zhu, 

McCabe, Aggleton, & Brown, 1996, 1997). These findings are consistent with 

electrophysiological data in nonhuman primates (Fahy, Riches, & Brown, 1993; Miller, Gochin, 

& Gross, 1991) and rats (Zhu, Brown, & Aggleton, 1995) revealing a decreased response in 
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neurons in the PRh and area TE following repeated presentations of the same visual stimulus. 

These findings suggest that neurons in the PRh respond less to visual stimuli that were 

previously encountered. This phenomenon, referred to as repetition suppression, has been 

hypothesized to underlie novelty preferences in visual selective attention (Desimone, 1996). 

Accordingly, some researchers have argued that increased looking times towards a novel 

stimulus may not necessarily require explicit memory processes whereby the presentation of a 

stimulus is matched to an internal representation or memory trace of the previously encountered 

stimulus (Snyder et al., 2008). These studies reveal that when subjects passively view either 

novel or familiar stimuli, c-fos expression in the PRh is influenced by exposure to novel stimuli. 

While these results hint that the PRh is involved in learning-related neuronal plasticity, it is not 

necessarily the case that the PRh is critical for object-recognition memory.  

6.4.2. We are not alone: The same concerns have been raised regarding the internal validity 

of the human visual-paired comparison task  

Human infant and animal research both have similar challenges when it comes to 

designing an experiment to assess memory, in that the experimenter cannot depend on the 

subject’s ability to comprehend and use language. The Visual Paired-Comparison (VPC) 

paradigm (the human and nonhuman primate analogue of the NOP test) suffers from the same 

inherent limitation when interpreting the significance of a null preference on the test. Briefly, 

there are two phases on the VPC task: a familiarization and test phase. On the familiarization 

phase, the participant is provided a designated amount of time to look at a stimulus object 

(typically on a computer screen). Following a retention interval it receives a test, whereby the 

familiar stimulus is now presented next to a novel one for a period of time. The dependent 

measure is the amount of time spent looking at each stimulus object on the test. When a 

participant exhibits a significant bias to look at the novel stimulus, it is inferred that the 

participant recognizes the sample stimulus. It is not uncommon for researchers to posit that a null 

preference reflects forgetting of the sample stimulus (Sophian, 1980). This is especially true 

when working with human infants or nonhuman primates that do not possess the language skills 

to communicate, so researchers must solely rely on the amount of time the subject spent looking 

at a stimulus to determine if the participant recognizes the sample stimulus (unlike human adults 

who can verbalize whether or not they recognize the stimulus). In the past few decades, 

researchers studying cognitive development in human infants have raised concerns regarding the 
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typical interpretation of null results on novelty preference tasks (Bahrick & Pickens, 1995; 

Richmond, Colombo, & Hayne, 2007; Sophian, 1980). 

Preference to attend to novel stimuli can change as a function of the delay between the 

familiarization and test phase for reasons that are not directly related to the strength in memory 

for the original stimulus (Bahrick, Gogate, & Ruiz, 2002; Bahrick, Hernandez-Reif, & Pickens, 

1997; Bahrick & Pickens, 1995; Berlyne, 1957; Courage & Howe, 1998; Richmond, Colombo, 

& Hayne, 2007b; Spence, 1996). Using the VPC task, researchers found that 3-month old infants 

showed a novelty preference when the delay between the familiarization phase and test phase 

was short (1 min), but failed to exhibit a significant preference following both a 24-hr and 2-

week delay (Bahrick & Pickens, 1995). The researchers included a fourth, 1-month long delay, 

and intriguingly found that the infants showed a significant preference to look at the familiar 

stimuli. The findings on both the shortest and longest delay clearly indicated that the infants 

recognized the familiar stimuli because they exhibited a significant bias to attend to one 

stimulus. Based on the results from the intermediate delays alone, one would be unable to 

conclude whether or not the infants recognized objects following a 24-hr delay, however, the 

results from the 1-month delay confirmed that they could. The lack of a preference following 

both the 24-hr and 2-week delay reveals that the performance on the test may not reflect memory 

per se, and instead may reflect some other factor (e.g., attentional processes). According to 

Bahrick and colleagues (1997), the degree of novelty preferences reflects how “accessible” the 

memory trace is at the time of test (p. 4). Following short delays (e.g., minutes or hours) between 

the familiarization phase and test, the memory trace is highly accessible, revealing no need to 

attend to the familiar stimulus. Conversely, following very long retention intervals (e.g., months) 

the memory for the sample is less accessible, thus, the individual requires more time to look at 

the sample stimulus in order to determine if it was previously encountered. Between short and 

long delay periods there is an intermediate phase whereby the subject attends equally to the 

novel and familiar stimulus as there is a shift in the accessibility of the memory trace. According 

to this theory, null preferences do not necessarily reflect forgetting, rather they reflect a 

competition in attentional processes towards novel and familiar stimuli (Bahrick et al., 1997).  

Previous studies have found that both humans (Gross, Hayne, Herbert, & Sowerby, 2002; 

Pascalis, Hunkin, Holdstock, Isaac, & Mayes, 2004; Richmond et al., 2007; Wilk, Klein, & 

Rovee-Collier, 2001) and nonhuman primates (Bachevalier, Beauregard, & Alvarado, 1999; 
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Nemanic et al., 2004; Pascalis & Bachevalier, 1999) fail to exhibit novelty preferences on the 

VPC task despite exhibiting intact recognition on paradigms that incorporate an instrumental 

response. Richmond et al. (2007) conducted an experiment whereby different groups of adults 

were tested using the same stimuli on either the VPC task or a forced-choice recognition task 

using delays lasting 3 min, 24 hr, 1 week, 2 weeks, 6 months and 12 months. On the VPC task, 

the groups of participants exhibited significant novelty preferences on delays lasting between 3 

min and 2 weeks, a null preference on the 6-month delay, and the group tested using the 12-

month delay exhibited a significant sample stimulus preference. On the forced-choice 

recognition task, on the choice phase when two stimuli were presented (one familiar and one 

novel), the participants were instructed to press the response button that corresponded to the 

stimulus on the screen (left or right) that was previously encountered. When testing participants 

on the forced-choice task, the percent of participants that accurately identified the familiar 

stimulus was significantly above chance following all delays (scores ranged from 90% on the 3-

min delay to 75% on the 12-month delay). Accordingly, on the VPC task, adults failed to exhibit 

a novelty preference following the 6-month delay, however, on the forced-choice task adults who 

were tested using the same stimuli exhibited accuracy levels that were significantly above chance 

(75%), indicating stimulus recognition. The researchers concluded that the participants tested on 

the VPC task likely recognized the stimuli from 6 months earlier, but that relying on novelty 

preferences alone does not provide an accurate estimate of recognition abilities. These findings 

reveal that novelty preference scores do not necessarily relate to the accuracy with which an 

individual can explicitly state whether or not they recognize a previously encountered stimulus. 

