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Abstract

Numerical Assessment of Directional Energy Transfer for Geometric Structure

by Ankhy Sultana

Energy is the capacity to do work, and mechanical work is the amount of energy trans-

ferred by force. Hence, energy can be represented in the form of deformation obtained

by the applied force. Energy transfer is defined in physics when the energy is moved

from one place to another or energy is transferred from one form to another form. To

make the energy transfer functional, energy should be moved in the right direction, at

the right location, at the right time and large enough to produce a difference. If it is

possible to make better use of the energy in the right direction at the right moment,

the energy efficiency of the structure can be enhanced. This idea leads to the concept

of directional energy transfer (DET), which refers to transferring energy from one di-

rection to a specific direction. As force and deformation in the particular direction are

responsible for the energy in that particular direction, structural properties like geom-

etry or material can have an impact on DET property of the structure. With the recent

development of additive manufacturing, complex structures can be applied to various

applications to enhance performances, like a wheel and shoe mid-sole. For example,

lattice structures are produced to attain lightweight, maintaining strength and specific

mechanical properties. While many works are related to structural strength, there is

limited research in DET. In this study, a theoretical approach is proposed to measure the

DET of a structure based on the geometry of the structure, which can be used to evaluate

the effectiveness of energy transfer. The purpose is to understand the energy transfer

behaviour of a structure and to measure if a structure is able to transfer energy from one

direction to the desired direction. The designs tested were inspired by lattice structures.
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However, the tested structures do not represent optimized DET structures. The contri-

butions in this work are developing a more generalized mathematical model to imple-

ment the mathematical model to build the concept and measure the structure-property

of directional energy transfer. And also the goal includes finding out the validity of the

concept from the mathematical and experimental point of view.
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1 Introduction

In structure mechanics, optimization is an important tool in the design process to min-

imize the stresses or compliance for a given amount of material and boundary condi-

tions. The method can be utilized to design engineering structures but also to tailor

microstructures. However, it is possible to have a customized or optimized structure to

achieve the expected mechanical property. In this analysis, the anticipated property is

directional energy transfer (DET).

1.1 Motivation

Uses of more complex geometry to modify mechanical properties are becoming more

and more common in advanced manufacturing technology e.g. shoe midsole in Fig. 1.1a.

In the automotive sector, such kind of application is producing an airless tire (see Fig. 1.1b).

The purpose was to modify the lateral stiffness while maintaining proper contact patch.

Apart from automotive, the concept of energy return is implemented in sports. Energy

return is a similar concept as DET, which returns the stored energy, but it does not con-

sider the direction of the energy. It is considered that sport shoes can play an influential

role in the runner’s performance since running efficiency depends on the interaction

between the foot and sports surface. An athlete’s performance can be highly regulated

by the interaction between the foot and sports surface. Hence, sports surfaces and shoes

can be constructed to enhance efficiency. An athlete employs a great amount of energy

during performance. While the foot strikes on the ground, energy is stored in the sport

surface and can be transferred by the surface. To make the energy transfer functional,

the energy transferred should be in the right direction. However, only some portions

of the exerted energy are actually effective for the movement. If it is possible to make
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FIGURE 1.1: (a) A 3D printed midsole c⃝designmilk adapted with the license CC BY-SA 2.0.
(b) A 3D printed airless tire.

better use of the energy in the right direction, the efficiency of the performer can be

enhanced. DET is a concept that can estimate the effectiveness of energy transfer in an

intended direction. With the recent development of additive manufacturing, complex

structures can be applied to various applications to intensify performances, like a wheel

and shoe mid-sole. While many works are related to structural strength, there is limited

research in DET. In this study, to illustrate the concept, shoe midsole will be practiced as

an example. Nevertheless, the objective is to attain the validity of the directional energy

transfer concept for any general structure.

1.2 Concept Overview

Energy is the property to perform work on an object. Although energy is a scalar quan-

tity, the forces that are exerted by a surface as energy are vector quantities having both

magnitude and direction. Consequently, the terminology relating to energy in a direc-

tion refers to the direction of deflection. When the force towards a direction is multiplied

by the amount of deflection, the result is the energy in that direction. It can be explained

further through the implementation of this concept in shoe midsole. A shoe sole con-

tains three layers: insole, midsole and outsole (see Fig. 1.1a). Insole stands directly

beneath the foot, the midsole is the layer between the insole and outsole, and the layer

that is in contact with the ground is called outsole. Among all these layers, the shoe

midsole serves the main purpose of a shoe sole. Traditionally it provides cushioning.
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While walking or running, forces applied on the ground by the foot can be decomposed

into a downward and backward force. According to Newton’s third law, reaction forces

are applied by the ground respectively to the upward direction, helping to stand and to

forward direction pushing us forward.

When the athlete contacts the sport surface, there is some work done by the athlete

on the sport surface. Energy is transferred from the athlete to the surface through the

foot and shoe. Sports surface deforms due to work done by the athlete and stores the

potential energy. Energy can be represented in the form of deformation obtained by the

applied force. Energy transfer is defined in physics when the energy is moved from one

place to another or transform of energy from one form to another form. DET refers to

transferring energy from one direction to a specific direction. In other words, a DET

structure can transfer the ‘vertical’ energy into a form of horizontal force and deforma-

tion. The concept of energy return is to utilize the potential energy and get that potential

energy in the form of force and deformation when the structure returns back to its ini-

tial state. Energy return is different from energy transfer as energy return occurs in later

half part of the whole cycle of deformation. Energy transfer may or may not be due to

energy return.

1.3 Objective

The goal of the study is to assess the concept of DET and ascertain the capability of a

mechanical structure to transfer energy to different directions. With the help of three-

dimensional (3D) printing technologies, complex structures with desired functionalities

could be designed [1]. It could be possible to generate structures with functional incre-

ments to enhance DET. Consequently, a quantitative way to measure the efficiency of

transfer is needed for the exploration of different structures. Nevertheless, the existing

mathematical model does not clarify numerous inquiries regarding DET computation.

For instance, Dickson’s work [2] proposed energy dissipated in the vertical direction

being the energy transfer in the horizontal direction, which is not surely conclusive.

Furthermore, the mathematical model is structure-specific, making one set of equations
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invalid for another, e.g., a distinct set of equations for 1-DOF linear mechanism and

another set for 1-DOF rotational mechanism. Hence, the mathematical representation

of directional energy transfer was crucial to examine. The research question this study

is trying to answer is: how to mathematically quantify the DET performance of any given

structures?

1.4 Scope

The purpose of this research is to review the numerical study and propose a complete

generalized mathematical model for DET. The contributions of this analysis are:

• The mathematical model of DET using spring elements is re-visited, and the nec-

essary concepts in work done and potential energy are identified to measure DET.

• A new formulation is developed to directly calculate the energy in a particular di-

rection, and it is concluded that there is no DET using static equilibrium analyses.

• The formulation is further extended to dynamic finite element analysis using frame

elements so that the mathematical derivation and calculation is unified and gen-

eral even for more complicated structures.

Experimental analysis is conducted along with the detailed numerical analysis to

strengthen the DET concept following thoughtful observations from previous studies.

This study assumes the structures represented by finite-elements with circular cross-

section area, and the materials, as well as the geometries, are having linear properties.

Further studies can be done to incorporate non-linear materials and geometries, or even

dynamic structures to explore the other possibilities of DET. Since there are many dif-

ferent kinds of properties, the thesis only focuses on the fundamental ones with linear

properties. The damping effect is also not considered to simplify the explanation.

The thesis is organized as follows. Related works are reviewed in Chapter 2. Chap-

ter 3 explains the fundamentals of DET, investigates a case, and gives novel observations

and according to the observations, the formulation is enhanced for DET in Chapter 3.3,
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and further generalized in Chapter 3.4. The developed analyses are done on a few ex-

amples, and the experimental results are presented in Chapter 4. The paper is concluded

in Chapter 5.
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2 Literature Review

2.1 Related Works

In this chapter, a thorough overview of the works related to directional energy trans-

fer is mentioned. The previous works can be separated into different sections: Lattice

structure, structure optimization, energy return and energy transfer.

2.1.1 Lattice structure

In additive manufacturing, the term infill refers to the interior structure of an object

that is printed. The infill pattern and volume percentage significantly influence the

printing process as well as the physical properties of the printed object [3]. Cellular

materials such as foam, honeycomb, and lattice structure are used in applications due

to their special mechanical properties which cannot be achieved by conventional bulk

material. The lattice structure refers to a type of cellular materials [4] that have a truss-

like structure with interconnected struts and nodes in a three-dimensional (3D) space.