This suggests that the VPC task does not provide an accurate estimate of object-recognition 

memory, which raises concerns regarding the internal validity of it as a measure of object-

recognition memory.  

As a final note, it is important to explain the rationale for drawing a comparison between 

humans and animals. It is not to argue that there is a specific functional similarity between the 

decline in novelty preferences over long periods, but rather to highlight the importance of being 

cautious interpreting a lack of novelty preference as an object-recognition deficit. These findings 

are especially important in relation to administering some form of treatment and then testing rats 

on the NOP test using varying delays. When rats’ exhibit an intact novelty preference following 

a short delay, but fail to do so following longer delays, it is taken as evidence of a treatment 
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effect on memory processes. While these results reveal that the treatment has not abolished a 

rat’s ability to express a novelty preference, it does not confirm with the same level of certainty 

that the lack of novelty preference on the longer delay reflects an inability to recognize the 

sample object. In summary, changes in behaviour (i.e., novelty-preferences) as a result of prior 

exposure may be based on recognition memory, but because recognition memory is not the only 

process producing the response, it should not be assumed with certainty that the observed 

behaviour reflects the degree of recognition, especially considering that there are alternative 

candidate explanations. 

6.4.3. A method to clarify the divergent results on the mDNMS task and NOP test 

One way we could have indirectly determined whether performance on the DNMS and 

NOP test reflects two dissociable memory processes would have been to implement a distraction 

during the delay period on both tasks (e.g., by introducing new objects). In humans, when 

distractions are introduced during the retention interval between the learning and test phase, such 

as counting numbers backwards in sets of 6, it disrupts performance on tests designed to assess 

explicit memory, but not on tests of implicit memory (Graf & Schacter, 1987). The distraction is 

thought to produce retroactive interference—newly acquired information interferes with the 

ability to recall previously learned information. Previous research using nonhuman primates has 

shown that implementing distractions during the retention delay, by presenting different objects, 

disrupts performance on DNMS tasks (Zola-Morgan & Squire, 1985; Zola-Morgan, Squire, & 

Amaral, 1989a, 1989b). This is thought to occur because the objects encountered during the 

delay interfere with processing sample-object information. Previous experiments in our lab have 

shown that DNMS performance is disrupted in rats when random objects are presented during 

the delay period (D. Mumby, personal communication, 2012). This suggests that the underlying 

memory processes that rats use when performing the DNMS task resemble those that humans use 

when they perform explicit-memory tasks (i.e., retaining information for the sample object over 

the delay). This is important because it suggests the DNMS task is not a measure of implicit 

learning, a form of memory that is not impaired in patients who have sustained damage to the 

medial temporal lobes (Cohen & Squire, 1980; Milner, Corkin, & Teuber, 1968; Warrington & 

Weiskrantz, 1968, 1974). It suggests that successful performance on DNMS tasks likely involves 

neural substrates similar to those damaged in medial temporal lobe amnesia. Accordingly, to 

elucidate whether both the mDNMS task and NOP test tax similar memory processes (i.e., 
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explicit or implicit), it would be important to conduct an experiment whereby rats encounter 

random objects during the delay period on both the mDNMS task and NOP test to determine 

whether this distraction disrupts subsequent performance on the test. If novelty preference scores 

do not decline on trials with distractor objects relative to trials without distractor objects, but they 

do on the mDNMS task, then it could provide indirect evidence that the two tasks do not measure 

similar memory processes.  

6.5. Interesting observations on the mDNMS task that deserve further attention  

 This section briefly describes some interesting observations that were made using the 

mDNMS task, and their theoretical implications. 

6.5.1. The lack of a delay-dependent decline on the mDNMS task 

An observed phenomenon on working-memory tests is that as the retention interval 

increases, accuracy on the test declines. This is hypothesized to reflect a decay in the memory 

trace that occurs over time between the encoding of the sample object during learning and the 

test (Brown, 1958; Tulving, 1972). Theoretically, the scores on the mDNMS mixed-delay testing 

(Chapter 2) should have declined as a function of the delay length. However, there was no 

significant difference in scores between the 100 and 630-s delay. The results from Chapter 2 lend 

support to a behavioural perspective theory of memory proposed by White (2002). In a clever 

experiment, Sargisson and White (2001) varied the retention interval used to train pigeons on a 

delayed matching-to-sample task (on this variant, selection of the sample stimulus is rewarded). 

Pigeons received extensive training on the task using one of several different delays (e.g., 0, 2, 4, 

or 6 s), and then were tested using delays ranging from 0 to 10 s. The researchers found that 

accuracy at each delay varied as a function of the delay-length used during training. Pigeons 

trained using a 0-s delay displayed the typical delay-dependent decline in accuracy with 

increasing delays, with the highest scores on the 0-s delay. Conversely, pigeons trained using a 

4-s delay exhibited a more flattened slope in accuracy scores, with the highest levels of accuracy 

displayed on the 4-s delay. Moreover, their accuracy scores on the 0-s delay were slightly lower 

compared to the pigeons trained using a 0-s delay. Thus, accuracy in discriminating between two 

stimuli was specific to the length of the delay used during training. These results are contrary to 

what the decay theory would propose in terms of memory processes—that the representation 

(memory trace) of the stimulus that was encoded during learning gradually fades as time passes 

on. According to White (2002), “objects or events can be discriminated at a temporal 
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distance…[and]…information used for the discrimination is specific to the time of 

remembering” (p. 141-142). The information that is used to make a choice between stimuli is 

based on “the value of the stimulus effect…[and the animal’s]…history of learning about 

rewards” (p. 143). This behaviourist model proposes that memory is not based on the formation 

of a memory trace that is retrieved at the time of testing, but rather it is based on the reward 

contingency and the reinforcement history for similar choices in the past. In the experiment 

presented in Chapter 2, rats were trained using a 30-s delay, thus, it may explain the flattened 

gradient observed between the delays from 100 s to 630 s. Perhaps, if rats were trained using a 

shorter retention interval (e.g., 5 s) we would have observed the typical delay-dependent decline. 

In any event, the findings provoke similar questions about measuring working-memory in 

nonhuman animals; namely, whether performance on the task reflects certain theoretical 

processes such as decay theory.  

6.5.2. Distinguishing between learning/memory and performance: Errors do not necessarily 

reflect impaired object-recognition 

  We observed a decline in performance after introducing a new delay during mixed-delay 

testing (Chapter 2) and after administering probe tests (Chapter 2 and 3). These findings reveal 

that a decline in accuracy does not necessarily reflect the rat’s memory abilities but may instead 

reflect a reaction to a change in procedure that the rat had become accustomed to (Honig & 

Wasserman, 1981), or its incentive to respond accurately after receiving probe tests that alter the 

reward contingency (Honig & Dodd, 1986). Additionally, when we measured latency to displace 

an object on the Go/No-go DNMS task (Chapter 5), it was clear that all of the rats recognized the 

sample object, however, measuring ‘choice accuracy’ presented a different picture. In this case, 

it appeared as though the majority of the rats failed to discriminate between the novel and sample 

objects on the test. These findings reveal the importance of recognizing that errors on a test do 

not necessarily reflect impaired recognition and they highlight the importance of designing a task 

that limit these interpretational problems from occurring.  

6.6. Addressing the shortcomings of the mDNMS task and Go/No-go DNMS 

The primary goal of this thesis was to develop a new object-recognition task that 

addressed the known limitations of the existing tasks. Inherent to any behavioural task, the 

mDNMS task also had drawbacks. Some limitations associated with using the mDNMS task and 

the refined Go/No-go DNMS task include: 1) issues controlling the delay length 2) the method 
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used to administer probe tests, 3) the pre-training procedure, and 3) the time requirements to 

collect data. These drawbacks are discussed below.  

6.6.1. Controlling the delay length  

Using a large open space for the delay area whereby the rat could walk around freely was 

an important feature of the mDNMS task when implementing retention intervals that lasted 

longer than a minute. On the conventional DNMS task apparatus, when rats are confined to a 

small area during the delay they can become agitated and make hasty responses at the end of the 

delay. Thus, the goal on the mDNMS task was to increase the area in which rats could spend 

time moving around, and feel less constrained. However, this presented a problem when trying to 

assess memory for objects following a very short retention interval. In the experiment described 

in Chapter 2, the minimum average delay when training rats on the mDNMS task was ~30 s, and 

was similar in the other experiments. Then, after rats received training using gradually longer 

delays, the average length of the shortest delay increased to ~100 seconds. Consequently, when 

scores declined during mixed delay testing compared to the final criterion sessions, it was 

unclear whether this decline reflected an increase in the demands on memory for the sample 

objects or some other factor, such as proactive interference due to an increase in the number of 

times objects were encountered (or a combination of factors). Ideally, any task designed to test 

object-recognition memory includes the option to measure memory for an object following a 

very brief retention interval. This is because it provides an index of memory when the lowest 

demands are placed on it. This is an important feature because performance on DNMS tasks 

following some experimental manipulation can produce impairments following delays lasting as 

short as 15 s, but not on delays lasting 4 s (Mumby & Pinel, 1994; Mumby, Pinel, et al., 1995; 

Wiig & Bilkey, 1995). Accordingly, not being able to enforce a short delay on the mDNMS task 

means the experimenter could potentially miss out on observing intact recognition abilities 

following short delays whereby the treatment may not exert its effects. 

 Moreover, another potential issue is the variability in delay length across sessions both 

within and between individual rats when testing using a particular delay. This specifically 

presents problems when trying to administer sessions with no set delay (e.g., the minimum 

delay). For example, the rat could end the sample phase and quickly run to the choice phase (e.g., 

10 s), but on other sessions the rat may take its time, resulting in longer retention intervals (e.g., 

100 s). The variability observed across sessions for individual rats can be a potential problem in 
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terms of a source of random error when trying to measure test re-test reliability. This could 

present a problem when trying to determine whether rats’ scores on the test are reliable. In terms 

of between-subjects variability this lack of control over delay length only presents as a problem 

if the goal is to determine object-recognition abilities following a set delay (e.g., 30 s). If the goal 

is simply to determine accuracy scores following some undesignated short or long retention 

interval, then it presents less of a problem. In any case, not being able to control the delay can 

present a problem when trying to minimize the variability between rats (and within sessions for a 

particular rat). One way we could modify this in future experiments would be to train rats to 

associate a cue (e.g., noise) that would signal the end of the dely. 

6.6.2. The method used to administer probe tests 

The overall findings from the probe tests revealed that rats were not relying on olfactory 

cues to correctly locate the food reward. Interpreting the probe test results was difficult, 

however, for the experiments described in Chapter 2 and those of the PRh rats in Chapter 4. 

Scores on the probe tests and normal tests were not significantly different from one another, 

however scores on both the probe tests and normal tests were not significantly different from 

chance. Administering probe tests modifies the characteristics on the task, which consequently, 

can disrupt performance on the test despite intact recognition abilities (Honig & Dodd, 1986). 

We suspect that introducing these changes to the reward contingency during probe testing was 

disruptive to rats’ performance on the probe tests and the normal tests that were administered 

contemporaneously. Accordingly, the decline in task accuracy during probe testing may have 

reflected the rat’s incentive to respond accurately, and not necessarily its memory abilities or the 

ability to detect the odor of the reward. In the future, a better design would involve baiting both 

the sample and novel objects with a food reward on the test, but only having the reward 

underneath the novel object accessible, thus eliminating the need to conduct probe tests. 

6.6.3. The pre-training procedure 

On the Go/No-go paradigm it was found that latency to make a choice on the test was a 

more sensitive measure of a rat’s memory for the sample object compared to choice accuracy 

(Chapter 5). One reason why rats may have continued to displace sample objects on the test, 

despite exhibiting longer latencies to displace them, may be a reflection of the training method 

that was used. During training the rats were reinforced for displacing the same sample object 

over multiple trials on the sample phase, thus it makes sense that they would predict to find a 
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reward underneath the sample object on the test phase. Accordingly, perhaps providing multiple 

opportunities to collect a reward after displacing a particular sample object impeded rats’ ability 

to acquire the reward contingency (i.e., nonmatch to the sample on the test). Indeed, this is 

reflected in latency scores on the first five sessions during training stage 1 whereby rats exhibited 

a shorter mean latency to displace objects on the No-go trials compared to Go trials (Figure 

5.2c). The training procedure was adapted from the one used on the mDNMS task. Thus, it raises 

the question as to whether this training method interfered with performance on the test, rather 

than facilitated performance. An important future experiment would include modifying the 

training method to include only one opportunity to displace a sample object before encountering 

it on the test. This would help determine the ideal training method that would lead to faster task 

acquisition and/or a reduced tendency to displace sample objects on the Go/no-go DNMS task.  