Compared to other cellular materials such as random foams and honeycombs, the lattice

structure exhibits better mechanical performance [5].

Lattice structures are widely used in many engineering applications because of the

ability to distribute materials at vital parts to improve specific mechanical performance,

such as strength to weight ratio, heat transfer, thermal isolation, energy absorption and

biocompatibility [6]. Lattice structures have many superior properties, which make it a

promising solution for various applications, such as a lightweight structure due to its

high specific stiffness and strength etc. [7]. Mechanical performances of lattice struc-

tures depend on various factors such as the cell topology, number of cells, geometric
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parameters (e.g. strut diameter and cell size), material and manufacturing process, as

well as structural boundary and loading conditions [8]. By tailoring the material, the lat-

tice structure can be optimized to satisfy specific functional requirements, which means

the mechanical properties are more flexible to be controlled. designing microstructures

of cellular materials with maximum bulk or shear modulus based on the different tech-

niques [9].

The lattice structures used in tissue engineering and bone scaffolds are usually clas-

sified according to the unit cell design: CAD-based, image-based, implicit surfaces or

topology optimized unit cells [10]. Recent research has been oriented towards the topol-

ogy optimization(TO) of the base unit cell [11]. The effects of unit cell size on the elastic

modulus, shear modulus and Poisson’s ratio of triangulated lattice structures show that

the elastic modulus and the shear modulus decreased as the cell size increased [12]. In

a previous study [13], three lattice structures corresponding to different loading modes

were designed and tested. It is found that some structures have higher energy absorp-

tion efficiency than the others. Schaedler et al. [14] have investigated different types of

metallic microlattice structures for energy absorber by quasi-static compression tests. It

was shown that the lattice structure offers more flexibility in tailoring the response to

impulsive loads than conventional materials can. Compared to honeycombs, the lattice

structure has the potential to improve compressive and shear strengths when designed

to suppress buckling [15, 16].

It is possible to design material to achieve desired deformation behaviour by data-

driven process [17]. Deformable objects with spatially varying elasticity is fabricated

using 3D printing [18]. Also, heterogeneous objects are believed to possess superior

properties in applications where multifold functional requirements are simultaneously

expected. By introducing material heterogeneities into the design domain, anisotropic

properties can be obtained, the different properties and advantages of various materials

can be fully exploited, and traditional limitations due to material incompatibilities can

be naturally alleviated with gradual material variations [19].
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Lattice structures with sophisticated geometries are successfully fabricated by sev-

eral manufacturing techniques. Among them, additive manufacturing (AM) is espe-

cially well suited for the fabrication of complex lattice structures. Additive manufac-

turing enables the fabrication of complex structures by aggregation of materials in a

layer-by-layer fashion, which has unlocked the potential of lattice structures [20].

With the help of three-dimensional (3D) printing technologies, complex structures

could be designed [1] to enhance the DET performance. 3D printing provides mas-

sive opportunities to fabricate parts with design complexities, thus enabling various

design flexibility and application opportunities [21]. They can be used to fabricate ob-

jects with prescribed mechanical behaviour, e.g. to create anisotropic patterns with tar-

get orthotropic properties [21]. Being able to combine multiple functional materials

into a single print has the potential to greatly increase the utility of printed objects [22].

Multiprocess (or hybrid) 3D printing, where complementary processes are combined

to advance manufacturing by increasing the functionality of fabricated components get

focused on MacDonald’s study [23]

Hence, it is possible to control the energy return by using a different lattice structure

to have directional energy properties. By modifying density, angle and anisotropy, it can

control both the "softness" and "bending" of a sole [24]. A method is presented to pre-

cisely control the contact forces and pressure over large contact areas between the foot

and a deformable shoe [25]. Another interesting structure is auxetic materials which be-

have unconventionally under deformation, which enhances material properties such as

resistance to indentation and energy absorption. Auxetics, therefore, have the potential

to enhance sporting protective equipment [26]. Lattice structures and auxetic materials

possess novel properties to solid material and conventional structures. The functional

flexibility of the structures motivates this paper to develop the measurement of DET so

that it can be used as an objective to optimize the structures.
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2.1.2 Energy return

Many papers are related to energy return showing the evolution of directional energy

transfer. Basically, the energy return concept came into consideration to have possi-

ble use in sports. From previous works, the concept of energy return is implemented in

sports mainly. Energy return is a similar concept as DET, and it refers to the return of the

stored energy, but it does not consider the direction of the energy. It is believed that sport

shoes can play an important role in the runner’s performance since running efficiency

depends on the interaction between the foot and sports surface. Athletic footwear has

been advocated as a mechanism by which the running economy can be improved [27].

Performance enhancement is also a primary motivating reason that runners try new

footwear [28]. The selection of appropriate footwear is often advocated as an essential

requirement for distance running [29]. Running shoes with greater shoe cushioning,

greater longitudinal shoe stiffness and greater shoe comfort were associated with im-

proved running economy [30]. Results showed that VO2 (volume of oxygen consump-

tion) and respiratory exchange ratio were significantly lower, and shoe comfort was

significantly greater in the footwear with energy return [31]. Wearing a running shoe

is not limited to geometric changes of the foot-ground interface but may also change

the stiffness of the foot-ground interface due to the deformation of the midsole [32].

Ground reaction forces and kinematic variables were found to vary with shoe hardness

and shoe geometry [33], and improving forefoot push-off facilitate the augmentation of

forwarding acceleration and ultimately enhances athletic performances [34, 35].

Energy considerations during athletic activity have concentrated on two major strate-

gies to improve performance: the return of energy and reduction of loss of energy. Re-

turn of energy to improve athletic performance has been studied for sport surfaces and

sports shoes [36].

The concept of energy return through sport shoe surfaces was introduced as that

sports surface can store and return energy. During running, energy is transferred from

the athlete to the sport surface. A portion of the conserved energy is lost due to the

time-dependent material properties of the surface. Energy return is determined by the
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energy conserved and energy loss. Since sport surface stores and returns energy, the

returned energy during take-off will contribute to athletic performance [37, 38].

The concept of energy saving is found in nature too. Energy is saved, in insect flight

and mammal running, by storing elastic strain energy at one stage in the wingbeat or

stride and releasing it at another[39]. Multiscale structures are characteristic for bio-

logical materials, exhibiting inherent multifunctional integration [40]. In nature, web

building is an energetically costly process, making it critical that the entire web is strong

enough to meet different loading demands[41].

As the athlete leaves the surface, some of this energy flows back in the opposite

direction from the surface to the athlete. A compliant surface acts as a spring if the

stiffness of the spring is closely tuned to the mechanical properties of the human runner;

the runner’s speed can be increased. Both ground contact time and step length increased

on very compliant surfaces [42, 43]. The capacity to deform, and consequently to store

and return elastic energy, could potentially be augmented dramatically by developing a

structured sport surface.

By modifying the direction of the structural elements, differences of up to 10% in

the returned energy were seen [37]. By using a discrete non-linear viscoelastic model,

approximately 95% of the energy conserved in a sports surface of a shoe can be returned

to the athlete. The energy return for the new structural surface/shoe combination,

which was about 14 Joules, was more than 14 times higher than that of the conventional

shoe/surface system [38]. The newly developed running shoes reduce the energetic cost

of running by an average of 4% compared with established marathon racing shoes [44].

A highly elastic material was placed in the shoe outsole to enhance the ductility of the

material before push-off, increase the energy-return effect of the material after push-off,

and ultimately improve the movement characteristics during push-off [45]. Still, energy

storage and recovery in the model shoe are large enough to have local effects on the

energetics of the foot and lower leg, but modest when compared with passive energy

transfer within and between body segments or strain energy storage and recovery in

the lower limb [46].
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FIGURE 2.1: Foot anatomy showing MTP joint with the license c⃝ 1999-2017 Orthogate.

That is why works are being done in the second strategy: reduction of energy losses.

Following this strategy, stiffening the shoe structures around the MTP (metatarsopha-

langeal) joint (see Fig. 2.1) caused a shift of the point of force application toward the

front edge of the shoe-ground interface. Negative work was significantly reduced for

the stiffest shoe condition, and at the same time, a significant increase of positive work

at the MTP joint was found [47].