6.6.4. Time requirements to test rats 

Rats acquired the mDNMS task in significantly fewer trials compared to conventional 

DNMS tasks. However, the mDNMS task still requires a considerable number of weeks to 

conduct an experiment, as does the Go/No-go DNMS task. Administering more than one session 

per day and testing rats daily, however, would reduce the length in time required to collect data. 

Regardless, compared to using the NOP test, the mDNMS task is less practical in that it will 

require more time and effort to conduct an experiment. However, given the concerns about 

internal validity when the NOP test is used to make inferences about object-recognition abilities, 

the choice of which task to use in a memory experiment would appear to be a choice between 

getting dubious data quickly versus taking a bit more time in order to get high-quality data. 

6.7. Future Directions 

The almost exclusive reliance on novelty-preference paradigms to study object-

recognition in rats needs to be replaced (or at least supplemented) with procedures that yield data 

that are easier to interpret. Relying on the preference to investigate an object provides limited 

information on the status of object-recognition abilities, and worse, can potentially lead to 

misinterpretations of the status of object-recognition memory. This is especially the case when 

null preferences are taken to reflect an object-recognition impairment. It is unlikely that 

researchers will abandon using novelty-preference paradigms considering the ease and speed that 

data collection can be done. Indeed, the field of behavioural neuroscience relies too much on 

using quick and easy behavioural tests to measure complex cognitive processes. Extremely 
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sophisticated techniques have been developed to examine the biology of the nervous system, yet 

there is an over-reliance on using simple behavioural tasks to answer research questions (Cahill, 

James, & Weinberger, 2001; Krakauer, Ghazanfar, Gomez-marin, Maciver, & Poeppel, 2017; 

Peters, Pothuizen, & Spruijt, 2015; Sarter, 2004; Spruijt, Peters, Heer, Pothuizen, & Harst, 

2014).  

Some researchers have acknowledged the limitations of the NOP test and have developed 

clever new object-recognition tests in response to these limitations. These tasks were designed to 

address the limitations related to the low number of trials that can be administered when using 

standard open field arenas and the stress that can be caused to the rats by handling them between 

phases (Albasser, Chapman, et al., 2010; Ameen-Ali, Eacott, & Easton, 2012). On both tasks, the 

rat is rewarded with a food pellet that is placed under each object when it investigates them 

during each phase. The food is used to encourage rats to investigate the objects and to shuffle 

back and forth between trials in the apparatus. The advantage of these paradigms is that they 

allow for the collection of many trials within a session and the rat is not handled. However, 

unlike the DNMS task, the food reward is not contingent on the selection of the novel object 

first, as there is a food reward placed under the sample too. Thus, this paradigm still relies on 

measuring the amount of time the rat spends exploring familiar and unfamiliar objects. 

Consequently, this paradigm still suffers from the same inherent limitations of the NOP test, 

despite adjusting for some of the shortcomings. 

The findings of the present thesis raise important implications in relation to the low 

reproducibility of behavioural neuroscience results (Bailoo, Reichlin, & Würbel, 2014; Bespalov 

& Steckler, 2018; Spruijt et al., 2014; Voelkl & Würbel, 2016) and the low predictive validity of 

experiments focused on developing pharmacological treatments for neurological and 

psychological disorders (Cummings, Morstorf, & Zhong, 2014; Kola & Landis, 2004; Mcgonigle 

& Ruggeri, 2014). Reproducibility depends on experimental designs that have both high internal 

and external validity. Factors pertaining specifically to experimental design and analysis12 that 

have been described as contributing to low reproducibility of research findings are: low 

statistical power, lack of randomization, experimenters not blind to group allocation, and lack of 

 
12 Indeed, other recognized contributing factors unrelated to experimental design include publication bias 
(MacLeod, 2011; Scargle, 2000), poor description of experimental procedures (Kilkenny, Browne, Cuthill, Emerson, 
& Altman, 2010), and standardization of animal housing environments across laboratories (Voelkl & Würbel, 2016; 
Würbel, 2001), to name a few. 
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standardization of experimental methods across laboratories (Button et al., 2013; Gulinello et al., 

2018; Ioannidis, 2005). Surprisingly, a crucial factor pertaining to experimental design that has 

not been discussed in detail is whether or not the behavioural task being used in the experiment 

is, in fact, a valid measure of the internal construct under investigation (Sarter, 2004). 

Ultimately, low reproducibility and poor predictive validity likely reflect a combination of 

known and unknown factors, but one factor that is missing extensive research on, is the 

validation of behavioural paradigms used in the approach to study underlying neural mechanisms 

in animals.  

The internal validity problems associated with the NOP test as a gauge of object-

recognition memory are undeniable, along with the lack of research that has focused on assessing 

its internal validity. Perhaps this reflects a form of pluralistic ignorance, whereby the majority of 

researchers genuinely believe the NOP test has internal validity problems yet assume, 

incorrectly, that others are not thinking the same thing. This may be a result of a lack of 

conversation on this topic. In this case, more discussions are needed on validating novelty 

preference paradigms and using suitable behavioural paradigms to measure internal constructs 

using animal models. Reducing the disciplinary disconnect between the field of neuroscience and 

ethology would be beneficial, as would familiarizing oneself with articles published in journals 

that have a focus on animal behaviour (Olsson, Nevison, Patterson-kane, & Sherwin, 2003; 

Peters et al., 2015). Ultimately, designing robust behavioural tasks that allow for the collection of 

meaningful data requires an understanding of animal behaviour, an awareness of potential 

confounding variables, and patience.  

6.8. Conclusions  

The findings from this thesis reveal the utility of the mDNMS task and the internal 

validity problems associated with using the NOP test as a means to measure object-recognition 

memory in rats. Moreover, the refinements made to the mDNMS task yielded more sensitive 

measures of object-recognition memory while eliminating drawbacks in the initial design. This 

thesis established that a lack of novelty preference on the NOP test does not reflect an inability to 

discriminate the familiarity of a previously encountered object. Moreover, novelty-preference 

scores do not appear to relate to the strength in memory for a sample object as evidenced from 

the correlational findings using both the mDNMS and Go/No-go DNMS task. These results raise 

concerns about the way NOP data are typically interpreted.  
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Collectively, the findings from this thesis reveal important factors that should be included 

when designing behavioural tasks used to infer memory processes in rats: 1) an instrumental 

response with which the rat must make an explicit choice between familiar and unfamiliar 

stimuli, and a reward for accurate choices, 2) the option to measure multiple behaviours in order 

to increase the sensitivity of the task, and 3) the minimization of the number of alternative 

explanations for observed behaviour of the task. Ultimately, it allows for a clearer interpretation 

of behaviour as it relates to the particular defined construct under investigation. In summary, the 

findings from this thesis reveal that there are clear pitfalls when it comes to assessing object-

recognition memory in rats. However, by being mindful of potential shortcomings when 

designing a task and being vigilant when interpreting behaviour on the task, it can reduce 

interpretational problems, ultimately providing a more sensitive estimate of the construct under 

investigation. 
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Appendix A 

Table 1.  
Results from studies using DNMS to assess object recognition in rats 
 

Study 

 No. of 

pre-

training 

trials  

DNMS acquisition Testing at longer delays 

Performance 

criterion 

Delay 

(s) 

Mean 

score on 

criterion 

trials 

Mean no. 

of trials to 

reach 

criterion 

Delay & approx. 

mean score on 

test 

Mean no. of 

training 

trials 

Thesis 
Experiment 1 
(Chapter 2) 

74.68 16/20 30* 84% 24.44 100 s: 67% 
220 s: 59% 
330 s: 66% 
630 s: 63% 

None 
32 
64 
52 

Thesis 
Experiment 2 
(Chapter 3) 

156.56 16/20 69* 81% 79.44 72 hr: 67% 
3 wk: 70% 

45 wk: 64% 

None  

Thesis 
Experiment 3 
(Chapter 4) 

120 16/20 34* 81% 79 n/a n/a 

Aggleton, 1985 

(Experiment 1) 

 

None 40/50 0 81% 130 20 s: 84% 

60 s: 74% 

120 s: 80%
a
 

None 

Aggleton et al., 

1986 

 

None 40/50 0 >80% 190 20 s: 82% 

60 s: 72% 

None 

Rothblat & 

Hayes, 1987 

 

240-480 27/36 10 77% 177.6 30 s: 70% 

120 s: 63% 

None 

Mumby et al., 

1990 

 

 

 

100 21/25
b 

4 90% 235 15 s: 91% 

60 s: 81% 

120 s: 77% 

600 s: 57% 

Max. 200 

” 

” 

100 

Mumby et al., 

1992 

 

 

 

100-125 17/20
b
 

or  

21/25
b
 

4 >85% 280 15 s: 89% 

60 s: 79% 

120 s: 76% 

600 s: 63% 

125 -250 

” 

” 

” 

Kesner et al., 

1993 

8 45/60 1-4 83% 76 10 s: 78% 

20 s: 73% 

Max. 60 

Max. 260 
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Mumby et al., 

1993 

(Experiment 1) 

 

 

 

41.7 17/20
b
 4 >85% 340 15 s: 75% 

30 s: 79% 

60 s: 72% 

120 s: 71% 

300 s: 68% 

160 

” 

” 

” 

” 

Mumby et al., 

1993 

(Experiment 2 

pre-surgery 

data) 

55 17/20
b
 4 >85% 336 15 s: 88% 

60 s: 82% 

120 s: 73% 

300 s: 67% 

Max. 160 

” 

” 

80 

Wood et al., 

1993 

(Experiment 1) 

 

 

Max. 125 21/25
b
 4 >85% 350 15 s: 80% 

30 s: 81% 

60 s: 78% 

120 s: 74% 

300 s: 68% 

200 

” 

” 

” 

” 

Wood et al., 

1993 

(Experiment 2 

pre-surgery 

data) 

 

Max. 125 17/20
 b
 4 >85% 347 15 s: 88% 

30 s: 78% 

60 s: 80% 

120 s: 70% 

300 s: 66% 

Max. 160 

Mumby & Pinel, 

1994  

(Pre-surgery 

data) 

 

125 17/20
b
 4 >85% 420 15 s: 87% 

60 s: 76% 

120 s: 72% 

600 s: 58% 

Max. 160 

” 

” 

Max. 80 

Mumby, Mana, 

Pinel, David, & 

Banks, 1995 

 

100 17/20
b
 4 >85% 280 15 s: 82% 

30 s: 82% 

60 s: 83% 

120 s: 82% 

160 

” 

” 

” 

Mumby, Pinel, 

Kornecook, 

Shen, & Redila, 

1995 

 

88 17/20
b
 4 >85% 360 15 s: 82% 

30 s: 77% 

60 s: 77% 

120 s: 76% 

120 

” 

” 

” 

Wiig & Bilkey 

1995 

 

 

 

75 26/30 4 >86% 173.6 15 s: 79% 

30 s: 79% 

60 s: 72% 

120 s: 66% 

50 

” 

” 

” 

Mumby et al., 

1996 

(Study 1 pre-

surgery data) 

100 17/20
b
 4 >85% 316 15 s: 88% 

60 s: 81% 

120 s: 76% 

300 s: 75% 

120 

” 

” 

” 
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Duva et al., 

1997 

(Experiment 1 

pre-surgery 

data) 

 

60 17/20
b
 4 >85% 264 60 s: 74% 

120 s: 67% 

300 s: 69% 

Max. 100 

” 

” 

Duva et al., 

1997 

(Experiment 2) 

 

75 17/20
b
 4 >85% 334 60 s: 77% 

120 s: 67% 

300 s: 68% 

Max. 100 

” 

” 

Kornecook et 

al., 1999  

(Pre-surgery) 

 

 

125 17/20
b
 4 >85% 395 15 s: 91% 

30 s: 83% 

60 s: 78% 

120 s: 74% 

Max. 120 

” 

” 

” 

Clark et al., 

2001 

44 32/40 4 >80% 220 30 s: 75% 

60 s: 76% 

120 s: 78% 

60 s: 82%
c
 

None 

” 

” 

387
c
 

Note: Mean number of trials to reach criterion exclude the criterion trials. The referenced articles are listed 
in chronological order. For studies that included treatment groups, only the data for the SHAM (control) 
group are reported. 
*Delay during final five criterion sessions 
aScore is based on 30 trials instead of 50 
bRats were required to reach this criterion on two consecutive occasions 
cResults when rats received extended training with a 60-s delay 
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Appendix B: Does a decline in mDNMS task performance over time reflect the use of recurring 

objects? 
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Introduction 

The delayed nonmatching-to-sample (DNMS) task is considered to assess working-

memory—memory for information that is only needed for one trial on a task (Honig, 1985). A 

key factor that made the nonhuman primate DNMS task successful, compared to the nonspatial 

delayed-response tasks devised in the 1950s and 1960s, was the use of a large set of stimulus 

objects (Gaffan, 1974; Mishkin, 1978; Mishkin & Delacour, 1975). Indeed, the nonspatial 

delayed-response paradigms in the 1950s and 1960s used only a small set of recurring objects 

across trials, resulting in the stimuli becoming familiar after only a few trials (Correll & Scoville, 

1965; Etkin & D’Amato, 1969; Mishkin & Weiskrantz, 1958; Scheckel, 1965; Weinstein, 1941). 