2.1.3 Energy transfer

The reason behind the scope of energy return being limited could be that returned en-

ergy is not being efficiently used. The concept of energy return led to the development

of directional energy transfer as a critical measure of shoe efficiency. The principle of

directional energy transfer is a concept developed by Fuss (2009) [2]. The efficacy of

this energy return concept, according to Nigg et al. [48] relies on the energy returned

at the right location, at the right time, with the right frequency. The concept of energy

return led to the development of DET as a critical measure of shoe efficiency. Only a

few works have been conducted in DET area previously. DET can be optimized if the
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bounce tubes of Adidas shoes are rotated, and the overall stiffness changed (by altering

the tube length) [49]. There are a number of parameters that relate to DET. These param-

eters are: energy transferred (as a percentage of vertical input energy), energy returned

in the horizontal direction and total system energy [50]. Dickson’s thesis [2] showed

how energy transfer could be determined for classified systems and a midsole can be

designed, which is capable of transmitting energy from vertical direction to horizontal

direction. Experimental results were used in the formulation to determine the amount

of energy transfer. Although it was a big step in this area of research, more studies are

needed to enhance the fundamental understanding of DET.
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3 Methodology

3.1 Directional Energy Transfer (DET)

This section explains the concepts and formulations of DET following Dickson’s work [2].

In this reference, a thorough survey was conducted to categorize the various theoretical

models that are capable of delivering DET. The study proposed that, by utilizing the po-

tential energy generated as force and displacement in the vertical direction, the designer

is able to create displacement in the horizontal direction by using an appropriate shoe

structure. After that, the study is about enhancing the sport shoe efficiency by using the

concept of DET.

3.1.1 Assumptions

Without loss of generality, a midsole structure shown in Fig. 3.1b represents the midsole

of Adidas Spring Blade shoe to illustrate the concept of DET. The modeling acknowl-

edges the shape and geometry of the structure. The deformation occurs due to the load

at the contact point between the foot and the sole. Additionally, the contact point does

not alter due to variable loading conditions.

A lattice structure can be generated by repeating the unit cell with a direct pattern-

ing, conformal patterning, or topology optimization approach [7]. Like a lattice struc-

ture, the structure Fig. 3.1b has a repetitive unit cell in a linear pattern. Hence, inquiring

about an individual unit element will be satisfactory and computationally less expen-

sive. As mentioned earlier, shoe midsole is considered as the example case to describe

the concept. Yet, a comparable phenomenon is expected for other structures while load-

ing condition is alike.
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FIGURE 3.1: (a) Adidas Spring Blade shoe (b) An illustration of sample structure for analysis
(c) deformation of the structure element due to loading and unloading.

3.1.2 Model simplification

This phenomenon is valid for any structure irrespective of the unit element type. How-

ever, the structure was simplified as a spring (or a set of springs) to demonstrate the

concept. From Fig. 3.3, it is pointed that an element can be simplified to a linear spring

and a rotational spring. Linear spring can bear axial load showing linear deformation

(truss-like). On the contrary, rotational spring is the element which can support trans-

verse load performing rotational deformation (beam-like).

While running, an athlete strikes the ground with one’s forefoot and applies a load to

the shoe midsole. The midsole deforms due to the load at the contact point connecting

the foot and the midsole structure. The midsole stores energy as a form of load and

deformation (Fig. 3.1c). There are some deformations in x- and y-directions, and the

structure continues deforming till it attains equilibrium. When the athlete takes off, the

deformed structure tends to go back to its initial state and returns the stored potential

energy as a reaction force.

For a spring, while applying a load at the contact point, it deforms with ∆x and ∆y

storing energy. At equilibrium, the reaction force (Fs) of the spring should be equiva-

lent to the applied force. And the total stored energy (Etot) in the system is the elastic

potential energy of the spring (Es f ). For instance, the potential energy stored in a linear

spring with a spring constant k is Es f =
1
2 k∆s2 where s is the deformation of the spring.
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FIGURE 3.2: Referring the work [2], (a) two linear spring mechanisms, (b) the prototype to
test the mechanism, (c) the load-deflection curve of the physical test, and (d) the applied
force curve used for the numerical study by the forefoot strike.

3.1.3 Energy decomposition

Recall that, DET in this case aims to transfer energy from the vertical direction to the

forward direction. Therefore, in order to measure the amount of transfer in specific

direction, the total energy (Etot) needs to be separated into x- and y-directions: Ex &

Ey. Dickson achieved this separation by decomposing the reaction force Fs into x- and

y-directions, i.e., Fx and Fy, corresponding to the deformations ∆x and ∆y. Then, the

energies are summarized as following:

Es f =
∫︂

Fs ds, Ex =
∫︂

Fx dx, Ey =
∫︂

Fy dy.

Since the spring is at its equilibrium state and it is assumed that there is no energy

converted to other forms besides deformation, the energy is conserved, i.e.,

Etot = Es f = Ex + Ey, Etrans = Etot − Ey.

The energy transfer Etrans was defined by the total energy stored in the system minus

the energy stored in the y-direction, assuming it will be the energy returned to the x-

direction.
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3.1.4 Mechanism with two linear springs

The basic assumptions followed in Dickson’s work [2] are explained in previous sec-

tion. According to the thesis [2], the simplest mechanism capable of energy transfer

is believed to have only 1 or 2 degrees of freedom (DOF). Several prototypes were de-

signed with 1-DOF (linear spring, rotational spring) and 2-DOF (linear-linear spring,

linear-rotational spring, rotational-rotational spring) mechanisms. This section further

explains the principles of DET using the 2-DOF mechanism with two linear springs.

From the thesis, the 2-DOF linear spring mechanism is shown in Fig. 3.2a, where the

two springs are inclined in 90 degree and the central node is constrained in that inclined

plane. The corresponding prototype of the mechanism was designed and fabricated as

shown in Fig. 3.2b.

Mathematical formulations for 2-DOF structure are provided here [2]:

Fs1 = k1∆l1, Fs2 = k1∆l2,

Fx = Fs2 sin θ − Fs1 cos θ, Fy = Fs2 cos θ + Fs1 sin θ,

Ex =
∫︂

Fxdx, Ey =
∫︂

Fydy,

Es f 1 = l
∫︂

Fs f 1dl, Es f 2 = l
∫︂

Fs f 2dl,

Etot = Ex + Ey = Es f 1 + Es f 2, Etrans = Es f 1 + Es f 2 − Ey.

Fs1 and Fs2 are the spring forces of the two springs (1 & 2) obtained by their deformations

∆l1 and ∆l2. Both spring forces are used to calculate the directional forces Fx and Fy in

x- and y-directions, respectively.

The energies (Ex & Ey) can then be computed by the integration of the force along

each direction. Here, energy is being divided into two parts – x and y. As energy

is conserved in a system, the total energy (Etot) is a combination of Ex and Ey, which

should also equal to the total energy computed based on each linear spring (Es f 1 + Es f 2).

Assuming there is no energy in the x-direction input to the system, the energy transfer

(Etrans) is expressed by subtracting Ey from the total energy.
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FIGURE 3.3: Model simplify (a)unit element (b) Linear and (c) Rotational spring.

3.1.5 DET from experimental analysis

Experimental analysis was also performed on the structure to investigate if there is DET,

as shown in Fig. 3.2b. The prototype was compressed to a suitable maximum. This

establishes whether vertical compression results in horizontal displacement of the in-

termediate plate. Vertical motion causes the prototype to move horizontally and the

structure moves back to the original position after the upper platen returns to its origi-

nal location.

The load profiles for the vertical component against the deflection in y is shown in

Fig. 3.2c. Three different loads were tested corresponding to the three curves in the

chart. The energy in the y-direction was obtained by calculating the area under the

curves, where the top part is the loading curve and the bottom part was the unloading

curve. The area enclosed by this loop gives a measurement of the energy loss in the

y-direction, which was assumed to be the energy transferred in the x-direction. The

work concluded that the mechanism is capable of transferring energy from the vertical

y-direction to the horizontal x-direction since they deform in horizontal direction due

to compression, and thus it has DET.

3.1.6 Observations

Thanks to the thesis [2] providing a foundation for the study of DET, and a few obser-

vations were made to further enhance the fundamental understanding of the numerical
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FIGURE 3.4: Work done by an applied force (a) on a free body and (b) on a spring.

analysis.

Firstly, the forces in x- and y-directions (Fx, Fy) are calculated by the reaction forces

of the springs, and the applied forces are not taken into account. This means that the

computation is based on the deformed state of the structure computing the spring en-

ergy entirely. In other words, particularly the potential energy is considered in the for-

mulation without taking into account how the work is done on the structure. Truly,

computing the energy by the area under the loading and unloading curves is basically

the work done by spring:

WD =
∫︂ ∆x

0
R(x) dx,

where R(x) is the reaction force of spring, and it supposed to be R(x) = kx when the

spring constant k is known, but it was measured directly in the experiment. This equa-

tion is valid for the unloading curve, but there is applied force when the foot strikes on

the ground, which is not accounted in the loading curve.