Consequently, this made the task a measure of recency memory (i.e., which of these equally 

familiar stimuli did you see most recently?), which nonhuman primates have difficulty 

successfully performing. Accordingly, to ensure the DNMS remains a test of recognition 

memory—the ability to detect the familiarity of a previously encountered item— a large pool of 

stimulus objects is required to ensure objects do not repeat often, and consequently, do not 

become overly familiar. Anywhere between 300 and 1300 objects have been used on the 

nonhuman primate DNMS (cf. Aggleton & Mishkin, 1983; Meunier, Bachevalier, Mishkin, & 

Murray, 1993; Murray & Mishkin, 1986; Zola-Morgan, Squire, & Amaral, 1989; Zola-Morgan 

& Squire, 1985) and anywhere between 250 and 400 objects have been used on the rodent 

DNMS paradigms (cf. Mumby, Pinel, & Wood, 1990; Rothblat & Hayes, 1987).  

In the present thesis a large stimulus set was used (e.g., 192 objects during the final stage 

of mDNMS testing) in an attempt to reduce the number of times a particular object recurred over 

trials13. The objects began to repeat by trial 96 (day 24 of testing, as there were 4 trials per day). 

Comparatively, on Rothblat’s and Hayes’s DNMS version, 250 objects were used, which began 

to repeat by trial 126 (day 10 of testing, as there were 12 trials per day), and on Mumby’s version 

350 objects were used which began to repeat by trial 176 (day 7 of testing, as there were 25 trials 

per day). Despite using recurring objects, previous studies reported that rats’ accuracy on the 

final criterion sessions during training and subsequent testing using the same delay remained 

around the same asymptotic level of performance. When rats were trained and tested using a 10-s 

delay their scores remained around 76% (Rothblat & Hayes, 1987) and when using a 4-s delay 

 
13 In the experiment presented in Chapter 3, 42 objects were used as samples on the ~45-week delay, so the total 
number of objects used for the 80-s delay was 150, not 192. Thus, there were only 75 object pairs. 
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scores remained around 90% (Mumby et al., 1990). Conversely, on the mDNMS task 

performance declined between the criterion sessions during training and subsequent testing on 

the shortest delay. The mean accuracy score on the five criterion sessions in the experiment 

described in Chapter 2 was 84% and as testing continued, mean scores on the shortest delay 

dropped to 67%. As described in Chapter 2, we suspected that the discrepancy in scores between 

training and testing likely reflected an effect of the different testing procedures on performance 

more so than on memory. Rats received several successive sessions with the same delay and then 

it changed to a new one. Over several successive sessions with the same delay length, certain 

aspects of performance become habitual, and the change in procedure that occurred when the 

delay was changed was enough to transiently disrupt performance (as also evidenced during 

training with longer delays—see Figure 2.2a). It is also possible that the decline in performance 

reflects the increase in the shortest delay from 30 s during training to 100 s during testing. Thus, 

the decline in accuracy may reflect an increase in the demands on memory considering the 

minimum delay length became longer. However, this same decline in performance between the 

final five criterion sessions and later testing also occurred in the experiment presented in Chapter 

3 (81% to 65%), despite no abrupt changes in the delay length between sessions nor a major 

increase in the minimum delay length between the training and testing stages (69 s to 82 s).  

One potential reason for the decline in performance from training to resting may reflect 

the use of recurring objects on the task. On the mDNMS task, by the end of testing using the 

shortest delay, rats encountered a particular object on average six (Chapter 2) and five times 

(Chapter 3). Conversely, in the Rothblat and Hayes experiment rats encountered each object a 

maximum of two times, as they only administered an average of 238 trials. Thus, on the 

mDNMS task, rats encountered object more often over time, and this may have led to the objects 

becoming increasingly familiar. However, Mumby and colleagues provided extensive training 

using several different delays, resulting in the rats encountering a particular object at least six 

times by the end of testing (Mumby et al., 1990). Thus, the number of encounters with a 

particular object alone may not explain the decline in performance on the test. However, a factor 

that was different on the mDNMS task compared to conventional DNMS tasks was the amount 

of time a rat could spend investigating a particular object on each trial. On conventional DNMS 

tasks the experimenter removes the object from the apparatus immediately after the rat displaces 

it from over the food well. This means the rat spends ~1-2 s investigating an object per trial. 
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Interestingly, when rats are given additional time to investigate the sample object, DNMS 

performance improves (Beck & Kalynchuk, 1992), suggesting that more time spent investigating 

the object (encoding object features) improves retention of object information. On the mDNMS 

task there is no restriction in the amount of time that a rat can spend investigating an object on 

both the sample and test phase. Based on our observations, rats would spend time investigating 

an object both before and after displacing it from over the food well. On the sample phase rats 

would spend, on average, ~6 s investigating a sample object. Thus, perhaps the amount of time 

rats spent investigating objects over repeated sessions caused the objects to become increasingly 

familiar over time, making it difficult for the rats to discriminate between the sample on the 

current trial and the “novel” object. This may explain why performance was initially high on the 

five criterion sessions during training, as a particular object had only been encountered once or 

twice at this point, and then declined during subsequent testing with repeated exposures to the 

objects.  

The extent to which a rat would have difficulty applying the nonmatching rule on the test 

for a sample object it encountered minutes earlier and a “novel” object it encountered 64-96 

trials (16-24 sessions)14 earlier is unknown. However, given that on the mDNMS task rats were 

capable of recognizing objects that they encountered ~45 weeks earlier (Chapter 3), it is not 

implausible to consider that prior brief exposures to an object can cause it to become so familiar 

that on the test that a rat has difficulty distinguishing between it and an object encountered 

minutes earlier on the sample phase. The goal of this experiment was to determine if accuracy 

scores would improve in a group of rats when using new objects were compared to the standard 

objects that the rats already had prior encounters with. Once we finished the experiment 

described in Chapter 3 we gave the rats trials on the mDNMS task using either “novel” objects 

they had never encountered (New Set condition) or “novel” objects from the standard object sets 

that were encountered throughout testing (Standard Set condition). If scores declined on the 

mDNMS task over time due to the objects becoming increasingly familiar, then we predicted rats 

would have higher accuracy scores on the trials with new objects than on trials using the standard 

object sets.  