Regarding energy return solely shows that the structure moves horizontally due to

the vertical load, although the structure requires to move in the opposite x-direction to

store the energy (Fig. 3.1c). The movement in the return phase is merely compensating

for the backward movement in the storage phase. Disregarding the negative deforma-

tion will overestimate the amount of energy transfer in the system, and thus we have

the following remark.
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Remark 1 Both the work done and potential energy need to be analyzed along each direction to

ensure if the energy in a direction is actually transferred from another direction.

Secondly, the physical experimental validation of DET [2] assumed the amount of

energy loss in the y-direction is the energy gain in the x-direction.

If we go back to work done theory again, for a constant force employed on a free

body (see Fig. 3.4a), the work done is WD = Fa∆x, where Fa is the applied force. When

the force is applied on a spring system (see Fig. 3.4b), at equilibrium, the elastic potential

energy ( 1
2 k∆x2) is commonly used to calculate the work done, if the spring constants

are known. It is okay when the energy is considered as a whole, and the system is at

equilibrium.

Nevertheless, in the context of DET, the energy needs to be separately calculated in

the x- and y-directions, but the spring constants of a complex system cannot be found for

the x- and y-directions explicitly. However, the reaction forces in the x- and y-directions

can only be computed numerically.

For the body attached to a spring in Fig. 3.4b, as spring starts to deform, a reaction

force starts to work on the opposite direction of the applied force. This opposite force is

the spring force which makes it more difficult to deform. It is noticeable that, at point A,

there is no reaction force. At point B, the spring reaction force R(x) equals to the applied

force. Therefore, the spring reaction force increases gradually through the whole path.

While the spring force increases, net force on the structure decreases till equilibrium is

achieved. Combining both works done by the applied force and the spring (Fig. 3.4b),

the net force Fn = Fa − R(x) is integrated along the deformation, i.e.,

WD =
∫︂ ∆x

0
Fa − R(x) dx. (3.1)

If k is known, the work done is WD = Fa∆x − 1
2 k∆x2. In this example, Fa should equal

to the spring force in the equilibrium, i.e., Fa = R(∆x) = k∆x. Therefore, WD =

k∆x2 − 1
2 k∆x2 = 1

2 k∆x2, which equals to the spring potential energy. This verifies the

correctness of Eq.(3.1).
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FIGURE 3.5: (a) Static vs. (b) dynamic analysis showing change in internal reaction force
through time history analysis.

Hence, the applied force should be considered to find the net force for the computa-

tion of work done, and the following remark can be proposed.

Remark 2 To find the energy for a particular direction in the storage phase (loading), it should

integrate the net force between the applied force and the reaction force in that direction.

Thirdly, the entire mathematical model of DET is based on the equilibrium state

of the system, so that the total energy (Etot) is defined by the total spring energy and

the energy transfer (Etrans) is determined by the total energy minus the energy in the

y-direction.

In linear static analysis, deformation is assumed to be linear, and the loading to be

static – remain constant and do not change direction. Hence, reaction forces calculated

using static formulation are the same as the applied forces due to equilibrium (Fig. 3.5b).

Although the static equilibrium analysis is simple and can ease the energy calcu-

lation, assuming every instant during loading and unloading is at equilibrium is not

realistic. This is because besides deformation, the energy is in multiple forms like accel-

eration and velocity, and the whole motion is dynamic. Even the analysis is separated

into different time steps.

In static analysis, it will be the same deformation for the same loads for loading

and unloading. Therefore, the energy store and energy return will be the same, and

thus the directional energy transfer will be zero. In real situation, when an applied load
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is applied, the internal reaction force increases in opposite direction resulting the net

force to decrease to zero at equilibrium (see Fig. 3.5c). To truly compute the DET, the

following remark can be made.

Remark 3 DET is a dynamic process, and its study should consider the dynamics of the whole

storage and return cycle.

3.2 Synopsis

Based on the observations and remarks, the next sections present some methodologies

to enhance the formulations for DET. The new formulations are developed first for both

the work done and energy return, considered separately in the energy storage and re-

turn phases. Instead of subtracting the energy in the y-direction from the total energy,

the energy transfer is directly computed by the energy stored and returned in the x-

direction. After that, the dynamic analysis is included in the formulation, and the math-

ematical model is generalized using dynamic finite element analysis (FEA) with frame

elements. With the new formulations, the mechanism with two linear springs are re-

studied and re-analyzed for the DET.

3.3 Modified DET Formulation by Work Done

Following the Remark 1, besides the potential energy, the work done by the applied

forces should be considered. To explain the concept more clearly, the whole cycle is

split into two phases: energy storage and energy return. While the motion is caused

by the reaction forces (potential energy) in the return phase, there are both applied and

reaction forces in the storage phase. As mentioned earlier, in this analysis, it considered

only the contact point for loading and assumed energy transfer would be conducted

only through the contact point. Hence reaction forces are calculated only at the contact

point, and other nodes were not considered.

So as stated in the Remark 2, the deformation and the net force working in the x-

and y-directions are needed to be found for the storage phase.
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Energy Storage Phase

Net force Fn working in any direction is the subtraction of the reaction force R(x) from

the applied force Fa in that direction.

In DET, if there is the net forces (Fn
x & Fn

y ) and displacements (∆x & ∆y) in the x-

direction and the y-direction, energy in the x-direction and the y-direction of the storage

phase can be determined as follows.

Es
x =

∫︂ ∆x

0
Fn

x dx, Es
y =

∫︂ ∆y

0
Fn

y dy. (3.2)

The net forces in the x- and y-directions can be expressed by considering respective

components of force and reaction force.

Fn
x = Fa

x − Rx(x), Fn
y = Fa

y − Ry(y).

Energy Return Phase

During unloading, the structure is returning to its initial state. Potential energy is re-

leased and the reaction force R is exerted. The energy Er in the energy release phase can

be calculated by the reaction force R:

Er
x =

∫︂ 0

∆x
Rx(x) dx, Er

y =
∫︂ 0

∆y
Ry(y) dy. (3.3)

Energy Transfer

I have energy stored in the x- and y- directions. To have energy transfer, it is needed

to have energy from the y-direction converted to the x-direction. The energy transfer is

directly defined by the energies in the x-direction:

Etrans = Er
x + Es

x. (3.4)

Here, directions of forces and deformation are important considerations. Because the

different directions of deformation will result in positive and negative values in the
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FIGURE 3.6: Vector decomposition of an applied force on two linear springs and the defor-
mations.

energies, so the energy transferred Etrans is the addition of Er
x and Es

x. Energy transfer

would be of help, if the net energy transfer is achieved towards the intended direction

(running direction which is positive x-axis).

3.3.1 Re-formulate the Structure of Two Linear Springs

In this section, the two inclined linear spring structure shown in Fig. 3.2 is re-visited.

The two springs are attached to each other at right angle. Let the lengths of the linear

springs be l1 and l2 and they are inclined at angles θ1 and θ2 to the horizontal. A vertical

load Fv is applied on the structure (Fig. 3.6a). Applied force is decomposed to axial force

and transverse force (in blue) that are accounted by each of the springs.

To compute energy transfers, the axial forces are divided into x- and y-components

(in red). In Fig. 3.6b, displacements are shown. By dividing axial deformations into x-

and y-components, deformation in x-direction (∆x) and y-direction (∆y) are obtained.

For linear spring constants of the springs are k1 and k2, R1(∆l1) = Fs1 = k1∆l1 and

R2(∆l2) = Fs2 = k2∆l2 are the spring forces. At equilibrium,

k1∆l1 − Fv sin θ1 = 0, k2∆l2 − Fv sin θ2 = 0,
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which give the deformation ∆l1 and ∆l2, and they can be used to compute the deforma-

tions in x and y (refer to Fig. 3.6b):

∆x1 = ∆l1 cos θ1, ∆x2 = ∆l2 cos θ2,

∆y1 = ∆l1 sin θ1, ∆y2 = ∆l2 sin θ2.

Net forces for each element in the x-direction and the y-direction are

Fn
1x(x) = Fa

1x − R1x(x), Fn
2x(x) = Fa

2x − R2x(x),

Fn
1y(y) = Fa

1y − R1y(y), Fn
2y(y) = Fa

2y − R2y(y),

where

Fa
1x = Fv sin θ1 cos θ1, Fa

2x = Fv sin θ2 cos θ2,

Fa
1y = Fv sin2 θ1, Fa

2y = Fv sin2 θ2,

R1x(x) = k1x, R2x(x) = k2x,

R1y(y) = k1y, R2y(y) = k2y.