 
14 This range of potential object re-occurrences reflects the fact that there were three sets of objects, each with 32 
object pairs. Thus, an object could re-appear a minimum 64 or maximum 96 trials later. 
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Materials and Method 

Subjects 

The same rats from the Chapter 3 experiment were used in the present experiment. The 

subjects were seven male Long-Evans rats (Charles River, Kingston, ON), weighing 500-575 g 

at the start of testing (~22 weeks old). The rats were pair-housed in polypropylene cages (48 × 25 

× 20 cm) in a colony room maintained under a reverse 12:12 light-dark cycle, with light onset at 

8:00 p.m. The rats had continuous access to water and each received a daily ration of ~25 g of rat 

chow (Charles River Rodent Animal Diet, no. 5075) in the late afternoon, after behavioral testing 

was finished for the day. Prior to this experiment the rats had received an average of 90 sessions 

on the mDNMS task using various delays (80 s, 72 hr, 3 weeks, and ~45 weeks). All procedures 

were approved by the Concordia University Animal Care and Use Committee, and were in 

accordance with the guidelines of the Canadian Council on Animal Care. 

Apparatus 

Behavioural testing was performed in a large multi-level environment (152 × 145 × 86 

cm). The apparatus was a modified, freestanding steel cage rack, enclosed on three sides by wire 

mesh, with a removable, clear acrylic front panel (see Figure 2.1). The apparatus had five levels, 

each covered with woodchip. The top four levels were divided into two equal halves by a plastic 

barrier wall, and the bottom level remained undivided. A loading cage (58 × 37 × 20 cm) was 

placed on the top left side of the apparatus. A rat entered the apparatus via a hole in the bottom 

of the loading cage that was placed over a passageway leading to the top level of the apparatus. 

Rats traversed the different levels via wire mesh passageways located on both sides of the 

apparatus. The design of the apparatus was such that a rat had to climb down the passageways on 

the left side of the apparatus in order to gain access to the right side, which it then could ascend 

from level to level. The top four divided levels contained plastic rectangular platforms (30 × 12 × 

1 cm) each with a recessed food well (2 cm in depth), over which stimulus objects could be 

placed. One platform was placed on each level on the left side of the apparatus, and on the right 

side of the apparatus, two platforms were placed on each level with the food wells 9 cm apart. 

All platforms were positioned near the middle barrier wall, in line with the passageway that 

provided access to the level. The room contained dim lights (40 lx) and a video camera was 

positioned in front of the apparatus in order for the experimenter to watch the session on a TV 

monitor in an adjacent room. 



 

 

209 

Stimulus objects. A total of 80 different objects were used as test stimuli. Sixty of the 

objects had been previously encountered on the mDNMS task ~5 times, and the last time the rats 

had encountered the particular objects was ~4 weeks earlier. The remaining 20 objects had never 

been encountered before. These 20 objects served as the novel objects on test for the New Set 

condition. Objects were made of plastic, metal, glass, or glazed ceramic, and ranged in size from 

4 to 18 cm in height, and 4 to 13 cm in width. Each object was large enough to cover the food 

well but light enough to be easily displaced by a rat. There were two copies of each sample 

object –one for the learning phase and one for the test—and one copy of the novel object.  

Behavioural procedures 

The rats had been previously trained on the mDNMS task. For details on the habituation 

and training refer to Section 3.2.4.2. in Chapter 3.  

Rats received five sessions using “novel” objects from the standard mDNMS task object 

sets (Standard Set condition) and five sessions using novel objects that the rats had never 

encountered (New Set condition). The novel objects in the New Set were paired with sample 

objects that had been used throughout testing. A session consisted of a sample and test phase. On 

the sample phase, a rat descended the apparatus encountering four distinct sample objects –one 

on each of the divided levels (see Figure 2.1d). One Cheerio was buried in the food well under 

each sample object. During the test phase, a copy of each sample object was presented next to a 

novel object. A Cheerio was buried under the novel object on each test level. Each session 

consisted of four trials, as there were four distinct sample objects in the apparatus. On the test, 

half of the rats encountered the sample objects paired with “novel” objects from the New Set and 

the remaining half encountered “novel” objects from the Standard Set. Different sample and 

novel objects were used each day, but on the New Set condition, the same objects served as the 

novel for all rats on respective sessions (i.e., all rats encountered the same four novel objects on 

New Set Session 1, 2, 3, 4, and 5). Rats received one session per day over the course of ten days, 

and the session type (Standard Set or New Set) alternated each day such that on one day a rat had 

a Standard Set session and on the next day it received a New Set session, and so on. The session 

type was counterbalanced across rats, such that approximately half the rats started with a 

Standard Set session and the remaining rats started with a New Set session. Consequently, this 

meant that both types of sessions were administered on each day of testing. Accordingly, on a 

particular day of testing, all of the rats encountered the same four sample objects.  
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The sample and novel object on each trial were paired based on similarities in size, 

weight, complexity, and material. The location of the novel object on each test was 

counterbalanced in a pseudorandom order, but within one day of testing it appeared in the same 

location for all rats. Between each rat, the woodchip on every level was redistributed to spread 

any potential odor cues left by a previous rat and each object and platform was cleaned using a 

70% ethanol solution. The dependent measure was the mean percentage of correct choices on the 

test. A correct choice on the test was defined as the rat either displacing the novel object before 

displacing the sample object, or only displacing the novel object. An incorrect choice was 

defined as the rat only displacing the sample object, or displacing the sample object before the 

novel object. The mean delay between the sample and test phase for the Standard Set condition 

was 84 s (s = 83.01, min. = 19.8 and max. = 264.4 s) and for the New Set condition was 127 s (s 

= 88.37, min. = 35.8 and max. = 272.4 s). 

Results 

A dependent samples t-test revealed that there was no significant difference in the 

amount of time that rats spent investigating objects during the sample phase on the Standard Set 

condition and New Set condition (t(6) = 0.00, p = 1.00, Hedge’s g = 0.00). 

Figure B.1 depicts rats’ performance on the mDNMS task for each condition. On the 

Standard Set condition, the mean accuracy was 64.29% (s = 6.07) and on the New Set condition 

the mean accuracy was 78.57% (s = 5.56). Accuracy scores were significantly above chance on 

both the Standard Set condition (t(6) = 6.22, p = .001, Hedge’s g = 3.33, 95% CI [1.64, 5.02]) and 

New Set condition (t(6) = 13.59, p < .001, Hedge’s g = 7.27, 95% CI [4.18, 10.36]). A dependent-

samples t-test revealed that scores on the New Set condition were statistically significantly 

higher than scores on the Standard Set condition (t(6) = 7.07, p < .001, Hedge’s g = 2.45, 95% CI 

[1.02, 3.88]).  