Energy Storage Phase

The energy stored in the x-direction is

Es
x = Es

1x + Es
2x =

∫︂ ∆x1

0
Fn

1x dx +
∫︂ ∆x2

0
Fn

2x dx

=

(︃
Fv sin θ1 cos θ1∆x1 + Fv sin θ2 cos θ2∆x2

)︃
−

(︃
1
2

k1∆x2
1 +

1
2

k2∆x2
2

)︃

and the energy stored in the y-direction is

Es
y = Es

1y + Es
2y =

∫︂ ∆y1

0
Fn

1y dy +
∫︂ ∆y2

0
Fn

2y dy

=

(︃
Fv sin2 θ2∆y2 + Fv sin2 θ1∆y1

)︃
−

(︃
1
2

k1∆y2
1 +

1
2

k2∆y2
2

)︃
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Energy Return Phase

The energy release is from the deformed shape back to the initial state by the reaction

force, which would be like the following.

Er
x =

∫︂ 0

∆x1

R1x(x) dx +
∫︂ 0

∆x2

R2x(x) dx = −1
2

k1∆x2
1 −

1
2

k2∆x2
2

Er
y =

∫︂ 0

∆y1

R1y(y) dy +
∫︂ 0

∆y2

R2y(y) dy = −1
2

k1∆y2
1 −

1
2

k2∆y2
2

Energy Transfer

Energy transfer for two inclined linear springs is

Etrans = Er
x + Es

x =

(︃
Fv sin θ1 cos θ1∆x1 + Fv sin θ2 cos θ2∆x2

)︃
−

(︃
k1∆x2

1 + k2∆x2
2

)︃

The same analysis has been done on other structures too using static analysis. The

static analysis results are shown in the result section, and the results also show that there

is no DET. Then, does it mean that DET is not possible in any structure? I argue not,

and I find that the problem comes from assumptions of the static equilibrium analysis.

For example, the static analysis is based on the equilibrium condition, and thus the

force matrix shows the internal reaction forces at the very moment when the structure

reaches at equilibrium. Hence, the applied forces are always the same as the reaction

forces. However, as mentioned in Remark 3, the DET is a dynamic process, and thus the

applied forces are changing and the system is not at a equilibrium state. Therefore, it

is important to apply dynamic analysis to the formulation so that the DET can be truly

measured.

3.4 Generalized Dynamic Formulation

To study the DET behaviour more accurately, the model was extended using implicit

dynamic FEA. The spring element is also extended to frame element. A frame element

can model a straight bar of an arbitrary cross-section, which can deform in the axial

and perpendicular direction to the axis of the bar. A frame is capable of carrying both
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axial and transverse forces, as well as moments. The major difference from the previous

formulation is that while the spring element is described by a spring constant k, the

frame element is described by a stiffness matrix K. The dynamic force equilibrium at

the nodes of a system of structural elements at any time can be expressed as

Fi(t) + Fd(t) + Fe(t) = F(t) (3.5)

where Fi = inertia force vector, Fd = damping force vector, Fe = internal resisting force vector

and F = vector of externally applied force. These force vectors are related to the physi-

cal properties of the structure elements, i.e., Fi = Mü, Fd = Cu̇ and Fe = Ku for linear

systems. Hence, a structural system subjected to dynamic forces is modelled by the

following expression:

Mü(t) + Cu̇(t) + Ku(t) = F(t), (3.6)

where M is mass matrix, C is damping matrix, K is stiffness matrix, u̇ and ü are time

derivatives of deformation u. For time history analysis for the derivatives, direct inte-

gration method is used so that no transformation of the equations into different forms

is carried out. A popular implicit method for numerical integration called ‘Newmark

Method’ is used here. This method is unconditionally stable and has no restriction on

the time step size. Although damping is highly related to vibration in reality, it requires

a set of experiments to determine damping ratios of the structure at two separate fre-

quencies, so the damping effect is not considered here for the sake of simplicity. Here,

the frame is assumed to have a uniform cross-sectional area A with length L. Material

is linear with elastic modulus E and geometry is linear. The mass matrix M and the

stiffness matrix K are expressed as
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M =
ρAL
420

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

140 0 0 70 0 0

0 156 22L 0 54 −13L

0 22L 4L2 0 13L −3L2

70 0 0 140 0 0

0 54 13L 0 56 −22L

0 −13L−3L2 0 −22L 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.7)

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L 0 0 − EA

L 0 0

0 12EIz
L3

6EIz
L2 0 − 12EIz

L3
6EIz
L2

0 6EIz
L2

4EIz
L 0 − 6EIz

L2
2EIz

L

− EA
L 0 0 EA

L 0 0

0 − 12EIz
L3 − 6EIz

L2 0 12EIz
L3 − 6EIz

L2

0 6EIz
L2

2EIz
L 0 − 6EIz

L2
4EIz

L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

For a frame element inclined at an angle θ with the x-axis, a transformation matrix

is required to include the orientation of the element, and the equation becomes:

T⊤MT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆x1̈

∆y1̈

∆θ1̈

∆x2̈

∆y2̈

∆θ2̈

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ T⊤KT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆x1

∆y1

∆θ1

∆x2

∆y2

∆θ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1x

F1y

M1

F2x

F2y

M2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.9)
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with

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ sin θ 0 0 0 0

− sin θ cos θ 0 0 0 0

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.10)

With the given applied load Fa = {F1x, F1y, M1}, the deformations in x- and y-directions

(∆x1, ∆y1, ∆θ1) at different time instants during the motion can be computed by Eq.(3.6).

To obtain the reaction forces (R) at the loading point at a deformation instant, Eq.(3.10)

can be used as well by dropping the mass term (Mü(t)) and inputting the deformations

(u(t)), and then the solved forces (F1x, F1y) are the reaction forces due to the potential

energy stored in the system.

Note that, although Eq.(3.10) is just for one single element, the matrix can be eas-

ily extended when there are more elements, like the finite element method (FEM). The

mechanism with two inclined frames is also tested and reported in the result section.

Moreover, the benefits of using frame elements over spring elements are that they can

be used to model the widest variety of components, more related to the real design

resulting in a better result.

If we re-think about the structure with two linear springs, the mechanism is actually

a simplified representation of the actual design considering only the axial loads. The

purpose is to apply the frame elements to develop a more general method to deal with

other different structures irrespective of complexity. In fact, the stiffness of a particular

structure could be complex, which would make the discrete analysis more complicated.

Since the FEM represents the small blocks of materials and connects them to other ele-

ments, they can be shaped to almost any geometry subjected to any loading.
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FIGURE 3.7: Flow chart for DET.

3.5 Synopsis

If the process from problem identification to find the answer is reviewed, it could be

displayed as the flowchart in (Fig. 3.7). Two main intricacies were distinguished from

Dickson’s work[2]. One of the challenges was energy loss in y-direction was regarded as

an energy gain in the x-direction (Section 3.1.3). Another challenge was, the mathemat-

ical models were entirely case-specific (Section 3.1.4). To resolve the first query, energy

should be assessed in x-direction directly since the purpose is to gain energy transfer in

x-direction (Section 3.3). Momentarily, potential energy and work done can be consid-

ered to determine the energy. However, potential energy requires directional stiffness

which might be tricky or complicated to manage sometimes. Work done method is more

compatible in this situation as force and deformation are simply achievable. The liable

force for deformation is mentioned as a net force in this investigation. Net force requires

internal force which can be solved by mathematical or numerical analysis (Section 3.1.6).

On the other hand, finite element analysis is utilized in this analysis to answer the

second problem because of its generic features. However, static analysis has some short-

comings to satisfy the necessities in this analysis. Therefore, dynamic analysis is em-

ployed to conduct the analysis and to determine the internal force and deformation of

the structure (Section 3.4).
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4 Results

4.1 Numerical analysis

Following the previous study [2], the shoe midsole structure is being focused, and the

loading curve is shown in Fig. 3.2d is also applied here to find out how the structures

respond to the loading and unloading cycle.

The loading curve was based on the entire weight of a body, but it should be dis-

tributed uniformly on the contact surface, so a fraction of the load is used, i.e., 1
10 th arbi-

trarily. With the applied forces in different time instants, the deformations and reaction

forces, as well as the energies, can be computed in the x- and y-directions, respectively.

The energies stored are shown as positive, and the energies returned are shown as

negative. After that, the DET can be determined. Since the development changes the

static analysis to dynamic as well as spring element to frame element, the frame element

was tested first with static analysis to make sure it is actually the dynamic analysis that

matters to the DET. Also, to mention, applying frame elements to the model helps build

a unified framework to be extended to any cases.

4.1.1 Analysis using the new formulation for two spring elements

Initial considerations

Referring to the formulations in Section 3.3.1, the following values are used for the cal-

culation: stiffness of spring 1, k1 = 12000N/mm, stiffness of spring 2, k2 = 9200N/mm,

inclination angle of spring 2, θ1 = 60◦, inclination angle of spring 2, θ2 = 30◦, and length

of both springs, l1 = l2 = 30mm.
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Calculation

With an applied load Fv = −822.15N in the vertical direction, the deformations for

spring 1 and spring 2 are ∆l1 = 0.059mm and ∆l2 = 0.0447mm. The total energy stored

in the springs can be computed as Etot =
1
2 k1∆l2

1 +
1
2 k2∆l2

2 = 30.307J. The decomposed

displacements in the x- and y-directions for the two springs are: ∆x1 = −0.0297mm,

∆x2 = 0.0387mm, ∆y1 = −0.051mm, and ∆y2 = −0.022mm. The energies stored can

then be computed: Es
x = 12.169J and Es

y = 18.138J.

Validation

The sum of them is Es
tot = Es

x + Es
y = 30.307J, which is the same as the Etot and it shows

that the formulations for the energy storage phase are correct.

Similarly, the energies in the return phase can be computed: Er
x = −12.168J and

Er
y = −18.138J (negative for storage). The absolute value of their sum is Er

tot = 30.307J,

which equals to Etot, demonstrating that the formulations for the return phase are also

valid.

DET calculation

The energy transfer is thus Etrans = Er
x + Es

x = 0, which shows no DET in this load-

ing case. From the calculation, Etrans is always zero, meaning that this structure is not

capable of transferring any energy.

Note that, the previous study [2] considered only the energy in the x-direction in the

return phase, which is Er
x = −12.168J computed in this study, and reported this is the

energy transferred. However, if the energy stored in the storage phase is considered, it

is exactly the same amount as in the return phase. In other words, during the return

phase, the structure is just moving back to compensate for the forward movement done

in the storage phase, which cannot be counted as energy transferred.

4.1.2 Static analysis with frame element

The frame element is a straight bar that can deform both in the axial direction and per-

pendicular to the axis of the bar. The bar is capable of carrying both axial and transverse

forces, as well as moments. Hence the frame element was analyzed separately as a truss
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and a beam element. Since the frame element can carry the axial and transverse load,

energy for the truss element and the beam element were determined independently. En-

ergy from the truss element and the beam element should be equivalent to the energy

from the frame element. However, the bending moment is prominent over axial load-

ing to create deformation and displays the major share of the total energy of the element

(Fig. 3.3).

Initial considerations

An inclined frame element is considered with A = 95 mm2, E = 2900J, L = 30mm,

inclined angle, θ = 45◦ and used FEA to calculate deformation for applied vertical and

horizontal forces at the contact point of shoe-sole and foot. The contact point of the

element and outsole/ground was set as boundary conditions. Also, reaction force were

calculated at equilibrium using Eq.(3.10). Let the reaction force at equilibrium be R.

In this particular case, as deformation is linear due to loading, the reaction force will

increase linearly from zero to R.

Calculation

For the case when t = 0.01s with Fv = −822.15N:

Bending

Bending deformation, ∆lbeam = 3.33mm, resulting in x and y-deformation from

bending are respectively ∆xbeam
1 = 2.355mm and ∆ybeam

1 = −2.355mm. Bending force

coming from Fv is 581.6N resulting in Fa−beam
1x = 411.253N and Fa−beam

1y = −411.253N

and reaction forces at equilibrium Rbeam
1x = −411.253N and Rbeam

1y = 411.253N. There-

fore, the stored energy would be Es−beam
x = 484.183J. Similarly, Es−beam

y = 484.183J

and Es−beam
tot = 968.365J. Energy return would be Er−beam

x = −484.183J and Er−beam
y =

−484.183J. Therefore, Ebeam
trans = 0.

Truss

Axial deformation, ∆ltruss = 0.073mm, resulting in x and y-deformation are respec-

tively ∆xtruss
1 = 0.052mm and ∆ytruss

1 = −0.052mm. Axial force coming from Fv is

581.6N resulting in Fa−truss
1x = −411.253N and Fa−truss

1y = −411.253N and reaction forces

at equilibrium Rtruss
1x = 411.253N and Rtruss

1y = 411.253N. Therefore, the stored energy
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FIGURE 4.1: (a) One of the common lattice structures for 3D printing, and it is modified for
testing the dynamic analysis: (b) 1-element, (c) 2-element and (d) 4-element.

would be Es−truss
x = 10.7J. Similarly, Es−truss

y = 10.7J and Es−truss
tot = 21.4J. Energy return

would be Er−truss
x = −10.7J and Er−truss

y = −10.7J. Therefore, Etruss
trans = 0.

Validation

For frame element, x and y-deformation are respectively ∆x f rame
1 = 2.303mm and ∆y f rame

1 =

−2.408mm. Strain energy is 989.957J which is sum of Es−beam
tot = 968.365J and Es−truss

tot =

21.4J which shows the validity of this procedure.

Observations

In summary, vertical load was applied, which provided energy in both directions, x and

y, which means some portion of energy from the y-direction is being converted to the

energy in the x-direction. However, that stored energy in the x-direction is being nulli-

fied by the same amount of energy in the x-direction during the energy return phase.

In other words, the energy return and the energy stored is precisely corresponding

but opposite in direction. The structures are indeed moving in a horizontal direction

following the vertical load, but to gain stored energy, an equal amount of energy is

being invested in the opposite direction making this situation obsolete. Therefore, it can

be concluded that, for any linear geometry with linear material properties, they do not

show any energy transfer while using static analysis.

4.1.3 Dynamic analysis

The static analysis does not provide any information other than the equilibrium state.

To investigate a more pragmatic loading situation, some predefined cases are going to

be reported to find out the effects of impact loading using dynamic FEA.
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FIGURE 4.2: Net force vs. deformation curves for ABS with volume 3000 mm3 to obtain
the energy by the area under the curves of (a) 1-element, (b) 2-element and (c) 4-element
structures.

Motivation: Lattice structure

The study here is motivated by the lattice structures used in 3D-printed parts, one of

them is shown in Fig. 4.1a. However, to have DET behaviour, the structure shouldn’t

be symmetric so that deformation in the x-direction is possible, even only a vertical

load in the y-direction is applied. To perform the analysis, the lattice structure was

modified and obtained three different structures as shown in Fig. 4.1, including a 1-

element bar inclined to the right side (inspired by Adidas Airblade Shoe), a 2-element

spring (inspired by 3D printed airless tire) and a 4-element structure (stiffen spring).

The goal is to find a lattice structure that has DET behaviour.

Considerations

To facilitate the observation, the same material volume was used along with the same

surface boundary for planer frame elements. Likewise, the objective is to observe if there

is any energy transfer, and if the structure will be strong enough to stand the loads.

Two quite different materials were used to demonstrate the performance: ABS (Acry-

lonitrile butadiene styrene) and Aluminum. For surface boundary box, height and

width were assumed to be 30mm and 30mm, respectively. This considers the aver-

age dimension of a shoe sole so that the structure can reach the midsole height and

also can be repetitively used along the midsole length and width. The energy transfer

behaviour was observed for two different volumes (3000 mm3 and 6000 mm3) with a

circular cross-section area. The results are summarized in Table 4.1.
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Forces

Unlike previous cases, the applied load has both x and y components as a real-life load-

ing situation is used. Loading curve is mentioned in 3.2 (d). In the beginning, the

internal reaction force is zero, so the net force equals the applied force. As the structure

starts to deform, it builds an internal reaction force. The net force is calculated by both

the applied force and the internal reaction force vectors.

It is noted that, throughout the cycle, the net force starts to increase, reaches a peak,

and then decreases due to higher reaction force formation. At a point, the net force

becomes zero and turns to grow in the opposite direction. At this transition point, the

structure starts to deform in the opposite direction until it reaches its initial state, which

is the unloading.

By plotting the net force against the deformation for the whole cycle, the curves in

Fig. 4.2 show that they indeed have different values.

Energy: Area under curve

Energy is defined by the integration of net force along with the deformation, which is

the area under the curves in Fig. 4.2. Energy towards the x-direction is the intention of

the study, which is exhibited in the right section (horizontal axis > 0) of all the plots

(since every structure deform to the right first and then come back). The upper-division

(vertical axis > 0) is the loading phase, and the lower-division is the unloading phase.