Discussion 

We compared rats’ performance on the mDNMS task when using either trial-unique 

“novel” objects or “novel” objects that rats had briefly encountered before (~5 times) over 

widely distributed points in time (~4 weeks). Accuracy scores were significantly higher on 

sessions when rats made a choice between a familiar object and one they had never encountered 

before (New Set) compared to ones that they had previously encountered, the last time being ~4 

weeks earlier (Standard Set). Moreover, the rats’ scores on the New Set condition were similar to  
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Figure B.1. Mean scores (± SEM) on the New Set condition and Standard Set condition sessions 
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the scores they obtained on the last five criterion sessions during mDNMS training (81%; refer to 

Chapter 3 results Section 3.3.2.2.). These findings suggest that using truly trial-unique stimuli, 

rather than pseudo-trial-unique stimuli, enhances rats’ ability to discriminate between sample and 

“novel” objects on the test. Moreover, these findings suggest that the decline in rats’ scores on 

the mDNMS task over time was influenced by the amount of prior exposures they had with the 

object sets.  

 There are a number of possible explanations for why using recurring objects disrupted 

mDNMS performance. One possible explanation is that after several exposures to an object it 

became so familiar that the rats had difficulty applying the nonmatching rule on the test for the 

sample object and a familiar “novel” object. This would suggest that the test became a measure 

of recency memory, not recognition memory. This also suggests that the rats had difficulty 

discriminating between a sample object encountered minutes earlier and a “novel” object 

encountered 16-24 sessions earlier (~4 weeks earlier). If the latter were true, then the amount of 

object exposure these rats received over cumulative mDNMS sessions (Chapter 3) was enough 

for a representation of these objects to be stored in long-term memory. Consequently, the 

persistence in memory for the objects adversely affected the rats’ ability to determine which one 

was the sample on the current trial. With this reasoning, the pool of objects used on the mDNMS 

task needs to be even larger compared to conventional DNMS tasks to reduce the frequency for 

which a particular object recurs on the test. This would ensure that the objects do not become 

overly familiar with continued testing.  

Another possible interpretation for the findings in the present experiment is that the 

repetition of objects over time produced proactive interference on the test—previously 

encountered objects interfered with memory at a later time (Wright, 2006, p. 166). In this case, it 

would mean that the rats had difficulty distinguishing between which sample object they 

encountered on the current trial compared to previous trials. To test the effects of proactive 

interference, researchers have used a delayed same/different task using stimuli (e.g., pictures) 

presented on a touch screen. On the task, the subject is presented with a sample stimulus, 

followed by a delay. On the test, either the same or a different stimulus is presented on the screen 

next to a white square. When the same stimulus is presented, the subject gets a reward if it 

touches the same stimulus, and when a different stimulus is presented the subject gets a reward if 

it touches the white square next to the stimulus. Different sample stimuli are used on each trial, 
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but to assess proactive interference, some of the “different” test trials are manipulated such that a 

sample stimulus from the preceding trial is presented as the test stimulus on the current trial. 

Proactive interference could make it difficult for the subject to determine whether the test 

stimulus matches the sample stimulus on the current trial or the sample from the previous trial. 

Compared to “different” trials with no proactive interference, both pigeons (Wright, Katz, & Ma, 

2012) and nonhuman primates (Devkar & Wright, 2016) score significantly lower, indicating a 

tendency to incorrectly identify the test stimulus as the sample stimulus on the current trial. 

Moreover, the effects of proactive interference on performance decline by increasing the number 

of trials between the presentation of the sample stimulus and its reappearance as a test stimulus 

(Devkar & Wright, 2016; Wright et al., 2012; Wright, Kelly, & Katz, 2018). The build up of 

proactive interference has typically been examined for stimuli encountered within a test session, 

not across sessions occurring over days. If the results from the present experiment do in fact 

reflect a build up of proactive interference, then it suggests that these intrusions can occur for 

information encountered over long periods of time between object presentations (e.g., dozens of 

trials and days earlier). If this were the case, then it suggests that rats’ long-term memory is 

grossly underestimated. Accordingly, using a large object set to reduce the recurrence of objects 

would be needed to eliminate the potential for proactive interference to disrupt performance over 

time.  

We can rule out the possibility that the differences in accuracy scores on the Standard Set 

and New Set condition was due to differences in the amount of time rats spent investigating 

objects on the sample phase during each condition, as rats spent a similar amount of time 

investigating the sample objects during both conditions. Moreover, the results from the probe 

tests from the experiment described in Chapter 3 revealed that these rats were not relying on 

olfactory cues to successfully locate the reward on the test. Regardless, if rats were in fact 

relying on olfactory cues to locate the food reward, then we would not expect to find a 

significant increase in accuracy scores on the New Set condition compared to the Standard Set 

condition. Lastly, it is unlikely that the features of the novel objects in the New Set evoked an a 

priori preference relative to the sample objects as they were matched based on similarities in 

size, material, and complexity (e.g., a New Set novel object that was made of smooth plastic was 

paired with a sample with the same features).  

The rats in the present experiment were 18 months old at the onset of testing. Thus, it is 
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possible that the differences in performance on the New Set and Standard Set conditions reflects 

age-related deficits in working-memory abilities, rather than difficulties distinguishing between 

two familiar objects on the test. On the New Set condition, only the “novel” objects were new, 

whereas the sample objects used on each session had been encountered before. Accordingly, this 

raises the possibility that on the New Set condition the rats could have successfully solved the 

tests by relying on long-term memory for the sample objects (i.e., which object do you have a 

stored representation of in long-term memory) and not working-memory (i.e., which object did 

you previously encounter on this particular session). Conversely, on the Standard Set condition 

tests, rats could only rely on memory for object information learned on that particular session to 

successfully discriminate between the novel and sample on the test. One way to rule out this 

alternative explanation would be to use an entirely new set of objects to serve as both sample and 

novel objects on the New Set condition.  

Overall, the findings from this experiment revealed that rats’ performance improved on 

the mDNMS task when using trial-unique novel objects compared to objects that recurred over 

time. The length and number of object encounters was enough to interfere with accuracy on the 

test when discriminating between a recently encountered object and one encountered weeks 

earlier. Thus, these findings reveal that rats are capable of remembering objects over long 

periods of time when provided with several brief encounters over widely distributed points in 

time. Accordingly, a large object set with few recurring objects is required when administering 

many trials on the mDNMS task because using recurring objects disrupts performance on the 

task. 
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