Therefore, the area under the curve in the upper-division is the energy stored (Es
x). Sim-

ilarly, the area under the curve in the lower-division is the energy return (Er
x).

In this case, the areas under the curve for energy store and return are on the oppo-

site side, hence resulting in positive and negative energy for loading and unloading,

respectively. The energy transfer is the net energy of the two areas under the loading

and unloading curves, and the values are provided with Table 4.1.

Energy transfer

At this circumstance, recall the concept of energy transfer from the y-direction to the

x-direction. In previous cases, there was deformation in the horizontal direction due to

vertical load, which means that it did convert the y-direction energy to the x-direction
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Properties Unit type 1 element 2 elements 4 elements

Boundary Box:
Height, H= 30
Width, W= 30

t = 0, 0.001,.., 0.14s

Length L=42.4264 L1, L2 = 30
L1, L3 = 21.21,

L2, L4 = 30

Angle 45◦
θ1 = 150◦,
θ2 = 30◦

θ1 = 135◦,
θ2 = 150◦,
θ1 = 45◦,
θ2 = 30◦

Volume 3000 6000 3000 6000 3000 6000

ABS
Y 2000 Etrans 19.3851 4.9282 20.2029 5.0075 6.5838 1.6023

σmax 40.7 σ -4.7601 -1.5915 -72.5574 -29.7903 -70.3442 -32.8264
τmax 28.49 τ 1.4921 0.833 -3.7967 -1.8675 -5.1042 -2.5391

Al
Y 70000 Etrans 0.111 0.0145 0.2136 0.0299 0.0934 0.0136

σmax 276 σ -1.3672 -0.6677 -98.2314 -35.4728 -121.504 -44.8398
τmax 193.2 τ 1.8593 0.9337 -3.6503 -1.8226 -4.9133 -2.4464

TABLE 4.1: Results of dynamic analysis on various structures and materials. (Y = elastic
modulus, σmax = yield strength, τmax = shear strength, σ = max normal stress and τ =
max shear stress obtained from the analysis. The units for length, volume and stresses are
mm, mm3 and N/mm2, respectively.)

energy. However, it was not beneficial due to energy compensation between energy

storage and return.

On the other hand, static analysis is invalid as it does not provide adequate informa-

tion about the change in net force. Dynamic analysis considering the time history helps

in this circumstance. From the dynamic analysis, different sets of x and y reaction forces

from the applied loads are found, which means if there is a difference between net forces

of the loading and unloading in the x-direction, the structure might have DET.

If we recall, energy transfer is the net energy of stored and returned in a particular

direction. The net energy should be positive in the expected direction (running in the

right direction). It can be realized from the curve that the energy storage for loading is

higher than the energy return.

As damping is not considered in this analysis, the energy difference is only because

of the inertia due to mass. Hence, energy transfer is obtained in the x-direction due to

the geometric effect.

Stress

To find the maximum normal and shear stress, the largest stress was obtained for each

element from the whole cycle. Maximum stress was found by comparing all the stresses
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at every element and the element subjected to higher stress was located. Obtained max-

imum normal stress was compared with yield strength σmax, and maximum shear stress

was compared with shear strength τmax of the material. As no plastic deformation is

expected, the yield strength of the material worked as a benchmark for this analysis.

All stress values are provided in Table 4.1.

Comparison among different structures

Comparison among 1-element, 2-elements and 4-elements based on strength, volume

and Elastic Modulus is mentioned below:

DET

From the results shown in the Table 4.1, the 2-element structure is showing a higher

energy transfer than the 1-element, whereas the 4-element structure has the lowest en-

ergy transfer for any material irrespective of volume.

Stress

In terms of the normal and shear stresses, the 2-element and the 4-elements both

have higher stress values than the 1-element. Since 2-element and the 4-elements have

shallower cross-section area, higher bending stress is generated.

Volume

Moreover, the use of a smaller volume of material with smaller yield stress (e.g.

ABS) causes yield or failure of the material more easily. The aforementioned reason

eliminates the 2-element structure (although it has a higher DET), making the 1-element

be a better choice when less volume is needed.

However, the use of a higher volume of material causes less stress concentration

(for 6000mm3, normal stress is −29.7903N/mm2) for the 2-element. In this case, the 2-

element is more preferable for two reasons. First, the structure is remaining below the

yield strength point. Second, the 2-element structure has a higher energy transfer.

Elastic modulus

The use of Aluminum instead of ABS shows that the 2-element structure is prefer-

able over the 1-element when the material has higher elastic modulus and strength.
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FIGURE 4.3: (a) Schematic diagram of experimental setup (b) actual experimental setup (c)
deformation from experimental analysis after loading and unloading.

4.1.4 Physical test

A physical experiment is also conducted to verify the numerical analysis. An experi-

mental setup was made to show deformation behaviour due to the vertical load applied.

Experimental setup

The experimental setup is shown in Fig. 4.3a. It is a device that allows a load to be ap-

plied at the top and deforms the testing structure put under it. Roller support is added

in-between the structure and loading mechanism, such that the component below the

rollers will follow the structure to move in the x-direction, but follow the device to

move in the y-direction. The purpose of the spring is to mimic the unloading condition

returning to the original height, as soon as the load is released. The structure was fab-

ricated using fused deposition modeling (FDM) 3D printing method and the material

was Thermoplastic polyurethane (TPU). An elastomer is chosen here to maximize the

deformation for visual compassion since the deformation of ABS was too small to see.

Procedure

The vertical load was applied on the top and deformation of the cross-marked point is

observed. From the numerical analysis, it is clear that internal reaction forces generated

in the structure are one of the main driving contributions to obtain directional energy

transfer. However, it is challenging to apply load exactly as the loading profile in the

numerical analysis, and the current device cannot obtain the corresponding internal

reaction force. Fortunately, the numerical analysis showed that there is a displacement

in x after the loading and unloading cycle, and if this phenomenon is also observed in
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FIGURE 4.4: Different Forces vs. deformation.

the physical experiment, it can be safely said that the numerical analysis is verified.

Results

The experiment result shown in Fig. 4.3b, where the images of three stages are overlaid:

initial, loaded, and unloaded. A particular point was selected on the roller support and

followed the deformation of the point. A maximum deformation in x-direction and y-

direction was observed 3.214mm and 9.643mm, respectively. The difference between

the initial position before loading and the end position after unloading is 0.67mm. As a

result, there is indeed a deformation in x-direction with a load only in the y-direction.

Conclusion

The vertical load can generate horizontal deformation is visible from the experimental

analysis. Moreover, there appears a deformation difference between the initial position

and the end position. This means that the deformations during energy storage and en-

ergy return are different. From the experiment, the deformation is attainable; however,

applied load and internal reaction force are not achievable. Hence, energy transfer is

not countable from this experimental setup.
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4.2 Validation of Mathematical Model

Admittedly, energy loss in y-direction does not necessarily confirm energy is transferred

in the x-direction. Hence, the proposed method to calculate DET is to determine energy

in x-direction directly. However, why DET calculated in x-direction directly is the en-

ergy transferred from y-direction is explained in this section.

4.2.1 Physical interpretation

Mathematically shown earlier, dynamic analysis shows the structure has energy transfer

which static analysis can not. Yet a question arises what happens to a structure radically

to show DET merely by changing the numerical analysis method.

In two linear springs equations, mass of the spring or damping effect was not rec-

ognized. In static analysis, a similar thing resembles; mass and damping effects are

ignored. These parameters are influencing DET a great value.

While reflecting dynamic analysis, mass, velocity, acceleration, and damping comes

into deliberation. Inertia generated due to mass, also damping effect causes energy

loss affecting internal force. In Fig. 4.4a, the internal force generation is shown for the

entire period. In Fig. 4.4b, net forces and internal forces are displayed. Internal forces

are separate for loading and unloading. This difference indicates that the internal force

generated during loading deviates from that of unloading.

Hence, in summary, the directional energy transfer is reliant on internal forces over

the loading-unloading path, the geometry of the structure, mass moment of inertia, ve-

locity, acceleration, and damping.

4.2.2 Loading types

To verify that energy in x-direction is due to only vertical load, two types of loading are

presented: variable y-loading and constant y-loading.
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Constant loading

A fixed load is applied for half of the cycle and withdrawn following the previous half.

The load is increased in several rests to lessen vibration. Following this, the load remains

consistent for the half of the time. Likewise, the load was lowered in multiple runs at

the end of the first half cycle.

Variable loading

Considering real forefoot strike loading data from previous work, the loading shown

in Fig.3.2d is mentioned as variable loading. The entire cycle is 0.14s starting from the

initial contact between the foot and the midsole to the endpoint while foot loses con-

nection with the midsole. Following this point, the foot and midsole stays in the air

until the next cycle commences when the foot and shoe midsole regains the contact due

to the ground strike. If the sequence is considered repetitively, the structure gets some

relaxation time to go back to its initial stage.

4.2.3 Direct X-energy as DET

To obtain DET, force and deformation should be obtained in the intended direction as

output due to the input force and deformation. However, directional energy transfer

does not necessarily have to be from y-direction to x-direction. Energy transfer could be

from any direction to the expected predetermined direction. In this study, the applied

load is working only in the vertical direction, but the deformation is obtained in the

horizontal direction as output. Hence, there must be some force working in x-direction

which came from y-direction.

Beam and truss separation of frame element

A structure can divide the applied load as components in x and y-directions as men-

tioned in two linear spring mechanisms (Fig. 3.2). Frame element which is considered

for the analysis is a combination of a beam and a truss element, hence force can be di-

vided for beam and truss. The beam element carries the transverse load whereas the
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FIGURE 4.5: Quasi-static vs dynamic analysis for 1 element.

truss element carries the axial load. X and y-components for a frame element can be

obtained separately from the truss and beam element. In the bigger picture, if no load

is applied in x-direction, x-components from truss and beam nullify each other. How-

ever, it is possible to determine energy separately for truss and beam elements in x and

y-direction (Section 4.1.2).

Yet, it is complicated to do separate calculations for beam and truss elements for

multiple elements. Therefore, separation of beam and truss element is not performed

for intricate structures.

Frame element

The frame element is applied in this analysis for suitability. As mentioned earlier, hor-

izontal movement is attainable for vertical load. As there is no x-load applied, it is a

challenge to answer how energy is possible to achieve in x-direction. To answer the

question, the concept of internal force needs to be recalled. An internal force is gener-

ated in the horizontal direction due to the applied load in the vertical direction. The

aforementioned internal force in x-direction is accountable for energy in x-direction. If

’net energy’ is obtained in the intended direction, we can conclude there is energy trans-

fer.
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Static vs. Dynamic

In Fig. 4.5, the impact of quasi-static and dynamic analysis in graphical analysis is

shown. Recall, static analysis is only concerned about the equilibrium state of the struc-

ture, net force at equilibrium is always zero. There is no information available on how

the internal force changes from the initial point to the endpoint. Hence, for both en-

ergy storage and energy return, internal force is assumed to evolve linearly from zero

to applied force. Due to this assumption, the corresponding structure as the dynamic

analysis does not exhibit any energy transfer. In dynamic analysis, internal forces are

different for loading and unloading. The reason behind this is mainly acknowledging

the energy loss due to inertia or damping. Furthermore, in static analysis velocity and

acceleration are ignored which has very crucial interference to internal force especially

for impact loading.

In Fig. 4.5a, quasi-static analysis is presented unlike static analysis. Quasi-static anal-

ysis can manage additional force applied slowly (without considering time history). In

quasi-static analysis, the energy return is only visible in the y-direction. Hence, the

variable load factor is not sufficient to confirm energy transfer in the x-direction.

4.2.4 Effects of various parameters

The effects of the changing numerous parameters will be mentioned here. Those pa-

rameters are: variable load, constant load, and inclination angle.

Constant vs. variable loading: only Y

Loading condition serves as a critical feature to achieve DET as it has a direct impact

on the internal force. The variable loading over time (only Y load) explains the phe-

nomenon where structure deforms due to uneven loading (heel strike).

Net forces in x and y-directions are shown by red and blue curves respectively. The

area under curves are used to measure the energy for energy store and energy return

(For example, from Fig. 4.6b, Quadrant I: energy store-x, Quadrant II: energy return-y,
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FIGURE 4.6: Net force vs deformation curves for constant and variable forces for structure
(45◦) and inverse structure (135◦).

Quadrant III: energy store-y, Quadrant IV: energy return-x). The curve is generated due

to load and cross the x-axis when the structure starts to move in the opposite direction.

If the intended direction is the positive x-axis, the expectation would be to have net

energy in the positive x-axis (hence, energy due to deformation in positive x-direction).

However, as loading and unloading phases both need to be considered, energy in posi-

tive x-direction should be higher than energy in negative x-direction (as intended energy

transfer direction is positive x-direction).

Now, Fig. 4.6b, shows the net force curves for Fig. 3.1b which is inclined at 45◦. The

structure deforms towards the intended direction first, hence energy store contributes

in the intended direction. Consequently, the energy return is contributing in the oppo-

site direction. However, if the structure is in the reverse direction (135◦), it deforms in

negative x-direction first (energy store). In simple words, energy is being transferred to

negative x-direction instead of positive x-direction (the intended direction). Hence, the

geometric properties structure has a direct correlation along with the expected direction

of energy transfer. It is understandable that just by reversing the structure direction the
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FIGURE 4.7: (a) Force vs deformation, (b) Energy fraction and (c) difference between energy
fractions for y-load and xy-load for two frame elements.

structure is not being able to have DET in expected direction anymore. Energy summary

is mentioned here.

For constant loading (only Y), the structure at 45◦, showed DET (Etrans = 2.886J) at

positive x-direction due to energy store. (Fig. 4.6b) and when the structure is reversed

at 135◦, DET is obtained (Etrans = −2.886J) at negative x-direction due to energy store

(Fig. 4.6c). For variable load (only Y) in (Fig. 4.6d), the structure at 45◦ shows DET

(Etrans = 20.778J) at positive x-direction due to energy store, whereas the inverse struc-

ture at 135◦ showed DET (Etrans = −20.778J) at negative x-direction due to energy store

(Fig. 4.6e).

Variable load: both X and Y

Previously, the graphs were shown based on the load in the vertical direction solely.

However, in reality, the casual loading would have both x and y-components. Hence,

applied x-load would directly affect DET. As mentioned formerly, DET is the transfer

of energy from one direction to another, input direction not necessarily has to be the

vertical direction. The applied load was taken in a vertical direction as reference. Simi-

larly, output direction not necessarily has to be x-direction. The main concept is to find

that how load applied in a different direction is affecting the energy in the intended

direction.

When y-load is applied solely, the energy in x-directly purely comes from y-loading.

However, applied load in x-direction would affect the energy in x-direction depending

on the direction of the applied load. In Fig. 4.7a, force curves are shown and compared
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between ’only y-load’ and ’xy-load’. As a measurement to show the difference, energy

fraction for both (y-load and xy-load) is calculated where,

Energy fraction = Ex
|Ex |+|Ey| ∗ 100%.

The difference between the energy fraction for ’y-load’ and ’xy-load’ indicates in-

directly that some energy in x-direction is coming due to load in y-direction. When

additional x-load is applied, it is contributing for energy in x-direction hence, energy

fraction for ’xy-load’ differs from ’y-load’ as shown in Fig.4.7b and c.

4.3 Synopsis

The purpose of the result sections is to show how actually the theoretical equations

were implemented, and ultimately directional energy transfer was calculated. Further

optimization analysis can be performed to show the best structure with the highest en-

ergy transfer. This study can be the basis to develop a DET lattice structure, and direc-

tional energy transfer property can be manipulated by generating more complicated but

functional design. Meta-materials can be possible scopes to be analyzed in the future,

including other desired properties of the structure.
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5 Conclusion

In this paper, a modified mathematical approach for DET is proposed. The revised

model includes considering the net force and loading paths. The formulation in es-

timating the energies in the x- and y-directions are verified by the static equilibrium

analysis, for both the storage and return phases. From the study, it can be concluded

that simple linear structures with linear materials were able to show DET using energy

in the storage phase. This mathematical model serves as a handy computational tool for

generative design. Dynamic analysis was performed to have a better understanding of

the DET.

However, the investigation has some limitations. For example, it did not regard

damping, and the specific orientations of elements were analyzed that satisfy the bound-

ary conditions. The research did not contemplate the non-linear behaviour effect of ge-

ometry change on the stiffness matrix, considering the circular cross-section area only.

Hence, the results may differ depending on the physical properties of the structure,

cross-section area or higher load, causing failure of the structure. More analyses should

be done considering optimum structure design and material selection in different appli-

cations. To explore further scopes of DET, more extensive analysis is needed with more

complex structure, non-linear materials, and/or dynamic structure.
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